

REPORT ON

NPDES RGP APPLICATION FOR TEMPORARY CONSTRUCTION DEWATERING 34 MARKET STREET CHELSEA, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 133092-009 September 2020 Revised October 2020

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

18 September 2020 Revised 1 October 2020 File No. 133092-009

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02129

Attention: Shauna Little

Subject: NPDES RGP Application for Temporary Construction Dewatering

Culvert Replacement Project

34 Market Street

Everett, Massachusetts

Ladies and Gentlemen:

On behalf of our client, DIV BMT, LLC c/o The Davis Companies, Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering during construction activities at the planned BMT Culvert Segment Replacement Project (herein referred to as the "Project") located within a portion of properties at 34 Market Street in Everett, Massachusetts and 45 Market Street in Chelsea, Massachusetts. For purposes of this application, these two properties are collectively referred to as the "Property." The Project work area, an approximately 1.34 acre portion of the Property located generally along its eastefchrirn boundary, is referred in this application as the "Site".

Construction dewatering is planned for recharge on-Site, however, in the event that on-Site recharge is not possible, construction dewatering effluent will be treated and discharged off-Site in accordance with a NPDES RGP. A copy of the Notice of Intent (NOI) is included in Appendix A.

General Site Information

SITE CONDITIONS AND HISTORY

The Property consisting of 34 Market Street, Everett, Massachusetts and 45 Market Street, Chelsea, Massachusetts is sometimes known as the Boston Market Terminal ("BMT"). The surrounding structures and land uses are commercial and industrial, consisting of primarily produce wholesalers. The Site locus is shown on Figure 1.

The Project involves work solely related to reconstruction and replacement of the existing subsurface drainage culvert (the "Culvert"). The Culvert extends a total length of approximately 1,620 feet (ft), from an open drainage channel north of the Property that outlets into the existing Culvert, across the Site to beyond the municipal boundary between Everett and Chelsea, where it continues under Market Street in Chelsea to an outfall at the Island End River in Chelsea. The approximately 15.5-ft wide and 9.5-ft tall Culvert was constructed in 1965. The approximately 720-ft section of the Culvert to be reconstructed and replaced is located entirely on the Site. The Culvert is responsive to tidal action from the Island End River, which affects the overall water level in the Culvert at low tide vs high tide. Based on water level measured by Haley & Aldrich and others in the vicinity of the Site, depth to the groundwater table ranges from 3.8 to 12.7 ft. Groundwater generally flows in a south-southwest direction, toward the Island End River and the Mystic River.

On Site, the Culvert is overlain by an asphalt-paved surface and fill material. Depth from ground surface to the top of the Culvert is approximately 6.5 ft. There are currently two open cuts into the Culvert that were the result of collapse and subsequent excavation and repair work. These areas are surrounded by chain-link fencing and/or jersey barriers.

Within the first 720 linear ft of the Culvert, from its inlet in Everett and across the Site to the bend at Market Street in Chelsea, the Culvert has experienced several failures that have been only partially repaired and/or replaced. The most recent structural failures occurred in October 2008, when a partial collapse of the Culvert occurred approximately 260 ft from the Culvert inlet, and in September 2009, when another partial collapse occurred approximately 430 feet from the inlet. The approximate limits of these collapses are shown on Figure 2.

Neither of the recent collapses have been repaired beyond temporary measures implemented to protect public safety and maintain stormwater flows. Since the two aforementioned collapses, vehicular traffic on the Property has been diverted away from areas close to the Culvert. At present, vehicle traffic crossing the Culvert on the Property is routed over two temporary replacement sections.

PROPOSED CONSTRUCTION

Due to the age and degradation of the existing subsurface Culvert structure, the length of this structure that traverses the Site (approximately 720 ft) will be removed and replaced with an open channel (northernmost section) and a new box culvert (southernmost section). The two sections are shown on Figure 2.

The northern 380-ft long portion of the existing subsurface Culvert will be converted to an open channel. The new open channel will be similar in structure to the existing open channel to the north of the Site. The cut of the new open channel will be approximately 55.5 ft wide at the top of the slope and approximately 15 ft wide at the bottom of the channel. Depth from ground surface to the bottom of the channel will be approximately 15 ft. The open channel will be lined with rip rap and geotextile fabric. The center line of the existing Culvert will also be shifted approximately 15 ft to the southwest such that the east bank of the new open channel will be located entirely within the 34 Market Street Property.

The open channel cut will terminate with a "wing wall" construction that will funnel into a new subsurface box culvert. The new box culvert will be installed to replace the southern 340-ft length of the existing Culvert. The new box culvert will be composed of pre-cast concrete and will be 16 ft wide and 12 feet tall with an invert slope from north to south of approximately 2 ft. The new box culvert will be underlain by a 12-inch layer of crushed stone and geotextile fabric and lined with vertical sheeting. The depth from ground surface to top of Culvert will range approximately 4 to 6 ft. An existing gas line will also be relocated over the Culvert.

The Culvert replacement construction will terminate at the Property boundary, at Market Street, between 45 Market Street, Chelsea and the adjacent New England Produce Center property to the south.

To the extent that groundwater dewatering will be required in connection with excavation, the groundwater encountered by construction will be recharged on-Site to the extent possible. In the event that on-Site recharge is not feasible, the dewatering effluent will be treated and pumped into nearby subsurface stormwater drainage catch basins with outfall in the Island End River, the same outfall as the Culvert.

During construction, surface water drainage within the existing Culvert will be bypassed around the work area and returned to the existing Culvert system at a point south of the Site to be discharged to the Island End River outfall. In addition to using a catch basin attached to the Culvert system, a catch basin along Market Street with an outfall to the Island End River will be used as a discharge point. See Figure 2 for proposed discharge points and route.

Temporary construction dewatering is anticipated to occur between October 2020 and September 2021 (a period of approximately 12 months). The EPA will be notified if the construction dewatering schedule extends beyond the projected 12 month period.

REGULATORY STATUS

The Site is located within the limits of a Massachusetts Contingency Plan (MCP) Disposal Site and an area subject to an Activity Use Limitation (AUL) deed restriction. In 1996, the Massachusetts Department of Environmental Protection (MassDEP) assigned Release Tracking Number (RTN) 3-13158 to the Property. The RTN was assigned to the Property for the detections of petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) in soil at levels above the applicable MCP reporting criteria (RCS-1). RTN 3-13158 achieved a Class C Response Action Outcome (RAO) and Temporary Solution with an AUL in 2005. The AUL requires coverage of the Property with buildings or pavement, and prohibits residential, agricultural, and recreation uses for the Site.

The Site is also located within the limits of Disposal Site RTN 3-36421, which was assigned to the 45 Market Street property for the detection of petroleum hydrocarbons in soil and total cyanide in groundwater at levels above the applicable MCP reporting criteria (RCS-2 and RCGW-2). A Release Notification Form (RNF) for the release was submitted on 14 August 2020.

In addition, three Utility-related Abatement Measures (URAMs) have been conducted at the Property, two of which involved work on the culvert:

- RTN 3-26020 was assigned to the Property in July 2005 to facilitate the replacement of a sanitary sewer pump (which was abandoned in place) with a gravity-fed pipe adjacent to the east side of the Boston Market Terminal warehouse and approximately 320 ft west of the subsurface culvert. Approximately 250 cubic yards of soil which was disposed of off-Site. Groundwater pumped from the excavation area was managed under a NPDES RGP. A URAM Completion Statement was submitted for RTN 3-26020 in November 2006.
- 2. RTN 3-31278 was assigned to the Site in 2012 to facilitate the emergency repair of a collapsed section of the drainage culvert in the east side of the Site. The City of Everett conducted the repair work in which approximately 860 tons of soil were removed from the Site (the exact location of the repair work along the culvert is not specified in the associated documents available through the MassDEP online data portal and therefore the approximate limits of RTN 3-31278 are not shown on Figure 2). A URAM Completion Statement was submitted for RTN 3-31278 in April 2013.
- 3. RTN 3-34317 was assigned to the Site in the summer of 2017 for the repair of the headwall of the drainage culvert at the northeastern Site boundary where the culvert transitioned from an open channel to underground culvert. The City of Everett conducted the repair work. Approximately 1,680 tons of soil was removed from the Site and the approximate limits of RTN 3-34137 are shown on Figure 2. A URAM Completion Statement was submitted to DEP for RTN 3-34317 in September 2017.

Receiving Water Information

Receiving water quality data was collected in support of this NOI on 12 June 2020, the results of which are summarized in Table I. The sample was collected from the Island End River, downstream from the outfall of the subsurface drainage culvert into the Island End River. Receiving water temperature was measured in the field at 17.6 $^{\circ}$ C, noted on the effluent limitations input calculation page in Appendix B. The laboratory data report is provided in Appendix F.

The receiving water Island End River is part of the Mystic River with Segment ID MA71-03. This segment is at the downstream of Amelia Earhart Dam and is identified as SB (CSO) water. This segment is not an Outstanding Resource Water. As it is estuarine/marine water, there is no Dilution Factor (DF is 0), therefore the calculation for the seven-day-ten-year flow (7Q10) of the receiving water (usually established using the U.S. Geological Survey [USGS] StreamStats program) is not required. The receiving water and dilution factor were confirmed by MassDEP on 22 June 2020. The MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix B.

Copies of the "EnterData" and "SaltwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix B and will be transmitted electronically with the NOI. The effluent limitations calculated are included for reference in Table I.

Source Water Information

In April 2020, Haley & Aldrich installed one monitoring well, HA20-C6(OW) shown on Figure 2. To evaluate groundwater (source water) quality at the Site with respect to NPDES RGP dewatering effluent criteria, Haley & Aldrich collected a representative groundwater sample on 12 June 2020 from the monitoring well.

The groundwater sample was sent to a MassDEP-certified laboratory, Alpha Analytical, for analysis of constituents consistent with requirements for a NPDES RGP. The groundwater samples were analyzed for one or more of the following parameters: total petroleum hydrocarbons (TPH), VOCs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), Total and Dissolved Metals, and Waste Characteristics.

The data are compared to the applicable 2014 MCP Reportable Groundwater Concentrations (RCGW-2) criteria and the Site-Specific 2017 NPDES RGP Saltwater Effluent Limits concentrations as determined in the WQBEL calculations. The 12 June sampling data exceed the Site-Specific NPDES RGP criteria for total Group I PAHs, total lead, total cyanide, and total suspended solids (TSS). Dissolved lead was not detected. These exceedances will require dewatering treatment, as discussed below.

To further assess the total cyanide detection, Haley & Aldrich collected a second groundwater sample on 26 June 2020 from HA20-C6(OW). The sample was sent to Alpha for TSS and total cyanide analyses. In addition, a portion of the sample was collected at the Site in an unpreserved bottle. This portion of the sample was screened through a 10 μ g filter at the lab before testing for total cyanide. Total cyanide was detected in the 26 June groundwater sample at concentrations of 504 μ g/l (unfiltered) and 391 μ g/l (filtered through a 10- μ m filter). Although TSS was detected at 8,300 μ g/l, which was an order of magnitude lower than the TSS result of 33,000 μ g/l detected in the first groundwater sample, both of the total cyanide results are higher than the total cyanide concentration detected in the first groundwater sample. It appears unlikely that total cyanide will be removed from the source water during dewatering by filtration alone and may require anion resin or similar treatment, as mentioned below.

A summary of the groundwater chemical analytical data is provided as Table I. Copies of the laboratory data reports are provided in Appendix F.

Discharge Information

Dewatering will be conducted from sumps located inside the excavation and is planned to be recharged on-Site to the extent possible. Dewatering is currently anticipated to occur periodically between October 2020 and up to 12 months later. On average, we estimate effluent discharge rates of about 20 to 50 gallons per minute (gpm), with occasional peak flows of up to a maximum of 150 gpm during significant precipitation events.

Construction dewatering under this RGP will include piping and discharging to the existing subsurface stormwater drainage Culvert located on the Site, nearby catch basins that discharge to the Culvert, or nearby catch basins that discharge to the Island End River. As described above, the Culvert travels south

from the Site, under Market Street, and discharges to the Island End River outfall. The proposed discharge route on Site is shown on Figure 2. The proposed discharge routes from the Site, along Market Street, and to the outfall at Island End River are shown on Figure 3.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI.

Dewatering Treatment System Information

An effluent treatment system will be designed and implemented by site contractor(s) to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents, as shown on Figure 4. The treatment system also is expected to include granular activated carbon (GAC) and a resin filter for ion exchange, as required to meet the discharge criteria. The use of a resin for ion exchange is a standard treatment for temporary construction dewatering and is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. The ion exchange system will be self-contained and resin is not expected to enter the dewatering stream. Product information is included in Appendix C. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

Treatment Chemicals and Additives

The use of chemicals or additives is not currently planned for the treatment system. If additional treatment is needed to meet necessary effluent limits, a Notice of Change (NOC) will be submitted to the EPA for review and approval, including proposed product information (e.g., Safety Data Sheets, associated hazards, manufacturer, and proper system operation, etc.).

Determination of Endangered Species Act Eligibility

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area meet FWS Criterion A as no critical habitats have been established to be present within the project action area.

Documentation of National Historic Preservation Act Requirements

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the Property; however, the former Naval Hospital at Admirals Hill, which is referenced in the National Register of Historic Places under Reference Number: 73000851, is located along the east bank of the Island End River. Due to the planned treatment process, discharges and

discharge-related activities are not expected to have the potential to affect historic properties downgradient and, accordingly the discharge meets Criterion B. Documentation is included in Appendix E.

Supplemental Information

Owner and operator information are provided below for reference. Christopher Mora, Vice President of Development, is serving as the contact person and Michael Cantalupa, Chief Development Officer, is serving as the signatory.

Owner/Operator:

DIV BMT, LLC C/O The Davis Companies 125 High Street Boston, MA 02110 Attn: Christopher Mora

Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Engineer

Ian Phillips, LSP

Principal

Enclosures:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site Plan

Figure 3 – Culvert Collapse History and Discharge Route Along Market Street

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Effluent Limitations Documentation

Appendix C – Additional Treatment Information

Appendix D – Endangered Species Act Assessment

Appendix E - National Historic Preservation Act Review

Appendix F – Laboratory Data Reports

c: DIV BMT, LLC. c/o The Davis Companies (DIV BMT); Attn: Christopher Mora

\haleyaldrich.com\share\CF\Projects\133092\009 Culvert TM\001.2 - NPDES RGP\Notice of Intent\Text\2020-0918-HAI-BMT Culvert NPDES-F.docx

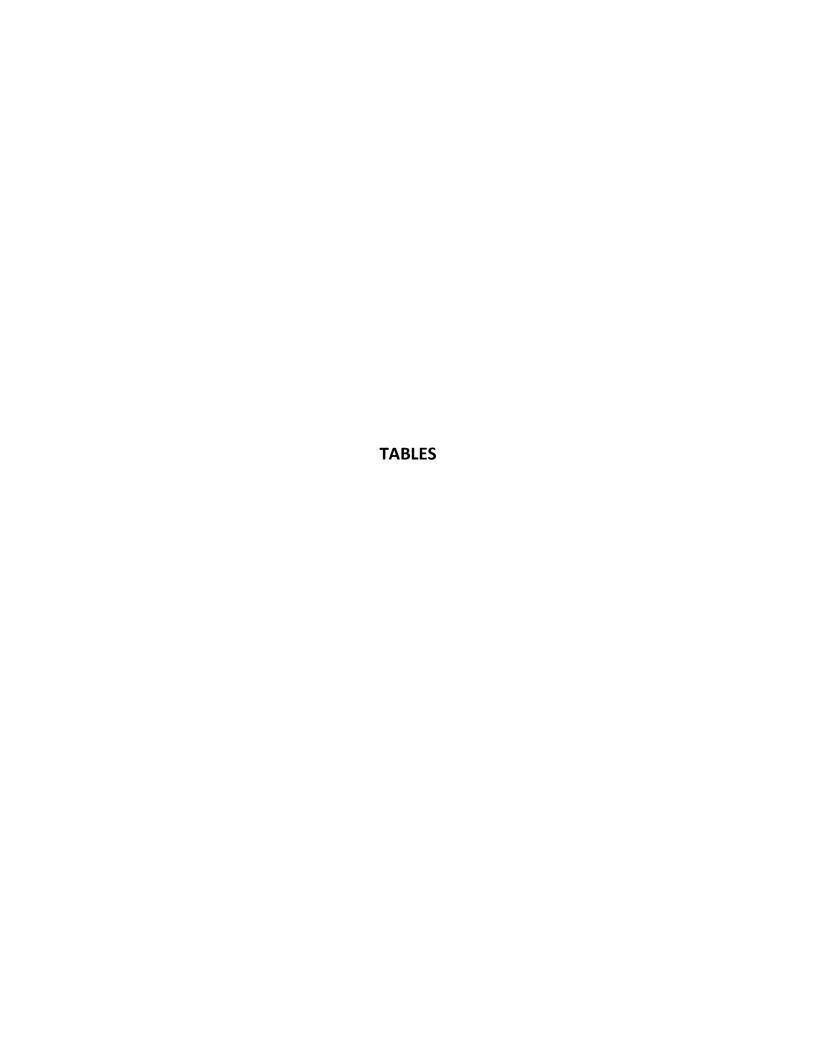
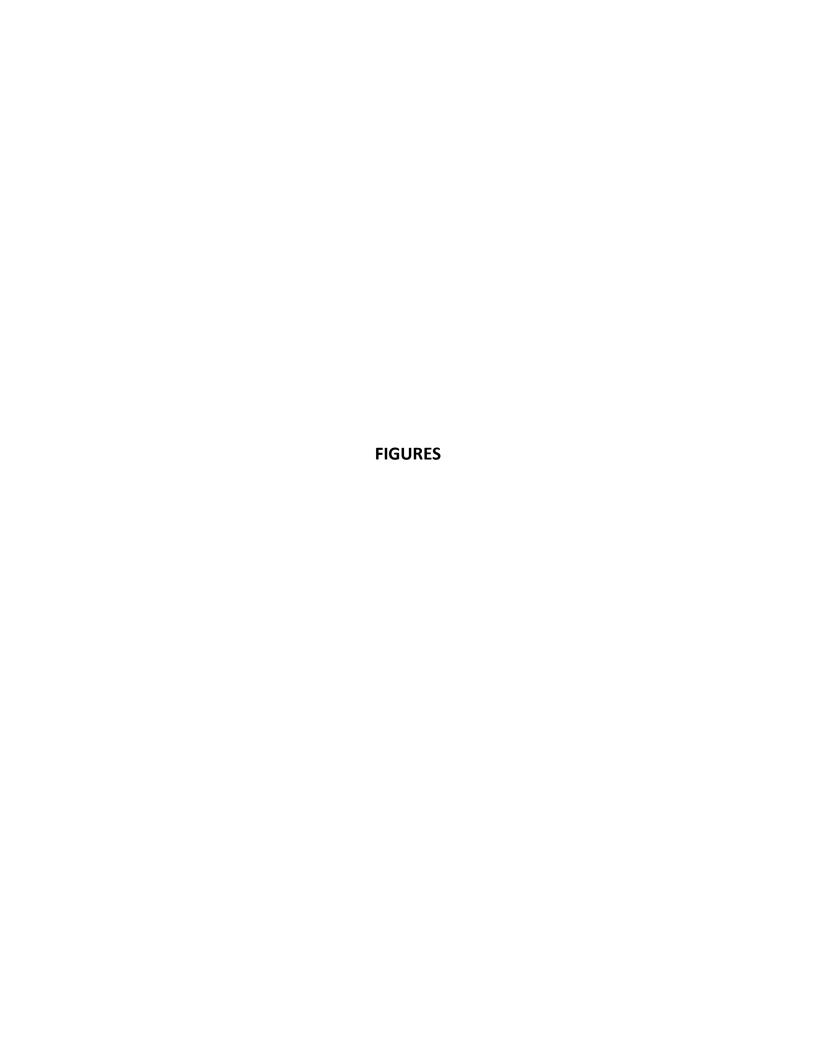
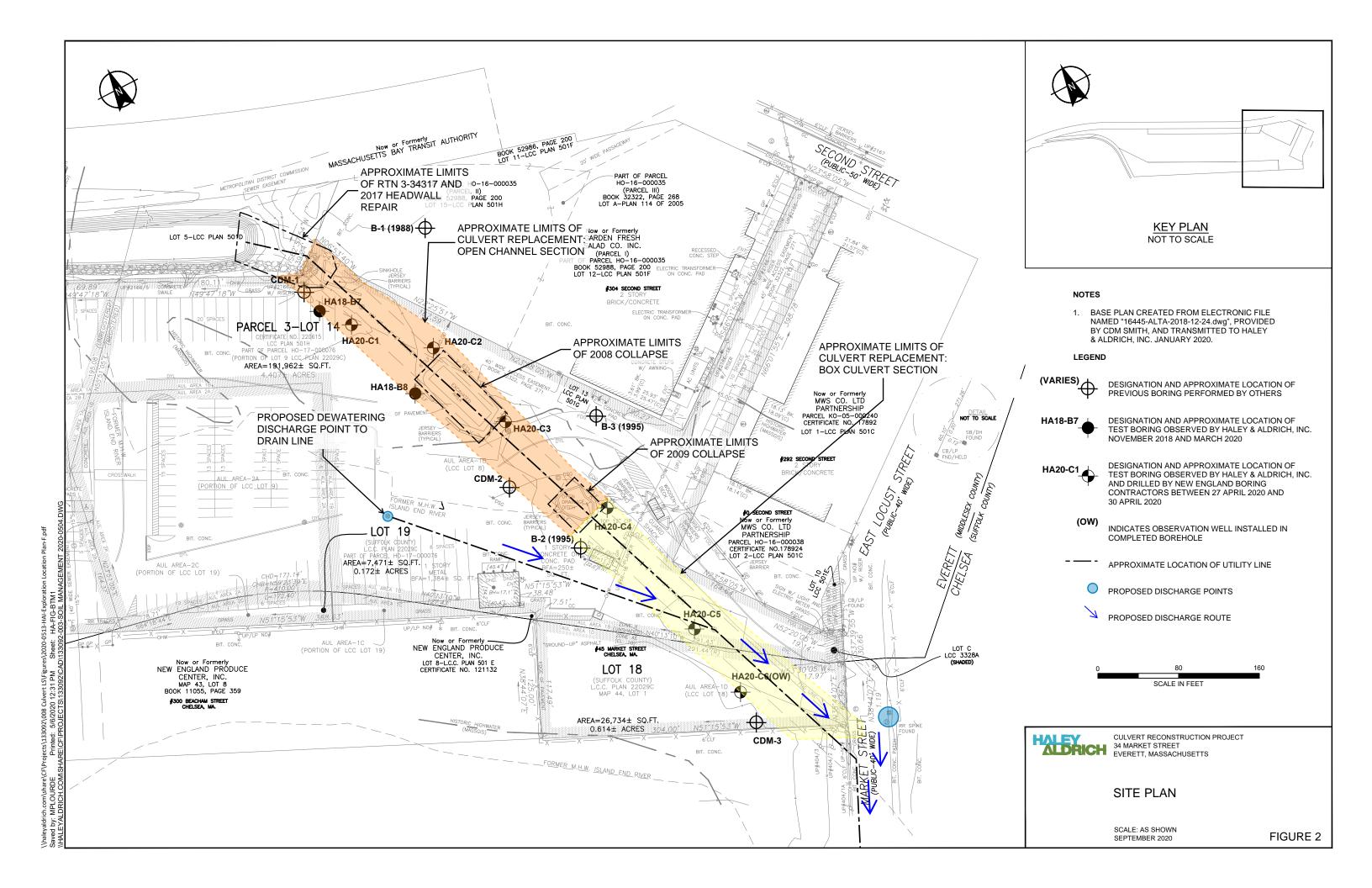
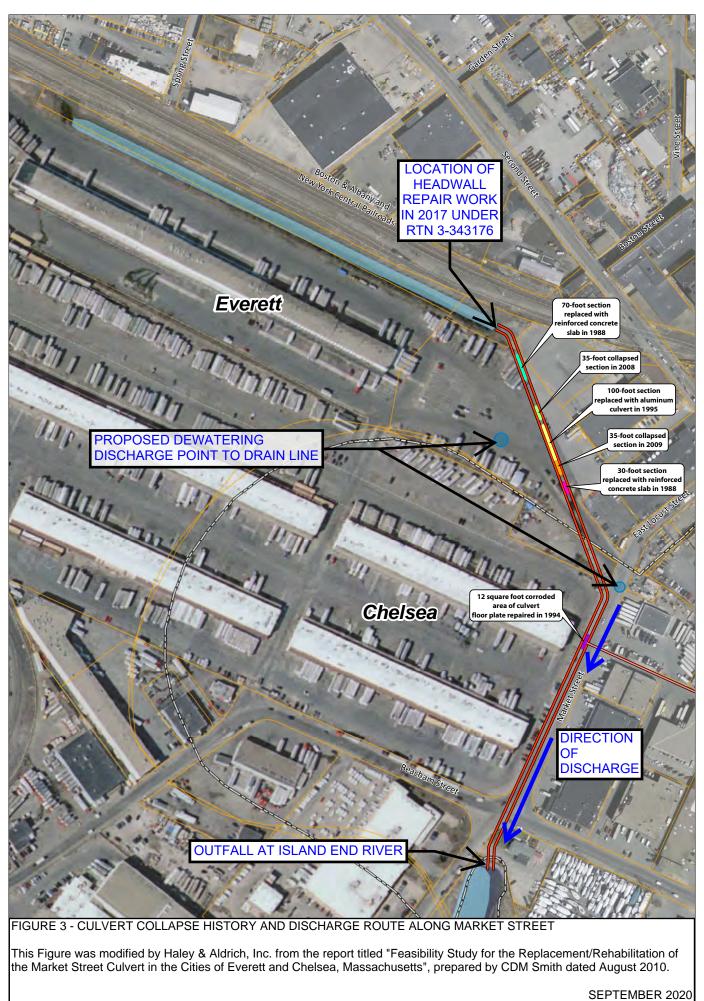
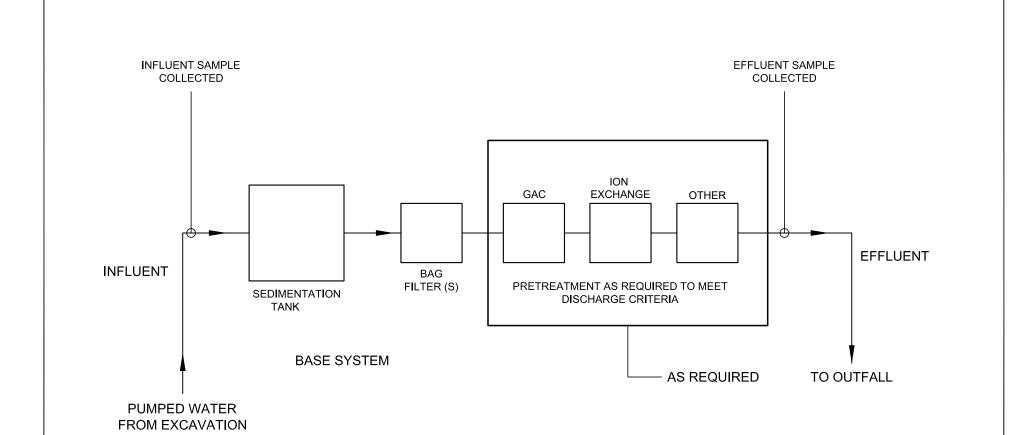



