

GEOTECHNICAL

ENVIRONMENTA

ECOLOGICAL

CONSTRUCTION
MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

August 6, 2020 File No. 02.0174651.00

United States Environmental Protection Agency – Region 1 1 Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Attention: Ms. Shauna Little

Re: Submittal of Notice of Intent (NOI) Remediation General Permit (RGP)

2 Mill Street

Lawrence, Massachusetts

Dear Ms. Little:

GZA GeoEnvironmental, Inc. (GZA), on behalf the City of Lawrence Department of Public Works (Lawrence DPW), is submitting the attached Notice of Intent (NOI; Appendix A) for a Remediation General Permit (RGP) for the Sewer System Rehabilitation and Improvements project (the Site). The NOI and RGP are required for dewatering activities due to the presence of a Massachusetts Department of Environmental Protection (MassDEP) disposal site located near a portion of the project area with documented impacts to groundwater by arsenic and volatile organic compounds (VOCs).

BACKGROUND

The Project includes the sewer pipe and manhole rehabilitation work including: open cut and replacement of sewer drain lines, slip-lining of portions of existing sewer lines, and the installation or removal of approximately 20 manholes and catch basins.

A portion of the Site is subject to a Massachusetts Contingency Plan (MCP) Activity and Use Limitation (AUL). The AUL is associated with a MassDEP Release Tracking Numbers (RTN) 3-0027945 and 3-0029628. Based on reviewed information, the identified impacts to soil and groundwater in the area of the AUL are VOCs and arsenic.

NOTICE OF INTENT

GZA is submitting this NOI to request authorization for dewatered groundwater from the Site to be discharged to the existing stormwater drainage system following treatment. Treated groundwater will be discharged to a storm drain located on Mill Street. The Mill Street storm drain discharges to the Merrimack River.

A Best Management Practices Plan (BMPP), meeting the requirements of the RGP, has been prepared and will be posted at the Site and implemented during the time-period that temporary dewatering is occurring at the Site.

This NOI application includes the following items:

 Laboratory analytical results of the influent source and receiving water are included as Appendix B;

- Calculation sheets for establishing effluent limitations are included as Appendix C;
- Review of Areas of Critical Environmental Concern (ACEC) indicate that the proposed discharge does not go to an ACEC.
 Review of Federally Listed Endangered and Threatened Species in Massachusetts indicate that a Northern Long-eared Bat
 habitat is located state-wide but is not likely to be present at the Site. Review of the U.S. Fish and Wildlife's online
 Information for Planning and Consultation (IPaC) service, indicates that federally listed species were not likely to be
 present within the action area of site activities (see Appendix D);
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Waltham shows
 that there are no ACECs and no habitats for Species of Special Concern or Threatened or Endangered Species within 500
 feet of the subject site. Therefore, permit eligibility meets "Criterion A";
- Review of the electronic Massachusetts Cultural Resource Information System database, made available through
 Massachusetts Historical Commission, found that the are no properties listed or eligible for listing on the National Registry
 of Historic Places under the National Historic Preservation Act. Therefore, there will be no impact associated with this
 discharge to such properties. The documentation of this review can be found in Appendix E.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Very truly yours,
GZA GEOENVIRONMENTAL, INC.

William Davis

Assistant Project Manager

Scott Ollerhead Project Manager

Enclosures:

Figures: Figure 1A and 1B - Site Locus Map and Site Plan

Figure 2 – Discharge Outfall Location/Site Plan

Figure 3 – Groundwater Treatment System Process Flow Diagram Figure 4 – Site Scoring Map Showing 500 Foot & ½ Mile Radii

Appendices: Appendix A - Notice of Intent Form

Appendix B – Influent and Receiving Water Laboratory Analytical Reports

Appendix C – Calculation Sheets for Effluent Limitations

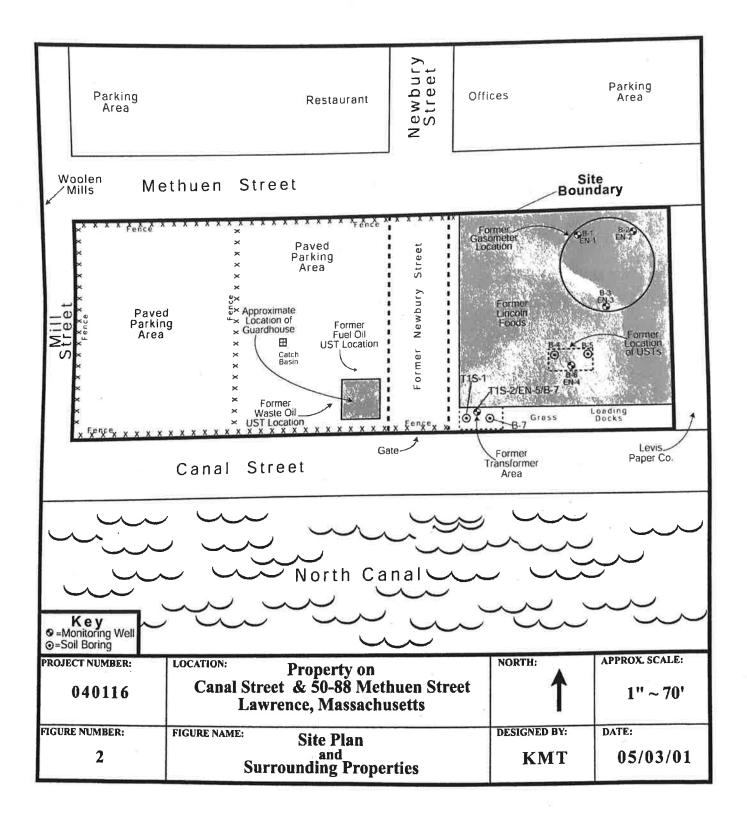
Appendix D – ACEC and Federally Listed Endangered and Threatened Species in Massachusetts Evaluation

