

REPORT ON

NOTICE OF INTENT (NOI)
TEMPORARY CONSTRUCTION DEWATERING
BRIGHAM AND WOMEN'S FAULKNER HOSPITAL (BWFH)
BOSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for US Environmental Protection Agency Boston, Massachusetts

File No. 133243-004 November 2020

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

19 November 2020 File No. 133243-004

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, Massachusetts 02109-3912

Attention: Shauna Little, EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering

Brigham and Women's Faulkner Hospital (BWFH)

1153 Centre Street Boston, Massachusetts

Dear Ms. Little:

On behalf of our client, Brigham and Women's Faulkner Hospital (BWFH), this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. This letter was prepared in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the BWFH project (the "site"), located at 1153 Centre Street, in Jamaica Plain, Massachusetts.

Construction dewatering effluent will be treated and discharged off-Site in accordance with a NPDES RGP. A copy of the Notice of Intent (NOI) is included in Appendix A.

SITE LOCATION AND HISTORICAL SITE USAGE

The site is located at 1153 Centre street in Jamaica Plain, Massachusetts. The site locus is shown on Figure 1. The site is comprised of two projects on either side of the BWFH hospital building, a rear garage development and an inpatient addition. The rear garage development is comprised of an approximately 1.5-acre portion of the site located at the rear of the existing hospital and is currently occupied by bituminous surface parking and a landscaped slope. The inpatient addition is comprised of an approximately 0.4-acre portion of the site located at the southwest corner of the existing hospital and includes landscaped areas, concrete walkways, a paved loading dock ramp, and rooftop mechanical equipment.

The southern portion of the site including the inpatient addition area and a section of the existing building was developed as residential property by 1874. The original hospital building was opened in 1903 and was partially located within the limits of proposed parking garage. The original hospital

U.S. Environmental Protection Agency 19 November 2020 Page 3

structure was demolished in the early 1970's during the construction of the current hospital building. By 1978 the current hospital building was constructed.

PROPOSED CONSTRUCTION

The parking garage development consists of the construction of 3 above grade parking levels and 3 below grade parking levels (2 full below grade levels and one partial below grade level), as well as a structured roof over the southern third of the building. The extent of the lowest (B3) level will be limited to the center-third portion of the building footprint and will be finished at approximately El. 173.5 (BCB); the B2 level will require excavation throughout the entire footprint down to finished grade of approximately El. 184 (BCB). The below-grade limits correspond to an excavation depth ranging from approximately 20 ft to 60 ft below existing site grades, with the depth of excavation generally increasing from east to west as the garage cuts into the existing landscaped slope. The excavation will be positioned approximately 20 ft and 80 ft from the existing parking garage and hospital building, respectively.

The impatient addition development consists of the construction of a 5-story building addition along the southwest corner of the existing hospital. The proposed addition is planned with one basement level with floor at approximately El. 165.

Groundwater is expected to be encountered during below grade construction for both the parking garage and inpatient addition. The parking garage construction is scheduled before the impatient addition so the dewatering for the two portions of the site will not be operating at the same time. The groundwater levels within excavation areas should be lowered and maintained during construction to maintain a stable working platform and subgrade. Accordingly, dewatering will be required during excavation and during precipitation and stormwater events.

REGULATORY STATUS

Three Massachusetts Contingency Plan (MCP) Disposal Sites are located within the limits of the site. The Disposal sites are described below:

Release Tracking Number (RTN) 3-22926

In June 2017, the Massachusetts Department of Environmental Protection (MassDEP) was notified of a release following the identification of total petroleum hydrocarbons (TPH) in soil above RCS-1 reportable concentrations as part of a precharacterization program conducted for the construction of the parking garage. MassDEP assigned RTN 3-22926 to the release. A Release Abatement Measure (RAM) Plan was submitted to MassDEP, the objective of which was to abate the documented release of TPH to soil. Approximately 3,500 cy of petroleum impacted soil was disposed off-site. Confirmatory soil samples collected following excavation indicated petroleum constituents were below applicable Method 1 S-1/GW-2 and S-1/GW-3 criteria. Groundwater samples collected did not detect petroleum constituents or VOCs, and accordingly groundwater was not part of the Disposal Site (RTN 3-22926).

U.S. Environmental Protection Agency 19 November 2020 Page 4

A RAM Completion Statement and a Class A-2 Response Action Outcome (RAO) Statement were submitted to MassDEP in February 2004.

RTN 3-34345

In June 2017, the MassDEP was notified of a release following a photoionized detector (PID) measurement of greater than 100 parts per million by volume (ppmv) during the removal of two 20,000-gallon fuel oil underground storage tanks (USTs) installed in 1976. MassDEP assigned RTN 3-34345 to the release. Immediate Response Actions (IRA) were conducted and included the removal of fuel oil impacted soil, disposal of contaminated groundwater, and completion of additional assessment activities. Confirmatory soil samples did not detect the presence of petroleum constituents in soil and groundwater following completion of IRA response actions.

Based on the results of a Method 1 Risk Characterization, a Permanent Solution Statement with No Conditions was submitted to MassDEP in October 2017.

RTN 3-36281

In May 2020, the MassDEP was notified of a release following the identification of naphthalene, semi volatile organic compounds (SVOCs), TPH and lead in soil above reportable RCS-1 concentrations as part of a soil precharacterization program in the parking garage addition portion of the site. MassDEP assigned RTN 3-36281 to the release. Due to the release, soil management of the area will be conducted under a RAM Plan in accordance with the MCP, 310 CMR 40.0000.

GROUNDWATER QUALITY DATA

On 5 February 2020, a groundwater sample (HA20-REARGARAGE) was collected from the observation well B5(OW) located at the garage addition section of the property. On 7 February 2020, a groundwater sample (HA20-INPATIENT) was collected from the observation well B19-2(OW) on the inpatient addition section of the property. The samples were collected using a peristaltic pump. The samples were submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semi-volatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, pesticides, polychlorinated biphenyls, total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable Massachusetts Contingency Plan 2014 RCGW-1 reportable concentrations. Nonetheless, the construction dewatering effluent at the site will be managed under an RGP. The location of the observation wells B5 (OW) and B19-2(OW) are highlighted on Figures 2 and 3 respectively.

RECEIVING WATER QUALITY INFORMATION AND DILUTION FACTOR

On 5 February 2020, Haley & Aldrich collected a receiving water sample from a stream in Bussey Brook Meadow located southeast of the site. The location of the outfall sample is shown on Figure 5. The surface water sample was collected and submitted to Alpha for chemical analysis of metals, ammonia, and hardness. Field parameters, including pH and temperature, were collected from surface water at the location of the original sample on 10 September 2020. The results of water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 0 and confirmation is included in Appendix B.

EFFLUENT CRITERIA DETERMINATION

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site. Groundwater and Receiving Water data were input and the resulting criteria was tabulated in Appendix B. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

DEWATERING SYSTEM AND OFF-SITE DISCHARGE

During the remedial activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable remedial excavations in-the-dry. Dewatering activities are anticipated to start in April 2021 and are anticipated to be required for up to 18 months. On average, we estimate effluent discharge rates of about 75 gallons per minute (gpm), with occasional peak flows of approximately 100 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the site.

Construction dewatering includes discharging to catch basins located on-site that discharge to Bussey Brook. The on-site discharge route from the catch basins to the edge of the property is shown on Figure 4 and the off-site discharge route into Bussey Brooke and outfall location are shown on Figure 5. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system was designed by the contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water is to be routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and undissolved chemical constituents, as shown on Figure 4.

U.S. Environmental Protection Agency 19 November 2020 Page 6

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix C. IPAC indicated the presence of two wetlands but no listed endangered species. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no critical habitats have been established to be present within the project action area.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), one historic property, Arnold Arboretum, National Register of Historic Places reference Number: 66000127, has been established to be present at the southeast section of the site on the inpatient addition section. While the discharge route shown on Figure 5, passes through the Arnold Arboretum, the planned treatment process, discharges and discharge-related activities are not considered to have the potential to impact this historic property. The discharge is considered to meet Criterion B. Documentation is included in Appendix D.

OWNER AND OPERATOR INFORMATION

Owner:

Brigham and Women's Faulkner Hospital 1153 Centre Street Boston, MA 02130 Contact: Edward Pitts Executive Director – Facilities & Support

Operator:

Turner Construction Company 2 Seaport Lane Boston, MA 02210 Contact: Richard Parsons Title: Construction Executive

APPENDICES

The completed "Suggested Notice of Intent" (NOI) form as provided in the RGP is enclosed in Appendix A. The site owner is Brigham and Women's Faulkner Hospital. Brigham and Women's Faulkner Hospital has hired Turner Construction Company as the general contractor conducting the site work, including dewatering activities. The excavation subcontractor will operate the dewatering system. Haley & Aldrich is monitoring the Contractor's dewatering activities on behalf of Brigham and Women's Faulkner Hospital in accordance with the requirements for this NOI submission. Calculations to determine the dilution factor and effluent criteria for the site as well as MassDEP confirmation for the dilution factor used is included in Appendix B.

Appendices C and D include the National Register of Historic Places and Endangered Species Act Documentation, respectively. Appendix E provides a copy of the Boston Water and Sewer Dewatering Permit Application letter. Copies of the groundwater testing laboratory data reports are provided in Appendix F. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

U.S. Environmental Protection Agency 19 November 2020 Page 7

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC

Liza Joyce Engineer

Cole E. Worthy, LSP Senior Associate

Attachments:

Table I - Summary of Groundwater Quality Data

Figure 1 – Site Locus

Figure 2 – Proposed Rear Garage Site and Subsurface Location Plan

Figure 3 – Proposed Inpatient Addition Site and Subsurface Location Plan

Figure 4 – Proposed On-Site Discharge Route

Figure 5 – Proposed Off-Site Discharge Route

Figure 6 – Proposed Treatment System Schematic

Appendix A - NOI for RGP

Appendix B – Discharge Calculations

Appendix C – Endangered Species Act Documentation

Appendix D – National Register of Historic Places and Massachusetts

Historical Commission Documentation

Appendix E – BWSC Permit Application

Appendix F – Laboratory Data Reports

c: Edward Pitts, Brigham and Women's Faulkner Hospital

 $\label{thm:local-projects} $$ \holdsymbol{thm:local-projects} $$ \operatorname{Local-projects} \operatorname{Local-projects}$

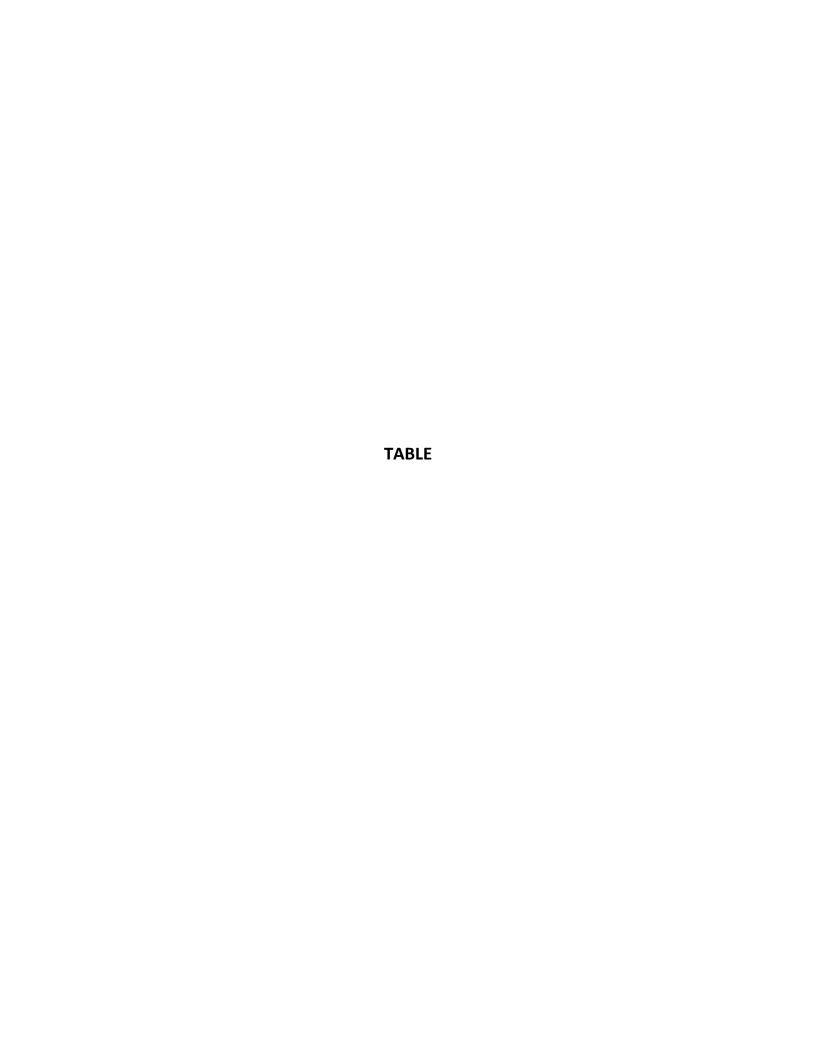


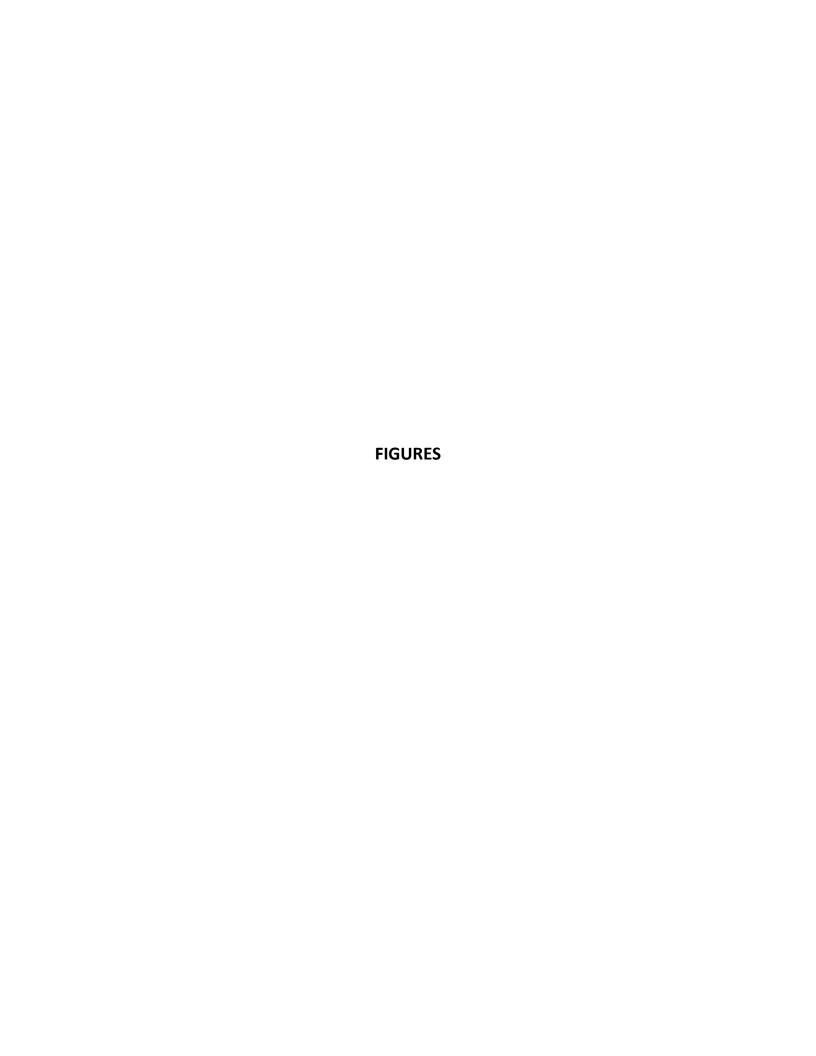
TABLE I SUMMARY OF WATER QUALITY DATA 1153 CENTRE STREET BOSTON, MASSACHUSETTS FILE NO. 133243-004

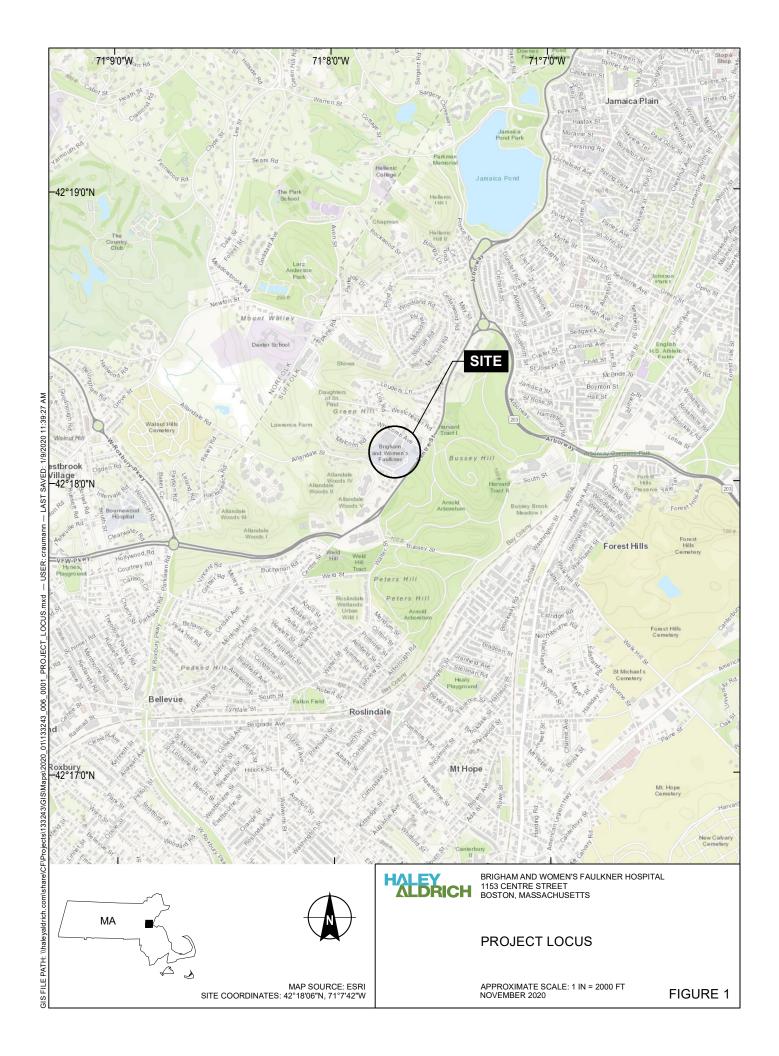
	2017 NPDES RGP	МСР		HA20-	
SAMPLE NAME	Estimated	RCGW-2 2014	HA20-INPATIENT-	REARGARAGE-	HA20-OUTFALL
SAMPLING DATE	Site-Specific	Reportable	02072020	02052020	02052020
SAMPLING DATE LAB SAMPLE ID	Criteria	Concentrations	2/7/2020 L2005847-01	2/5/2020 L2005306-01	2/5/2020 L2005306-02
SAMPLE TYPE			WATER	WATER	WATER
/olatile Organics (ug/l)					
1,1,1-Trichloroethane	200	4000	ND(2)	ND(2)	-
1,1,2-Trichloroethane	5	900	ND(1.5)	ND(1.5)	-
1,1-Dichloroethane	70		ND(1.5)	ND(1.5)	-
1,1-Dichloroethene	3.2 600	80 2000	ND(1)	ND(1)	
1,2-Dichlorobenzene 1.2-Dichloroethane	5	2000 5	ND(5) ND(1.5)	ND(5) ND(1.5)	
1.3-Dichlorobenzene	320	6000	ND(1.5)	ND(5)	:
1.4-Dichlorobenzene	5	60	ND(5)	ND(5)	
Acetone	7970	50000	ND(10)	ND(10)	
Benzene	5	1000	ND(1)	ND(1)	
Carbon tetrachloride	4.4	2	ND(1)	ND(1)	
cis-1,2-Dichloroethene	70	20	ND(1)	ND(1)	
Ethylbenzene	100	5000	ND(1)	ND(1)	-
Methyl tert butyl ether	70	5000	ND(10)	ND(10)	-
Methylene chloride	4.6	2000	ND(1)	ND(1)	
o-xylene	NA	3000	ND(1)	ND(1)	-
p/m-Xylene	NA 430	3000 NA	ND(2) ND(100)	ND(2)	
Tert-Butyl Alcohol	120 90	NA NA	ND(100) ND(20)	ND(100) ND(20)	
Tertiary-Amyl Methyl Ether Tetrachloroethene	90 5	NA 50	ND(20) ND(1)	ND(20) ND(1)	
Tetrachioroethene Toluene	100	40000	ND(1) ND(1)	ND(1) ND(1)	
Trichloroethene	5	5	ND(1)	ND(1)	:
Vinyl chloride	2	2	ND(1) ND(1)	ND(1) ND(1)	[
Xylenes, Total	100	3000	ND(1)	ND(1)	
Total BTEX	100	NA	ND	ND	<u> </u>
SUM of Volatile Organic Compounds	NA	NA	NA	NA	-
/olatile Organics by SIM (ug/l)	200	6000	ND(50)	ND(50)	
1,4-Dioxane	200	6000	ND(50)	ND(50)	
Semivolatile Organics (ug/l) Bis(2-ethylhexyl)phthalate	101	50000	ND(2.2)	ND(2.2)	l .
Bis(2-ethylnexyl)phthalate Butyl benzyl phthalate	NA NA	10000	ND(2.2) ND(5)	ND(2.2) ND(5)	:
Butyi benzyi pritnalate Di-n-butylphthalate	NA NA	5000	ND(5)	ND(5)	1 :
Di-n-octylphthalate	NA NA	100000	ND(5)	ND(5)	
Diethyl phthalate	101	9000	ND(5)	ND(5)	
Dimethyl phthalate	NA	50000	ND(5)	ND(5)	-
Total Phthalates	190	NA	ND	ND	-
Pentachlorophenol	1	200	ND(1)	ND(1)	-
Phenol	1080	2	ND(30)	ND(30)	-
SUM of Semivolatile Organic Compounds	NA	NA	ND	ND	-
Semivolatile Organics by SIM (ug/l)					
Acenaphthene	Group II PAHs	10000	ND(0.1)	ND(0.1)	
Acenaphthylene	Group II PAHs	40	ND(0.1)	ND(0.1)	
Anthracene	Group II PAHs	30	ND(0.1)	ND(0.1)	
Benzo(a)anthracene	1	1000	ND(0.1)	ND(0.1)	
Benzo(a)pyrene	1	500	ND(0.1)	ND(0.1)	
Benzo(b)fluoranthene	1	400	ND(0.1)	ND(0.1)	
Benzo(ghi)perylene	Group II PAHs	20	ND(0.1)	ND(0.1)	
Benzo(k)fluoranthene	1	100	ND(0.1)	ND(0.1)	-
Chrysene	1	70	ND(0.1)	ND(0.1)	
Dibenzo(a,h)anthracene	1	40	ND(0.1)	ND(0.1)	-
Fluoranthene Fluorene	Group II PAHs	200 40	ND(0.1)	ND(0.1)	-
Huorene Indeno(1,2,3-cd)pyrene	Group II PAHs	40 100	ND(0.1) ND(0.1)	ND(0.1) ND(0.1)	
Naphthalene	20	700	ND(0.1)	ND(0.1) ND(0.1)	:
Phenanthrene	Group II PAHs	10000	ND(0.1)	ND(0.1)	
Pyrene	Group II PAHs	20	ND(0.1)	ND(0.1)	
SUM of Group I PAHs	1	NA	ND	ND	-
SUM of Group II PAHs SUM of Semivolatile Organic Compounds (SIM)	100 NA	NA NA	ND ND	ND ND	-
sow or sernivolatile organic compounds (silvi)	INA	NA.	ND	ND	-
Total Petroleum Hydrocarbons (ug/l) TPH, SGT-HEM	5000	5000	ND(4000)	ND(4000)	
iri, sai nem		3000	115(4000)	110(4000)	
Total Metals (ug/l)	206	8000	ND(4)	ND(4)	ND(4)
Antimony, Total Arsenic. Total	206 104	900	ND(4) ND(1)	ND(4) ND(1)	ND(4) ND(1)
Arsenic, rotal Cadmium. Total	10.2	4	0.48	ND(1) ND(0.2)	ND(1) ND(0.2)
Chromium, Total	NA	300	ND(1)	2.12	ND(0.2)
Copper, Total	242	100000	1.39	3.75	2.61
Iron, Total	5000	NA	104	952	64
Lead, Total	160 0.739	10	ND(1)	2.50	ND(1)
		20	ND(0.2)	ND(0.2) 2.55	ND(0.2) ND(2)
Mercury, Iotal	1450	300		2.55	ND(2) ND(5)
Nickel, Total	1450	200	11.68 ND(5)	ND(E)	un(s)
Nickel, Total Selenium, Total	1450 235.8	200 100 7	ND(5)	ND(5) ND(0.4)	ND(0.4)
Nickel, Total Selenium, Total Silver, Total	1450	200 100 7 900	11.68 ND(5) ND(0.4) ND(10)	ND(5) ND(0.4) ND(10)	ND(0.4) 21.11
Nickel, Total Selenium, Total Silver, Total Zinc, Total	1450 235.8 35.1	100 7	ND(5) ND(0.4)	ND(0.4)	ND(0.4) 21.11
Nickel, Total Selenium, Total Silver, Total Zinc, Total Polychlorinated Biphenyls (ug/l)	1450 235.8 35.1 420	100 7	ND(5) ND(0.4)	ND(0.4) ND(10)	ND(0.4) 21.11
Nickel, Total Selenium, Total Silver, Total Zinc, Total Zinc, Total Polychlorinated Biphenyls (Mg/1) Aroclor 1016 Aroclor 1221	1450 235.8 35.1 420 0.000064 0.000064	100 7 900 5 5	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25)	ND(0.4) 21.11
Nickel, Total Selenium, Total Silver, Total Zinc, Total Polychlorinated Biphenyls (MZ/I) Arcolor 1016 Arcolor 1221 Arcolor 1232	1450 235.8 35.1 420 0.000064 0.000064 0.000064	100 7 900 5 5 5	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11 - - -
Nickel, Total Selenium, Total Silver, Total Zincr, Total Polychlorinated Biphenyls (ME/I) Arocker 1016 Arocker 1212 Arocker 1232 Arocker 1242	1450 235.8 35.1 420 0.000064 0.000064 0.000064	100 7 900 5 5 5 5	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11 - - - -
Nickel, Total selenium, Total silver, Total Zinc, Total Zinc, Total Polychlorinated Biphenyls (uz/l) Nocior 1016 Nocior 1221 Avocior 1232 Avocior 1242 Avocior 1242	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Nickel, Total selenium, Total silver, Total Imm. Total holochlorinated Biphenyls (ust/I) wcolor 1016 wcolor 1212 wcolor 1232 wcolor 1242 wcolor 1248 wcolor 1248	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Vicket, Total selenium, Total silver, Total from, Total polychlorinated Biphenyls (auc/l) wcolor 1010 wcolor 1010 wcolor 1012 wcolor 1242 wcolor 1242 wcolor 1248 wcolor 1254 wcolor 1254	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Vicket, Total selemium, Total silver, Total imm, Total probychlorinated Biphenvis (uu/l) wcoder 1010 wcoder 1012 wcoder 1212 wcoder 1221 wcoder 1224 wcoder 1244 wcoder 1246 wcoder 1256 wcoder 1256 wcoder 1256 wcoder 1256	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Vicket, Total selenium, Total silver, Total	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Vicket, Total selenium, Total silver, Total imc, Total probychlorinated Biphenvis (uu/l) wcoder 1016 wcoder 1016 wcoder 1012 wcoder 1212 wcoder 1224 wcoder 1246 wcoder 1256 mcoder 1266 mcoder 1266 wcoder 1268 wcoder 1260 Total PCBs	1450 235.8 35.1 420 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064	100 7 900 5 5 5 5 5 5 5 5 5 5	ND(5) ND(0.4) ND(0.1) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Nickel, Total Schenium, Total Silver, Total Zim, Zim, Zim, Zim, Zim, Zim, Zim, Zim,	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064	100 7 900 5 5 5 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) 21.11
Vicket, Total selenium, Total silver, Total rinc, Tota	1450 235.8 35.1 420 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 2	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND	ND(0.4) 21.11
vicket, Total selenium, Total silver, Total	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 NA 0.05	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 7	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25)	ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND	ND(0.4) 21.11
Nickel, Total Selenium, Total Silver, Total Tota	1450 235.8 35.1 420 0.00064 0.000664 0.000664 0.000664 0.000664 0.000664 0.000664 NA 0.05	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ND(5) ND(0.4) ND(10) ND(0.25)	ND(0.4) ND(10) ND(0.25)	ND(0.4) 21.11
Nickel, Total selenium, Total silver, Total silver, Total inc., Total Polychlorioniated Biphenyls (Me/I) worder 1016 worder 1016 worder 1221 worder 1242 worder 1244 worder 1243 worder 1254 selenium 1254 worder 1254 worder 1254 Junioum 245 Junioum	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 NA 0.05	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 7 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ND(5) ND(0.4) ND(0.25	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND ND(0.01) ND(0.01) ND(0.01)	ND(0.4) 21.11
Vicket, Total Selenium, Total Silver, Total Drobychlorinated Biphenyls (auc/l) Verober 1016 Verober 1016 Verober 1016 Verober 1016 Verober 1017 Verober 1018 Vero	1450 235.8 35.1 420 0.000064 0.000064 0.000064 0.000064 0.000064 0.000064 NA 0.05 Report 11 323 323	100 7 900 5 5 5 5 5 5 5 1000 2 NA NA 300 600 30	ND(5) ND(0.4) ND(10) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND(0.01)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01)	ND(0.4) 21.11
vicket, Total selenium, Total silver, Total silver, Total finc, To	1450	100 7 900 5 5 5 5 5 5 7 1000 2 NA NA 300 30 NA	ND(5) ND(0.4) ND(0.25	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(20) ND(20) ND(10) ND(10) ND(10) ND(10) ND(10) ND(5) ND(5) ND(20000)	21.11
Vickel, Total selenium, Total silver, Total inc., Total ric., Tota	1450 235.8 35.1 420 20.00064 0.000064 0.000064 0.000064 0.000064 0.000064 1.000664 0.000664 1.000664 1.000664 0.000668 1.000668 1.000668 1.000668 1.000668 1.000668 1.000668 1.000668 1.000668 1.00068	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NO(5) ND(0.4) ND(10) ND(0.25)	NDI(0.4) NDI(0.25) NDI(0.2	21.11
Nickel, Total selenium, Total silver, Total film, Tota	1450 235.8 35.1 420 20064 200064 200064 200064 2000666	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NO(5) ND(0.4) ND(0.1) ND(0.25)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND ND(0.01) N	21.11
Vicket, Total selenium, Total Silver, Total Total Silver, Total Tota, Total To	1450 235.8 35.1 420 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 1.00064 0.00064 1.00064 0.	100 7 900 5 5 5 5 5 5 5 1000 2 NA NA NA NA NA NA	NO(5) ND(0.4) ND(0.10) ND(0.21) ND(0.25) ND(0.25	ND(0.4) ND(0.25) ND(0	21.11
Mercury, Total Nickel, Total Selenium, Total Selenium, Total Silver, Total Arcolor 1212 Arcolor 1212 Arcolor 1232 Arcolor 1242 Arcolor 1246 Arcolor 1250 Total PCBs Microestractables (sus/I) 1,2-Disromo-3-Disropropane 1,2-Disromo-shoropropane 1,2-Di	1450 235.8 35.1 420 20064 200064 200064 200064 2000666	100 7 900 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	NO(5) ND(0.4) ND(0.1) ND(0.25)	ND(0.4) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.25) ND(0.21) ND ND(0.01) N	21.11

