

REPORT ON

NOTICE OF INTENT (NOI)
TEMPORARY CONSTRUCTION DEWATERING
MASSDOT AIR RIGHTS PARCEL 12 – OFFICE BUILDING
BOSTON, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for US Environmental Protection Agency Boston, Massachusetts

File No. 132410-008 June 2020

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

24 June 2020 File No. 132410-008

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: Ms. Little; EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering

MassDOT Air Rights Parcel 12 – Office Building

Boston, Massachusetts

Ladies and Gentlemen:

On behalf of our client, S&A P-12 Property LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the Office Building portion of the MassDOT Air Rights Parcel 12, located at 1001 Boylston Street in Boston, Massachusetts.

SITE LOCATION AND HISTORICAL SITE USAGE

The south portion of the MassDOT Air Rights Parcel 12 site where the Office Building is planned (the "Site"), is bordered by Boylston Street to the south, Massachusetts Avenue to the east, a 7-story residential structure to the west (1085 Boylston Street), and the MBTA railroad to the north. The Site is currently a paved parking lot with a steep slope down to the MBTA tracks to the north. Surface grades range from approximately El. 29 to El. 23 across the parking lot to El. 11 at the MBTA tracks. A 60-ft long concrete retaining wall (No. 201), acting as a wing-wall for the Massachusetts Avenue Bridge, provides up to 20 ft grade separation between a portion of the Site and the MBTA tracks.

The Site consists of filled land located on the original "Gravelly Point" peninsula of Boston's Back Bay neighborhood, which was formerly surrounded by tidal marsh. Former buildings on the site were demolished for construction of I-90 in the 1960's and the area.

PROPOSED ACTIVITIES

The MassDOT Air Rights Parcel 12 Development includes the construction of a mixed-use development of air rights above the Boston Extension of the Massachusetts Turnpike (I-90), the Massachusetts Bay Transportation Authority (MBTA) railroad tracks, and two land areas north and south on the Massachusetts Turnpike.

This application is for dewatering activities that will occur in the land area on the south side of the Air Rights parcel along Boylston Street. This area will be developed as a 20-story office building (with penthouse level) with a two-level below-grade parking garage.

GROUNDWATER QUALITY DATA

One groundwater sample was obtained from observation well HA14-101(OW) in August 2019. The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semi-volatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, extractable petroleum hydrocarbons, oil & grease, pesticides, polychlorinated biphenyls, total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater and surface analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable Massachusetts Contingency Plan RCGW-2 reportable concentrations. The construction dewatering effluent at the Site will be managed under an RGP. The location of the observation well HA14-101(OW) is shown on Figure 2.

ETHANOL DISCUSSION

Ethanol sampling was not conducted on the groundwater sample collected in August 2019 as site history does not suggest that ethanol was stored at the property, and a petroleum product containing ethanol is not known to have been released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to site history, the Site has been used for parking since the 1960's, with no known fuel-related storage or handling activities conducted onsite.

RECEIVING WATER QUALITY INFORMATION AND DILUTION FACTOR

On 6 December 2019, Haley & Aldrich collected a receiving water sample from the Charles River using a disposable polyethylene bailer. The surface water sample was collected and submitted to Alpha for chemical analysis of pH, total metals, hexavalent chromium, ammonia, and hardness. Field parameters, including pH and temperature, were collected from surface water sample at the time of sampling. The results of water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). We have additionally confirmed with the Massachusetts

Department of Environmental Protection (MassDEP) that the dilution factor for the receiving waters is 88.36.

EFFLUENT CRITERIA DETERMINATION

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the Site. Groundwater and Receiving Water data were input and the resulting criteria was tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

DEWATERING SYSTEM AND OFF-SITE DISCHARGE

During the below grade construction activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable excavation in-the-dry. The dewatering will be conducted within an impervious support of excavation and groundwater cut-off wall limiting groundwater seepage into the excavation. Dewatering activities are anticipated to start in June 2020 and is anticipated to be required for up to 12 months. On average, we estimate effluent discharge rates of about 25 gallons per minute (gpm), with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the Site.

Construction dewatering includes piping and discharging to storm drains located on or near the site that discharge to the Charles River, as shown on Figure 3. An effluent treatment system will be designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water is routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and undissolved chemical constituents, as shown on Figure 4.

NMFS ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information for Planning and Consultation (IPaC) online system; a copy of the determination is attached in Appendix C. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area.

OWNER AND OPERATOR INFORMATION

Owner:

S&A P-12 Property LLC 136 Brookline Avenue Boston, MA 02115 Contact: Mr. Abe Menzin Executive Vice President, Development

Operator:

Suffolk 65 Allerton Street Boston, MA 02119 Contact: Mr. Gregory Sawin Senior Project Executive

APPENDICES

The completed "Suggested Notice of Intent" form as provided in the RGP is enclosed in Appendix A. The site owner is the S&A P-12 Property LLC. S&A P-12 Property LLC has hired Suffolk as the Construction Manager responsible for the site work, including dewatering activities. The excavation subcontractor will operate the dewatering system. Haley & Aldrich is monitoring the Contractor's dewatering activities on behalf of S&A P-12 Property LLC in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and ESA Documentation, respectively. Appendix D provides an application for a temporary construction dewatering permit being submitted to the City of Boston. Copies of the groundwater testing laboratory data reports are provided in Appendix E. Appendix F provides the Site Contractor's dewatering submittal which includes details of the dewatering system. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC

Elizabeth L. White, EIT Environmental Engineer

Kenneth N. Alepidis, P.G. (NH) Senior Technical Specialist - Geology

Douglas M. Lindsay, P.G. (NH), LSP Associate | Senior Project Manager

my Min

Attachments:

Table I — Summary of Water Quality Data

Figure 1 – Site Locus

Figure 2 – Site and Subsurface Location Plan

Figure 3 - BWSC Plan

Figure 4 – Proposed Treatment System Schematic

Appendix A - NOI for RGP

Appendix B – National Register of Historic Places and Massachusetts
Historical Commission Documentation

Appendix C – Endangered Species Act Documentation

Appendix D – BWSC Permit Application

Appendix E – Laboratory Data Reports

Appendix F – Example Contractor Dewatering Submittal

c: S&A P-12 Property LLC; Abe Menzin

\haleyaldrich.com\share\bos_common\132410 - P12 Air Rights\Dewatering Permits\P12 RGP - Office\Text\2020-0624-Parcel 12 Office RGP Text-F.docx

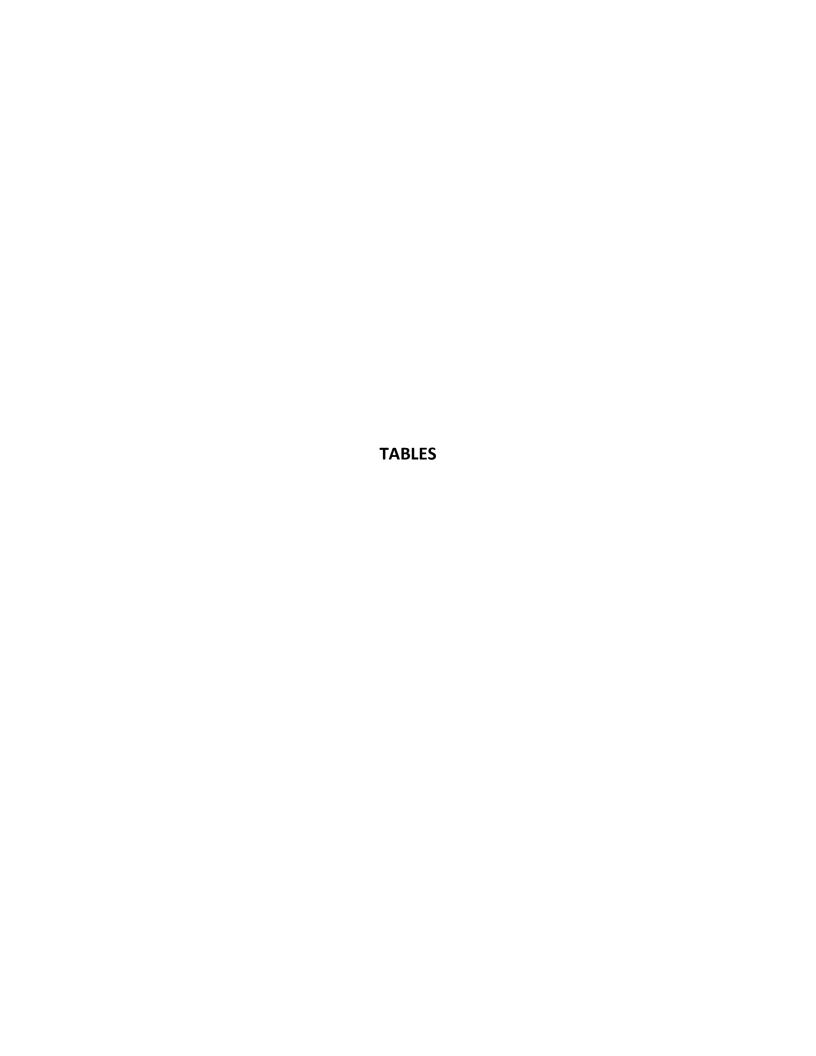


TABLE I SUMMARY OF GROUNDWATER AND RECEIVING WATER QUALITY DATA MASSDOT AIR RIGHTS PARCEL 12 - OFFICE BUILDING BOSTON, MA FILE NO. 132410

Location Name	Action Level	HA14-101	HA20-CHARLES RIVER
Sample Name	2017 NPDES	HA14-101(OW)-20190807	CHARLES_SURF_20191206
Sample Date	-	08/07/2019	12/6/2019
·	Limits	L1935412-01	
Lab Sample ID		L2006185-01	L1958577-01
/olatile Organic Compounds (ug/L)			
1,1,1-Trichloroethane	200	ND (2)	-
I,1,2,2-Tetrachloroethane	NA	ND (1)	-
1,1,2-Trichloroethane	200	ND (1.5)	-
L,1-Dichloroethane	70	ND (1.5)	-
1,1-Dichloroethene	3.2	ND (1)	-
L,2-Dibromoethane (Ethylene Dibromide)	0.05	ND (0.01)	-
L,2-Dichlorobenzene	600	ND (5)	-
L,2-Dichloroethane	5	ND (1.5)	-
1,2-Dichloropropane	NA	ND (3.5)	-
1,3-Dichlorobenzene	320	ND (5)	-
L,3-Dichloropropene	NA	ND (1.5)	-
1,4-Dichlorobenzene	5	ND (5)	-
2-Butanone (Methyl Ethyl Ketone)	NA	ND (10)	-
2-Chloroethyl vinyl ether	NA	ND (10)	-
2-Hexanone	NA	ND (10)	-
1-Methyl-2-Pentanone (Methyl Isobutyl Ketone)	NA	ND (10)	-
Acetone	7970	ND (10)	-
Acrolein	NA	ND (8)	-
Acrylonitrile	NA	ND (10)	-
Benzene	5*	ND (1)	-
Bromodichloromethane	NA	ND (1)	-
Bromoform	NA	ND (1)	-
Bromomethane (Methyl Bromide)	NA	ND (5)	-
Carbon disulfide	NA	ND (5)	-
Carbon tetrachloride	4.4	ND (1)	-
Chlorobenzene	NA	ND (3.5)	-
Chloroethane	NA	ND (2)	-
Chloroform (Trichloromethane)	NA	ND (1)	-
Chloromethane (Methyl Chloride)	NA	ND (5)	-
cis-1,2-Dichloroethene	NA	ND (1)	-
cis-1,3-Dichloropropene	NA	ND (1.5)	-
Dibromochloromethane	NA	ND (1)	-
Dibromomethane	NA	ND (1)	-
Ethylbenzene	*	ND (1)	-
n,p-Xylenes	*	ND (2)	-
Methyl Tert Butyl Ether	70	ND (10)	-
Methylene chloride	4.6	ND (1)	-
o-Xylene	*	ND (1)	-
Styrene	NA	ND (1)	-
Γert-Amyl Methyl Ether (TAME)	90	ND (20)	-
Γert-Butyl Alcohol (tert-Butanol)	120	ND (100)	-
Tetrachloroethene	5	ND (1)	-
Foluene	*	ND (1)	-
rans-1,2-Dichloroethene	NA	ND (1.5)	-
rans-1,3-Dichloropropene	NA	ND (1.5)	-
Trichloroethene	5	ND (1)	-
Trichlorofluoromethane (CFC-11)	NA	ND (5)	-
/inyl acetate	NA	ND (10)	-
/inyl chloride	2	ND (1)	-
Kylene (total)	*	ND (1)	-
UM of Volatile Organic Compounds	NA	ND	-
Total BTEX	0.1*	ND	-
(alatila Ossania Campannala Cità (con la)			
/olatile Organic Compounds SIM (ug/L) L,4-Dioxane	200	ND (EQ)	
	200	ND (50)	-
Semi-Volatile Organic Compounds (ug/L)			
.,2,4-Trichlorobenzene	NA	ND (5)	-
2,2'-oxybis(1-Chloropropane)	NA	ND (2)	-
2,4,5-Trichlorophenol	NA	ND (5)	-
2,4,6-Trichlorophenol	NA	ND (5)	-
2,4-Dichlorophenol	NA	ND (5)	-
2,4-Dimethylphenol	NA	ND (5)	-
4,4-Dinitrophenol	NA	ND (20)	-
,4-Dinitrotoluene	NA	ND (5)	-
,6-Dinitrotoluene	NA	ND (5)	-
!-Chloronaphthalene	NA	ND (2)	-
2-Chlorophenol	NA	ND (2)	-
-Methylphenol (o-Cresol)	NA	ND (5)	-
?-Nitrophenol	NA	ND (5)	-
&4-Methylphenol	NA	ND (5)	
3,3'-Dichlorobenzidine	NA	ND (5)	-
l,6-Dinitro-2-methylphenol	NA	ND (10)	-
l-Bromophenyl phenyl ether	NA	ND (2)	-
l-Chloro-3-methylphenol	NA	ND (2)	-
I-Chloroaniline	NA	ND (5)	
	•	ND (2)	

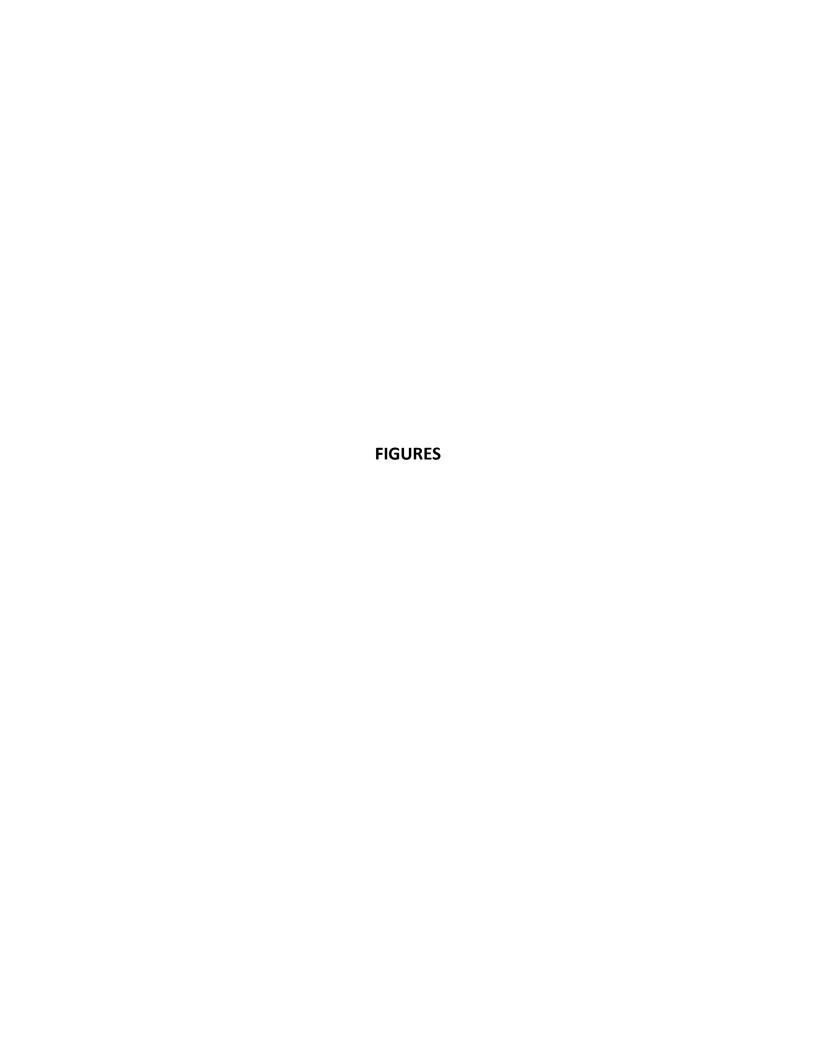
TABLE I SUMMARY OF GROUNDWATER AND RECEIVING WATER QUALITY DATA MASSDOT AIR RIGHTS PARCEL 12 - OFFICE BUILDING BOSTON, MA FILE NO. 132410