Appendix E - MACRIS Search Results

FIGURE 1A and 1B

Site Locus Map and Site Plan

PROJ. MGR.: SMO **DESIGNED BY: WAD** REVIEWED BY: BWR OPERATOR: EMD


DATE: 06-25-2020

SITE LOCUS

NOTICE OF INTENT REMEDIAL GENERAL PERMIT 2 MILL STREET LAWRENCE, MASSACHUSETTS

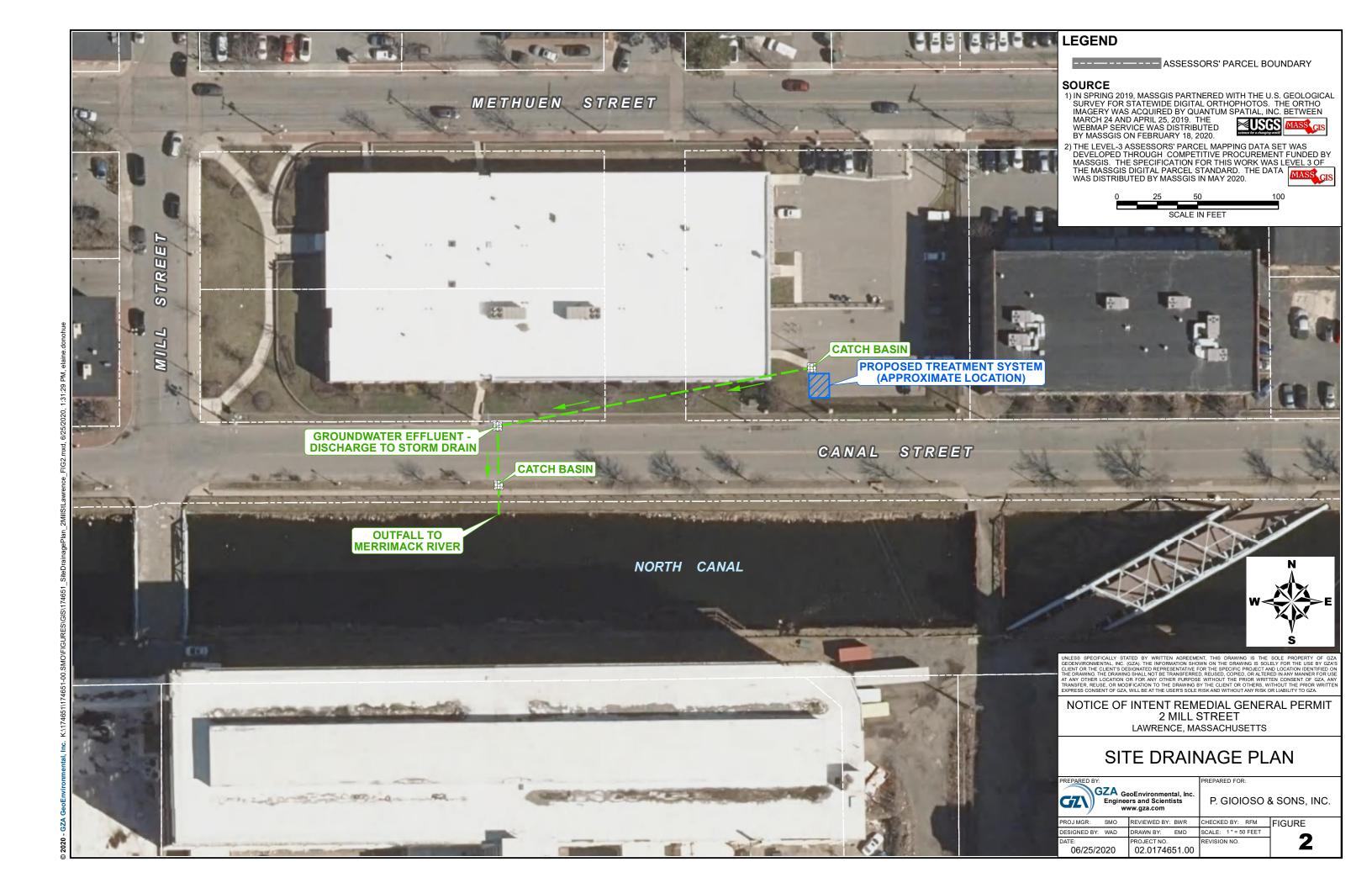

JOB NO. 02.0174651.00

FIGURE NO.

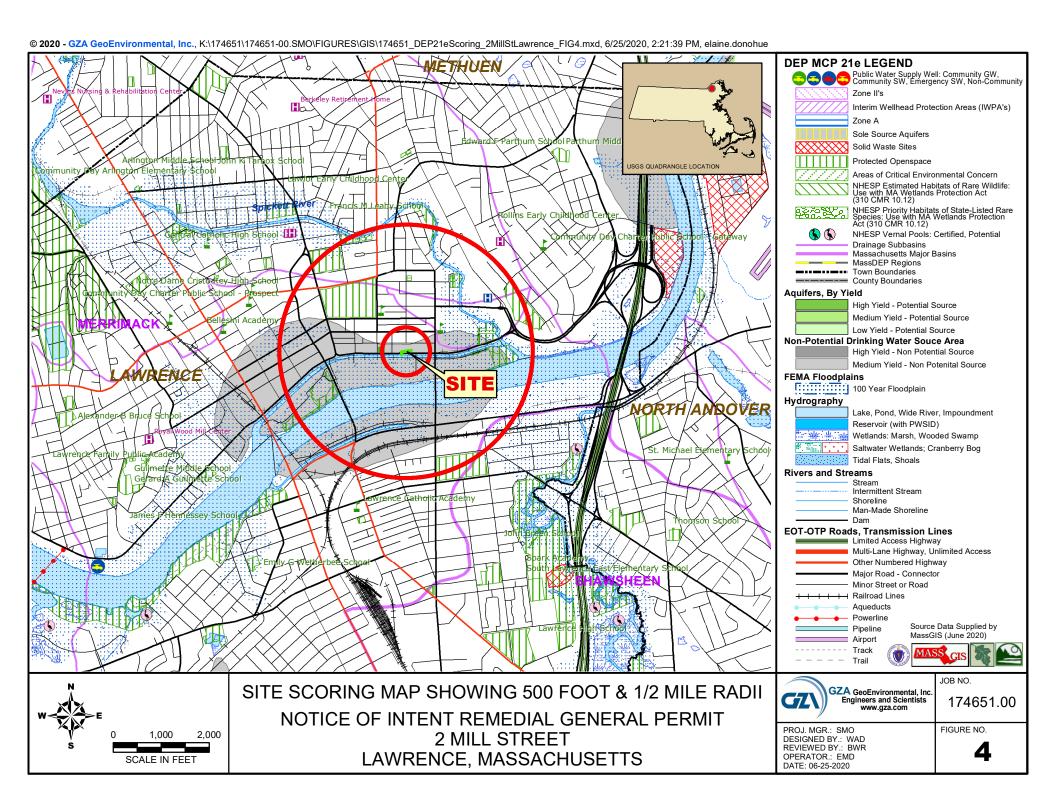
FIGURE 2Drainage Outfall Site Plan

FIGURE 3

Groundwater Treatment System Process Flow Diagram

UNLESS SPECIFICALLY STATED BY WRITTEN AGREEMENT, THIS DRAWING IS THE SOLE PROPERTY OF GZA GEOENVIRONMENTAL, INC. (GZA). THE INFORMATION SHOWN ON THE DRAWING IS SOLELY FOR USE BY GZA'S CLIENT OR THE CLIENT'S DESIGNATED REPRESENTATIVE FOR THE SPECIFIC PORJECT AND LOCATION IDENTIFIED THE DRAWING. THE DRAWING SHALL NOT DE TRANSFERRED, REUSED, COPIED, OR ALTERED IN ANY MANNER FOR USE AT ANY OTHER LOCATION OR FOR ANY OTHER PURPOSE WITHOUT THE PRINGR WRITTEN CONSENT OF GZA. WILL BE AT THE DRAWING BY THE CLIENT OR OTHERS, WITHOUT THE PRINGR WRITTEN EXPRESS CONSENT OF GZA, WILL BE AT THE USER'S SOLE RISK AND WITHOUT ANY RISK OR LIABILITY TO GZA

NOTICE OF INTENT REMEDIAL GENERAL PERMIT 2 MILL STREET LAWRENCE, MASSACHUSETTS


TREATMENT SYSTEM PROCESS FLOW DIAGRAM

PREPARED BY:		PREPARED FOR:	
Engine	Environmental, Inc. ers and Scientists ww.gza.com	P. GIOIOSO 8	SONS, INC.
PROJ MGR: SMO	REVIEWED BY: BWR	CHECKED BY: RFM	FIGURE
DESIGNED BY: WAD	DRAWN BY: EMD	SCALE: N.T.S.	2
DATE: 06-25-2020	PROJECT NO. 02.0174651.00	REVISION NO.	3

FIGURE 4

Site Scoring Map 500 Foot and ½ Mile Radii

APPENDIX A

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 2							
Sewer System Rehabilitation and Improvements Contract III & IV	Street: Mill Street							
	City: Lawrence	State: MA	Zip: 01840					
2. Site owner	Contact Person: Milagros Puello (acting water commissioner)							
City of Lawrence	Telephone: 978-620-3110	Email: mp	uello@cityo	oflawrence.com				
	Mailing address: 200 Common Street Street: Suite 204							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City: Lawrence		State: MA	Zip: 01840				
3. Site operator, if different than owner	Contact Person: Mario Romania Jr.							
	Telephone: 617-364-5800 Email: mario@pgioioso.com							
P. Gioioso & Sons, Inc.	Mailing address: 50 Sprague Street Street:							
	City: Hyde Park		State: MA	Zip: 02136				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
NPDES permit is (check all that apply: ☒ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 MA Chapter 21e; list RTN(s): 3-0027945 and 3-0029628 □ NH Groundwater Management Permit or Groundwater Release Detection Permit: 	☐ CERCL☐ UIC Pro☐ POTW☐ CWA S	ogram Pretreatment	t				

B. Receiving water information:								
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):						
Merrimac River	MA84A-04	B (C50)						
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River								
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): X Yes □	No						
Are sensitive receptors present near the site? (check one): If yes, specify:	□ Yes 🛭 No							
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP.	• • • • • • • • • • • • • • • • • • • •	<u> </u>						
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appendix		ctions in 935 cfs						
	5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 8,394							
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received: Email dated 6		eck one): ⊠ Yes □ No						
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in ac	cordance with the instruction in Appendix VIII?						
(check one): ☒ Yes □ No								
C. Source water information:								

1. Source water(s) is (check any that apply):			
☑ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
ĭ Yes □ No	□ Yes □ No		