TABLE I SUMMARY OF WATER QUALITY DATA 34 MARKET STREET EVERETT, MASSACHUSETTS FILE NO. 133092-009


LOCATION	2017 NPDES RGP	MassDEP	HA20-C6	HA20-C6	OUTFALL
SAMPLING DATE	Estimated	MCP	6/12/2020	6/26/2020	6/12/2020
LAB SAMPLE ID	Site-Specific	RCGW-2	L2024779-01	L2027207-02	L2024779-02
SAMPLE TYPE	Criteria	2014	WATER	WATER	WATER
Volatile Organics (µg/l)	200	4000	ND(2)		
1,1,1-Trichloroethane 1,1,2-Trichloroethane	5	900	ND(2) ND(1.5)		-
1,1-Dichloroethane	70	2000	ND(1.5)		
1,1-Dichloroethene	3.2	80	ND(1)		
1,2-Dichlorobenzene	600	2000	ND(5)	-	-
1,2-Dichloroethane	5	5	ND(1.5)	-	-
1,3-Dichlorobenzene	320	6000	ND(5)	-	-
1,4-Dichlorobenzene	5	60	ND(5)	-	-
Acetone	7970	50000	ND(10)	-	-
Benzene	5	1000	ND(1)	-	-
Carbon tetrachloride	4.4	2	ND(1)	-	-
cis-1,2-Dichloroethene	70	20	ND(1)	-	-
Ethylbenzene	*100 70	5000 5000	ND(1)	-	-
Methyl tert butyl ether Methylene chloride	4.6	2000	ND(10) ND(1)		-
o-xylene	NA	3000	ND(1) ND(1)		
p/m-Xylene	NA NA	3000	ND(2)		
Tert-Butyl Alcohol	120	NA	ND(100)	-	-
Tertiary-Amyl Methyl Ether	90	NA	ND(20)	-	-
Tetrachloroethene	5	50	ND(1)	-	-
Toluene	*100	40000	ND(1)	-	-
Trichloroethene	5	5	ND(1)	-	-
Vinyl chloride	2	2	ND(1)	-	-
Xylenes, Total	*100	3000	ND(1)	-	-
Total BTEX SLIM of Volatile Organic Compounds	100 NA	NA NA	ND NA	-	-
SUM of Volatile Organic Compounds	NA	ΝA	NΑ	-	-
Volatile Organics by SIM (µg/l)					
1,4-Dioxane	200	6000	ND(50)	-	-
Semivolatile Organics (µg/l)					
Bis(2-ethylhexyl)phthalate	101	50000	ND(2.2)	-	-
Butyl benzyl phthalate	NA	10000	ND(5)	-	-
Di-n-butylphthalate	NA	5000	ND(5)	-	-
Di-n-octylphthalate	NA	100000	ND(5)	-	-
Diethyl phthalate	101	9000	ND(5)	-	-
Dimethyl phthalate	NA	50000	ND(5)	-	-
Total Phthalates	190	NA	ND	-	-
Pentachlorophenol	1	200	ND(1)	-	-
Phenol SUM of Semivolatile Organic Compounds	1080 NA	2 NA	ND(30) ND	-	
30W 01 Semivolatile Organic Compounds	INA	INO	ND	-	-
Semivolatile Organics by SIM (µg/l)					
Acenaphthene	Group II PAHs	10000	0.395	-	-
Acenaphthylene	Group II PAHs	40	1.98	-	-
Anthracene	Group II PAHs	30	1.84	-	-
Benzo(a)anthracene	1	1000	2.67	-	-
Benzo(a)pyrene	1	500	2.52	-	-
Benzo(b)fluoranthene	1	400	2.91	-	-
Benzo(ghi)perylene	Group II PAHs	20	1.65	-	-
Benzo(k)fluoranthene	1	100	1.11	-	-
Chrysene	1	70 40	1.96 0.372	-	-
Dibenzo(a,h)anthracene Fluoranthene	Group II PAHs	200	8.27		-
Fluorene	Group II PAHs	40	0.836		-
Indeno(1,2,3-cd)pyrene	1	100	1.7	_	
Naphthalene	20	700	3	-	-
Phenanthrene	Group II PAHs	10000	3.94	-	-
Pyrene	Group II PAHs	20	6.16	-	-
SUM of Group I PAHs	1	NA	13.242	-	-
SUM of Group II PAHs	100	NA	28.071	-	-
SUM of Semivolatile Organic Compounds (SI	NA	NA	40.918	-	-
Total Petroleum Hydrocarbons (μg/l)					
TPH, SGT-HEM	5000	5000	ND(4000)	-	-
Total Matals (u.g./l)					
Total Metals (μg/l) Antimony, Total	206	8000	ND(40)	_	ND(40)
Arsenic, Total	104	900	25.68		ND(10)
Cadmium, Total	10.2	4	ND(2)	-	ND(2)
Chromium, Total	NA	300	ND(10)	-	ND(10)
Copper, Total	242	100000	ND(10)	-	ND(10)
Iron, Total	5000	NA	1050	-	688
Lead, Total	8.5	10	15.93	-	ND(10)
Mercury, Total	0.739	20	ND(0.2)	-	ND(0.2)
Nickel, Total	1450	200	ND(20)	-	ND(20)
Selenium, Total	235.8	100	ND(50)	-	ND(50)
Silver, Total	35.1	7	ND(4)	-	ND(4)
Zinc, Total	420	900	ND(100)	-	ND(100)
Inorganic Compounds (mg/L)					
Lead, Dissolved	NA	0.01	ND(0.01)	-	-
Polychlorinated Biphenyls (µg/l)					
Polychlorinated Biphenyls (µg/l) Aroclor 1016	0.000064	5	ND(0.25)	_	_
Aroclor 1221	0.000064	5	ND(0.25)	_	_
Aroclor 1221 Aroclor 1232	0.000064	5	ND(0.25)	-	-
Aroclor 1232 Aroclor 1242	0.000064	5	ND(0.25)	-	-
Aroclor 1248	0.000064	5	ND(0.25)	-	-
AI OCIOI 1240					_
Aroclor 1254	0.000064	5	ND(0.25)	-	-
Aroclor 1254 Aroclor 1260 Total PCBs	0.000064 0.000064 0.000064	5 5	ND(0.25) ND(0.2) ND	-	-


TABLE I SUMMARY OF WATER QUALITY DATA 34 MARKET STREET EVERETT, MASSACHUSETTS FILE NO. 133092-009

LOCATION	2017 NPDES RGP	MassDEP	HA20-C6	HA20-C6	OUTFALL
SAMPLING DATE	Estimated	MCP	6/12/2020	6/26/2020	6/12/2020
LAB SAMPLE ID	Site-Specific	RCGW-2	L2024779-01	L2027207-02	L2024779-02
SAMPLE TYPE	Criteria	2014	WATER	WATER	WATER
Microextractables (µg/I)					
1,2-Dibromo-3-chloropropane	NA	1000	ND(0.01)	-	-
1,2-Dibromoethane (Ethylene Dibromide)	0.05	2	ND(0.01)	-	-
General Chemistry (µg/l)					
Chloride	Report	NA	10400000	-	-
Chlorine, Total Residual	50	NA	ND(20)	-	-
Chromium, Hexavalent	323	300	ND(10)	-	ND(10)
Chromium, Trivalent	323	600	ND(10)	-	ND(10)
Cyanide, Total	5	30	278	504	-
Cyanide, Filtered*	NA	NA	-	391	-
Ethanol	Report	NA	21000	-	-
Hardness	NA	NA	3180000	-	1500000
Nitrogen, Ammonia	Report	NA	7080	-	300
pH (H)	NA	NA	8.1	-	7.6
Phenolics, Total	NA	NA	ND(30)	-	-
Total Suspended Solids	30000	NA	33000	8300	-
ABBREVIATIONS NOTES:	•				•
- : Not analyzed	NA: Not Applicab	le			
ug/I: micrograms per liter	SU: Standard Unit	ts			
ND (2.5): Result not detected above repo	rting limit (shown in p	parentheses)			
1. Analytes detected in at least one samp	le are reported herei	n. For a comp	lete list of analytes	see the laboratory d	ata sheets.
2. Blue bold values indicate an exceedance	e of the applicable si	te-specific 20	17 RGP Criteria.		
*Filtered through a 10 µg filter					



Boston Market Terminal Market Street Culvert Collapse and Repair History Figure 1-2

CDM

LEGEND:

NOTE:

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

CULVERT RECONSTRUCTION PROJECT

PROPOSED TREATMENT SYSTEM **SCHEMATIC**

SCALE: NONE SEPTEMBER 2020

FIGURE 4

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 34 Market Street						
Culvert Reconstruction Project	Street:						
	City: Everett		State: MA	^{Zip:} 02150			
2. Site owner DIV BMT, LLC C/O The Davis Companies	Contact Person: Christopher Mora						
BIV BIVIT, EEG 0/6 THE BUVIS COMPANIES	Telephone: 617-936-4816	Email: cm	ora@theda	viscompanies.com			
	Mailing address: 125 High Street	Mailing address: 125 High Street					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	^{Zip:} 02110			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 ■ MA Chapter 21e; list RTN(s): 3-13158 □ NH Groundwater Management Permit or Groundwater Release Detection Permit: 	□ CERCL □ UIC Pro □ POTW □ CWA S	ogram Pretreatment	t			

 \square Other; if so, specify:

B. Receivi	ng water	informa	tion:

in accordance with the instruction in Appendix

VIII? (check one):

■ Yes □ No

B. Receiving water information:									
1. Name of receiving water(s):	s): Waterbody identification of receiving water(s): Classification of receiving								
Island End River	MA71-03	Class S	B/CSO						
Receiving water is (check any that apply): □ Outstan	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic I	River						
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No							
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP. Unionized ammonia, DO, fecal colin	s available for any of the indicated pollutants. For n	nore information, contact the	appropriate State as noted in Part						
	Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in ppendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 0.00655 cfs								
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			0						
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: 22 June 20		icated? (check one): ■ Yes	□ No						
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?						
(check one): ■ Yes □ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	,						

RGP in accordance with the instruction in

Appendix VIII? (check one):

□ Yes □ No

so, indicate waterbody:

than the receiving water; if

2. Source water contaminants: Lead, Group I PAHs, Cyanide, TSS	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): ■ Existing discharge □ New	v discharge □ New source
Outfall(s): Island End River	Outfall location(s): (Latitude, Longitude) 42.394,-71.049
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
Pumping into catch basin then traveling in the subsurface drainage culv	vert along Market Street
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew Has notification been provided to the owner of this system? (check one): ■ Yes	Frankline d O'hard on d
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ■ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): □ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): October	er 2020 to September 2021
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)			
	a. If Activity Categ	ory I or II: (check all that apply)		
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	Compounds ile Organic Compounds		
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)		
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation ■ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	 ■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply		

4. Influent and Effluent Characteristics

	Known	Known		T 4	D	Ir	ıfluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		>	1 +	121,4500 +	75 +	7080 E	7080 ±	Report mg/L	
Chloride		*	1 +	44,33.0 +	250000 +	10400000	10400000 ±	Report μg/l	
Total Residual Chlorine	·		1 +	121,4500 +		<20	+ <20 +	0.2 mg/L	7.5 ug/L +
Total Suspended Solids		✓	2 +	121,2540 +		33000	20.650	30 mg/L	
Antimony	1		1 +	3,200.8 +	40 +	<40	= <40	206 μg/L	NA +
Arsenic		✓	1 +	3,200.8 +		25.68	25.86	104 μg/L	NA ±
Cadmium	✓		1 +	3,200.8 +	2 +	<2	E <2 E	10.2 μg/L	NA +
Chromium III		✓	1 +	NA +	10 +	600	E 600 ±	323 μg/L	NA +
Chromium VI		✓	1 +	1,7196A +	10 +	300	H 300 H	323 μg/L	NA +
Copper	1		1 +	3,200.8 +		<10	<10	242 μg/L	NA +
Iron		✓	1 +	19,200.7 +	100 +	1050	1050	5,000 μg/L	NA +
Lead		~	1 +	3,200.8 +	10 +	15.93	15.93	160 μg/L	8.5 ug/L +
Mercury	1		1 +	3,245.1 +	0.2	<0.2	<0.2	0.739 μg/L	NA +
Nickel	1		1 +	3,200.8 +	20 +	<20	+ <20 +	1,450 μg/L	NA +
Selenium	·		1 +	3,200.8 +	50 +	<50	<50	235.8 μg/L	NA ±
Silver	V		1 +	3,200.8 +	4 +	<4	H <4	35.1 μg/L	NA +
Zinc	·		1 +	3,200.8 +	100 +	<100	<100	420 μg/L	NA +
Cyanide		✓	2 +				391	178 mg/L	1.0 ug/L +
B. Non-Halogenated VOCs	3								
Total BTEX	✓		1 +	128,624.1+	1 +	<1	- <1 -	100 μg/L	
Benzene	✓		1 +	128,624. +	i e		<1 +	5.0 μg/L	
1,4 Dioxane	✓		1 +	128,624.1+		<50	<50 +	200 μg/L	
Acetone	✓		1 +	128,624.1+	i			7.97 mg/L	
Phenol	1		1 +	4,420.1 +				1,080 μg/L	NA +

	Known	Known				Inf	luent	Effluent Limitati	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1 +	128,624.1+	1 +	<1 +	<1 +	4.4 μg/L	NA +
1,2 Dichlorobenzene	✓		1 +	128,624.1+			<5 +	600 μg/L	
1,3 Dichlorobenzene	/		1 +	128,624.1+		<5 +	<5 +	320 μg/L	
1,4 Dichlorobenzene	✓		1 +	128,624. +		<5 +	<5 +	5.0 μg/L	
Total dichlorobenzene	1		1 +	NA +	5 +	<5 +	<5 +	763 μg/L in NH	
1,1 Dichloroethane	1		1 +	128,624. +	1.5 +	<1.5 +	<1.5	70 μg/L	
1,2 Dichloroethane	1		1 +	128,624.1+	ı	<1.5	<1.5	5.0 μg/L	
1,1 Dichloroethylene	1		1 +	128,624.1+	1 +	<1 +	<1 +	3.2 μg/L	
Ethylene Dibromide	*		1 +	14,504.1 +	0.01 +	<0.01 +	<0.01	0.05 μg/L	
Methylene Chloride	*		1 +	128,624.1+		<1 +		4.6 μg/L	
1,1,1 Trichloroethane	1		1 +	128,624.1+	l		<2 +	200 μg/L	
1,1,2 Trichloroethane	1		1 +	128,624.1+		<1.5	<1.5	5.0 μg/L	
Trichloroethylene	/		1 +	128,624.1+			<1 +	5.0 μg/L	
Tetrachloroethylene	1		1 +	128.624.1+			<1 +	5.0 μg/L	NA +
cis-1,2 Dichloroethylene	v		1 +	128,624.1+			<1 +	70 μg/L	
Vinyl Chloride	*		1 +				<1 +	2.0 μg/L	
D. Non-Halogenated SVOCs									
Total Phthalates	✓		1 +	129,625.1+			<2.2	190 μg/L	NA +
Diethylhexyl phthalate	1		1 +	129,625.1+			<2.2	101 μg/L	NA ±
Total Group I PAHs		✓	1 +	129,625.1+			13.242	1.0 μg/L	
Benzo(a)anthracene		✓	1 +	129,625.1+		2.67 +	2.67		0.0038 ug/L +
Benzo(a)pyrene		✓	1 +	129,625.1+	0.1	2.52 +	2.52		0.0038 ug/L +
Benzo(b)fluoranthene		✓	1 +	129,625.1+					0.0038 ug/L +
Benzo(k)fluoranthene		✓	1 +	129,625.1+	0.1		1.11 +	As Total PAHs	0.0038 ug/L +
Chrysene		✓	1 +	129,625.1+	0.1	1.96 +	1.96		0.0038 ug/L +
Dibenzo(a,h)anthracene		✓	1 +	129,625.1+	0.1	0.372 +	0.372		0.0038 ug/L +
Indeno(1,2,3-cd)pyrene		√	1 +	129,625.1+	0.1	1.7 +	1.7		0.0038 ug/L =

	Known	Known				Inf	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	1 +	129,625.1+	0.1 +	28.071 +	28.071	100 μg/L	
Naphthalene		/	1 +	129,625.1+				20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1 +	127,608.3+	0.2	<0.2	<0.2	0.000064 μg/L	
Pentachlorophenol	1		1 +					1.0 μg/L	
F. Fuels Parameters Total Petroleum	,		1 +	74,1664 <i>A</i> +	4000 +	<4000 +	<4000 +	5.0 mg/L	
Hydrocarbons	Y								
Ethanol		✓	1 +	1671A +			210000 +	Report mg/L	NA
Methyl-tert-Butyl Ether	/		1 +	128,624.1+	10 +	<10 +	<10 +	70 μg/L	NA
tert-Butyl Alcohol	✓		1 #	128,624.1+	100 +	<100 +	<100 +	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		1 🛨	128,624.1+	20 +	<20 +	<20 +	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	, hardness,	salinity, LC	S ₅₀ , addition	al pollutan	ts present);	if so, specify:			
t Hu		✓	1 +	121,4500+	NA +	8.1	8.1		
Hardeness +		✓	1 +	19,200.7 +		3180000 +			
Lead, dissolved +	✓		1 +	3,200.8 +	10 +	<10	<10 +		
Cyanide, filtered +		✓	1 +	121,4500 +	5 +	391 +	391 +		
MADEP C11-C22 Aromatic +		/	2 +	98,04-1.1+	6690 +	0 +	0 +		
						1	1		1

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorp	tion
■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
GAC to address PAHs, ion exchange to address metals. Other treatments to be applied as necessary to meet effluent limitations.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical contaminants. If is needed to meet effluent limits, a Notice of Change will be submitted for review and approval. After treatment, constituent concentrations in effluent expected to ra non-detectable to less than effluent criteria. If authorized under the RGP, parameters to be monitored will included one or more VOCs, PAHs, metals/inorganics, pH, known or believed present in the source water.	ange from
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank ■ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	150 gpm
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	91
Provide the proposed maximum effluent flow in gpm.	150 gpm
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Chemical and additive mior mation
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of				
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No				
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one):				
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.				
H. National Historic Preservation Act eligibility determination				
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:				
☐ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.				
■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.				
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.				
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No				
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or				
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): ☐ Yes ■ No				
I. Supplemental information				
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.				
Please refer to attached Haley & Aldrich letter dated September 2020.				
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No				
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No				
Thas the operator attached the certification requirement for the Best Wallagement Fractices Fran (BWH 1): (check one).				

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage elief, true, accurate, a	the syste nd comp	m, or those lete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge and available for review at the site.	emented upon in	itiation	of
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □	Not Required
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No □	
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □	NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □	NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify: □ (Check one: Yes □	No □	NA □
Signature: Da	te: 9/18/2020		
Print Name and Title: Michael Cantallypa - Chief Development Office	cer		

APPENDIX B

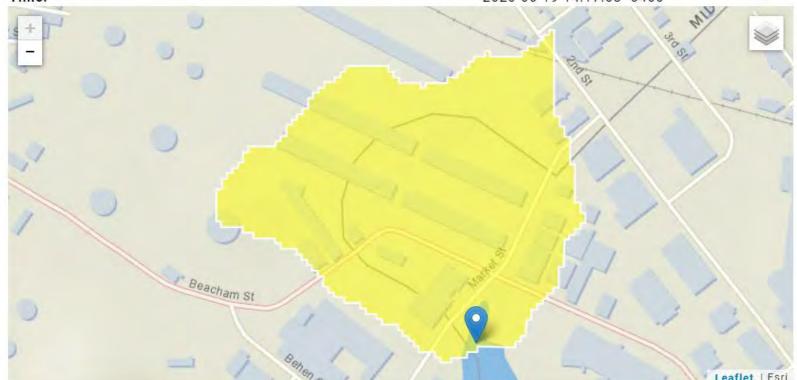
Effluent Limitations Documentation

StreamStats Report - D1

Region ID:

Workspace ID:

Clicked Point (Latitude, Longitude):


Time:

MA

MA20200619181607235000

42.39372, -71.05009

2020-06-19 14:17:08 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.1	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	0.354	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	1.75	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.1	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	0.354	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	1.75	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIRDO 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0164	ft^3/s
7 Day 10 Year Low Flow	0.00655	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.11

Hi Kim,

Thank you for the materials you provided. As you also mentioned in the email below that the receiving water Island End River is part of the Mystic River with Segment ID MA71-03. This segment is at the downstream of Amelia Earhart Dam and is identified as SB (CSO) water. I saw the StreamStats report that you provided, but I wasn't able to obtain a 7Q10 on StreamStats for the same lat/long location. But regardless, as it is estuarine/marine water, there will be no dilution factor or DF is 0.

Here is some additional information to use in the NOI:

This segment is not an Outstanding Resource Water. Please note that there is a pathogen TMDL dated October 2018 for this segment that was not listed in the 2016 MA Integrated List of Waters. The link to the pathogen TMDL is here: https://www.mass.gov/doc/final-pathogen-tmdl-report-for-the-boston-harbor-weymouth-weir-and-mystic-watersheds/download.

If this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g. municipality).

Regarding the MassDEP application, on June 30th we will be transitioning to an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects as well as pay by credit card. We anticipate that at first there will be a learning curve for both users and permitting staff but technical support will be available. You will know when the system has gone "live" when the instructions change on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Vakalopoulos, Catherine (DEP) **Sent:** Monday, June 22, 2020 1:30 PM

To: Ruan, Xiaodan (DEP)

Cc: KScalise@haleyaldrich.com; EJoyce@haleyaldrich.com

Subject: Fw: 7Q10 + Dilution Factor for NPDES NOI - BMT Culvert Project

Hi Kim,

I'm doing ok, hope you are too. I'm forwarding this to Xiaodan who will be able to check this for you. Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Scalise, Kimberly < KScalise@haleyaldrich.com>

Sent: Friday, June 19, 2020 4:53 PM **To:** Vakalopoulos, Catherine (DEP)

Cc: Joyce, Liza

Subject: 7Q10 + Dilution Factor for NPDES NOI - BMT Culvert Project

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you recognize the sender and know the content is safe.