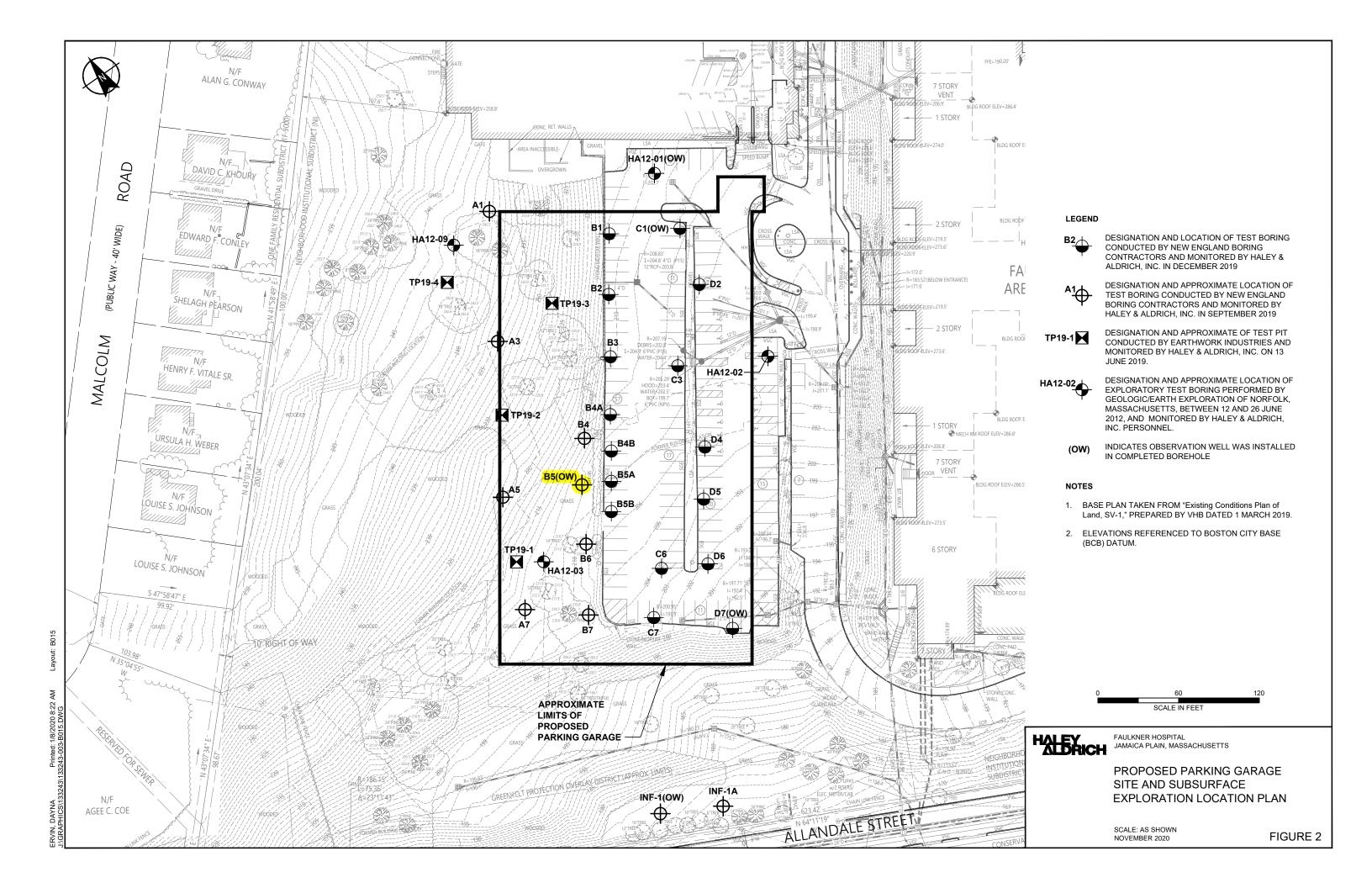
BREVATIONS NOTES:

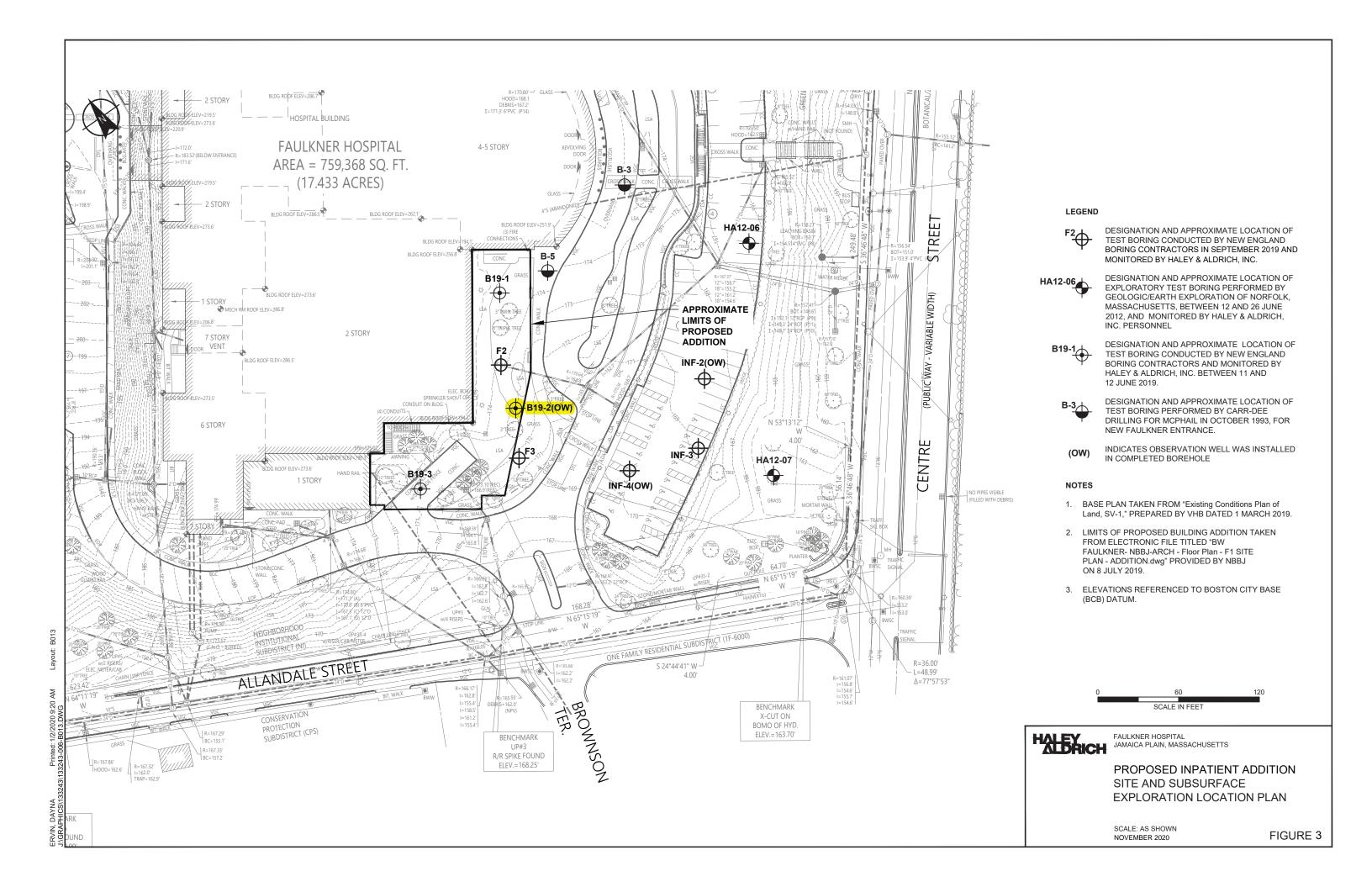
Not analyzed

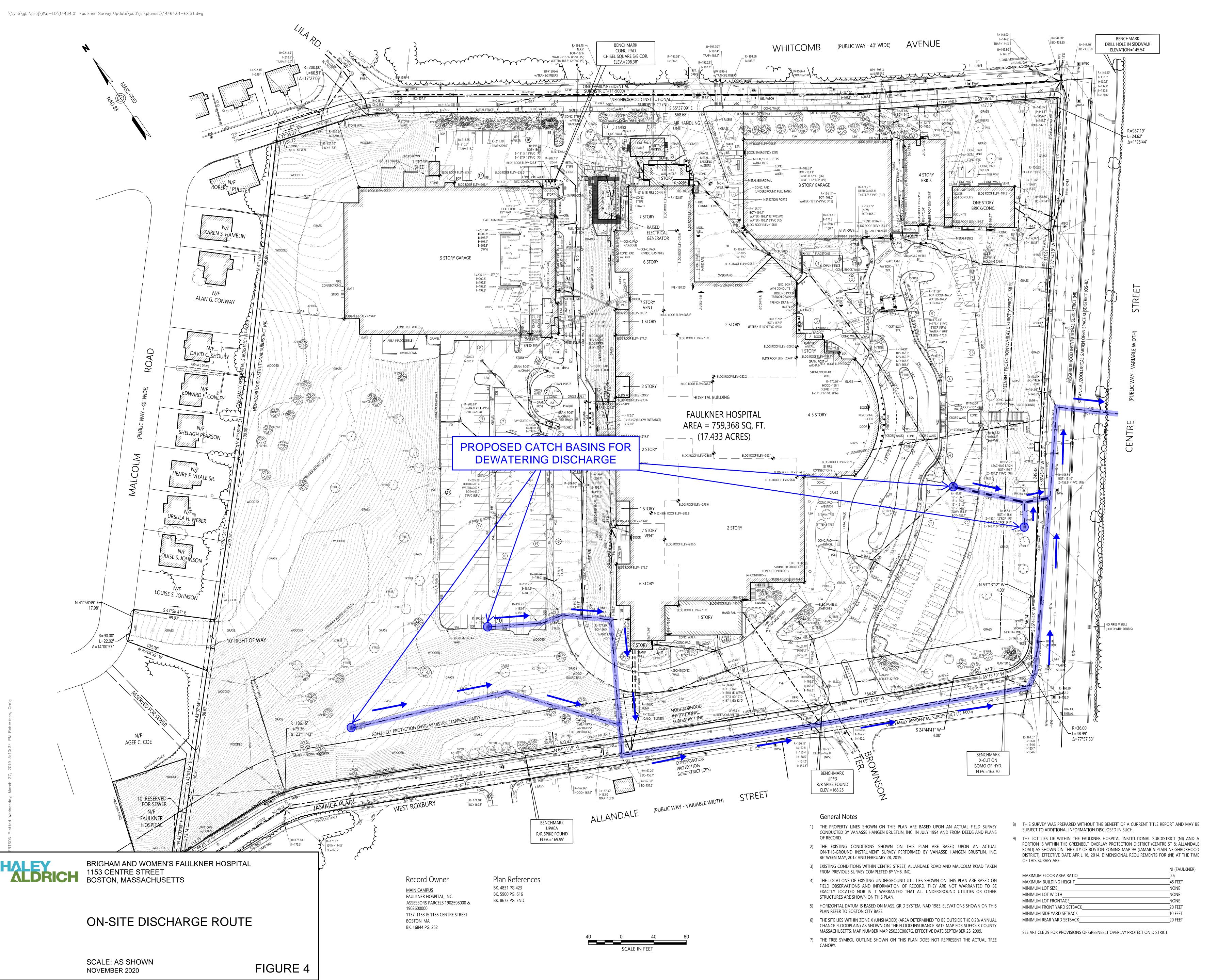
NA: Not Applicable

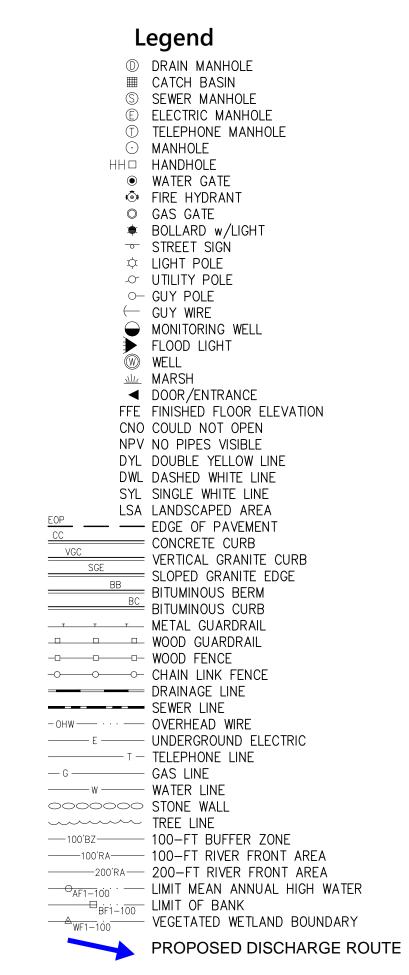

spi: Standard Units


NO (2.5): Result unto detected above reporting limit (pitown in prenthese)


NO (2.5): Result not detected above reporting limit (pitown in prenthese)


1. Analyzes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


2. Blist bad of vibors indicate an exceeding or the applicable set specific 2017 RGP Criteria.

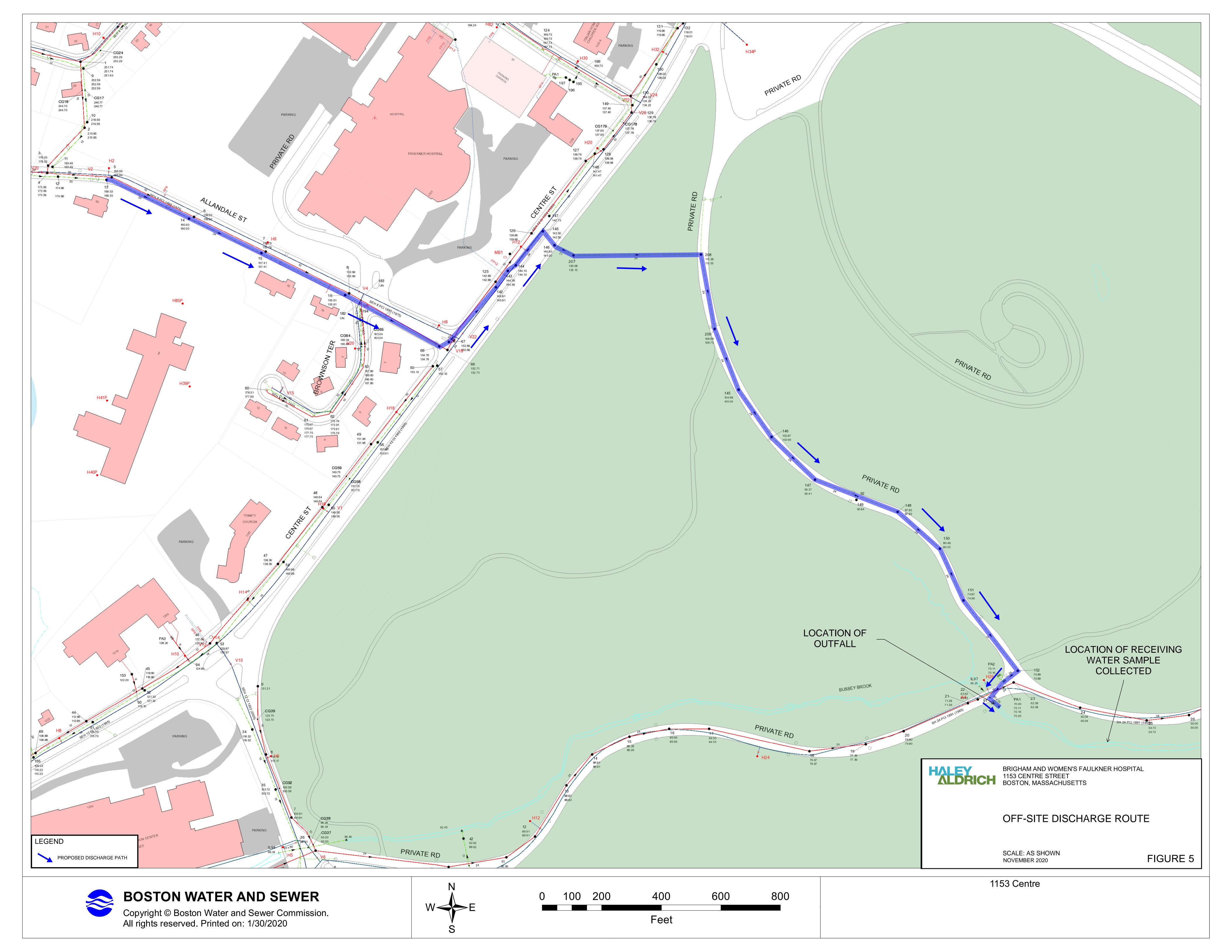


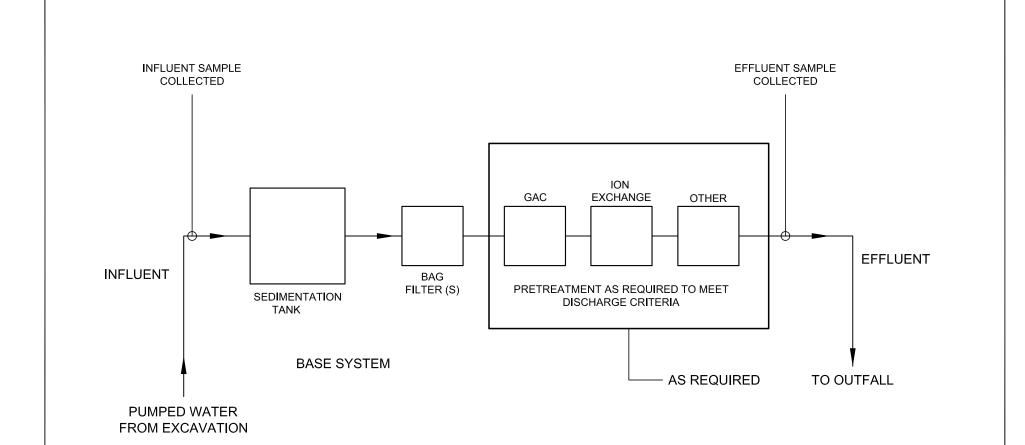
Faulkner Hospital

1153 Centre Street Jamaca Plain, Massachusetts

No.	Revision	Date	Appvd
5	ADDITIONAL SURVEY/CONVERTED TO NAD83	3/1/19	CDKR
4	ADDITIONAL SURVEY	5/18/17	CDKR
3	GARAGE ENTRANCE/EXIT SURVEY	3/19/13	CDKR
2	APPROX. GREENBELT OVERLAY DISTRICT	10/31/12	CDKR
1	BUILDING ROOF ELEVATIONS & UPDATES	5/30/12	CDKR
Desig	ned by	Checked by	

May 14, 2012


Existing Conditions
Plan of Land


Sv-1

Sheet of 1

Drawing Number

Project Number **14464.01**

DIRECTION OF FLOW

NOTE:

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

FAULKNER HOSPITAL

PROPOSED TREATMENT SYSTEM **SCHEMATIC**

SCALE: NONE NOVEMBER 2020

FIGURE 6

APPENDIX A

NOI for RGP

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 1153 Centre Street			
Brighman and Women's Faulkner Hospital (BWFH)	Street:			
	City: Boston		State: MA	Zip: 02130
Site owner Brigham and Women's Faulkner Hospital	Contact Person: Edward Pitts			
Signam and Womon's radiktor riospital	Telephone: 617-983-7975	Email: epi	tts2@partn	ers/com
	Mailing address: 1153 Centre Street			
	Street:			
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02130
3. Site operator, if different than owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:			
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
	MA Chapter 21e; list RTN(s):	□ CERCL		
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	3-22926, 3-34345, 3-36281 ☐ NH Groundwater Management Permit or	□ UIC Pro	•	
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:		Pretreatmen	t
		⊔ CWA S	ection 404	

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water((s): Classi	fication of receiving water(s):
Bussey Brooke into Charles Riv	ver MA72-38	В	
Receiving water is (check any that apply): □ Outstand	ding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic	River
2. Has the operator attached a location map in accorda	ance with the instructions in B, above? (check one):	: ■ Yes □ No	
Are sensitive receptors present near the site? (check of If yes, specify:	ne): □ Yes ■ No		
3. Indicate if the receiving water(s) is listed in the Sta pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. Yes; there are two TMDLs for this set	available for any of the indicated pollutants. For m		
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and Appendix V		the instructions in	NA
5. Indicate the requested dilution factor for the calcula accordance with the instructions in Appendix V for si			0
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: See confirm	nation emails in Appendix G of the attached Haley & Alo	drich Letter	
7. Has the operator attached a summary of receiving v (check one): ■ Yes □ No	vater sampling results as required in Part 4.2 of the	RGP in accordance with th	e instruction in Appendix VIII?
C. Source water information:			
1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; so, indicate waterbody:	■ Other; if so, specify:
■ Yes □ No	□ Yes □ No		seepage, precipitation, surface water runoff

2. Source water contaminants: NONE	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s): Bussey Brook (SDO11)	Outfall location(s): (Latitude, Longitude) 42.394,-71.049
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water ■ Indirect discharge, if so, specify:
Pumping into catch basins, then travels in the subsurface drains into ou A private storm sewer system A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew Has notification been provided to the owner of this system? (check one):	wer system:
Has the operator has received permission from the owner to use such system for obtaining permission: BWSC Dewatering Discharge Permit Application b Has the operator attached a summary of any additional requirements the owner.	
Provide the expected start and end dates of discharge(s) (month/year): April 2	021 to December 2022
Indicate if the discharge is expected to occur over a duration of: □ less than 1	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	c all that apply)
	a. If Activity Categ	gory I or II: (check all that apply)
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Co □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	mpounds Organic Compounds
☐ I – Petroleum-Related Site Remediation		
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)
■ III – Contaminated Site Dewatering	■ G. Sites with Known	☐ H. Sites with Unknown Contamination
☐ IV — Dewatering of Pipelines and Tanks	Contamination	11. Sites with Olikhown Contamination
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	
☐ VIII – Dredge-Related Dewatering	■ A. Inorganics	
	 □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply
	☐ E. Halogenated Semi-Volatile Organic Compounds	
	☐ F. Fuels Parameters	