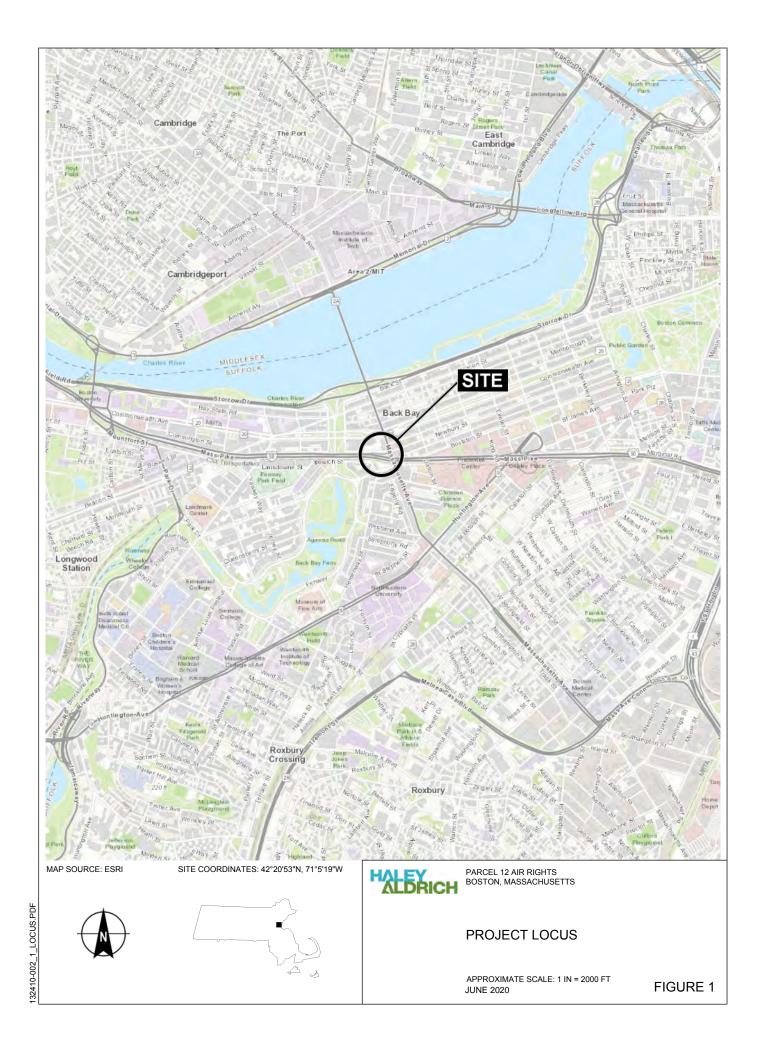
FILE NO. 132410			
	Action Level		
Location Name		HA14-101	HA20-CHARLES RIVER
Sample Name	2017 NPDES	HA14-101(OW)-20190807	CHARLES_SURF_20191206
Sample Date	RGP Effluent Limits	08/07/2019 L1935412-01	12/6/2019
Lab Sample ID	Litties	L2006185-01	11958577-01
4-Nitrophenol	NA	ND (10)	-
Acetophenone	NA	ND (5)	-
Aniline	NA	ND (2)	-
Azobenzene	NA	ND (2)	-
Benzidine	NA	ND (20)	-
Benzoic acid	NA	ND (50)	-
Benzyl Alcohol	NA	ND (2)	-
bis(2-Chloroethoxy)methane	NA	ND (5)	-
bis(2-Chloroethyl)ether	NA	ND (2)	-
bis(2-Ethylhexyl)phthalate	101***	ND (2.2)	-
Butyl benzylphthalate		ND (5)	-
Dibenzofuran	NA ***	ND (2)	-
Diethyl phthalate Dimethyl phthalate	NA	ND (5) ND (5)	-
Di-n-butylphthalate	***	ND (5)	
Di-n-octyl phthalate	***	ND (5)	_
Hexachlorobutadiene	NA	ND (2)	_
Hexachlorocyclopentadiene	NA	ND (10)	-
Hexachloroethane	NA	ND (2)	-
Isophorone	NA	ND (5)	-
Nitrobenzene	NA	ND (2)	-
N-Nitrosodimethylamine	NA	ND (2)	-
N-Nitrosodi-n-propylamine	NA	ND (5)	-
N-Nitrosodiphenylamine	NA	ND (2)	-
Phenol	1080	ND (5)	-
Pyridine	NA NA	ND (5) ND	-
SUM of Semi-Volatile Organic Compounds	INA	ND	-
Semi-Volatile Organic Compounds (SIM) (ug/L)			
2-Methylnaphthalene	NA	ND (0.1)	-
Acenaphthene	**	ND (0.1)	-
Acenaphthylene	**	ND (0.1)	-
Anthracene	**	ND (0.1)	-
Benzo(a)anthracene	1++	ND (0.1)	-
Benzo(a)pyrene	1++	ND (0.1)	-
Benzo(b)fluoranthene	1++	ND (0.1)	-
Benzo(g,h,i)perylene	**	ND (0.1)	-
Benzo(k)fluoranthene	1++	ND (0.1)	-
Chrysene	1++	ND (0.1)	-
Dibenz(a,h)anthracene Fluoranthene	1++	ND (0.1)	-
Fluorene	**	ND (0.1) ND (0.1)	-
Hexachlorobenzene	NA	ND (0.1) ND (0.1)	-
Indeno(1,2,3-cd)pyrene	1++	ND (0.1)	_
Naphthalene	20**	ND (0.1)	-
Pentachlorophenol	1	ND (1)	-
Phenanthrene	**	ND (0.1)	-
Pyrene	**	ND (0.1)	<u>-</u>
SUM of Semi-Volatile Organic Compounds	NA	ND	-
Total Group I PAHS	1	ND	-
Total Group II PAHS	100**	ND ND	-
SUM of Phthalates	190***	ND	-
Total Petroleum Hydrocarbons (mg/L)			
Oil and Grease (HEM), Total	NA	ND (4)	-
Petroleum hydrocarbons	5	ND (4)	-
EPH (ug/L)			
MADEP C11-C22 Aromatic Hydrocarbons, Adjusted	NA	ND (100)	-
MADEP C19-C36 Aliphatic Hydrocarbons	NA	ND (100)	-
MADEP C9-C18 Aliphatic Hydrocarbons	NA	ND (100)	-
SUM of EPH	5	ND	-
Total Inorganic Compounds (mg/L)			
Antimony, Total	0.206	ND (0.004)	ND(0.002)
Arsenic, Total	0.104	ND (0.001)	ND(0.0005)
Cadmium, Total	0.0102	ND (0.0002)	ND(0.0001)
Chromium, Total	0.323	ND (0.001)	ND(0.0005)
Chromium III (Trivalent), Total	0.323	ND (0.01)	-
Chromium VI (Hexavalent), Dissolved	0.323	ND (0.01)	ND(0.005)
Copper, Total	0.242	ND (0.001)	0.00226
Iron, Total	5	0.459	0.503
Lead, Total	0.16	ND (0.001)	0.00143
Mercury, Total	0.000739	ND (0.0002)	ND(0.0001)
Nickel, Total	1.45	ND (0.002)	ND(0.001)
Selenium, Total	0.2358	ND (0.005)	ND(0.0025)
Silver, Total	0.0351	ND (0.0004)	ND(0.0002)
Zinc, Total	0.42	ND (0.01)	0.02122

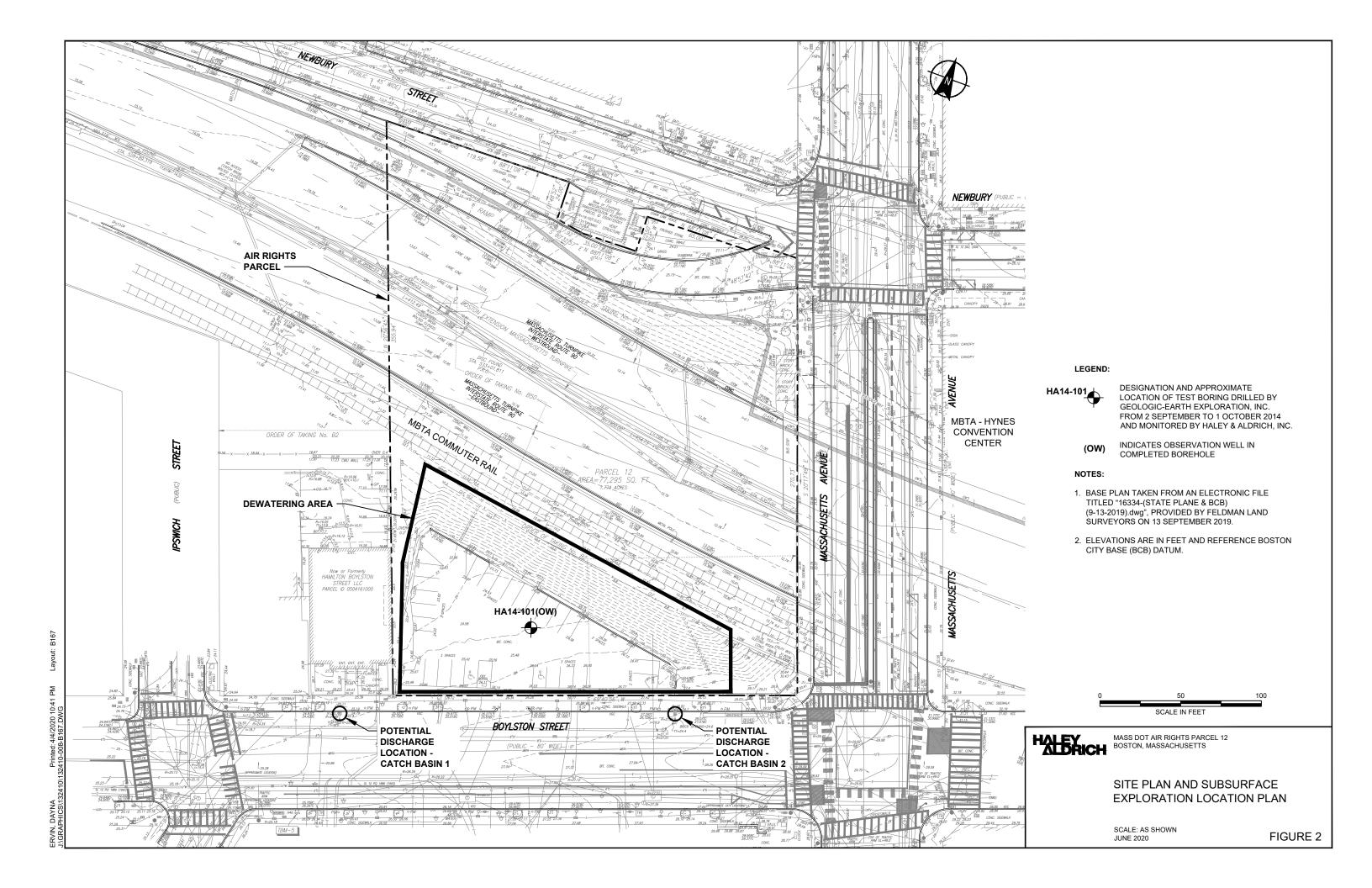
TABLE I SUMMARY OF GROUNDWATER AND RECEIVING WATER QUALITY DATA MASSDOT AIR RIGHTS PARCEL 12 - OFFICE BUILDING BOSTON, MA FILE NO. 132410

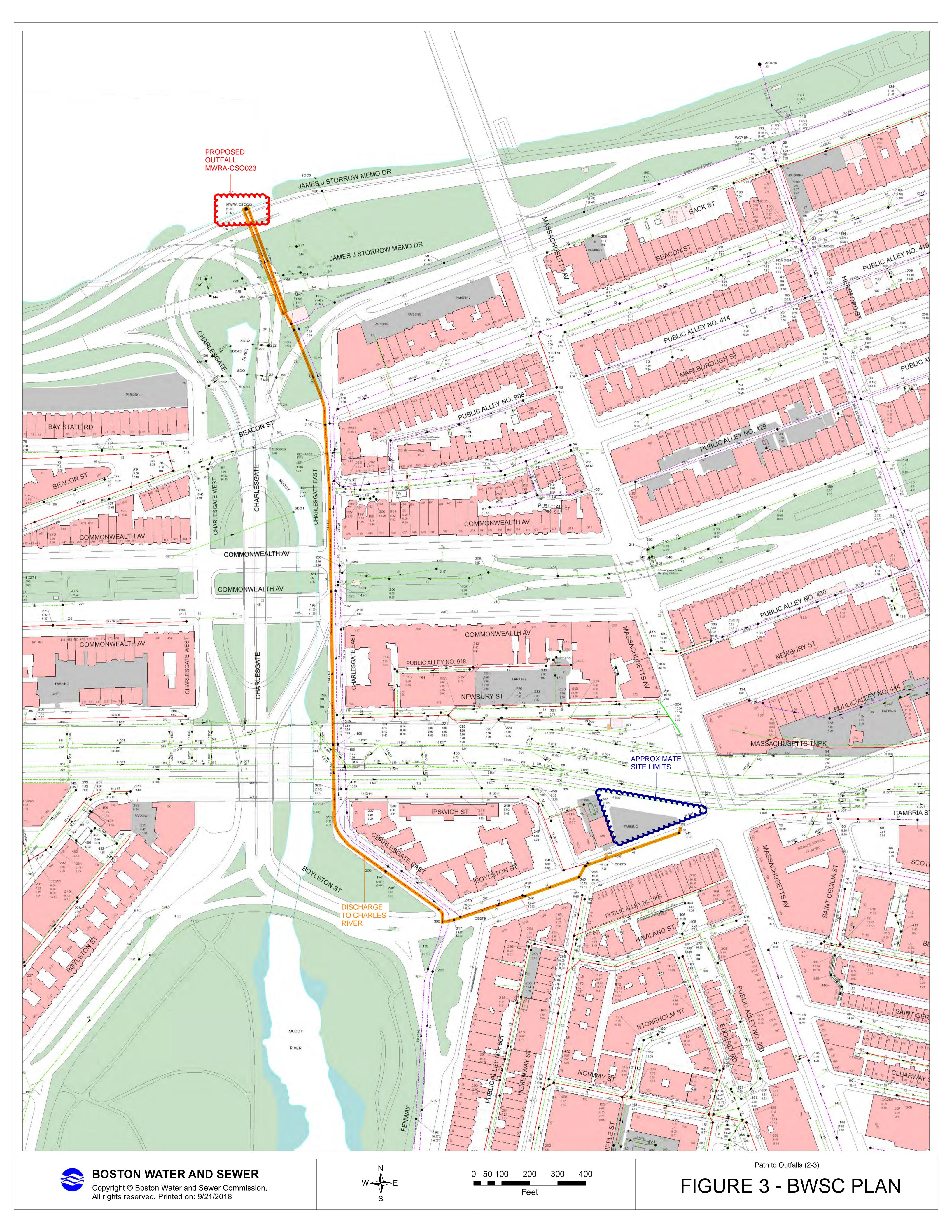
	1	Т	
,	Action Level	11444 404	HAZO CHARLEC BINES
Location Nam		HA14-101	HA20-CHARLES RIVER
Sample Nam		HA14-101(OW)-20190807	CHARLES_SURF_20191206
Sample Dat		08/07/2019	12/6/2019
	Limits	L1935412-01	
Lab Sample II	O .	L2006185-01	L1958577-01
PCBs (mg/L)			
Aroclor-1016 (PCB-1016)	NA	ND (0.25)	-
Aroclor-1221 (PCB-1221)	NA	ND (0.25)	-
Aroclor-1232 (PCB-1232)	NA	ND (0.25)	-
Aroclor-1242 (PCB-1242)	NA	ND (0.25)	-
Aroclor-1248 (PCB-1248)	NA	ND (0.25)	-
Aroclor-1254 (PCB-1254)	NA	ND (0.25)	-
Aroclor-1260 (PCB-1260)	NA	ND (0.2)	-
Total PCBs	0.000000064+	ND	-
Oth			
Other	Domont Oct		0.437
Ammonia, Total (mg/L)	Report Only	1.44	0.127
Chloride, Total (mg/L)	Report Only	709	-
Chlorine, residual, Total (mg/L)	0.2	ND (0.02)	-
Hardess, Total (mg/L)	NA	949	75.1
Total phenols (mg/L)	NA	ND (0.03)	-
рН	NA	8.4	7.3
Cyanide, Total	178	ND (0.005)	-
Total Suspended Solids (TSS) (mg/L)	30	ND (5)	-
Pesticides (ug/L)			
4,4'-DDD	NA	ND (0.04)	-
4.4'-DDE	NA	ND (0.04)	_
4.4'-DDT	NA	ND (0.04)	_
Aldrin	NA	ND (0.02)	_
alpha-BHC	NA	ND (0.02)	_
alpha-Chlordane	NA NA	ND (0.02)	_
beta-BHC	NA NA	ND (0.02)	[
Chlordane	NA NA	ND (0.02)	
delta-BHC	NA NA	ND (0.2)	_
Dieldrin	NA NA	ND (0.02)	[
Endosulfan I	NA NA	ND (0.04) ND (0.02)	-
Endosulfan II	NA NA	, ,	-
		ND (0.04)	-
Endosulfan sulfate	NA	ND (0.04)	-
Endrin	NA	ND (0.04)	-
Endrin aldehyde	NA	ND (0.04)	-
Endrin ketone	NA	ND (0.04)	-
gamma-BHC (Lindane)	NA	ND (0.02)	-
gamma-Chlordane	NA	ND (0.02)	-
Heptachlor	NA	ND (0.02)	-
Heptachlor epoxide	NA	ND (0.02)	-
Methoxychlor	NA	ND (0.1)	-
Toxaphene	NA	ND (0.4)	-

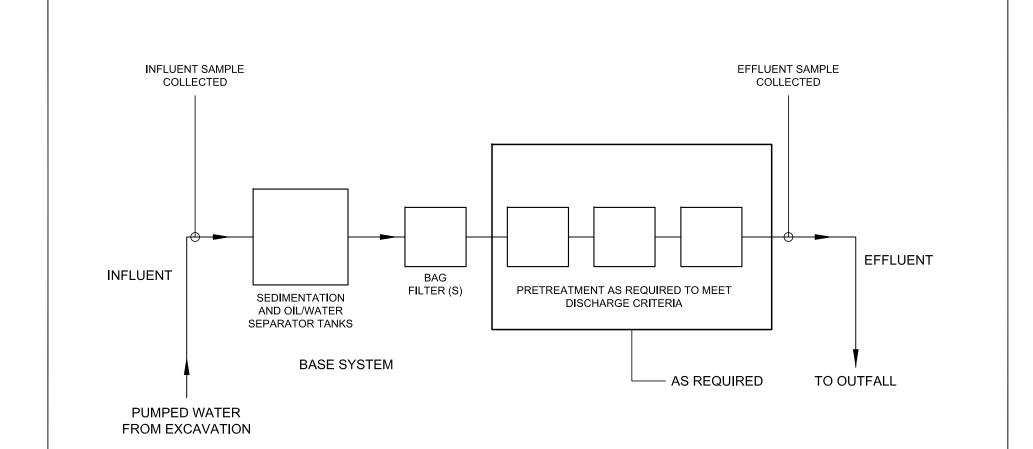
ABBREVIATIONS AND NOTES:


-: Not Analyzed μg/L: micrograms per liter mg/L: milligram per liter


NA: Not Applicable


ND (2.5): Not detected, number in parentheses is the laboratory detection limit


1. Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


September 2019

LEGEND:

→ DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

PARCEL 12 AIR RIGHTS - OFFICE BUILDING BOSTON, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE JUNE 2020

FIGURE 4

APPENDIX A

NOI for RGP

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Air Rights Parcel 12 - Office	Site address:						
Building	Street: 1071-1083 Boylston Street						
	City: Boston		State: MA	Zip: 02118			
2. Site owner	Contact Person: Abe Menzin, Executive Vi	ce Presid	ent Deve	lopment			
S&A P-12 Property LLC	Telephone: 617-603-5412	Email: an	nenzin@s	amuelsre.com			
	Mailing address:						
	Street: 136 Brookline Avenue						
Owner is (check one): ☐ Federal ☐ State/Tribal ☒ Private ☐ Other; if so, specify:	City: Boston		State:MA	Zip: 02115			
3. Site operator, if different than owner	Contact Person: Gregory Sawin, Project E	xecutive					
Suffolk	Telephone: 617-622-7335	Email:					
	Mailing address: 65 Allerton Street Street:						
	City: Boston		State: MA	Zip: 02119			
4. NPDES permit number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site ((check all tha	at apply):				
NPDES permit is (check all that apply: ☒ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 	☐ CERCL☐ UIC Pro☐ POTW :☐ CWA S	ogram Pretreatment				