Hi Cathy,

I hope you're doing well!

We're working on a NPDES NOI for a site near the New England Produce Terminal in Everett/Chelsea. For your review, I've attached the StreamStats reports detailing the 7 Day 10 Year (7Q10) low flow value for our project (listed below) along with the dilution factor calculations. The maximum design flow of the system is 150 GPM, which we've used for the calculation.

I'm not confident that we've pulled a representative StreamStats report given the small drainage area, however, when selecting delineation points further out in the river, an error message was generated: "Delineation and flow statistic computation not allowed here."

Can you please confirm whether these assumptions are appropriate for the project?

Project:

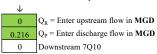
34 Market Street Everett, MA

Discharge will be to the Island End River via a subsurface stormwater drainage culvert that runs under Market Street. I've attached a graphic for your reference. From the MA Integrated List of Waters (2016) it appears the Island End River is part of the Mystic River Waterbody Segment ID MA71-03.

Have a good weekend! Thank you, Kim

Kimberly Scalise

Senior Geologist


Haley & Aldrich, Inc.

465 Medford Street | Suite 2200 Boston, Massachusetts 02129

T: 617.886.7416 C: 716.445.1385 www.haleyaldrich.com

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

155	C _d = Enter influent hardness in mg/L CaCO ₃
1500	C _s = Enter receiving water hardness in mg/L CaCO ₂

Enter receiving water concentrations in the units specified

7.6	pH in Standard Units
17.6	Temperature in °C
0.3	Ammonia in mg/L
1500	Hardness in mg/L CaCC
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in µg/L
0	Copper in µg/L
688	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
0	Zinc in µg/L

Enter influent concentrations in the units specified

0	TRC in μg/L
7.08	Ammonia in mg /L
0	Antimony in μg/L
25.68	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
1050	Iron in μg/L
15.93	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
278	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
2.67	Benzo(a)anthracene in μg/L
2.52	Benzo(a)pyrene in μg/L
2.91	Benzo(b)fluoranthene in μg/L
1.11	Benzo(k)fluoranthene in μg/L
1.96	Chrysene in µg/L
0.372	Dibenzo(a,h)anthracene in μg/L
1.7	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1Enter 0 if non-detect or testing not required

if >1 sample, enter maximum

if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

No flow assumed at critical low flow for saltwater unless otherwise approved by the State

B. Dilution Factor

No dilution assumed for saltwater, unless otherwise approved by the State

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

- Step 1. Not applicable to saltwater
- Step 2. Not applicable to saltwater
- Step 3. Total recoverable water quality criteria for dissolved metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{\rm d} = \underline{Q_{\rm r} C_{\rm r} - Q_{\rm s} C_{\rm s}}$$

 Q_d

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Ustream (receiving water) concentration in μ g/L

Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 C_r = Downstream concentration in $\mu g/L$

Q_d = Discharge flow in MGD

 C_d = Influent concentration in μ g/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

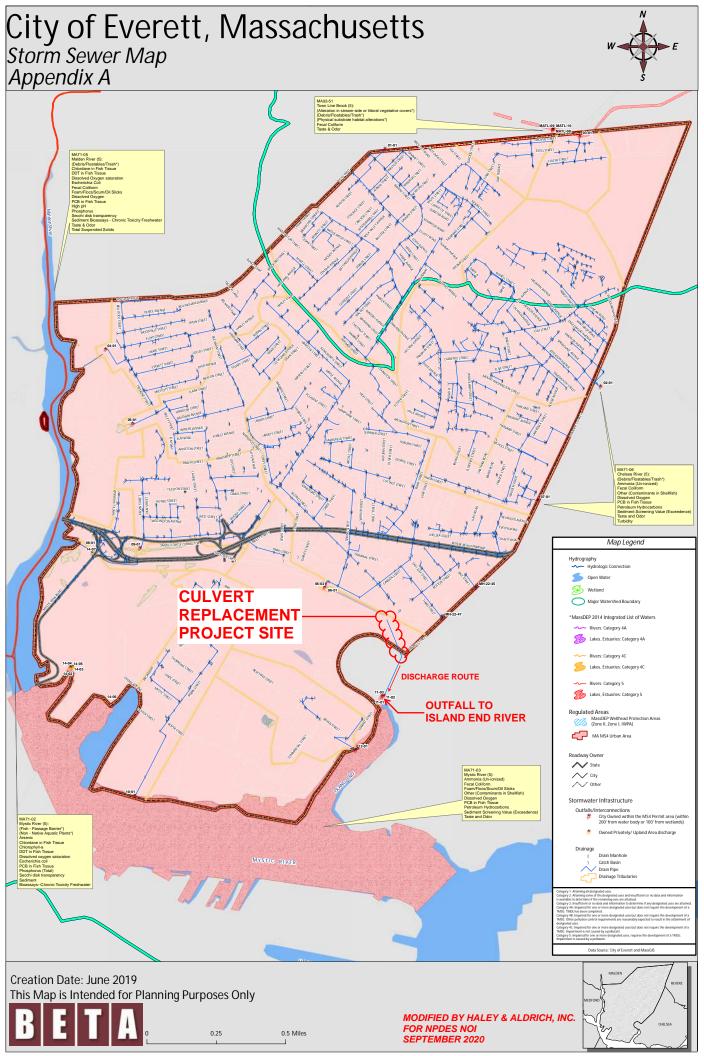
1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter is greater than the WQC calculated for that parameter in accordance with II.A, above

AND

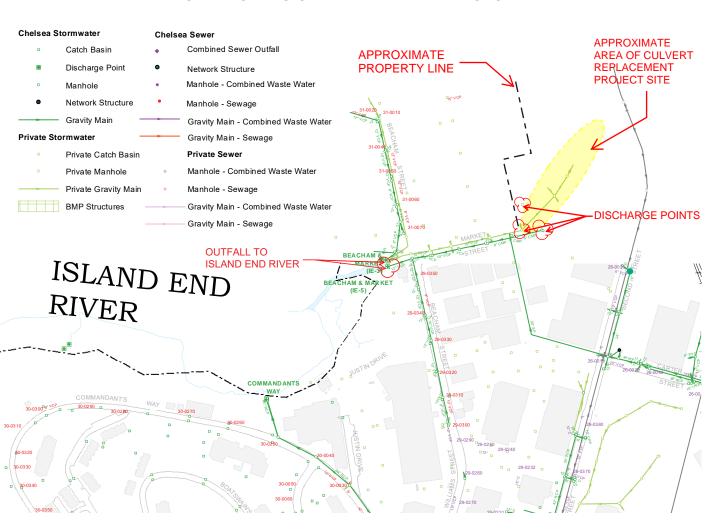
2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not detected in or not sampled in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;


AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.


Dilution Factor 0.0

Dilution Factor	0.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L		P-8-		P-8 -
Antimony	206	μg/L	640	μg/L		
Arsenic			36			
Cadmium	104	μg/L		μg/L		
	10.2	μg/L	8.9	μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	$\mu g/L$	50	$\mu g/L$		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	μg/L		$\mu g/L$		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8		71			
Silver		μg/L		μg/L		
	35.1	μg/L	2.2	μg/L		
Zinc	420	μg/L	86	μg/L		
Cyanide	178	mg/L	1.0	$\mu g/L$	5	μg/L
B. Non-Halogenated VOCs		_				
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L	200	/T		
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs	4.4		1.6	/T		
Carbon Tetrachloride 1,2 Dichlorobenzene	4.4 600	~/I	1.6	μg/L		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene	3.0 	μg/L μg/L				
1,1 Dichloroethane	70	μg/L μg/L				
1,2 Dichloroethane	5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	3.3	$\mu g/L$		
cis-1,2 Dichloroethylene	70	μg/L		. 5		
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs		-				
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	2.2	$\mu g/L$		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	$\mu g/L$	0.0038	μg/L	0.1	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	$\mu g/L$
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

CITY OF CHELSEA, MASSACHUSETTS MAP OF EXISTING SEWER AND DRAIN SYSTEM

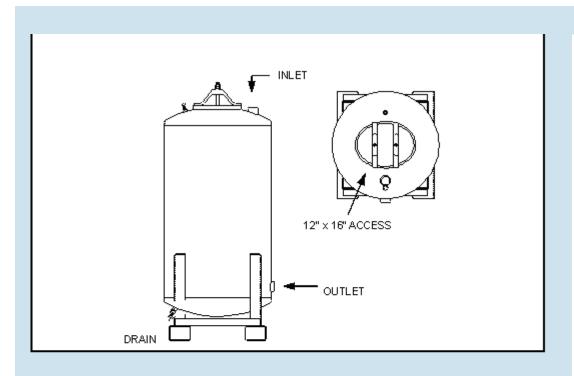
APPENDIX C

Additional Treatment Information

89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- · Dissolved Minerals (Softener Resin)
- · Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- · Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- · Bio-Remediation Contactor Unit

HPAF-2000 SPECIFICATIONS				
Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC	
Diameter	48"	Internal Coating	Polyamide Epoxy Resin	
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic	
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F	
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²	
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³	

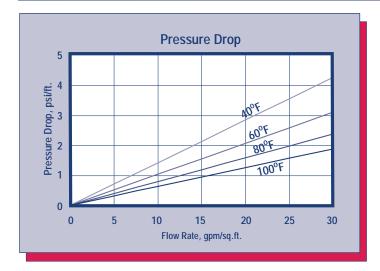
RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

FEATURES & BENEFITS

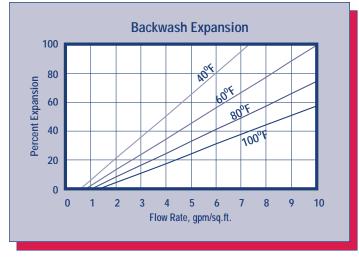
- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY


90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.


LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-(SO₃)⁻M⁺

Ionic Form, as shipped Sodium

Physical Form Tough, Spherical Beads

Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)

PH Range
90 to 14

Sphericity

16 to 50

< 5 percent
< 1 percent
90 to 14

90+ percent

Uniformity Coefficient Approx. 1.6
Water Retention

Sodium Form 48 to 54 percent Solubility Insoluble

Shipping Weight
Sodium Form 48 lbs./cu.ft.

Sodium Form 48 lbs./cu.m Total Capacity

Sodium Form 1.8 meg/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Temperature
Sodium Form 250⁰ F

Minimum Bed Depth 24 inches
Backwash Rate 50 to 75% Bed Expansion

Regenerant (NaCl or KCl)

Service Flow Rate

Concentration 10 to 15 percent 0.5 to 1.5 gpm/cu.ft. Flow Rate Contact Time > 20 minutes Level 4 to 15 pounds/cu.ft. Displacement Rate Same as Regen Flow Rate Volume 10 to 15 gallons/cu.ft. Same as Service Flow Rate Fast Rinse Rate 35 to 60 gallons/cu.ft. Volume

2 to 10 gpm/cu.ft.

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy. contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

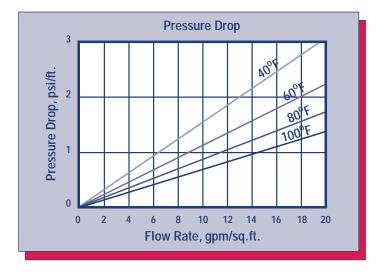
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

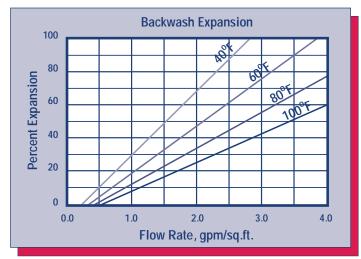
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-N-(CH₃)₃+Cl Ionic Form, as shipped Chloride or Hydroxide Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140 F alt Form 170 F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.

Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Cap	acity Kilogra	ms per cubic	foot
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form) Effective date 31 March 2015

Section 1: Identification

4 -	Day do of Manage	D!T - 0D 04	0004 110	0004 1100	0004.0
та	Product Names	ResinTech SBG1,	, SBG1-HP,	, SBG1-UPS,	SBG1-0,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do – continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Section 3: Composition/Information on Ingredients

3a Chemical name Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.

3b Ingredients

> Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the

Chloride form

CAS# 60177-39-1 (35 - 65%)

Water CAS# 7732-18-5 (35 – 65%)

Section 4: First Aid Measures

4a Inhalation No adverse effects expected- normal use of programment of the second sec
--

does not produce odors or vapors.

4b Skin Wash with soap and water- seek medical attention if a

rash develops.

Wash immediately with water-seek attention if Eye contact 4c

discomfort continues.

Ingestion No adverse effects expected for small amounts, larger 4d

amounts can cause stomach irritation. Seek medical

attention if discomfort occurs.

Section 5: Fire Fighting Measures

5a Flammability	NFPA Fire rating = 1
-----------------	----------------------

Extinguishing media Water, CO2, foam, dry powder. 5b

Fire fighting Procedures Follow general fire fighting procedures indicated in the 5c

work place. Seek medical attention if discomfort

continues.

Protective Equipment MSHA/NIOSH approved self-contained breathing 5d

gear, full protective clothing.

Combustion Products Carbon oxides and other toxic gasses and vapors. 5e

5f Unusual Hazards Product is not combustible until moisture is removed.

Resin begins to burn at approximately 230° C. Auto

ignition can occur above 500° C.

Section 6: Accidental Release Measures **Personal Precautions** Keep people away, spilled resin can be a slipping 6a hazard, wear gloves and safety glasses to minimize skin or eye contact. **Incompatible Chemicals** Strong oxidants can create risk of combustion 6b products similar to burning, exposure to strong bases can cause a rapid temperature increase. 6c **Environmental Precautions** Keep out of public sewers and waterways. Use plastic or paper containers, unlined metal **Containment Materials** 6d containers not recommended. Methods of Clean-up Sweep up material and transfer to containers. 6e

Section 7: Handling and Storage

7a	Handling	Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.
7b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.

Section 8: Exposure Controls/Personal Protection

8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Not required for limited exposure but recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, yellow, or red beads approx. 0.6 mm

diameter.

Flammability or explosive limits Flammable above 500° C

Odor Little or no odor

Physical State Solid

Vapor pressure

Odor threshold

Vapor density

Not available

Not available

pH Near neutral (6 to 8 typical)

Relative density Approx 710 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Solubility Insoluble in water and most solvents

Boiling point Does not boil

Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water)

Auto-ignition temperature

Approx 500° C

Decomposition temperature

Above 230° C

Viscosity

Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

10c Hazardous by-products Trimethylamine, charred polystyrene, aromatic acids

and hydrocarbons, organic amines, nitrogen oxides,

carbon oxides, chlorinated hydrocarbons,

10d Incompatible materials Strong oxidizing agents, e.g. nitric acid

(such as HNO₃)

10e Hazardous Polymerization Does not occur

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption
Unlikely, some transfer of acidity is possible.
Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild Rash.

Indigestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not acutely harmful to plant or animal life.

12b Mobility Insoluble, acidity or causticity may escape if wet.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 13: Disposal Considerations

13a General considerations Material is non-hazardous. However, unused material

can cause a pH change when wetted.

13b Disposal Containers Most plastic and paper containers are suitable. Avoid

use of unlined metal containers.

13c Disposal methods No specific method necessary.

13d Sewage Disposal Not recommended.

13e Precautions for incineration May release trimethylamine and toxic vapors when

burned.

13f Precautions for landfills Resins used to remove hazardous materials may then

become hazardous mixtures

Section 14: Transportation Information

14a Transportation Class Not classified as a dangerous good for transport by

land, sea, or air.

14b TDG Not regulated.

14c IATA Not regulated.

14d DOT (49 CFR 172.101) Not Regulated.

Section 15: Regulatory Information

15a CERCLA Not regulated

15b SARA Title III Not regulated

15c Clean Air act Not regulated

15d Clean Water Act Not regulated

15e TSCA Not regulated

15f Canadian Regulations

WHMIS Not a controlled product

TDG Not regulated

15g Mexican Regulations Not Dangerous

Section 16: Other Information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

Lockwood Remediation Technologies, LLC

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

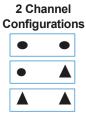
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous I	Models		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Broad Range of Digital and Analog Sensors						
Parameter	Sensor	Digital or Analog				
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•				
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•				
Chlorine Dioxide	9185 sc	•				
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A				
Dissolved Oxygen	LDO® Model 2, 5740 sc	•				
Dissolved Oxygen	5500	A				
Flow	U53, F53 Sensors	A				
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•				
Oil in Water	FP360 sc	•				
Organics	UVAS sc	•				
Ozone	9187 sc	•				
pH/ORP	pHD	•				
pH/ORP	pHD, pH Combination, LCP					
Phosphate	PHOSPHAX™ sc	•				
Sludge Level	SONATAX™sc	•				
Suspended Solids	SOLITAX™ sc, TSS sc	•				
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•				
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A				
Ultra Pure pH/ORP	8362	A				

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

5.7 in x 5.7 in x 7.1 in

100 - 240 V AC, 24 V DC

backlighting, transreflective

Display Size 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

50/60 Hz

Power Requirements (Hz)

Operating **Temperature Range**

-20 to 60 °C, 0 to 95% RH non-condensing

Analog Outputs

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels Mounting Configurations

2 password-protected levels Wall, pole, and panel mounting

Enclosure Rating NEMA 4X/IP66 **Conduit Openings** Relay: Operational

Mode

1/2 in NPT Conduit Primaryorsecondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485,

PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and

radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1

(Industrial limits)

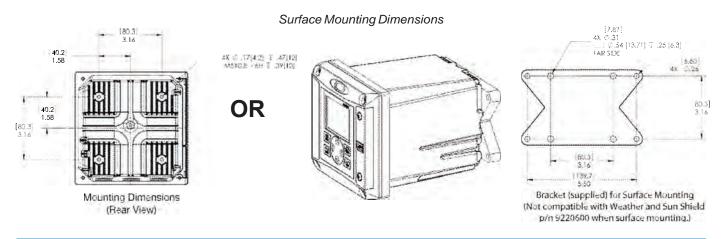
Safety

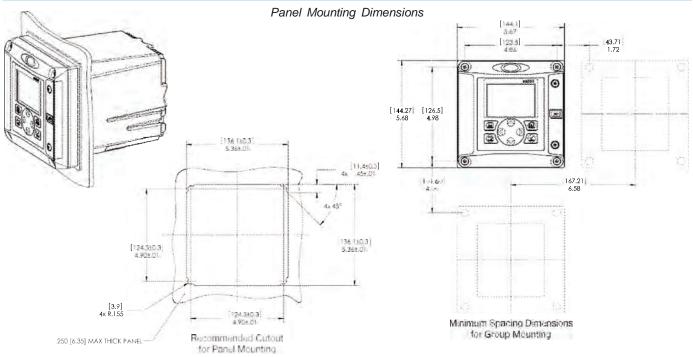
cETLus safety mark for:

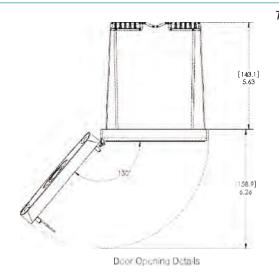
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

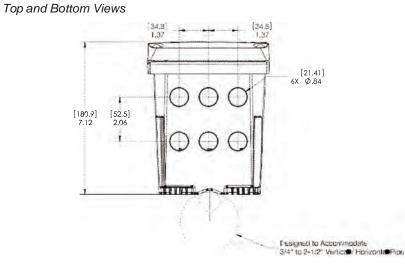
61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

DW

PW


Lockwood Remediation Technologies, LLC

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

 $DW = drinking \ water \ WW = wastewater \ municipal \ PW = pure \ water / power$ $IW = industrial \ water \ E = environmental \ C = collections \ FB = food \ and \ beverage$

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton $^{\circledR}$ O-rings

Warranty

90 days

*Specifications subject to change without notice.

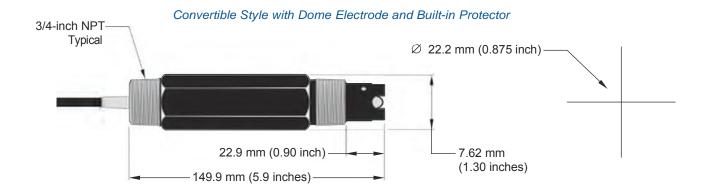
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

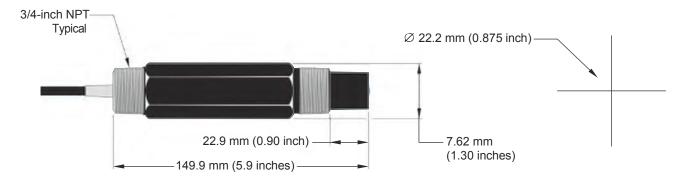
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS® RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton® sanitary gasket.

Convertible Style with Flat Electrode

Lockwood Remediation Technologies, LLC

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilties to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-Optional (125 SPM only)

Controls Options							
Facture	Standard	Optional					
Feature	Configuration	Configuration ¹					
External Pacing		Auto / Manual Selection /					
External Pace w/ Stop		Auto / Manual Selection 2					
(125SPMonly)							
Manual Stroke Rate	10:1Ratio	100:1 Raio					
Manual Stroke Length	10:1Ratio	10:1 Ratio					
Total Turndown Ratio	100:1 Ratio	1000:1 Ratio					

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1turndown pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers

(PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Lockwood Remediation Technologies, LLC

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)	250 (17) 150 (10)	150 (10)	100(7)
Connections: Tubina		1 14 ID X 318 OD 318 I					318'DX 112'OD	114	!'D X 318' O[)		
		Pioina					1	14'FNPT				
Strokes/Minute		SPM				125					250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max.when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC PVDF 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

CSPE Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capady

Viscosity Max CPS: 1000 CPS Stroke Frequency Max SPM: 125 / 250 by Model

Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

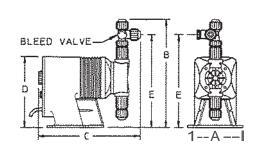
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions


Series A PLUS Dimensions (inches)								
Shipping								
Model No.	Α	В	С	D	Е	Weight		
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10		
LBC2	5.0	9.9	9.5	6.5	8.5	10		
LBC3	5.0	9.9	9.5	6.5	8.5	10		
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10		
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10		
LB64	5.0	9.9	9.5	6.5	8.5	10		
LBC4	5.0	9.9	9.5	6.5	8.5	10		

NOTE: hches X 2.54 cm

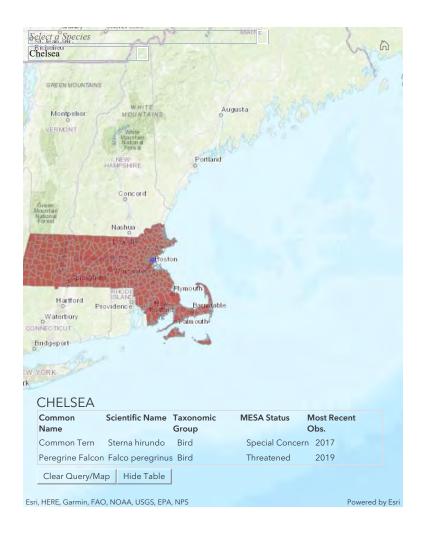
APPENDIX D

Endangered Species Act Assessment

EMERGENCY ALERTS

Coronavirus Update

HIDE ALERTS


Stay informed about COVID-19: Latest on cases, guidance, regulations Jun. 22nd, 2020, 9:00 am Read more

Reopening Massachusetts - Learn more about the phased approach Jun. 19th, 2020, 1:00 pm Read more

Rare species viewer

We maintain a list of all documented MESA-listed species observations in Massachusetts. Search this map by common name, scientific name, or town to see where rare species have been observed.

CONTACT

Natural Heritage & Endangered Species Program

Address

MassWildlife Field Headquarters 1 Rabbit Hill Road, Westborough, MA 01581

Directions (https://maps.google.com/?q=1+Rabb

Phone

Main (508) 389-6360 (tel:5083896360) Open M-F, 8am-4:30pm

Regulatory Review Inquiries

(508) 389-6357 (tel:5083896357) North/Central/Western Massachusetts (508) 389-6385 (tel:5083896385) Southeastern Massachusetts/Cape & Islands

RELATED

List of Endangered, Threatened, and Special Concern species (/info-details/list-of-endangered-threaten

To use this map

- Select a species from the drop-down menu in the upper left corner. All
 towns that the species has been observed in will be highlighted on the
 map. The accompanying table will also show information about the rare
 species, as well as the complete list of towns with their most recent
 observation years.
- 2. Click on a town in the table to highlight it on the map.
- 3. Select a town from the second drop-down menu in the upper left corner. The town will become outlined on the map and the table will show all rare species observed in that town.
- 4. Click on *Clear Query/Map* on the bottom left of the table to clear searches and begin again.