2. Source water contaminants: Arsenic, cis-1,2-Dichloroethene, Tetrachlor	oethene, Trichloroethene					
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): \square Yes \square No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No					
3. Has the source water been previously chlorinated or otherwise contains residu	nal chlorine? (check one): □ Yes 🗓 No					
D. Discharge information						
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Outfall to Merrimac River	42°42'23.04"N, 71°09'21.69"W					
Discharges enter the receiving water(s) via (check any that apply): \Box Direct disc	charge to the receiving water □ Indirect discharge, if so, specify:					
☐ A private storm sewer system ☒ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer	er system:					
Has notification been provided to the owner of this system? (check one): ☒ Yes ☐ No						
Has the operator has received permission from the owner to use such system for obtaining permission:	discharges? (check one): ▼ Yes □ No, if so, explain, with an estimated timeframe for					
Has the operator attached a summary of any additional requirements the owner of	of this system has specified? (check one): ☑ Yes □ No					
Provide the expected start and end dates of discharge(s) (month/year): 7/20)-12/21					
Indicate if the discharge is expected to occur over a duration of: \Box less than 12	months X 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, ab	ove? (check one): Ճ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Categ	ory I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
X III − Contaminated Site Dewatering □ IV − Dewatering of Pipelines and Tanks □ V − Aquifer Pump Testing □ VI − Well Development/Rehabilitation □ VII − Collection Structure Dewatering/Remediation □ VIII − Dredge-Related Dewatering	 ☑ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ☑ A. Inorganics ☐ B. Non-Halogenated Volatile Organic Compounds ☑ C. Halogenated Volatile Organic Compounds ☐ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ E. Halogenated Semi-Volatile Organic Compounds ☐ F. Fuels Parameters 	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known			D	Infl	uent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia	ХХ		1	350.1	0.005	<0.5		Report mg/L	
Chloride		Х	1	4500CL	60	1190		Report µg/l	
Total Residual Chlorine		Χ	1	4500CL	0.05	0.87		0.2 mg/L	
Total Suspended Solids		Х	1	2540D	5	41		30 mg/L	
Antimony	ХХ		1	6010D	5	<5		206 μg/L	
Arsenic		Х	1	6010D	4	16		104 μg/L	
Cadmium	X		1	6010D	1	<1		10.2 μg/L	
Chromium III		Χ	1	CALC	1	2		323 μg/L	
Chromium VI	X		1	3500	10	<10		323 μg/L	
Copper	Х		1	3500	5	<5		242 μg/L	
Iron		Х	1	3500	10	3840		5,000 μg/L	
Lead	Х		1	6010D	2	<2		160 μg/L	
Mercury	Х		1	7420A	0.2	0.2		0.739 μg/L	
Nickel		Χ	1	6010D	1	3		1,450 μg/L	
Selenium	Х		1	6010D	10	<10		235.8 μg/L	
Silver		Х	1	6010D	1	1		35.1 μg/L	
Zinc	X	Х	1	6010D	4	6		420 μg/L	
Cyanide		X	1	9010C	0.010	<0.010		178 mg/L	
B. Non-Halogenated VOC	Cs .	•						,	,
Total BTEX	Х		1	8260C	1.0	<1.0		100 μg/L	
Benzene	X		1	8260C	0.70	<0.70		5.0 μg/L	
1,4 Dioxane	X		1	8260C	50	<15		200 μg/L	
Acetone	X		1	8260C	0.025	<0.025		7.97 mg/L	
Phenol	Х		1	420.4	15	<15		1,080 µg/L	

	Known	Known				Infl	uent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	82620C	1.0	<1.0		4.4 μg/L	
1,2 Dichlorobenzene	X		1	8260C	1.0	<1.0		600 μg/L	
1,3 Dichlorobenzene	X		1	8260C	1.0	<1.0		320 µg/L	
1,4 Dichlorobenzene	X		1	8260C	1.0	<1.0		5.0 μg/L	
Total dichlorobenzene	Х		1	8260C	1.0	<1.0		763 μg/L in NH	
1,1 Dichloroethane	X		1	8260C	1.0	<1.0		70 μg/L	
1,2 Dichloroethane	X		1	8260C	1.0	<1.0		5.0 μg/L	
1,1 Dichloroethylene	Х		1	8260C	1.0	<1.0		3.2 µg/L	
Ethylene Dibromide	X		1	8260C	1.0	<1.0		0.05 μg/L	
Methylene Chloride	Х		1	8260C	1.0	<1.0		4.6 μg/L	
1,1,1 Trichloroethane	X		1	8260C	1.0	<1.0		200 μg/L	
1,1,2 Trichloroethane	X		1	8260C	1.0	<1.0		5.0 μg/L	
Trichloroethylene		Х	1	8260C	20	66		5.0 μg/L	
Tetrachloroethylene		Χ	1	8260C	20	220		5.0 μg/L	
cis-1,2 Dichloroethylene			1	8260C	20	180		70 μg/L	
Vinyl Chloride	Х		1	8260C	1.0	<1.0		2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	X			8270D	4.7	<4.7		190 μg/L	
Diethylhexyl phthalate	Х			8270D	4.2	<4.7		101 μg/L	
Total Group I PAHs	X			8270D	0.1	<0.1		1.0 μg/L	
Benzo(a)anthracene	Х			8270D	0.09	<0.09			
Benzo(a)pyrene	X			8270D	0.19	<0.19			
Benzo(b)fluoranthene	Х			8270D	0.09	<0.09			
Benzo(k)fluoranthene	Х			8270D	0.09	<0.09		As Total PAHs	
Chrysene		Х		8270D	0.5	0.05			
Dibenzo(a,h)anthracene	Х			8270D	0.2	<0.02			
Indeno(1,2,3-cd)pyrene	X			8270D	0.9	<0.09			

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		Х	1	8270D	0.02	0.15		100 μg/L	
Naphthalene	Х		1	8082	0.047	<0.047		20 μg/L	
E. Halogenated SVOCs									
Total PCBs	Х		1	8289	0.047	<0.047		0.000064 µg/L	
Pentachlorophenol	Х		1	8270D	0.047	<0.047		1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	X		1	1664	1.5	<1.5		5.0 mg/L	
Ethanol	X		1	8270	0.04	<0.04		Report mg/L	
Methyl-tert-Butyl Ether		X	1	8260C	1.0	1.3		70 μg/L	
tert-Butyl Alcohol	Х		1	8260C	50	<50		120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	X		1	8260C	1.0	<1.0		90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition			· · · · · · · · · · · · · · · · · · ·			
Hardness	X		1	200.7	0.1	1040			
_									
	- 	1	1	1	1	l			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping 🏿 Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation 🕽 Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Groundwater pump to frac tank to centrifugal pump to bag filters to liquid-phase activated carbon to totalizer to storm drain.	
Identify each major treatment component (check any that apply): ☑ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ☒ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☒ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): ☑ Yes □ No, if so, provide justification:	50 gpm
Provide the proposed maximum effluent flow in gpm.	50 gpm
Provide the average effluent flow in gpm.	25 gpm
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ▼ Yes □ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
TWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): Yes No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, a	the system, or those nd complete. I have
A BMPP meeting the requirements of this general permit will be developed and in BMPP certification statement:	nplemented upon ini	tiation of discharge.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ▼	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ☑	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ☒	No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No ☑ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \square \ RGP \ \square \ DGP \ \square \ CGP \ \square \ MSGP \ \square \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA 🙀
☐ Other; if so, specify:		
Signature: Milagraphiello Dat	te:	
Print Name and Title: Milagros Puello (acting water commissioner)		

APPENDIX BLABORATORY ANALYTICAL REPORTS

Friday, June 05, 2020

Attn: Scott Ollerhead GZA GeoEnvironmental Inc 249 Vanderbilt Ave Norwood, MA 02062

Project ID: 174651 MILL ST LAWRENCE

SDG ID: GCG01670

Sample ID#s: CG01670 - CG01671

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

Phyllis/Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #M-CT007 ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003

NY Lab Registration #11301

PA Lab Registration #68-03530

RI Lab Registration #63

UT Lab Registration #CT00007

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

SDG Comments

June 05, 2020

SDG I.D.: GCG01670

8260 Analysis:

1,2-Dibromoethane doesn't meet GW-1 criteria, this compound is analyzed by GC/FID to achieve this criteria.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

June 05, 2020

SDG I.D.: GCG01670

Project ID: 174651 MILL ST LAWRENCE

Client Id	Lab Id	Matrix
MW1-1	CG01670	GROUND WATER
RW-1	CG01671	GROUND WATER

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 05, 2020

FOR: Attn: Scott Ollerhead

GZA GeoEnvironmental Inc

249 Vanderbilt Ave Norwood, MA 02062

Sample Information Custody Information Date <u>Time</u> **GROUND WATER** Collected by: AC 05/27/20 Matrix: 8:45 Received by: СР Location Code: GZA-MA 05/27/20 15:35

Rush Request: Standard Analyzed by: see "By" below P.O.#:

Laboratory Data

SDG ID: GCG01670

Phoenix ID: CG01670

Project ID: 174651 MILL ST LAWRENCE

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.001	0.001	mg/L	1	05/29/20	TH	SW6010D
Arsenic	0.016	0.004	mg/L	1	05/29/20	CPP	SW6010D
Barium	0.210	0.002	mg/L	1	05/29/20	CPP	SW6010D
Cadmium	< 0.001	0.001	mg/L	1	05/29/20	CPP	SW6010D
Chromium	0.002	0.001	mg/L	1	05/29/20	CPP	SW6010D
Copper	< 0.005	0.005	mg/L	1	05/29/20	CPP	SW6010D
Iron	3.84	0.010	mg/L	1	05/29/20	CPP	SW6010D
Hardness (CaCO3)	1040	0.1	mg/L	1	05/30/20		E200.7
Mercury	< 0.0002	0.0002	mg/L	1	05/28/20	RS	SW7470A
Nickel	0.003	0.001	mg/L	1	05/29/20	CPP	SW6010D
Lead	< 0.002	0.002	mg/L	1	05/29/20	CPP	SW6010D
Antimony	< 0.005	0.005	mg/L	1	05/29/20	CPP	SW6010D
Selenium	< 0.010	0.010	mg/L	1	05/29/20	CPP	SW6010D
Trivalent Chromium	0.002	0.001	mg/L	1	05/29/20		Calculation
Zinc	0.006	0.004	mg/L	1	05/29/20	CPP	SW6010D
Chloride	1190	60.0	mg/L	20	05/28/20	TB	SM4500CLE-11
Chlorine Residual	0.87	0.02	mg/L	1	05/27/20 18:32	0	SM4500CI-G-00
Chromium, Hexavalent	< 0.01	0.01	mg/L	1	05/27/20 18:02	0	SM3500CRB-11
Ammonia as Nitrogen	< 0.05	0.05	mg/L	1	05/29/20	ARG	E350.1
Phenolics	< 0.015	0.015	mg/L	1	05/28/20	MSF	E420.4
pH	7.58	1.00	pH Units	1	05/27/20 21:10	AP/EG	SM4500-H B-11
Total Cyanide	< 0.010	0.010	mg/L	1	06/01/20	O/GD	SW9010C/SW9012B
O&G, Non-polar Material	< 1.5	1.5	mg/L	1.1	05/28/20	MSF	E1664A
Total Suspended Solids	41	5.0	mg/L	1	05/28/20	ARG/QH	SM 2540D-11
Mercury Digestion	Completed				05/28/20	VT/VT	SW7470A
PCB Extraction (LDL)	Completed				05/27/20		SW3510C
Semi-Volatile Extraction	Completed				05/28/20	P/AK	SW3520C
Total Metals Digestion	Completed				05/28/20	AG	

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference			
Polychlorinated Biphenyls										
PCB-1016	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1221	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1232	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1242	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1248	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1254	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1260	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1262	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
PCB-1268	ND	0.047	ug/L	1	05/29/20	SC	SW8082A			
QA/QC Surrogates										
% DCBP (Surrogate Rec)	66		%	1	05/29/20	SC	30 - 150 %			
% DCBP (Surrogate Rec) (Confirmation)	64		%	1	05/29/20	SC	30 - 150 %			
% TCMX (Surrogate Rec)	63		%	1	05/29/20	SC	30 - 150 %			
% TCMX (Surrogate Rec) (Confirmation)	56		%	1	05/29/20	SC	30 - 150 %			
1,2-Dibromoethane (EDB)	ND	0.02	ug/L	1	06/03/20	CG	SW8011			
<u>Volatiles</u>										
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/28/20	MH	SW8260C			
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/28/20	MH	SW8260C			
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/28/20	МН	SW8260C			
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,1-Dichloroethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,1-Dichloroethene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,1-Dichloropropene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2-Dibromoethane	ND	0.50	ug/L	1	05/28/20	МН	SW8260C			
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,2-Dichloroethane	ND	0.60	ug/L	1	05/28/20	МН	SW8260C			
1,2-Dichloropropane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,3-Dichloropropane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
2,2-Dichloropropane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
2-Chlorotoluene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
2-Hexanone	ND	5.0	ug/L	1	05/28/20	МН	SW8260C			
2-Isopropyltoluene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
4-Chlorotoluene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/28/20	МН	SW8260C			
Acetone	ND	25	ug/L	1	05/28/20	МН	SW8260C			
Acrylonitrile	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			
Benzene	ND	0.70	ug/L	1	05/28/20	МН	SW8260C			
Bromobenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C			

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Bromochloromethane	ND	1.0	ug/L	1	05/28/20	MH	SW8260C
Bromodichloromethane	ND	0.50	ug/L	1	05/28/20	MH	SW8260C
Bromoform	ND	1.0	ug/L	1	05/28/20	MH	SW8260C
Bromomethane	ND	1.0	ug/L	1	05/28/20	MH	SW8260C
Carbon Disulfide	ND	5.0	ug/L	1	05/28/20	MH	SW8260C
Carbon tetrachloride	ND	1.0	ug/L	1	05/28/20	MH	SW8260C
Chlorobenzene	ND	1.0	ug/L	1	05/28/20	MH	SW8260C
Chloroethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Chloroform	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Chloromethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
cis-1,2-Dichloroethene	180	20	ug/L	20	05/29/20	МН	SW8260C
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/28/20	МН	SW8260C
Dibromochloromethane	ND	0.50	ug/L	1	05/28/20	МН	SW8260C
Dibromomethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Ethylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Hexachlorobutadiene	ND	0.40	ug/L	1	05/28/20	МН	SW8260C
Isopropylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
m&p-Xylene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Methyl ethyl ketone	ND	5.0	ug/L	1	05/28/20	MH	SW8260C
Methyl t-butyl ether (MTBE)	1.3	1.0	ug/L	1	05/28/20	МН	SW8260C
Methylene chloride	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Naphthalene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
n-Butylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
n-Propylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
o-Xylene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
p-Isopropyltoluene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
sec-Butylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Styrene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
tert-Butylbenzene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Tetrachloroethene	220	20	ug/L	20	05/29/20	МН	SW8260C
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/28/20	МН	SW8260C
Toluene	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Total Xylenes	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
trans-1,2-Dichloroethene	5.5	1.0	ug/L	1	05/28/20	МН	SW8260C
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/28/20	МН	SW8260C
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/28/20	МН	SW8260C
Trichloroethene	66	20	ug/L	20	05/29/20	МН	SW8260C
Trichlorofluoromethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
Vinyl chloride	ND	1.0	ug/L	1	05/28/20	МН	SW8260C
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	95		%	1	05/28/20	MH	70 - 130 %
% Bromofluorobenzene	100		%	1	05/28/20	MH	70 - 130 %
% Dibromofluoromethane	89		%	1	05/28/20	МН	70 - 130 %
% Toluene-d8	105		%	1	05/28/20	МН	70 - 130 %
% 1,2-dichlorobenzene-d4 (20x)	102		%	20	05/29/20	МН	70 - 130 %
% Bromofluorobenzene (20x)	98		%	20	05/29/20	МН	70 - 130 %
% Dibromofluoromethane (20x)	105		%	20	05/29/20	МН	70 - 130 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8 (20x)	98		%	20	05/29/20	МН	70 - 130 %
Oxygenates & Dioxane							
1,4-Dioxane	ND	50	ug/L	1	05/28/20	МН	SW8260C (OXY)
Diethyl ether	ND	1.0	ug/L	1	05/28/20	MH	SW8260C (OXY)
Di-isopropyl ether	ND	1.0	ug/L	1	05/28/20	MH	SW8260C (OXY)
Ethyl tert-butyl ether	ND	1.0	ug/L	1	05/28/20	MH	SW8260C (OXY)
tert-amyl methyl ether	ND	1.0	ug/L	1	05/28/20	МН	SW8260C (OXY)
Ethanol	ND	400	ug/L	1	05/27/20	НМ	SW8260C
Tert-amyl-methyl-ether	ND	1.0	ug/L	1	05/27/20	НМ	SW8260C
Tert-butyl alcohol	ND	50	ug/L	1	05/27/20	НМ	SW8260C
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	3.3	ug/L	1	06/02/20	WB	SW8270D
1,2,4-Trichlorobenzene	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
1,2-Dichlorobenzene	ND	2.4	ug/L	1	06/02/20	WB	SW8270D
1,2-Diphenylhydrazine	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
1,3-Dichlorobenzene	ND	2.4	ug/L	1	06/02/20	WB	SW8270D
1,4-Dichlorobenzene	ND	2.4	ug/L	1	06/02/20	WB	SW8270D
2,4,5-Trichlorophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2,4,6-Trichlorophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2,4-Dichlorophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2,4-Dimethylphenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2,4-Dinitrophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2,4-Dinitrotoluene	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
2,6-Dinitrotoluene	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
2-Chloronaphthalene	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
2-Chlorophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2-Methylphenol (o-cresol)	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
2-Nitroaniline	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
2-Nitrophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	9.4	ug/L	1	06/02/20	WB	SW8270D
3,3'-Dichlorobenzidine	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
3-Nitroaniline	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
4,6-Dinitro-2-methylphenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
4-Bromophenyl phenyl ether	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
4-Chloro-3-methylphenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
4-Chloroaniline	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
4-Nitroaniline	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
4-Nitrophenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
Acetophenone	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Aniline	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Benzidine	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Benzoic acid	ND	47	ug/L	1	06/02/20	WB	SW8270D
Benzyl butyl phthalate	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Bis(2-chloroethyl)ether	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
Bis(2-chloroisopropyl)ether	ND	4.7	ug/L	1	06/02/20	WB	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Bis(2-ethylhexyl)phthalate	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
Carbazole	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Dibenzofuran	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Diethyl phthalate	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Dimethylphthalate	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Di-n-butylphthalate	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Di-n-octylphthalate	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Hexachloroethane	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
Isophorone	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
N-Nitrosodiphenylamine	ND	4.7	ug/L	1	06/02/20	WB	SW8270D
Pentachloronitrobenzene	ND	2.4	ug/L	1	06/02/20	WB	SW8270D
Phenol	ND	0.94	ug/L	1	06/02/20	WB	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	72		%	1	06/02/20	WB	15 - 110 %
% 2-Fluorobiphenyl	69		%	1	06/02/20	WB	30 - 130 %
% 2-Fluorophenol	60		%	1	06/02/20	WB	15 - 110 %
% Nitrobenzene-d5	61		%	1	06/02/20	WB	30 - 130 %
% Phenol-d5	57		%	1	06/02/20	WB	15 - 110 %
% Terphenyl-d14	84		%	1	06/02/20	WB	30 - 130 %
Semivolatiles (SIM)							
2-Methylnaphthalene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Acenaphthene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Acenaphthylene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Anthracene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Benz(a)anthracene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Benzo(a)pyrene	ND	0.19	ug/L	1	06/01/20	WB	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Benzo(ghi)perylene	0.03	0.02	ug/L	1	06/01/20	WB	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Chrysene	0.05	0.05	ug/L	1	06/01/20	WB	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.02	ug/L	1	06/01/20	WB	SW8270D (SIM)
Fluoranthene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Fluorene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Hexachlorobenzene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Hexachlorobutadiene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Hexachlorocyclopentadiene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.09	ug/L	1	06/01/20	WB	SW8270D (SIM)
Naphthalene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Nitrobenzene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
N-Nitrosodimethylamine	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Pentachlorophenol	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Phenanthrene	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
Pyrene	0.12	0.07	ug/L	1	06/01/20	WB	SW8270D (SIM)
Pyridine	ND	0.47	ug/L	1	06/01/20	WB	SW8270D (SIM)
QA/QC Surrogates			•				. ,
% 2,4,6-Tribromophenol	90		%	1	06/01/20	WB	15 - 110 %
% 2-Fluorobiphenyl	59		%	1	06/01/20	WB	40 - 140 %
% 2-Fluorophenol	62		%	1	06/01/20	WB	15 - 110 %