1	Influent	hae	Effluent	Charact	prietice
4.	mmuem	anu	Elliuelli	Characi	CHISHES

	Known	Known				Int	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics	8	+		=			ь		
Ammonia		1	2	121,4500	75 ±	99	l E1	Report mg/L	
Chloride		- v	2	44,330.0	5000	920000		Report μg/l	
Total Residual Chlorine	1		2	121,4500	20			0.2 mg/L	11 ug/L
Total Suspended Solids		1	2	121,2540	5000			30 mg/L	
Antimony	1		2	3,200.8	4			206 μg/L	NA I
Arsenic	/		2	3,200.8	1 5	<1	I EI	104 μg/L	NA I
Cadmium		1	2 +	3,200.8	0.2			10.2 μg/L	NA
Chromium III	1		2	NA E	10	10	I I	$323 \mu g/L$	NA
Chromium VI	1		2	1,7196A	10			323 μg/L	NA
Copper		✓	2	3,200.8	1 🖫	3.75		242 μg/L	NA
Iron		✓	2	19,200.7	50			5,000 μg/L	NA
Lead		✓	2	3,200.8	1	2.5	I E	160 μg/L	NA
Mercury	1		2	3,245.1	0.2			0.739 μg/L	NA
Nickel		1	2	3,200.8	2 #	11.68	I E	1,450 μg/L	NA I
Selenium	1		2	3,200.8	5	<5	l	235.8 μg/L	NA
Silver	1		2	3,200.8	0.4	<0.4	- E	35.1 μg/L	NA
Zinc	1		2	3,200.8	10	<10	E	420 μg/L	NA
Cyanide	1		2	121,4500	5	<5 E	- E	178 mg/L	1.0 ug/L
B. Non-Halogenated VOCs					•				
Total BTEX	1		2					100 μg/L	
Benzene	1		2					5.0 μg/L	
1,4 Dioxane	1		2	128,624.1	50			200 μg/L	
Acetone	1		2	12010211				7.97 mg/L	
Phenol	1		2	4,420.1	30	<30	- E	1,080 µg/L	NA

e e	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	1		2	128,624.14	1 ==	<1	i	4.4 μg/L	NA E
1,2 Dichlorobenzene	✓		2	128,624.1	5	<5	1	600 μg/L	
1,3 Dichlorobenzene	1		2	128,624.1		<5		320 μg/L	
1,4 Dichlorobenzene	1		2	128,624.1		<5	l	5.0 μg/L	
Total dichlorobenzene	1		2	NA +		<5	[763 μg/L in NH	
1,1 Dichloroethane	·		2	128,624.1	1.5	<1.5	- 6	70 μg/L	
1,2 Dichloroethane	1		2	128,624.1	1.5	<1.5	l_	5.0 μg/L	
1,1 Dichloroethylene	1		2	128,624.1	1	<1	i _	3.2 μg/L	
Ethylene Dibromide	1		2	14,504.1		<0.01	l E	0.05 μg/L	
Methylene Chloride	1		2				6	4.6 μg/L	
1,1,1 Trichloroethane	1		2	128,624.1		<2	=	200 μg/L	
1,1,2 Trichloroethane	1		2	128,624.1				5.0 μg/L	
Trichloroethylene	1		2					5.0 μg/L	
Tetrachloroethylene	1		2	128,624,1	1 5	<1		5.0 μg/L	NA 🖺
cis-1,2 Dichloroethylene	1		2 +	128,624.1	1 5		#	70 μg/L	
Vinyl Chloride	1		2					2.0 μg/L	
D. Non-Halogenated SVOC		-		no."	4				
Total Phthalates	/		2 +	129,625.1				190 μg/L	NA E
Diethylhexyl phthalate	1		2	129,625.1				101 μg/L	NA III
Total Group I PAHs	1		2 +	129,625.1				1.0 μg/L	
Benzo(a)anthracene	1		2	129,625.1					NA E
Benzo(a)pyrene	1	(B)	2	129,625.1	0.1				NA =
Benzo(b)fluoranthene	1		2	129,625.1	0.1				NA E
Benzo(k)fluoranthene	1		2	129,625.1	0.1	<0.1	- +	As Total PAHs	NA E
Chrysene	1		2	129,625.1+	0.1	<0.1	I ==		NA E
Dibenzo(a,h)anthracene	1		2 #	129,625.	0.1	<0.1			NA E
Indeno(1,2,3-cd)pyrene	1		2	129,625.1					NA E

	Known	Known				Inf	luent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (μg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	1		2	129,625.1	0.1	<0.1	53	100 μg/L	
Naphthalene	✓		2 +	129,625.1+		<0.1		20 μg/L	
E. Halogenated SVOCs									
Total PCBs	1		2 +	127,608.3	0.2	<0.2	[3	0.000064 μg/L	
Pentachlorophenol	1		2 +	129,625.1		<1	H	1.0 μg/L	
F. Fuels Parameters Total Petroleum	· /		2 +	74,1664A+	4000 +	<4000 #	+	5.0 mg/L	
Hydrocarbons Ethanol	1							Report mg/L	
Methyl-tert-Butyl Ether	/		2 +					70 μg/L	NA
tert-Butyl Alcohol	1		2					120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		2	128,624.1	20	<20 +	- 6	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	e, hardness,	salinity, LC	C ₅₀ , addition	ıal pollutan	ts present);	if so, specify:			
Hardeness			1 6	19,200.7	660	385000	&		
pН			2	YSI =	NA E	7.4	l Ea		
						N			
				E					
			,					-	
	ļ								

SEE DETECTIONS IN SOIL ON NEXT PAGE

Parameter	Known or believed present	Number of Samples	
VOCs	_	#	
1,1,2,2-Tetrachloroethane	YES	116	
2-Butanone (Methyl Ethyl Ketone)	YES	116	
2-Phenylbutane (sec-Butylbenzene)	YES	116	
Acetone	YES	116	
Benzene	YES	116	
Cymene (p-Isopropyltoluene)	YES	116	
Naphthalene	YES	116	
Tetrachloroethene	YES	116	
Toluene	YES	116	
SVOCs			
2-Methylnaphthalene	YES	116	
Acenaphthene	YES	116	
Acenaphthylene	YES	116	
Anthracene	YES	116	
Benzo(a)anthracene	YES	116	
Benzo(a)pyrene	YES	116	
Benzo(b)fluoranthene	YES	116	
Benzo(g,h,i)perylene	YES	116	
Benzo(k)fluoranthene	YES	116	
bis (2-Ethylhexyl) phthalate	YES	116	
Butyl benzylphthalate	YES	116	
Chrysene	YES	116	
Dibenz(a,h)anthracene	YES	116	
Dibenzofuran	YES	116	
Di-n-butylphthalate	YES	116	
Di-n-octyl phthalate	YES	116	
Fluoranthene	YES	116	
Fluorene	YES	116	
Indeno(1,2,3-cd)pyrene	YES	116	
Naphthalene	YES	116	
Phenanthrene	YES	116	
Pyrene	YES	116	

DETECTIONS IN SOIL

Parameter	Known or believed present	Number of Samples	
Total Petroleum Hydrocarbons			
Petroleum Hydrocarbons	YES	116	
Inorganic Compounds			
Antimony	YES	116	
Arsenic	YES	116	
Barium	YES	116	
Beryllium	YES	116	
Cadmium	YES	116	
Chromium	YES	116	
Lead	YES	116	
Mercury	YES	116	
Nickel	YES	116	
Silver	YES	116	
Vanadium	YES	116	
Zinc	YES	116	
PCBs			
Aroclor-1242 (PCB-1242)	YES	116	
Aroclor-1248 (PCB-1248)	YES	116	
Aroclor-1254 (PCB-1254)	YES	116	
Aroclor-1260 (PCB-1260)	YES	116	

E. Treatment system information 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply) ☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ☐ Other; if so, specify: Other treatments to be applied as necessary to meet effluent limitations. 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Prior to discharge, collected water will be routed through sedimentation tank and bag filters with pH control. At a minimum, to remove suspended solids and undissolved chemical constituents and adjust pH to within limits established by permit. Total flow will be measured with flow meter/totalizator. Supplemental pretreatment may be required to meet NPDES RGP effluent limitations and may include oil/water separators and/or other components as required; refer to Figure 6 of the attached Haley & Aldrich NPDES RGP NOI Application. Identify each major treatment component (check any that apply): ■ Fractionation tanks □ Equalization tank ■ Oil/water separator □ Mechanical filter □ Media filter ☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify: Indicate if either of the following will occur (check any that apply): ☐ Chlorination ☐ De-chlorination 3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. 100 gpm Indicate the most limiting component: Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification: 100 gpm Provide the proposed maximum effluent flow in gpm. 75 Provide the average effluent flow in gpm. NA If Activity Category IV applies, indicate the estimated total volume of water that will be discharged: 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply) Algaecides/biocides Antifoams Coagulants Corrosion/scale inhibitors Disinfectants Flocculants Neutralizing agents Oxidants Oxygen scavengers pH conditioners Bioremedial agents, including microbes Chlorine or chemicals containing chlorine Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary: a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LCS0 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemical/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area." FWS Criterion B: Formal o	1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s); (check all that apply)
2. Provide the following information for each chemical/additive, using attachments, if necessary: a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organisms). 3. Has the operator attached an explanation which demonstrates that the addition of such chemical/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No No endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No PWS Criterion C: Using the best scientific and commercial data available, the effect of the di	that may other wise be present in the discharge(s). (check all that apply)
2. Provide the following information for each chemical/additive, using attachments, if necessary: a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): □ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes ■ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): □ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes ■ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related act	
b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LCS0 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes	2. Provide the following information for each chemical/additive, using attachments, if necessary:
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): □ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes ■ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the o	
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the juris	b. Purpose or use of the chemical/additive or remedial agent;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \(\triangle \text{Yes} \equiv \text{No}; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): \(\triangle \text{Yes} \equiv \text{No} \) G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: \[\text{FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". \[\text{FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): \(\triangle \text{Yes} \) \(\triangle \text{No; if no, is consultation underway? (check one): } \(\triangle \text{Yes} \) \(\triangle \text{No} \) \[\triangle FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): ☐ Yes ■ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐ Yes ☐ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): Yes No Randangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes ■ No G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	(check one): ☐ Yes ■ No
 ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the 	G. Endangered Species Act eligibility determination
"action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	
Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	 ■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:	■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
	■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area". □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No □ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and

- 1	
	■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
	listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
	2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one):
	Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
	H. National Historic Preservation Act eligibility determination
	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
	□ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
	■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
	☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
	2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
	Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
	other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
	I. Supplemental information
	Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
	Please refer to attached H&A letter.
	Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
	Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

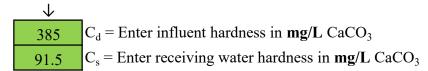
	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.					
	A BMPP meeting the requirements of this general permits will be implemented by the statement: discharge and available for review at the site.	emented upon in	nitiatio	n of		
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □	Not Required		
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □			
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □	NA □		
	Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □	NA □		
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge					
	permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □	NA □		
Sign		e: /1/18/20				

Print Name and Title: Edward Pitts, Executive Director - Facilities & Support

APPENDIX B

Discharge Calculations

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
0	Q_R = Enter upstream flow in MGD
0.108	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
6.45	pH in Standard Units
17.5	Temperature in °C
0.103	Ammonia in mg /L
91500	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in µg/L
2.61	Copper in µg/L
64	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg /L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
21.11	Zinc in μg/L

Enter influent concentrations in the units specified

0	TRC in µg/L
99	Ammonia in mg /L
0	Antimony in μg/L
0	Arsenic in μg/L
0.48	Cadmium in μg /L
0	Chromium III in μg/L
0	Chromium VI in μg /L
3.75	Copper in µg/L
952	Iron in μg/L
2.5	Lead in μg /L
0	Mercury in μg /L
11.68	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in μg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows: $Df = \underline{Q_R + Q_P}$

 Q_{P}

 $Q_R = 7Q10$ in MGD

 Q_p = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

 $C_r = \underline{Q_d C_d + Q_s C_s}$

 Q_{1}

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

 m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

$$Q_{d}$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL in \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as fc

$$C_r = Q_d C_d + Q_s C_s$$

 Q_r

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with St and the discharge concentration of a parameter are greater than the WQC ca that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, abov the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL de that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.l less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, 1

Part 2.1.1 of the RGP for that parameter applies.

ep 1, above, lculated for

e, is less than in Part 2.1.1

etermined for

B, above is the TBEL in

	TBEL applies if	bolded	WQBEL applies i	f bolded
A. Inorganics	TBEE applies if	ooraca	W QBLL applies i	1 001404
Ammonia	Report	mg/L		
Chloride	Report	$\mu g/L$		
Total Residual Chlorine	0.2	mg/L	11	$\mu g/L$
Total Suspended Solids	30	mg/L		
Antimony	206	μg/L	640	μg/L
Arsenic	104	μg/L	10	μg/L
Cadmium	10.2	μg/L	0.7347	μg/L
Chromium III	323	μg/L	260.0	μg/L
Chromium VI	323	μg/L	11.4	μg/L
Copper	242	μg/L	29.5	μg/L
Iron	5000	μg/L	1000	μg/L
Lead	160	μg/L	17.70	μg/L
Mercury	0.739	μg/L	0.91	μg/L
Nickel	1450	μg/L	163.2	μg/L
Selenium	235.8	μg/L	5.0	μg/L
Silver	35.1	μg/L	38.5	μg/L
Zinc	420	μg/L	375.5	μg/L
Cyanide	178	mg/L	5.2	μg/L
B. Non-Halogenated VOCs		Č		
Total BTEX	100	$\mu g/L$		
Benzene	5.0	$\mu g/L$		
1,4 Dioxane	200	μ g/L		
Acetone	7970	μg/L		
Phenol	1,080	μg/L	300	$\mu g/L$
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	μg/L	1.6	$\mu g/L$
1,2 Dichlorobenzene	600	μg/L		
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		μg/L		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0	$\mu g/L$		
Tetrachloroethylene	5.0	μg/L	3.3	μg/L

cis-1,2 Dichloroethylene	70	$\mu g/L$		
Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μ g/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μ g/L		
Naphthalene	20	μ g/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μ g/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Compliance Level applies if shown

 $\mu g/L$

--- μg/L

 $\begin{array}{lll} --- & \mu g/L \\ --- & \mu g/L \end{array}$

 $0.5 \hspace{1.5cm} \mu g/L$

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Tuesday, February 4, 2020 7:03 PM

To: Howard, Lindsey <LHoward@haleyaldrich.com>

Cc: 'Little, Shauna' <Little.Shauna@epa.gov>

Subject: RE: Faulkner Hospital Stormwater Discharge Info

CAUTION: External Email

Hi Lindsey,

I spoke to Shauna and we agreed that the proposed discharge to Bussey Brook in the Arnold Arboretum can be considered a discharge to a Water of the Commonwealth/Water of the US even though it is unnamed in MassGIS (but BWSC's map does identify it). MassGIS does list the brook as perennial and shows that it flows eastward and ends at a wetland. So you can go ahead with applying for coverage under the RGP as long as BWSC and the Boston ConCom don't have flooding concerns with this discharge to a brook that ends into a wetland. Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Howard, Lindsey [mailto:LHoward@haleyaldrich.com]

Sent: Friday, January 31, 2020 3:30 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: RE: Faulkner Hospital Stormwater Discharge Info

Thanks, Cathy!

Lindsey R. Howard, P.E. (NH) Haley & Aldrich, Inc.

T: 617.886.7413 C: 603.702.1361

From: Vakalopoulos, Catherine (DEP) < catherine.vakalopoulos@state.ma.us>

Sent: Friday, January 31, 2020 2:49 PM

To: Howard, Lindsey < <u>LHoward@haleyaldrich.com</u>> **Subject:** RE: Faulkner Hospital Stormwater Discharge Info

CAUTION: External Email

Hi Lindsey,

You're welcome. Here is a screen shot showing the flow lines and the dead end at the wetland as we discussed. It's interesting that the BWSC map shows the name "Bussey Brook" but that name doesn't show up on my layers in GIS. I do think this can be covered under the RGP with no dilution (as long as BWSC isn't worried about flooding the wetland) but will confer with Shauna and get back to you.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Howard, Lindsey [mailto:LHoward@haleyaldrich.com]

Sent: Friday, January 31, 2020 2:31 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: Faulkner Hospital Stormwater Discharge Info

Cathy -

Thank you for your help on tracking down info about this stormwater discharge in the Arnold Arboretum for the Faulkner Hospital project. As a follow up to our call, I've attached a map from BWSC that may be helpful. The outfall number they gave me is SDO11.

Thanks, Lindsey

Lindsey R. Howard, P.E. (NH)

Senior Engineer

Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Boston, MA 02129

T: 617.886.7413 C: 603.702.1361 www.haleyaldrich.com

APPENDIX C

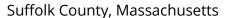
Endangered Species Act Documentation

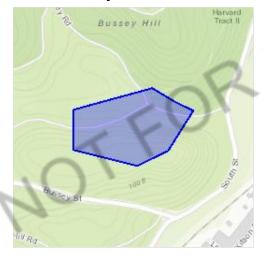
IPaC

U.S. Fish & Wildlife Service

[Pac resource list

This re (collection) ECOS including IPaC will be unavailable starting at 17:00 until 22:00 MDT today for system maintenance. We apologize for any inconvenience this may cause.


abitat


he list

may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.

"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/2974

Breeds Apr 29 to Jul 20

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

D ' ' ' ' ' '	D 1 ' 1'	1
Prairie Warnier	Dendroica disco	ı∩r
TIAILE VVALDICI		I C Z I

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Ruddy Turnstone Arenaria interpres morinella

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

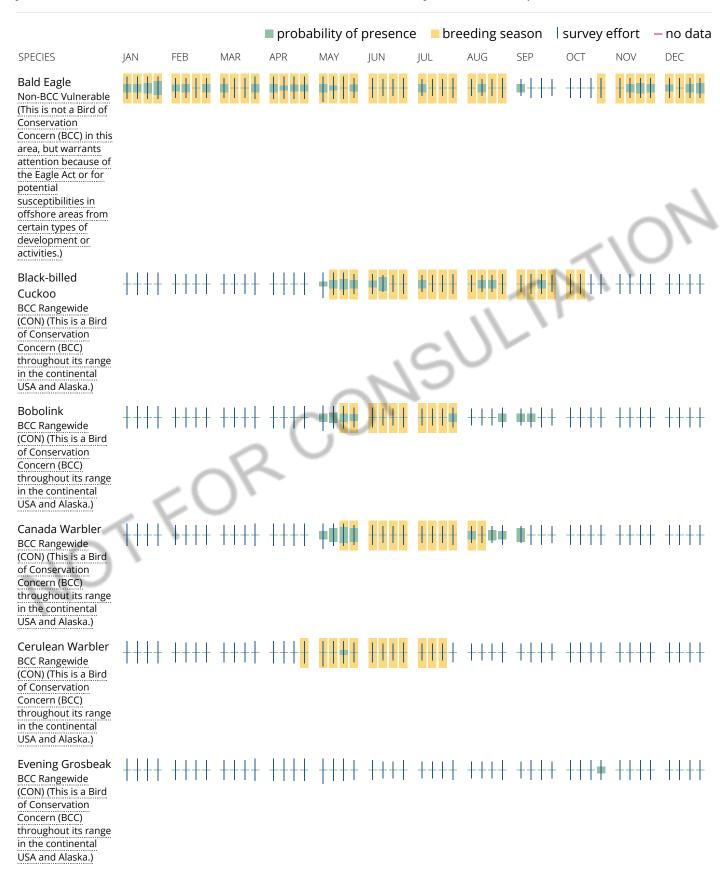
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

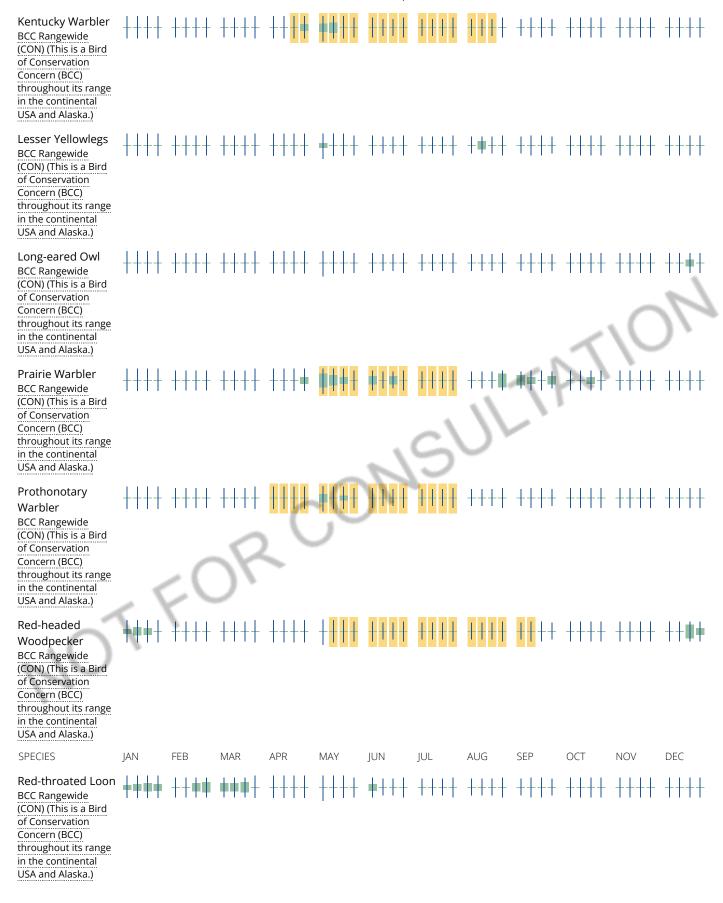
Breeding Season (

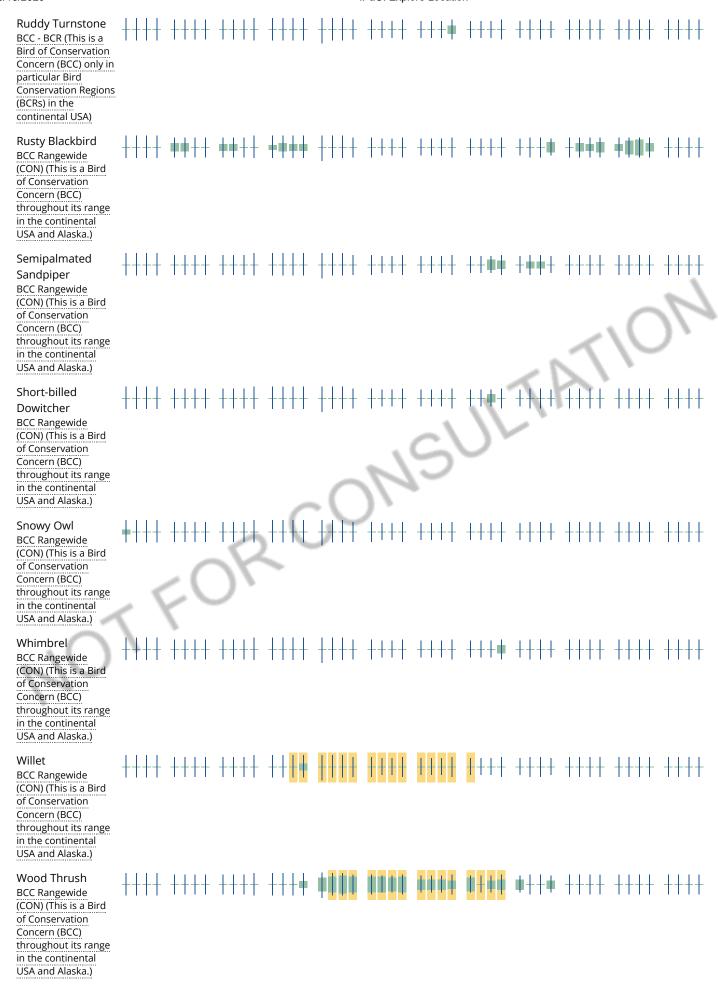
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

8/18/2020 IPaC: Explore Location

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

RIVERINE

R5UBH

R2UBH

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters.

Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

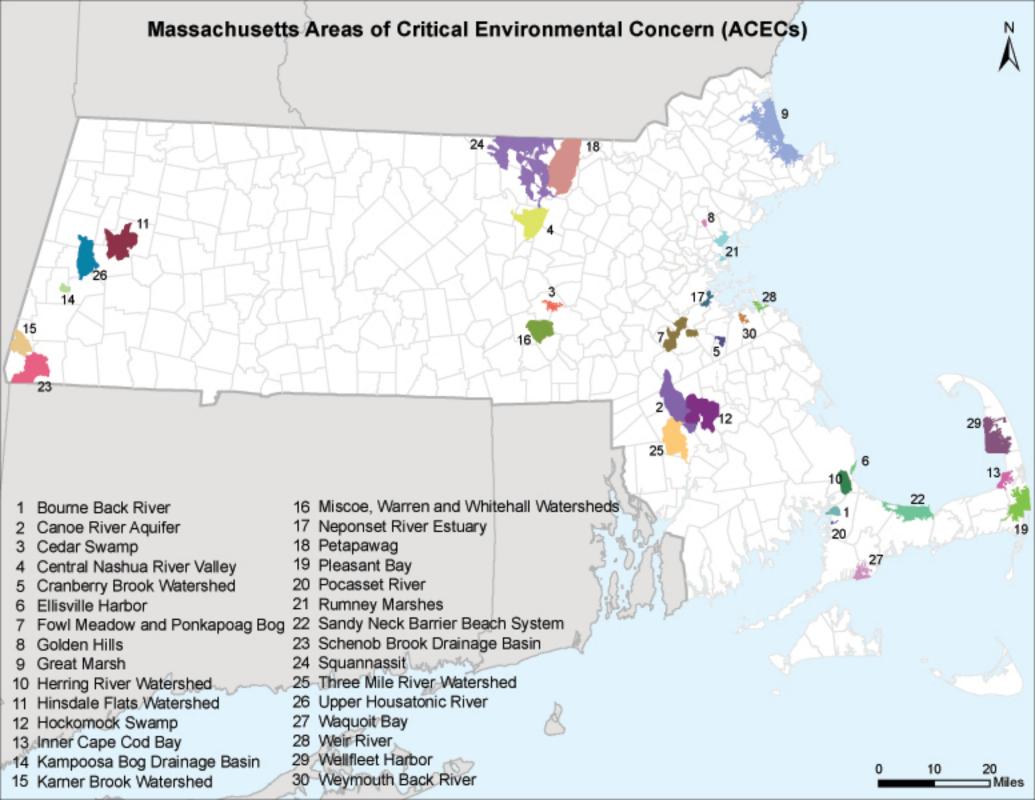
Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

OT FOR CONSULTATI

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS


COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
_	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	ъ "	Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
Б	Herring River Watershed	D	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
Duidensonatan	Inner Cape Cod Bay	Plymouth	Herring River Watershed Ellisville Harbor
Bridgewater	Hockomock Swamp	Ouinav	
Canton	Fowl Meadow and Ponkapoag Bog	Quincy Randolph	Neponset River Estuary Fowl Meadow and Ponkapoag Bog
Chatham Cohasset	Pleasant Bay Weir River	Raynham	Hockomock Swamp
_ :	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dalton Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Digition	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Gaugus	Golden Hills
Lasinam	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Gridion	Fowl Meadow and Ponkapoag Bog
Lasion	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River		Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
lpswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
Lamav	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		

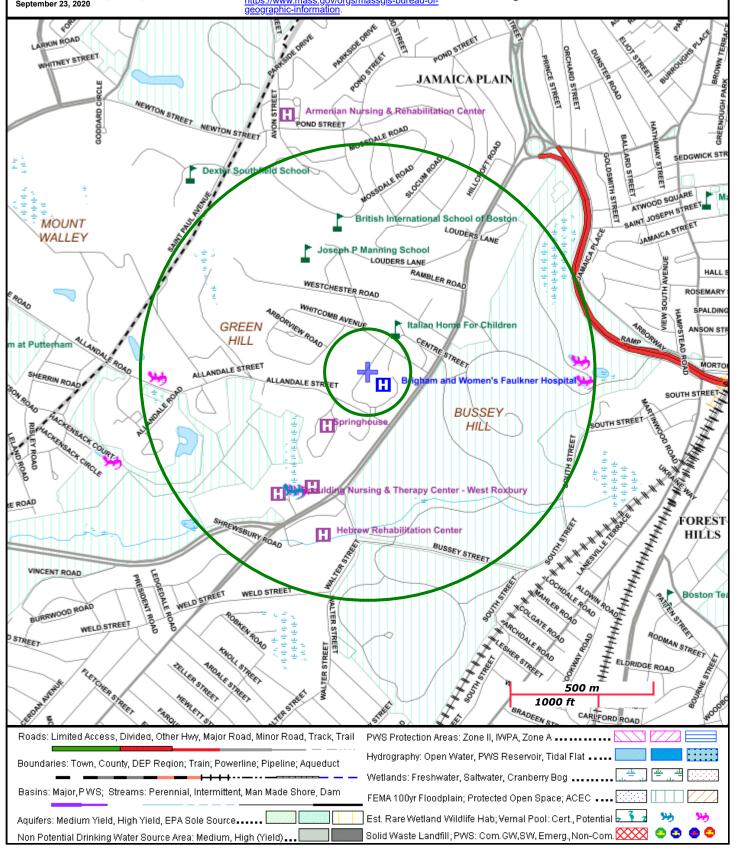
Fowl Meadow and Ponkapoag Bog Neponset River Estuary

Milton

MassDEP - Bureau of Waste Site Cleanup

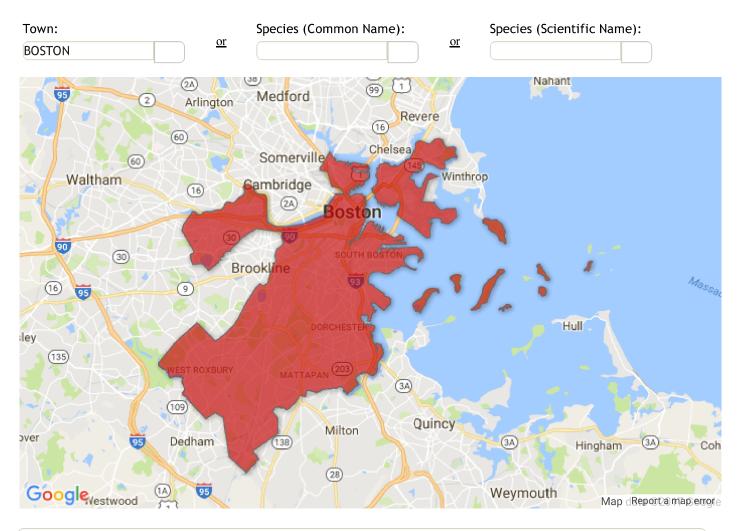
Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


1153 CENTRE STREET BOSTON, MA

NAD83 UTM Meters: 4685484mN , 324525mE (Zone: 19) September 23, 2020

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:


https://www.mass.gov/orgs/massgis-bureau-of-

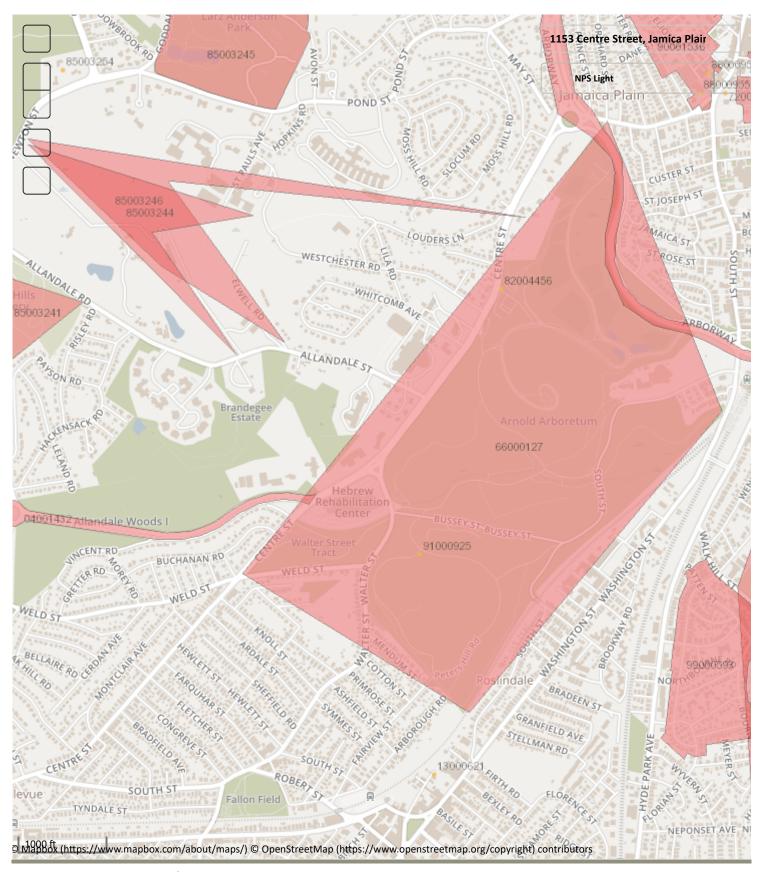
The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Showing 1	to 46 of 46 entries		Search:		
			First	Previous 1	Next Last
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Butterfly/Moth	Abagrotis nefascia	Coastal Heathland Cutworm	SC	2001
BOSTON	Vascular Plant	Ageratina aromatica	Lesser Snakeroot	E	1896
BOSTON	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	2015
BOSTON	Bird	Ammodramus savannarum	Grasshopper Sparrow	T	1993
BOSTON	Butterfly/Moth	Apodrepanulatrix liberaria	New Jersey Tea Inchworm	E	Historic
BOSTON	Vascular Plant	Aristida purpurascens	Purple Needlegrass	T	Historic
BOSTON	Vascular Plant	Aristida tuberculosa	Seabeach Needlegrass	T	1877

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Vascular Plant	Asclepias verticillata	Linear-leaved Milkweed	T	1878
BOSTON	Bird	Bartramia longicauda	Upland Sandpiper	Е	1993
BOSTON	Vascular Plant	Boechera missouriensis	Green Rock-cress	T	1930
BOSTON	Vascular Plant	Carex striata	Walter's Sedge	Е	Historic
BOSTON	Bird	Charadrius melodus	Piping Plover	T	2016
BOSTON	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1910
BOSTON	Beetle	Cicindela purpurea	Cow Path Tiger Beetle	SC	1928
BOSTON	Beetle	Cicindela rufiventris hentzii	Eastern Red-bellied Tiger Beetle	T	1927
BOSTON	Vascular Plant	Desmodium cuspidatum	Large-bracted Tick-trefoil	T	1896
BOSTON	Vascular Plant	Eriophorum gracile	Slender Cottongrass	T	1885
BOSTON	Bird	Falco peregrinus	Peregrine Falcon	T	2014
BOSTON	Fish	Gasterosteus aculeatus	Threespine Stickleback	T	2014
BOSTON	Bird	Gavia immer	Common Loon	SC	1824
BOSTON	Vascular Plant	Houstonia longifolia	Long-leaved Bluet	E	1918
BOSTON	Vascular Plant	Liatris scariosa var. novae- angliae	New England Blazing Star	SC	1933
BOSTON	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1841
BOSTON	Vascular Plant	Linum medium var. texanum	Rigid Flax	T	1909
BOSTON	Vascular Plant	Lycopus rubellus	Gypsywort	E	1896
BOSTON	Vascular Plant	Malaxis unifolia	Green Adder's Mouth	T	1883
BOSTON	Butterfly/Moth	Metarranthis apiciaria	Barrens Metarranthis	E	1934
BOSTON	Vascular Plant	Myriophyllum alterniflorum	Alternate-flowered Water-milfoil	E	Historic
BOSTON	Vascular Plant	Ophioglossum pusillum	Adder's-tongue Fern	T	1884
BOSTON	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	1908
BOSTON	Bird	Pooecetes gramineus	Vesper Sparrow	T	1985
BOSTON	Butterfly/Moth	Pyrrhia aurantiago	Orange Sallow Moth	SC	1988
BOSTON	Vascular Plant	Ranunculus micranthus	Tiny-flowered Buttercup	E	1891
BOSTON	Vascular Plant	Rumex pallidus	Seabeach Dock	T	1984
BOSTON	Vascular Plant	Sanicula odorata	Long-styled Sanicle	T	Historic
BOSTON	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T	1932
BOSTON	Vascular Plant	Scirpus longii	Long's Bulrush	T	1907
BOSTON	Vascular Plant	Setaria parviflora	Bristly Foxtail	SC	2001
BOSTON	Dragonfly/Damselfly	Somatochlora linearis	Mocha Emerald	SC	2009
BOSTON	Bird	Sterna hirundo	Common Tern	SC	2013
BOSTON	Bird	Sternula antillarum	Least Tern	SC	2014
BOSTON	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1909
BOSTON	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1939
BOSTON	Bird	Tyto alba	Barn Owl	SC	1989
BOSTON	Bird	Vermivora chrysoptera	Golden-winged Warbler	E	Historic
BOSTON	Vascular Plant	Viola brittoniana	Britton's Violet	T	1909

Show Additional Info


APPENDIX D

National Register of Historic Places and Massachusetts Historical Commission Documentation

National Register of Histori...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data proce...

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm)

Note: Not all properties are digitized

Reference State	County	City	Resource	Address		Text	Photos
Number			Name			Click me	Cl;ick me
83000601 MASSACHUSETTS	Suffolk	Boston	Charles Street African Methodist Episcopal Church	551 Warren St.	19830901		<u>Photos</u>
83000602 MASSACHUSETTS	Suffolk	Boston	Codman Square District	Norfolk, Talbot, Epping, Lithgow, Cer			<u>Photos</u>
83000603 MASSACHUSETTS	Suffolk	Boston	Gardner, Isabella Stewart, Museum	280 The Fenway	19830127		<u>Photos</u>
83000605 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Fire Station	16 Harvard Ave.	19830331		<u>Photos</u>
83000606 MASSACHUSETTS	Suffolk	Boston	Lawrence Model Lodging Houses	79, 89, 99 and 109 E. Canton St.	19830922		<u>Photos</u>
83000607 MASSACHUSETTS	Suffolk	Boston	Newspaper Row	322-328 Washington St., 5-23 Milk St			<u>Photos</u>
82000486 MASSACHUSETTS	Suffolk	Boston	Wigglesworth Building	89-83 Franklin St.	19821021		<u>Photos</u>
83004098 MASSACHUSETTS	Suffolk	Boston	Leather District	Roughly bounded by Atlantic Ave., K			<u>Photos</u>
83004285 MASSACHUSETTS	Suffolk	Boston	Baker, Sarah J., School	33 Perrin St.	19830707		<u>Photos</u>
79000370 MASSACHUSETTS	Suffolk	Boston	Washington Street Theatre District	511-559 Washington St.	19790319		Photos
85000318 MASSACHUSETTS	Suffolk	Boston	Dorchester Pottery Works	101-105 Victory Rd.	19850221		Photos
79000368 MASSACHUSETTS 80000442 MASSACHUSETTS	Suffolk	Boston	Bedford Building	89-103 Bedford St.	19790821		Photos
80000442 MASSACHUSETTS	Suffolk Suffolk	Boston	Wirth, Jacob, Buildings	31-39 Stuart St. 252-272 Tremont St.	19801209		Photos
80000445 MASSACHUSETTS	Suffolk	Boston	Metropolitan Theatre		19801209		Photos
	Suffolk	Boston	Hayden Building Dill Building	681-683 Washington St.	19801209	·	Photos
80000448 MASSACHUSETTS 80000450 MASSACHUSETTS	Suffolk	Boston	Boylston Building	11-25 Stuart St. 2-22 Boylston St.	19801209		Photos
80000450 MASSACHUSETTS	Suffolk	Boston		•	19801209		Photos
		Boston	Boston Young Men's Christian Union	48 Boylston St.	19801209		Photos
80000453 MASSACHUSETTS	Suffolk	Boston	Boston Edison Electric Illuminating Company	25-39 Boylston St.	19801209		Photos
80000455 MASSACHUSETTS	Suffolk Suffolk	Boston	West Street District	West St.	19801209		Photos
80000460 MASSACHUSETTS	Suffolk	Boston	Liberty Tree District	Roughly bounded by Harrison Ave.			Photos
80000462 MASSACHUSETTS	Suffolk	Boston	Beach-Knapp District	Roughly bounded by Harrison Ave., \		·	Photos
80000465 MASSACHUSETTS 66000127 MASSACHUSETTS	Suffolk	Boston	Oak Square School Arnold Arboretum	35 Nonantum St.	19801110		Photos
73000313 MASSACHUSETTS	Suffolk	Boston		22 Divinity Ave.	19661015		Photos
73000313 MASSACHUSETTS	Suffolk	Boston Boston	Arlington Street Church Old Corner Bookstore	Arlington and Boylston Sts. NW corner of Washington and School	19730504		Photos Photos
75000322 MASSACHUSETTS	Suffolk		South Station Headhouse	Atlantic Ave. and Summer St.			
74000392 MASSACHUSETTS	Suffolk	Boston	Winthrop Building	7 Water St.	19750213 19740418		Photos Photos
80000668 MASSACHUSETTS	Suffolk	Boston Boston		138-164 Federal St.	19800819		Photos
75000300 MASSACHUSETTS	Suffolk	Boston	United Shoe Machinery Corporation Building St. Stephen's Church	Hanover St. between Clark and Harri			Photos
80000669 MASSACHUSETTS	Suffolk	Boston	Union Wharf	295-353 Commercial St.	19800622		Photos
80000670 MASSACHUSETTS	Suffolk	Boston	Suffolk County Jail	215 Charles St.	19800423		Photos
80000674 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, School	20 Hutchings St.	19800416		Photos
80001683 MASSACHUSETTS	Suffolk	Boston	Dillaway School	16-20 Kenilworth St.	19800409		Photos
66000366 MASSACHUSETTS	Suffolk	Boston	Ether Dome, Massachusetts General Hospital	Fruit St.	19661015		Photos
70000539 MASSACHUSETTS	Suffolk	Boston	Otis, (First) Harrison Gray, House	141 Cambridge St.	19701230		Photos
73000314 MASSACHUSETTS	Suffolk	Boston	Armory of the First Corps of Cadets	97-105 Arlington St. and 130 Columb			Photos
73000315 MASSACHUSETTS	Suffolk	Boston	Blackstone Block Historic District	Area bound by Union, Hanover, Blac			Photos
72000145 MASSACHUSETTS	Suffolk	Boston	Crowninshield House	164 Marlborough St.	19720223		Photos
72000146 MASSACHUSETTS	Suffolk	Boston	First Baptist Church	Commonwealth Ave. and Clarendon			Photos
74000391 MASSACHUSETTS	Suffolk	Boston	John Adams Courthouse	Pemberton Sq.	19740508	·	Photos
72000150 MASSACHUSETTS	Suffolk	Boston	Trinity Rectory	Clarendon and Newbury Sts.	19720223	·	Photos
74000385 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Burial Ground	Charter, Snowhill, and Hull Sts.	19740418		Photos
74000393 MASSACHUSETTS	Suffolk	Boston	Youth's Companion Building	209 Columbus Ave.	19740502	·	Photos
66000764 MASSACHUSETTS	Suffolk	Boston	Harding, Chester, House	16 Beacon St.	19661015	·	Photos
74002044 MASSACHUSETTS	Suffolk	Boston	Howe, Samuel Gridley and Julia Ward, House	13 Chestnut St.	19740913	Text	Photos
74002045 MASSACHUSETTS	Suffolk	Boston	King's Chapel	Tremont and School Sts.	19740502	Text	Photos
70000682 MASSACHUSETTS	Suffolk	Boston	Massachusetts General Hospital	Fruit Street	19701230	<u>Text</u>	<u>Photos</u>
80000678 MASSACHUSETTS	Suffolk	Boston	All Saints' Church	211 Ashmont St.	19800616	<u>Text</u>	<u>Photos</u>
81000620 MASSACHUSETTS	Suffolk	Boston	Fields Corner Municipal Building	1 Arcadia St., 195 Adams St.	19811112	<u>Text</u>	<u>Photos</u>
66000770 MASSACHUSETTS	Suffolk	Boston	Massachusetts Historical Society Building	1154 Boylston St.	19661015	<u>Text</u>	<u>Photos</u>
66000771 MASSACHUSETTS	Suffolk	Boston	Massachusetts Statehouse	Beacon Hill	19661015	<u>Text</u>	<u>Photos</u>
76001979 MASSACHUSETTS	Suffolk	Boston	Nell, William C., House	3 Smith Ct.	19760511	<u>Text</u>	<u>Photos</u>
70000687 MASSACHUSETTS	Suffolk	Boston	Old City Hall	School and Providence Sts.	19701230	<u>Text</u>	<u>Photos</u>
70000690 MASSACHUSETTS	Suffolk	Boston	Old South Church in Boston	645 Boylston St.	19701230	<u>Text</u>	<u>Photos</u>
70000691 MASSACHUSETTS	Suffolk	Boston	Old West Church	131 Cambridge St.	19701230	<u>Text</u>	<u>Photos</u>
66000782 MASSACHUSETTS	Suffolk	Boston	Parkman, Francis, House	50 Chestnut St.	19661015	<u>Text</u>	<u>Photos</u>
80000444 MASSACHUSETTS	Suffolk	Boston	Shubert, Sam S., Theatre	263-265 Tremont St.	19801209	<u>Text</u>	<u>Photos</u>
80000458 MASSACHUSETTS	Suffolk	Boston	Piano Row District	Boston Common, Park Sq., Boylston	19801209	<u>Text</u>	<u>Photos</u>
80000443 MASSACHUSETTS	Suffolk	Boston	Wilbur Theatre	244-250 Tremont St.	19801209	<u>Text</u>	<u>Photos</u>
66000765 MASSACHUSETTS	Suffolk	Boston	Headquarters House	55 Beacon St.	19661015	<u>Text</u>	<u>Photos</u>
68000042 MASSACHUSETTS	Suffolk	Boston	Pierce-Hichborn House	29 North Sq.	19681124	·	<u>Photos</u>
66000784 MASSACHUSETTS	Suffolk	Boston	Quincy Market	S. Market St.	19661113	<u>Text</u>	<u>Photos</u>

70000730 MASSACHUSETTS	Suffolk	Boston	St. Paul's Church	136 Tremont St.	19701230 Text	Photos
70000730 MASSACHUSETTS	Suffolk	Boston	Sears, David, House	42 Beacon St.	19701230 <u>Text</u> 19701230 Text	<u>Photos</u> Photos
73001953 MASSACHUSETTS	Suffolk	Boston	Sumner, Charles, House	20 Hancock St.	19731107 Text	Photos
66000130 MASSACHUSETTS	Suffolk	Boston	Beacon Hill Historic District	Bounded by Beacon St., the Charles		Photos
73001955 MASSACHUSETTS	Suffolk	Boston	Otis, (Second) Harrison Gray, House	85 Mt. Vernon St.	19730727 Text	Photos
66000768 MASSACHUSETTS	Suffolk	Boston	Long Wharf and Customhouse Block	Foot of State St.	19661113 Text	Photos
66000132 MASSACHUSETTS	Suffolk	Boston	Boston Athenaeum	10 1/2 Beacon St.	19661015 <u>Text</u>	Photos
66000788 MASSACHUSETTS	Suffolk	Boston	Tremont Street Subway	Beneath Tremont, Boylston, and Wa	· · · · · · · · · · · · · · · · · · ·	Photos
70000733 MASSACHUSETTS	Suffolk	Boston	Trinity Church	Copley Sq.	19700701 Text	Photos
82004456 MASSACHUSETTS	Suffolk	Boston	Adams-Nervine Asylum	990-1020 Centre St.	19820601 Text	Photos
79000369 MASSACHUSETTS	Suffolk	Boston	International Trust Company Building	39-47 Milk St.	19790910 <u>Text</u>	Photos
74000388 MASSACHUSETTS	Suffolk	Boston	Eliot Burying Ground	Eustis and Washington Sts.	19740625 <u>Text</u>	Photos
80000463 MASSACHUSETTS	Suffolk	Boston	Russia Wharf Buildings	518-540 Atlantic Ave., 270 Congress	19801202 <u>Text</u>	<u>Photos</u>
71000087 MASSACHUSETTS	Suffolk	Boston	African Meetinghouse	8 Smith St.	19711007 <u>Text</u>	Photos
85002015 MASSACHUSETTS	Suffolk	Boston	Building at 138142 Portland Street	138142 Portland St.	19850905 <u>Text</u>	Photos
84000421 MASSACHUSETTS	Suffolk	Boston	Vermont Building	6-12 Thacher St.	19841113 <u>Text</u>	Photos
75000301 MASSACHUSETTS	Suffolk	Boston	Symphony and Horticultural Halls	Massachusetts and Huntington Aves	19750530 <u>Text</u>	<u>Photos</u>
73000324 MASSACHUSETTS	Suffolk	Boston	South End District	South Bay area between Huntington	19730508 <u>Text</u>	<u>Photos</u>
74000390 MASSACHUSETTS	Suffolk	Boston	Park Street District	Tremont, Park, and Beacon Sts.	19740501 <u>Text</u>	<u>Photos</u>
73000319 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets District	Fulton, Commercial, Mercantile, Lew	19730321 <u>Text</u>	<u>Photos</u>
84002875 MASSACHUSETTS	Suffolk	Boston	Fenway-Boylston Street District	Fenway, Boylston, Westland, and He	19840904 <u>Text</u>	<u>Photos</u>
78000473 MASSACHUSETTS	Suffolk	Boston	Fenway Studios	30 Ipswich St.	19780913 <u>Text</u>	<u>Photos</u>
73000318 MASSACHUSETTS	Suffolk	Boston	Cyclorama Building	543-547 Tremont St.	19730413 <u>Text</u>	<u>Photos</u>
83004097 MASSACHUSETTS	Suffolk	Boston	Codman Building	55 Kilby St.	19831019 <u>Text</u>	Photos
80000676 MASSACHUSETTS	Suffolk	Boston	Charles Playhouse	74-78 Warenton St.	19800616 <u>Text</u>	<u>Photos</u>
74000382 MASSACHUSETTS	Suffolk	Boston	Ames Building	1 Court St.	19740426 <u>Text</u>	<u>Photos</u>
77001541 MASSACHUSETTS	Suffolk	Boston	Appleton, Nathan, Residence	39-40 Beacon St.	19771222 <u>Text</u>	Photos
66000134 MASSACHUSETTS	Suffolk	Boston	Boston Naval Shipyard	E of Chelsea St., Charlestown	19661115 <u>Text</u>	<u>Photos</u>
66000050 MASSACHUSETTS	Suffolk	Boston	Dorchester Heights National Historic Site	South Boston	19661015 <u>Text</u>	<u>Photos</u>
74002222 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Inner harbor at mouth of Charles Riv	19741026 <u>Text</u>	<u>Photos</u>
66000785 MASSACHUSETTS	Suffolk	Boston	Revere, Paul, House	19 North Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000776 MASSACHUSETTS	Suffolk	Boston	Old North Church	193 Salem St.	19661015 <u>Text</u>	<u>Photos</u>
66000778 MASSACHUSETTS	Suffolk	Boston	Old South Meetinghouse	Milk and Washington Sts.	19661015 <u>Text</u>	<u>Photos</u>
66000368 MASSACHUSETTS	Suffolk	Boston	Faneuil Hall	Dock Sq.	19661015 <u>Text</u>	<u>Photos</u>
66000779 MASSACHUSETTS	Suffolk	Boston	Old State House	Washington and State Sts.	19661015 <u>Text</u>	<u>Photos</u>
85003074 MASSACHUSETTS	Suffolk	Boston	Dudley Station Historic District	Washington, Warren, and Dudley Sts	· · · · · · · · · · · · · · · · · · ·	<u>Photos</u>
86000140 MASSACHUSETTS	Suffolk	Boston	Christ Church	1220 River Rd.	19860130 <u>Text</u>	<u>Photos</u>
73000317 MASSACHUSETTS	Suffolk	Boston	Boston Public Library	Copley Sq.	19730506 <u>Text</u>	<u>Photos</u>
86001909 MASSACHUSETTS	Suffolk	Boston	Filene's Department Store	426 Washington St.	19860724 <u>Text</u>	<u>Photos</u>
86001913 MASSACHUSETTS	Suffolk	Boston	Second Brazer Building	2529 State St.	19860724 <u>Text</u>	<u>Photos</u>
86001486 MASSACHUSETTS	Suffolk	Boston	Sears' Crescent and Sears' Block	3868 and 7072 Cornhill	19860809 <u>Text</u>	<u>Photos</u>
86001504 MASSACHUSETTS	Suffolk	Boston	Richardson Block	113151 Pearl and 109119 High Sts		<u>Photos</u>
85003375 MASSACHUSETTS	Suffolk	Boston	Engine House No. 34	444 Western Ave.	19851024 <u>Text</u>	<u>Photos</u>
80000671 MASSACHUSETTS	Suffolk	Boston	Stearns, R. H., House	140 Tremont St.	19800616 <u>Text</u>	<u>Photos</u>
86001911 MASSACHUSETTS	Suffolk	Boston	LockeOber Restaurant	34 Winter Pl.	19860724 <u>Text</u>	<u>Photos</u>
80000677 MASSACHUSETTS	Suffolk	Boston	Berger Factory	37 Williams St.	19800409 <u>Text</u>	<u>Photos</u>
85000316 MASSACHUSETTS	Suffolk	Boston	Bigelow School	350 W. 4th St.	19850221 <u>Text</u>	<u>Photos</u>
84002890 MASSACHUSETTS 70000921 MASSACHUSETTS	Suffolk Suffolk	Boston	Moreland Street Historic District	Roughly bounded by Kearsarge, Blue Castle Island		Photos
86000375 MASSACHUSETTS	Suffolk	Boston Boston	Fort Independence Harriswood Crescent	6088 Harold St.	19701015 <u>Text</u>	Photos
66000789 MASSACHUSETTS	Suffolk	Boston	U.S.S. CONSTITUTION	Boston Naval Shipyard	19860313 <u>Text</u> 19661015 <u>Text</u>	<u>Photos</u> <u>Photos</u>
87000757 MASSACHUSETTS	Suffolk	Boston	Harvard Stadium	60 N. Harvard St.	19870227 Text	Photos
72000144 MASSACHUSETTS	Suffolk	Boston	Boston Common and Public Garden	Beacon, Park, Tremont, Boylston, an		Photos
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Common	Beacon, Park, Tremont, Boylston, and		<u>Photos</u>
87000760 MASSACHUSETTS	Suffolk	Boston	Boston Public Garden	Beacon, Charles, Boylston, and Arling		<u>Photos</u>
87001128 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Monument Sq.	19870602 Text	Photos
66000138 MASSACHUSETTS	Suffolk	Boston	Bunker Hill Monument	Breed's Hill	19661015 Text	Photos
86000274 MASSACHUSETTS	Suffolk	Boston	Bulfinch Triangle Historic District		19860227 <u>Text</u>	Photos
80000675 MASSACHUSETTS	Suffolk	Boston	Dorchester-Milton Lower Mills Industrial District	Both sides of Neponset River	19800402 <u>Text</u>	<u>Photos</u>
86000084 MASSACHUSETTS	Suffolk	Boston	USS CASSIN YOUNG (destroyer)	Charlestown Navy Yard	19860114 Text	Photos
66000133 MASSACHUSETTS	Suffolk	Boston	Boston Light	Little Brewster Island, Boston Harboi		<u>Photos</u>
87001481 MASSACHUSETTS	Suffolk	Boston	Long Island Head Light	Long Island	19870615 Text	Photos
87001394 MASSACHUSETTS	Suffolk	Boston	New Riding Club	52 Hemenway St.	19870820 Text	Photos
87001396 MASSACHUSETTS	Suffolk	Boston	Congress Street Fire Station	344 Congress St.	19870903 Text	Photos
87000885 MASSACHUSETTS	Suffolk	Boston	Abbotsford	300 Walnut Ave.	19870916 Text	Photos
87001889 MASSACHUSETTS	Suffolk	Boston	Sumner Hill Historic District			Photos
87001771 MASSACHUSETTS	Suffolk	Boston	Bunker Hill School	65 Baldwin St.	19871015 <u>Text</u>	Photos
87001398 MASSACHUSETTS	Suffolk	Boston	House at 17 Cranston Street	17 Cranston St.	19871120 <u>Text</u>	Photos
87001399 MASSACHUSETTS	Suffolk	Boston	Hoxie, Timothy, House	135 Hillside St.	19871120 <u>Text</u>	Photos
87001495 MASSACHUSETTS	Suffolk	Boston	Saint Augustine Chapel and Cemetery	Dorchester St. between W. Sixth and		Photos