Clicking on a column header in the table will sort by that column. Clicking again on the same column heading will reverse the sort order. Toggle between basemaps by clicking the image on the bottom right corner of the map.

This map is updated at regular intervals as new data is accepted and entered into the Natural Heritage and Endangered Species

Program's (/orgs/masswildlifes-natural-heritage-endangered-species-program) database.

Most recent observation

This field represents the most recent observation of that species in a town. However, because they are rare, many MESA-listed species are difficult to detect even when they are present. Natural Heritage does not have the resources to be able to conduct methodical species surveys in each town on a regular basis. Therefore, the fact that the 'Most Recent Observation' recorded for a species may be several years old should not be interpreted as meaning that the species no longer occurs in a town. However, Natural Heritage regards records older than twenty-five years historic.

For more information about a particular species, view the list of <u>Natural</u>

Heritage fact

sheets (/info-details/list-of-endangered-threatened-and-special-concern-species).

Additional Resources

Request rare species information

(/how-to/request-rare-species-information)

Report rare species & vernal pool observations

(/how-to/report-rare-species-vernal-pool-observations)

Generate a CSV file of the NHESP town list

4.00 // 1	/ / . /	/2PACX-1vRxWPhSYO7J2btBSc		JED20761 T V/J004D2 JT0	011 D I 1 0 II
Inttps://docs.google.com	/ spreadsneets/ d/ e	/ ZPACX-IVRXWPNSYO/JZbtBSc	5xsex8svvEobhvDIPJrZRUF	75D29ZCLWTMVUU9AD2ZIT9V	v-UII-axBabioUcnnk

Did you find what	ou were looking for on this webpage	.7
Yes No	ou were rooming for on this messpage	
SEND FEEDBACK		

EMERGENCY ALERTS

Coronavirus Update

HIDE ALERTS

Stay informed about COVID-19: Latest on cases, guidance, regulations Jun. 22nd, 2020, 9:00 am Read more

Reopening Massachusetts - Learn more about the phased approach Jun. 19th, 2020, 1:00 pm Read more

Rare species viewer

We maintain a list of all documented MESA-listed species observations in Massachusetts. Search this map by common name, scientific name, or town to see where rare species have been observed.

CONTACT

Natural Heritage & Endangered Species Program

Address

MassWildlife Field Headquarters 1 Rabbit Hill Road, Westborough, MA 01581

Directions (https://maps.google.com/?q=1+Rabb

Phone

Main (508) 389-6360 (tel:5083896360) Open M-F, 8am-4:30pm

Regulatory Review Inquiries

(508) 389-6357 (tel:5083896357) North/Central/Western Massachusetts (508) 389-6385 (tel:5083896385) Southeastern Massachusetts/Cape & Islands

RELATED

List of Endangered, Threatened, and Special Concern species (/info-details/list-of-endangered-threaten

To use this map

- Select a species from the drop-down menu in the upper left corner. All
 towns that the species has been observed in will be highlighted on the
 map. The accompanying table will also show information about the rare
 species, as well as the complete list of towns with their most recent
 observation years.
- 2. Click on a town in the table to highlight it on the map.
- 3. Select a town from the second drop-down menu in the upper left corner. The town will become outlined on the map and the table will show all rare species observed in that town.
- 4. Click on *Clear Query/Map* on the bottom left of the table to clear searches and begin again.

Clicking on a column header in the table will sort by that column. Clicking again on the same column heading will reverse the sort order. Toggle between basemaps by clicking the image on the bottom right corner of the map.

This map is updated at regular intervals as new data is accepted and entered into the Natural Heritage and Endangered Species

Program's (/orgs/masswildlifes-natural-heritage-endangered-species-program) database.

Most recent observation

This field represents the most recent observation of that species in a town. However, because they are rare, many MESA-listed species are difficult to detect even when they are present. Natural Heritage does not have the resources to be able to conduct methodical species surveys in each town on a regular basis. Therefore, the fact that the 'Most Recent Observation' recorded for a species may be several years old should not be interpreted as meaning that the species no longer occurs in a town. However, Natural Heritage regards records older than twenty-five years historic.

For more information about a particular species, view the list of <u>Natural</u>

Heritage fact

sheets (/info-details/list-of-endangered-threatened-and-special-concern-species).

Additional Resources

Request rare species information

(/how-to/request-rare-species-information)

Report rare species & vernal pool observations

(/how-to/report-rare-species-vernal-pool-observations)

Generate a CSV file of the NHESP town list

4.00 // 1	/ / . /	/2PACX-1vRxWPhSYO7J2btBSc		JED20761 T V/J004D2 JT0	011 D I 1 0 II
Inttps://docs.google.com	/ spreadsneets/ d/ e	/ ZPACX-IVRXWPNSYO/JZbtBSc	5xsex8svvEobhvDIPJrZRUF	75D29ZCLWTMVUU9AD2ZIT9V	v-UII-axBabioUcnnk

Did you find what	ou were looking for on this webpage	.7
Yes No	ou were rooming for on this messpage	
SEND FEEDBACK		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
EBBCA	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

⁻Eastern cougar and gray wolf are considered extirpated in Massachusetts.

⁻Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

⁻Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

IPaC: Explore Location Page 1 of 14

IPaC Information for Planning and Consultation u.s. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Middlesex and Suffolk counties, Massachusetts

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104₍₈₎

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

IPaC: Explore Location Page 2 of 14

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species

¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

IPaC: Explore Location Page 3 of 14

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act

¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds
 http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE"

IPaC: Explore Location Page 4 of 14

NOT LIKELY BREED IN YOUR
PROJECT AREA.)

American Oystercatcher Haematopus palliatus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8935

Breeds Apr 15 to Aug 31

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black Skimmer Rynchops niger

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/5234

Breeds May 20 to Sep 15

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9488

Breeds elsewhere

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Least Tern Sterna antillarum

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds Apr 20 to Sep 10

IPaC: Explore Location Page 5 of 14

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Purple Sandpiper Calidris maritima

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Ruddy Turnstone Arenaria interpres morinella

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Seaside Sparrow Ammodramus maritimus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 20

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

IPaC: Explore Location Page 6 of 14

Snowy Owl Bubo scandiacus

Breeds elsewhere

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Whimbrel Numenius phaeopus

Breeds elsewhere

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Willet Tringa semipalmata

Breeds Apr 20 to Aug 5

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Wood Thrush Hylocichla mustelina

Breeds May 10 to Aug 31

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

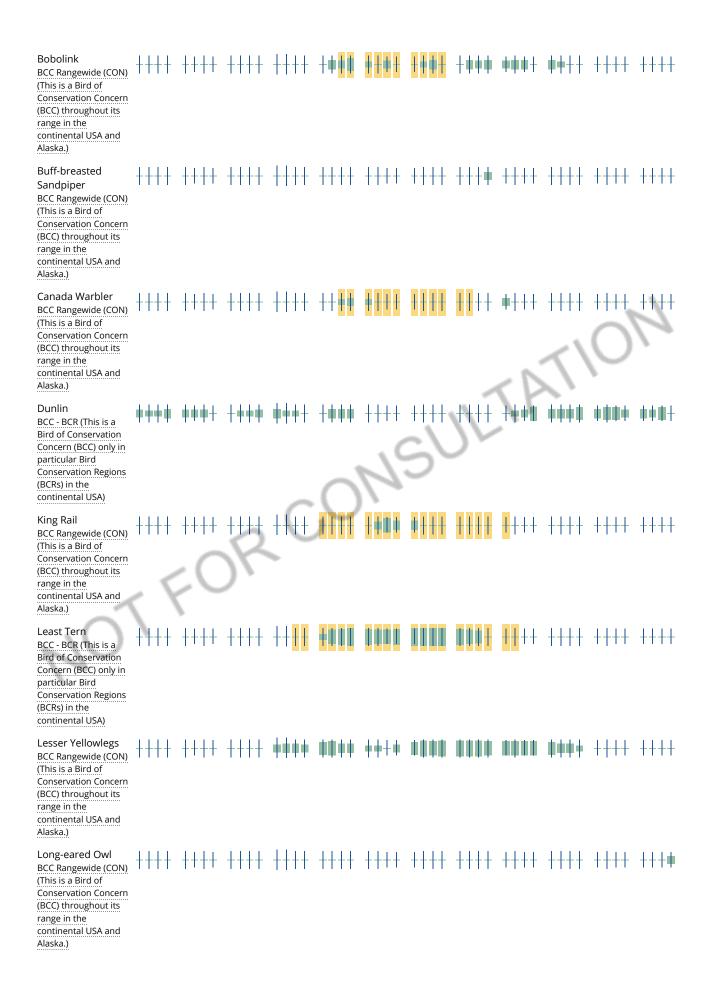
Breeding Season (=)

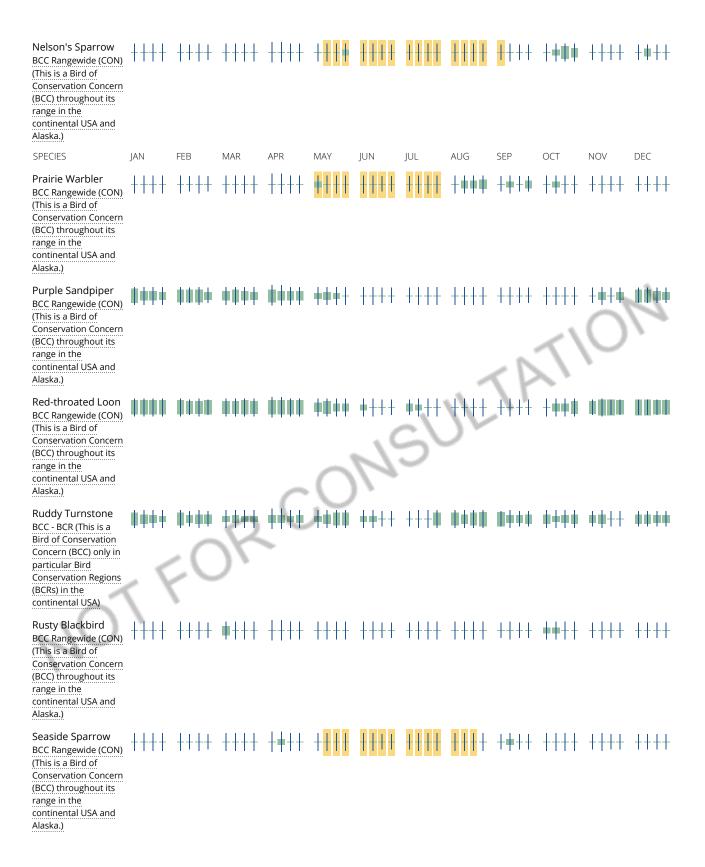
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

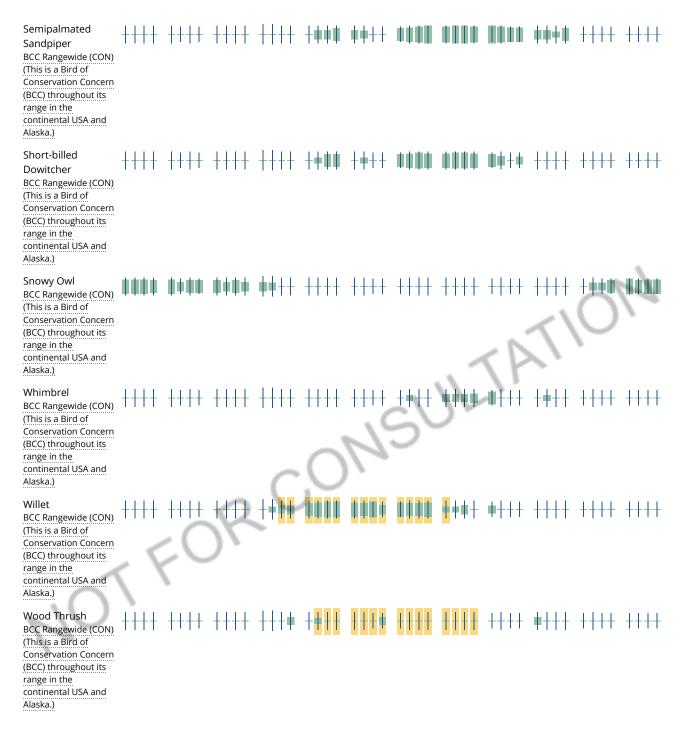
Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.


Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

IPaC: Explore Location Page 11 of 14

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (AKN). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review.

IPaC: Explore Location Page 12 of 14

Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

IPaC: Explore Location Page 13 of 14

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> District.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

ESTUARINE AND MARINE DEEPWATER

E1UBL_x

ESTUARINE AND MARINE WETLAND

E2USN

E2EM1P

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or

local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

NOT FOR CONSULTATION

Summary of the MESA list

Taxonomic Group	Endangered	Threatened	Special Concern	TOTALS
Mammals	11	0	3	14
(including 6 whales)	(7 FE, 1 FT)			
Birds	9	8	10	27
(breeding)	(1 FE)	(1 FT)		
Reptiles	8	5	2	15
(including 5 sea turtles)	(4 FE, 1 FT)	(2 FT)		
Amphibians	0	2	2	4
Fish	4	2	4	10
	(1 FE, 1 FT)			
Invertebrates	30	24	45	99
(non-marine only)	(2 FE, 2 FT)			
Plants	153	64	41	258
(vascular)	(2 FE, 1 FT)			
TOTALS	215	105	107	427
	(17 FE, 6 FT)	(3 FT)	0	(26 FE or FT)

FE = species listed under the U.S. Endangered Species Act as Federally Endangered as of February 27, 2012.

FT = species listed under the U.S. Endangered Species Act as Federally Threatened as of April 2, 2015.

List of Vertebrates

Fish

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
American Brook Lamprey	Lampetra appendix	T		
Shortnose Sturgeon	Acipenser brevirostrum	Е	Е	
			E (CT River), T	
Atlantic Sturgeon	Acipenser oxyrinchus	Е	(Merrimack River)	
Lake Chub	Couesius plumbeus	E		
Eastern Silvery Minnow	Hybognathus regius	SC		
Bridle Shiner	Notropis bifrenatus	SC		
Northern Redbelly Dace	Phoxinus eos	E		
Longnose Sucker	Catostomus catostomus	SC		
Burbot	Lota lota	SC		
				Trimorphic freshwater
Threespine Stickleback	Gasterosteus aculeatus	T		population only.

Amphibians

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Jefferson Salamander	Ambystoma jeffersonianum	SC		Including triploid and other polyploid forms within the Ambystoma jeffersonianum / Ambystoma laterale complex.
Blue-spotted Salamander	Ambystoma laterale	sc		Including triploid and other polyploid forms within the Ambystoma jeffersonianum / Ambystoma laterale complex.
Marbled Salamander	Ambystoma opacum	Т		
Eastern Spadefoot	Scaphiopus holbrookii	Т		

Reptiles

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Loggerhead Seaturtle	Caretta caretta	Т	Т	
Green Seaturtle	Chelonia mydas	Т	Т	
Hawksbill Seaturtle	Eretmochelys imbricata	E	Е	
Kemp's Ridley Seaturtle	Lepidochelys kempii	E	Е	
Leatherback Seaturtle	Dermochelys coriacea	E	Е	

Wood Turtle	Glyptemys insculpta	SC		
Bog Turtle	Glyptemys muhlenbergii	E	Т	
Blanding's Turtle	Emydoidea blandingii	Т		
Diamond-backed Terrapin	Malaclemys terrapin	Т		
Northern Red-bellied Cooter	Pseudemys rubriventris	E	E	This species is listed by the U. S. Fish and Wildlife Service as P. r. bangsi (Plymouth Redbelly Turtle) in 50 CFR 17.11.
Eastern Box Turtle	Terrapene carolina	SC		
Eastern Wormsnake	Carphophis amoenus	Т		
Eastern Ratsnake	Pantherophis alleghaniensis	E		
Copperhead	Agkistrodon contortrix	E		
Timber Rattlesnake	Crotalus horridus	Е		

Birds

Common Name	Scientific Name	MA Status	Fed Status	Notes
Common Loon	Gavia immer	SC		
Pied-billed Grebe	Podilymbus podiceps	E		
Leach's Storm-petrel	Oceanodroma leucorhoa	E		
American Bittern	Botaurus lentiginosus	E		
Least Bittern	Ixobrychus exilis	E		
Bald Eagle	Haliaeetus leucocephalus	Т		
Northern Harrier	Circus cyaneus	Т		
Peregrine Falcon	Falco peregrinus	Т		
King Rail	Rallus elegans	Т		
Common Moorhen	Gallinula chloropus	SC		
Piping Plover	Charadrius melodus	Т	Т	
Upland Sandpiper	Bartramia longicauda	E		
Roseate Tern	Sterna dougallii	Е	Е	
Common Tern	Sterna hirundo	SC		
Arctic Tern	Sterna paradisaea	SC		
Least Tern	Sternula antillarum	SC		
Barn Owl	Tyto alba	SC		
Long-eared Owl	Asio otus	SC		
Short-eared Owl	Asio flammeus	Е		
Sedge Wren	Cistothorus platensis	E		
Golden-winged Warbler	Vermivora chrysoptera	E		
Northern Parula	Parula americana	Т		
Blackpoll Warbler	Dendroica striata	SC		
Mourning Warbler	Oporornis philadelphia	SC		
Vesper Sparrow	Pooecetes gramineus	Т		

Grasshopper Sparrow	Ammodramus savannarum	Т	
Whip-poor-will	Caprimulgus vociferus	SC	

Mammals

Common Name	Scientific Name	MA Status	Fed Status	Notes
Water Shrew	Sorex palustris	SC		
Rock Shrew	Sorex dispar	SC		
Indiana Myotis	Myotis sodalis	E	E	
Small-footed Myotis	Myotis leibii	E		
Little Brown Myotis	Myotis lucifugus	E		
Tricolored Bat	Perimyotis subflavus	E		
Northern Long-eared Bat	Myotis septentrionalis	E	Т	
Southern Bog Lemming	Synaptomys cooperi	SC		
Sperm Whale	Physeter macrocephalus	E	E	
Fin Whale	Balaenoptera physalus	E	E	
Sei Whale	Balaenoptera borealis	Е	E	
Blue Whale	Balaenoptera musculus	E	E	
Humpback Whale	Megaptera novaeangliae	E	E	
Northern Right Whale	Eubalaena glacialis	Е	E	

List of Invertebrates

Sponges

Common Name	Scientific Name	MA Status	Fed Status	Notes
Smooth Branched Sponge	Spongilla aspinosa	SC		

Flatworms

Common Name	Scientific Name	MA Status	Fed Status	Notes
New England Medicinal Leech	Macrobdella sestertia	SC		

Snails

Common Name	Scientific Name	MA Status	Fed Status	Notes
New England Siltsnail	Floridobia winkleyi	SC		
Coastal Marsh Snail	Littoridinops tenuipes	SC		
Slender Walker	Pomatiopsis lapidaria	Е		
Boreal Marstonia	Marstonia lustrica	Е		
Boreal Turret Snail	Valvata sincera	Е		

Mussels

Common Name	Scientific Name	MA Status	Fed Status	Notes
Dwarf Wedgemussel	Alasmidonta heterodon	E	E	
Brook Floater (Swollen Wedgemussel)	Alasmidonta varicosa	E		
Yellow Lampmussel	Lampsilis cariosa	Е		
Tidewater Mucket	Leptodea ochracea	SC		
Eastern Pondmussel	Ligumia nasuta	SC		
Creeper	Strophitus undulatus	SC		

Crustaceans

Common Name	Scientific Name	MA Status	Fed Status	Notes
Intricate Fairy Shrimp	Eubranchipus intricatus	SC		
Agassiz's Clam Shrimp	Eulimnadia agassizii	E		
Northern Spring Amphipod	Gammarus pseudolimnaeus	SC		
American Clam Shrimp	Limnadia lenticularis	SC		
Taconic Cave Amphipod	Stygobromus borealis	E		
Piedmont Groundwater				
Amphipod	Stygobromus tenuis tenuis	SC		
Coastal Swamp Amphipod	Synurella chamberlaini	SC		

Dragonflies

Common Name	Scientific Name	MA Status	Fed Status	Notes
Subarctic Darner	Aeshna subarctica	E		
Ocellated Darner	Boyeria grafiana	SC		
Spine-crowned Clubtail	Gomphus abbreviatus	SC		
Harpoon Clubtail	Gomphus descriptus	Е		
Midland Clubtail	Gomphus fraternus	E		
Rapids Clubtail	Gomphus quadricolor	Е		
Cobra Clubtail	Gomphus vastus	SC		
Skillet Clubtail	Gomphus ventricosus	Т		
Umber Shadowdragon	Neurocordulia obsoleta	SC		
Stygian Shadowdragon	Neurocordulia yamaskanensis	SC		
Brook Snaketail	Ophiogomphus aspersus	SC		
Riffle Snaketail	Ophiogomphus carolus	Т		
Ski-tipped Emerald	Somatochlora elongata	SC		
Forcipate Emerald	Somatochlora forcipata	E		
Coppery Emerald	Somatochlora georgiana	E		
Incurvate Emerald	Somatochlora incurvata	E		
Kennedy's Emerald	Somatochlora kennedyi	Е		
Mocha Emerald	Somatochlora linearis	SC		
Riverine Clubtail	Stylurus amnicola	Е		
Ebony Boghaunter	Williamsonia fletcheri	E		
Ringed Boghaunter	Williamsonia lintneri	Т		

Damselflies

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Tule Bluet	Enallagma carunculatum	SC		
Attenuated Bluet	Enallagma daeckii	Т		
Scarlet Bluet	Enallagma pictum	Т		
Pine Barrens Bluet	Enallagma recurvatum	Т		

Beetles

Common Name	Scientific Name	MA Status	Fed Status	Notes
Twelve-spotted Tiger Beetle	Cicindela duodecimguttata	SC		
Hentz's Redbelly Tiger Beetle	Cicindela rufiventris hentzii	Т		
Northeastern Beach Tiger Beetle	neastern Beach Tiger Beetle Cicindela dorsalis dorsalis E		Т	
Bank Tiger Beetle	Cicindela limbalis	Т		
Cobblestone Tiger Beetle	Cicindela marginipennis	E		
Barrens Tiger Beetle	Cicindela patruela	E		

Puritan Tiger Beetle	Cicindela puritana	ritana E		
Purple Tiger Beetle	Cicindela purpurea	SC		
American Burying Beetle	Nicrophorus americanus	E	E	

Butterflies and Moths

Common Name	Scientific Name	MA Status	Fed Status	Notes
Coastal Heathland Cutworm	Abagrotis nefascia	SC	i cu status	110123
Barrens Daggermoth	Acronicta albarufa	T		
Drunk Apamea Moth	Apamea inebriata	SC		
New Jersey Tea Inchworm	Apodrepanulatrix liberaria	E		
Hessel's Hairstreak	Callophrys hesseli	SC		
Frosted Elfin	Callophrys irus	SC		
Bog Elfin	Callophrys lanoraieensis	T		
Gerhard's Underwing	Catocala herodias gerhardi	SC		
Precious Underwing Moth	Catocala pretiosa pretiosa	E		
Waxed Sallow Moth	Chaetaglaea cerata	SC		
Melsheimer's Sack Bearer	Cicinnus melsheimeri	T		
Chain Dot Geometer	Cingilia catenaria	SC		
Unexpected Cycnia	Cycnia inopinatus	Т		
The Pink Streak	Dargida rubripennis	Т		
Imperial Moth	Eacles imperialis	Т		
Early Hairstreak	Erora laeta	Т		
Persius Duskywing	Erynnis persius persius	E		
Sandplain Euchlaena	Euchlaena madusaria	SC		
Dion Skipper	Euphyes dion	Т		
Phyllira Tiger Moth	Grammia phyllira	E		
Slender Clearwing Sphinx Moth	Hemaris gracilis	SC		
Barrens Buckmoth	Hemileuca maia	SC		
Sandplain Heterocampa	Heterocampa varia	Т		
Buchholz's Gray	Hypomecis buchholzaria	E		
Pale Green Pinion Moth	Lithophane viridipallens	SC		
Twilight Moth	Lycia rachelae	E		
Pine Barrens Lycia	Lycia ypsilon	Т		
Barrens Metarranthis	Metarranthis apiciaria	E		
Coastal Swamp Metarranthis	Metarranthis pilosaria	SC		
Northern Brocade Moth	Neoligia semicana	SC		
Pitcher Plant Borer	Papaipema appassionata	Т		
Ostrich Fern Borer	Ostrich Form Borror			Undescribed species near P. pterisii
Chain Fern Borer	Papaipema sp. 2 Papaipema stenocelis	SC T		r. pterisii
Citatil Felli Dulei	rupuipeiliu stellocelis	Ţ į		