Client ID: MW1-1

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
% Nitrobenzene-d5	62		%	1	06/01/20	WB	40 - 140 %
% Phenol-d5	66		%	1	06/01/20	WB	15 - 110 %
% Terphenyl-d14	67		%	1	06/01/20	WB	40 - 140 %
1,4-dioxane							
1,4-dioxane	ND	0.20	ug/l	1	05/29/20	AW	SW8270DSIM
QA/QC Surrogates							
% 1,4-dioxane-d8	51		%	1	05/29/20	AW	40 - 140 %
Extraction for 1,4-Dioxane	Completed				05/28/20	S/S	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

The regulatory hold time for Chlorine is immediately. This Chlorine was performed in the laboratory and may be considered outside of hold-time.

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

8260 Analysis:

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 05, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

June 05, 2020

FOR: Attn: Scott Ollerhead

GZA GeoEnvironmental Inc

05/28/20

AG

SDG ID: GCG01670 Phoenix ID: CG01671

249 Vanderbilt Ave Norwood, MA 02062

Sample Information Custody Information Date <u>Time</u> Matrix: **GROUND WATER** Collected by: AC 05/27/20 10:00 GZA-MA Received by: CP Location Code: 05/27/20 15:35

Analyzed by: Rush Request: Standard see "By" below

Completed

Laboratory Data

Total Metals Digestion

P.O.#:

174651 MILL ST LAWRENCE Project ID: Client ID: RL/ Reference Parameter Result **PQL** Units Dilution Date/Time By Silver < 0.001 0.001 mg/L 1 05/29/20 CPP SW6010D Arsenic < 0.004 0.004 mg/L 1 05/29/20 CPP SW6010D < 0.001 05/29/20 SW6010D Cadmium 0.001 mg/L 1 CPP < 0.001 05/29/20 CPP SW6010D Chromium 0.001 mg/L

Copper	< 0.005	0.005	mg/L	1	05/29/20	CPP	SW6010D	
Iron	0.299	0.010	mg/L	1	05/29/20	CPP	SW6010D	
Hardness (CaCO3)	23.3	0.1	mg/L	1	05/29/20		E200.7	
Mercury	< 0.0002	0.0002	mg/L	1	05/28/20	RS	SW7470A	
Nickel	< 0.001	0.001	mg/L	1	05/29/20	CPP	SW6010D	
Lead	< 0.002	0.002	mg/L	1	05/29/20	CPP	SW6010D	
Antimony	< 0.005	0.005	mg/L	1	05/29/20	CPP	SW6010D	
Selenium	< 0.010	0.010	mg/L	1	05/29/20	CPP	SW6010D	
Zinc	0.004	0.004	mg/L	1	05/29/20	CPP	SW6010D	
Ammonia as Nitrogen	0.13	0.05	mg/L	1	05/29/20	ARG	E350.1	
Mercury Digestion	Completed				05/28/20	VT/VT	SW7470A	

Client ID: RV-1 Parameter

RL/

Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

June 05, 2020

Reviewed and Released by: Rashmi Makol, Project Manager

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

QA/QC Data

June 05, 2020				<u>QA/(</u>	<u> </u>	<u>Data</u>				SDG I	.D.: 0	GCG01	670
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 531348 (mg/L), (QC Samp	ole No: (CG02051	(CG016	70, CG	601671)							
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	104			106			75 - 125	30
Additional Mercury criteria: LCS a	acceptanc	e range f	or waters	is 80-120°	% and fo	or soils is	s 75-1259	%					
QA/QC Batch 531428 (mg/L), (QC Samp	ole No: (CG01654	(CG016	70, CG	601671)							
ICP Metals - Aqueous													
Antimony	BRL	0.005	< 0.005	< 0.005	NC	103	105	1.9	105			80 - 120	20
Arsenic	BRL	0.004	< 0.004	< 0.004	NC	98.5	102	3.5	102			80 - 120	20
Barium	BRL	0.002	0.007	0.007	NC	101	104	2.9	103			80 - 120	20
Cadmium	BRL	0.001	< 0.001	< 0.001	NC	103	105	1.9	104			80 - 120	20
Chromium	BRL	0.001	< 0.001	< 0.001	NC	103	107	3.8	106			80 - 120	20
Copper	BRL	0.005	0.009	0.010	NC	99.1	101	1.9	102			80 - 120	20
Iron	BRL	0.010	0.326	0.323	0.90	99.8	102	2.2	103			80 - 120	20
Lead	BRL	0.002	0.002	0.003	NC	95.7	98.8	3.2	97.7			80 - 120	20
Nickel	BRL	0.001	< 0.001	< 0.001	NC	99.5	102	2.5	101			80 - 120	20
Selenium	BRL	0.010	< 0.010	< 0.010	NC	96.6	99.2	2.7	97.6			80 - 120	20
Silver	BRL	0.001	< 0.001	< 0.001	NC	101	103	2.0	104			80 - 120	20
Zinc	BRL	0.004	0.036	0.036	0	99.2	101	1.8	101			80 - 120	20
Comment:													