B. Receiving water information:								
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	sification of receiving water(s):					
Charles River	MA72-38	B(CSO)						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): X Yes	□ No						
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes 🕱 No							
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. TMDLs are available for pathogens and phosphorus.								
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		uctions in	29.2 ft³/s					
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ▼ Yes □ No If yes, indicate date confirmation received: 3/10/2020								
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?								
(check one): X Yes □ No								
C. Source water information:								

1. Source water(s) is (check any that apply):			
X Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
X Yes □ No	□ Yes □ No		

2. Source water contaminants: None above RGP effluent limits	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes 🛽 No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes 🕱 No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge 🗶 New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Outfall 1	42 20 50, 71 05 18
Outfall 2	42 20 49, 71 05 20
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water X Indirect discharge, if so, specify:
☐ A private storm sewer system 🏿 A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): X Yo	es 🗆 No
Has the operator has received permission from the owner to use such system to obtaining permission: BWSC permit application being submitted	or discharges? (check one): ☐ Yes 🏿 No, if so, explain, with an estimated timeframe for disconcurrently with this NOI
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ▼ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): June 2020 - June 2021	
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1	2 months 🕱 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): X Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	a. If Activity Category I or II: (check all that apply)			
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	Compounds e Organic Compounds anic Compounds			
 □ II – Non-Petroleum-Related Site Remediation ☒ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks 	☐ G. Sites with Known	V, V, VI, VII or VIII: (check either G or H) □ H. Sites with Unknown Contamination			
 □ V – Dewatering of Tiperines and Taliks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ☒ A. Inorganics ☐ B. Non-Halogenated Volatile Organic Compounds ☐ C. Halogenated Volatile Organic Compounds ☐ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ E. Halogenated Semi-Volatile Organic Compounds ☐ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	Influent Effluent Limita		mitations
Parameter	or or #of	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
A. Inorganics									
Ammonia		Χ	1 4	500NH3-B	н 75	1440	1440	Report mg/L	
Chloride		Χ	1	300.0	25000	709000	709000	Report μg/l	
Total Residual Chlorine	Х		1	4500CL	20	ND	ND	0.2 mg/L	972
Total Suspended Solids	Х		1	2540D	5000	ND	ND	30 mg/L	_
Antimony Total		Χ*	1	200.8	4	ND	ND	206 μg/L	56,551
Arsenic Total		Χ*	1	200.8	1	3.54	3.54	104 μg/L	884
Cadmium Total		Χ*	1	200.8	0.2	ND	ND	10.2 μg/L	21.2
Chromium III		Χ*	1	107	10	ND	ND	323 μg/L	6,665
Chromium VI	Х		1	7196A	10	ND	ND	323 μg/L	1,010
Copper Total	Х		1	200.8	1	ND	ND	242 μg/L	520
Iron Total		Х	1	200.7	50	459	459	5,000 μg/L	44,418
Lead Total		Χ*	1	200.8	1	ND	ND	160 μg/L	104
Mercury Total		Χ*	1	245.1	0.2	ND	ND	0.739 μg/L	80
Nickel Total		Χ*	1	200.8	2	ND	ND	1,450 μg/L	4,016
Selenium Total	Х		1	200.8	5	ND	ND	235.8 μg/L	442
Silver Total	Х		1	200.8	0.4	ND	ND	35.1 μg/L	252
Zinc Total		Χ*	1	200.8	10	ND	ND	420 μg/L	7,370
Cyanide Total	X		1 4	500CN-C	E 5	ND	ND	178 mg/L	460
B. Non-Halogenated VOCs									
Total BTEX	X		1	624.1	NA	ND	ND	100 μg/L	
Benzene		Χ*	1	624.1	1	ND	ND	5.0 μg/L	
1,4 Dioxane	X		1	624.1	50	ND	ND	200 μg/L	
Acetone		Χ*	1	624.1	10	ND	ND	7.97 mg/L	
Phenol	X		1	420.1	30	ND	ND	1,080 μg/L	26,508

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	624.1	1.0	ND	ND	4.4 μg/L	141
1,2 Dichlorobenzene	Χ		1	624.1	5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	Χ		1	624.1	5	ND	ND	320 μg/L	
1,4 Dichlorobenzene	Χ		1	624.1	5	ND	ND	5.0 μg/L	
Total dichlorobenzene	Χ		1	624.1	5	NA	NA	763 μg/L in NH	
1,1 Dichloroethane	X		1	624.1	1.5	ND	ND	70 μg/L	
1,2 Dichloroethane	X		1	624.1	1.5	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	X		1	624.1	1	ND	ND	3.2 μg/L	
Ethylene Dibromide	Χ		1	504.1	0.01	ND	ND	0.05 μg/L	
Methylene Chloride	Χ		1	624.1	1.0	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	Χ		1	624.1	2.0	ND	ND	200 μg/L	
1,1,2 Trichloroethane	X		1	624.1	1.5	ND	ND	5.0 μg/L	
Trichloroethylene	Χ		1	624.1	1.0	ND	ND	5.0 μg/L	
Tetrachloroethylene	Χ		1	624.1	1.0	ND	ND	5.0 μg/L	292
cis-1,2 Dichloroethylene	Χ		1	624.1	1.0	ND	ND	70 μg/L	
Vinyl Chloride	Х		1	624.1	1.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOCs	S								
Total Phthalates	Х		1	625.1	5	ND	ND	190 μg/L	
Diethylhexyl phthalate	Х		1	625.1	2.2	ND	ND	101 μg/L	194.4
Total Group I PAHs		Χ*	1	625.1	0.1	ND	ND	1.0 μg/L	
Benzo(a)anthracene	Х	Χ*	1	625.1	0.1	ND	ND		0.3358
Benzo(a)pyrene	Х	Χ*	1	625.1	0.1	ND	ND		0.3358
Benzo(b)fluoranthene	X	Χ*	1	625.1	0.1	ND	ND		0.3358
Benzo(k)fluoranthene	Х	Χ*	1	625.1	0.1	ND	ND	As Total PAHs	0.3358
Chrysene	Х	Χ*	1	625.1	0.1	ND	ND		0.3358
Dibenzo(a,h)anthracene	Х	Χ*	1	625.1	0.1	ND	ND		0.3358
Indeno(1,2,3-cd)pyrene	Χ	Χ*	1	625.1	0.1	ND	ND		0.3358

	Known		_		Inf	luent	Effluent Lin	ntations
Known or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Χ		1	625.1	0.1	ND	ND	100 μg/L	
X		1	625.1	0.1	ND	ND	20 μg/L	
Х		1	608.3	0.25	ND	ND	0.000064 μg/L	
Х		1	625.1	1.0	ND	ND	1.0 μg/L	
X		1	1664A	4.00	ND	ND	5.0 mg/L	
Х		1	1671A	2000	ND	ND	Report mg/L	
Х		1	624.1	10.0	ND	ND	70 μg/L	
Х		1	624.1	100	ND	ND	120 μg/L in MA 40 μg/L in NH	
Х		1	624.1	20	ND	ND	90 μg/L in MA 140 μg/L in NH	
, hardness,	salinity, LC	50, addition	al pollutan	ts present);	if so, specify:			
	X	1			8.4	8.4		
	believed absent X X X X X X X X X X X	believed absent present X X X X X X X X X X X X X X X X X X	believed absent present samples X 1 X 1 X 1 X 1 X 1 X 1 X 1 X 1	believed absent believed present samples method (#) X 1 625.1 X 1 624.1 X 1 624.1	believed absent believed present samples method (#) (μg/l) X	believed absent believed present samples method (#)	believed absent believed absent samples method (#) (µg/l) maximum (µg/l) (µg/l)	Delieved absent Delieved Delieved

4. Influent and Effluent Characterization Other Continuation

Additional compounds detected in soil only: **VOCs** SVOCs Metals (mg/kg) 2-Butanone (Methyl Ethyl Ketone) 2-Methylnaphthalene Antimony 3&4-Methylphenol Acetone Arsenic Benzene Acenaphthene **Barium** Carbon disulfide Acenaphthylene Beryllium Cymene (p-Isopropyltoluene) Anthracene Cadmium Naphthalene Benzo(a)anthracene Chromium Tetrahydrofuran Benzo(a)pyrene Lead Toluene Benzo(b)fluoranthene Mercury Benzo(g,h,i)perylene Nickel Other Benzo(k)fluoranthene Vanadium Lead TCLP Chrysene Zinc Dibenz(a,h)anthracene Total Solids (%) Dibenzofuran На Conductivity Fluoranthene **Total Petroleum Hydrocarbons** Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)						
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption						
☑ Ion Exchange ☑ Precipitation/Coagulation/Flocculation ☑ Separation/Filtration ☐ Other; if so, specify:						
Flocculation to control suspended solids						
The following will be applied IF REQUIRED per effluent monitoring sampling: 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.						
Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary tro	eatment					
components (potentially: Ion exchange, GAC, oil/water seperator), to remove suspended solids and undissolved cher constituents, as shown on Figure 4 of the NPDES permit application.						
Identify each major treatment component (check any that apply):						
X Fractionation tanks□ Equalization tank X Oil/water separator □ Mechanical filter X Media filter						
□ Chemical feed tank □ Air stripping unit ☒ Bag filter □ Other; if so, specify:						
Indicate if either of the following will occur (check any that apply):						
□ Chlorination □ De-chlorination						
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.						
Indicate the most limiting component: 150 qpm						
Is use of a flow meter feasible? (check one): X Yes \Box No, if so, provide justification:						
Provide the proposed maximum effluent flow in gpm. 150 gpm						
Provide the average effluent flow in gpm. 25 gpm						
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:						
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ★ Yes □ No						

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of element of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s). (eleck all that appry)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
X FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☒ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): Yes X No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🕱 Yes 🗆 No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🛚 Yes 🗆 No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
☑ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ✗ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes 💢 N/A
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
See attached Haley & Aldrich, Inc. letter.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): X Yes \(\subseteq \) No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☒ Yes □ No

J. Certification requirement

persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	
BMPP certification statement: A BMPP meeting the requirements of this general permit will be implemented upon initiation of discharge.	
Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes 💢 No 🗆	
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes 🕱 No 🗆	
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes X No No NA BWSC Permit being submitted concurrent with this NOI Check one: Yes No NA	lly
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA 💢 □ Other; if so, specify:	
Signature: Date: 06-18-2020	
Print Name and Title: Gregory Sawin, Project Executive	

APPENDIX B

National Register of Historic Places and Massachusetts Historical Commission Documentation

Massachusetts Cultural Resource Information System MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format

PDF

Spreadsheet

Below are the results of your search, using the following search criteria:

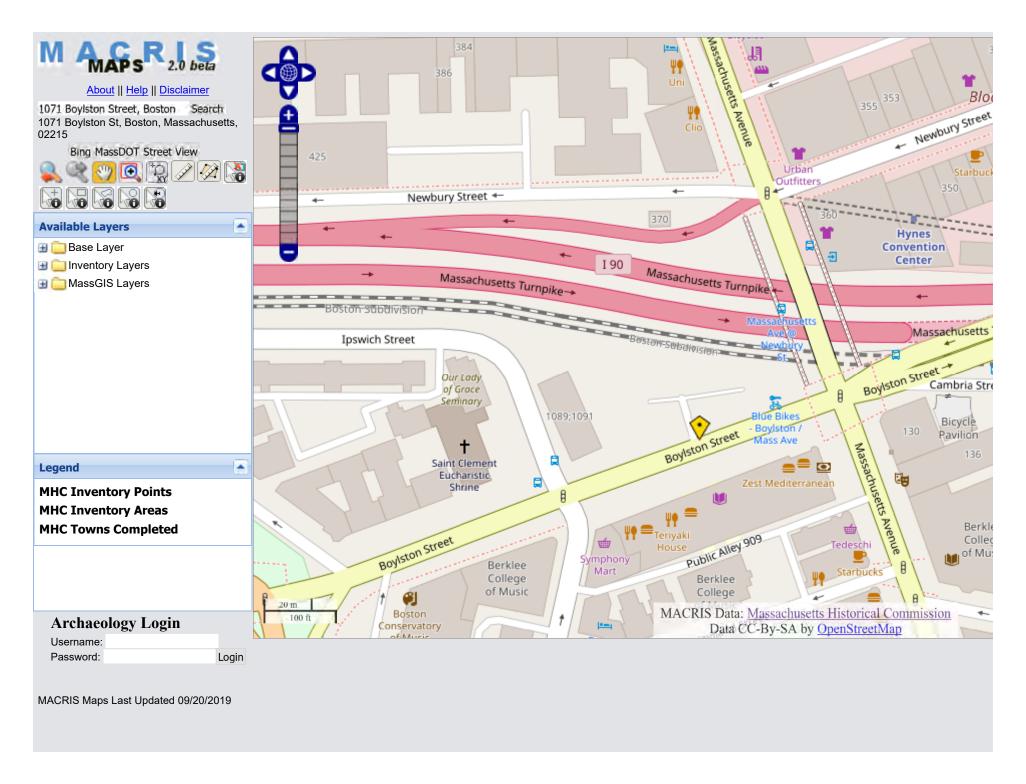
Town(s): Boston Street No: 1081

Street Name: Boylston St

Resource Type(s): Area, Building, Burial Ground, Object, Structure

For more information about this page and how to use it, click here

No Results Found.

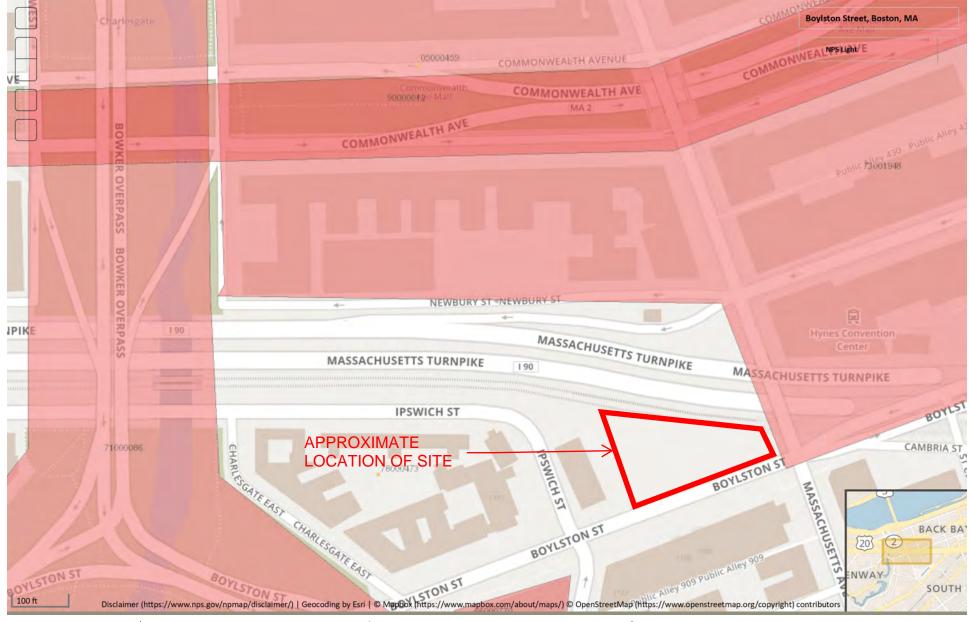

New Search - Same Town(s)

Previous

MHC Home

MACRIS Home

MHC MACRIS Maps 2.0 Beta http://maps.mhc-macris.net/

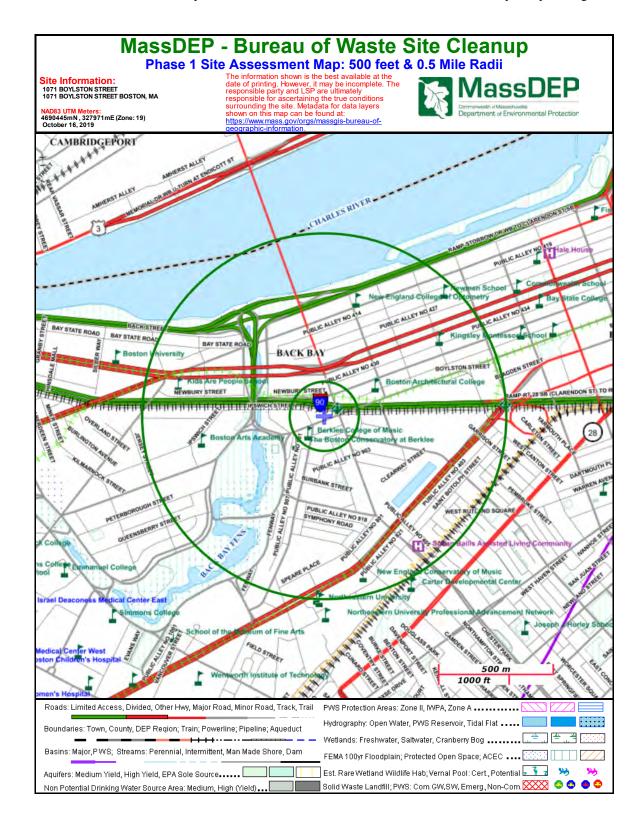


1 of 1 10/16/2019, 1:04 PM

National Register of Historic Places

National Park Service
U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updated in April, 2014.