07002540 MARCACHUICETTC	C Ef all.	Dootoo	District 12 Delice Chaties	20 Converse Ave	10000310 Tout	Dhatas
87002549 MASSACHUSETTS 85003323 MASSACHUSETTS	Suffolk	Boston	District 13 Police Station	28 Seaverns Ave.	19880210 <u>Text</u>	Photos
	Suffolk Suffolk	Boston	Boston Harbor Islands Archeological District	Address Restricted	19851221 <u>Text</u>	Photos
82004448 MASSACHUSETTS	Suffolk	Boston	Roughan Hall	15-18 City Sq.	19820415 <u>Text</u>	Photos
82004450 MASSACHUSETTS	Suffolk	Boston	McKay, Donald, House	78-80 White St.	19820602 <u>Text</u>	Photos
82004453 MASSACHUSETTS		Boston	Haffenreffer Brewery Town Hill District	Germania St.	19820502 <u>Text</u>	Photos
73000850 MASSACHUSETTS	Suffolk	Boston		Bounded roughly by Rutherford Ave.		Photos
74000907 MASSACHUSETTS	Suffolk	Boston	Phipps Street Burying Ground	Phipps St.	19740514 <u>Text</u>	Photos
74000911 MASSACHUSETTS	Suffolk	Boston	Clapp Houses	199 and 195 Boston St.	19740502 <u>Text</u>	Photos
74000915 MASSACHUSETTS	Suffolk	Boston	Dorchester North Burying Ground	Stroughton St. and Columbia Rd.	19740418 <u>Text</u>	<u>Photos</u>
80004396 MASSACHUSETTS	Suffolk	Boston	Boston African American National Historic Site	Museum of Afro American History, D		<u>Photos</u>
66000141 MASSACHUSETTS	Suffolk	Boston	Brook Farm	670 Baker St.	19661015 <u>Text</u>	<u>Photos</u>
73000856 MASSACHUSETTS	Suffolk	Boston	Roxbury High Fort	Beech Glen St. at Fort Ave.	19730423 <u>Text</u>	<u>Photos</u>
73000855 MASSACHUSETTS	Suffolk	Boston	Kittredge, Alvah, House	12 Linwood St.	19730508 <u>Text</u>	<u>Photos</u>
73000854 MASSACHUSETTS	Suffolk	Boston	John Eliot Square District	John Eliot Sq.	19730423 <u>Text</u>	<u>Photos</u>
66000653 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, House	125 Highland St.	19661015 <u>Text</u>	<u>Photos</u>
72000544 MASSACHUSETTS	Suffolk	Boston	Loring-Greenough House	12 South St.	19720426 <u>Text</u>	<u>Photos</u>
74000917 MASSACHUSETTS	Suffolk	Boston	Pierce House	24 Oakton Ave.	19740426 <u>Text</u>	<u>Photos</u>
70000540 MASSACHUSETTS	Suffolk	Boston	Fort Warren	Georges Island, Boston Harbor	19700829 <u>Text</u>	<u>Photos</u>
74002350 MASSACHUSETTS	Suffolk	Boston	Blake, James, House	735 Columbia Rd.	19740501 <u>Text</u>	<u>Photos</u>
83000604 MASSACHUSETTS	Suffolk	Boston	Loring, Harrison, House	789 E. Broadway St.	19830901 <u>Text</u>	<u>Photos</u>
88000908 MASSACHUSETTS	Suffolk	Boston	Goodwin, Ozias, House	7 Jackson Ave.	19880623 <u>Text</u>	<u>Photos</u>
88000957 MASSACHUSETTS	Suffolk	Boston	Greek Orthodox Cathedral of New England	520 Parker St.	19880630 <u>Text</u>	Photos
88000427 MASSACHUSETTS	Suffolk	Boston	Temple Place Historic District	1155, 2658 Temple Pl.	19880726 <u>Text</u>	Photos
88000959 MASSACHUSETTS	Suffolk	Boston	Eliot Hall	7A Eliot St.	19880715 <u>Text</u>	<u>Photos</u>
87001478 MASSACHUSETTS	Suffolk	Boston	Austin, Francis B., House	58 High St.	19881021 <u>Text</u>	Photos
89000004 MASSACHUSETTS	Suffolk	Boston	Mount Pleasant Historic District	Roughly bounded by Forest St. and N	19890209 <u>Text</u>	Photos
89000147 MASSACHUSETTS	Suffolk	Boston	Roxbury Highlands Historic District	Roughly bounded by Dudley St., Was	19890222 <u>Text</u>	Photos
73000325 MASSACHUSETTS	Suffolk	Boston	Hale, Edward Everett, House	12 Morley St.	19790321 <u>Text</u>	Photos
83004099 MASSACHUSETTS	Suffolk	Boston	LUNA (tugboat)	NDC Pier, Charles River	19831006 <u>Text</u>	<u>Photos</u>
89000974 MASSACHUSETTS	Suffolk	Boston	Massachusetts School of Art	364 Brookline Ave.	19890803 <u>Text</u>	<u>Photos</u>
89001747 MASSACHUSETTS	Suffolk	Boston	Mission Hill Triangle Historic District	Roughly bounded by Smith St., Wort	19891106 <u>Text</u>	Photos
89002169 MASSACHUSETTS	Suffolk	Boston	St. Joseph's Roman Catholic Church Complex	Bounded by Circuit, Regent, Hulbert,	19891228 Text	Photos
89002251 MASSACHUSETTS	Suffolk	Boston	Bellevue Standpipe	On Bellevue Hill at Washington St. ar		Photos
88000955 MASSACHUSETTS	Suffolk	Boston	First Church of Jamaica Plain	6 Eliot St.	19880715 Text	Photos
90000631 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Terrace	Between Commercial and Charter St		Photos
89002271 MASSACHUSETTS	Suffolk	Boston	Chestnut Hill Reservoir Historic District	Beacon St. and Commonwealth Ave.		Photos
90001095 MASSACHUSETTS	Suffolk	Boston	Calf Pasture Pumping Station Complex	435 Mount Vernon St.	19900802 Text	Photos
90001145 MASSACHUSETTS	Suffolk	Boston	Bowditch School	8082 Greene St.	19900803 Text	Photos
90001536 MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Roughly bounded by Jamaicaway, Pc		Photos
90001537 MASSACHUSETTS	Suffolk	Boston	Upham's Corner Market	600 Columbia Rd.	19901011 Text	Photos
89002125 MASSACHUSETTS	Suffolk	Boston	Roxbury Presbyterian Church	328 Warren St.	19910315 Text	Photos
90001992 MASSACHUSETTS	Suffolk	Boston	Sears Roebuck and Company Mail Order Store	309 Park Dr. and 201 Brookline Ave.		<u>Photos</u>
92000356 MASSACHUSETTS	Suffolk	Boston	Trinity Neighborhood House	406 Meridian St.	19920414 Text	
73001948 MASSACHUSETTS	Suffolk		Back Bay Historic District	Roughly bounded by the Charles Rive		<u>Photos</u> Photos
90001757 MASSACHUSETTS	Suffolk	Boston	Textile District			
93001489 MASSACHUSETTS	Suffolk	Boston	Massachusetts Mental Health Center	Roughly, Essex St. from Phillips Sq. tc 74 Fenwood Rd.		Photos
		Boston			19940121 <u>Text</u>	Photos
93001573 MASSACHUSETTS	Suffolk	Boston	House at 1 Bay Street	1 Bay St.	19940209 <u>Text</u>	<u>Photos</u>
93001587 MASSACHUSETTS	Suffolk	Boston	Eliot Congregational Church	56 Dale St., corner 118120 Walnut		<u>Photos</u>
85000317 MASSACHUSETTS	Suffolk	Boston	Dimock Community Health Center Complex	41 and 55 Dimock St.	19850221 <u>Text</u>	<u>Photos</u>
80000672 MASSACHUSETTS	Suffolk	Boston	New England Conservatory of Music	290 Huntington Ave.	19800514 <u>Text</u>	<u>Photos</u>
94001494 MASSACHUSETTS	Suffolk	Boston	Lower Roxbury Historic District	Roughly, area surrounding Coventry,		<u>Photos</u>
94001492 MASSACHUSETTS	Suffolk	Boston	Faneuil, Peter, School	60 Joy St.	19941216 <u>Text</u>	<u>Photos</u>
95001450 MASSACHUSETTS	Suffolk	Boston	Riviera, The	270 Huntington Ave.	19951207 <u>Text</u>	<u>Photos</u>
73000321 MASSACHUSETTS	Suffolk	Boston	Custom House District	Between J.F.K. Expwy. and Kirby St. a		<u>Photos</u>
96001063 MASSACHUSETTS	Suffolk	Boston	Douglass, Frederick, Square Historic District	Roughly bounded by Hammond St., (<u>Photos</u>
97000969 MASSACHUSETTS	Suffolk	Boston	Charlestown Heights	Roughly bounded by St. Martin, Bun		<u>Photos</u>
97000920 MASSACHUSETTS	Suffolk	Boston	Brighton Evangelical Congregational Church	404-410 Washington St.	19970821 <u>Text</u>	<u>Photos</u>
97000970 MASSACHUSETTS	Suffolk	Boston	Students House	96 The Fenway	19970911 <u>Text</u>	<u>Photos</u>
97000971 MASSACHUSETTS	Suffolk	Boston	North Terminal Garage	600 Commercial St.	19970911 <u>Text</u>	<u>Photos</u>
97001239 MASSACHUSETTS	Suffolk	Boston	Dorchester Temple Baptist Church	670 Washington St.	19980116 <u>Text</u>	<u>Photos</u>
97001377 MASSACHUSETTS	Suffolk	Boston	Allston Congregational Church	31-41 Quint Ave.	19971107 <u>Text</u>	<u>Photos</u>
97001472 MASSACHUSETTS	Suffolk	Boston	St. Luke's and St. Margaret's Church	5-7 St. Luke's Rd.	19971112 <u>Text</u>	<u>Photos</u>
98000149 MASSACHUSETTS	Suffolk	Boston	Eagle Hill Historic District	Roughly bounded by Border, Lexingt	19980226 <u>Text</u>	<u>Photos</u>
98001082 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Association	312-320 Huntington Ave.	19980820 <u>Text</u>	<u>Photos</u>
97001278 MASSACHUSETTS	Suffolk	Boston	ROSEWAY (schooner)	Boston Harbor	19970925 <u>Text</u>	<u>Photos</u>
98001292 MASSACHUSETTS	Suffolk	Boston	St. Mary's Episcopal Church	14-16 Cushing Ave.	19981030 <u>Text</u>	<u>Photos</u>
98001330 MASSACHUSETTS	Suffolk	Boston	Roslindale Baptist Church	52 Cummins Hwy.	19981105 <u>Text</u>	<u>Photos</u>
98001361 MASSACHUSETTS	Suffolk	Boston	Cathedral of St. George Historic District	517-523-525 E. Broadway	19981125 <u>Text</u>	<u>Photos</u>
98001381 MASSACHUSETTS	Suffolk	Boston	Baker Congregational Church	760 Saratoga St.	19981119 <u>Text</u>	<u>Photos</u>
99000593 MASSACHUSETTS	Suffolk	Boston	Woodbourne Historic District	Roughly bounded by Walk Hill, Good	19990604 <u>Te</u> xt	Photos
				•	-	_

99000633 MASSACHUSETTS	Suffolk	Boston	Symphony Hall	301 Massachusetts Avenue	19990120 Text	Photos
99001302 MASSACHUSETTS	Suffolk	Boston		11 North Square	19991112 Text	Photos
99001304 MASSACHUSETTS	Suffolk	Boston	Congregation Adath Jeshurun	397 Blue Hill Ave.	19991112 <u>Text</u>	Photos
99001308 MASSACHUSETTS	Suffolk	Boston	First Congregational Church of Hyde Park	6 Webster St.	19991112 <u>Text</u>	<u>Photos</u>
99001614 MASSACHUSETTS	Suffolk	Boston	Church Green Buildings Historic District	101-113 Summer St.	19991230 <u>Text</u>	<u>Photos</u>
00000160 MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets Historic District (Boundary Incre	81-95 Richmond St.	20000303 <u>Text</u>	<u>Photos</u>
00000415 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Historic District	•	20000428 <u>Text</u>	<u>Photos</u>
00000871 MASSACHUSETTS	Suffolk	Boston		25 Ambrose St.	20000802 <u>Text</u>	<u>Photos</u>
01000088 MASSACHUSETTS	Suffolk	Boston	_	Academy Hill R., Chestnut Hill Ave., [<u>Photos</u>
01000872 MASSACHUSETTS	Suffolk	Boston	•	195-197 Ashmont St.	20010808 <u>Text</u>	<u>Photos</u>
01001048 MASSACHUSETTS	Suffolk	Boston		137 Beacon St.	20010807 <u>Text</u>	<u>Photos</u>
01001557 MASSACHUSETTS	Suffolk Suffolk	Boston	•	249 River St.	20020207 <u>Text</u>	Photos
02000081 MASSACHUSETTS 02000154 MASSACHUSETTS	Suffolk	Boston Boston	Frances and Isabella Apartments Greenwood Memorial United Methodist Church	430-432 and 434-436 Dudley St. 378A-380 Washington St.	20020222 <u>Text</u> 20020308 <u>Text</u>	Photos
02000134 MASSACHUSETTS	Suffolk	Boston	Bennington Street Burying Ground	Bennington St., bet. Swift and harmo		Photos Photos
02000348 MASSACHUSETTS	Suffolk	Boston	Paine Furniture Building	75-81 Arlington St.	20020912 <u>Text</u>	Photos
02001099 MASSACHUSETTS	Suffolk	Boston	Harrison Square Historic District	Bounded by MBTA Braintree line em	20021022 Text	Photos
03000385 MASSACHUSETTS	Suffolk	Boston	Savin Hill Historic District	Roughly bounded by Savin Hill Ave.,	20030509 <u>Text</u>	Photos
03000645 MASSACHUSETTS	Suffolk	Boston		41-43 Union Street	20030527 Text	Photos
03000781 MASSACHUSETTS	Suffolk	Boston	·	40-44 Bromfield St.	20030820 Text	Photos
04000023 MASSACHUSETTS	Suffolk	Boston	, 3	150 Magnolia St.	20040211 <u>Text</u>	Photos
04000085 MASSACHUSETTS	Suffolk	Boston	Haskell, Edward H., Home for Nurses	220 Fisther Ave., 63 Parker Hill Ave.	20040226 Text	Photos
04000119 MASSACHUSETTS	Suffolk	Boston		140 Clarendon St.	20040303 Text	Photos
04000189 MASSACHUSETTS	Suffolk	Boston	Nix's Mate Daybeacon	Nubble Channel, The Narrows, Bosto		Photos
04000426 MASSACHUSETTS	Suffolk	Boston	•	224-236 Seaver St. and 1-8 Nazing Cc		Photos
04000534 MASSACHUSETTS	Suffolk	Boston		182-186 Dudley St.	20040602 <u>Text</u>	Photos
04000959 MASSACHUSETTS	Suffolk	Boston	Fort Point Channel Historic District	Necco Court, Thomson Place, A, Binfo	20040910 <u>Text</u>	Photos
04001219 MASSACHUSETTS	Suffolk	Boston	Forest Hills Cemetery	95 Forest Hills Ave.	20041117 <u>Text</u>	Photos
04001430 MASSACHUSETTS	Suffolk	Boston	Truman ParkwayMetropolitan Park System of Greater Bo	Truman Parkway	20050105 <u>Text</u>	Photos
04001432 MASSACHUSETTS	Suffolk	Boston	VFW Parkway, Metropolitan Park System of Greater Bostor	VFW Parkway, bet. Spring And Centr	20050105 <u>Text</u>	Photos
04001572 MASSACHUSETTS	Suffolk	Boston	Morton Street, Metropolitan Park System of Greater Bosto	Morton St.	20050124 <u>Text</u>	Photos
04001573 MASSACHUSETTS	Suffolk	Boston	Neponset Valley Parkway, Metorpolitan Park System of Gre	Neponset Valley Parkway	20050124 <u>Text</u>	<u>Photos</u>
05000459 MASSACHUSETTS	Suffolk	Boston	Ayer, Frederick, Mansion	395 Commonwealth Avenue	20050405 <u>Text</u>	Photos
05000559 MASSACHUSETTS	Suffolk	Boston	Collins Building	213-217 Washington St.	20050608 <u>Text</u>	Photos
05000879 MASSACHUSETTS	Suffolk	Boston	Home for Aged Couples	409, 419 Walnut Ave. and 2055 Colu	20050811 <u>Text</u>	<u>Photos</u>
05000936 MASSACHUSETTS	Suffolk	Boston	South Boston Boat Clubs Historic District	1793-1849 William J. Day Blvd.	20050901 <u>Text</u>	<u>Photos</u>
05001509 MASSACHUSETTS	Suffolk	Boston	Stony Brook Reservation Parkways, Metropolitan Park Syst	Dedham, Enneking, Turtle Pond Park	20060103 <u>Text</u>	<u>Photos</u>
06000127 MASSACHUSETTS	Suffolk	Boston	5	127 Marion St.	20060315 <u>Text</u>	<u>Photos</u>
01000304 MASSACHUSETTS	Suffolk	Boston	DorchesterMilton Lower Mills Industrial District (Boundar			<u>Photos</u>
07000510 MASSACHUSETTS	Suffolk	Boston		41 Ruggles St., 746-750 Shawmut Av		<u>Photos</u>
07000861 MASSACHUSETTS	Suffolk	Boston	· ·	15 Beacon St.	20070831 <u>Text</u>	<u>Photos</u>
08000089 MASSACHUSETTS	Suffolk	Boston	Dorchester Park	Bounded by Dorchester Ave., Richmo		<u>Photos</u>
08000693 MASSACHUSETTS	Suffolk	Boston	Old Harbor Reservation Parkways, Metropolitan Park Syste	•		<u>Photos</u>
08000793 MASSACHUSETTS	Suffolk	Boston	Joshua Bates School	731 Harrison Ave.	20080822 <u>Text</u>	<u>Photos</u>
08000795 MASSACHUSETTS	Suffolk	Boston	•	147 Wordsworth St.	20080819 <u>Text</u>	Photos
08001284 MASSACHUSETTS 09000612 MASSACHUSETTS	Suffolk Suffolk	Boston		159, 161-175 Devonshire St., 18-20 A 2060 Commonwealth Ave.	20081231 <u>Text</u> 20090814 <u>Text</u>	Photos
09000012 MASSACHUSETTS	Suffolk	Boston Boston	Evergreen Cemetery Fairview Cemetery	45 Fairview Ave.	20090814 <u>Text</u> 20090916 Text	<u>Photos</u> Photos
09000717 MASSACHUSETTS	Suffolk	Boston	Mount Hope Cemetery	355 Walk Hill St.	20090910 <u>Text</u> 20090924 Text	Photos
10000039 MASSACHUSETTS	Suffolk	Boston	·	Address Restricted	20101122 Text	Photos
10000300 MASSACHUSETTS	Suffolk	Boston		154-166 Terrace St	20100528 Text	Photos
10000391 MASSACHUSETTS	Suffolk	Boston		874, 876, 880 Beacon St	20100624 <u>Text</u>	Photos
10000506 MASSACHUSETTS	Suffolk	Boston	Charles River Reservation (Speedway)Upper Basin Headqu	• •	20100719 Text	Photos
10001066 MASSACHUSETTS	Suffolk	Boston	* * * * * * * * * * * * * * * * * * * *	3025 Washington St	20101227 <u>Text</u>	Photos
11000160 MASSACHUSETTS	Suffolk	Boston	United State Post Office, Courthouse, and Federal Building	G	20110408 <u>Text</u>	Photos
12000069 MASSACHUSETTS	Suffolk	Boston		24, & 2-4 Yawkey Wy., 64-76 Brooklii		Photos
12000099 MASSACHUSETTS	Suffolk	Boston	Terminal Storage Warehouse District	267-281 Medford St., 40 & 50 Termir	20120312 <u>Text</u>	Photos
12000783 MASSACHUSETTS	Suffolk	Boston	Saint Mark's Episcopal Church	73 Columbia Rd.	20140703 <u>Text</u>	Photos
12000978 MASSACHUSETTS	Suffolk	Boston	Sherman Apartments Historic District	544-546 Washington, 4-6, 12-14, 18 I	20121128 <u>Text</u>	Photos
12001012 MASSACHUSETTS	Suffolk	Boston	Central Congregational Church	67 Newbury St.	20121016 <u>Text</u>	Photos
12001162 MASSACHUSETTS	Suffolk	Boston	Commonwealth Pier Five	165 Northern Ave.	19791010 <u>Text</u>	<u>Photos</u>
13000621 MASSACHUSETTS		Boston		4228 Washington St.	20130827 <u>Text</u>	<u>Photos</u>
13000928 MASSACHUSETTS	Suffolk	Boston		3 Gaylord St.	20131218 <u>Text</u>	<u>Photos</u>
13000929 MASSACHUSETTS	Suffolk	Boston	Pilgrim Congregational Church	540-544 Columbia Rd.	20131218 <u>Text</u>	<u>Photos</u>
13000930 MASSACHUSETTS	Suffolk	Boston	Walton and Roslin Halls	702-708 & 710-726 Washington St., $\boldsymbol{\xi}$		<u>Photos</u>
14000272 MASSACHUSETTS	Suffolk	Boston		59 Temple Pl.	20140602 <u>Text</u>	<u>Photos</u>
14000365 MASSACHUSETTS	Suffolk	Boston	, 3	2095 Dorchester Ave.	20140627 <u>Text</u>	<u>Photos</u>
14000561 MASSACHUSETTS	Suffolk	Boston	6	825-829 Blue Hill Ave.	20140910 <u>Text</u>	<u>Photos</u>
14000698 MASSACHUSETTS	Suffolk	Boston	·	1439-1443 & 1447-1451 Blue Hill Ανε		<u>Photos</u>
14000974 MASSACHUSETTS	Suffolk	Boston	Gridley Street Historic District	Bounded by Congress, High, Pearl &	20141203 <u>Text</u>	<u>Photos</u>

14000975 MASSACHUSETTS	Suffolk	Boston	Lyman, Theodore, School	30 Gove St.	20141202 <u>Text</u>	<u>Photos</u>
14001095 MASSACHUSETTS	Suffolk	Boston	South End District (Boundary Increase)	200-224 Northampton St.	20141229 <u>Text</u>	<u>Photos</u>
15000048 MASSACHUSETTS	Suffolk	Boston	Boston Police Station Number OneTraffic Tunnel Adminis	128, 150 North & 130 -140 Richmonc	20150303 <u>Text</u>	<u>Photos</u>
15000195 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Charlestown Navy Yard	20150505 <u>Text</u>	<u>Photos</u>
86001378 MASSACHUSETTS	Suffolk	South Bosto	US Post Office Garage	135 A St.	19860626 <u>Text</u>	<u>Photos</u>

APPENDIX E

BWSC Permit Application

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

19 November 2020 File No. 133243-004

Boston Water and Sewer Commission Engineering Customer Services 900 Harrison Avenue Boston, MA 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering

Brigham and Women's Faulkner Hospital (BWFH)

1153 Centre Street Boston, Massachusetts

Dear Mr. Tuttle:

On behalf of our client, Brigham and Women's Faulkner Hospital this letter submits the Dewatering Discharge Permit Application in support of the proposed rear garage and inpatient addition project, located at 1153 Centre Street, in Boston, Massachusetts.

Dewatering is necessary to enable construction excavations in-the-dry and is anticipated to begin in April 2021 and continue for up to 18 months. Prior to discharge, collected water will be routed through a sedimentation tank and bag filter at minimum to remove suspended solids and un-dissolved chemical constituents. The proposed dewatering discharge route and BWSC outfall location is described and shown in the NPDES RGP Permit Application attachments.

A submittal was provided to EPA for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours,

HALEY & ALDRICH, INC.

Cole E. Worthy, LSP Senior Associate

Attachments:

Copy of NPDES RGP Permit Application

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2005306

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Report Date: 03/04/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

 Lab Number:
 L2005306

 Report Date:
 03/04/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2005306-01	HA20-REARGARAGE- 02052020	WATER	1153 CENTRE STREET, BOSTON, MA	02/05/20 12:00	02/05/20
L2005306-02	HA20-OUTFALL-02052020	WATER	1153 CENTRE STREET, BOSTON, MA	02/05/20 13:20	02/05/20

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

Case Narrative (continued)

Report Submission

March 04, 2020: This final report includes the results of all requested analyses.