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

OA/OC Data

June 05, 2020	QA/QC Data					SDG I.D.: GCG01670							
Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 531640 (mg/L), Q	C Sam	ole No: (CF99954	(CG016	70)								
Total Cyanide Comment:	BRL	0.010	<0.010	<0.010	NC	96.7			103			90 - 110	30
Additional soil criteria LCS accepta	nce ran	ge is 80-	120% MS	acceptan	ce range	75-125	5%.						
QA/QC Batch 531353 (mg/L), Q	C Sam _l	ole No: (CG01389	(CG016	70)								
O&G, Non-polar Material Comment:	BRL	1.4	<1.4	<1.4	NC	94.0			88.0			85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 531396 (pH), QC	Sample	No: CC	G01434 (0	CG01670	0)								
pH Comment:			7.04	7.08	0.60	98.7						85 - 115	20
Additional: LCS acceptance range	is 85-11	5% MS a	acceptance	e range 7	5-125%								
QA/QC Batch 531342 (mg/L), Q	C Samı	ole No: (CG01582	(CG016	70)								
Total Suspended Solids	BRL	2.5	78	76	2.60	90.0						85 - 115	
QA/QC Batch 531248 (mg/L), Q	C Sam _l	ole No: (CG01434	(CG016	70, CG	01671))						
Chromium, Hexavalent Comment:	BRL	0.01	<0.01	<0.01	NC	102			111			90 - 110	30
Additional Hexavalent Chromium c	riteria: L	CS acce	ptance rar	nge for wa	ters is 9	0-110%	and MS	accepta	nce ran	ge is 85-1	115%.		
QA/QC Batch 531517 (mg/L), Q	C Samı	ole No: (CG01629	(CG016	70)								
Chloride	BRL	3.0	56.1	59.1	5.20	99.6			106			90 - 110	20
QA/QC Batch 531429 (mg/L), Q	C Samı	ole No: (CG01432	(CG016	70, CG	01671))						
Ammonia as Nitrogen	BRL	0.05	<0.10	<0.10	NC	97.6			101			90 - 110	20
QA/QC Batch 531345 (mg/L), Q	C Sam _l	ole No: (CG01670	(CG016	70)								
Phenolics	BRL	0.015	< 0.015	< 0.015	NC	93.4			94.0			90 - 110	20
QA/QC Batch 531308 (mg/L), Q	C Sam _l	ole No: (CG01603	(CG016	70)								
Chlorine Residual	BRL	0.02	< 0.02	< 0.02	NC	97.0							

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

June 05, 2020

QA/QC Data

SDG I.D.: GCG01670

34110 00, 2020			•					3001	.D C		370	
Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 531864 (ug/L), QC	` Samn	le No: CG03425 ((CG01670)									
EDB and DBCP Analysis -	•		(0001070)									
1,2-Dibromoethane (EDB)	ND	0.01		111	112	0.9	116	119	2.6	70 - 130	25	
QA/QC Batch 531237 (ug/L), QC			(CC01470)	111	112	0.7	110	117	2.0	70 - 130	25	
			(CG01670)									
Polychlorinated Biphenyls												
PCB-1016	ND	0.050		94	93	1.1				40 - 140	20	
PCB-1221	ND	0.050								40 - 140	20	
PCB-1232	ND	0.050								40 - 140	20	
PCB-1242	ND	0.050								40 - 140	20	
PCB-1248	ND	0.050								40 - 140	20	
PCB-1254	ND	0.050								40 - 140	20	
PCB-1260	ND	0.050		110	104	5.6				40 - 140	20	
PCB-1262	ND	0.050								40 - 140	20	
PCB-1268	ND	0.050								40 - 140	20	
% DCBP (Surrogate Rec)	78	%		108	97	10.7				30 - 150	20	
% DCBP (Surrogate Rec) (Confirm	70	%		94	98	4.2				30 - 150	20	
% TCMX (Surrogate Rec)	62	%		92	105	13.2				30 - 150	20	
% TCMX (Surrogate Rec) (Confirm Comment:	56	%		85	96	12.2				30 - 150	20	
A LCS and LCS Duplicate were pe	rformed	instead of a matrix	spike and matrix	spike dı	uplicate.							
QA/QC Batch 531421 (ug/L), QC	Samp	le No: CG01365 ((CG01670)									
Semivolatiles - Ground Wa			,									
1,2,4,5-Tetrachlorobenzene	ND	3.5		68	77	12.4				40 - 140	20	
1,2,4-Trichlorobenzene	ND	3.5		69	73	5.6				40 - 140	20	
1,2-Dichlorobenzene	ND	1.0		56	66	16.4				40 - 140	20	
1,2-Diphenylhydrazine	ND	1.6		70	78	10.8				40 - 140	20	
1,3-Dichlorobenzene	ND	1.0		54	63	15.4				40 - 140	20	
1,4-Dichlorobenzene	ND	1.0		54	63	15.4				40 - 140	20	
2,4,5-Trichlorophenol	ND	1.0		89	100	11.6				30 - 130	20	
2,4,6-Trichlorophenol	ND	1.0		93	97	4.2				30 - 130	20	
2,4-Dichlorophenol	ND	1.0		82	91	10.4				30 - 130	20	
2,4-Dimethylphenol	ND	1.0		90	95	5.4				30 - 130	20	
2,4-Dinitrophenol	ND	1.0		74	83	11.5				30 - 130	20	
2,4-Dinitrotoluene	ND	3.5		98	107	8.8				40 - 140	20	
2,6-Dinitrotoluene	ND	3.5		88	94	6.6				40 - 140	20	
2-Chloronaphthalene	ND	3.5		80	83	3.7				40 - 140	20	
2-Chlorophenol	ND	1.0		69	78	12.2				30 - 130	20	
2-Methylphenol (o-cresol)	ND	1.0		73	91	22.0				30 - 130	20	r
2-Nitroaniline	ND	3.5		113	154	30.7				40 - 140	20	ı I,r
2-Nitrophenol	ND	1.0		81	88	8.3				30 - 130	20	1,1
3&4-Methylphenol (m&p-cresol)	ND	1.0		84	98	15.4				30 - 130	20	
3,3'-Dichlorobenzidine	ND	5.0		<10	60	NC				40 - 140	20	
5,5 DIGITION ODDITIZIONIO		5.5		- 10	50					10 170	20	'

SDG I.D.: GCG01670

% % Blk **LCSD** LCS **RPD** LCS MS MSD MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter 3-Nitroaniline ND 5.0 47 115 84.0 40 - 140 20 4,6-Dinitro-2-methylphenol ND 1.0 87 98 11.9 30 - 130 20 4-Bromophenyl phenyl ether ND 3.5 86 90 4.5 40 - 140 20 4-Chloro-3-methylphenol ND 1.0 91 102 30 - 130 20 11.4 4-Chloroaniline ND 3.5 31 67 73.5 40 - 140 20 l.r 4-Chlorophenyl phenyl ether ND 1.0 85 94 10.1 40 - 140 20 4-Nitroaniline ND 5.0 86 95 9.9 40 - 140 20 ND 1.0 4-Nitrophenol 113 116 2.6 30 - 130 20 ND 40 - 140 20 Acetophenone 3.5 67 78 15.2 Aniline ND 3.5 56 54 3.6 40 - 140 20 Benzidine ND 4.5 <10 32 NC 40 - 140 20 ī ND 98 Benzoic acid 10 112 13.3 30 - 130 20 Benzyl butyl phthalate ND 1.5 82 89 8.2 40 - 140 20 Bis(2-chloroethoxy)methane ND 3.5 68 75 9.8 40 - 140 20 Bis(2-chloroethyl)ether ND 1.0 48 56 15.4 40 - 140 20 Bis(2-chloroisopropyl)ether ND 1.0 45 53 16.3 20 40 - 140 ND 92 98 Bis(2-ethylhexyl)phthalate 1.5 6.3 40 - 140 20 ND 5.0 79 103 Carbazole 26.4 40 - 140 20 ND 85 91 Dibenzofuran 3.5 6.8 40 - 140 20 Diethyl phthalate ND 1.5 94 101 7.2 40 - 140 20 Dimethylphthalate ND 1.5 89 98 9.6 40 - 140 20 Di-n-butylphthalate ND 1.5 103 104 1.0 20 40 - 140 Di-n-octylphthalate ND 1.5 91 96 5.3 40 - 140 20 Hexachloroethane ND 3.5 54 21.5 67 40 - 140 20 Isophorone ND 3.5 66 73 10.1 40 - 140 20 ND 77 N-Nitrosodi-n-propylamine 3.5 65 16.9 40 - 140 20 N-Nitrosodiphenylamine ND 3.5 72 90 22.2 40 - 140 20 91 92 ND 5.0 Pentachloronitrobenzene 20 1.1 40 - 140 ND 1.0 82 20.1 Phenol 67 30 - 130 20 % 2,4,6-Tribromophenol 67 % 93 92 1.1 15 - 110 20 70 % 2-Fluorobiphenyl 72 % 71 1.4 30 - 130 20 % 2-Fluorophenol 58 % 56 65 14.9 15 - 110 20 % Nitrobenzene-d5 59 % 59 72 19.8 30 - 130 20 50 % Phenol-d5 % 59 69 15.6 15 - 110 20 % Terphenyl-d14 90 % 102 104 1.9 30 - 130 20

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

QA/QC Batch 531430 (ug/l), QC Sample No: CG01432 (CG01670)

Comment:

1,4dioxane - Ground W	<u>ater</u>							
1,4-dioxane	ND	0.20	94	79	17.3	72	40 - 140	30
% 1,4-dioxane-d8	70	%	93	78	17.5	78	40 - 140	30
QA/QC Batch 531421 (ug/L), QC Sample No: CG01365 (CG01670)								
Semivolatiles (SIM) - G	round W	<u>'ater</u>						
2-Methylnaphthalene	ND	0.50	72	75	4.1		40 - 140	20
Acenaphthene	ND	0.50	80	82	2.5		40 - 140	20
Acenaphthylene	ND	0.50	80	84	4.9		40 - 140	20
Anthracene	ND	0.50	85	89	4.6		40 - 140	20
Benz(a)anthracene	ND	0.50	96	100	4.1		40 - 140	20
Benzo(a)pyrene	ND	0.50	91	94	3.2		40 - 140	20

SDG I.D.: GCG01670

% % Blk LCS LCSD LCS MS **MSD RPD** MS Rec RPD Blank RL % % % **RPD** Limits Limits % Parameter Benzo(b)fluoranthene ND 0.50 126 124 1.6 40 - 140 20 Benzo(ghi)perylene ND 0.50 101 103 2.0 40 - 140 20 ND Benzo(k)fluoranthene 0.50 87 87 0.0 40 - 140 20 ND 0.50 88 91 40 - 140 20 Chrysene 3.4 Dibenz(a,h)anthracene ND 0.50 94 99 5.2 40 - 140 20 Fluoranthene ND 0.50 89 92 3.3 40 - 140 20 Fluorene ND 0.50 85 87 2.3 40 - 140 20 ND 0.50 83 Hexachlorobenzene 86 3.6 40 - 140 20 Hexachlorobutadiene ND 40 - 140 20 0.50 60 65 8.0 Hexachlorocyclopentadiene ND 0.50 32 37 14.5 40 - 140 20 Indeno(1,2,3-cd)pyrene ND 0.50 87 90 3.4 40 - 140 20 ND 66 Naphthalene 0.50 64 3.1 40 - 140 20 Nitrobenzene ND 0.50 73 80 9.2 40 - 140 20 ND N-Nitrosodimethylamine 0.05 49 50 2.0 40 - 140 20 Pentachlorophenol ND 0.50 99 103 4.0 40 - 140 20 Phenanthrene ND 0.50 81 83 2.4 40 - 140 20 ND 92 95 Pyrene 0.50 3.2 40 - 140 20 Pyridine ND 0.50 48 53 9.9 40 - 140 20 78 106 109 % 2,4,6-Tribromophenol % 2.8 15 - 110 20 % 2-Fluorobiphenyl 61 % 72 71 1.4 40 - 140 20 % 2-Fluorophenol 65 % 73 10.1 66 15 - 110 20 % Nitrobenzene-d5 59 % 70 65 7.4 40 - 140 20 74 79 % Phenol-d5 68 % 6.5 15 - 110 20 % Terphenyl-d14 69 % 79 80 1.3 40 - 140 20 Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

QA/QC Batch 531578 (ug/L), QC Sample No: CG00971 (CG01670 (20X))

Volatiles - Ground Water

	`-						
cis-1,2-Dichloroethene	ND	1.0	101	106	4.8	70 - 130	30
Tetrachloroethene	ND	1.0	95	100	5.1	70 - 130	30
Trichloroethene	ND	1.0	98	102	4.0	70 - 130	30
% 1,2-dichlorobenzene-d4	99	%	101	98	3.0	70 - 130	30
% Bromofluorobenzene	98	%	99	100	1.0	70 - 130	30
% Dibromofluoromethane	98	%	103	97	6.0	70 - 130	30
% Toluene-d8	98	%	99	100	1.0	70 - 130	30
Comment:							

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

QA/QC Batch 531415 (ug/L), QC Sample No: CG01366 (CG01670)

Volatiles - Ground Water

1,1,1,2-Tetrachloroethane	ND	1.0	95	100	5.1	70 - 130	30
1,1,1-Trichloroethane	ND	1.0	95	97	2.1	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	0.50	87	97	10.9	70 - 130	30
1,1,2-Trichloroethane	ND	1.0	90	92	2.2	70 - 130	30
1,1-Dichloroethane	ND	1.0	95	97	2.1	70 - 130	30
1,1-Dichloroethene	ND	1.0	102	102	0.0	70 - 130	30
1,1-Dichloropropene	ND	1.0	115	108	6.3	70 - 130	30
1,2,3-Trichlorobenzene	ND	1.0	78	90	14.3	70 - 130	30

SDG I.D.: GCG01670

Parameter	Blank	BIk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
1,2,3-Trichloropropane	ND	1.0	81	88	8.3				70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	79	91	14.1				70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	88	90	2.2				70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	91	104	13.3				70 - 130	30	
1,2-Dibromoethane	ND	1.0	86	93	7.8				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	84	90	6.9				70 - 130	30	
1,2-Dichloroethane	ND	1.0	111	111	0.0				70 - 130	30	
1,2-Dichloropropane	ND	1.0	95	93	2.1				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	90	90	0.0				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	84	88	4.7				70 - 130	30	
1,3-Dichloropropane	ND	1.0	86	93	7.8				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	84	89	5.8				70 - 130	30	
1,4-dioxane	ND	100	123	101	19.6				40 - 160	30	
2,2-Dichloropropane	ND	1.0	92	93	1.1				70 - 130	30	
2-Chlorotoluene	ND	1.0	88	90	2.2				70 - 130	30	
2-Hexanone	ND	5.0	70	84	18.2				40 - 160	30	
2-Isopropyltoluene	ND	1.0	95	97	2.1				70 - 130	30	
4-Chlorotoluene	ND	1.0	85	88	3.5				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	82	91	10.4				40 - 160	30	
Acetone	ND	5.0	71	102	35.8				40 - 160	30	r
Acrylonitrile	ND	5.0	85	95	11.1				70 - 130	30	
Benzene	ND	0.70	118	113	4.3				70 - 130	30	
Bromobenzene	ND	1.0	85	90	5.7				70 - 130	30	
Bromochloromethane	ND	1.0	88	95	7.7				70 - 130	30	
Bromodichloromethane	ND	0.50	96	97	1.0				70 - 130	30	
Bromoform	ND	1.0	86	95	9.9				70 - 130	30	
Bromomethane	ND	1.0	104	102	1.9				40 - 160	30	
Carbon Disulfide	ND	1.0	104	100	3.9				70 - 130	30	
Carbon tetrachloride	ND	1.0	104	109	4.7				70 - 130	30	
Chlorobenzene	ND	1.0	91	93	2.2				70 - 130	30	
Chloroethane	ND	1.0	106	107	0.9				70 - 130	30	
Chloroform	ND	1.0	88	92	4.4				70 - 130	30	
Chloromethane	ND	1.0	81	82	1.2				40 - 160	30	
cis-1,3-Dichloropropene	ND	0.40	93	93	0.0				70 - 130	30	
Dibromochloromethane	ND	0.50	93	100	7.3				70 - 130	30	
Dibromomethane	ND	1.0	88	90	2.2				70 - 130	30	
Dichlorodifluoromethane	ND	1.0	87	90	3.4				40 - 160	30	
Ethyl ether	ND	1.0	96	106	9.9				70 - 130	30	
Ethylbenzene	ND	1.0	94	95	1.1				70 - 130	30	
Hexachlorobutadiene	ND	0.40	95	89	6.5				70 - 130	30	
Isopropylbenzene	ND	1.0	90	91	1.1				70 - 130	30	
m&p-Xylene	ND	1.0	93	94	1.1				70 - 130	30	
Methyl ethyl ketone	ND	5.0	85	91	6.8				40 - 160	30	
Methyl t-butyl ether (MTBE)	ND	1.0	82	93	12.6				70 - 130	30	
Methylene chloride	ND	1.0	90	94	4.3				70 - 130	30	
Naphthalene	ND	1.0	87	100	13.9				70 - 130	30	
n-Butylbenzene	ND	1.0	97	97	0.0				70 - 130	30	
n-Propylbenzene	ND	1.0	91	92	1.1				70 - 130	30	
o-Xylene	ND	1.0	91	95	4.3				70 - 130	30	
p-Isopropyltoluene	ND	1.0	94	95	1.1				70 - 130	30	
sec-Butylbenzene	ND	1.0	99	101	2.0				70 - 130	30	
Styrene	ND	1.0	91	94	3.2				70 - 130	30	
tert-Butylbenzene	ND	1.0	90	91	1.1				70 - 130	30	
Dary IDON LONG			, 0	, ,					. 5 150		

% % Blk LCSD LCS **MSD RPD** LCS MS MS Rec Blank RL % **RPD** % % **RPD** Limits Limits % Parameter Tetrahydrofuran (THF) ND 2.5 74 91 20.6 70 - 130 30 Toluene ND 1.0 101 98 3.0 70 - 130 30 ND trans-1,2-Dichloroethene 1.0 100 99 1.0 70 - 130 30 ND 0.40 95 98 70 - 130 30 trans-1,3-Dichloropropene 3.1 trans-1,4-dichloro-2-butene ND 5.0 76 89 15.8 70 - 130 30 Trichlorofluoromethane ND 1.0 95 97 2.1 70 - 130 30 Trichlorotrifluoroethane ND 1.0 100 103 3.0 70 - 130 30 ND 1.0 97 97 0.0 70 - 130 Vinyl chloride 30 % 1,2-dichlorobenzene-d4 95 % 99 100 70 - 130 30 1.0 % Bromofluorobenzene 96 % 98 99 1.0 70 - 130 30 % Dibromofluoromethane 96 % 92 94 2.2 70 - 130 30 % Toluene-d8 101 % 103 110 6.6 70 - 130 30 Comment: A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate. Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%. QA/QC Batch 531357 (ug/L), QC Sample No: CG01670 (CG01670) Oxygenates - Ground Water Ethanol 200 96 1.0 96 97 90 6.5 70 - 130 30 tert-amyl methyl ether ND 10 106 106 0.0 103 103 70 - 130 0.0 30 tert-butyl alcohol ND 25 105 103 1.9 104 102 70 - 130 30

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

A blank MS/MSD was analyzed with this batch.