Home (https://www.nps.gov/aboutus/website-policies.htm) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm) | Contact Us (https://www.nps.gov/contacts.htm)

1 of 2 10/16/2019, 1:14 PM

APPENDIX C

ESA Documentation

1 of 1 10/16/2019, 1:39 PM

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: December 11, 2019

Consultation Code: 05E1NE00-2020-SLI-0733

Event Code: 05E1NE00-2020-E-01959

Project Name: Parcel 12

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-0733

Event Code: 05E1NE00-2020-E-01959

Project Name: Parcel 12

Project Type: DEVELOPMENT

Project Description: The Site will be developed as a 20-story office building (with penthouse

level) with a two-level below-grade parking garage at Boylston Street and Massachusetts Avenue, Boston. Dewatering is expected to start in June

2020 and last for one year.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34729109755648N71.08864943961098W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC Information for Planning and Consultation U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Suffolk County, Massachusetts

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact NOAA Fisheries for species under their jurisdiction.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data</u> <u>mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626

IR CO

Breeds Oct 15 to Aug 31

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Breeds May 15 to Oct 10

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Cerulean Warbler Dendroica cerulea

Breeds Apr 29 to Jul 20

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

4 of 10

Wood Thrush Hylocichla mustelina

Breeds May 10 to Aug 31

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

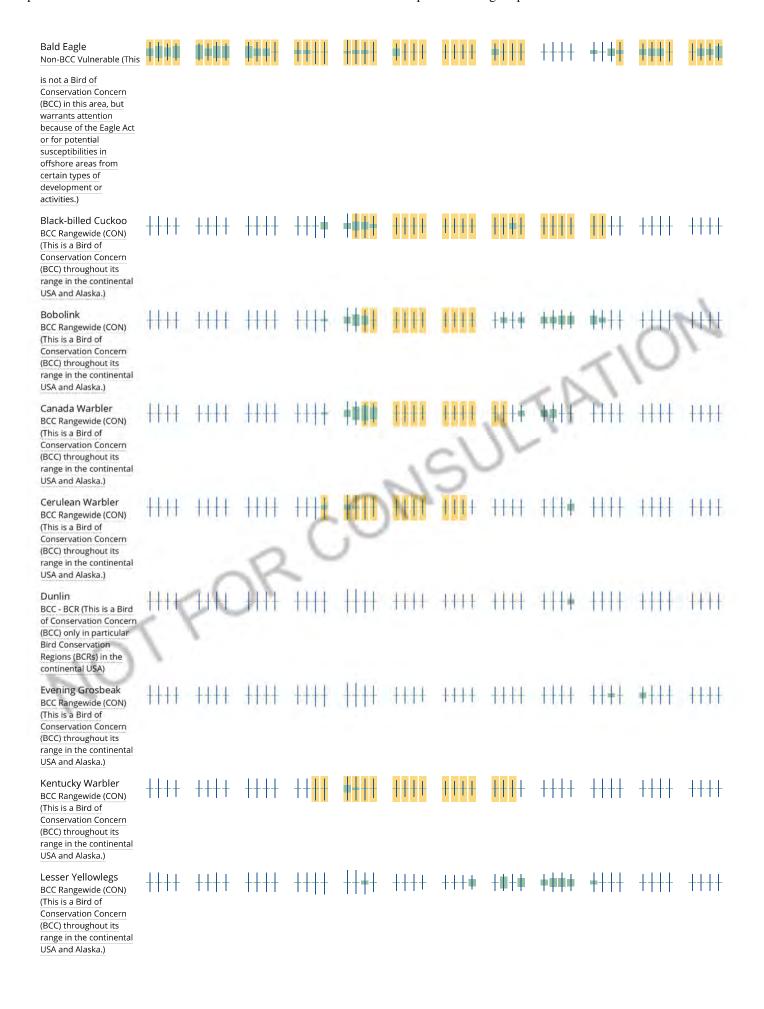
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

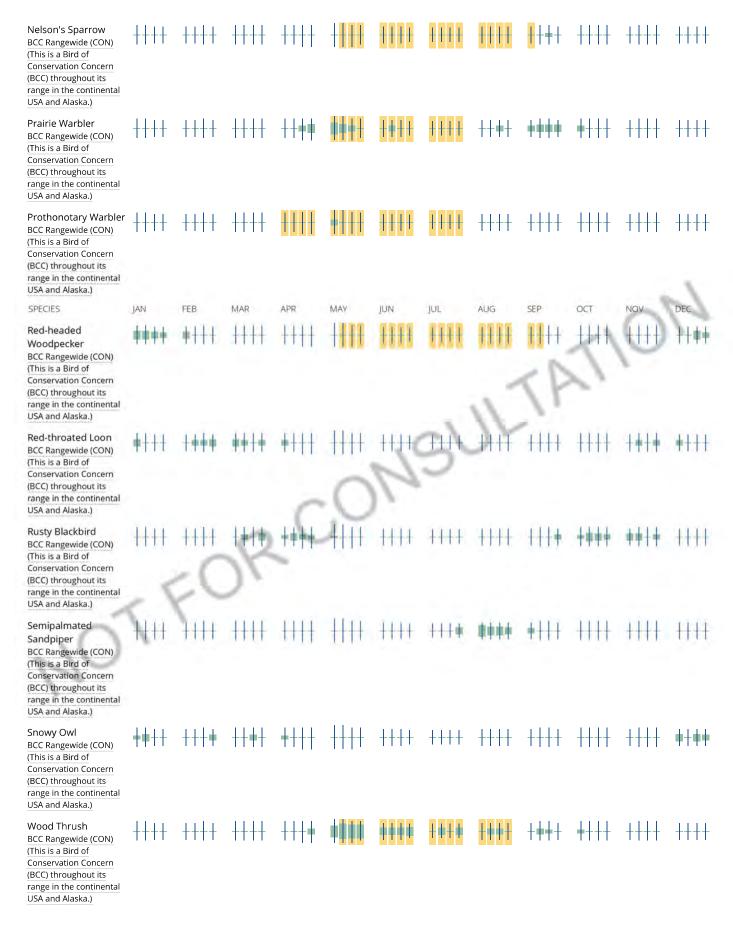
Breeding Season ()

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year

7 of 10

round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

APPENDIX D

BWSC Permit

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

19 June 2020 File No. 132410-008

Boston Water and Sewer Commission Engineering Customer Services 900 Harrison Avenue Boston, MA 02119

Attention: Jodi Dobay

Subject: Request for Approval of Temporary Construction Dewatering

MassDOT Air Rights Parcel 12 - Office Building

Boston, Massachusetts

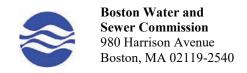
Ladies and Gentlemen,

On behalf of our client, S&A P12 Property LLC c/o Samuels & Associates, this letter submits the Dewatering Discharge Permit Application for the proposed hotel building located at 1001 Boylston Street, Boston, Massachusetts.

Dewatering is necessary for basement excavation and construction to be conducted in-the-dry and is anticipated to begin in June 2020 and continue for up to 12 months. Prior to discharge, collected water will be routed through a sedimentation tank and bag filter at minimum to remove suspended solids and un-dissolved chemical constituents. The proposed dewatering discharge catch basin is shown on Figure 1 and the BWSC sewer system maps with discharge route.

A Notice of Intent to discharge under the 2017 NPDES Remediation General Permit (RGP) has been submitted to the Environmental Protection Agency (EPA). A copy of the submitted application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.

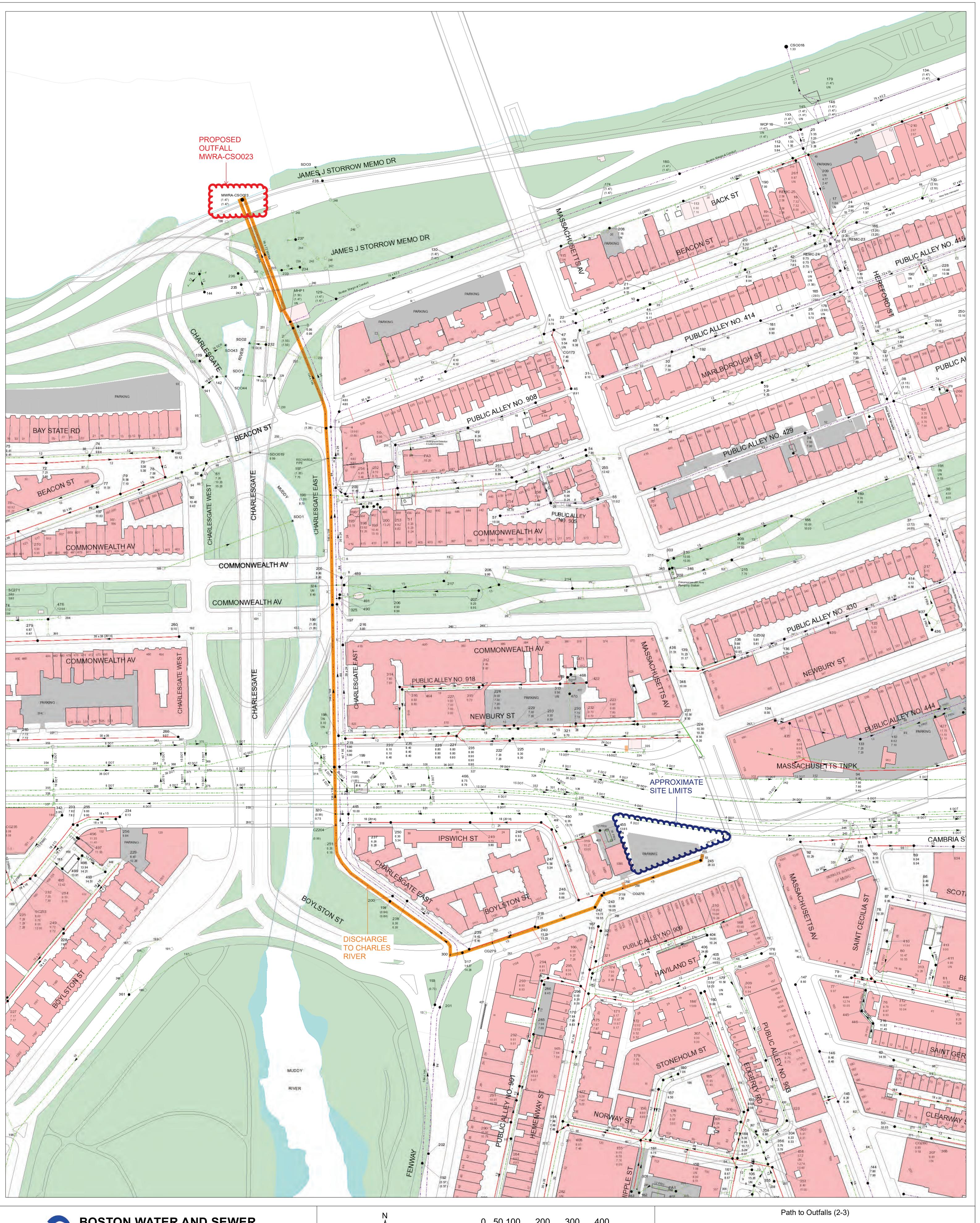
Sincerely yours,


HALEY & ALDRICH, INC.

Douglas M. Lindsay, P.G. (NH), LSP Associate | Senior Project Manager

Attachments:

Dewatering Discharge Permit Application Figure 1 – Proposed Discharge Route Copy of NPDES RGP Application


\haleyaldrich.com\share\bos_common\132410 - P12 Air Rights\Dewatering Permits\P12 RGP - Office\Appendix D - BWSC Permit Application\2020-0619-HAI-Parcel 12 BWSC Letter-F.docx

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name: S&A P12 Property LLC	Address: 136 Brookline Avenue, Boston MA	02115
Phone Number: <u>617-603-5412</u>	Fax number:	
Contact person name: Abe Menzin	Title: Executive Vice President Devel	opment
Cell number: 617-603-5412	Email address: amenzin@samuelsre.co	m
Permit Request (check one): ☒ New Application	· - · · -	
Owner's Information (if different from above):		
Owner of property being dewatered:		
Owner's mailing address:	Phone number:	
Location of Discharge & Proposed Treatment Sy		
Discharge is to a: ☐ Sanitary Sewer ☐ Combine Sedii Describe Proposed Pre-Treatment System(s): as not BWSC Outfall No. MWRA-CSO023 Received.	mentation Tank, Bag Filter, pH neutralizationecessary (refer to attached RGP Application	n, and any other components
Temporary Discharges (Provide Anticipated Dates of □ Groundwater Remediation □ Utility/Manhole Pumping ▼ Accumulated Surface Water	☐ Tank Removal/Installation	June 2021 ion Excavation Excavation
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process	 □ Crawl Space/Footing Drain □ Non-contact/Uncontaminated Cooling □ Other; 	
number, size, make and start reading. Note. All discharges 2. If discharging to a sanitary or combined sewer, attach a cop 3. If discharging to a separate storm drain, attach a copy of EF as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if a Submit Completed Application to: Boston Water and S Engineering Custor 980 Harrison Avenue	mer Services ue, Boston, MA 02119 le, Engineering Customer Service bwsc.org	catch basin). Include meter type, meter sewer charges.
Signature of Authorized Representative for Property Owner:	:- Jou Sklar	Date: 6/23/2020

APPENDIX E

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1935412

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Scott Bamford Phone: (617) 886-7420

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Report Date: 08/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date:

08/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1935412-01	HA14-101(OW)	WATER	BOSTON, MA	08/07/19 09:45	08/07/19

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412
Project Number: 132410-005 Report Date: 08/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412
Project Number: 132410-005 Report Date: 08/15/19

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

L1935412-01 (HA14-101(OW)): The collection date and time on the chain of custody was 07-AUG-19 10:00; however, the collection date/time on the container label was 07-AUG-19 09:45. At the client's request, the collection date/time is reported as 07-AUG-19 09:45.

Volatile Organics by Method 624

The WG1271705-3 LCS recovery, associated with L1935412-01 (HA14-101(OW)), is above the acceptance criteria for tert-butyl alcohol (160%); however, the associated sample is non-detect for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Coolin Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 08/15/19

ORGANICS

VOLATILES

L1935412

08/15/19

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1935412-01 Date Collected: 08/07/19 09:45

Client ID: HA14-101(OW) Date Received: 08/07/19
Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 08/12/19 13:17

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: Lab Number: MASSDOT AIR RIGHTS PARCEL 12 L1935412

Project Number: Report Date: 132410-005 08/15/19

SAMPLE RESULTS

Lab ID: L1935412-01 Date Collected: 08/07/19 09:45

Date Received: Client ID: 08/07/19 HA14-101(OW) Sample Location: Field Prep: BOSTON, MA Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	109		60-140	
Fluorobenzene	116		60-140	
4-Bromofluorobenzene	103		60-140	

L1935412

08/15/19

Project Name: Lab Number: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

SAMPLE RESULTS

Date Collected:

Report Date:

Lab ID: L1935412-01 08/07/19 09:45 Client ID: Date Received: 08/07/19 HA14-101(OW) Field Prep: Sample Location: BOSTON, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 13:17

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SI	M - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		otance teria
Fluorobenzene			112		6	0-140
4-Bromofluorobenzene			119		6	0-140

08/15/19

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005

SAMPLE RESULTS

Report Date:

5/IIII == 1\(\frac{1}{2}\)

 Lab ID:
 L1935412-01
 Date Collected:
 08/07/19 09:45

 Client ID:
 HA14-101(OW)
 Date Received:
 08/07/19

 Sample Location:
 BOSTON, MA
 Field Prep:
 Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/15/19 11:00

Analyst: AWS

08/15/19 15:06

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/12/19 11:07

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sample(s): 01	Batch:	WG1271705-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 08/12/19 11:07

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1271705-4

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Pentafluorobenzene	113	60-140
Fluorobenzene	114	60-140
4-Bromofluorobenzene	101	60-140

Project Name: MASSDOT AIR RIGHTS PARCEL 12 **Lab Number:** L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 08/12/19 11:07

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1271730-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
Fluorobenzene	111	60-140
4-Bromofluorobenzene	117	60-140

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 08/15/19 14:33 Extraction Date: 08/15/19 11:00

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	orough Lab fo	or sample(s)	: 01	Batch: WG127	2861-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

Report Date: 08/15/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
platile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 01	Batch: WG1	271705-3					
Methylene chloride	100		-		60-140	-		28	
1,1-Dichloroethane	90		-		50-150	-		49	
Carbon tetrachloride	90		-		70-130	-		41	
1,1,2-Trichloroethane	100		-		70-130	-		45	
Tetrachloroethene	105		-		70-130	-		39	
1,2-Dichloroethane	115		-		70-130	-		49	
1,1,1-Trichloroethane	125		-		70-130	-		36	
Benzene	120		-		65-135	-		61	
Toluene	105		-		70-130	-		41	
Ethylbenzene	105		-		60-140	-		63	
Vinyl chloride	95		-		5-195	-		66	
1,1-Dichloroethene	120		-		50-150	-		32	
cis-1,2-Dichloroethene	120		-		60-140	-		30	
Trichloroethene	120		-		65-135	-		48	
1,2-Dichlorobenzene	105		-		65-135	-		57	
1,3-Dichlorobenzene	100		-		70-130	-		43	
1,4-Dichlorobenzene	100		-		65-135	-		57	
p/m-Xylene	102		-		60-140	-		30	
o-xylene	100		-		60-140	-		30	
Acetone	114		-		40-160	-		30	
Methyl tert butyl ether	125		-		60-140	-		30	
Tert-Butyl Alcohol	160	Q	-		60-140	-		30	
Tertiary-Amyl Methyl Ether	120		-		60-140	-		30	

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Lab Number:

L1935412

Project Number: 132410-005

Report Date:

08/15/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1271705-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	114			60-140
Fluorobenzene	114			60-140
4-Bromofluorobenzene	99			60-140

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Lab Number:

L1935412 08/15/19

Project Number: 132410-005

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbo	rough Lab Associa	ited sample(s)): 01 Batch:	WG127173	0-3				
1,4-Dioxane	100		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	111 102				60-140 60-140

MASSDOT AIR RIGHTS PARCEL 12

Lab Number: L1935412

Project Number: 132410-005

Project Name:

Report Date:

08/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1272	2861-2					
1,2-Dibromoethane	104		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date:

08/15/19

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC -	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG1	272861-3	QC Sample: I	_1935658-	01 Clie	ent ID: N	IS Samp	le	
1,2-Dibromoethane	ND	0.249	0.266	107		-	-	8	80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.282	113		-	-	8	80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.249	0.446	179	Q	-	-	8	80-120	-		20	Α

SEMIVOLATILES

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

SAMPLE RESULTS

Lab ID: L1935412-01 Date Collected: 08/07/19 09:45

Client ID: Date Received: 08/07/19 HA14-101(OW) Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Analyst:

Diethyl phthalate

Dimethyl phthalate

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 08/10/19 15:52 Analytical Method: 129,625.1

Analytical Date: 08/11/19 19:53

SZ

Qualifier Units RL MDL **Dilution Factor** Result **Parameter** Semivolatile Organics by GC/MS - Westborough Lab ND Bis(2-ethylhexyl)phthalate ug/l 2.2 1 Butyl benzyl phthalate ND ug/l 5.0 1 Di-n-butylphthalate ND ug/l 5.0 --Di-n-octylphthalate ND 5.0 1

ND

ND

ug/l

ug/l

ug/l

5.0

5.0

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	74		42-122	
2-Fluorobiphenyl	59		46-121	
4-Terphenyl-d14	77		47-138	

1

08/15/19

Report Date:

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005

SAMPLE RESULTS

Lab ID: L1935412-01 Date Collected: 08/07/19 09:45

Client ID: HA14-101(OW) Date Received: 08/07/19
Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 08/10/19 15:52

Analytical Date: 08/11/19 13:46

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - We	stborough La	ab				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	25-87	
Phenol-d6	30	16-65	
Nitrobenzene-d5	84	42-122	
2-Fluorobiphenyl	88	46-121	
2,4,6-Tribromophenol	87	45-128	
4-Terphenyl-d14	87	47-138	

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date: 08/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 08/11/19 11:14

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 08/10/19 13:30

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S-SIM - Westbo	orough Lab	for sample	e(s): 01	Batch: WG127098	31-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	25-87
Phenol-d6	28	16-65
Nitrobenzene-d5	69	42-122
2-Fluorobiphenyl	67	46-121
2,4,6-Tribromophenol	58	45-128
4-Terphenyl-d14	65	47-138

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 08/11/19 18:12 Extraction Date: 08/10/19 13:30