February 12, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Anions by Ion Chromatography

The WG1338449-3 MS recovery for chloride (119%), performed on L2005306-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lifani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 03/04/20

ORGANICS

VOLATILES

L2005306

02/05/20 12:00

Refer to COC

02/05/20

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

SAMPLE RESULTS

Report Date: 03/04/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2005306-01

Client ID: HA20-REARGARAGE-02052020

1153 CENTRE STREET, BOSTON, MA Sample Location:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 02/10/20 15:43

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	1.0		1			
1,1-Dichloroethane	ND		ug/l	1.5		1			
Carbon tetrachloride	ND		ug/l	1.0		1			
1,1,2-Trichloroethane	ND		ug/l	1.5		1			
Tetrachloroethene	ND		ug/l	1.0		1			
1,2-Dichloroethane	ND		ug/l	1.5		1			
1,1,1-Trichloroethane	ND		ug/l	2.0		1			
Benzene	ND		ug/l	1.0		1			
Toluene	ND		ug/l	1.0		1			
Ethylbenzene	ND		ug/l	1.0		1			
Vinyl chloride	ND		ug/l	1.0		1			
1,1-Dichloroethene	ND		ug/l	1.0		1			
cis-1,2-Dichloroethene	ND		ug/l	1.0		1			
Trichloroethene	ND		ug/l	1.0		1			
1,2-Dichlorobenzene	ND		ug/l	5.0		1			
1,3-Dichlorobenzene	ND		ug/l	5.0		1			
1,4-Dichlorobenzene	ND		ug/l	5.0		1			
p/m-Xylene	ND		ug/l	2.0		1			
o-xylene	ND		ug/l	1.0		1			
Xylenes, Total	ND		ug/l	1.0		1			
Acetone	ND		ug/l	10		1			
Methyl tert butyl ether	ND		ug/l	10		1			
Tert-Butyl Alcohol	ND		ug/l	100		1			
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1			

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	97	60-140	
Fluorobenzene	99	60-140	
4-Bromofluorobenzene	84	60-140	

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/20 20:27

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM	- Westborough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier		otance teria	
Fluorobenzene			99		6	0-140	
4-Bromofluorobenzene			96		6	0-140	

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/06/20 13:25

Analyst: AMM

02/06/20 16:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough	Lab						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α
1,2,3-Trichloropropane	ND		ug/l	0.029		1	Α

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 02/06/20 14:40 Extraction Date: 02/06/20 13:25

Analytical Date: 02/06/20 14:40 Extraction Date: 02
Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Wes	tborough Lab fo	r sample(s): 01	Batch: WG133	37920-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

Project Name:BWFH-REAR GARAGELab Number:L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/10/20 12:01

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01	Batch:	WG1339293-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: BWFH-REAR GARAGE **Lab Number:** L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/10/20 12:01

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1339293-4

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Pentafluorobenzene	95	60-140
Fluorobenzene	98	60-140
4-Bromofluorobenzene	82	60-140

Project Name: BWFH-REAR GARAGE **Lab Number:** L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/20 19:55

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1339922-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
Fluorobenzene	100	60-140
4-Bromofluorobenzene	115	60-140

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sar	nple(s): 01	Batch: WG1337	920-2					
1,2-Dibromoethane	86		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	94		-		80-120	-			Α
1,2,3-Trichloropropane	89		-		80-120	-			Α

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number: L2005306

Report Date: 03/04/20

Parameter	LCS %Recovery		SD covery Qua	%Recovery I Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Bato	ch: WG1339293	-3			
Methylene chloride	100		-	60-140	-	28	
1,1-Dichloroethane	95		-	50-150	-	49	
Carbon tetrachloride	100		-	70-130	-	41	
1,1,2-Trichloroethane	100		-	70-130	-	45	
Tetrachloroethene	95		-	70-130	-	39	
1,2-Dichloroethane	100		-	70-130	-	49	
1,1,1-Trichloroethane	105		-	70-130	-	36	
Benzene	100		-	65-135	-	61	
Toluene	100		-	70-130	-	41	
Ethylbenzene	90		-	60-140	-	63	
Vinyl chloride	100		-	5-195	-	66	
1,1-Dichloroethene	105		-	50-150	-	32	
cis-1,2-Dichloroethene	100		-	60-140	-	30	
Trichloroethene	100		-	65-135	-	48	
1,2-Dichlorobenzene	90		-	65-135	-	57	
1,3-Dichlorobenzene	80		-	70-130	-	43	
1,4-Dichlorobenzene	85		-	65-135	-	57	
p/m-Xylene	95		-	60-140	-	30	
o-xylene	85		-	60-140	-	30	
Acetone	114		-	40-160	-	30	
Methyl tert butyl ether	110		-	60-140	-	30	
Tert-Butyl Alcohol	100		-	60-140	-	30	
Tertiary-Amyl Methyl Ether	95		-	60-140	-	30	

L2005306

Lab Control Sample Analysis Batch Quality Control

BWFH-REAR GARAGE

Lab Number:

Project Number: 133243-005 SID 4 Report Date:

03/04/20

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1339293-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	98			60-140
Fluorobenzene	99			60-140
4-Bromofluorobenzene	84			60-140

Project Name:

Project Name: BWFH-REAR GARAGE

Lab Number:

L2005306

Project Number: 133243-005 SID 4 Report Date:

03/04/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ed sample(s)	: 01 Batch:	WG1339922	-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	103 112				60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Parameter	Native Sample	MS Added	MS Found %	MS 6Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG13	37920-3	QC Sample: I	_2004719	9-01 Clie	ent ID: N	/IS Sam	ple	
1,2-Dibromoethane	ND	0.247	0.208	84		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.247	0.222	90		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.247	0.204	83		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/05/20 23:34

Analyst: CB

02/06/20 15:15

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ugh Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	91		42-122	
2-Fluorobiphenyl	89		46-121	
4-Terphenyl-d14	107		47-138	

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/05/20 23:37

Analytical Date: 02/06/20 20:25

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	-SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	87	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	97	45-128
4-Terphenyl-d14	94	47-138

L2005306

Project Name: BWFH-REAR GARAGE Lab Number:

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/06/20 11:56

Analyst: JG

Extraction Method: EPA 625.1 Extraction Date: 02/05/20 08:53

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for s	ample(s):	01	Batch:	WG1337341-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	:	2.2		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l	;	5.0		
Di-n-octylphthalate	ND		ug/l	;	5.0		
Diethyl phthalate	ND		ug/l	;	5.0		
Dimethyl phthalate	ND		ug/l	,	5.0		

		Acc	eptance
Surrogate	%Recovery	Qualifier C	riteria
Nitrobenzene-d5	78	4:	2-122
2-Fluorobiphenyl	75	40	6-121
4-Terphenyl-d14	81	4	7-138

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4 Lab Number:

L2005306

Report Date:

03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

Analyst:

129,625.1-SIM 02/11/20 12:36

 DV

Extraction Method: EPA 625.1 02/05/20 08:57 **Extraction Date:**

arameter	Result	Qualifier Un	its RL	MD	L
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab for s	sample(s): 01	Batch: V	/G1337342-1
Acenaphthene	ND	uį	g/l 0.10		
Fluoranthene	ND	uç	g/l 0.10		
Naphthalene	ND	uţ	g/l 0.10		
Benzo(a)anthracene	ND	uţ	g/l 0.10		
Benzo(a)pyrene	ND	uţ	g/l 0.10		
Benzo(b)fluoranthene	ND	uç	g/l 0.10		
Benzo(k)fluoranthene	ND	uç	g/l 0.10		
Chrysene	ND	uç	g/l 0.10		
Acenaphthylene	ND	uç	g/l 0.10		
Anthracene	ND	uç	g/l 0.10		
Benzo(ghi)perylene	ND	uç	g/l 0.10		
Fluorene	ND	uç	g/l 0.10		
Phenanthrene	ND	uç	g/l 0.10		
Dibenzo(a,h)anthracene	ND	uç	g/l 0.10		
Indeno(1,2,3-cd)pyrene	ND	uç	g/l 0.10		
Pyrene	ND	uç	g/l 0.10		
Pentachlorophenol	ND	uį	g/l 1.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	48	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	90	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	89	45-128
4-Terphenyl-d14	87	47-138

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01 Batch:	WG1337341	l - 3				
Bis(2-ethylhexyl)phthalate	74		-		29-137	-		82	
Butyl benzyl phthalate	84		-		1-140	-		60	
Di-n-butylphthalate	78		-		8-120	-		47	
Di-n-octylphthalate	73		-		19-132	-		69	
Diethyl phthalate	83		-		1-120	-		100	
Dimethyl phthalate	89		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	82		42-122	
2-Fluorobiphenyl	77		46-121	
4-Terphenyl-d14	86		47-138	

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number: L2005306

Report Date: 03/04/20

arameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS-SIM - We	estborough Lab Associate	ed sample(s): 01 Batch	n: WG1337342-3		
Acenaphthene	92	-	60-132	-	30
Fluoranthene	96	-	43-121	-	30
Naphthalene	88	-	36-120	-	30
Benzo(a)anthracene	105	-	42-133	-	30
Benzo(a)pyrene	110	-	32-148	-	30
Benzo(b)fluoranthene	110	-	42-140	-	30
Benzo(k)fluoranthene	112	-	25-146	-	30
Chrysene	88	-	44-140	-	30
Acenaphthylene	87	-	54-126	-	30
Anthracene	92	-	43-120	-	30
Benzo(ghi)perylene	74	-	1-195	-	30
Fluorene	92	-	70-120	-	30
Phenanthrene	96	-	65-120	-	30
Dibenzo(a,h)anthracene	81	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	80	-	1-151	-	30
Pyrene	93	-	70-120	-	30
Pentachlorophenol	87	-	38-152	-	30

Project Name: BWFH-REAR GARAGE

Lab Number:

L2005306

Project Number: 133243-005 SID 4

Report Date:

03/04/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1337342-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56		25-87
Phenol-d6	44		16-65
Nitrobenzene-d5	87		42-122
2-Fluorobiphenyl	79		46-121
2,4,6-Tribromophenol	98		45-128
4-Terphenyl-d14	94		47-138

PCBS

Project Name:BWFH-REAR GARAGELab Number:L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01 Date Collected: 02/05/20 12:00

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/06/20 01:20
Analytical Date: 02/07/20 16:20 Cleanup Method: EPA 3665A

Analyst: KB Cleanup Date: 02/06/20 Cleanup Method: EPA 3660B

Cleanup Date: 02/06/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	70		37-123	В		
Decachlorobiphenyl	57		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	71		37-123	Α		
Decachlorobiphenyl	55		38-114	Α		

L2005306

Lab Number:

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/06/20 18:34

Analyst: JM

Extraction Method: EPA 608.3
Extraction Date: 02/05/20 19:14
Cleanup Method: EPA 3665A
Cleanup Date: 02/05/20
Cleanup Method: EPA 3660B
Cleanup Date: 02/06/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01 Batch:	WG1337595	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	ce
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	43	37-123	В
Decachlorobiphenyl	44	38-114	В
2,4,5,6-Tetrachloro-m-xylene	42	37-123	Α
Decachlorobiphenyl	45	38-114	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number:

133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Parameter	LCS %Recoverv	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbo			: 01 Batch:	WG1337595		7.1. 2			
Aroclor 1016	50				50-140	-		36	A
Aroclor 1260	47		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	49		37-123 B
Decachlorobiphenyl	52		38-114 B
2,4,5,6-Tetrachloro-m-xylene	48		37-123 A
Decachlorobiphenyl	51		38-114 A

METALS

02/05/20 12:00

Date Collected:

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01

Client ID: HA20-REARGARAGE-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Chromium, Total	0.00212		mg/l	0.00100		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Copper, Total	0.00375		mg/l	0.00100		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Iron, Total	0.952		mg/l	0.050		1	02/06/20 22:2	7 02/07/20 13:53	EPA 3005A	19,200.7	LC
Lead, Total	0.00250		mg/l	0.00100		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/07/20 16:03	3 02/07/20 19:38	EPA 245.1	3,245.1	AL
Nickel, Total	0.00255		mg/l	0.00200		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	02/06/20 22:2	7 02/07/20 11:33	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	385		mg/l	0.660	NA	1	02/06/20 22:2	7 02/07/20 13:53	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/07/20 11:33	NA	107,-	

02/05/20 13:20

Project Name: Lab Number: **BWFH-REAR GARAGE** L2005306 **Project Number: Report Date:** 133243-005 SID 4 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-02

Date Collected: Client ID: HA20-OUTFALL-02052020 Date Received: 02/05/20 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC Sample Location:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Copper, Total	0.00261		mg/l	0.00100		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Iron, Total	0.064		mg/l	0.050		1	02/06/20 22:27	02/07/20 13:57	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/07/20 16:03	02/07/20 19:40	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.00200		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Zinc, Total	0.02111		mg/l	0.01000		1	02/06/20 22:27	02/07/20 11:38	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	91.5		mg/l	0.660	NA	1	02/06/20 22:27	02/07/20 13:57	EPA 3005A	19,200.7	LC

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Method Blank Analysis Batch Quality Control

Dilution Analytical Date **Date Result Qualifier Factor Prepared Analyzed** Method Analyst **Parameter** Units RL **MDL** Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1338072-1 Iron, Total ND 0.050 LC mg/l 1 02/06/20 22:27 02/07/20 11:06 19,200.7

Prep Information

Digestion Method: EPA 3005A

Dilution Analytical Date **Date** Method Analyst **Result Qualifier** Units RL**Factor Prepared Analyzed Parameter** MDL Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1338072-1 Hardness ND LC mg/l 0.660 NA 02/07/20 11:06 19,200.7 02/06/20 22:27

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	: 01-02 E	Batch: Wo	G13380	73-1				
Antimony, Total	ND	mg/l	0.00400		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	02/06/20 22:27	02/07/20 09:02	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: BWFH-REAR GARAGE Project Number:

133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**Factor Prepared** Analyzed MDL Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1338399-1 Mercury, Total ND mg/l 0.0002 1 02/07/20 16:03 02/07/20 18:52 3,245.1 ΑL

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date: 03/04/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	le(s): 01-02 Batch:	WG1338072-2				
Iron, Total	110	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s	s): 01-02 Batch: WG133	8072-2			
Hardness	102	-	85-115	-		
Total Metals - Mansfield Lab Associated samp	le(s): 01-02 Batch:	: WG1338073-2				
Antimony, Total	87	-	85-115	-		
Arsenic, Total	100	-	85-115	-		
Cadmium, Total	106	-	85-115	-		
Chromium, Total	100	-	85-115	-		
Copper, Total	98	-	85-115	-		
Lead, Total	106	-	85-115	-		
Nickel, Total	102	-	85-115	-		
Selenium, Total	100	-	85-115	-		
Silver, Total	100	-	85-115	-		
Zinc, Total	106	-	85-115	-		
otal Metals - Mansfield Lab Associated samp	le(s): 01-02 Batch:	WG1338399-2				
Mercury, Total	98	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date: 03/04/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG133	8072-3	QC Samp	le: L2005300-01	Client ID: MS	Sample	
Iron, Total	0.394	1	1.50	111		-	-	75-125	-	20
Total Hardness by SM 2340E	3 - Mansfield La	b Associated	sample(s)	: 01-02 QC I	Batch ID	: WG133807	72-3 QC Sam	ple: L2005300-01	Client ID:	MS Samp
Hardness	82.2	66.2	150	102		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG133	8072-7	QC Samp	le: L2004803-01	Client ID: MS	Sample	
Iron, Total	ND	1	1.17	117		-	-	75-125	-	20
otal Hardness by SM 2340E	3 - Mansfield La	b Associated	sample(s)	: 01-02 QC I	Batch ID	: WG133807	72-7 QC Sam	ple: L2004803-01	Client ID:	MS Samp
Hardness	14.1	66.2	82.4	103		-	-	75-125	-	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG133	8073-3	QC Samp	le: L2005300-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4355	87		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1149	96		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05249	103		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2028	101		-	-	70-130	-	20
Copper, Total	0.00221	0.25	0.2490	99		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5442	107		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5009	100		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1143	95		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05051	101		-	-	70-130	-	20
Zinc, Total	0.01698	0.5	0.5365	104		-	-	70-130	-	20
otal Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bat	ch ID: WG133	8399-3	QC Samp	le: L2005082-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0048	96		-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number:

133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bat	tch ID: WG1338399-5	QC Sam	nple: L2005082-02	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.0047	94	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306 03/04/20

Report Date:

Native Sample Duplicate Sample RPD Limits RPD Qual **Parameter** Units Total Metals - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1338072-4 QC Sample: L2005300-01 Client ID: DUP Sample Iron, Total 0.394 0.389 mg/l 20 Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1338072-4 QC Sample: L2005300-01 Client ID: DUP Sample 82.2 20 Hardness 80.4 mg/l 2 Total Metals - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1338073-4 QC Sample: L2005300-01 Client ID: DUP Sample Antimony, Total ND ND NC 20 mg/l Arsenic, Total ND ND NC 20 mg/l Cadmium, Total ND ND NC 20 mg/l ND NC 20 Chromium, Total ND mg/l Copper, Total 0.00221 0.00205 mg/l 8 20 ND ND NC 20 Lead. Total mg/l ND NC 20 Nickel, Total ND mg/l NC 20 Selenium, Total ND ND mg/l ND NC 20 Silver, Total ND mg/l 20 Zinc, Total 0.01698 0.01591 mg/l Total Metals - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1338399-4 QC Sample: L2005082-01 Client ID: DUP Sample ND ND NC 20 Mercury, Total mg/l Total Metals - Mansfield Lab Associated sample(s): 01-02 QC Batch ID: WG1338399-6 QC Sample: L2005082-02 Client ID: DUP Sample Mercury, Total ND ND mg/l NC 20

INORGANICS & MISCELLANEOUS

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date: 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-01

Date Collected: 02/05/20 12:00

Client ID:

HA20-REARGARAGE-02052020

Date Received:

02/05/20

Sample Location: 1153 CENTRE STREET, BOSTON, MA

Refer to COC Field Prep:

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	41.		mg/l	5.0	NA	1	-	02/10/20 10:27	121,2540D	EM
Cyanide, Total	ND		mg/l	0.005		1	02/06/20 11:10	02/06/20 16:12	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/05/20 20:06	121,4500CL-D	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/06/20 06:24	02/06/20 20:33	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/08/20 15:50	02/08/20 21:55	74,1664A	MM
Phenolics, Total	ND		mg/l	0.030		1	02/06/20 05:20	02/06/20 08:45	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	02/06/20 05:00	02/06/20 05:50	1,7196A	СВ
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	55.9		mg/l	5.00		10	-	02/06/20 17:26	44,300.0	AT

Project Name: BWFH-REAR GARAGE Lab Number: L2005306

Project Number: 133243-005 SID 4 **Report Date:** 03/04/20

SAMPLE RESULTS

Lab ID: L2005306-02 Date Collected: 02/05/20 13:20

Client ID: HA20-OUTFALL-02052020 Date Received: 02/05/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Nitrogen, Ammonia	0.103		mg/l	0.075		1	02/06/20 06:24	02/06/20 20:34	121,4500NH3-BH	H AT

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	337571-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	02/05/20 20:06	121,4500CL-D	AS
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	337648-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	02/06/20 05:00	02/06/20 05:43	1,7196A	СВ
General Chemistry -	- Westborough Lab for san	nple(s): 01-	02 Bat	ch: W	G1337666-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	02/06/20 06:24	02/06/20 20:30	121,4500NH3-BH	H AT
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	337698-1				
Phenolics, Total	ND	mg/l	0.030		1	02/06/20 05:20	02/06/20 08:44	4,420.1	MV
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	337816-1				
Cyanide, Total	ND	mg/l	0.005		1	02/06/20 11:10	02/06/20 16:00	121,4500CN-CE	LH
Anions by Ion Chror	matography - Westborough	Lab for sar	mple(s):	01 E	atch: WG1	338449-1			
Chloride	ND	mg/l	0.500		1	-	02/06/20 16:54	44,300.0	AT
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	338726-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	02/08/20 15:50	02/08/20 21:55	74,1664A	MM
General Chemistry -	- Westborough Lab for san	nple(s): 01	Batch:	WG13	338961-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	02/10/20 10:27	121,2540D	EM

Lab Control Sample Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date:

03/04/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	ssociated sample(s): 01 E	Batch: WG1337571	-2				
Chlorine, Total Residual	96		-		90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 01 E	Batch: WG1337648	3-2				
Chromium, Hexavalent	99		-		85-115	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01-02	Batch: WG1337	666-2				
Nitrogen, Ammonia	100		-		80-120	-		20
General Chemistry - Westborough Lab A	ssociated sample(s): 01 E	Batch: WG1337698	3-2				
Phenolics, Total	88		-		70-130	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 01 E	Batch: WG1337816	5-2				
Cyanide, Total	100		-		90-110	-		
Anions by Ion Chromatography - Westbor	ough Lab Associat	ed sam	ole(s): 01 Batch:	WG133844	19-2			
Chloride	100		-		90-110	-		
General Chemistry - Westborough Lab A	ssociated sample(s): 01 E	Batch: WG1338726	6-2				
ТРН	72		-		64-132	-		34

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number:

L2005306

Report Date: 03/04/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD MRecovery Qual	Recovery Limits R	PD Qual	RPD Limits
General Chemistry - Westboroug	ıh Lab Ass	ociated sample	e(s): 01	QC Batch ID: \	WG1337571-4	QC Sample: L2005167	'-01 Client ID:	: MS Samp	le
Chlorine, Total Residual	ND	0.25	0.23	92	-	-	80-120	-	20
General Chemistry - Westboroug REARGARAGE-02052020	jh Lab Ass	ociated sample	e(s): 01	QC Batch ID: \	WG1337648-4	QC Sample: L2005306	G-01 Client ID:	: HA20-	
Chromium, Hexavalent	ND	0.1	0.107	107	-	-	85-115	-	20
General Chemistry - Westboroug 02052020	jh Lab Ass	ociated sample	e(s): 01-0	02 QC Batch I	D: WG1337666	-4 QC Sample: L2005	306-02 Client	ID: HA20-	OUTFALL-
Nitrogen, Ammonia	0.103	4	3.48	84	-	-	80-120	-	20
General Chemistry - Westboroug	jh Lab Ass	ociated sample	e(s): 01	QC Batch ID: \	WG1337698-4	QC Sample: L2005309	0-01 Client ID:	: MS Samp	le
Phenolics, Total	ND	0.4	0.40	100	-	-	70-130	-	20
General Chemistry - Westboroug	jh Lab Ass	ociated sample	e(s): 01	QC Batch ID: \	WG1337816-4	QC Sample: L2005309	0-02 Client ID:	: MS Samp	le
Cyanide, Total	ND	0.2	0.197	98		-	90-110	-	30
Anions by Ion Chromatography - REARGARAGE-02052020	Westborou	ugh Lab Assoc	ciated sar	mple(s): 01 Q	C Batch ID: WG	1338449-3 QC Sampl	e: L2005306-01	1 Client ID	: HA20-
Chloride	55.9	40	104	119	Q -	-	90-110	-	18
General Chemistry - Westboroug	ıh Lab Ass	ociated sample	e(s): 01	QC Batch ID:	WG1338726-4	QC Sample: L2005787	'-01 Client ID:	: MS Samp	le
TPH	ND	20	10.6	53	Q -	-	64-132	-	34

Lab Duplicate Analysis Batch Quality Control

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Lab Number: L200

L2005306

Report Date: 03/04/20

Parameter	Native	e Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1337571-3	QC Sample: L	2005111-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab REARGARAGE-02052020	Associated sample(s): 0	1 QC Batch ID:	WG1337648-3	QC Sample: L	2005306-01	Client ID:	HA20-
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab 02052020	Associated sample(s): 0	1-02 QC Batch	D: WG1337666-	3 QC Sample	: L2005306-	02 Client I	D: HA20-OUTFALL-
Nitrogen, Ammonia	0).103	0.090	mg/l	13		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1337698-3	QC Sample: L	2005309-01	Client ID:	DUP Sample
Phenolics, Total		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1337816-3	QC Sample: L	2005309-01	Client ID:	DUP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
Anions by Ion Chromatography - Westb	orough Lab Associated s	sample(s): 01 Q	C Batch ID: WG	1338449-4 QC	C Sample: L2	2005306-0 ⁻	1 Client ID: HA20-
Chloride		55.9	55.9	mg/l	0		18
General Chemistry - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1338726-3	QC Sample: L	2005787-01	Client ID:	DUP Sample
TPH		ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab	Associated sample(s): 0	1 QC Batch ID:	WG1338961-2	QC Sample: L	2005862-01	Client ID:	DUP Sample
Solids, Total Suspended		740	780	mg/l	5		29

Project Name: **BWFH-REAR GARAGE Project Number:** 133243-005 SID 4

Lab Number: L2005306

Report Date: 03/04/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2005306-01A	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005306-01B	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005306-01C	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005306-01D	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005306-01E	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L2005306-01F	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L2005306-01G	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L2005306-01H	Vial Na2S2O3 preserved	Α	NA		4.5	Υ	Absent		504(14)
L2005306-01I	Vial unpreserved	Α	NA		4.5	Υ	Absent		SUB-ETHANOL(14)
L2005306-01J	Vial unpreserved	Α	NA		4.5	Υ	Absent		SUB-ETHANOL(14)
L2005306-01K	Vial unpreserved	Α	NA		4.5	Υ	Absent		SUB-ETHANOL(14)
L2005306-01L	Plastic 250ml NaOH preserved	В	>12	>12	3.3	Υ	Absent		HOLD-WETCHEM(),TCN-4500(14)
L2005306-01M	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2005306-01N	Plastic 250ml HNO3 preserved	A	<2	<2	4.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),SE-2008T(180),HG-U(28),AS- 2008T(180),AG-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L2005306-01O	Plastic 500ml H2SO4 preserved	В	<2	<2	3.3	Υ	Absent		NH3-4500(28)
L2005306-01P	Plastic 950ml unpreserved	В	7	7	3.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L2005306-01Q	Plastic 950ml unpreserved	Α	7	7	4.5	Υ	Absent		TSS-2540(7)
L2005306-01R	Amber 950ml H2SO4 preserved	В	<2	<2	3.3	Υ	Absent		TPHENOL-420(28)
L2005306-01T	Amber 1000ml Na2S2O3	В	7	7	3.3	Υ	Absent		PCB-608.3(7)
L2005306-01U	Amber 1000ml Na2S2O3	В	7	7	3.3	Υ	Absent		PCB-608.3(7)