Water-willow Stem Borer	Papaipema sulphurata	Т	
Spartina Borer	Photedes inops	SC	
Mustard White	Pieris oleracea	Т	
Pink Sallow Moth	Psectraglaea carnosa	SC	
Southern Ptichodis	Ptichodis bistrigata	Т	
Orange Sallow Moth	Pyrrhia aurantiago	SC	
Pine Barrens Speranza	Speranza exonerata	SC	
Faded Gray Geometer	Stenoporpia polygrammaria	Т	
Dune Noctuid Moth	Sympistis riparia	SC	
Dino Damana 7ala	Zala kunifara	56	True Z. lunifera, sensu
Pine Barrens Zale	Zale lunifera	SC	Schmidt (2010)
Pine Barrens Zanclognatha	Zanclognatha martha	SC	

List of Plants

Plants

			MA	Fed	
Taxonomic Group	Common Name	Scientific Name	Status	Status	Notes
Adiantaceae (Cliff Ferns)	Fragile Rock-brake	Cruntogramma stallari	E		
,	Fragile Nock-brake	Cryptogramma stelleri			
Alismataceae (Arrowheads)	Wapato	Sagittaria cuneata	Т		
Alismataceae	110,000	Sagittaria montevidensis ssp.			
(Arrowheads)	Estuary Arrowhead	spongiosa	E		
Alismataceae					
(Arrowheads)	Terete Arrowhead	Sagittaria teres	SC		
Apiaceae (Parsleys,					
Angelicas)	Hemlock Parsley	Conioselinum chinense	SC		
Apiaceae (Parsleys, Angelicas)	Saltpond Pennywort	Hydrocotyle verticillata	T		
Apiaceae (Parsleys,	Salepona i emilywore	Tryarocotyre vertiemata			
Angelicas)	Canadian Sanicle	Sanicula canadensis	Т		
Apiaceae (Parsleys,					
Angelicas)	Long-styled Sanicle	Sanicula odorata	Т		
Aquifoliaceae	Mountain		_		
(Hollies)	Winterberry	Ilex montana	E		
Araceae (Arums)	Green Dragon	Arisaema dracontium	T		
Araceae (Arums)	Golden Club	Orontium aquaticum	E		
Araliaceae (Ginsengs)	Ginseng	Panax quinquefolius	SC		
	diriscrig	T unux quinquejonus	30		
Asclepiadaceae (Milkweeds)	Purple Milkweed	Asclepias purpurascens	Е		
Asclepiadaceae	Linear-leaved	, , ,			
(Milkweeds)	Milkweed	Asclepias verticillata	Т		
Aspleniaceae					
(Spleenworts)	Mountain Spleenwort	Asplenium montanum	E		
Aspleniaceae					
(Spleenworts)	Wall-rue Spleenwort	Asplenium ruta-muraria	Т		
Asteraceae (Asters,					
Composites)	Lesser Snakeroot	Ageratina aromatica	E		
Asteraceae (Asters, Composites)	Eaton's Beggar-ticks	Bidens eatonii	E		
Asteraceae (Asters,					
Composites)	Estuary Beggar-ticks	Bidens hyperborea	E		

Asteraceae (Asters,				
Composites)	Cornel-leaved Aster	Doellingeria infirma	E	
Asteraceae (Asters,				
Composites)	New England Boneset	Eupatorium novae-angliae	E	
Asteraceae (Asters,				
Composites)	Purple Cudweed	Gamochaeta purpurea	E	
Asteraceae (Asters,	New England Blazing	Liatris scariosa var. novae-		
Composites)	Star	angliae	SC	
Asteraceae (Asters,				
Composites)	Lion's Foot	Nabalus serpentarius	E	
Asteraceae (Asters,				
Composites)	Upland White Aster	Oligoneuron album	E	
Asteraceae (Asters,		Petasites frigidus var.		
Composites)	Sweet Coltsfoot	palmatus	E	
Asteraceae (Asters,				
Composites)	Sclerolepis	Sclerolepis uniflora	E	
Asteraceae (Asters,	Large-leaved			
Composites)	Goldenrod	Solidago macrophylla	SC	
Asteraceae (Asters,		Solidago simplex ssp. randii		
Composites)	Rand's Goldenrod	var. monticola	E	
Asteraceae (Asters,				
Composites)	Eastern Silvery Aster	Symphyotrichum concolor	E	
Asteraceae (Asters,		Symphyotrichum		
Composites)	Crooked-stem Aster	prenanthoides	SC	
Asteraceae (Asters,				
Composites)	Tradescant's Aster	Symphyotrichum tradescantii	Т	
Betulaceae (Birches,				
Alders)	Mountain Alder	Alnus viridis ssp. crispa	SC	
Betulaceae (Birches,				
Alders)	Swamp Birch	Betula pumila	E	
Boraginaceae	Northern Wild	Cynoglossum virginianum		
(Borages)	Comfrey	var. boreale	E	
Boraginaceae				
(Borages)	Oysterleaf	Mertensia maritima	E	
Brassicaceae	Lyre-leaved Rock-			
(Mustards)	cress	Arabidopsis lyrata	E	
Brassicaceae	Consette David Cons	Danahara Inggila i		
(Mustards) Brassicaceae	Smooth Rock-cress	Boechera laevigata	SC	
(Mustards)	Green Rock-cress	Boechera missouriensis	Т	
Brassicaceae	GLEEN WOCK-CLESS	מספנוופוע ווווסטעווופווסוס	1	
(Mustards)	Fen Cuckoo Flower	Cardamine dentata	Т	
Brassicaceae	Purple Cress	Cardamine douglassii	E	
	1 . 4. p.c 0. 000	1	<u> </u>	

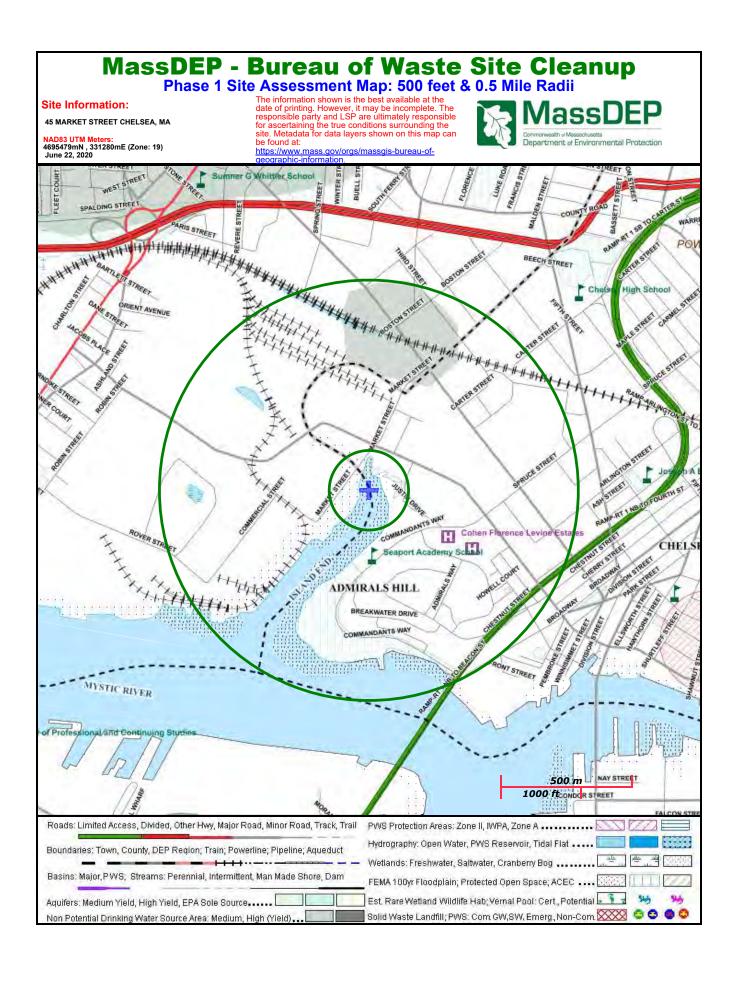
(Mustards)				
Brassicaceae				
(Mustards)	Long's Bitter-cress	Cardamine longii	E	
Cactaceae (Cacti)	Prickly Pear	Opuntia humifusa	E	
Campanulaceae (Bluebells, Lobelias)	Great Blue Lobelia	Lobelia siphilitica	E	
Caprifoliaceae (Honeysuckles)	Hairy Honeysuckle	Lonicera hirsuta	E	
Caprifoliaceae (Honeysuckles)	American Twinflower	Linnaea borealis ssp. americana	SC	
Caprifoliaceae (Honeysuckles)	Snowberry	Symphoricarpos albus var. albus	E	
Caprifoliaceae (Honeysuckles)	Broad Tinker's-weed	Triosteum perfoliatum	E	
Caprifoliaceae (Honeysuckles)	Downy Arrow-wood	Viburnum rafinesquianum	E	
Caryophyllaceae (Pinks, Sandworts)	Nodding Chickweed	Cerastium nutans	E	
Caryophyllaceae (Pinks, Sandworts)	Michaux's Sandwort	Minuartia michauxii	Т	
Caryophyllaceae (Pinks, Sandworts)	Large-leaved Sandwort	Moehringia macrophylla	E	
Caryophyllaceae (Pinks, Sandworts)	Silverling	Paronychia argyrocoma	E	
Celastraceae (Staff Tree Family)	American Bittersweet	Celastrus scandens	Т	
Chenopodiaceae (Saltworts)	Fogg's Goosefoot	Chenopodium foggii	E	
Chenopodiaceae (Saltworts)	American Sea-blite	Suaeda calceoliformis	SC	
Cistaceae (Rockroses, Pinweeds)	Beaded Pinweed	Lechea pulchella var. moniliformis	E	
Clusiaceae (St. John's-worts)	Creeping St. John's- wort	Hypericum adpressum	Т	
Clusiaceae (St. John's-worts)	Giant St. John's-wort	Hypericum ascyron	E	
Clusiaceae (St. John's-worts)	St. Andrew's Cross	Hypericum stragulum	E	
Convolvulaceae (Morning Glories)	Low Bindweed	Calystegia spithamaea	E	
Crassulaceae (Sedums)	Pygmyweed	Crassula aquatica	Т	

Cuprossaga				1
Cupressaceae	Arbonuitae	Thuis assidantalis	-	
(Cedars, Junipers)	Arborvitae	Thuja occidentalis	E	
Cyperaceae (Sedges)	Foxtail Sedge	Carex alopecoidea	Т	
Cyperaceae	Foxtall Seuge	Carex aiopecolaea		
• •	Pack's Sodgo	Carex backii	_	
(Sedges)	Back's Sedge	Curex buckii	E	
Cyperaceae (Sedges)	Pailoy's Sadgo	Carex baileyi	Т	
Cyperaceae	Bailey's Sedge	Curex bulleyi	<u> </u>	
(Sedges)	Bush's Sedge	Carex bushii	E	
Cyperaceae	Chestnut-colored	Curex busilii	<u> </u>	
(Sedges)	Sedge	Carex castanea	E	
Cyperaceae	Jeuge	Carex castanea	<u> </u>	
(Sedges)	Creeping Sedge	Carex chordorrhiza	E	
Cyperaceae	Creeping seage	Carex enoraditing		
(Sedges)	Davis' Sedge	Carex davisii	E	
Cyperaceae	Buvis seage	Carex davisii		
(Sedges)	Handsome Sedge	Carex formosa	Т	
Cyperaceae		- Carenjermesa		
(Sedges)	Glaucescent Sedge	Carex glaucodea	E	
Cyperaceae	Slender Woodland	granden grande		
(Sedges)	Sedge	Carex gracilescens	E	
Cyperaceae				
(Sedges)	Gray's Sedge	Carex grayi	Т	
Cyperaceae	, ,	, ,		
(Sedges)	Hitchcock's Sedge	Carex hitchcockiana	SC	
Cyperaceae				
(Sedges)	Shore Sedge	Carex lenticularis	T	
Cyperaceae				
(Sedges)	Glaucous Sedge	Carex livida	E	
Cyperaceae				
(Sedges)	False Hop-sedge	Carex lupuliformis	E	
Cyperaceae				
(Sedges)	Midland Sedge	Carex mesochorea	E	
Cyperaceae				
(Sedges)	Michaux's Sedge	Carex michauxiana	E	
Cyperaceae				
(Sedges)	Mitchell's Sedge	Carex mitchelliana	T	
Cyperaceae				
(Sedges)	Rich Woods Sedge	Carex oligocarpa	T	
Cyperaceae				
(Sedges)	Few-seeded Sedge	Carex oligosperma	E	
Cyperaceae				
(Sedges)	Few-flowered Sedge	Carex pauciflora	E	
Cyperaceae				
(Sedges)	Variable Sedge	Carex polymorpha	E	
Cyperaceae	Schweinitz's Sedge	Carex schweinitzii	E	

(Sedges)				
Cyperaceae				
(Sedges)	Dioecious Sedge	Carex sterilis	Т	
Cyperaceae				
(Sedges)	Walter's Sedge	Carex striata	E	
Cyperaceae				
(Sedges)	Fen Sedge	Carex tetanica	SC	
Cyperaceae				
(Sedges)	Hairy-fruited Sedge	Carex trichocarpa	SC	
Cyperaceae	Trainy trained deage	Car on energean pu		
(Sedges)	Tuckerman's Sedge	Carex tuckermanii	E	
Cyperaceae	Tuckerman 3 Seage	Carex edekermann		
(Sedges)	Cat-tail Sedge	Carex typhina	Т	
		curex typiiiiu	'	
Cyperaceae	Engelmann's		_	
(Sedges)	Umbrella-sedge	Cyperus engelmannii	T	
Cyperaceae				
(Sedges)	Houghton's Flatsedge	Cyperus houghtonii	E	
Cyperaceae				
(Sedges)	Wright's Spike-rush	Eleocharis diandra	E	
Cyperaceae	Intermediate Spike-			
(Sedges)	sedge	Eleocharis intermedia	T	
Cyperaceae	Tiny-fruited Spike-	Eleocharis microcarpa var.		
(Sedges)	rush or Spike-sedge	filiculmis	E	
Cyperaceae	Ovate Spike-rush or			
(Sedges)	Spike-sedge	Eleocharis ovata	E	
Cyperaceae	Few-flowered Spike-	Lieocharis ovata		+
(Sedges)	sedge	Eleocharis quinqueflora	E	
	-	Eleocharis quiriquejiora		+
Cyperaceae	Three-angled Spike-	Floorbaris trisactata		
(Sedges)	sedge	Eleocharis tricostata	E	
Cyperaceae	Claudau Cattau ausas	Friends annual annuals	_	
(Sedges)	Slender Cotton-grass	Eriophorum gracile	T	<u> </u>
Cyperaceae			_	
(Sedges)	Dwarf Bulrush	Lipocarpha micrantha	T	
Cyperaceae			1_	
(Sedges)	Capillary Beak-sedge	Rhynchospora capillacea	E	
Cyperaceae	Inundated Horned-			
(Sedges)	sedge	Rhynchospora inundata	Т	
Cyperaceae	Short-beaked Bald-			
(Sedges)	sedge	Rhynchospora nitens	T	
Cyperaceae	Long-beaked Bald-			
(Sedges)	sedge	Rhynchospora scirpoides	SC	
Cyperaceae				
(Sedges)	Torrey's Beak-sedge	Rhynchospora torreyana	E	
Cyperaceae				
(Sedges)	Northeastern Bulrush	Scirpus ancistrochaetus	E	E
Cyperaceae	Long's Bulrush	Scirpus longii	Т	

(Sedges)				
Cyperaceae (Sedges)	Papillose Nut-sedge	Scleria pauciflora	E	Includes s.p. var. pauciflora and s.p. var. caroliniana
Cyperaceae (Sedges)	Tall Nut-sedge	Scleria triglomerata	E	
Dryopteridaceae (Wood Ferns)	Braun's Holly-fern	Polystichum braunii	E	
Dryopteridaceae (Wood Ferns)	Smooth Woodsia	Woodsia glabella	E	
Elatinaceae (Waterworts)	American Waterwort	Elatine americana	E	
Equisetaceae (Horsetails)	Dwarf Scouring-rush	Equisetum scirpoides	SC	
Ericaceae (Laurels, Blueberries)	Pink Pyrola	Pyrola asarifolia ssp. asarifolia	E	
Ericaceae (Laurels, Blueberries)	One-flowered Pyrola	Moneses uniflora	SC	
Ericaceae (Laurels, Blueberries)	Great Laurel	Rhododendron maximum	Т	
Ericaceae (Laurels, Blueberries)	Mountain Cranberry	Vaccinium vitis-idaea ssp. minus	E	
Eriocaulaceae (Pipeworts)	Parker's Pipewort	Eriocaulon parkeri	E	
Fabaceae (Beans, Peas, Clovers)	Large-bracted Tick- trefoil	Desmodium cuspidatum	Т	
Fabaceae (Beans, Peas, Clovers)	Wild Senna	Senna hebecarpa	E	
Fagaceae (Oaks, Beeches)	Bur Oak	Quercus macrocarpa	SC	
Fagaceae (Oaks, Beeches)	Yellow Oak	Quercus muehlenbergii	Т	
Fumariaceae (Fumitories)	Climbing Fumitory	Adlumia fungosa	SC	
Gentianaceae (Gentians)	Andrews' Bottle Gentian	Gentiana andrewsii	E	
Gentianaceae (Gentians)	Spurred Gentian	Halenia deflexa	E	
Gentianaceae (Gentians)	Slender Marsh Pink	Sabatia campanulata	E	
Gentianaceae (Gentians) Gentianaceae	Plymouth Gentian	Sabatia kennedyana	SC	
(Gentians)	Sea Pink	Sabatia stellaris	E	

Grossulariaceae (Currants)	Bristly Black Currant	Ribes lacustre	SC	
,	Bristly Black Currant	Nibes ideastre	30	
Haemodoraceae (Redroots)	Redroot	Lachnanthes caroliana	SC	
Haloragaceae (Water-milfoils)	Alternate-flowered Water-milfoil	Myriophyllum alterniflorum	E	
Haloragaceae (Water-milfoils)	Farwell's Water- milfoil	Myriophyllum farwellii	E	
Haloragaceae (Water-milfoils)	Pinnate Water-milfoil	Myriophyllum pinnatum	SC	
Haloragaceae (Water-milfoils)	Comb Water-milfoil	Myriophyllum verticillatum	E	
Hydrophyllaceae (Waterleaves)	Broad Waterleaf	Hydrophyllum canadense	E	
Hymenophyllaceae (Filmy-ferns)	Appalachian Bristle- fern	Trichomanes intricatum	E	
Iridaceae (Irises)	Sandplain Blue-eyed Grass	Sisyrinchium fuscatum	SC	
Iridaceae (Irises)	Slender Blue-eyed Grass	Sisyrinchium mucronatum	E	
Isoetaceae (Quillworts)	Acadian Quillwort	Isoetes acadiensis	E	
Isoetaceae (Quillworts)	Lake Quillwort	Isoetes lacustris	E	
Juncaceae (Rushes)	Weak Rush	Juncus debilis	E	
Juncaceae (Rushes)	Thread Rush	Juncus filiformis	E	
Juncaceae (Rushes)	Black-fruited Woodrush	Luzula parviflora ssp. melanocarpa	E	
Lamiaceae (Mints)	Purple Giant-hyssop	Agastache scrophulariifolia	E	
Lamiaceae (Mints)	Downy Wood-mint	Blephilia ciliata	E	
Lamiaceae (Mints)	Hairy Wood-mint	Blephilia hirsuta	E	
Lamiaceae (Mints)	Gypsywort	Lycopus rubellus	E	
Lamiaceae (Mints)	False Pennyroyal	Trichostema brachiatum	E	
Lentibulariaceae (Bladderworts)	Resupinate Bladderwort	Utricularia resupinata	Т	
Lentibulariaceae (Bladderworts)	Subulate Bladderwort	Utricularia subulata	SC	
Liliaceae (Lilies)	Devil's-bit	Chamaelirium luteum	E	
Linaceae (Flaxes)	Rigid Flax	Linum medium var. texanum	Т	
Lycopodiaceae (Clubmosses)	Foxtail Clubmoss	Lycopodiella alopecuroides	E	

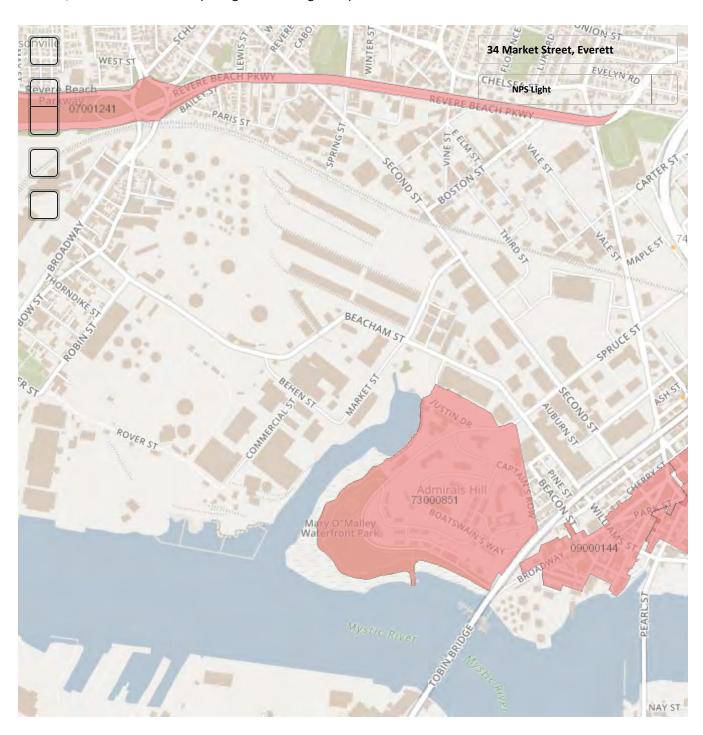

Lycopodiaceae	Annalashian Firmosa	U. marria annua			
(Clubmosses)	Appalachian Firmoss	Huperzia appressa	E		
Lycopodiaceae (Clubmosses)	Mountain Firmoss	Huperzia selago	Е		
Lythraceae (Loosestrifes)	Toothcup	Rotala ramosior	E		
Magnoliaceae (Magnolias)	Sweetbay Magnolia	Magnolia virginiana	E		
Melastomataceae (Meadow Beauties)	Maryland Meadow Beauty	Rhexia mariana	E		
Moraceae (Mulberries)	Red Mulberry	Morus rubra	E		
Nymphaeaceae (Water Lilies)	Tiny Cow-lily	Nuphar microphylla	E		
Onagraceae (Evening Primroses)	Many-fruited False- loosestrife	Ludwigia polycarpa	E		
Onagraceae (Evening Primroses)	Round-fruited False- loosestrife	Ludwigia sphaerocarpa	E		
Ophioglossaceae (Grape Ferns)	Adder's-tongue Fern	Ophioglossum pusillum	Т		
Orchidaceae (Orchids)	Putty-root	Aplectrum hyemale	E		
Orchidaceae (Orchids)	Arethusa	Arethusa bulbosa	Т		
Orchidaceae (Orchids)	Autumn Coralroot	Corallorhiza odontorhiza	SC		
Orchidaceae (Orchids) Orchidaceae	Ram's-head Lady's- slipper	Cypripedium arietinum	E		
(Orchids) Orchidaceae	Yellow Lady's-slipper	Cypripedium parviflorum	E		
(Orchids)	Showy Lady's-slipper	Cypripedium reginae	E		
Orchidaceae (Orchids)	Dwarf Rattlesnake- plantain	Goodyera repens	E		
Orchidaceae (Orchids)	Small Whorled Pogonia	Isotria medeoloides	E	Т	
Orchidaceae (Orchids)	Lily-leaf Twayblade	Liparis liliifolia	Т		
Orchidaceae (Orchids)	Heartleaf Twayblade	Listera cordata	E		
Orchidaceae (Orchids)	Bayard's Green Adder's-mouth	Malaxis bayardii	E		
Orchidaceae (Orchids)	White Adder's-mouth	Malaxis monophyllos var. brachypoda	E		