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	-	MDL	
Semivolatile Organics by GC/MS - \	Vestborough	n Lab for s	ample(s):	01 E	Batch:	WG1271005-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2	2		
Butyl benzyl phthalate	ND		ug/l	5.0)		
Di-n-butylphthalate	ND		ug/l	5.0)		
Di-n-octylphthalate	ND		ug/l	5.0)		
Diethyl phthalate	ND		ug/l	5.0)		
Dimethyl phthalate	ND		ug/l	5.0)		

		Į.	Acceptance		
Surrogate	%Recovery	Qualifier	Criteria		
Nitrobenzene-d5	60		42-122		
2-Fluorobiphenyl	49		46-121		
4-Terphenyl-d14	60		47-138		

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westh	oorough Lab A	ssociated samp	e(s): 01 Batc	h: WG127	70981-2			
Acenaphthene	68		-		60-132	-		30
Fluoranthene	82		-		43-121	-		30
Naphthalene	68		-		36-120	-		30
Benzo(a)anthracene	88		-		42-133	-		30
Benzo(a)pyrene	75		-		32-148	-		30
Benzo(b)fluoranthene	78		-		42-140	-		30
Benzo(k)fluoranthene	75		-		25-146	-		30
Chrysene	75		-		44-140	-		30
Acenaphthylene	75		-		54-126	-		30
Anthracene	84		-		43-120	-		30
Benzo(ghi)perylene	79		-		1-195	-		30
Fluorene	72		-		70-120	-		30
Phenanthrene	79		-		65-120	-		30
Dibenzo(a,h)anthracene	79		-		1-200	-		30
Indeno(1,2,3-cd)pyrene	86		-		1-151	-		30
Pyrene	81		-		70-120	-		30
Pentachlorophenol	69		-		38-152	-		30

MASSDOT AIR RIGHTS PARCEL 12

Lab Number: L1935412

Project Name: Project Number: 132410-005

Report Date:

08/15/19

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1270981-2

Surrogate		 ceptance Criteria
2-Fluorophenol	47	25-87
Phenol-d6	34	16-65
Nitrobenzene-d5	82	42-122
2-Fluorobiphenyl	73	46-121
2,4,6-Tribromophenol	75	45-128
4-Terphenyl-d14	79	47-138

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date:

08/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboroug	gh Lab Associa	ted sample(s):	01 Batch:	WG1271005	i-2				
Bis(2-ethylhexyl)phthalate	122		-		29-137	-		82	
Butyl benzyl phthalate	108		-		1-140	-		60	
Di-n-butylphthalate	109		-		8-120	-		47	
Di-n-octylphthalate	118		-		19-132	-		69	
Diethyl phthalate	96		-		1-120	-		100	
Dimethyl phthalate	80		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	82		42-122	
2-Fluorobiphenyl	68		46-121	
4-Terphenyl-d14	90		47-138	

PCBS

Project Name: MASSDOT AIR RIGHTS PARCEL 12 **Lab Number:** L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

SAMPLE RESULTS

Lab ID: Date Collected: 08/07/19 09:45

Client ID: HA14-101(OW) Date Received: 08/07/19
Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 08/11/19 01:09

Analytical Date: 08/14/19 02:53 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 08/13/19

Cleanup Method: EPA 3660B Cleanup Date: 08/13/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by 0	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		37-123	В
Decachlorobiphenyl	78		38-114	В
2,4,5,6-Tetrachloro-m-xylene	77		37-123	Α
Decachlorobiphenyl	80		38-114	Α

L1935412

Project Name: Lab Number: MASSDOT AIR RIGHTS PARCEL 12

Report Date: Project Number: 132410-005 08/15/19

Method Blank Analysis

Batch Quality Control

Analyst: WR

127,608.3

08/14/19 04:05

Analytical Method:

Analytical Date:

Extraction Method: EPA 608.3 08/11/19 01:09 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 08/13/19 Cleanup Method: EPA 3660B Cleanup Date: 08/13/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Nestboroug [®]	h Lab for s	ample(s):	01 Batch:	WG1271055	·1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance					
Surrogate	%Recovery Qualifie	r Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	65	37-123	В				
Decachlorobiphenyl	68	38-114	В				
2,4,5,6-Tetrachloro-m-xylene	64	37-123	Α				
Decachlorobiphenyl	71	38-114	Α				

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Lab Number: L1935412

Project Number: 132410-005

D -		LCS	01	LCSD		%Recovery	222	01	RPD	0.1
Pai	ameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Po	ychlorinated Biphenyls by GC - Westborou	gh Lab Associa	ated sample(s):	: 01 Batch:	WG1271055-2	2				
	Aroclor 1016	79		-		50-140	-		36	Α
	Aroclor 1260	75		-		8-140	-		38	А

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Colun	nn
2,4,5,6-Tetrachloro-m-xylene	67		37-123 B	
Decachlorobiphenyl	81		38-114 B	
2,4,5,6-Tetrachloro-m-xylene	67		37-123 A	
Decachlorobiphenyl	83		38-114 A	

METALS

Project Name: MASSDOT AIR RIGHTS PARCEL 12 **Lab Number:** L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

SAMPLE RESULTS

 Lab ID:
 L1935412-01
 Date Collected:
 08/07/19 09:45

 Client ID:
 HA14-101(OW)
 Date Received:
 08/07/19

 Sample Location:
 BOSTON, MA
 Field Prep:
 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Iron, Total	0.459		mg/l	0.050		1	08/08/19 09:32	08/12/19 21:39	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	08/12/19 16:36	08/13/19 12:20	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	08/08/19 09:32	08/08/19 14:05	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab	-								
Chromium, Trivalent	ND		mg/l	0.010		1		08/08/19 14:05	NA	107,-	

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date: 08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	sfield Lab for sample(s)	: 01 Batc	h: WG12	70017-	1				
Antimony, Total	ND	mg/l	0.00400		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	08/08/19 09:32	08/08/19 13:52	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	n: WG1:	270193-	1				
Iron, Total	ND	mg/l	0.050		1	08/08/19 09:32	08/12/19 21:01	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	sfield Lab for sample(s):	01 Batc	h: WG12	271441-	-1				
Mercury, Total	ND	mg/l	0.00020		1	08/12/19 16:36	08/13/19 11:44	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1270017-2				
Antimony, Total	88	-	85-115	-		
Arsenic, Total	107	-	85-115	-		
Cadmium, Total	109	•	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	99	-	85-115	-		
Lead, Total	111	-	85-115	-		
Nickel, Total	103	-	85-115	-		
Selenium, Total	102	-	85-115	-		
Silver, Total	105	-	85-115	-		
Zinc, Total	109	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1270193-2				
Iron, Total	105	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1271441-2				
Mercury, Total	100	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD I Found	MSD %Recovery	l Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield I	Lab Associated sam	nple(s): 01	QC Batch I	D: WG127001	7-3	QC Sample	: L1935411-01	Client	ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.5454	109		-	-		70-130	-		20
Arsenic, Total	0.00435	0.12	0.1364	110		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05848	115		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.2015	101		-	-		70-130	-		20
Copper, Total	0.00420	0.25	0.2574	101		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5691	112		-	-		70-130	-		20
Nickel, Total	0.00235	0.5	0.5251	104		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1353	113		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05180	104		-	-		70-130	-		20
Zinc, Total	0.01143	0.5	0.5699	112		-	-		70-130	-		20
otal Metals - Mansfield I	_ab Associated sam	nple(s): 01	QC Batch I	D: WG127019	3-3	QC Sample	: L1935411-01	Client	ID: MS Sa	ample		
Iron, Total	0.127	1	1.18	105		-	-		75-125	-		20
otal Metals - Mansfield I	_ab Associated sam	nple(s): 01	QC Batch I	D: WG127144	1-3	QC Sample	: L1935359-01	Client	ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.00430	86		-	-		70-130	-		20
Fotal Metals - Mansfield I	_ab Associated sam	nple(s): 01	QC Batch I	D: WG127144	1-5	QC Sample	: L1935359-02	Client	ID: MS Sa	ample		
Mercury, Total	ND	0.005	0.00406	81		-	-		70-130	-		20

L1935412

Lab Duplicate Analysis Batch Quality Control

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

y Control Lab Number:

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1270017-	4 QC Sample:	L1935411-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00435	0.00454	mg/l	4		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00420	0.00462	mg/l	9		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.00235	0.00231	mg/l	2		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01143	0.01185	mg/l	4		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1270193-	4 QC Sample:	L1935411-01	Client ID:	DUP Sample	
Iron, Total	0.127	0.128	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1271441-	4 QC Sample:	L1935359-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1271441-	6 QC Sample:	L1935359-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 **Report Date:** 08/15/19

SAMPLE RESULTS

 Lab ID:
 L1935412-01
 Date Collected:
 08/07/19 09:45

 Client ID:
 HA14-101(OW)
 Date Received:
 08/07/19

Sample Location: BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/09/19 12:15	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	08/09/19 11:10	08/09/19 14:36	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	08/08/19 06:33	121,4500CL-D	MR
Nitrogen, Ammonia	1.44		mg/l	0.075		1	08/08/19 17:05	08/08/19 20:47	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	08/09/19 16:55	08/09/19 23:30	74,1664A	MM
Phenolics, Total	ND		mg/l	0.030		1	08/12/19 01:14	08/12/19 05:49	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	08/08/19 01:15	08/08/19 03:47	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	stborough	Lab							
Chloride	709.		mg/l	25.0		50	-	08/08/19 21:54	44,300.0	AT

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date: 08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	69880-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	08/08/19 01:15	08/08/19 03:36	1,7196A	MA
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	69934-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	08/08/19 06:33	121,4500CL-D	MR
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	70103-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	08/08/19 17:05	08/08/19 20:43	121,4500NH3-BH	TA H
Anions by Ion Chroma	tography - Westbo	orough	Lab for sar	mple(s):	01 B	atch: WG1	270500-1			
Chloride	ND		mg/l	0.500		1	-	08/08/19 18:36	44,300.0	AT
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	70505-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/09/19 12:15	121,2540D	DR
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	70580-1				
Cyanide, Total	ND		mg/l	0.005		1	08/09/19 11:10	08/09/19 14:27	121,4500CN-CE	LH
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	70781-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	08/09/19 16:55	08/09/19 23:30	74,1664A	MM
General Chemistry - W	/estborough Lab	for sam	ple(s): 01	Batch:	WG12	71199-1				
Phenolics, Total	ND		mg/l	0.030		1	08/12/19 01:14	08/12/19 05:39	4,420.1	BR

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number:

L1935412

Report Date:

08/15/19

Parameter	LCS %Recovery Qua	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1269880-2				
Chromium, Hexavalent	100	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1269934-2				
Chlorine, Total Residual	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1270103-2				
Nitrogen, Ammonia	102	-	80-120	-		20
nions by Ion Chromatography - Westb	orough Lab Associated sa	imple(s): 01 Batch: W0	G1270500-2			
Chloride	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1270580-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1270781-2				
ТРН	84	-	64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1271199-2				
Phenolics, Total	90	-	70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R	PD Qual	RPD Limits
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1269880-4	QC Sample: L1935412-	01 Client ID:	HA14-101((OW)
Chromium, Hexavalent	ND	0.1	0.098	98	-	-	85-115	-	20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1269934-4	QC Sample: L1935412-	01 Client ID:	HA14-101((OW)
Chlorine, Total Residual	ND	0.25	0.27	108	-	-	80-120	-	20
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1270103-4	QC Sample: L1935201-	01 Client ID:	MS Sample	е
Nitrogen, Ammonia	ND	4	3.47	87	-	-	80-120	-	20
Anions by Ion Chromatography Sample	· - Westboroug	h Lab Asso	ciated sar	mple(s): 01 Q0	C Batch ID: WG1	270500-3 QC Sample	: L1935247-02	2 Client ID	: MS
Chloride	473	100	587	114	Q -	-	90-110	-	18
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1270580-4	QC Sample: L1935658-	02 Client ID:	MS Sample	е
Cyanide, Total	0.006	0.2	0.205	99	-	-	90-110	-	30
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1270781-4	QC Sample: L1934232-	02 Client ID:	MS Sample	е
TPH	ND	20	15.1	76	-	-	64-132	-	34
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1271199-4	QC Sample: L1935412-	01 Client ID:	HA14-101((OW)
Phenolics, Total	ND	0.4	0.32	80	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1269880-3	QC Sample: L1935412	2-01 Clien	nt ID: HA14-101(OW)
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1269934-3	QC Sample: L1935152	2-01 Clien	nt ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1270103-3	QC Sample: L1935201	-01 Clien	nt ID: DUP Sample
Nitrogen, Ammonia	ND	ND	mg/l	NC	20
Anions by Ion Chromatography - Westborough Sample Chloride	473	473	mg/l	0	247-02 Client ID: DUP
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1270505-2	QC Sample: L1900008	3-73 Clien	nt ID: DUP Sample
Solids, Total Suspended	2100	1100	mg/l	63	Q 29
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1270580-3	QC Sample: L1935658	3-01 Clien	nt ID: DUP Sample
Cyanide, Total	0.361	0.366	mg/l	1	30
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1270781-3	QC Sample: L1934232	2-01 Clien	nt ID: DUP Sample
TPH	ND	ND	mg/l	NC	34
General Chemistry - Westborough Lab Associa	ated sample(s): 01 QC Batch ID	: WG1271199-3	QC Sample: L1935412	2-01 Clien	nt ID: HA14-101(OW)
Phenolics, Total	ND	ND	mg/l	NC	20

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Lab Number: L1935412
Report Date: 08/15/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent C Absent

Container Information		rmation		Initial	Final	Temp			Frozen				
	Container ID	Container Type	Cooler	рН	pН		Pres	Seal	Date/Time	Analysis(*)			
	L1935412-01A	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)			
	L1935412-01A1	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)			
	L1935412-01A2	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)			
	L1935412-01A3	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)			
	L1935412-01B	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		504(14)			
	L1935412-01B1	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		504(14)			
	L1935412-01B2	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		504(14)			
	L1935412-01B3	Vial Na2S2O3 preserved	В	NA		4.5	Υ	Absent		504(14)			
	L1935412-01C	Vial HCl preserved	В	NA		4.5	Υ	Absent		SUB-ETHANOL(14)			
	L1935412-01D	Vial HCl preserved	В	NA		4.5	Υ	Absent		SUB-ETHANOL(14)			
	L1935412-01E	Vial HCl preserved	В	NA		4.5	Υ	Absent		SUB-ETHANOL(14)			
	L1935412-01F	Plastic 250ml NaOH preserved	В	>12	>12	4.5	Υ	Absent		HOLD-WETCHEM(),TCN-4500(14)			
	L1935412-01G	Plastic 250ml HNO3 preserved	В	<2	<2	4.5	Υ	Absent		HOLD-METAL-DISSOLVED(180)			
	L1935412-01H	Plastic 250ml HNO3 preserved	В	<2	<2	4.5	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)			
	L1935412-01I	Plastic 500ml H2SO4 preserved	В	<2	<2	4.5	Υ	Absent		NH3-4500(28)			
	L1935412-01J	Plastic 950ml unpreserved	В	7	7	4.5	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)			
	L1935412-01K	Plastic 950ml unpreserved	В	7	7	4.5	Υ	Absent		TSS-2540(7)			
	L1935412-01L	Amber 1000ml H2SO4 preserved	В	<2	<2	4.5	Υ	Absent		TPHENOL-420(28)			
	L1935412-01M	Amber 1000ml Na2S2O3	В	7	7	4.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)			
	L1935412-01N	Amber 1000ml Na2S2O3	В	7	7	4.5	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)			

Lab Number: L1935412

Report Date: 08/15/19

Project Name: MASSDOT AIR RIGHTS PARCEL 12

Project Number: 132410-005

Container Info	Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1935412-01O	Amber 1000ml Na2S2O3	В	7	7	4.5	Υ	Absent		PCB-608.3(7)
L1935412-01O1	Amber 1000ml Na2S2O3	С	7	7	5.3	Υ	Absent		PCB-608.3(7)
L1935412-01O2	Amber 1000ml Na2S2O3	С	7	7	5.3	Υ	Absent		PCB-608.3(7)
L1935412-01P	Amber 1000ml Na2S2O3	В	7	7	4.5	Υ	Absent		PCB-608.3(7)
L1935412-01P1	Amber 1000ml Na2S2O3	С	7	7	5.3	Υ	Absent		PCB-608.3(7)
L1935412-01P2	Amber 1000ml Na2S2O3	С	7	7	5.3	Υ	Absent		PCB-608.3(7)
L1935412-01Q	Amber 1000ml HCl preserved	В	N/A	N/A	4.5	Υ	Absent		TPH-1664(28)
L1935412-01Q1	Amber 1000ml HCl preserved	С	N/A	N/A	5.3	Υ	Absent		TPH-1664(28)
L1935412-01Q2	Amber 1000ml HCl preserved	С	N/A	N/A	5.3	Υ	Absent		TPH-1664(28)
L1935412-01R	Amber 1000ml HCl preserved	В	N/A	N/A	4.5	Υ	Absent		TPH-1664(28)
L1935412-01R1	Amber 1000ml HCl preserved	С	N/A	N/A	5.3	Υ	Absent		TPH-1664(28)
L1935412-01R2	Amber 1000ml HCl preserved	С	N/A	N/A	5.3	Υ	Absent		TPH-1664(28)

Container Comments

L1935412-01O	Chlorine Check
L1935412-01O1	Chlorine Check
L1935412-01O2	Chlorine Check
L1935412-01P	Chlorine Check
L1935412-01P1	Chlorine Check
L1935412-01P2	Chlorine Check