Lab Number: L2005306

Report Date: 03/04/20

Project Name: BWFH-REAR GARAGE

Project Number: 133243-005 SID 4

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)	
• (/	
L2005306-01V Amber 1000ml Na2S2O3 B 7 7 3.3 Y Absent 625.1-RGP(7),625.1-SIM-R	GP(7)
L2005306-01W Amber 1000ml Na2S2O3 B 7 7 3.3 Y Absent 625.1-RGP(7),625.1-SIM-R	GP(7)
L2005306-01X Amber 1000ml Na2S2O3 B 7 7 3.3 Y Absent 625.1-RGP(7),625.1-SIM-R	GP(7)
L2005306-01Y Amber 1000ml Na2S2O3 B 7 7 3.3 Y Absent 625.1-RGP(7),625.1-SIM-R	GP(7)
L2005306-01Z Amber 1000ml HCl preserved B NA 3.3 Y Absent TPH-1664(28)	
L2005306-01Z1 Amber 1000ml HCl preserved B NA 3.3 Y Absent TPH-1664(28)	
L2005306-02M Plastic 250ml HNO3 preserved A <2 <2 4.5 Y Absent HOLD-METAL-DISSOLVEI)(180)
L2005306-02N Plastic 250ml HNO3 preserved A <2 <2 4.5 Y Absent CD-2008T(180),NI-2008T(2008T(180),HARDU(180),C UI(180),AS-2008T(180),HG 2008T(180),HG 2008T(180),SE-2008T(180),BC 2008T(180),SE-2008T(180),SB-2008T(1	CU-2008T(180),FE- i-U(28),AG-),CR-2008T(180),PB-
L2005306-02O Plastic 500ml H2SO4 preserved A <2 <2 4.5 Y Absent NH3-4500(28)	

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

GLOSSARY

Acronyms

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:BWFH-REAR GARAGELab Number:L2005306Project Number:133243-005 SID 4Report Date:03/04/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 16

Page 1 of 1

Published Date: 2/17/2020 10:46:05 AM

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethy

Certification Information

Ethyltoluene

EPÁ 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ДІРНА	CHAIN OF CUSTODY	Service Centers Brewer, ME 64412 P 97430 Albany, NY 12 Tonswands, NY 14153		01 Malriesh, MJ	Page				Rec'	d	2	-1.	51	2										LASPHI	05306	
Westborough, MA 01561 8 Walkup Dr.	Mansfield, MA 02548 320 Forbes Blvd	Project Information	Calculation		*		Defr	verable	18															Billing Inform	THE RESERVE OF THE PERSON NAMED IN	M. T.
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	BWFH - Rear	Garage			回	Emai	1			Fax												Ø.	Same as Client Info	Y.
17001007/1005/1005	7.00	Project Location:	1153 Centre S	itreet, Boston,	MA			EQui	S (1 F	ile)		EQui	S (4 Fil	e)										PO#		
H&A Information		Project #	133243-005 S	ID 4				Othe	r																	
H&A Client: Brigham	and Women's Hospital	(Use Project name	as Projec()				Reg	ulatory	Requir	rement	(Progr	am/Crit	leria)											Disposal Site	Information	
H&A Address: 465 Med	ford St	Project Manager:	Lee Vanzier																						below location of applica	ble disposal
Boston,	MA 0212-1400	ALPHAQuote #:																						facilities.		
H&A Phone: 617-866-	7400	Turn-Around Time																						Disposal Facil	ay:	
H&A Fax: Ihoward H&A Email: cworthy	@haleyaldrich.com @haleyaldrich.com	Standard I (only if pre approved)		Due Date			Note	Select	State fr	rom mer	nu & ider	ntily crite	na.											3	NJ NY Other:	
These samples have be	en previously analyzed b	y Alpha [ANA	LYSIS			7													Sample Filt	ration	
3. HOLD PACN & ACN	A Approved 2017 RGP I	Metals ON HOLD (Fie	eld Fillered)				LTSS - 2540	2 TRC-4500	3. TCN-4500 HOLD PACN & ACN	4.504	8250 & 8250 SIM for Dioxane	HEXCR-3500 & Trivalent Chromium	7, TPHENOL-420	8: 8270TCL (including	8270TCL-SIM	10. CL-300	A.Pb.Sb.Se.Zn.Fe.Hg		13. Ammonia	14.Total Hardness	A2-ALCOHOL (Ethanol)	16, TPH-1664	17. PCB-808	Done Lab to c Preservatio Lab to c	n	8 0 1
ALPHA Lab ID	Sampl	» ID	Colle	ection	Sample	Sampler's	1	1.	무		5. 826	HEX	7	B. 62	σi		Cu.No.	12 Dis		4		2				
(Lab Use Only)	100030	240	Date	Time	Matrix	Initials	1			15	100	ø					= 5	As B			÷.			Sample Spec	ific Comments	
05306-4	HA20-RearGarage- (;	2052020	2/5/20	1500	AQ	500	X	×	х	X	x	X	×	х	×	x	×	x	x	x	X.	X	X	Temp -	pH -	24
7.7	HAZO OUTEN - 0	2172020	2/5/20	1320	AQ	1	-							-			×	×	X	х						3
	ű-					-																				
Preservative Gode; A = None B = HCl C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certificat Mansfield: Certificat			70	Container Type	-																	Samples can time clock w resolved. All	clearly, logibly and comp not be logged in and to ill not start until any amb the Analytical's services u	maround olguities are under this
D = H ₁ SO ₂ E = NaOH F = MeOH G = NaHSO ₂ H = Na ₂ S ₂ O ₃ K/E = Zn AcNaOH O = Other	G = Glass B = Bacteria Cup. C = Cube C = Other E = Encore D = 500 Bottle	Wellinguists			1530 1612 1804	Mr (Ct	Recei	ived By	112	1.	2/. M	5/20	16	20	1	63	oste/Tim	e						Chain of Cust with terms an Agreement# 2 between Hale	ody shali be performed in d conditions within Blanke (015-18-Alpha Analytical t y & Aldrich, Inc., its subsi Alpha Analytical.	accordance It Service by and
Document ID: 20455 Rev 1	(1/28/2016)								1	-		1			4.	7								1		

Subcontract Chain of Custody

Client Information Client: Alpha Analytical Labs	A PROPERTY OF					\dashv
Client: Alpha Analytical Labs		Project In	formation	Regulatory Req	uirements/Report Limits	
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Project Location Project Manage Turnaro	n: MA er: Melissa Gu		State/Federal Program: Regulatory Criteria:		
Phone: 603.319.5010 Email: mgulli@alphalab.com	Due Date: Deliverables:					
但非由等學的世界可以	Project Specifi	ic Requirem	ents and/or Report Re	equirements		
Reference following Alpha Job N			: L2005306	Report to include Method Blar	nk, LCS/LCSD:	
Additional Comments: Send all results/reports to	subreports@alphala	ab.com				
				Harris And	Markater Shape	
Lab ID Client ID	Collection Date/Time	Sample Matrix	Ana	lysis	Bate QC	ch
HA20-REARGARAGE-0205202	0 02-05-20 12:00	WATER	Ethanol by EPA 1671 Revision	on A		
Relinquishe	d By:		Date/Time:	Received By:	Date/Time:	
Cele	ru		2/6/20			
			' '			_

February 17, 2020

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2005306 **WorkOrder:** 20020442

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 2/7/2020 9:44:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442
Client Project: L2005306 Report Date: 17-Feb-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442

Client Project: L2005306 Report Date: 17-Feb-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442

Client Project: L2005306 Report Date: 17-Feb-2020

Cooler Receipt Temp: 2.2 °C

Locations

	Collinsville		Springfield	Kansas City						
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road					
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214					
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998					
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998					
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com					
	Collinsville Air		Chicago							
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.							
	Collinsville, IL 62234-7425		Downers Grove, IL 60515							
Phone	(618) 344-1004	Phone	(630) 324-6855							
Fax	(618) 344-1005	Fax								
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com							

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442

Client Project: L2005306 Report Date: 17-Feb-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	3/3/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP 6/30/2020		Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Tennessee	TDEC	04905		3/3/2020	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442

Client Project: L2005306 Report Date: 17-Feb-2020

Lab ID: 20020442-001 Client Sample ID: HA20-REARGARAGE-02052020

Matrix: AQUEOUS Collection Date: 02/05/2020 12:00

I	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS									
Ethanol		*	20		ND	mg/L	1	02/14/2020 11:56	R272986

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020442

Client Project: L2005306 Report Date: 17-Feb-2020

EPA 600 1671A, PH	ARMACEU	TICAL	MANUF	ACTURING IN	DUSTRY	NON-P	URGEABLE	VOLAT	ILE ORG		
Batch R272986	SampType:	MBLK		Units mg/L							
SampID: MBLK-02132	20										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		ND						02/14/2020
				11.70							
	SampType:	LCS		Units mg/L							
SampID: LCS-021320											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		180	250.0	0	70.3	70	132	02/14/2020
Batch R272986	SampType:	MS		Units mg/L							
SampID: 20020442-001AMS Date											
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		210	250.0	0	82.0	70	132	02/14/2020
Batch R272986	SampType:	MSD		Units mg/L					RPD	Limit 30	
SampID: 20020442-001AMSD Date											
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Ethanol			20		190	250.0	0	75.5	205.0	8.26	02/14/2020

NA 🗸

NA 🗸

No VOA vials No TOX containers

Sample containers intact?

Sufficient sample volume for indicated test?

Container/Temp Blank temperature in compliance?

Water - TOX containers have zero headspace?

Water – at least one vial per sample has zero headspace?

When thermal preservation is required, samples are compliant with a temperature between

0.1°C - 6.0°C, or when samples are received on ice the same day as collected.

All samples received within holding time?

Reported field parameters measured:

Water - pH acceptable upon receipt?

Receiving Check List

http://www.teklabinc.com/

Work Order: 20020442 Client: Alpha Analytical Client Project: L2005306 Report Date: 17-Feb-2020 Carrier: UPS Received By: KMT Elizabeth a thurley Reviewed by: Completed by: mbor Ollalli On: On: 07-Feb-2020 07-Feb-2020 Amber M. Dilallo Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 2.2 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **V** No 🗀 Yes **V** Chain of custody signed when relinquished and received? Yes No L **V** Chain of custody agrees with sample labels? No 🗀 Yes **V** Samples in proper container/bottle? Yes No 🗀

V

V

No

No

No 🗌

Lab 🗌

No 🗌

No 🗀

No 🗌

No 🗌

No 🗌

Yes

Yes ~

Yes

Field

Yes 🗹

Yes 🗸

Yes

Yes 🗹

NPDES/CWA TCN interferences checked/treated in the field? Yes Any No responses must be detailed below or on the COC.

ΔLPHA
ANAEYTICAL
World Class Chemistry

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425

Alpha Job Number L2005306

Client Information								
Turnaround & Deliverables Information Due Date: Deliverables: Project Specific Requirements Reference following Alpha Job Number on final report/deliverables: L2005306 Report to include Method Blank, LCS/LCSD: Additional Comments: Send all results/reports to subreports@alphalab.com Lab ID Client ID Collection Date/Time Matrix Analysis Batch WATER Fibanol by EPA 1871 Revision A Reference Requirements Report to include Method Blank, LCS/LCSD: Batch Analysis Batch Collection Date/Time WATER Fibanol by EPA 1871 Revision A Relinquished By: Date/Time: Received By: Date/Time: Collection Date/Time: WATER Relinquished By: Date/Time: Received By: Date/Time:	Client In	formation		Project Inf	ormation	Regulatory Requirer	nents/Report Lir	nits
Phone: 603.319.5010 Email: mgulil@alphalab.com Project Specific Requirements and/or Report Requirements Reference following Alpha Job Number on final report/deliverables: L2005306 Report to include Method Blank, LCS/LCSD: Additional Comments: Send all results/reports to subreports@alphalab.com Client ID Collection Sample Matrix Analysis Batch QC Lab ID Client ID Date/Time Matrix Phanel by EPA 1671 Revision A Reference following Alpha Job Number on final report/deliverables: L2005306 Report to include Method Blank, LCS/LCSD: Additional Comments: Send all results/reports to subreports@alphalab.com Batch QC WATER Ethanol by EPA 1671 Revision A Received By: Date/Time: CJELLAM J/7b0 6949 of	Client: Alpha Analytica Address: Eight Walkup D Westborough, N	ıl Labs Prive MA 01581-1019				ľ		
Reference following Alpha Job Number on final report/deliverables: L2005306 Report to include Method Blank, LCS/LCSD: Additional Comments: Send all results/reports to subreports@alphalab.com Lab ID Client ID Collection Sample Analysis COLYNO-COL HA20-REARGARAGE-02052020 02-05-20 12:00 WATER Inhanol by EPA 1671 Revision A Relinquished By: Date/Time: Received By: Date/Time: CICLER W JA20-REARGARAGE-02052020 02-05-20 12:00 WATER Inhanol by EPA 1671 Revision A Relinquished By: Date/Time: Received By: Date/Time: CICLER W JA20-REARGARAGE-02052020 02-05-20 12:00 WATER Inhanol by EPA 1671 Revision A	Phone: 603.319.5010 Email: mgulli@alphala	b.com	Due Date:					
Additional Comments: Send all results/reports to subreports@alphalab.com Lab ID Client ID Collection Date/Time Matrix Matrix MAZONOLING-GC1 HAZO-REARGARAGE-02052020 02-05-20 12:00 WATER Fithanol by EPA 1671 Revision A Relinquished By: Date/Time: Received By: Date/Time: Culture Relinquished By: Date/Time: Received By: Date/Time: AGGROUP WATER Fithanol by EPA 1671 Revision A Received By: Date/Time: AGGROUP WATER Fithanol by EPA 1671 Revision A Received By: Date/Time:			Project Specific I	Requireme	ents and/or Report Require	ements	,	
Relinquished By: Relinquished By: Date/Time: Received By: Date/Time:					L2005306 Rep	oort to include Method Blank, LC	S/LCSD:	
Relinquished By: Relinquished By: Date/Time: Received By: Date/Time:								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Relinquished By: Date/Time: Received By: Date/Time: Caleran リスター・フェック・ロード ロード ロード ロード ロード ロード ロード ロード ロード ロード	Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC
C-Jelenie 3/6/20 Myz v8 3/7/20 0942 09	20070LH72-001 H	IA20-REARGARAGE-02052020	02-05-20 12:00	WATER	Ethanol by EPA 1671 Revision A		:	
		00000001420-0.001445A888				Received By:		
Form No: AL_subcoc		<u>C-Jelsen</u>	<u> </u>	······································	2/6/20	Menzy US	3/7/20 6	942 0
	Form No: AL_subcoc							

ANALYTICAL REPORT

Lab Number: L2005847

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Report Date: 02/17/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Report Date:

02/17/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2005847-01	HA20-INPATIENT-02072020	WATER	1153 CENTRE STREET, BOSTON, MA	02/07/20 10:00	02/07/20

L2005847

Lab Number:

Project Name: BWFH - REAR GARAGE

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: BWFH - REAR GARAGE Lab Number: L2005847

Case Narrative (continued)

Report Submission

February 17, 2020: This final report includes the results of all requested analyses.

February 13, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Microextractables

The WG1339559-2 LCS recovery for 1,2-dibromoethane (79%), associated with L2005847-01 (HA20-INPATIENT-02072020), is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Lifani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative Date: 02/17/20

ALPHA

ORGANICS

VOLATILES

L2005847

02/07/20 10:00

Refer to COC

02/07/20

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

SAMPLE RESULTS

Report Date: 02/17/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2005847-01

Client ID: HA20-INPATIENT-02072020

1153 CENTRE STREET, BOSTON, MA Sample Location:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 02/12/20 21:39

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: Lab Number: **BWFH - REAR GARAGE** L2005847

Project Number: Report Date: 133243-006 02/17/20

SAMPLE RESULTS

Lab ID: Date Collected: L2005847-01 02/07/20 10:00

Date Received: Client ID: 02/07/20 HA20-INPATIENT-02072020 Sample Location: Field Prep: 1153 CENTRE STREET, BOSTON, MA Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	97		60-140	
Fluorobenzene	95		60-140	
4-Bromofluorobenzene	85		60-140	

Project Name: BWFH - REAR GARAGE Lab Number: L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01 Date Collected: 02/07/20 10:00

Client ID: HA20-INPATIENT-02072020 Date Received: 02/07/20

Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/20 20:59

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - W	estborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria

.,.	Dioxano	112	ug/i			<u> </u>
	Surrogate		% Recovery	Qualifier	Acceptance Criteria	
	Fluorobenzene		101		60-140	
	4-Bromofluorobenzene		96		60-140	

Project Name: BWFH - REAR GARAGE Lab Number: L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01 Date Collected: 02/07/20 10:00

Client ID: HA20-INPATIENT-02072020 Date Received: 02/07/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/11/20 14:35

Analytical Date: 02/11/20 19:50

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Microextractables by GC - Westborough Lab									
1,2-Dibromoethane	ND		ug/l	0.010		1	Α		

Project Name: BWFH - REAR GARAGE **Lab Number:** L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 02/11/20 19:00 Extraction Date: 02/11/20 14:35

Analyst: AMM

Parameter	Result	Qualifier U	Jnits	RL	MDL	
Microextractables by GC -	Westborough Lab for	sample(s):	01	Batch: WG133	39559-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: BWFH - REAR GARAGE **Lab Number:** L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/11/20 19:55

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1339922-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
		_
Fluorobenzene	100	60-140
4-Bromofluorobenzene	115	60-140

Project Name: BWFH - REAR GARAGE **Lab Number:** L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/12/20 18:34

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01	Batch:	WG1339962-12
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: BWFH - REAR GARAGE **Lab Number:** L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/12/20 18:34

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1339962-12

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Pentafluorobenzene	96	60-140
Fluorobenzene	96	60-140
4-Bromofluorobenzene	82	60-140

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006 Lab Number:

L2005847

Report Date:

02/17/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1339	9559-2					
1,2-Dibromoethane	79	Q	-		80-120	-			Α

Project Name: BWFH - REAR GARAGE

Lab Number:

L2005847

Project Number: 133243-006 Report Date:

02/17/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ted sample(s)	: 01 Batch:	WG1339922-	-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	103 112				60-140 60-140

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Report Date: 02/17/20

arameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Bat	ch: WG1	339962-11				
Methylene chloride	85		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	85		-		70-130	-		41
1,1,2-Trichloroethane	100		-		70-130	-		45
Tetrachloroethene	90		-		70-130	-		39
1,2-Dichloroethane	95		-		70-130	-		49
1,1,1-Trichloroethane	90		-		70-130	-		36
Benzene	90		-		65-135	-		61
Toluene	95		-		70-130	-		41
Ethylbenzene	80		-		60-140	-		63
Vinyl chloride	85		-		5-195	-		66
1,1-Dichloroethene	85		-		50-150	-		32
cis-1,2-Dichloroethene	85		-		60-140	•		30
Trichloroethene	85		-		65-135	•		48
1,2-Dichlorobenzene	80		-		65-135	•		57
1,3-Dichlorobenzene	75		-		70-130	•		43
1,4-Dichlorobenzene	80		-		65-135	•		57
p/m-Xylene	85		-		60-140	-		30
o-xylene	75		-		60-140	-		30
Acetone	124		-		40-160	-		30
Methyl tert butyl ether	100		-		60-140	-		30
Tert-Butyl Alcohol	110		-		60-140	-		30
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30

BWFH - REAR GARAGE

Lab Number:

L2005847

Project Number: 133243-006

Project Name:

Report Date:

02/17/20

	LCS	LCSD			%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1339962-11

Surrogate	LCS %Recovery Qual	LCSD %Recovery Q	Acceptance ual Criteria
Pentafluorobenzene	96		60-140
Fluorobenzene	96		60-140
4-Bromofluorobenzene	82		60-140

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Report Date:

02/17/20

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD	RPD Qual Limits	<u>Colum</u> n
Microextractables by GC -	Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG1	339559-3	QC Sample: I	L2005904-11 C	lient ID: I	MS Sample	
1,2-Dibromoethane	ND	0.249	0.176	71	Q	-	-	80-120	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.182	73	Q	-	-	80-120	-	20	Α
1,2,3-Trichloropropane	ND	0.249	0.176	71	Q	-	-	80-120	-	20	Α

SEMIVOLATILES

Project Name: BWFH - REAR GARAGE Lab Number: L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01 Date Collected: 02/07/20 10:00

Client ID: HA20-INPATIENT-02072020 Date Received: 02/07/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/08/20 07:53

Analytical Date: 02/10/20 20:44

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Semivolatile Organics by GC/MS - Westborough Lab										
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1				
Butyl benzyl phthalate	ND		ug/l	5.0		1				
Di-n-butylphthalate	ND		ug/l	5.0		1				
Di-n-octylphthalate	ND		ug/l	5.0		1				
Diethyl phthalate	ND		ug/l	5.0		1				
Dimethyl phthalate	ND		ug/l	5.0		1				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	96	42-122	
2-Fluorobiphenyl	92	46-121	
4-Terphenyl-d14	110	47-138	

Project Name: BWFH - REAR GARAGE Lab Number: L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01 Date Collected: 02/07/20 10:00

Client ID: HA20-INPATIENT-02072020 Date Received: 02/07/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/08/20 07:56
Analytical Date: 02/13/20 13:10

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough Lal	b				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	25-87	
Phenol-d6	37	16-65	
Nitrobenzene-d5	84	42-122	
2-Fluorobiphenyl	69	46-121	
2,4,6-Tribromophenol	90	45-128	
4-Terphenyl-d14	84	47-138	

L2005847

Project Name: BWFH - REAR GARAGE Lab Number:

> Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1

 Analytical Date:
 02/10/20 12:33

 Extraction Method:
 EPA 625.1

 Extraction Date:
 02/07/20 15:41

Analyst: SZ

arameter	Result 0	Qualifier Units	RL	MDL
Semivolatile Organics by GC/N	MS - Westborough I	_ab for sample(s):	01 Batch:	WG1338436-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.2	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	
Dimethyl phthalate	ND	ug/l	5.0	

		A	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	_
Nitrobenzene-d5	85		42-122	
2-Fluorobiphenyl	86		46-121	
4-Terphenyl-d14	99		47-138	

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847 **Report Date:** 02/17/20

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date:

129,625.1-SIM 02/09/20 09:55

Analyst:

DV

Extraction Method: EPA 625.1 Extraction Date: 02/08/20 03:57

arameter	Result	Qualifier Un	nits	RL		MDL
emivolatile Organics by GC/N	MS-SIM - Westbo	rough Lab for	sample(s):	01	Batch:	WG1338587-1
Acenaphthene	ND	U	ıg/l	0.10		
Fluoranthene	ND	U	ıg/l	0.10		
Naphthalene	ND	U	ıg/l	0.10		
Benzo(a)anthracene	ND	U	ıg/l	0.10		
Benzo(a)pyrene	ND	U	ıg/l	0.10		
Benzo(b)fluoranthene	ND	U	ıg/l	0.10		
Benzo(k)fluoranthene	ND	U	ıg/l	0.10		
Chrysene	ND	U	ıg/l	0.10		
Acenaphthylene	ND	U	ıg/l	0.10		
Anthracene	ND	U	ıg/l	0.10		
Benzo(ghi)perylene	ND	U	ıg/l	0.10		
Fluorene	ND	U	ıg/l	0.10		
Phenanthrene	ND	U	ıg/l	0.10		
Dibenzo(a,h)anthracene	ND	U	ıg/l	0.10		
Indeno(1,2,3-cd)pyrene	ND	U	ıg/l	0.10		
Pyrene	ND	U	ıg/l	0.10		
Pentachlorophenol	ND	u	ıg/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	25-87	
Phenol-d6	40	16-65	
Nitrobenzene-d5	95	42-122	
2-Fluorobiphenyl	80	46-121	
2,4,6-Tribromophenol	90	45-128	
4-Terphenyl-d14	99	47-138	

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

02/17/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Wes	tborough Lab Associa	ted sample(s): 01 Batch:	WG133843	6-3				
Bis(2-ethylhexyl)phthalate	93		-		29-137	-		82	
Butyl benzyl phthalate	91		-		1-140	-		60	
Di-n-butylphthalate	94		-		8-120	-		47	
Di-n-octylphthalate	91		-		19-132	-		69	
Diethyl phthalate	101		-		1-120	-		100	
Dimethyl phthalate	106		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	102		42-122
2-Fluorobiphenyl	98		46-121
4-Terphenyl-d14	107		47-138

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Report Date: 02/17/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery ' Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab Ass	ociated sample(s): 01 E	Batch: WG1338587-2			
Acenaphthene	84	-	60-132	-	30	
Fluoranthene	86	-	43-121	-	30	
Naphthalene	81	-	36-120	-	30	
Benzo(a)anthracene	92	-	42-133	-	30	
Benzo(a)pyrene	91	-	32-148	-	30	
Benzo(b)fluoranthene	93	-	42-140	-	30	
Benzo(k)fluoranthene	82	-	25-146	-	30	
Chrysene	83	-	44-140	-	30	
Acenaphthylene	76	-	54-126	-	30	
Anthracene	84	-	43-120	-	30	
Benzo(ghi)perylene	96	-	1-195	-	30	
Fluorene	84	-	70-120	-	30	
Phenanthrene	89	-	65-120	-	30	
Dibenzo(a,h)anthracene	94	-	1-200	-	30	
Indeno(1,2,3-cd)pyrene	105	-	1-151	-	30	
Pyrene	85	-	70-120	-	30	
Pentachlorophenol	70	-	38-152	-	30	

Project Name: BWFH - REAR GARAGE

Lab Number:

L2005847

Project Number: 133243-006

Report Date:

02/17/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1338587-2

Surrogate	LCS %Recovery Qual %	LCSD &Recovery	Acceptance Qual Criteria
2-Fluorophenol	52		25-87
Phenol-d6	40		16-65
Nitrobenzene-d5	89		42-122
2-Fluorobiphenyl	74		46-121
2,4,6-Tribromophenol	90		45-128
4-Terphenyl-d14	87		47-138

PCBS

Project Name: BWFH - REAR GARAGE **Lab Number:** L2005847

Project Number: 133243-006 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01 Date Collected: 02/07/20 10:00

Client ID: HA20-INPATIENT-02072020 Date Received: 02/07/20 Sample Location: 1153 CENTRE STREET, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3

Analytical Method: 127,608.3 Extraction Date: 02/09/20 02:05

Analytical Date: 02/10/20 16:50 Cleanup Method: EPA 3665A

Analytical Date: 02/10/20 16:50 Cleanup Method: EPA 366: Analyst: AWS Cleanup Date: 02/09/20

Cleanup Method: EPA 3660B Cleanup Date: 02/09/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		37-123	В
Decachlorobiphenyl	68		38-114	В
2,4,5,6-Tetrachloro-m-xylene	69		37-123	Α
Decachlorobiphenyl	63		38-114	Α

L2005847

Lab Number:

Project Name: BWFH - REAR GARAGE

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/09/20 11:45

Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 02/08/20 17:01
Cleanup Method: EPA 3665A
Cleanup Date: 02/08/20
Cleanup Method: EPA 3660B
Cleanup Date: 02/09/20