Orchidaceae		I	
(Orchids)	Green Adder's Mouth	Malaxis unifolia	т
Orchidaceae	Green / tader 5 modell	Trianasiis ariigena	
(Orchids)	Southern Twayblade	Neottia bifolia	т
Orchidaceae	Crested Fringed		
(Orchids)	Orchid	Platanthera cristata	E
Orchidaceae			
(Orchids)	Leafy White Orchis	Platanthera dilatata	Т
Orchidaceae		Platanthera flava var.	
(Orchids)	Pale Green Orchis	herbiola	т
Orchidaceae	Hooded Ladies'-		
(Orchids)	tresses	Spiranthes romanzoffiana	E
Orchidaceae	Grass-leaved Ladies'-	,	
(Orchids)	tresses	Spiranthes vernalis	Т
Orchidaceae	11 23 23	Spirantines vernans	
(Orchids)	Cranefly Orchid	Tipularia discolor	E
Orchidaceae			_
(Orchids)	Nodding Pogonia	Triphora trianthophora	E
Oxalidaceae (Wood-	3 3	,	
sorrels)	Violet Wood-sorrel	Oxalis violacea	E
30110.37	Violet Viola Soliter	exams trefacea	
Poaceae (Grasses)	Annual Peanutgrass	Amphicarpum amphicarpon	E
· ·		· · · · · · · · · · · · · · · · · · ·	
Poaceae (Grasses)	Purple Needlegrass	Aristida purpurascens	T
Poaceae (Grasses)	Seabeach Needlegrass	Aristida tuberculosa	T
Poaceae (Grasses)	Reed Bentgrass	Calamagrostis pickeringii	E
	New England	Calamagrostis stricta ssp.	
Poaceae (Grasses)	Northern Reedgrass	inexpansa	E
		Deschampsia cespitosa ssp.	
Poaceae (Grasses)	Tufted Hairgrass	glauca	E
	Mattamuskeet Panic-	Dichanthelium dichotomum	
Poaceae (Grasses)	grass	ssp. mattamuskeetense	E
·	Commons's Panic-	Dichanthelium ovale ssp.	
Poaceae (Grasses)	grass	pseudopubescens	SC
Touceae (Grasses)	81 433	pseudopubeseens	
Poaceae (Grasses)	Rough Panic-grass	Dichanthelium scabriusculum	Т
Podcede (Grasses)	Nough Famic-grass	Dichantheliam scabhascalam	
. (6		6. 1 . 1	
Poaceae (Grasses)	Wright's Panic-grass	Dichanthelium wrightianum	SC
Poaceae (Grasses)	Hairy Wild Rye	Elymus villosus	E
Poaceae (Grasses)	Frank's Lovegrass	Eragrostis frankii	SC
		Leptochloa fusca ssp.	
Poaceae (Grasses)	Saltpond Grass	fascicularis	Т
Poaceae (Grasses)	Sea Lyme-grass	Leymus mollis	E

Poaceae (Grasses)	Woodland Millet	Milium effusum	т	
	Gattinger's Panic-	Panicum philadelphicum ssp.		
Poaceae (Grasses)	grass	gattingeri	SC	
	Philadelphia Panic-	Panicum philadelphicum ssp.		
Poaceae (Grasses)	grass	philadelphicum	SC	
	Long-leaved Panic-	Panicum rigidulum ssp.		
Poaceae (Grasses)	grass	pubescens	Т	
Poaceae (Grasses)	Drooping Speargrass	Poa saltuensis ssp. languida	E	
Poaceae (Grasses)	Bristly Foxtail	Setaria parviflora	SC	
Poaceae (Grasses)	Salt Reedgrass	Spartina cynosuroides	Т	
Poaceae (Grasses)	Shining Wedgescale	Sphenopholis nitida	Т	
Poaceae (Grasses)	Swamp Oats	Sphenopholis pensylvanica	Т	
Poaceae (Grasses)	Small Dropseed	Sporobolus neglectus	E	
Poaceae (Grasses)	Northern Gama-grass	Tripsacum dactyloides	E	
Poaceae (Grasses)	Spiked False-oats	Trisetum spicatum	E	
Polygonaceae				
(Docks, Knotweeds)	Pondshore Knotweed	Persicaria puritanorum	SC	
Polygonaceae				
(Docks, Knotweeds)	Strigose Knotweed	Persicaria setacea	Т	
Polygonaceae				
(Docks, Knotweeds)	Sea-beach Knotweed	Polygonum glaucum	SC	
Polygonaceae				
(Docks, Knotweeds)	Seabeach Dock	Rumex pallidus	Т	
Polygonaceae				
(Docks, Knotweeds)	Swamp Dock	Rumex verticillatus	Т	
Portulacaceae	Narrow-leaved Spring			
(Spring Beauties)	Beauty	Claytonia virginica	E	
Potamogetonaceae				
(Pondweeds)	Algae-like Pondweed	Potamogeton confervoides	Т	
Potamogetonaceae				
(Pondweeds)	Fries' Pondweed	Potamogeton friesii	E	
Potamogetonaceae				
(Pondweeds)	Hill's Pondweed	Potamogeton hillii	SC	
Potamogetonaceae				
(Pondweeds)	Ogden's Pondweed	Potamogeton ogdenii	E	
Potamogetonaceae	Straight-leaved	Dotamogator strictifuling	_	
(Pondweeds)	Pondweed	Potamogeton strictifolius	E	
Potamogetonaceae	Vacoule Dandurand	Dotamogaton vasco:		
(Pondweeds)	Vasey's Pondweed	Potamogeton vaseyi	E	
Ranunculaceae (Buttercups)	Black Cohosh	Actaea racemosa		
(buttercups)	DIACK COHOSH	Actaea racemosa	E	

Ranunculaceae					
(Buttercups)	Purple Clematis	Clematis occidentalis	SC		
Ranunculaceae			_		
(Buttercups)	Golden Seal	Hydrastis canadensis	E		
Ranunculaceae	Tiny-flowered	Danis and a majoramethica	_		
(Buttercups)	Buttercup	Ranunculus micranthus	E		
Ranunculaceae (Buttercups)	Bristly Buttercup	Ranunculus pensylvanicus	SC		
Rosaceae (Roses,	Small-flowered	Kununculus pensylvunicus	30		
Shadbushes)	Agrimony	Agrimonia parviflora	E		
Rosaceae (Roses,	7.8	riginnema parvijiera	_		
Shadbushes)	Hairy Agrimony	Agrimonia pubescens	Т		
Rosaceae (Roses,	, , ,	,			
Shadbushes)	Bartram's Shadbush	Amelanchier bartramiana	Т		
Rosaceae (Roses,					
Shadbushes)	Roundleaf Shadbush	Amelanchier sanguinea	SC		
Rosaceae (Roses,					
Shadbushes)	Bicknell's Hawthorn	Crataegus bicknellii	E		
Rosaceae (Roses,					
Shadbushes)	Barren Strawberry	Geum fragarioides	SC		
Rosaceae (Roses,					
Shadbushes)	Sandbar Cherry	Prunus pumila var. depressa	Т		
Rosaceae (Roses,			_		
Shadbushes)	Northern Prickly Rose	Rosa acicularis ssp. sayi	E		
Rosaceae (Roses,	Northern Mountain-	Caultura da saus	_		
Shadbushes)	ash	Sorbus decora	E		
Rubiaceae (Bedstraws, Bluets)	Northern Bedstraw	Galium boreale	E		
,	Northern beustraw	Gunum boreale	E		
Rubiaceae (Bedstraws, Bluets)	Labrador Bedstraw	Galium labradoricum	Т		
Rubiaceae	Eddiddol Eddstidw	Ganamiaoradoricam	•		
(Bedstraws, Bluets)	Long-leaved Bluet	Houstonia longifolia	Е		
Salicaceae (Willows)	Swamp Cottonwood	Populus heterophylla	E		
Salicaceae (Willows)	Sandbar Willow	Salix exigua ssp. interior	Т		
Scheuchzeriaceae					
(Pod-grasses)	Pod-grass	Scheuchzeria palustris	E		
Schizaeaceae					
(Climbing Ferns)	Climbing Fern	Lygodium palmatum	SC		
Scrophulariaceae					
(Figworts)	Sandplain Gerardia	Agalinis acuta	E	E	
Scrophulariaceae	Winged Monkey-				
(Figworts)	flower	Mimulus alatus	E		

Scrophularceae (Figworts)	Muskflower	Mimulus moschatus	Т	
Scrophulariaceae (Figworts)	Swamp Lousewort	Pedicularis lanceolata	E	
Scrophulariaceae (Figworts)	Hairy Beardtongue	Penstemon hirsutus	E	
Scrophulariaceae (Figworts)	Sessile Water- speedwell	Veronica catenata	E	
Scrophulariaceae (Figworts)	Culver's-root	Veronicastrum virginicum	Т	
Sparganiaceae (Burreeds)	Small Bur-reed	Sparganium natans	E	
Verbenaceae (Vervains)	Narrow-leaved Vervain	Verbena simplex	E	
Violaceae (Violets)	Sand Violet	Viola adunca	SC	
Violaceae (Violets)	Britton's Violet	Viola brittoniana	T	
Viscaceae (Christmas-	Dwarf Mistletee	Arcouth objure pusillure	50	
mistletoes)	Dwarf Mistletoe	Arceuthobium pusillum	SC	


APPENDIX E

National Historic Preservation Act Review

National Register of Hi...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatia...

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm)

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Everett, Chelsea; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

			_	
Inv. No.	Property Name	Street	Town	Year
CLS.A	Bellingham Square District		Chelsea	
CLS.B CLS.C	Chelsea Square Historic District Downtown Chelsea Residential District		Chelsea Chelsea	
CLS.D	Naval Hospital, Boston Historic District		Chelsea	
CLS.E	Metropolitan Park System of Greater Boston		Chelsea	
CLS.F	Heard - Maple Streets Industrial Area		Chelsea	
CLS.G	Marginal Street Industrial Area		Chelsea	
CLS.H	Upper Broadway Industrial Area		Chelsea	
CLS.I CLS.J	Webster - Spencer Avenues Industrial Area Chelsea Garden Cemetery		Chelsea Chelsea	
CLS.K	Eleanor Street Area		Chelsea	
CLS.L	Fitz Terrace Area		Chelsea	
CLS.M	Soldiers' Home		Chelsea	
CLS.N	Webster Avenue Area		Chelsea	
CLS.O CLS.P	Chestnut Street Area High Street Area		Chelsea Chelsea	
CLS.P CLS.Q	Howell Court Area		Chelsea	
CLS.R	Pine Street Area		Chelsea	
CLS.S	Metropolitan Park System of Greater Boston		Chelsea	
CLS.T	Revere Beach Parkway		Chelsea	
CLS.U	Forbes Lithograph Manufacturing Company		Chelsea	
CLS.V CLS.W	Saint Stanislaus Bishop and Martyr Church Complex Winnisimmet Streetscape		Chelsea Chelsea	
CLS.X	Pembroke Streetscape		Chelsea	
CLS.Y	Williams Street Area		Chelsea	
CLS.Z	School Streetscape		Chelsea	
CLS.AA	Front Streetscape		Chelsea	
CLS.AB	Eldridge Place Streetscape		Chelsea	
CLS.AC CLS.AD	Beacon Street, 5-11 Medford Street, 1-35		Chelsea Chelsea	
CLS.AE	Medford Street, 2-56		Chelsea	
CLS.AF	Beacon Street, 16-22 and Tremont Street, 34		Chelsea	
CLS.AG	Beacon Street, 27-41		Chelsea	
CLS.AH	Beacon Street, 11-21		Chelsea	
CLS.AI CLS.AJ	Beacon Street, 50-66 Beacon Street, 24-42		Chelsea	
CLS.AJ CLS.AK	Broadway, 49-69		Chelsea	
CLS.AL	Marlboro Streetscape		Chelsea	
CLS.AM	Grove Streetscape		Chelsea	
CLS.AN	Atwood and McManus Box Company		Chelsea	
CLS.602	Naval Hospital Chapel	6 Admirals Way	Chelsea	1945
CLS.607 CLS.584	Cardy, William T. and Sons Paper Box Company Boston Naval Hospital - Quarters A	214 Arlington St 50 Commandants Way	Chelsea Chelsea	1908 c 1856
CLS.585	Boston Naval Hospital - Quarters A	100 Commandants Way	Chelsea	c 1836
CLS.587	Boston Naval Hospital - Building 3	255 Commandants Way	Chelsea	c 1836
CLS.586	Boston Naval Hospital - Building 2	285 Commandants Way	Chelsea	c 1836
CLS.425	Bennett Houses	9-11 Williams St	Chelsea	r 1860
CLS.292		35 Williams St 38 Williams St	Chelsea	
CLS.289 CLS.290		40-42 Williams St	Chelsea Chelsea	
CLS.293		43 Williams St	Chelsea	
CLS.291		88-90 Williams St	Chelsea	
CLS.711	Locke, Edwin House	120 Williams St	Chelsea	r 1845
CLS.611	Southwest Cone Company - Eastern Baking Company	201 Williams St	Chelsea	1916
EVR.A	Liberty Street Area		Everett	
EVR.B EVR.C	Pleasant View - Villa - Arlington Streets Area Mount Washington		Everett Everett	
EVR.D	Everett Square		Everett	
EVR.E	Everett - Prescott Streets Area		Everett	
EVR.F	Chestnut Streetscape		Everett	
EVR.G	Waverly Streetscape		Everett	
EVR.H	Sherman - Gilmore Streets Area Metropolitan Park System of Greater Roston		Everett	
EVR.I EVR.J	Metropolitan Park System of Greater Boston Hampshire Streetscape		Everett Everett	
EVR.K	Hendersonville		Everett	
EVR.L	Thurman Park		Everett	
EVR.M	Belmont Streetscape		Everett	
EVR.N	Ferry Streetscape		Everett	
EVR.O EVR.P	Dartmouth Streetscape Cleveland Streetscape		Everett	
EVR.P EVR.Q	Glendale Streetscape		Everett Everett	
EVR.R	Vernal Streetscape		Everett	
EVR.S	Reynolds Avenue Streetscape		Everett	
EVR.T	Porter Streetscape		Everett	
EVR.U	Broadway - Charlton Street Industrial Area		Everett	
EVR.V EVR.W	General Electric Company Foundry New England Oil, Paint and Varnish Company		Everett Everett	
EVR.W EVR.X	Paris - Garvey - Springs Streets Industrial Area		Everett Everett	
EVR.X EVR.Y	Saint Therese Roman Catholic Church Complex		Everett	
EVR.Z	Metropolitan Park System of Greater Boston		Everett	
EVR.AA	Revere Beach Parkway		Everett	
EVR.AB	Everett Jewish Cemeteries		Everett	
EVR.AC	Glendale Square Glenwood Cemetery		Everett Everett	
EVR.AD EVR.AE	Woodlawn Cemetery		Everett	
EVR.190	Colonial Beacon Oil Refinery Business Office	30 Beacham St	Everett	1926
	•			

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L2024779

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Iliana Alvarado
Phone: (617) 886-7448
Project Name: BMT-CULVERT

Project Number: 133092-009

Report Date: 06/23/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number: Report Date:

L2024779

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2024779-01	HA20-C6_06122020	WATER	EVERETT, MA	06/12/20 11:15	06/12/20
L2024779-02	OUTFALL_06122020	WATER	EVERETT, MA	06/12/20 12:30	06/12/20

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

Case Narrative (continued)

Report Submission

June 23, 2020: This final report includes the results of all requested analyses.

June 23, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Total Metals

L2024779-01 and -02 (all samples): The sample has elevated detection limits for all elements, with the exception of iron and mercury, due to the dilution required by matrix interferences encountered during analysis.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sufani Morrissey-Tiffani Morrissey

Authorized Signature:

Title: Technical Director/Representative

Date: 06/23/20

ORGANICS

VOLATILES

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number: L2024779

Report Date: 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: Date Received: 06/12/20 HA20-C6_06122020 Sample Location: Field Prep: Refer to COC EVERETT, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 06/14/20 13:17

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough Lab							
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
Tetrachloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	5.0		1	
1,3-Dichlorobenzene	ND		ug/l	5.0		1	
1,4-Dichlorobenzene	ND		ug/l	5.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
Acetone	ND		ug/l	10		1	
Methyl tert butyl ether	ND		ug/l	10		1	
Tert-Butyl Alcohol	ND		ug/l	100		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1	

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	106		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	106		60-140	

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 06/14/20 13:17

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	1 - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			99			60-140
4-Bromofluorobenzene			116			60-140

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 06/16/20 14:00

Analytical Date: 06/16/20 15:13

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α
1,2,3-Trichloropropane	ND		ug/l	0.029		1	Α

Project Name:BMT-CULVERTLab Number:L2024779

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 06/14/20 12:19

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample(s): 01	Batch:	WG1381622-10
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: BMT-CULVERT Lab Number: L2024779

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 06/14/20 12:19

Analyst: GT

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1381622-10

		Acceptance		
Surrogate	%Recovery C	Qualifier Criteria		
Pentafluorobenzene	107	60-140		
Fluorobenzene	99	60-140		
4-Bromofluorobenzene	106	60-140		

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 06/14/20 12:19

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1381669-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qu	alifier Criteria
Fluorobenzene	99	60-140
4-Bromofluorobenzene	124	60-140

Project Name: Lab Number: **BMT-CULVERT** L2024779

Project Number: Report Date: 133092-009 06/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 06/16/20 14:23 06/16/20 14:00 **Extraction Date:**

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	r sample(s)	: 01	Batch: WG1382	212-1	
1,2-Dibromoethane	ND		ug/l	0.010		А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number: L2024779

Report Date: 06/23/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 01	Batch: WG1	1381622-9				
Methylene chloride	95		-		60-140	-		28
1,1-Dichloroethane	130		-		50-150	-		49
Carbon tetrachloride	100		-		70-130	-		41
1,1,2-Trichloroethane	85		-		70-130	-		45
Tetrachloroethene	105		-		70-130	-		39
1,2-Dichloroethane	90		-		70-130	-		49
1,1,1-Trichloroethane	100		-		70-130	-		36
Benzene	95		-		65-135	-		61
Toluene	95		-		70-130	-		41
Ethylbenzene	90		-		60-140	-		63
Vinyl chloride	80		-		5-195	-		66
1,1-Dichloroethene	100		-		50-150	-		32
cis-1,2-Dichloroethene	110		-		60-140	-		30
Trichloroethene	100		-		65-135	-		48
1,2-Dichlorobenzene	100		-		65-135	-		57
1,3-Dichlorobenzene	95		-		70-130	-		43
1,4-Dichlorobenzene	95		-		65-135	-		57
p/m-Xylene	112		-		60-140	-		30
o-xylene	95		-		60-140	-		30
Acetone	86		-		40-160	-		30
Methyl tert butyl ether	95		-		60-140	-		30
Tert-Butyl Alcohol	100		-		60-140	-		30
Tertiary-Amyl Methyl Ether	85		-		60-140	-		30

Project Name: BMT-CULVERT Lab Number:

L2024779

Project Number:

133092-009

Report Date:

Qual

06/23/20

LCS Parameter

%Recovery

Qual

LCSD %Recovery

Qual

%Recovery Limits

RPD

RPD

Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1381622-9

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	107		60-140
Fluorobenzene	101		60-140
4-Bromofluorobenzene	108		60-140

Project Name: BMT-CULVERT

Lab Number:

L2024779

Project Number: 13

133092-009

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1381669-	-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	92 132				60-140 60-140

Project Name: BMT-CULVERT

Lab Number:

L2024779

Project Number: 133092-009 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sar	nple(s): 01	Batch: WG1382	212-2					
1,2-Dibromoethane	101		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	93		-		80-120	-			Α
1,2,3-Trichloropropane	93		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT
Project Number: 133092-009

Lab Number:

L2024779

Report Date:

Parameter	Native Sample	MS Added	MS Found %	MS &Recovery	Qual	MSD Found	MSD %Recovery	F Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 01	QC Batch	ID: WG13	882212-3	QC Sample:	L202390	3-01 Clie	ent ID: N	//S Sam	ple	
1,2-Dibromoethane	ND	0.246	0.256	104		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.246	0.249	101		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.246	0.234	95		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 06/14/20 04:43

Analytical Date: 06/16/20 16:59

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.20		1
Butyl benzyl phthalate	ND		ug/l	5.00		1
Di-n-butylphthalate	ND		ug/l	5.00		1
Di-n-octylphthalate	ND		ug/l	5.00		1
Diethyl phthalate	ND		ug/l	5.00		1
Dimethyl phthalate	ND		ug/l	5.00		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	107		42-122	
2-Fluorobiphenyl	96		46-121	
4-Terphenyl-d14	91		47-138	

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01 Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 06/14/20 04:46
Analytical Date: 06/15/20 20:44

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	M - Westborough La	ıb					
Acenaphthene	0.395		ug/l	0.100		1	
Fluoranthene	8.27		ug/l	0.100		1	
Naphthalene	3.00		ug/l	0.100		1	
Benzo(a)anthracene	2.67		ug/l	0.100		1	
Benzo(a)pyrene	2.52		ug/l	0.100		1	
Benzo(b)fluoranthene	2.91		ug/l	0.100		1	
Benzo(k)fluoranthene	1.11		ug/l	0.100		1	
Chrysene	1.96		ug/l	0.100		1	
Acenaphthylene	1.98		ug/l	0.100		1	
Anthracene	1.84		ug/l	0.100		1	
Benzo(ghi)perylene	1.65		ug/l	0.100		1	
Fluorene	0.836		ug/l	0.100		1	
Phenanthrene	3.94		ug/l	0.100		1	
Dibenzo(a,h)anthracene	0.372		ug/l	0.100		1	
Indeno(1,2,3-cd)pyrene	1.70		ug/l	0.100		1	
Pyrene	6.16		ug/l	0.100		1	
Pentachlorophenol	ND		ug/l	1.00		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	60	25-87	
Phenol-d6	43	16-65	
Nitrobenzene-d5	82	42-122	
2-Fluorobiphenyl	91	46-121	
2,4,6-Tribromophenol	103	45-128	
4-Terphenyl-d14	84	47-138	

L2024779

Project Name: BMT-CULVERT Lab Number:

> Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 06/16/20 10:33
 Extraction Date:
 06/14/20 04:43

Analyst: SZ

Parameter	Result	Qualifier Units	RL	MDL
Semivolatile Organics by GC/N	IS - Westborough	Lab for sample(s):	01 Batch:	WG1381406-1
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.20	
Butyl benzyl phthalate	ND	ug/l	5.00	
Di-n-butylphthalate	ND	ug/l	5.00	
Di-n-octylphthalate	ND	ug/l	5.00	
Diethyl phthalate	ND	ug/l	5.00	
Dimethyl phthalate	ND	ug/l	5.00	

		Acceptance		
Surrogate	%Recovery	Qualifier C	riteria	
			_	
Nitrobenzene-d5	93	42	2-122	
2-Fluorobiphenyl	88	46	6-121	
4-Terphenyl-d14	95	47	7-138	

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number: L2024779

Report Date: 06/23/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 06/15/20 20:27

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 06/14/20 04:46

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SI	M - Westbo	rough Lab	for sample(s): 01	Batch: WG1381407-1
Acenaphthene	ND		ug/l	0.100	
Fluoranthene	ND		ug/l	0.100	
Naphthalene	ND		ug/l	0.100	
Benzo(a)anthracene	ND		ug/l	0.100	
Benzo(a)pyrene	ND		ug/l	0.100	
Benzo(b)fluoranthene	ND		ug/l	0.100	
Benzo(k)fluoranthene	ND		ug/l	0.100	
Chrysene	ND		ug/l	0.100	
Acenaphthylene	ND		ug/l	0.100	
Anthracene	ND		ug/l	0.100	
Benzo(ghi)perylene	ND		ug/l	0.100	
Fluorene	ND		ug/l	0.100	
Phenanthrene	ND		ug/l	0.100	
Dibenzo(a,h)anthracene	ND		ug/l	0.100	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.100	
Pyrene	ND		ug/l	0.100	
Pentachlorophenol	ND		ug/l	1.00	

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	51	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	68	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	83	45-128
4-Terphenyl-d14	89	47-138

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number:

L2024779

06/23/20

Report Date:

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Associa	ated sample(s)	: 01 Batch:	WG1381406	5-2				
Bis(2-ethylhexyl)phthalate	103		-		29-137	-		82	
Butyl benzyl phthalate	103		-		1-140	-		60	
Di-n-butylphthalate	107		-		8-120	-		47	
Di-n-octylphthalate	107		-		19-132	-		69	
Diethyl phthalate	98		-		1-120	-		100	
Dimethyl phthalate	95		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	101		42-122
2-Fluorobiphenyl	90		46-121
4-Terphenyl-d14	95		47-138