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412

Project Number: 132410-005 Report Date: 08/15/19

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name: MASSDOT AIR RIGHTS PARCEL 12 Lab Number: L1935412
Project Number: 132410-005 Report Date: 08/15/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:MASSDOT AIR RIGHTS PARCEL 12Lab Number:L1935412Project Number:132410-005Report Date:08/15/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Avana	CHAIN OF	Service Centers Brewer, ME 04412 Pr	ertsmouth, NH G	SBOS Matyenty, 763	Page	1		Date	Dec	id		200											10000000		
Διрна	CUSTODY	07430 Albany, NY 122 Tenawanda, NY 14150	05	A DO GOOD AND A	O O	61		10.77	Lab			8	17/	110	7								L1935412		
Westborsogh, MA 01581 9 Welbup Dr. TEL: 509-999-9220	Marrafield, MA 02048 320 Further Bled TEL: 308-822-9300	Project Information Project Name:	150 Seapon	Boulevard				verable				Fax							7			=	Billing Information Same as Client Info		
FAX 508-898-5153	FAX: 506-822-3288	-	Boston, MA				Ī	EQUI	5(1)	File)		EQUIS	6 (4 File	6)									POI		
H&A Information	The same	Project #	132470-002				T	Other	7																
H&A Client: The Cror	in Group, LLC	(Use Project name a	s Project)				Reg	Ulatory	Fiequ	Wemer	is (Prog	ram/Cr	iteria)										Disposal Site Information		
H&A Address 455 Med	ford St	Project Manager:	Lee Vanzier				Г																Please Identify below location of applicable of	disposal	
Boston,	MA 0212-1400	ALPHAQuote #:					1				1												lacilities.		
H&A Phone: 617-886-	7400	Turn-Around Time									1												Dispressi Facility		
	H&A Email Ivanzler@haleyaldrich.com (orly if pre approved) # of Days:					Note: Solect State from manu & identify criteria.						NJ NV													
These samples have b	een previously analyzed	by Alpha					ANA	LYSIS															Sample Filtration		
Other project specific requirements/comments: 3. HOLD PACN & ACN 13. Dissolved Metals ON HOLD (Field Filtered) Please sample per EPA Approved 2017 RGP Permit methods Please specify Metals or TAL.			5-2540	2 TRC-4500	TCN-4500	504	5, 8260 & 8260 SIM tor Dioxane, or applicable	HEXCR-3500 & Trivalent Chromium	TPHENOL-420	8. 6270TCL (including	9. 8270TCL-SIM,	21-300	ni Metale - Ag. As, Cd.	Ammonia	Metals-Ag, As, Cd, Cr. Ph. Sb. Se, Zn. Fe. Ho.	A2-ALCOHOL (Ethanol)	TPH-1664	PCB-608	Done Lab to do Preservation Lab to do						
		1, TSS	2. TR	3.TC	4	3260 & B	XCR-35	Hat 2	BR70TC	9. 8270	10.0	otal Meta	12 A	iss. Meta	2-ALCO	15. TP	16. PC	(Please Specify below)							
ALPHA Lab ID (Lab Use Only)	Sampl	e ID	Date	Time	Sample Matrix	Sampler's Initials					85 D	ω Ξ Ω					9. 00.8 01.00.0 01.00.0 14. A2-1				14 A			Sample Specific Comments	
35412 -01	HA14-10	1 (ow)	214080	01:00	AQ	SUL	X	×	X	х	х	x	х	х	х	X	X	X	X	X	X	×			
				10:00																					
							H	H	-	-	-			-		-		-			H				
							F		-	-				-		F		_							
							I																		
									-						-										
A = None P B = HCl A C = HNO ₃ 9	Consiner Code P = Plastic A = Anther Glass V = Vial G = Glass	Westboro: Certificati Mansifeld: Certificati			0	Container Type Preservative																	Please print clearly, legibly and complete Samples can not be logged in and turnar time clock will not start until any ambigui resolved. Alpha Analytical's services under Chain of Custody shall be performed in according	round dies are r this	
E = NaOH	B = Bacteria Cup C = Cube	Delineration	a Division	F-10	77000		_	1	1								_	1	with terms and conditions within Blanket Ser	rvice					
F = MeOH C : G = NaHSO, D : H = Na,S,D, E :	D = Other E = Encore	Sen Lo		080719 /	12:30	Midt		ived By	-	_	8/7/19 16/20 Date/Time							-	Agreemental 2015-18-Alphia Analytical by and between Haley & Aldrich, Inc., its subsidiaries and						
	D = BOD Bottle	12212	00	5/7/191		2 MUX00 8-7-1	8-7-19 1643 8/7/19 1824						afficialis and Alpha Analytical.												
Document ID: 29455 Rev 1	(1/29/2016)	1	-								1		-												

Subcontract Chain of Custody

ALP		Te 29 Na	st America (N 60 Foster Cre shville, TN 37	ashville) ighton Drive 204		Alpha Job Num L1935412	nber		
(a)	Client Information	HAVE DE RE	Project In	formation	Regulatory Req	atory Requirements/Report Limits			
1 - TOTAL	Analytical Labs Valkup Drive orough, MA 01581-1019 9,5010 Palphalab.com			erables Information	State/Federal Program: Regulatory Criteria: RC				
				ents and/or Report R	lequirements				
	Reference following Alpha Job	Number on final repor	rt/deliverables	: L1935412	Report to include Method Blar	nk, LCS/LCSD;			
Additional Con	ments: Send all results/reports	to subreports@alphal	ab.com						
Lab ID	Client ID	Collection Date/Time	Sample Matrix	An	alysis	Ba	atch (C		
	HA14-101(OW)	08-07-19 10:00	WATER	Ethanol by EPA 1671 Revis	ion A				
Form No: AL su	9	ed By:	5	Date/Time: 8/12/19	Received By:	Date/Time:			

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-177600-1 Client Project/Site: L1935412

For:

Alpha Analytical Inc 8 Walkup Drive Westboro, Massachusetts 01581

Attn: Melissa Gulli

Authorized for release by: 8/14/2019 3:55:52 PM

Kuth Haye

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

Page 52 of 64

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

8

9

11

Laboratory Job ID: 490-177600-1

Client: Alpha Analytical Inc Project/Site: L1935412

Table of Contents

Cover Page	
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	
QC Sample Results	7
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

6

8

9

10

11

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1935412

Job ID: 490-177600-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
490-177600-1	HA14-101(OW)	Water	08/07/19 10:00	08/13/19 09:00	

3

5

0

10

11

Case Narrative

Client: Alpha Analytical Inc
Project/Site: L1935412

Job ID: 490-177600-1

Job ID: 490-177600-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-177600-1

Comments

No additional comments.

Receipt

The sample was received on 8/13/2019 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 6.0° C.

GC Semi VOA

Method 1671A: The continuing calibration verification (CCV) associated with batch 490-609494 recovered above the upper control limit for Ethanol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following sample is impacted: HA14-101(OW) (490-177600-1).

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-609494.

Method 1671A: The laboratory control sample (LCS) for analytical batch 490-609494 recovered outside control limits for the following analyte: Ethanol. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

4

5

6

a

10

11

12

Definitions/Glossary

Client: Alpha Analytical Inc Job ID: 490-177600-1

Project/Site: L1935412

Qualifiers

GC VOA

Qualifier **Qualifier Description**

LCS or LCSD is outside acceptance limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Alpha Analytical Inc Job ID: 490-177600-1

Project/Site: L1935412

Client Sample ID: HA14-101(OW)

Lab Sample ID: 490-177600-1

Date Collected: 08/07/19 10:00 Matrix: Water Date Received: 08/13/19 09:00

Method: 1671A - Ethanol (GC/FID) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Ethanol ND 2000 500 ug/L 08/14/19 11:47 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Isopropyl acetate (Surr) 80 70 - 130 08/14/19 11:47

А

+

C

9

10

11

15

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Alpha Analytical Inc Job ID: 490-177600-1

Project/Site: L1935412

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-609494/4

Analysis Batch: 609494

Matrix: Water

MB MB

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Ethanol 2000 500 ug/L 08/14/19 11:29 ND

MB MB

%Recovery Qualifier Surrogate Limits Dil Fac Prepared Analyzed Isopropyl acetate (Surr) 76 70 - 130 08/14/19 11:29

Lab Sample ID: LCS 490-609494/5

Matrix: Water

Analysis Batch: 609494

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit D %Rec Limits 70 - 130

Ethanol 50200 70950 ug/L 141

LCS LCS

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 82 70 - 130

Lab Sample ID: LCSD 490-609494/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 609494

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec Ethanol 50200 62740 ug/L 125 70 - 130

LCSD LCSD

%Recovery Qualifier Surrogate Limits Isopropyl acetate (Surr) 70 - 130 85

Eurofins TestAmerica, Nashville

QC Association Summary

Client: Alpha Analytical Inc
Project/Site: L1935412

Job ID: 490-177600-1

GC VOA

Analysis Batch: 609494

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-177600-1	HA14-101(OW)	Total/NA	Water	1671A	
MB 490-609494/4	Method Blank	Total/NA	Water	1671A	
LCS 490-609494/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-609494/6	Lab Control Sample Dup	Total/NA	Water	1671A	

ľ

4

F

6

0

Q

10

11

10

Lab Chronicle

Client: Alpha Analytical Inc Job ID: 490-177600-1

Project/Site: L1935412

Client Sample ID: HA14-101(OW) Lab Sample ID: 490-177600-1

Date Collected: 08/07/19 10:00 Matrix: Water Date Received: 08/13/19 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			609494	08/14/19 11:47	AAB	TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

1

5

6

q

10

11

12

Method Summary

Client: Alpha Analytical Inc Project/Site: L1935412

Job ID: 490-177600-1

Method	Method Description	Protocol	Laboratory
1671A	Ethanol (GC/FID)	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: Alpha Analytical Inc
Project/Site: L1935412

Job ID: 490-177600-1

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Num	ber Expiration Date
California	State Progra	am	9	2938	06-30-20
The following analytes the agency does not of	•	but the laboratory	y is not certified by t	ne governing authority.	This list may include analytes
Analysis Method	Prep Method	Matrix	Anal	rte	
1671A		Water	Etha	nol	
Maine	State Progra	am	1	TN00032	11-03-19

-

5

7

10

11

10

COOLER RECEIPT FORM

Cooler Received/Opened On08-13-2019 @ OQ COO	
Time Samples Removed From Cooler Time Samples Placed In Storage	(2 Hour Window)
1. Tracking # 28306540 924 Past 4 digits, FedEx), Courier: UPS NDA	
IR Gun ID_31470368 pH Strip Lot// Chlorine Strip Lot//	4
2. Temperature of rep. sample or temp blank when opened: Degrees Celsius	Ġ
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. (NA)
4. Were custody seals on outside of cooler?	YES., NO. NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNO(NA)
6. Were custody papers inside cooler?	(YE),NONA
certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES NO and Intact	YESNO.,ANA
Were these signed and dated correctly?	YESNO(N)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	r Other None
9. Cooling process: Ce lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	YÉSNONA
b. Was there any observable headspace present in any VOA vial?	YESNA
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	a #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
	VES NO MR
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
·	YESINOL.NA
16. Was residual chlorine present? I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	1
17. Were custody papers properly filled out (ink, signed, etc)?	ÆS,NONA
18. Did you sign the custody papers in the appropriate place?	YESNONA
19. Were correct containers used for the analysis requested?	XESNONA
20. Was sufficient amount of sample sent in each container?	YESINQNA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	
I certify that I attached a label with the unique LIMS number to each container (intial)	KI
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO	
21. 11515 alico tion como mando actogant 1 Longto, 1145 a trong generaled 1 Longton	' <u></u> -

		ns	bcontrac	Subcontract Chain of Custody				
ALPHA A NOTE CLASS CHOMISTY		Test A 2960 F Nashv	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	hville) tton Drive 34			Alpha Job Number L1935412	ber
Client In	Client Information		Project Information	irmation	Regula	itory Requiremer	Regulatory Requirements/Report Limits	
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	l Labs rive //A 01581-1019	Project Location: MA Project Manager: Melissa Gulli Turnaround & Delive	//A Vielissa Gulli Id & Delive	t Location: MA t Manager: Melissa Gulli Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria: RC	State/Federal Program: Regulatory Criteria: RCS-1-14;S1/G1-14	1/G1-14	
Phone: 603,319,5010 Email: mgulli@alphalab.com	b.com	Due Date: 08/16/19 (RUSH) Deliverables:	3/16/19 (RUS	(H ₂				
		Project Specific F	Requireme	Project Specific Requirements and/or Report Requirements	ments			
Referen	Reference following Alpha Job Number on final report/deliverables: L1935412	nber on final report/de	eliverables:		ort to include Ma	Report to include Method Blank, LCS/LCSD:	CSD:	
Additional Comments: 5	Additional Comments: Send all results/reports to subreports@alph	ubreports@alphalab.com	mos					
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC	را
I	HA14-101(OW)	08-07-19 10:00	WATER	Ethanol by EPA 1671 Revision A				_
						Loc: 490		
				·				
						-		
_					•			
	Relinquished By			Date/Time:	Received By:	0 1110		27
				8/16/19			0175-614 0 1 8	90
Form No: AL_subcoc								
							()	

ANALYTICAL REPORT

Lab Number: L1958577

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Scott Bamford Phone: (617) 886-7420

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Report Date: 12/12/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1 Lab Number:

L1958577

Report Date:

12/12/19

Alpha Sample ID Sample Location Collection Date/Time **Receive Date** Client ID Matrix WATER BACK BAY, BOSTON, MA 12/06/19 14:05 CHARLES_SURF_20191206 L1958577-01

12/06/19

Project Name:AIR RIGHTS PARCEL 12Lab Number:L1958577Project Number:132410-007 SID 6.1Report Date:12/12/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

King L. Winter Lisa Westerlind

Authorized Signature:

Title: Technical Director/Representative

Date: 12/12/19

METALS

12/06/19 14:05

Date Collected:

Project Name:AIR RIGHTS PARCEL 12Lab Number:L1958577Project Number:132410-007 SID 6.1Report Date:12/12/19

SAMPLE RESULTS

Lab ID: L1958577-01

Client ID: CHARLES_SURF_20191206 Date Received: 12/06/19
Sample Location: BACK BAY, BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Copper, Total	0.00226		mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Iron, Total	0.503		mg/l	0.050		1	12/11/19 01:13	12/11/19 09:30	EPA 3005A	19,200.7	LC
Lead, Total	0.00143		mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	12/10/19 15:27	12/10/19 21:51	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.00200		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1		12/11/19 10:57		3,200.8	AM
Zinc, Total	0.02122		mg/l	0.01000		1	12/11/19 01:13	12/11/19 10:57	EPA 3005A	3,200.8	AM
Total Hardness by	/ SM 2340F	B - Mansfiel									
Hardness	75.1		mg/l	0.660	NA	1	12/11/10 01:13	3 12/11/19 09:30	EDA 2005A	19.200.7	LC
i iaiuiiess	13.1		mg/i	0.000	INA	ı	12/11/19 01:13	12/11/19 09.30	LFA 3003A	10,200.7	LC

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577

Report Date: 12/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mans	field Lab for sample(s)	: 01 Batc	h: WG13	319024	-1				
Mercury, Total	ND	mg/l	0.00020		1	12/10/19 15:27	12/10/19 21:16	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Batc	h: WG13	19168-	1				
Antimony, Total	ND	mg/l	0.00400		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	12/11/19 01:13	12/11/19 10:31	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mar	nsfield Lab for sample(s):	01 Batch	h: WG13	319169-	-1				
Iron, Total	ND	mg/l	0.050		1	12/11/19 01:13	12/11/19 08:25	5 19,200.7	PE

Prep Information

Digestion Method: EPA 3005A

L1958577

Project Name: Lab Number: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1 **Report Date:**

12/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lat	o for sam	ple(s): 0	1 Bato	h: WG131	9169-1			
Hardness	ND	mg/l	0.660	NA	1	12/11/19 01:13	12/11/19 08:25	19,200.7	PE

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577

Report Date:

12/12/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1319024-2				
Mercury, Total	86	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1319168-2				
Antimony, Total	96	-	85-115	-		
Arsenic, Total	106	-	85-115	-		
Cadmium, Total	108	-	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	98	-	85-115	-		
Lead, Total	104	-	85-115	-		
Nickel, Total	103	-	85-115	-		
Selenium, Total	113	-	85-115	-		
Silver, Total	99	-	85-115	-		
Zinc, Total	111	•	85-115	-		
otal Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1319169-2				
Iron, Total	102	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01 Batch: WG131916	9-2			
Hardness	100	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number: L1958577

Report Date: 12/12/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD II Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG131902	4-3	QC Sample	: L1957601-01	Client	ID: MS Sa	ample		
Mercury, Total	0.00041	0.005	0.00460	84		-	-		70-130	-		20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG1319168	3-3	QC Sample	: L1958575-01	Client	ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.3879	78		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1302	108		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05477	107		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.2067	103		-	-		70-130	-		20
Copper, Total	0.00294	0.25	0.2553	101		-	-		70-130	-		20
Lead, Total	0.00194	0.51	0.5464	107		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.5208	104		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1188	99		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05094	102		-	-		70-130	-		20
Zinc, Total	0.02506	0.5	0.5912	113		-	-		70-130	-		20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch I	D: WG1319169	9-3	QC Sample	: L1958575-01	Client	ID: MS Sa	ample		
Iron, Total	0.519	1	1.52	100		-	-		75-125	-		20
otal Hardness by SM 2	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batc	h ID:	WG1319169	-3 QC Samp	ole: L195	8575-01	Client	D: MS	Sample
Hardness	84.4	66.2	147	95		-	-		75-125	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number: L1958577

Report Date: 12/12/19

Parameter		Native Sample	Dupl	icate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01	QC Batch ID: W	VG1319024-4	QC Sample:	L1957601-01	Client ID:	DUP Sample	
Mercury, Total		0.00041		0.00054	mg/l	26	Q	20
Total Metals - Mansfield Lab Associated sample	e(s): 01	QC Batch ID: V	VG1319168-4	QC Sample:	L1958575-01	Client ID:	DUP Sample	
Antimony, Total		ND		0.00443	mg/l	NC		20
Arsenic, Total		ND		ND	mg/l	NC		20
Cadmium, Total		ND		ND	mg/l	NC		20
Chromium, Total		ND		ND	mg/l	NC		20
Copper, Total		0.00294		0.00302	mg/l	3		20
Lead, Total		0.00194		0.00204	mg/l	5		20
Nickel, Total		ND		ND	mg/l	NC		20
Selenium, Total		ND		ND	mg/l	NC		20
Silver, Total		ND		ND	mg/l	NC		20
Zinc, Total		0.02506		0.02544	mg/l	2		20
otal Metals - Mansfield Lab Associated sample	e(s): 01	QC Batch ID: V	VG1319169-4	QC Sample:	L1958575-01	Client ID:	DUP Sample	
Iron, Total		0.519		0.536	mg/l	3		20
Total Hardness by SM 2340B - Mansfield Lab A	ssociate	d sample(s): 01	QC Batch ID:	WG1319169	-4 QC Sampl	e: L19585	75-01 Client I	D: DUP Sample
Hardness		84.4		84.4	mg/l	0		20

INORGANICS & MISCELLANEOUS

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577

Report Date:

12/12/19

SAMPLE RESULTS

Lab ID: L1958577-01

CHARLES_SURF_20191206

Sample Location: BACK BAY, BOSTON, MA

Date Collected:

12/06/19 14:05

Date Received:

12/06/19

Field Prep:

Not Specified

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lal)								
pH (H)	7.3		SU	-	NA	1	-	12/07/19 01:50	121,4500H+-B	JA
Nitrogen, Ammonia	0.127		mg/l	0.075		1	12/10/19 08:59	12/11/19 21:54	121,4500NH3-BH	AT
Chromium, Hexavalent	ND		mg/l	0.010		1	12/07/19 00:06	12/07/19 01:12	1,7196A	AS

Project Name: Lab Number: AIR RIGHTS PARCEL 12

L1958577 **Project Number:** 132410-007 SID 6.1 **Report Date:** 12/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for san	nple(s): 01	Batch:	WG13	318571-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	12/07/19 00:06	12/07/19 01:08	1,7196A	AS
General Chemistry - V	Vestborough Lab for san	nple(s): 01	Batch:	WG13	318647-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	12/10/19 08:59	12/11/19 21:40	121,4500NH3-B	SH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577

Report Date:

12/12/19

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1317885-	1				
рН	100	-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1318571-2	2				
Chromium, Hexavalent	107	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1318647-2	2				
Nitrogen, Ammonia	90	-		80-120	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577

Report Date: 12/12/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		ISD ound	MSD %Recovery	R Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG131857	1-4	QC Sample: L195	58575-0	1 Client	ID: MS	Sample	е
Chromium, Hexavalent	ND	0.1	0.099	99		-	-		85-115	-		20
General Chemistry - Westborou	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1318647	7-4	QC Sample: L195	58270-0	1 Client	ID: MS	Sample	е
Nitrogen, Ammonia	0.161	4	3.18	75	Q	-	-		80-120	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: AIR RIGHTS PARCEL 12

Project Number: 132410-007 SID 6.1

Lab Number:

L1958577 12/12/19

Report Date:

Parameter	Nativ	e Sample	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG1317885-2	QC Sample:	L1958566-01	Client ID:	DUP Sample
рН		10.8	10.9	SU	1		5
General Chemistry - Westborough Lab CHARLES_SURF_20191206	Associated sample(s): 0	01 QC Batch ID:	WG1318571-3	QC Sample:	L1958577-01	Client ID:	
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 0	01 QC Batch ID:	WG1318647-3	QC Sample:	L1958270-01	Client ID:	DUP Sample
Nitrogen, Ammonia	(0.161	0.182	mg/l	12		20

Lab Number: L1958577

Report Date: 12/12/19

Project Name: AIR RIGHTS PARCEL 12Project Number: 132410-007 SID 6.1

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information			Final	Temp			Frozen	
Container ID	Container Type	Cooler	Initial pH	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1958577-01A	Plastic 250ml unpreserved	Α	7	7	2.0	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L1958577-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	2.0	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),FE-UI(180),CU- 2008T(180),HARDU(180),AG-2008T(180),HG- U(28),SE-2008T(180),AS-2008T(180),PB- 2008T(180),SB-2008T(180),CR-2008T(180)
L1958577-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.0	Υ	Absent		NH3-4500(28)

Project Name:AIR RIGHTS PARCEL 12Lab Number:L1958577Project Number:132410-007 SID 6.1Report Date:12/12/19

GLOSSARY

Acronyms

EMPC

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from unutuins, concentrations of moisture content, where applicable. (Dod Teport formats offy.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:AIR RIGHTS PARCEL 12Lab Number:L1958577Project Number:132410-007 SID 6.1Report Date:12/12/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.