Column	MDL	RL	Units	Qualifier	Result	Parameter
8738-1	WG133873	01 Batch:	sample(s):	ugh Lab for s	s by GC - Westboroug	Polychlorinated Biphenyls by
А		0.250	ug/l)	ND	Aroclor 1016
А		0.250	ug/l)	ND	Aroclor 1221
А		0.250	ug/l)	ND	Aroclor 1232
А		0.250	ug/l)	ND	Aroclor 1242
А		0.250	ug/l)	ND	Aroclor 1248
А		0.250	ug/l)	ND	Aroclor 1254
А		0.200	ug/l)	ND	Aroclor 1260
		0.250 0.250 0.250	ug/l ug/l ug/l)	ND ND ND	Aroclor 1242 Aroclor 1248 Aroclor 1254

		Acceptance				
Surrogate	%Recovery Quali	fier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	81	37-123	В			
Decachlorobiphenyl	84	38-114	В			
2,4,5,6-Tetrachloro-m-xylene	84	37-123	Α			
Decachlorobiphenyl	81	38-114	Α			

Project Name: BWFH - REAR GARAGE

L2005847

Project Number:

133243-006

Lab Number: Report Date:

02/17/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s):	01 Batch:	WG1338738-2	2				
Aroclor 1016	77		-		50-140	-		36	Α
Aroclor 1260	63		-		8-140	-		38	А

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	MRecovery Qual	Criteria Column
2,4,5,6-Tetrachloro-m-xylene	79		37-123 B
Decachlorobiphenyl	79		38-114 B
2,4,5,6-Tetrachloro-m-xylene	79		37-123 A
Decachlorobiphenyl	74		38-114 A

METALS

Project Name: Lab Number: **BWFH - REAR GARAGE** L2005847

Project Number: 133243-006

L2005847-01

Report Date:

02/17/20

SAMPLE RESULTS Lab ID:

Date Collected:

02/07/20 10:00

Client ID:

HA20-INPATIENT-02072020

Date Received: Field Prep:

02/07/20

Sample Location:

1153 CENTRE STREET, BOSTON, MA

Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00048		mg/l	0.00020		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Copper, Total	0.00139		mg/l	0.00100		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Iron, Total	0.104		mg/l	0.050		1	02/08/20 13:27	02/10/20 15:58	EPA 3005A	19,200.7	BV
Lead, Total	ND		mg/l	0.00100		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/08/20 13:00	02/10/20 13:18	EPA 245.1	3,245.1	GD
Nickel, Total	0.01168		mg/l	0.00200		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	02/08/20 13:27	02/10/20 10:36	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/10/20 10:36	NA	107,-	

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Report Date: 02/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	rield Lab for sample(s):	01 Bato	h: WG13	38681	·1				
Antimony, Total	ND	mg/l	0.00400		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	02/08/20 13:27	02/10/20 09:05	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG1:	338683-	1				
Iron, Total	ND	mg/l	0.050		1	02/08/20 13:27	02/10/20 13:06	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG13	338685-	-1				
Mercury, Total	ND	mg/l	0.0002		1	02/08/20 13:00	02/10/20 12:17	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Report Date: 02/17/20

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	VG1338681-2				
Antimony, Total	87	-	85-115	-		
Arsenic, Total	104	-	85-115	-		
Cadmium, Total	110	-	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	100	-	85-115	-		
Lead, Total	104	-	85-115	-		
Nickel, Total	101	-	85-115	-		
Selenium, Total	104	-	85-115	-		
Silver, Total	101	-	85-115	-		
Zinc, Total	113	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1338683-2				
Iron, Total	109	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	VG1338685-2				
Mercury, Total	105	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recove Qual Limits		Qual	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG1338681	-3	QC Sample:	: L2005838-01	Client ID: MS	Sample		
Antimony, Total	ND	0.5	0.4771	95		-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1281	107		-	-	70-130	-		20
Cadmium, Total	ND	0.051	0.05625	110		-	-	70-130	-		20
Chromium, Total	ND	0.2	0.1998	100		-	-	70-130	-		20
Copper, Total	0.00349	0.25	0.2502	99		-	-	70-130	-		20
Lead, Total	ND	0.51	0.5321	104		-	-	70-130	-		20
Nickel, Total	ND	0.5	0.5083	102		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1165	97		-	-	70-130	-		20
Silver, Total	ND	0.05	0.04940	99		-	-	70-130	-		20
Zinc, Total	0.1272	0.5	0.6917	113		-	-	70-130	-		20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG1338681	-5	QC Sample:	: L2005838-02	Client ID: MS	Sample		
Antimony, Total	ND	0.5	0.4473	89		-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1268	106		-	-	70-130	-		20
Cadmium, Total	ND	0.051	0.05323	104		-	-	70-130	-		20
Chromium, Total	ND	0.2	0.2043	102		-	-	70-130	-		20
Copper, Total	ND	0.25	0.2597	104		-	-	70-130	-		20
Lead, Total	ND	0.51	0.5403	106		-	-	70-130	-		20
Nickel, Total	ND	0.5	0.5226	104		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1217	101		-	-	70-130	-		20
Silver, Total	ND	0.05	0.05081	102		-	-	70-130	-		20
Zinc, Total	0.05484	0.5	0.6310	115		-	-	70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RP	RPD <u>D</u> Limits
Total Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch	ID: WG1338683-3	QC Sample	: L2005838-01	Client ID: MS Sample	е
Iron, Total	2.98	1	3.93	95	-	-	75-125 -	20
Total Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch	ID: WG1338683-7	QC Sample	e: L2005838-02	Client ID: MS Sample	е
Iron, Total	1.29	1	2.36	107	-	-	75-125 -	20
Total Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch	ID: WG1338685-3	QC Sample	: L2005838-01	Client ID: MS Sample	е
Mercury, Total	ND	0.005	0.0048	95	-	-	70-130 -	20
Total Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch	ID: WG1338685-5	QC Sample	e: L2005403-01	Client ID: MS Sample	е
Mercury, Total	0.0004	0.005	0.0051	96	-	-	70-130 -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG13386	81-4 QC Sample: L	_2005838-01 C	Client ID: DL	JP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00349	0.00332	mg/l	5		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1272	0.1237	mg/l	3		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Parameter	Native Sample Dup	plicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1338681-6	QC Sample:	L2005838-02	Client ID:	DUP Sample
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	ND	ND	mg/l	NC	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.05484	0.05860	mg/l	7	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1338683-4	QC Sample:	L2005838-01	Client ID:	DUP Sample
Iron, Total	2.98	2.88	mg/l	3	20
Fotal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1338683-8	QC Sample:	L2005838-02	Client ID:	DUP Sample
Iron, Total	1.29	1.32	mg/l	2	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1338685-4	QC Sample:	L2005838-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1338685-6	QC Sample:	L2005403-01	Client ID:	DUP Sample
Mercury, Total	0.0004	0.0003	mg/l	20	20

INORGANICS & MISCELLANEOUS

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Report Date: 02/17/20

SAMPLE RESULTS

Lab ID: L2005847-01

HA20-INPATIENT-02072020

Sample Location: 1153 CENTRE STREET, BOSTON, MA

Date Received: 02/07/20

iold Drane Pofer to

Field Prep:

Date Collected:

Refer to COC

02/07/20 10:00

Sample Depth:

Client ID:

Matrix: Water

Cyanide, Total ND mg/l 0.005 1 02/09/20 14:50 02/10		Method	Analyst
Cyanide, Total ND mg/l 0.005 1 02/09/20 14:50 02/10			
3	/20 11:43	3 121,2540D	EM
	/20 11:56	6 121,4500CN-CE	E LH
Chlorine, Total Residual ND mg/l 0.02 1 - 02/07	7/20 23:51	1 121,4500CL-D	AS
Nitrogen, Ammonia 0.099 mg/l 0.075 1 02/09/20 19:09 02/11	/20 00:04	4 121,4500NH3-BH	H AT
TPH, SGT-HEM ND mg/l 4.00 1 02/08/20 15:50 02/08	3/20 21:55	5 74,1664A	MM
Phenolics, Total ND mg/l 0.030 1 02/12/20 05:05 02/12	2/20 09:11	1 4,420.1	MV
Chromium, Hexavalent ND mg/l 0.010 1 02/08/20 08:30 02/08	3/20 09:30	1,7196A	JA
Anions by Ion Chromatography - Westborough Lab			
Chloride 920. mg/l 50.0 100 - 02/10	/20 19:14	44,300.0	DP

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

L2005847 **Report Date:** 02/17/20

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	2.10.110		Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338543-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	02/07/20 23:51	121,4500CL-D	AS
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338611-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	02/08/20 08:30	02/08/20 09:24	1,7196A	JA
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338726-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	02/08/20 15:50	02/08/20 21:55	74,1664A	MM
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338848-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	02/09/20 19:09	02/10/20 23:48	121,4500NH3-BI	TA H
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338869-1				
Cyanide, Total	ND	mg/l	0.005		1	02/09/20 14:50	02/10/20 11:18	121,4500CN-CE	LH
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	338969-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	02/10/20 11:43	121,2540D	EM
Anions by Ion Chrom	atography - Westbor	ough Lab for sai	mple(s):	01 B	atch: WG1	339288-1			
Chloride	ND	mg/l	0.500		1	-	02/10/20 18:52	44,300.0	DP
General Chemistry - \	Westborough Lab fo	r sample(s): 01	Batch:	WG13	339792-1				
Phenolics, Total	ND	mg/l	0.030		1	02/12/20 05:05	02/12/20 09:10	4,420.1	MV

Lab Control Sample Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

02/17/20

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1338543-2	2				
Chlorine, Total Residual	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1338611-2	2				
Chromium, Hexavalent	102		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1338726-2	2				
ТРН	72		-		64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1338848-2	2				
Nitrogen, Ammonia	93		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1338869-2	2				
Cyanide, Total	101		-		90-110	-		
Anions by Ion Chromatography - Westb	orough Lab Associate	d sam	ple(s): 01 Batch: W	'G133928	38-2			
Chloride	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 I	Batch: WG1339792-2	2				
Phenolics, Total	87		-		70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number: L2005847

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R	RPD Qual	RPD Limits
General Chemistry - Westb 02072020	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1338543-4	QC Sample: L2005847	'-01 Client ID:	: HA20-INP/	ATIENT-
Chlorine, Total Residual	ND	0.25	0.28	112	-	-	80-120	-	20
General Chemistry - Westb 02072020	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1338611-4	QC Sample: L2005847	'-01 Client ID:	: HA20-INP	ATIENT-
Chromium, Hexavalent	ND	0.1	0.096	96	•	-	85-115	-	20
General Chemistry - Westb	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1338726-4	QC Sample: L2005787	'-01 Client ID:	: MS Sample	е
TPH	ND	20	10.6	53	Q -	-	64-132	-	34
General Chemistry - Westb	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1338848-4	QC Sample: L2005862	2-02 Client ID:	: MS Sample	е
Nitrogen, Ammonia	0.388	4	0.528	4	Q -	-	80-120	-	20
General Chemistry - Westb	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1338869-4	QC Sample: L2005862	2-02 Client ID:	: MS Sample	е
Cyanide, Total	ND	0.2	0.199	100		-	90-110	-	30
Anions by Ion Chromatogra NPATIENT-02072020	phy - Westboroug	jh Lab Asso	ociated sar	nple(s): 01 Q	C Batch ID: WG1	339288-3 QC Sampl	e: L2005847-0	1 Client ID	: HA20-
Chloride	920	400	1310	97		-	90-110	-	18
General Chemistry - Westb 02072020	orough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	WG1339792-4	QC Sample: L2005847	7-01 Client ID:	: HA20-INP/	ATIENT-
Phenolics, Total	ND	0.4	0.38	94	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BWFH - REAR GARAGE

Project Number: 133243-006

Lab Number:

L2005847

Parameter	Native	e Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338543-3	QC Sample: L20	005634-01	Client ID:	DUP Sample
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338611-3	QC Sample: L20	005847-01	Client ID:	HA20-INPATIENT-
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338726-3	QC Sample: L20	005787-01	Client ID:	DUP Sample
TPH		ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338848-3	QC Sample: L20	005862-02	Client ID:	DUP Sample
Nitrogen, Ammonia	C	0.388	0.487	mg/l	23	Q	20
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338869-3	QC Sample: L20	005862-01	Client ID:	DUP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1338969-2	QC Sample: L20	005810-01	Client ID:	DUP Sample
Solids, Total Suspended		50	52	mg/l	4		29
Anions by Ion Chromatography - Westbo	rough Lab Associated s	sample(s): 01 Q	C Batch ID: WG	1339288-4 QC	Sample: L	2005847-0	1 Client ID: HA20-
Chloride		920	932	mg/l	1		18
General Chemistry - Westborough Lab A	Associated sample(s): 0	1 QC Batch ID:	WG1339792-3	QC Sample: L20	005847-01	Client ID:	HA20-INPATIENT-
Phenolics, Total		ND	ND	mg/l	NC		20

Project Name: **BWFH - REAR GARAGE**

Project Number: 133243-006

Lab Number: L2005847 **Report Date:** 02/17/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	initial Final Temp		Frozen						
Container ID	Container Type	Cooler	рН	pН	-	Pres	Seal	Date/Time	Analysis(*)
L2005847-01A	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01A1	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01B	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01B1	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01C	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01C1	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2005847-01D	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		504(14)
L2005847-01E	Vial Na2S2O3 preserved	Α	NA		2.3	Υ	Absent		504(14)
L2005847-01F	Vial unpreserved	Α	NA		2.3	Υ	Absent		SUB-ETHANOL(14)
L2005847-01G	Vial unpreserved	Α	NA		2.3	Υ	Absent		SUB-ETHANOL(14)
L2005847-01H	Vial unpreserved	Α	NA		2.3	Υ	Absent		SUB-ETHANOL(14)
L2005847-01J	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2005847-01K	Plastic 250ml HNO3 preserved	Α	<2	<2	2.3	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),AG- 2008T(180),CR-2008T(180),SB-2008T(180),PB- 2008T(180)
L2005847-01L	Plastic 250ml NaOH preserved	Α	>12	>12	2.3	Υ	Absent		TCN-4500(14)
L2005847-01M	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.3	Υ	Absent		NH3-4500(28)
L2005847-01N	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		CL-300(28),HOLD-WETCHEM(),HEXCR-7196(1),TRC-4500(1)
L2005847-01P	Plastic 950ml unpreserved	Α	7	7	2.3	Υ	Absent		TSS-2540(7)
L2005847-01Q	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		PCB-608.3(7)
L2005847-01R	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		PCB-608.3(7)
L2005847-01S	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1-RGP(7)
L2005847-01T	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1-RGP(7)

Lab Number: L2005847

Report Date: 02/17/20

Project Name: **BWFH - REAR GARAGE**

Project Number: 133243-006

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2005847-01U	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1-SIM-RGP(7)
L2005847-01V	Amber 1000ml Na2S2O3	Α	7	7	2.3	Υ	Absent		625.1-SIM-RGP(7)
L2005847-01W	Amber 950ml H2SO4 preserved	Α	<2	<2	2.3	Υ	Absent		TPHENOL-420(28)
L2005847-01X	Amber 1000ml HCl preserved	Α	NA		2.3	Υ	Absent		TPH-1664(28)
L2005847-01Y	Amber 1000ml HCl preserved	Α	NA		2.3	Υ	Absent		TPH-1664(28)

Project Name: Lab Number: **BWFH - REAR GARAGE** L2005847 133243-006 **Report Date: Project Number:** 02/17/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:BWFH - REAR GARAGELab Number:L2005847Project Number:133243-006Report Date:02/17/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:BWFH - REAR GARAGELab Number:L2005847Project Number:133243-006Report Date:02/17/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:BWFH - REAR GARAGELab Number:L2005847Project Number:133243-006Report Date:02/17/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 16

Published Date: 2/17/2020 10:46:05 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

FAX 5648-3159 FAX 5648-315	ALPHA Westborough, MA 01981 a Washup Dr.	CHAIN OF CUSTODY Monaffeld, MA 02048 325 Forbes Blvd TEL 500-422-9300	67430 Albany, NY 12: Tenawanda, NY 14150 Project information	Holmes, PA 19043	116	Page \ of		100	in verable		ď		Fax				5	1	7	1	21	0			ALPHA Job # 1205847 Billing Information Same as Client Info			
HAA drifers (Fightum and Women's Hospital (Ose Project Amany an Drighted J) HAA Clear England and Women's Hospital (Ose Project Manage an Drighted J) HAA drifers (St. Month of St. Month o	TEL: 508-898-9220 FAX: 536-896-9193		Project Name:	The second second second second		1000		1			200	de la constitución			2507										0.550.0	Same as Crent Into		
HAA Claims and Women's Hospital Read Months 40 Medited St. Read	November 1	S-230000590000		0.0000000000000000000000000000000000000	Street, Boston	, MA		100		SE GIVE	ile)	П	EQui	S (4 F)	(a)										POR			
Please desired State from the Color of State (Control of State (Co	STREET, STREET		The state of the s	-				_						- dek											Diament Pite	Information		
Boolin, MA 227-1400 Al-HAGoute E								Reg	ulalory	Requi	rement	s (Prog	ram/Cn	leria)										_	_	makes market a		
Boston, MA 0727-1400 APPACADost #				Lee Vanzler				-															12			below location of applica	able disposal	
Mark File New York Description Disposition Dispo			THE RESIDENCE OF THE PARTY OF T		_							1																
These samples have been previously analyzed by Apha Other project specific requiremental comments: Sample Filtration These samples flave been previously analyzed by Apha Other project specific requiremental comments: SANALYSIS Sample Filtration These samples flave been previously analyzed by Apha Other project specific requiremental comments: SANALYSIS Sample Filtration Other project specific requiremental comments: Sample Filtration Other project specific requireme	H&A Fax: Ihoward	@haleyaldrich.com	Standard					Note	: Select	State fr	rom mer	ny & lider	ntify crite	ria.											G G	NJ 🗆 NY		
Other project specific requiremental comments: 3. HOLD PACK & ACN 12. Dissolved Metals On HOLD (Field Fittered) Please samples PEA Approved 2017 RGP Permit methods 9. Septimized PEA Approved 2017 RGP Permit methods 9. Sept			- Access to the second		m.ur. Days			-			SILI CONTE				_			_							Sample Filtr	3 Parketon		
ALPHA Lab ID (Lab Use Only) Date Time Matrix	Other project specific 3. HOLD PACN & ACN Please sample per EP	requirements/comments 12. Dissolved A Approved 2017 RGP	ts: Metals ON HOLD (Fix	eld Fitered)				TSS - 2540	. TRC-4500	D. TCN-4500 D PACN & ACN	4, 504	SIM	R-3500 & Trivalent Chromium	PHENOL-420	70TCL (Including	1270TCL-SIM	10, CL-300	Metals - Ag, As, Cd, Pb, Sb, Se, Zn, Fe, Hg	solved Metels - Ag, 2: Cu.Ni.Pb.Sb.Se.Ti.Z.	3. Ammonia	otal Hardness	LCOHOL (Ethanol)	3. TPH-1664	7. PCB-608	Lab to d Preservation Lab to d	0	0 1 8 0	
Preservative Code: A = More B = Pictatic B + NCI C + NNA C + NO C + NNA C - NO C = NNA C = NO C = NNA C = NO C = NNA C = NN C =	(Lab Use Only)	1,000	1997	Date	-		Initials		24	HOL			6. HEXC	7.7	8.82	6	123	11, Total Cr.Cu.N	12 Dis	7	14.7		1	-	Sample Spec	fic Comments	:	
A = None	05847-01	HA20-Inpatient- () 25	02025	27	1000	AQ	SIZ	X	X	×	X	×	X	x	х	×	X	X	х	X	X	X	х	×	Temp -	pH -	26	
A = None								F	-	F		\vdash	H	F	F	F	F					H		H	-			
A = None															\top						\vdash							
A = None	E. J. EV N.										T								\vdash		\Box							
A = None	ELECTION AND													Ü	1	1	1											
A = None																												
A = None				Ú			¥							16.				W 8									8	
A = None				1	45											4										emerated and		
E = NaOH B = Bacleria Cup F = MeOH C = Cube F = MeOH C = Cube G = NaHSO, O = Other H = Ne ₂ S ₂ O ₃ H = Ne ₂ S ₂ O ₃ O = Other O = Oth	A = None B = HCl C = HNO ₃	P = Plastic A = Amber Glass			(1)	\vdash																	Samples can time clock wi resolved. Alp Chain of Cust	not be logged in and to it not start until any am he Analytical's services o ody shall be performed in	rmaround biguities are under this accordance			
G = NaHSO, H = Na ₁ S ₂ O ₃ E = Encore H = Na ₂ S ₂ O ₃ E = Encore D = BOD Bottle O = Gither A P	E = NaOH		Religiousch	vR.be	De	le/Time		Race	ived 9	v.	-	1		_	_	_	P	do/Tim	10	_	-	_	_	-				
EE = Zn AcNaOH D = BOD Bottle Muth 2/7/26 (6.32 7724) 2-720 /670 0 = Other 7/20/755 200 pt 2-720 /755	G = NaHSO ₄	O = Other	A.D.	l'		TOTAL TRANSPORT				<i>!:</i>		12	15/	1. 1	6.30	iš –	, Di	and i an	~	-					between Hale	& Aldrich, Inc., its subsi		
	K/E = Zn Ac/NaOH		Muth	2.	2/7/20	16,30	773	134	1	7-		2-	7.20	16	30										affiliates and	Alpha Analytical.		
Decument ID: 20455 Rev 1 (1/28/2016)	70.000	I HORODAN	1501	71	CANI	155	-	~	1	14	/	2	7	Z	-1	15	7	_		_	_		_		- 1			

ANALYTIC World Glass Chem		Te 54 Co	Subcontra k Lab, Inc. 45 Horsehoe I Ilinsville, IL 62	act Chain of Custoo Lake Road 2234-7425	dy	Alpha Job Number L2005847			
	ent Information	E TENTON TO THE		formation	Regulatory Red	Regulatory Requirements/Report Limits			
Client: Alpha An Address: Eight Wa Westbord	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019		n: MA er: Melissa Gu ound & Deliv	lii verables Information	State/Federal Program: Regulatory Criteria:				
Phone: 603.319. Email: mgulli@a	Phone: 603.319.5010 Email: mgulli@alphalab.com								
District State		· · · · · · · · · · · · · · · · · · ·		ents and/or Report Re	safety and the same of		#		
	eference following Alpha Job N ents: Send all results/reports to			: L2005847	Report to include Method Blan	nk, LCS/LCSD:			
Additional Commi	ents. Send all results/reports to	subreports@aiprian	ab.com						
THE RESERVE TO SERVE		Collection Date/Time	Sample Matrix				Batch QC		
Lab ID	Client ID	Date/Time 02-07-20 10:00	Matrix	describer our management of the	alysis		QC		
51 53	HA20-INPATIENT-02072020		WATER	Ethanol by EPA 1671 Revision	ON A				
	Relinquished	By:		Date/Time:	Received By:	Date/Time:			
	C	2		2/10/20			-		
		()							

Form No: AL_subcoc

February 17, 2020

Melissa Gulli Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (603) 319-5010

FAX:

RE: L2005847 **WorkOrder:** 20020598

Dear Melissa Gulli:

TEKLAB, INC received 1 sample on 2/11/2020 9:43:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598
Client Project: L2005847 Report Date: 17-Feb-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598

Client Project: L2005847 Report Date: 17-Feb-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 20020598

Report Date: 17-Feb-2020

Cooler Receipt Temp: 0.8 °C

Client Project: L2005847

Client: Alpha Analytical

Locations

	Collinsville		Springfield	Kansas City			
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road		
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214		
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998		
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998		
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com		
	Collinsville Air		Chicago				
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.				
	Collinsville, IL 62234-7425		Downers Grove, IL 60515				
Phone	(618) 344-1004	Phone	(630) 324-6855				
Fax	(618) 344-1005	Fax					

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598

Client Project: L2005847 Report Date: 17-Feb-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	3/3/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2020	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Tennessee	TDEC	04905		3/3/2020	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598

Client Project: L2005847 Report Date: 17-Feb-2020

Lab ID: 20020598-001 Client Sample ID: HA20-INPATIENT-02072020

Matrix: AQUEOUS Collection Date: 02/07/2020 10:00

Analy	ses Certification	n RL Qual	Result	Units	DF	Date Analyzed	Batch			
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS										
Ethanol	*	20	ND	mg/L	1	02/14/2020 10:41	R272986			

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598

Client Project: L2005847 Report Date: 17-Feb-2020

EPA 600 1671A, P	HARMACEU	TICAL	MANUF	ACTURING IN	IDUSTRY	NON-F	URGEABLE	VOLAT	ILE ORG		
Batch R272986	SampType:	MBLK		Units mg/L							
SampID: MBLK-021	320										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		ND						02/14/2020
Batch R272986	SampType:	LCS		Units mg/L							
SamplD: LCS-02132				J							Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		180	250.0	0	70.3	70	132	02/14/2020
Batch R272986	SampType:	MS		Units mg/L							
SampID: 20020442-	001AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		210	250.0	0	82.0	70	132	02/14/2020
Batch R272986	SampType:	MSD		Units mg/L					RPD	Limit 30	
SampID: 20020442-	001AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Ethanol			20		190	250.0	0	75.5	205.0	8.26	02/14/2020

Water - pH acceptable upon receipt?

NPDES/CWA TCN interferences checked/treated in the field?

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20020598
Client Project: L2005847 Report Date: 17-Feb-2020

Carrier: UPS Received By: KMT Elizabeth a thurley Reviewed by: Completed by: mbor Ollalli On: On: 11-Feb-2020 11-Feb-2020 Amber M. Dilallo Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes 🗸 No Not Present Temp °C 0.8 Type of thermal preservation? Ice 🗹 Blue Ice None Dry Ice Chain of custody present? **V** No 🗀 Yes **V** Chain of custody signed when relinquished and received? Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **V** Samples in proper container/bottle? Yes No 🗀 **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes ~ No **V** No 🗌 All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗹 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes 🗸 Water – at least one vial per sample has zero headspace? No 🗀 No VOA vials No TOX containers Water - TOX containers have zero headspace? Yes No 🗌

Any No responses must be detailed below or on the COC.

Yes 🗹

Yes

No 🗌

No 🗌

NA 🗸

Subcontract Chain of Custody

Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425 Alpha Job Number L2005847

World Class Chemistry	l .									
Client I	nformation	Project Information				Regulatory Requirements/Report Limits				
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019		Project Location: MA Project Manager: Melissa Gulli Turnaround & Deliverables Information			on	State/Federal Program: Regulatory Criteria:				
Phone: 603.319.5010 Email: mgulli@alpha) lab.com	Due Date: Deliverables:								
		Project Specific I	Requireme	ents and/or Repo	rt Require	ments				
Refere	ence following Alpha Job Nur	mber on final report/d	eliverables:	L2005847	Repo	ort to include M	ethod Blank, LC	S/LCSD:		
Additional Comments:	: Send all results/reports to s	subreports@alphalab.com				ε	8° 121 0	3 OH On	1	
		r						<u> </u>	10	
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis				Batch QC	
20070598-001 HA20-INPATIENT-02072020		02-07-20 10:00	WATER	Ethanol by EPA 1671 R	Revision A					
	-									
	Relinquished E	By:		Date/Time:		Received By:		Date/Time:		
		3		2/10/20		MARY	<u>UPS</u>	3/11/20	0943	
Form No: AL subcoc										