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number: L2024779

Report Date: 06/23/20

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - West	borough Lab Ass	sociated sam	nple(s): 01 Bate	ch: WG13	81407-2				
Acenaphthene	82		-		60-132	-		30	
Fluoranthene	87		-		43-121	-		30	
Naphthalene	79		-		36-120	-		30	
Benzo(a)anthracene	89		-		42-133	-		30	
Benzo(a)pyrene	89		-		32-148	-		30	
Benzo(b)fluoranthene	91		-		42-140	-		30	
Benzo(k)fluoranthene	83		-		25-146	-		30	
Chrysene	83		-		44-140	-		30	
Acenaphthylene	91		-		54-126	-		30	
Anthracene	85		-		43-120	-		30	
Benzo(ghi)perylene	83		-		1-195	-		30	
Fluorene	83		-		70-120	-		30	
Phenanthrene	80		-		65-120	-		30	
Dibenzo(a,h)anthracene	92		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	110		-		1-151	-		30	
Pyrene	86		-		70-120	-		30	
Pentachlorophenol	101		-		38-152	-		30	

Project Name: BMT-CULVERT

Lab Number:

L2024779

Project Number: 133092-009

Report Date:

06/23/20

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1381407-2

Surrogate	LCS LC %Recovery Qual %Reco	SD very Qual	Acceptance Criteria
2-Fluorophenol	56		25-87
Phenol-d6	41		16-65
Nitrobenzene-d5	75		42-122
2-Fluorobiphenyl	83		46-121
2,4,6-Tribromophenol	93		45-128
4-Terphenyl-d14	91		47-138

PCBS

Project Name: BMT-CULVERT Lab Number: L2024779

Project Number: 133092-009 **Report Date:** 06/23/20

SAMPLE RESULTS

Lab ID: Date Collected: 06/12/20 11:15

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 06/15/20 13:36

Analytical Date: 06/16/20 05:37 Cleanup Method: EPA 3665A Analyst: CW Cleanup Date: 06/15/20

Cleanup Method: EPA 3660B Cleanup Date: 06/15/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/l	0.250		1	Α			
Aroclor 1221	ND		ug/l	0.250		1	Α			
Aroclor 1232	ND		ug/l	0.250		1	Α			
Aroclor 1242	ND		ug/l	0.250		1	Α			
Aroclor 1248	ND		ug/l	0.250		1	Α			
Aroclor 1254	ND		ug/l	0.250		1	Α			
Aroclor 1260	ND		ug/l	0.200		1	Α			

Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	57		37-123	В
Decachlorobiphenyl	55		38-114	В
2,4,5,6-Tetrachloro-m-xylene	61		37-123	Α
Decachlorobiphenyl	60		38-114	Α

Project Name: BMT-CULVERT Lab Number: L2024779

> Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 06/16/20 05:49

Analyst: CW

Extraction Method: EPA 608.3
Extraction Date: 06/15/20 13:36
Cleanup Method: EPA 3665A
Cleanup Date: 06/15/20
Cleanup Method: EPA 3660B
Cleanup Date: 06/15/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch:	WG1381741	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		А

		Acceptance				
Surrogate	%Recovery Qualifie	r Criteria	Column			
0.45 C Tatasahlara as undana	O.F.	27.402				
2,4,5,6-Tetrachloro-m-xylene	65	37-123	В			
Decachlorobiphenyl	47	38-114	В			
2,4,5,6-Tetrachloro-m-xylene	64	37-123	Α			
Decachlorobiphenyl	55	38-114	Α			

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

Lab Number:

L2024779

Project Number: 133092-009

Report Date:

06/23/20

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s):	01 Batch:	WG1381741	-2				
Aroclor 1016	69		-		50-140	-		36	А
Aroclor 1260	62		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	65		37-123 B
Decachlorobiphenyl	44		38-114 B
2,4,5,6-Tetrachloro-m-xylene	66		37-123 A
Decachlorobiphenyl	52		38-114 A

METALS

06/12/20 11:15

Date Collected:

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Tatal Martala Maria	C-1.11-1										
Total Metals - Mans	stield Lab										
Antimony, Total	ND		mg/l	0.04000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Arsenic, Total	0.02568		mg/l	0.01000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00200		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.01000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.01000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Iron, Total	1.05		mg/l	0.100		2	06/16/20 13:0	2 06/18/20 19:55	EPA 3005A	19,200.7	BV
Lead, Total	0.01593		mg/l	0.01000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	06/16/20 13:5	8 06/16/20 18:27	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.02000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.05000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00400		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.1000		10	06/16/20 13:0	2 06/22/20 20:07	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	s - Mansfield	d Lab								
Hardness	3180		mg/l	1.32	NA	2	06/16/20 13:0	2 06/18/20 19:55	EPA 3005A	19,200.7	BV
General Chemistry	 Mansfiel 	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		06/22/20 20:07	NA	107,-	

06/12/20 12:30

Date Collected:

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

SAMPLE RESULTS

Lab ID: L2024779-02

Client ID: OUTFALL_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.04000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.01000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00200		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.01000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.01000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Iron, Total	0.688		mg/l	0.050		1	06/16/20 13:02	2 06/18/20 19:50	EPA 3005A	19,200.7	BV
Lead, Total	ND		mg/l	0.01000		10	06/16/20 13:02	06/22/20 19:12	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	06/16/20 13:58	3 06/16/20 18:29	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.02000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.05000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00400		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.1000		10	06/16/20 13:02	2 06/22/20 19:12	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfield	d Lab								
Hardness	1500		mg/l	0.660	NA	1	06/16/20 13:02	2 06/18/20 19:50	EPA 3005A	19,200.7	BV
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		06/22/20 19:12	NA	107,-	

Project Name: BMT-CULVERT
Project Number: 133092-009

Lab Number:

L2024779

Report Date:

06/23/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: Wo	G13821	35-1				
Iron, Total	ND	mg/l	0.050		1	06/16/20 13:02	06/18/20 13:59	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	le(s):	01-02 I	Batch: WG	1382135-1			
Hardness	ND	mg/l	0.660	NA	1	06/16/20 13:02	06/18/20 13:59	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-02 E	Batch: WO	G13821	39-1				
Antimony, Total	ND	mg/l	0.00400		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	06/16/20 13:02	06/22/20 15:23	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: BMT-CULVERT
Project Number: 133092-009

Lab Number:

L2024779

Report Date: 06/23/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01-02 E	Batch: Wo	G13821	140-1				
Mercury, Total	ND	mg/l	0.00020		1	06/16/20 13:58	06/16/20 18:04	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number: L2024779

Report Date: 06/23/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG1382	2135-2					
Iron, Total	106		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-02	Batch: WG138	2135-2				
Hardness	103		-		85-115	-		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG1382	2139-2					
Antimony, Total	87		-		85-115	-		
Arsenic, Total	104		-		85-115	-		
Cadmium, Total	106		-		85-115	-		
Chromium, Total	102		-		85-115	-		
Copper, Total	96		-		85-115	-		
Lead, Total	112		-		85-115	-		
Nickel, Total	101		-		85-115	-		
Selenium, Total	104		-		85-115	-		
Silver, Total	104		-		85-115	-		
Zinc, Total	105		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG1382	2140-2					
Mercury, Total	110		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number:

L2024779

Report Date:

06/23/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found %	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-02	QC Batc	h ID: WG138	2135-3	QC Sample	: L2024572-01	Client ID: MS	Sample	
Iron, Total	6.28	1	7.26	98		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lal	Associated	sample(s):	01-02 QC	Batch ID:	: WG1382135	5-3 QC Sampl	le: L2024572-01	Client ID:	MS Sample
Hardness	214	66.2	265	77		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-02	QC Batc	h ID: WG138	2135-7	QC Sample	: L2024572-02	Client ID: MS	Sample	
Iron, Total	9.10	1	9.62	52	Q	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lal	o Associated	sample(s):	01-02 QC	Batch ID:	: WG1382135	5-7 QC Sampl	le: L2024572-02	Client ID:	MS Sample
Hardness	212	66.2	262	76		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated sam	ple(s): 01-02	QC Batc	h ID: WG138	2139-3	QC Sample	: L2024572-01	Client ID: MS	Sample	
Antimony, Total	0.00505	0.5	0.5610	111		-	-	70-130	-	20
Arsenic, Total	0.00281	0.12	0.1265	103		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05440	107		-	-	70-130	-	20
Chromium, Total	0.00373	0.2	0.2095	103		-	-	70-130	-	20
Copper, Total	0.01495	0.25	0.2623	99		-	-	70-130	-	20
Lead, Total	0.01444	0.51	0.6432	123		-	-	70-130	-	20
Nickel, Total	0.00437	0.5	0.5184	103		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1249	104		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05214	104		-	-	70-130	-	20
Zinc, Total	0.1115	0.5	0.6464	107		-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number: L2024779

Report Date: 06/23/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bate	ch ID: WG1382139-	5 QC San	nple: L2024572-02	Client ID: MS	S Sample	
Antimony, Total	0.00501	0.5	0.5468	108	-	-	70-130	-	20
Arsenic, Total	0.00396	0.12	0.1263	102	-	-	70-130	-	20
Cadmium, Total	0.00023	0.051	0.05431	106	-	-	70-130	-	20
Chromium, Total	0.00661	0.2	0.2089	101	-	-	70-130	-	20
Copper, Total	0.02794	0.25	0.2670	96	-	-	70-130	-	20
Lead, Total	0.02718	0.51	0.6442	121	-	-	70-130	-	20
Nickel, Total	0.01121	0.5	0.5182	101	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1286	107	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05210	104	-	-	70-130	-	20
Zinc, Total	0.2475	0.5	0.6640	83	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bate	ch ID: WG1382140-	3 QC San	nple: L2024680-01	Client ID: MS	S Sample	
Mercury, Total	0.00027	0.005	0.00532	101	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: BMT-CULVERT Project Number: 133092-009

Lab Number:

L2024779

Report Date: 06/23/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch ID:	WG1382135-4 QC Sample:	L2024572-01	Client ID:	DUP Samp	e
Iron, Total	6.28	6.05	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch ID:	WG1382135-8 QC Sample:	L2024572-02	Client ID:	DUP Samp	e
Iron, Total	9.10	8.72	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch ID:	WG1382139-4 QC Sample:	L2024572-01	Client ID:	DUP Samp	e
Antimony, Total	0.00505	0.00717	mg/l	35	Q	20
Arsenic, Total	0.00281	0.00273	mg/l	3		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00373	0.00332	mg/l	12		20
Copper, Total	0.01495	0.01447	mg/l	3		20
Lead, Total	0.01444	0.01411	mg/l	2		20
Nickel, Total	0.00437	0.00396	mg/l	10		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1115	0.1093	mg/l	2		20

Lab Duplicate Analysis Batch Quality Control

Project Name: BMT-CULVERT Project Number: 133092-009

 Lab Number:
 L2024779

 Report Date:
 06/23/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1382139-6 QC Sample:	L2024572-02	Client ID:	DUP Sample	
Antimony, Total	0.00501	0.00604	mg/l	18		20
Arsenic, Total	0.00396	0.00398	mg/l	0		20
Cadmium, Total	0.00023	0.00021	mg/l	9		20
Chromium, Total	0.00661	0.00508	mg/l	26	Q	20
Copper, Total	0.02794	0.02079	mg/l	29	Q	20
Lead, Total	0.02718	0.02290	mg/l	17		20
Nickel, Total	0.01121	0.00511	mg/l	75	Q	20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.2475	0.1518	mg/l	48	Q	20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1382140-4 QC Sample:	L2024680-01	Client ID:	DUP Sample	
Mercury, Total	0.00027	0.00030	mg/l	13		20

INORGANICS & MISCELLANEOUS

06/12/20 11:15

Date Collected:

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

SAMPLE RESULTS

Lab ID: L2024779-01

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total Suspended	33.		mg/l	5.0	NA	1	-	06/14/20 14:11	121,2540D	AA
Cyanide, Total	0.278		mg/l	0.005		1	06/14/20 13:35	06/15/20 12:50	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/13/20 06:03	121,4500CL-D	JA
pH (H)	8.1		SU	-	NA	1	-	06/13/20 10:39	121,4500H+-B	JA
Nitrogen, Ammonia	7.08		mg/l	0.075		1	06/15/20 18:12	06/16/20 00:11	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.00		1	06/18/20 07:30	06/18/20 12:30	74,1664A	DR
Phenolics, Total	ND		mg/l	0.030		1	06/15/20 05:05	06/15/20 08:52	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	06/12/20 22:50	06/12/20 23:17	1,7196A	AS
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	10400		mg/l	250		500	-	06/15/20 22:38	44,300.0	AT

Project Name: Lab Number: **BMT-CULVERT** L2024779 Report Date: **Project Number:** 133092-009

06/23/20

SAMPLE RESULTS

Lab ID: Date Collected: L2024779-02 06/12/20 12:30

Client ID: Date Received: OUTFALL_06122020 06/12/20 Not Specified Sample Location: EVERETT, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
pH (H)	7.6		SU	-	NA	1	-	06/19/20 05:18	121,4500H+-B	СВ
Nitrogen, Ammonia	0.300		mg/l	0.075		1	06/15/20 18:12	06/16/20 00:12	121,4500NH3-BH	H AT
Chromium, Hexavalent	ND		mg/l	0.010		1	06/12/20 22:50	06/12/20 23:18	1,7196A	AS

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number:

L2024779

Report Date: 06/23/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: WC	G1381158-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	06/12/20 22:50	06/12/20 23:16	1,7196A	AS
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG13	81226-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	06/13/20 06:03	121,4500CL-D	JA
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG13	81413-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	06/14/20 14:11	121,2540D	AA
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG13	81444-1				
Cyanide, Total	ND		mg/l	0.005		1	06/14/20 13:35	06/15/20 12:22	121,4500CN-CE	E LH
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG13	81544-1				
Phenolics, Total	ND		mg/l	0.030		1	06/15/20 05:05	06/15/20 08:40	4,420.1	MV
General Chemistry	- Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: WC	G1381658-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	06/15/20 18:12	06/15/20 23:26	121,4500NH3-B	H AT
Anions by Ion Chror	matography - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG1:	381900-1			
Chloride	ND		mg/l	0.500		1	-	06/15/20 17:34	44,300.0	AT
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG13	83018-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	06/18/20 07:30	06/18/20 12:30	74,1664A	DR

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number:

L2024779

Report Date:

06/23/20

Parameter	LCS %Recovery Qu	LCSD al %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	-02 Batch: WG1381158-2				
Chromium, Hexavalent	101	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1381226-2				
Chlorine, Total Residual	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1381297-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1381413-2				
Solids, Total Suspended	101	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1381444-2				
Cyanide, Total	101	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1381544-2				
Phenolics, Total	93	-	70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	-02 Batch: WG1381658-2				
Nitrogen, Ammonia	95	-	80-120	-		20

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

133092-009

Project Number:

CULVERT Batch Quanty Con

Lab Number: L2024779

Report Date: 06/23/20

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westboroug	h Lab Associated samp	le(s): 01 Batch: WG1381900)-2		
Chloride	97	-	90-110	-	
General Chemistry - Westborough Lab Association	ciated sample(s): 01 B	atch: WG1383018-2			
ТРН	80	-	64-132	-	34
General Chemistry - Westborough Lab Association	ciated sample(s): 02 B	atch: WG1383496-1			
рН	100	-	99-101	-	5

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number:

L2024779

Report Date: 06/23/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits F	RPD Qual	RPD Limits
General Chemistry - Westbord OUTFALL_06122020	ough Lab Assoc	iated samp	ole(s): 01-02	2 QC Batch II	D: WG1381158-4	QC Sample: L2	024779-02 Clien	t ID:	
Chromium, Hexavalent	ND	0.1	0.100	100	-	-	85-115	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1381226-4 Q	C Sample: L2024	1724-02 Client ID	: MS Sampl	е
Chlorine, Total Residual	0.23	0.25	0.41	72	Q -	-	80-120	-	20
General Chemistry - Westbord Sample	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	VG1381444-4 WG	1381444-5 QC	Sample: L2024458	3-07 Client	ID: MS
Cyanide, Total	ND	0.2	0.202	101	0.203	102	90-110	0	30
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1381544-4 Q	C Sample: L2023	8823-01 Client ID	: MS Sampl	е
Phenolics, Total	ND	0.4	0.42	104	-	-	70-130	-	20
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01-02	2 QC Batch II	D: WG1381658-4	QC Sample: L2	024348-01 Clien	t ID: MS Sar	mple
Nitrogen, Ammonia	0.148	4	3.61	86	-	-	80-120	-	20
Anions by Ion Chromatograph	y - Westboroug	n Lab Asso	ociated sam	ple(s): 01 Q0	C Batch ID: WG138	31900-3 WG1381	1900-4 QC Sampl	le: L2024501	-01 Client
Chloride	17.8	4	21.4	90	21.3	89	Q 90-110	1	18
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1383018-4 Q	C Sample: L2021	925-141 Client I	D: MS Samp	ole
TPH	ND	19.8	17.3	88	-	-	64-132		34

Lab Duplicate Analysis Batch Quality Control

Project Name: BMT-CULVERT Project Number: 133092-009

Lab Number:

L2024779

Report Date:

06/23/20

Parameter	Nat	ive Sample	Duplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab C6_06122020	Associated sample(s):	01-02 QC Batch	ID: WG1381158-3	QC Sample: L20)24779-01	Client ID:	HA20-
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1381226-3	QC Sample: L2024	724-01 C	lient ID: D	UP Sample
Chlorine, Total Residual		0.66	0.66	mg/l	0		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1381297-2	QC Sample: L2024	446-03 C	lient ID: D	UP Sample
рН		7.5	7.4	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1381413-3	QC Sample: L2024	512-01 C	lient ID: D	UP Sample
Solids, Total Suspended		760	780	mg/l	3		29
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1381444-3	QC Sample: L2024	458-07 C	lient ID: D	UP Sample
Cyanide, Total		ND	0.009	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1381544-3	QC Sample: L2023	823-01 C	lient ID: D	UP Sample
Phenolics, Total		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1381658-3	QC Sample: L20)24348-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.148	0.122	mg/l	19		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1383018-3	QC Sample: L2021	925-140	Client ID: I	OUP Sample
TPH		ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1383496-2	QC Sample: L2025	783-01 C	lient ID: D	UP Sample
рН		7.0	7.1	SU	1		5

Project Name: **BMT-CULVERT Lab Number:** L2024779 **Project Number:** 133092-009

Report Date: 06/23/20

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Container Information

Custody Seal Cooler

В Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2024779-01A	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01A1	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01B	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01B1	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01C	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01C1	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2024779-01D	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		504(14)
L2024779-01D1	Vial Na2S2O3 preserved	В	NA		5.0	Υ	Absent		504(14)
L2024779-01E	Vial unpreserved	В	NA		5.0	Υ	Absent		SUB-ETHANOL(14)
L2024779-01E1	Vial unpreserved	В	NA		5.0	Υ	Absent		SUB-ETHANOL(14)
L2024779-01E2	Vial unpreserved	В	NA		5.0	Υ	Absent		SUB-ETHANOL(14)
L2024779-01F	Plastic 250ml NaOH preserved	В	>12	>12	5.0	Υ	Absent		TCN-4500(14)
L2024779-01G	Plastic 500ml H2SO4 preserved	В	<2	<2	5.0	Υ	Absent		NH3-4500(28)
L2024779-01H	Plastic 120ml unpreserved	В	7	7	5.0	Y	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L2024779-01J	Plastic 950ml unpreserved	В	7	7	5.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L2024779-01K	Plastic 950ml unpreserved	В	7	7	5.0	Υ	Absent		TSS-2540(7)
L2024779-01L	Amber 950ml H2SO4 preserved	В	<2	<2	5.0	Υ	Absent		TPHENOL-420(28)
L2024779-01M	Plastic 250ml HNO3 preserved	В	<2	<2	5.0	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2024779-01N	Plastic 250ml HNO3 preserved	В	<2	<2	5.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),HARDU(180),CU- 2008T(180),AG-2008T(180),HG-U(28),SE- 2008T(180),AS-2008T(180),SB-2008T(180),PB- 2008T(180),CR-2008T(180)

Lab Number: L2024779

Report Date: 06/23/20

Project Name:BMT-CULVERTProject Number:133092-009

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2024779-01P	Plastic 250ml HNO3 preserved	В	<2	<2	5.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU- 2008T(180),HARDU(180),AG-2008T(180),HG- U(28),SE-2008T(180),AS-2008T(180),SB- 2008T(180),CR-2008T(180),PB-2008T(180)
L2024779-01Q	Amber 1000ml HCI preserved	В	NA		5.0	Υ	Absent		TPH-1664(28)
L2024779-01R	Amber 1000ml HCl preserved	В	NA		5.0	Υ	Absent		TPH-1664(28)
L2024779-01S	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		PCB-608.3(7)
L2024779-01T	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		PCB-608.3(7)
L2024779-01U	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		PCB-608.3(7)
L2024779-01V	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2024779-01W	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2024779-01X	Amber 1000ml Na2S2O3	В	7	7	5.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2024779-02A	Plastic 250ml HNO3 preserved	В	<2	<2	5.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),SE-2008T(180),AS-2008T(180),HG- U(28),AG-2008T(180),SB-2008T(180),CR- 2008T(180),PB-2008T(180)
L2024779-02B	Plastic 500ml unpreserved	В	7	7	5.0	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L2024779-02C	Plastic 500ml H2SO4 preserved	В	<2	<2	5.0	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: BMT-CULVERT I 2024779 **Project Number:** 133092-009 **Report Date:** 06/23/20

GLOSSARY

Acronyms

LOD

MSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values. - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2024779Project Number:133092-009Report Date:06/23/20

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance Title: Certificate/Approval Program Summary

Revision 17 Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Ацена	CHAIN OF	Albany, NY 12205	outh, NH 03801 Mah	wah, NJ 07430	Page		Ty		Rec'c			1	1		ALPHA Job #	
*H * 1 * 2 1 4	CUSTODY	Tonawanda, NY 14150 Holme	s, PA 19043					in	Lab		6	117	17	0	1202477	9
Westborough, MA 01581	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Delive	rable	5						Billing Information	
8 Walkup Dr. TEL: 508-898-9220	TEL: 508-822-9300	Project Name:	BMT - Culver	1			团	Email			D	Fax		-	☐ Same as Client Info	
FAX: 508-898-9193	FAX: 508-822-9288	Project Location:	Everett, MA					EQui	S (1 F	le)		EQui	S (4 F	ile)	POA	
H&A Information		Project #	133092-009					Other	rt.							
H&A Client: TDC		(Use Project name as Pr	oject #)				Regul	latory	Requir	ement	s (Pro	gram/	Criteri	a)	Disposal Site Information	- 1
H&A Address: 465 Medfo	rd Street, #220	Project Manager:	I. Alvarado				EPA	NPDE	S						Please identify below location of	of the
Boston, MA 02129		ALPHAQuote #:													applicable disposal facilities.	
H&A Phone: 617-886-7	400	Turn-Around Time													Disposal Facility:	
H&A Fax:		Standar	Ð	Due Date	5										A M D M	
H&A Email: iphillips, ks	scalise	Rush (only if pre approved	i 🗆	# of Days	2		Note:	Select	State fr	om me	nu & id	entity o	riteria.		Other:	
These samples have been	previously analyzed by	Alpha 🗆					ANAL	YSIS							Sample Filtration	T
Other project specific req Please refer to attached NP Total NPDES Metals: Sb, A	PDES RGP parameters As, Cd, Cr, Cu, Fe, Pb,	list.					HGP Parameters + CL-300	by 1671	Nitrogen -	Dissolved NPDES Metals See Note #1	Fotal Hardness	Total NPDES Metals	Hd	Cr+Tri. Cr	☐ Done ☐ Lab to do Preservation ☐ Lab to do	0 - a - B
Please specify Metals or TAL ALPHA Lab ID		ample ID Collection			Sample	Sampler's	NPDES RGP	Elbanol by 1671	Ammonia Nitrogen SM 4500	See N	Total H	Total NPD	a	Hex. Cr	(Please Specify below)	0 0
(Lab Use Only)	8	ample ID Date		Time	Matrix	Initials	N.			Dis		1			Sample Specific Comments	-
24779-01	HA20-C6 _ 06/2	2020	6/12/20	1115	aq	SIRP	×	x	×	×	×		×		1. HOLD, field filtered	28
02	Outfall _ 06 (22	020	Ne	1230	aq	V			x		x	×	x	×		3
													+	+		
																1
																\pm
	-		-		-				-			-	-			-
Preservative Code:	Container Code	W. W. S. W. J.	L Mank											F	Please print clearly, legibly a	ind
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N	19-111 10-0			rtainer Type Preservative									completely. Samples can not logged in and turnaround tin will not start until any ambig are resolved. Alpha Analytica services under this Chain of Ci-	t be ne clock ulties i's
= MeOH C = Cube = NaHSO ₄ O = Other		Relinquished	Ву:	Date 4 12 70	/Time	M	Recei	wed B		QA Z	6/10		e/Time		shall be performed in accordar terms and conditions within Bla Service Agreement# 2015-18-	anket
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	niffer	M		1758	len	1	a	Z'		_	2/20	_		Analytical by and between Hake Aldrich, Inc., its subsidiaries are affiliates and Alpha Analytical	ey & nd
Document ID: 20455 Rev 1 (1/	26/2016)														and are and white weekings:	