Report Format: Data Usability Report

Project Name:AIR RIGHTS PARCEL 12Lab Number:L1958577Project Number:132410-007 SID 6.1Report Date:12/12/19

Data Qualifiers

 $\boldsymbol{RE} \quad$ - Analytical results are from sample re-extraction.

 ${\bf S}$ — Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: AIR RIGHTS PARCEL 12 Lab Number: L1958577

Project Number: 132410-007 SID 6.1 Report Date: 12/12/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дирна	CHAIN OF CUSTODY	Service Canters Brews, ME 04412 Porters 07438 Abany, NY 12205 Tanawanda, NY 14150 Holms	outh, NH 03801 Mahwa w, PA 18543		e 1		Date	Rec Lab	200		12	1	06	1	9				ALPHA JOB # 958	522
Westborough, MA 01581 8 Westup Dr. TEL 508-898-9229 FAX: 508-898-9185	Manafield, MA 02048 320 Forbes Bivst 17EL 958-822-9290 FAX: 505-622-3286	Project Location: Bac	Rights Parcel 12 * Bay, Boston, MA			0 0	Email EQui	ii IS (1 i	File)		Fax EQuIS (4)	File)			-				Elling Information Same as Client Inf	
H&A Information	Accordance	1000	410-007 SID 6.1			-	Othe	-	a Shalland	EVH30			-				_		According to the second	_
H&A Client: Samuels H&A Address 465 Med	Section Page 1	(Use Project name as Pr	-			_	NPDE			is (Proj	pram/Criteria	1	_	$\overline{}$		_	_		Disposal Site Information	
	MA 02129-1400	Project Manager S. B ALPHAQuete #:	samioru			IMA	No. DE	- Print											Please identify below location of applic facilities.	cable disposal
H&A Phone: 617-886-		Turn-Around Time								1									Disposal Facility:	_
H&A Fax: ewhite	@haleyaldrich.com	The state of the s		Dale Days: 5 Day		Note	Select	State I	from mer	nu & iden	lify criteria								NJ Dener:	•
These samples have be	en previously analyzed	by Alpha				ANA	LYSIS			-									Sample Filtration	
Other project specific 2. Total Ag, An, As, Cd, Analyze using the EPA Please specify Metals	Cr, Cu, Ni, Pb, Sb, Se, A 2017 RGP Approved	Zn, Hg, Fe,				manla (NH3-4500)	Total Metals (See note)	3. Hex Cr	4.Hardness	5, pH									Done Lab to do Preservation Lab to do (Please Specify below)	1
ALPHA Lab ID (Lab Usa Only)	Samp	e ID	Collection Date Tim	Sample Matrix	Sampler's Initials	1. Am	2. Tota												Sample Specific Comments	- :
5877-01	CHARLES SURF	20191206 12	6/19 140	AQ	NTO	X	X	x	X	x						F			pH 7.76	3
								F	H		H		+	F	H	+				
A = Nume B = HCl C = HNO ₂ D = H ₇ SO ₄	Container Cade P = Plastic A = Amber Glass V = Viel G = Glass	Westboro: Certification N Mansfield: Certification N	Control Decay		Container Type Preservative	9	P	PA	P	PA		-	1						Please print clearly, tegibly and con Semples can not be logged in and t clock will not start until any smblgu resolved. Alpha Analytical's services of Custody shall be performed in acco	urnaround time littles are under this Chain
E = NaOH F = MeOH G = NaHSO, H = Na ₂ 5 ₂ O ₃ K/E = Zh AgNaOH O = Other	B = Bacteria Cup C = Cutte O = Other E = Encore D = BOD Bottle	Religioujahled By MadMUX Middle Midd	12/6	Qate/Times //9 9/6/95 1833	Received By: Date/Time 12/6/c4 16/, 4/5 12/6/19 1645					terms and conditions within Blanket Service Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidianes and efficietes and Alpha Analytical										
Document ID: 20455 Rev 1	(1/28/2016)											-								

ANALYTICAL REPORT

Lab Number: L2006185

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Scott Bamford Phone: (617) 886-7420

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Report Date: 03/05/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: PARCEL 12-HOTEL **Project Number:** 132410-008 SID 7.1

 Lab Number:
 L2006185

 Report Date:
 03/05/20

Alpha Sample ID Client ID Matrix Sp-HA20-D5(OW)_02112020 WATER Sample BOSTON, MASSACHUSETTS 02/11/20 12:15 02/11/20

Serial No:03052014:11

Project Name:PARCEL 12-HOTELLab Number:L2006185Project Number:132410-008 SID 7.1Report Date:03/05/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

Case Narrative (continued)

Report Revision

March 05, 2020: This report includes the results of the Total Hardness analysis performed on L2006185-01 (SP-HA20-D5(OW)_02112020).

Report Submission

February 25, 2020: This final report includes the results of all requested analyses.

February 17, 2020: This is a preliminary report.

Sample Receipt

L2006185-01 (SP-HA20-D5(OW)_02112020): Sample containers for the analysis of Ethanol were received, but were not listed on the chain of custody. At the client's request, the analysis was not performed.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Whall M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/05/20

ORGANICS

VOLATILES

Project Name:PARCEL 12-HOTELLab Number:L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/14/20 13:25

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
Tetrachloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	5.0		1	
1,3-Dichlorobenzene	ND		ug/l	5.0		1	
1,4-Dichlorobenzene	ND		ug/l	5.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
Acetone	ND		ug/l	10		1	
Methyl tert butyl ether	ND		ug/l	10		1	
Tert-Butyl Alcohol	ND		ug/l	100		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1	

Project Name: PARCEL 12-HOTEL Lab Number: L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	94		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	85		60-140	

60-140

Project Name: PARCEL 12-HOTEL Lab Number: L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/14/20 18:01

Analyst: GT

4-Bromofluorobenzene

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIN	1 - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			109			60-140

106

Project Name: PARCEL 12-HOTEL Lab Number: L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/13/20 13:23

Analytical Date: 02/13/20 17:43 Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westboro	ough Lab						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α
1,2,3-Trichloropropane	ND		ua/l	0.030		1	Α

Project Name: PARCEL 12-HOTEL **Lab Number:** L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 02/13/20 16:53 Extraction Date: 02/13/20 13:23

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbo	rough Lab fo	r sample(s)	: 01	Batch: WG1340	0342-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α
1,2,3-Trichloropropane	ND		ug/l	0.030		Α

L2006185

Project Name: PARCEL 12-HOTEL Lab Number:

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/14/20 11:33

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - West	oorough Lab	for sample(s): 01	Batch:	WG1340917-8
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name:PARCEL 12-HOTELLab Number:L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/14/20 11:33

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1340917-8

		Acceptance			
Surrogate	%Recovery Qualifie	r Criteria			
Pentafluorobenzene	95	60-140			
Fluorobenzene	96	60-140			
4-Bromofluorobenzene	81	60-140			

Project Name: PARCEL 12-HOTEL **Lab Number:** L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/14/20 17:28

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborougl	n Lab for s	ample(s):	01	Batch:	WG1341364-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
Fluorobenzene	110	60-140
4-Bromofluorobenzene	106	60-140

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

Report Date:

03/05/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01	Batch: WG1340	342-2					
1,2-Dibromoethane	91		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	99		-		80-120	-			Α
1,2,3-Trichloropropane	98		-		80-120	-			А

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

03/05/20

Report Date:

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough	gh Lab Associated	sample(s): 01	Batch: WG1	340917-7				
Methylene chloride	90		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	90		-		70-130	-		41
1,1,2-Trichloroethane	100		-		70-130	-		45
Tetrachloroethene	90		-		70-130	-		39
1,2-Dichloroethane	100		-		70-130	-		49
1,1,1-Trichloroethane	95		-		70-130	-		36
Benzene	90		-		65-135	-		61
Toluene	95		-		70-130	-		41
Ethylbenzene	85		-		60-140	-		63
Vinyl chloride	90		-		5-195	-		66
1,1-Dichloroethene	90		-		50-150	-		32
cis-1,2-Dichloroethene	90		-		60-140	-		30
Trichloroethene	90		-		65-135	-		48
1,2-Dichlorobenzene	85		-		65-135	-		57
1,3-Dichlorobenzene	80		-		70-130	-		43
1,4-Dichlorobenzene	80		-		65-135	-		57
p/m-Xylene	88		-		60-140	-		30
o-xylene	80		-		60-140	-		30
Acetone	132		-		40-160	-		30
Methyl tert butyl ether	105		-		60-140	-		30
Tert-Butyl Alcohol	130		-		60-140	-		30
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30

PARCEL 12-HOTEL Batch Quality Conf

Lab Number:

L2006185

Project Number: 132410-008 SID 7.1

Project Name:

Report Date:

03/05/20

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1340917-7

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	96		60-140
Fluorobenzene	96		60-140
4-Bromofluorobenzene	83		60-140

Lab Number:

L2006185

Project Number: 132410-008 SID 7.1

PARCEL 12-HOTEL

Project Name:

Report Date:

03/05/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ed sample(s)	: 01 Batch:	WG1341364-	-3			
1,4-Dioxane	100		-		60-140	-		20

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	109 105				60-140 60-140

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

Report Date:

03/05/20

Parameter	Native Sample	MS Added	MS Found %	MS 6Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Column</u>
Microextractables by GC	- Westborough Lab	Associat	ted sample(s): 01	QC Batch	ID: WG13	340342-3	QC Sample:	L200642	27-01 Clie	ent ID: N	/IS Sam	ple	
1,2-Dibromoethane	ND	0.251	0.235	94		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.251	0.257	102		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.251	0.253	101		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name:PARCEL 12-HOTELLab Number:L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/12/20 03:37

Analyst: SZ

02/17/20 14:25

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	86	42-122	
2-Fluorobiphenyl	82	46-121	
4-Terphenyl-d14	99	47-138	

Project Name:PARCEL 12-HOTELLab Number:L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/12/20 03:41
Analytical Date: 02/14/20 13:51

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	b				
Acenaphthene	0.76		//	0.10		1
·			ug/l			
Fluoranthene	0.13		ug/l	0.10		1
Naphthalene	16		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	0.15		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	0.25		ug/l	0.10		1
Phenanthrene	0.22		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	0.10		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	25-87	
Phenol-d6	41	16-65	
Nitrobenzene-d5	88	42-122	
2-Fluorobiphenyl	79	46-121	
2,4,6-Tribromophenol	109	45-128	
4-Terphenyl-d14	92	47-138	

Project Name:PARCEL 12-HOTELLab Number:L2006185

Project Number: 132410-008 SID 7.1 **Report Date:** 03/05/20

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 02/12/20 16:00
 Extraction Date:
 02/12/20 03:37

Analyst: JG

Parameter	Result	Qualifier Uni	its	RL	MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for samp	le(s): 01	Batch:	WG1339777-1
Bis(2-ethylhexyl)phthalate	ND	uç	g/l	2.2	
Butyl benzyl phthalate	ND	uç	g/l	5.0	
Di-n-butylphthalate	ND	uç	g/l	5.0	
Di-n-octylphthalate	ND	uç	g/l	5.0	
Diethyl phthalate	ND	uç	g/l	5.0	
Dimethyl phthalate	ND	uç	g/l	5.0	

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	_
Nitrobenzene-d5	91		42-122	
2-Fluorobiphenyl	91		46-121	
4-Terphenyl-d14	98		47-138	

Project Name: PARCEL 12-HOTEL **Project Number:**

132410-008 SID 7.1

Lab Number:

L2006185

Report Date: 03/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date:

Extraction Method: EPA 625.1

02/12/20 18:49

Extraction Date:

02/12/20 03:41

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-SI	M - Westbor	ough Lab	for sample	e(s): 01	Batch: WG1339778	3-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	61	25-87
Phenol-d6	50	16-65
Nitrobenzene-d5	96	42-122
2-Fluorobiphenyl	78	46-121
2,4,6-Tribromophenol	114	45-128
4-Terphenyl-d14	106	47-138

Project Name: PARCEL 12-HOTEL

Lab Number:

L2006185

Project Number: 132410-008 SID 7.1

Report Date:

03/05/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ited sample(s)	: 01 Batch:	WG133977	7-2				
Bis(2-ethylhexyl)phthalate	87		-		29-137	-		82	
Butyl benzyl phthalate	85		-		1-140	-		60	
Di-n-butylphthalate	85		-		8-120	-		47	
Di-n-octylphthalate	85		-		19-132	-		69	
Diethyl phthalate	90		-		1-120	-		100	
Dimethyl phthalate	94		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	_
Nitrobenzene-d5	89		42-122	
2-Fluorobiphenyl	85		46-121	
4-Terphenyl-d14	87		47-138	

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

Report Date:

03/05/20

arameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-S	IM - Westborough Lab Associat	red sample(s): 01 Batch	: WG1339778-2		
Acenaphthene	86	-	60-132	-	30
Fluoranthene	100	-	43-121	-	30
Naphthalene	82	-	36-120	-	30
Benzo(a)anthracene	95	-	42-133	-	30
Benzo(a)pyrene	93	-	32-148	-	30
Benzo(b)fluoranthene	98	-	42-140	-	30
Benzo(k)fluoranthene	81	-	25-146	-	30
Chrysene	84	-	44-140	-	30
Acenaphthylene	78	-	54-126	-	30
Anthracene	87	-	43-120	-	30
Benzo(ghi)perylene	92	-	1-195	-	30
Fluorene	85	•	70-120	-	30
Phenanthrene	90	-	65-120	-	30
Dibenzo(a,h)anthracene	92	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	100	-	1-151	-	30
Pyrene	102	-	70-120	-	30
Pentachlorophenol	115	-	38-152	-	30

Lab Number:

Project Number: 132410-008 SID 7.1

PARCEL 12-HOTEL

Report Date:

03/05/20

L2006185

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1339778-2

Surrogate	LCS LCS %Recovery Qual %Recov	Acceptance Criteria
2-Fluorophenol	59	25-87
Phenol-d6	48	16-65
Nitrobenzene-d5	91	42-122
2-Fluorobiphenyl	74	46-121
2,4,6-Tribromophenol	98	45-128
4-Terphenyl-d14	98	47-138

Project Name:

PCBS

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01 Date Collected: 02/11/20 12:15

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/12/20 18:19
Analytical Date: 02/14/20 11:55 Cleanup Method: EPA 3665A

Analyst: HT

Cleanup Date: 02/12/20 Cleanup Method: EPA 3660B Cleanup Date: 02/13/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	53		37-123	В
Decachlorobiphenyl	42		38-114	В
2,4,5,6-Tetrachloro-m-xylene	55		37-123	Α
Decachlorobiphenyl	42		38-114	Α

L2006185

Project Name: Lab Number: PARCEL 12-HOTEL

Report Date: Project Number: 132410-008 SID 7.1 03/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/13/20 05:47

Analyst: AWS

Extraction Method: EPA 608.3 02/12/20 16:58 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 02/12/20 Cleanup Method: EPA 3660B Cleanup Date: 02/13/20

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestborougl	h Lab for s	sample(s):	01 Batch:	WG1340087-	1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		А
Aroclor 1254	ND		ug/l	0.250		А
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptano	ce
Decachlorobiphenyl 2,4,5,6-Tetrachloro-m-xylene	%Recovery Qual	ifier Criteria	Column
2.4.5.6-Tetrachloro-m-xylene	91	37-123	В
Decachlorobiphenyl	107	38-114	В
2,4,5,6-Tetrachloro-m-xylene	83	37-123	Α
Decachlorobiphenyl	77	38-114	Α

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

Report Date:

03/05/20

	LCS		LCSD		%Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	rough Lab Associa	ated sample(s)	: 01 Batch:	WG1340087	-2				
Aroclor 1016	78		-		50-140	-		36	Α
Aroclor 1260	72		-		8-140	-		38	А

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	86		37-123 B
Decachlorobiphenyl	99		38-114 B
2,4,5,6-Tetrachloro-m-xylene	82		37-123 A
Decachlorobiphenyl	75		38-114 A

METALS

02/11/20 12:15

Date Collected:

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00151		mg/l	0.00100		1	02/12/20 14:1	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/12/20 14:1	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Chromium, Total	0.00186		mg/l	0.00100		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Iron, Total	7.54		mg/l	0.050		1	02/12/20 14:1:	2 02/14/20 18:24	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/13/20 11:1	8 02/13/20 16:32	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.00200		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/12/20 14:1	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	02/12/20 14:1:	2 02/14/20 10:47	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	949		mg/l	0.660	NA	1	02/12/20 14:1:	2 02/14/20 18:24	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfiel	d Lab									
,								22/11/22 15 15		407	
Chromium, Trivalent	ND		mg/l	0.010		1		02/14/20 10:47	NA	107,-	

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

 Lab Number:
 L2006185

 Report Date:
 03/05/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG1:	339926-	1				
Iron, Total	ND	mg/l	0.050		1	02/12/20 14:12	02/14/20 11:46	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL M	IDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	le(s): 01	Batch	n: WG1339	926-1			
Hardness	ND	mg/l	0.660	NA	1	02/12/20 14:12	02/14/20 11:46	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	ld Lab for sample(s):	01 Batc	h: WG13	39961-	1				
Mercury, Total	ND	mg/l	0.00020		1	02/13/20 11:18	02/13/20 15:59	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG13	40733	-1				
Antimony, Total	ND	mg/l	0.00400		1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM

Project Name: PARCEL 12-HOTEL Lab Number: L2006185 **Project Number:** 132410-008 SID 7.1

Report Date: 03/05/20

Method Blank Analysis Batch Quality Control

Lead, Total	ND	mg/l	0.00100	 1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	 1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	 1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	 1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	 1	02/12/20 14:12	02/14/20 09:43	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number: L2006185

Report Date:

ate:	03/05/20
aic.	03/03/20

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	WG13399	26-2					
Iron, Total	109		-		85-115	-		
Fotal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01	Batch: WG133992	.6-2				
Hardness	100	. ,	_		85-115	_		
	100				00 110			
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	WG13399	61-2					
Mercury, Total	98		-		85-115	-		
Fatal Matala, Manafial al la la Accasista di agrapia	(a): 04 Databa	MO40407	22.0					
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	WG13407	33-2					
Antimony, Total	86		-		85-115	-		
Arsenic, Total	103		-		85-115	-		
Cadmium, Total	109		-		85-115	-		
Chromium, Total	103		-		85-115	-		
Copper, Total	103		-		85-115	-		
Lead, Total	108		-		85-115	-		
Nickel, Total	102		-		85-115	-		
Selenium, Total	112		-		85-115	-		
Silver, Total	102		-		85-115	-		
Zinc, Total	114		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL **Project Number:** 132410-008 SID 7.1

Lab Number:

L2006185

Report Date: 03/05/20

arameter	Native Sample	MS Added	MS Found	MS %Recovery Q	MSD ual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch ID): WG1339926-3	QC Sample:	L2005829-02	Client ID: MS S	ample	
Iron, Total	ND	1	1.10	110	-	-	75-125	-	20
Total Hardness by SM 2	340B - Mansfield La	b Associate	ed sample(s):	01 QC Batch II	D: WG1339926-	-3 QC Samp	ole: L2005829-02	Client ID:	MS Sample
Hardness	10.6	66.2	74.9	97	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch ID): WG1339926-7	QC Sample:	L2005922-01	Client ID: MS S	ample	
Iron, Total	0.439	1	1.47	103	-	-	75-125	-	20
Total Hardness by SM 2	340B - Mansfield La	b Associate	ed sample(s):	01 QC Batch II	D: WG1339926-	-7 QC Samp	ole: L2005922-01	Client ID:	MS Sample
Hardness	236	66.2	294	88	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch ID): WG1339961-3	QC Sample:	L2006033-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00514	103	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch ID): WG1340733-3	QC Sample:	L2000002-92	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.4731	95	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1240	103	-	-	70-130	-	20
Cadmium, Total	0.00547	0.051	0.06045	108	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2133	107	-	-	70-130	-	20
Copper, Total	3.151	0.25	3.334	73	-	-	70-130	-	20
Lead, Total	0.1218	0.51	0.6787	109	-	-	70-130	-	20
Nickel, Total	4.516	0.5	5.084	114	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1456	121	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05105	102	-	-	70-130	-	20
Zinc, Total	14.87	0.5	15.29	84	-	-	70-130	-	_ 20

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number: L2006185

Report Date: 03/05/20

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG133996	1-4 QC Sample:	L2006033-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG134073	3-4 QC Sample:	L2000002-92	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00547	0.00546	mg/l	0		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	3.151	3.296	mg/l	4		20
Lead, Total	0.1218	0.1289	mg/l	6		20
Nickel, Total	4.516	4.851	mg/l	7		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	14.87	15.68	mg/l	5		20

INORGANICS & MISCELLANEOUS

02/11/20 12:15

Date Collected:

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

SAMPLE RESULTS

Lab ID: L2006185-01

Client ID: SP-HA20-D5(OW)_02112020 Date Received: 02/11/20 Sample Location: BOSTON, MASSACHUSETTS Field Prep: Refer to COC

Sample Depth:

Matrix: Water

General Chemistry - Westborough Lab Solids, Total Suspended 30. mg/l 10 NA 2 - 02/12/20		
0 11 7 11	08:05 121,2540D	EM
Cyanide, Total ND mg/l 0.005 1 02/12/20 10:40 02/12/20	13:54 121,4500CN-C	CE LH
Chlorine, Total Residual ND mg/l 0.02 1 - 02/12/20	06:46 121,4500CL-I	D JA
Nitrogen, Ammonia 5.92 mg/l 0.075 1 02/12/20 04:20 02/12/20	19:45 121,4500NH3-l	BH AT
TPH, SGT-HEM ND mg/l 4.00 1 02/13/20 16:00 02/13/20	22:00 74,1664A	ML
Phenolics, Total ND mg/l 0.030 1 02/12/20 05:05 02/12/20	09:14 4,420.1	MV
Chromium, Hexavalent ND mg/l 0.010 1 02/12/20 00:15 02/12/20	01:05 1,7196A	СВ
Anions by Ion Chromatography - Westborough Lab		
Chloride 224. mg/l 12.5 25 - 02/12/20	18:56 44,300.0	AT

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

 Lab Number:
 L2006185

 Report Date:
 03/05/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339728-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	02/12/20 00:15	02/12/20 01:03	1,7196A	СВ
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339747-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	02/12/20 04:20	02/12/20 19:10	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339792-1				
Phenolics, Total	ND	mg/l	0.030		1	02/12/20 05:05	02/12/20 09:10	4,420.1	MV
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339827-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	02/12/20 06:46	121,4500CL-D	JA
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339828-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	02/12/20 08:05	121,2540D	EM
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	339904-1				
Cyanide, Total	ND	mg/l	0.005		1	02/12/20 10:40	02/12/20 15:29	121,4500CN-CE	LH
Anions by Ion Chrom	atography - Westborou	igh Lab for sai	mple(s):	01 B	atch: WG1	340155-1			
Chloride	ND	mg/l	0.500		1	-	02/12/20 17:17	44,300.0	AT
General Chemistry -	Westborough Lab for s	sample(s): 01	Batch:	WG13	340512-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	02/13/20 16:00	02/13/20 22:00	74,1664A	ML

03/05/20

Lab Control Sample Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number: L2006185

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1339728	-2				
Chromium, Hexavalent	109		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1339747	-2				
Nitrogen, Ammonia	100		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1339792	-2				
Phenolics, Total	87		-		70-130	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1339827	-2				
Chlorine, Total Residual	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1339904	-2				
Cyanide, Total	97		-		90-110	-		
Anions by Ion Chromatography - Westb	orough Lab Associate	d sample	e(s): 01 Batch: \	NG134015	5-2			
Chloride	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Bat	tch: WG1340512	-2				
TPH	89		-		64-132	-		34

Matrix Spike Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL **Project Number:** 132410-008 SID 7.1

 Lab Number:
 L2006185

 Report Date:
 03/05/20

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		overy nits RP	D Qual	RPD Limits
General Chemistry - Westbo D5(OW)_02112020	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13397	728-4	QC Sample: L200	06185-01	Client ID:	SP-HA20-	
Chromium, Hexavalent	ND	0.1	0.105	105		-	-	85-	-115 -		20
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13397	747-4	QC Sample: L200	6132-02	Client ID:	MS Sampl	е
Nitrogen, Ammonia	65.7	4	88.6	572	Q	-	-	80-	-120 -		20
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13397	792-4	QC Sample: L200	5847-01	Client ID:	MS Sampl	е
Phenolics, Total	ND	0.4	0.38	94		-	-	70-	-130 -		20
General Chemistry - Westbo D5(OW)_02112020	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13398	327-4	QC Sample: L200	06185-01	Client ID:	SP-HA20-	
Chlorine, Total Residual	ND	0.25	0.21	84		-	-	80-	-120 -		20
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13399	904-4	QC Sample: L200	6105-02	Client ID:	MS Sampl	е
Cyanide, Total	ND	0.2	0.201	100		-	-	90-	-110 -		30
Anions by Ion Chromatogra Sample	phy - Westboroug	h Lab Asso	ociated sar	nple(s): 01 Q	C Batch II	D: WG1	340155-3 QC S	ample: L20	005610-02	Client ID	: MS
Chloride	34900	4000	37500	65	Q	-	-	90-	-110 -		18
General Chemistry - Westbo	orough Lab Assoc	iated samp	ole(s): 01	QC Batch ID:	WG13405	512-4	QC Sample: L200	06115-01	Client ID:	MS Sampl	е
TPH	ND	20	20.6	103		-	-	64-	-132 -		34

Lab Duplicate Analysis Batch Quality Control

Project Name: PARCEL 12-HOTEL
Project Number: 132410-008 SID 7.1

Lab Number:

L2006185

Report Date:

03/05/20

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated D5(OW)_02112020	sample(s): 01 QC Batch ID:	WG1339728-3	QC Sample: L200	6185-01	Client ID: SP-HA20-
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1339747-3	QC Sample: L200	6132-02	Client ID: DUP Sample
Nitrogen, Ammonia	65.7	64.7	mg/l	2	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1339792-3	QC Sample: L200	5847-01	Client ID: DUP Sample
Phenolics, Total	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1339827-3	QC Sample: L200	6014-02	Client ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1339828-2	QC Sample: L200	6081-01	Client ID: DUP Sample
Solids, Total Suspended	170	180	mg/l	6	29
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1339904-3	QC Sample: L200	6105-01	Client ID: DUP Sample
Cyanide, Total	0.007	ND	mg/l	NC	30
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 01 0	QC Batch ID: WG	1340155-4 QC Sa	ımple: L2	2005610-02 Client ID: DUP
Chloride	34900	34800	mg/l	0	18
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1340512-3	QC Sample: L200	6115-01	Client ID: DUP Sample
ТРН	ND	ND	mg/l	NC	34

PARCEL 12-HOTEL *Lab Number:* L2006185 **Project Number:** 132410-008 SID 7.1

Report Date: 03/05/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2006185-01A	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01A1	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01B	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01B1	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01C	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01C1	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(7)
L2006185-01D	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		504(14)
L2006185-01E	Vial Na2S2O3 preserved	Α	NA		2.4	Υ	Absent		504(14)
L2006185-01F	Vial unpreserved	Α	7	7	2.4	Υ	Absent		ARCHIVE()
L2006185-01G	Vial unpreserved	Α	7	7	2.4	Υ	Absent		ARCHIVE()
L2006185-01H	Vial unpreserved	Α	7	7	2.4	Υ	Absent		ARCHIVE()
L2006185-01I	Plastic 250ml NaOH preserved	Α	>12	>12	2.4	Υ	Absent		TCN-4500(14)
L2006185-01J	Plastic 250ml HNO3 preserved	Α	<2	<2	2.4	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),HARDU(180),CU-2008T(180),FE- UI(180),SE-2008T(180),HG-U(28),AS- 2008T(180),AG-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L2006185-01K	Plastic 250ml HNO3 preserved	Α	<2	<2	2.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2006185-01L	Plastic 250ml HNO3 preserved	Α	<2	<2	2.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L2006185-01M	Plastic 250ml unpreserved	Α	7	7	2.4	Υ	Absent		HOLD-WETCHEM()
L2006185-01N	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.4	Υ	Absent		NH3-4500(28)
L2006185-01O	Plastic 950ml unpreserved	Α	7	7	2.4	Υ	Absent		TSS-2540(7)
L2006185-01P	Plastic 950ml unpreserved	Α	7	7	2.4	Υ	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1)
L2006185-01Q	Amber 950ml H2SO4 preserved	Α	<2	<2	2.4	Υ	Absent		TPHENOL-420(28)
L2006185-01R	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		PCB-608.3(7)

Lab Number: L2006185

Report Date: 03/05/20

TPH-1664(28)

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2006185-01S	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		PCB-608.3(7)
L2006185-01T	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		625.1-RGP(7)
L2006185-01U	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		625.1-RGP(7)
L2006185-01V	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		625.1-SIM-RGP(7)
L2006185-01W	Amber 1000ml Na2S2O3	Α	7	7	2.4	Υ	Absent		625.1-SIM-RGP(7)
L2006185-01X	Amber 1000ml HCI preserved	Α	NA		2.4	Υ	Absent		TPH-1664(28)

2.4

Y Absent

NA

Project Name:

L2006185-01Y

PARCEL 12-HOTEL

Amber 1000ml HCl preserved

Project Number: 132410-008 SID 7.1

Project Name: Lab Number: PARCEL 12-HOTEL L2006185 **Project Number:** 132410-008 SID 7.1 **Report Date:** 03/05/20

GLOSSARY

Acronyms

EMPC

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

S - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

 Project Name:
 PARCEL 12-HOTEL
 Lab Number:
 L2006185

 Project Number:
 132410-008 SID 7.1
 Report Date:
 03/05/20

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:03052014:11

ID No.:17873 Revision 16

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. **EPA 624.1**: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

L2006185

ДІРНА	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 NJ 07430 Albany, N Tonawanda, NY 14150	Y 12285	03801 Malnerah,	Page	(1			Rec			2	11	1	2)					1	ALPHAJOBS 83	-		
Weatherough, MA 015 # Walkup Dr.	81 Manufield, MA 62048 320 Forbes Blvd	Project Information	n –	-	1		Deli	vemb	les													Billing Information			
TEL: 508-898-0220 FAX: 508-898-0103	TEL: 506-822-9300 FAX: 508-822-3288	Project Name:	Parcel 12	- Hotel				Ema	all			Fax										Same as Client Info	o.		
779435374319	7.44.455 885 3430	Project Location:	Boston, M	assachusetts			1	EQ	15 (1	File)		EQuit	S (4 F)	ile)								PO#			
H&A Information		Project#	132410-00	8 SID 7,1				Othe	er:																
H&A Client: S&A P	-12 Property LLC	(Use Project name	as Project	#)			Reg	ulator	y Req	quirent	ents (Pr	ogram/(Criteria	1)								Disposal Site Information			
H&A Address 465 Me	edford Street	Project Manager:	S. Bamfon	d			EPA	NPD	ES RO	GP	1	_	_							_			DATE		
		ALPHAQuote #:																				Please identify below location of a disposal facilities.	applicable		
H&A Phone: 617-88	86-7440	Turn-Around Time																				Disposal Facility:			
	e@haleyaldrich.com lis@haleyaldrich.com	Standard (only if pre approved		Due Date			Note	Salac	t State	trom i	nenu & id	matify ent	lorin									NJ NY			
These samples have	been previously analyzed	by Alpha	_				_	LYSIS		HOILE	indied de jou	may cre	HET HE.	_	_	_	_	_	_	_	_	Other:			
	ic requirements/comme						1	T		-		TE	1	1	1		30		1	-		Sample Filtration	T		
Please sample per E Please specify Meta	d Metals ON HOLD (Field PA Approved 2017 RGP is or TAL.	Fillered) Diggel Permit methods	val Hest	hess an	Holi	(FF)	TSS-2540	2. TRC-4500	3. TCN-4500	4,504	5. 8260 & 8260 SIM for Dioxane, or applicable	HEXCR-3500 & Trivale Chromium	7. TPHENOL-420	270TCL (including	9. 8270TCL-SIM, or applicable method	10, CL-300	11. Total Metals - Ag. s.Cd.Cr.Cu.M.Ph.Sh.Se.Zh.	12. Ammonia	3.Diss. Metals-Ag.As.Cd.Cr Cu.M.Pb.Sb So.Zn Fe.Hg	14. Hardness + Dec. Jun A	16. PCB-608	X Done Lab to do Preservation Lab to do (Please Specify below)	B		
ALPHA Lab ID (Lab Use Only)	Samp	le ID	Col	Time	Sample Matrix	Sampler's Initials					5.826 Dioxa	6. HEXC	12	B. 82	9.0		41.7		Cu.M.F	Table 1		Sample Specific Comments	- !		
JO-5919C	SP-HA20-D5(OW)_ C	2112020	2 11	1215	AQ	SIR	×	x	X	x	x	X	x	x	×	x	×	×	×	XX	×	Sample Specific Comments	28		
	1000																								
reservative Code: = None = HCl = HNO ₃ = H ₂ SO ₄ = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass	Westboro; Certificat Manefield: Certificat			-	tainer Type																Please print clearly, legibly and Samples can not be logged in an turnaround time clock will not st any ambiguities are resolved. A	ind start until Alpha		
= NaOH = MeOH	B = Bacteria Cup C = Cube	-										140								44		Analytical's services under this Chi Custody shall be performed in acco	cordance with		
= NaHSO ₄ = Na ₂ S ₂ O ₅ /E = Zn Ac/NaOH	O = Other E = Encore D = BOD Bottle	A Park	d By:	2 lu zo	Time	M, at		red By		4	2/	1/20	11	5.50	_	Date/T	ime	=	Ξ			terms and conditions within Branket Service Agreement# 2015-16-Alpha Analytical by ann between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.			
	- Section	Martin	4	2/11/20	16.2	gul		0	,	-		1/2		_											
= Other		Marie	2	2/11/2	200	(The		15	3	20		11/2			30	_			_			- Contraction			

APPENDIX F

Contractor Dewatering Submittal

Mirafi[®] 140N

	Test Method	Unit		n Average Value
			MD	CD
Grab Tensile Strength	ASTM D4632	lb (N)	∠0 (534)	120 (534)
Grab Tensile Elongation	ASTM D4632	S ₂	50	50
Trapezoid Tear Strength	ASTM D453	ibs (i	50 (223)	50 (223)
CBR Puncture Strength	ASTM D624	lbs (N)	310 (1380)
Apparent Opening Size (AOS) ¹	ASTM 5 1751	U.S. Sieve (mm)	70 (0).212)
Permittivity	> STM L 44.1	sec ⁻¹	1	.7
Flow Rate	AS 1 D 191	gal/min/ft² (l/min/m²)	135 (5500)
UV Resistance (at 500 nc -)	STM D4355	% strength retained	7	' 0

¹ ASTM D4751: AOS is * Laximum (bening Diameter Value

Physical Propries	Unit	Typical Value						
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 360 (4.5 x 110)					
Roll Area	yd ² (m ²)	500 (418)	600 (502)					
Estimated Roll Weight	lb (kg)	133 (60)	160 (72)					

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi[®] is a registered trademark of Nicolon Corporation