ANALY		ody	Alpha Job Numbe			
Client: Alpha Address: Eight V Westbo	Analytical Labs Valkup Drive Porough, MA 01581-1019 9.5010 Palphalab.com	Project Location Project Manage Turnard Due Date Deliverables	n: MA er: Melissa Gu ound & Deliv	formation III erables Information	State/Federal Programs	quirements/Report Limits
Additional Com	Reference following Alpha Joi ments: Send all results/reports	b Number on final repor	t/deliverables	ents and/or Report : L2024779	Requirements Report to include Method Bla	nk, LCS/LCSD:
Lab ID	Client ID HA20-C6_06122020	Collection Date/Time 06-12-20 11:15	Sample Matrix WATER	A Ethanol by EPA 1671 Rev	nalysis vision A	Batch
Franchis All as	Relinquis	hed By		Date/Time:	Received By:	Date/Time:

June 23, 2020

Nichole Hunt Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (508) 898-9220

FAX:

RE: L2024779 **WorkOrder:** 20061119

Dear Nichole Hunt:

TEKLAB, INC received 1 sample on 6/16/2020 9:38:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling I

Client Project: L2024779

Report Contents

http://www.teklabinc.com/

Work Order: 20061119

Report Date: 23-Jun-2020

This reporting package includes the following:

Client: Alpha Analytical

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	7
Receiving Check List	8
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20061119

Client Project: L2024779 Report Date: 23-Jun-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes.
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20061119

Client Project: L2024779 Report Date: 23-Jun-2020

Cooler Receipt Temp: 3.0 °C

Locations

Collinsville			Springfield	Kansas City		
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road	
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214	
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998	
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998	
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com	
	Collinsville Air		Chicago			
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.			
	Collinsville, IL 62234-7425		Downers Grove, IL 60515			
Phone	(618) 344-1004	Phone	(630) 324-6855			
Fax	(618) 344-1005	Fax				
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com			

Client Project: L2024779

Client: Alpha Analytical

Accreditations

http://www.teklabinc.com/

Work Order: 20061119

Report Date: 23-Jun-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	1/31/2021	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2021	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2021	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2021	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2021	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20061119

Client Project: L2024779 Report Date: 23-Jun-2020

Lab ID: 20061119-001 Client Sample ID: HA20-C6_06122020

Matrix: AQUEOUS Collection Date: 06/12/2020 11:15

	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS									
Ethanol		*	20		ND	mg/L	1	06/16/2020 16:19	R278071

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20061119

Client Project: L2024779 Report Date: 23-Jun-2020

EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORG											
Batch R278071 S	SampType:	MBLK		Units mg/L							
SampID: MBLK-06162	20										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
		*		Quai		Брікс				<u> </u>	00/40/0000
Ethanol			20		ND						06/16/2020
Batch R278071 S	SampType:	LCS		Units mg/L							
SampID: LCS-061620											Date
. 1		C .	D.T.	0 1	D 1	0.7	SPK Ref Val	0/ DEC	Low Limit	Lliab Limit	Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Rei vai	%REC	Low Limit	High Limit	, maryzou
Ethanol		*	20		210	250.0	0	83.0	70	132	06/16/2020
Batch R278071 S	SampType:	MS		Units mg/L							
SamplD: 20061119-00											
Oumpib. 20001110 00	71711110										Date Analyzed
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzeu
Ethanol		*	20		240	250.0	0	95.8	70	132	06/16/2020
D 4 1 D279074 G	compType:	MSD		Units mg/L					RPD Lin	nit 20	
	SampType:	IVIOU		Office IIIg/L					INFO LIII	iii. 30	
SampID: 20061119-00	TAMSD										Date
Analyses		Cert	RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref Va	al %RPD	Analyzed
Ethanol		*	20		210	250.0	0	83.0	239.6	14.30	06/16/2020

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20061119
Client Project: L2024779 Report Date: 23-Jun-2020

Carrier: UPS Completed by: On: 16-Jun-2020 Kim Taylor	Rev O)n: n-2020	T Marvin L. Darling Marvin L. Darling			
Pages to follow: Chain of custody 1	Extra pages included	d 0				
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C 3.0		
Type of thermal preservation?	None	Ice 🗹	Blue Ice	Dry Ice		
Chain of custody present?	Yes 🗸	No 🗌		,		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌				
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌				
Samples in proper container/bottle?	Yes 🗹	No 🗌				
Sample containers intact?	Yes 🗸	No 🗌				
Sufficient sample volume for indicated test?	Yes 🗸	No 🗌				
All samples received within holding time?	Yes 🗸	No 🗌				
Reported field parameters measured:	Field	Lab 🗌	NA 🗸			
Container/Temp Blank temperature in compliance?	Yes 🗸	No 🗌	_			
When thermal preservation is required, samples are compliant 0.1°C - 6.0°C, or when samples are received on ice the same	,	between				
Water – at least one vial per sample has zero headspace?	Yes 🗹	No	No VOA vials			
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers			
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA \square			
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗌	NA 🗹			
Any No responses	must be detailed bel	ow or on the	COC.			

Subcontract Chain of Custody Tek Lab. Inc.

ANALY ICA	L	Tek 544 Col	k Lab, Inc. 15 Horsehoe I Ilinsville, IL 62	Lake Road 1234-7425				Alpha Job L2024779	Number
Client	Information		Project In	formation		Regulate	ory Requirem	ents/Report Lir	nits
Client: Alpha Analyt Address: Eight Walku Westborougi Phone: 603.319.501 Email: mgulli@alph		Due Date: Deliverables:	und & Deliv	lli erables Informat ents and/or Rep		State/Federal P Regulatory Crite	rogram:		
i	rence following Alpha Job Nos: Send all results/reports to	umber on final report	Vdeliverables:	-′	·	ort to include Met	nod Blank, LCS	S/LCSD:	
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis				Batch QC
J0061119 - 001	HA20-C6_06122020	06-12-20 11:15	WATER	Ethanol by EPA 1671	Revision A	2,	6 C/2 (03 W Whilebo	
	Relinquished	1877		Date/Time:		Received By:	: 50	Date/Time:	
Form No: Al. subcoc				6/15/20		132	LPS	<u>le 16120</u>	<u> </u>

ANALYTICAL REPORT

Lab Number: L2026730

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Iliana Alvarado
Phone: (617) 886-7448

Project Name: BMT-CULVERT

Project Number: 133092-009

Report Date: 06/29/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number: L2026730 **Report Date:** 06/29/20

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L2026730-01 HA20-C6_06122020 WATER EVERETT, MA 06/12/20 11:15 06/12/20

Project Name:BMT-CULVERTLab Number:L2026730Project Number:133092-009Report Date:06/29/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/29/20

Lifani Morrissey-Tiffani Morrissey

ALPHA

METALS

06/12/20 11:15

Date Collected:

Project Name:BMT-CULVERTLab Number:L2026730Project Number:133092-009Report Date:06/29/20

SAMPLE RESULTS

Lab ID: L2026730-01

Client ID: HA20-C6_06122020 Date Received: 06/12/20 Sample Location: EVERETT, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Dissalved Metals	Monofield	l ob									
Dissolved Metals	- Mansheid	Lab									
Lead, Dissolved	ND		mg/l	0.0100		10	06/26/20 18:4	0 06/29/20 10:49	EPA 3005A	3,200.8	AM

Project Name: BMT-CULVERT
Project Number: 133092-009

Lab Number: L2026730

Report Date: 06/29/20

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Dissolved Metals - Ma	nsfield Lab	for sample	e(s): 01	Batch: V	VG1386	335-1				
Lead, Dissolved	ND		mg/l	0.0010		1	06/26/20 18:40	06/29/20 09:44	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

Lab Number:

L2026730

Project Number: 133092-009

Report Date:

06/29/20

Parameter	LCS %Recovery Q	LCSD ual %Recovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated	sample(s): 01 Batch:	WG1386335-2					
Lead, Dissolved	110	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT Project Number:

133092-009

Lab Number:

L2026730

Report Date:

06/29/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	,	Qual	RPD Limits
Dissolved Metals - Mansfield La	ab Associated	d sample(s): 0	1 QCB	atch ID: WG13	86335-3	QC Sa	mple: L202673	0-01	Client ID:	HA20-C6	_0612	2020
Lead, Dissolved	ND	0.51	0.4872	96		-	-		70-130	-		20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L2026730

Report Date:

06/29/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits	i
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1386335-4 QC Sample:	L2026730-01	Client ID:	HA20-C6_06122020	
Lead, Dissolved	ND	ND	mg/l	NC	20	

Project Name:

Project Number: 133092-009

BMT-CULVERT

Lab Number: L2026730

Report Date: 06/29/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

BMT-CULVERT

Cooler Information

Project Name:

Cooler Custody Seal

B Absent

Project Number: 133092-009

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2026730-01A	Plastic 250ml HNO3 preserved	В	<2	<2	5.0	Υ	Absent		PB-2008S(180)

Project Name: Lab Number: BMT-CULVERT L2026730 **Project Number:** 133092-009 **Report Date:** 06/29/20

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2026730Project Number:133092-009Report Date:06/29/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2026730Project Number:133092-009Report Date:06/29/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: BMT-CULVERT Lab Number: L2026730
Project Number: 133092-009 Report Date: 06/29/20

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 17

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 4/28/2020 9:42:21 AM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

2	CHAIN OF	Service Centers Brower, ME 04412 Portsmouth, NH 03801 Mahwah, NJ 07420	Page			i i				
ALPHA		Albany, NY 12205	of	ate Re				AL	PHA J	#
grand the second				€		0	1	2	24719	
And the second of the second o	Estborough, MA 01581 Mansfield, MA 02048 320 Forbes Blvd TEL: 508-828-9300 FAX: 508-828-9300 FAX: 508-828-9388 Project Location: Everett, MA		Deliverables				Bli	Info	ation	
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: BMT - Culvert		☐ Email		а			Same	s Client Info
PAX: 300-030-9193	PAA. 300-622-3286	Project Location: Everett, MA		☐ EQuIS (2	CS(e)	PO		
H&A Information				☐ Other:						
H&A Client: TDC		(Use Project name as Project II)		Regulatory Re	en Pr	a Crit		Dis	sal	e Information
H&A Address: 465 Medford	Street, #220	Project Manager: I. Alvarado		EPA NPDES				Plea app	ide	y below location of
Boston, MA 02129		ALPHAQuote #:						app	ide ble	posal facilities.
	20	Andread Andread Company of the Compa							100	ile.

26730

Outfall _06(22020 (230 Confainer Code Preservative Code: Please print clearly, legibly and Westboro: Certification No: MA935 P = Plastic Container Type A = None completely. Samples can not be Mansfield: Certification No: MA015 B = HCI A = Amber Glass logged in and turnaround time clock C = HNO V = Vial will not start until any ambiguities G = Glass D = H,SO, Preservative are resolved. Alpha Analytical's B = Bacteria Cup services under this Chain of Custody E = NaOH C = Cube shall be performed in accordance with F = MeOH A Relinquished By: Date/Time Received By: Date/Time G = NaHSO O = Other terms and conditions within Blanket 6/10/00 1540 4/12/20 1330 E = Encore Service Agreement# 2015-18-Alpha $H = Na_2S_2O_3$ D = BOD Bottle Analytical by and between Haley & K/E = Zn Ac/NaOH 6/12/20 1758 Aldrich, Inc., its subsidiaries and O = Other affiliates and Alpha Analytical Document ID: 20455 Rev 1 (1/28/2016)

ANALY T	CAL	Te 54 Co	Subcontra k Lab, Inc. 45 Horsehoe Illinsville, IL 62	act Chain of Custoo Lake Road 2234-7425	dy	Alpha Job Number L2024779
	lient Information Analytical Labs Valkup Drive rough, MA 01581-1019 9.5010 Palphalab.com	Project Location Project Manage Turnard Due Date Deliverables:	n: MA er: Melissa Gu ound & Deliv	formation	Regulatory Req State/Federal Program: Regulatory Criteria:	uirements/Report Limits
THE RESIDENCE THE PERSON NAMED IN	Reference following Alpha Jot ments: Send all results/reports	Number on final repor	t/deliverables	ents and/or Report Re : L2024779	equirements Report to include Method Blar	nk, LCS/LCSD:
Lab ID	Client ID HA20-C6_06122020	Collection Date/Time 05-12-20 11:15	Sample Matrix WATER	Ana Ethanol by EPA 1671 Revision	alysis on A	Batch
Form No. Al. su	Relinquish	ned By		Date/Time:	Received By:	Date/Time:

ANALYTICAL REPORT

Lab Number: L2027207

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Iliana Alvarado
Phone: (617) 886-7448

Project Name: BMT-CULVERT Project Number: 133092-009

Report Date: 07/01/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: BMT-CULVERT **Project Number:** 133092-009

 Lab Number:
 L2027207

 Report Date:
 07/01/20

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2027207-01	HA20-C6_06262020	WATER	EVERETT, MA	06/26/20 14:15	06/26/20
L2027207-02	HA20-C6 06262020-CY	WATER	EVERETT, MA	06/26/20 14:15	06/26/20

Project Name:BMT-CULVERTLab Number:L2027207Project Number:133092-009Report Date:07/01/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.											

Project Name:BMT-CULVERTLab Number:L2027207Project Number:133092-009Report Date:07/01/20

Case Narrative (continued)

Cyanide, Dissolved

The WG1387166-4 MS recovery, performed on L2027207-02 (HA20-C6_06262020-CY), is outside the acceptance criteria for cyanide (192%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/01/20

Whole M. Morris

INORGANICS & MISCELLANEOUS

06/26/20 14:15

Project Name: Lab Number: **BMT-CULVERT** L2027207 **Project Number:** 133092-009

Report Date: 07/01/20

Date Collected:

SAMPLE RESULTS

Lab ID: L2027207-01

Client ID: HA20-C6_06262020 Date Received: 06/26/20 Not Specified Sample Location: EVERETT, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	8.3		mg/l	5.0	NA	1	-	06/29/20 13:34	121,2540D	ВА
Cyanide, Total	0.504		mg/l	0.010		2	06/28/20 14:00	06/29/20 13:32	121,4500CN-CE	AG

Project Name: BMT-CULVERT Lab Number: L2027207

Project Number: 133092-009 **Report Date:** 07/01/20

SAMPLE RESULTS

Lab ID: L2027207-02 Date Collected: 06/26/20 14:15

Client ID: HA20-C6_06262020-CY Date Received: 06/26/20 Sample Location: EVERETT, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Cyanide, Dissolved	0.391		mg/l	0.005		1	06/29/20 15:50	06/30/20 10:14	121,4500CN-CE	LH

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number:

L2027207

Report Date: 07/01/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	lifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab fo	or sample(s): 01	Batch:	WG13	886826-1				
Cyanide, Total	ND	mg/l	0.005		1	06/28/20 14:00	06/29/20 11:28	121,4500CN-CE	E AG
General Chemistry	- Westborough Lab fo	or sample(s): 01	Batch:	WG13	886985-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	06/29/20 13:34	121,2540D	ВА
General Chemistry	- Westborough Lab fo	or sample(s): 02	Batch:	WG13	887166-1				
Cyanide, Dissolved	ND	mg/l	0.005		1	06/29/20 15:50	06/30/20 10:10	121,4500CN-CE	E LH

Lab Control Sample Analysis Batch Quality Control

Project Name: BMT-CULVERT

Project Number: 133092-009

Lab Number:

L2027207

Report Date:

07/01/20

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1386826-2	2				
Cyanide, Total	101	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1386985-2	2				
Solids, Total Suspended	106	-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1387166-2	2				
Cyanide, Dissolved	96	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: BMT-CULVERT **Project Number:** 133092-009

Lab Number:

L2027207

Report Date:

07/01/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		SD ound	MSD %Recovery		covery imits RP	D Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1386826	6-4	QC Sample: L202	26890-02	Client ID:	MS Samp	le
Cyanide, Total	ND	0.2	0.182	91		-	-	90	0-110 -		30
General Chemistry - Westboro CY	ugh Lab Asso	ciated samp	le(s): 02	QC Batch ID: V	WG1387166	6-4	QC Sample: L202	27207-02	Client ID:	HA20-C6_	_06262020-
Cyanide, Dissolved	0.391	0.2	0.776	192	Q	-	-	90	0-110 -		30

Lab Duplicate Analysis Batch Quality Control

Project Name: BMT-CULVERT Project Number: 133092-009

Lab Number:

L2027207

Report Date:

07/01/20

Parameter	Nativ	ve Sa	ample	Duplicate Sam	ple Unit	s RPD	Qual	RPD	Limits
General Chemistry - Westborough Lab A	associated sample(s):	01	QC Batch ID:	WG1386826-3	QC Sample:	L2026890-01	Client ID:	DUP Sam	ple
Cyanide, Total		0.007	7	0.006	mg/l	2			30
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG1386985-3	QC Sample:	L2026523-06	Client ID:	DUP Sam	ple
Solids, Total Suspended		33		35	mg/l	6			29
General Chemistry - Westborough Lab A	Associated sample(s):	02	QC Batch ID:	WG1387166-3	QC Sample:	L2027207-02	Client ID:	HA20-C6_	_06262020-
Cyanide, Dissolved		0.391	1	0.440	mg/l	12			30

Lab Number: L2027207

Report Date: 07/01/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

BMT-CULVERT

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 133092-009

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2027207-01A	Plastic 250ml NaOH preserved	Α	>12	>12	5.2	Υ	Absent		TCN-4500(14)
L2027207-01B	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		TSS-2540(7)
L2027207-02A	Plastic 500ml unpreserved	Α	7	7	5.2	Υ	Absent		SCN-4500(14),FILTER(1)
L2027207-02X	Plastic 250ml NAOH preserved Filtrates	Α	NA		5.2	Υ	Absent		SCN-4500(14)

Project Name: Lab Number: BMT-CULVERT L2027207 **Project Number:** 133092-009 **Report Date:** 07/01/20

GLOSSARY

Acronyms

LOD

MDI

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2027207Project Number:133092-009Report Date:07/01/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:BMT-CULVERTLab Number:L2027207Project Number:133092-009Report Date:07/01/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: BMT-CULVERT Lab Number: L2027207
Project Number: 133092-009 Report Date: 07/01/20

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:07012012:38

ID No.:17873 Revision 17

Published Date: 4/28/2020 9:42:21 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

# Wiskup Dr. 230 Forbes Blvot TEL: 508-869500	Дирна	CHAIN OF CUSTODY	Service Centers Brawer, ME 04412 Portsm 07430 Albany, NY 12205 Tonawanda, NY 14150 Holme	outh, NH 03801 Mr	shwah, NJ	Page		1		Date Re	6'd 6	/26	/20	ALPHA JOB # 1202 7207	
#As Information Project Everant, MA EQUIS (1 File) P.O. 8	Westborough, MA 01581 # Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information						Deliv	rerables				Billing Information	
Project Location: Eventt, MA	ACCURAGE SPECIAL		Project Name:		BMT	- Culvert			1			_		- 12 0.01-1 - 2 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 -	
H&A Client: TDC Use Project name as Project 9	F105 000 000 0100	7 7771 300 022-3230	Project Location:		Eve	erett, MA				EQuIS (file)	VE	QuiS (4 File)	PO#	
H&A Address: 465 Mediord St, #2200 Project Manager; I. Alvarado Boaton, MA GC120 ALPHAQuote 9: H&A Frac: iphilips @Flatelyselich.com; Standard Due Date: H&A Frac: iphilips @Flatelyselich.com; Standard Due Date: H&A Frac: iphilips @Flatelyselich.com; Standard Due Date: These samples have been previously analyzed by Alpha Description for Days: These samples have been previously analyzed by Alpha Analyzed. West for Collection in International Collec	H&A Information		Project #		133	3092-009				Other:					
Boston, MA 02129 ALPHAQuote #: spokeable disponsal facilities. Disposal Pacific. Standard Due Date: Disposal Pacific. Bush fonly # pre approved # of Days: 3 Note: Salect State from menu & identify criteria. Disposal Pacific. Disposal Pacific. Bush fonly # pre approved # of Days: 3 Note: Salect State from menu & identify criteria. Disposal Pacific. Disposal Pacific. Bush fonly # pre approved # of Days: 3 Note: Salect State from menu & identify criteria. Disposal Pacific. Disposal Pacific. Disposal Pacific. Disposal Pacific. ANALYSIS Sample Filtration Doe Lab to do Preservation Lab to do Pres	H&A Client: TDC		(Use Project name as P	roject #)					Regulatory Requirements (Program/Criteria)					Disposal Site Information	
HBA Phone: 6178887400 Burn Around Time	H&A Address: 465 Med	ford St, #2200	Project Manager:		1. A	Alvarado									
H&A Fax: [phillips @ haleyaldrich.com; Rush (only if pre approved)	Boston, MA 02129 ALPHAQuote #:								1					applicable disposal facilities.	
H&A Email: kscalise@haleyaldrich.com Rush (only if pre approved)	H&A Phone: 6178867	400	Turn-Around Time				1					Disposal Facility:			
These samples have been previously analyzed by Alpha Other project specific requirements/comments: Note #1: sample collected in unpreserved bottle-agail-indefilination: Note #1: sample collected in unpreserved bottle-agail-indefilination: ### Preservation Lab to do Preservation Lab to do	H&A Fax: iphillips	haleyaldrich.com;	Standard Due Date:						1					□ NJ □ NY	
Other project specific requirements/comments: Note #1: sample collected in unpreserved bottle-grafitiel-different	H&A Email: kscalise	@haleyaldrich.com	Rush (only if pre approved	n 🗸	# of Days	5 3	3		Note:	Select Sta	te from me	enu & iden	tify criteria.	Other:	
Done Lab to do Preservative Code: Container Code Passe Pas	These samples have been previously analyzed by Alpha								AN	ALYSIS				Sample Filtration	
Collection Col		Note #1: sampl		bottle and flei	e Marad	Filt	er at	Ke Salac	-	uspended Solids			118	Lab to do Preservation Lab to do	
### HA20-C6_06262020 G2G/20 YIS AO SR		Sa	ample ID					Depth		Total S				1	
Preservative Code: A None B = Plastic A A Amber Glass C HNO, C H,SO, C	7911 7 701	HADILTE DESESSON				-			-		+	-	++-		
Preservative Code: Container Code None P = Plastic S = HCl A = Amber Glass Mansfield: Certification No: MA935 Container Type P = Nastic S = HNO ₃ S = HCl A = Amber Glass Mansfield: Certification No: MA915 Container Type P = Plastic S = HNO ₃ S = HCl S = Bacteria Cup E = NaOH S = Bacteria Cup E = MaCH S = NaCH S = Sacteria Cup E = Encore S = NaHSO ₄ S = Relinquished By: Data/Time Data/T	7707 -02			16/20/20	1713				-	^	+	-	+++	0.410.00	
Container Type P = Plastic	1307-02	11A20-C6_06262020	-01	-	V	AU	DIA	-	X		+-	-		See Note #1	
The second and the se									5		H				
A = None B = Plastic A = Amber Glass B = HCI A = Amber Glass Container Type Completely. Samples can not be log in and turnaround time clock will not turna								178	1						
A = None B = Plastic A = Amber Glass B = HCI A = Amber Glass Container Type Completely. Samples can not be log in and turnaround time clock will not turna								/		1	-				
Container Type P = Plastic							1			\vdash	_				
Container Type P = Plastic							/								
Container Type P = Plastic	- 4														
Alpha Analytical's services under this Chain of Custody shall be performed accordance with terms and conditions with Banket Service Agreement 20 and 10 and	A = None B = HCl	P = Plastic A = Amber Glass		Co	ntainer Ty	pe	Р	Р				completely. Samples can not be logge in and turnaround time clock will not			
Relinquished By: Date/Time Received By: Date/Time Within Blanket Service Agreement# 21 Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical. D = Other O = Other Relinquished By: Date/Time Received By: Date/Time Within Blanket Service Agreement# 21 Aldrich, Inc., its subsidiaries and of particular affiliates and Alpha Analytical.	= H ₂ SO ₄ G = Glass = NaOH B = Bacteria Cup				Preservative			ElA A				Alpha Analytical's services under this Chain of Custody shall be performed in			
1711 6/26/70 1746 Menul 6/26/20 1745	3 = NaHSO ₄ 1 = Na _B S ₂ O ₃	O = Other E = Encore	Relinquished	By:			MAT	Re	0			6/20/20/160		within Blanket Service Agreement# 2019 22-Alpha Analytical by and between Hall & Aldrich, Inc., its subsidiaries and	
Description of the COMPAN CONTRACT CONT	3 = Other	a proposed by	mile	6	24/70	1746	12	en	u	il	4	11 1			