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

Comment:

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GCG01670

June 05, 2020

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

Friday, June 05, 2020

Criteria: MA: CAM, GW1

Sample Criteria Exceedances Report GCG01670 - GZA-MA

State: MA

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
CG01670	\$8260GWR	trans-1,4-dichloro-2-butene	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CG01670	\$8260GWR	Tetrahydrofuran (THF)	MA / CAM Protocol / VOA AQ RL	ND	2.5		2	ug/L
CG01670	\$8260GWR	Carbon Disulfide	MA / CAM Protocol / VOA AQ RL	ND	5.0		2	ug/L
CG01670	\$8260GWR	Acetone	MA / CAM Protocol / VOA AQ RL	ND	25		10	ug/L
CG01670	\$8260GWR	Trichloroethene	MA / CMR 310.40.1600 / GW-1 (mg/l)	66	20	5	5	ug/L
CG01670	\$8260GWR	Tetrachloroethene	MA / CMR 310.40.1600 / GW-1 (mg/l)	220	20	5	5	ug/L
CG01670	\$8260GWR	cis-1,2-Dichloroethene	MA / CMR 310.40.1600 / GW-1 (mg/l)	180	20	20	20	ug/L
CG01670	\$8260GWR	1,2-Dibromoethane	MA / CMR 310.40.1600 / GW-1 (mg/l)	ND	0.50	0.02	0.02	ug/L
CG01670	\$8260GWR	Trichloroethene	MA / GROUNDWATER STANDARDS / GW-1	66	20	5	5	ug/L
CG01670	\$8260GWR	Tetrachloroethene	MA / GROUNDWATER STANDARDS / GW-1	220	20	5	5	ug/L
CG01670	\$8260GWR	cis-1,2-Dichloroethene	MA / GROUNDWATER STANDARDS / GW-1	180	20	70	70	ug/L
CG01670	\$8260GWR	1,2-Dibromoethane	MA / GROUNDWATER STANDARDS / GW-1	ND	0.50	0.02	0.02	ug/L
CG01670	\$8270-SIMFS	R Benzoic acid	MA / CAM Protocol / SVOA AQ RL	ND	47		10	ug/L
CG01670	AS-WM	Arsenic	MA / CMR 310.40.1600 / GW-1 (mg/l)	0.016	0.004	0.01	0.01	mg/L
CG01670	AS-WM	Arsenic	MA / GROUNDWATER STANDARDS / GW-1	0.016	0.004	0.01	0.01	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

	MassDEP Analytical Protocol Certification Form										
Labo	Laboratory Name: Phoenix Environmental Laboratories, Inc. Project #:										
Proje	Project Location: 174651 MILL ST LAWRENCE RTN:										
This F	This Form provides certifications for the following data set: [list Laboratory Sample ID Number(s)]										
CG016	370, CG016	71									
Matrice	Matrices: ✓ Groundwater/Surface Water ☐ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other: CAM Protocol (check all that apply below)										
CAM	Protocol (check all the	at app	ly below)							
8260 V CAM II		7470/7471 H _Q CAM III B	V	MassDEP VPH CAM IV A	8081 Pesticides CAM V B		7196 Hex Cr CAM VI B		MassDI CAM IX	EP APH	
8270 S CAM II		7010 Metals CAM III C		MassDEP EPH CAM IV B	8151 Herbicides CAM V C	S	8330 Explosives CAM VIII A		TO-15 ' CAM IX		
6010 Metals CAM III A CAM III D CAM V A CAM V A CAM V A CAM V II D											
	Affirmat	ive respons	es to q	uestions A through	F are require	d for	"Presumptive	Certai	inty" s	tatus	
Α	Chain-of-Custody, properly preserved (including temperature*) in the field or laboratory, and prepared/analyzed with method holding times? (* see narrative)										
B Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? ✓ Yes □ No											
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard nonconformances? ✓ Yes □ No										
D	CAM VII A		suran	omply with all the repo ce and Quality Contro ata"?				✓,	Yes	□No	
Е	significan modificati b. APH a	t modificatior ons).	n(s)? (ods only: Was each refer to the individual only: Was the compl	method(s) for	a list o	of significant	_	Yes Yes	□ No	
F	conforma		d and	tocol QC and perforn evaluated in a labora ough E)?				✓ ,	Yes	□ No	
	Resi	onses to a	uestio	ns G, H and I below	is required fo	r "Pre	sumptive Cert	aintv'	' statu:	S	
G	Were the	<u> </u>	its at o	r below all CAM repo	<u> </u>		-		Yes	☑ No	
				resumptive Certainty" cribed in 310 CMR 40.				data us	sability	and	
H Were all QC performance standards specified in the CAM protocol(s) achieved? See Sections: SVOA, SVOASIM, VOA Narrations . ✓ Yes ✓ No											
Were results reported for the complete analyte list specified in the selected CAM protocol(s)?											
respon	All negative responses must be addressed in an attached laboratory narrative. I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.										
					D	ate: F	Friday, June 0	5, 202	20		
	orized	Ru	سماد	i Makal	Printed Na	me: F	Rashmi Makol				
Sign	Authorized Signature: Printed Name: Rashmi Makol Position: Project Manager										

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

SDG Comments

Metals Analysis:

The client requested a site specific list of elements which is shorter than the 6010 MCP list.

8260 Analysis:

1,2-Dibromoethane doesn't meet GW-1 criteria, this compound is analyzed by GC/FID to achieve this criteria.

1,4-Dioxane doesn't meet GW-1 criteria, this compound is analyzed by 8270SIM to achieve this criteria.

Phoenix reporting levels may exceed those referenced in the CAM protocol. Please refer to criteria sheet for comparisons to requested MCP standards.

504.1

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM35 06/02/20-1

Chelsey Guerette, Chemist 06/02/20

CG01670 (1X)

The initial calibration (CHEM35/504tcp_0602): RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 531864 (CG03425)

CG01670

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 25% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Cyanide Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 06/01/20-1

Dustin Harrison, Greg Danielewski, Chemist 06/01/20

CG01670

The samples were distilled in accordance with the method.

The initial calibration met criteria.

The calibration check standards (ICV,CCV) were within 15% of true value and were analyzed at a frequencey of one per ten samples.

The continuing calibration blanks (ICB,CCB) had concentrations less than the reporting level.

The method blank, laboratory control sample (LCS), and matrix spike were distilled with the samples.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

Cyanide Narration

QC (Batch Specific):

Batch 531640 (CF99954)

CG01670

All LCS recoveries were within 90 - 110 with the following exceptions: None. Additional soil criteria LCS acceptance range is 80-120% MS acceptance range 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Hexavalent Chromium (Aqueous)

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

BECKMAN DU720 05/27/20-2 Dustin Harrison, Chemist 05/27/20

CG01670

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

QC (Batch Specific):

Batch 531248 (CG01434)

CG01670, CG01671

All LCS recoveries were within 90 - 110 with the following exceptions: None.

Additional Hexavalent Chromium criteria: LCS acceptance range for waters is 90-110% and MS acceptance range is 85-115%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 05/28/20 07:37

Rick Schweitzer, Chemist 05/28/20

CG01670, CG01671

The method preparation blank, ICB, and CCBs contain all of the acids and reagents as the samples.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

June 05, 2020 SDG I.D.: GCG01670

Mercury Narration

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 531348 (CG02051)

CG01670, CG01671

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 75-125%

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 05/29/20 07:44

Cindy Pearce, Tina Hall, Chemist 05/29/20

CG01670, CG01671

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 531428 (CG01654)

CG01670, CG01671

All LCS recoveries were within 80 - 120 with the following exceptions: None.

All LCSD recoveries were within 80 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional: LCS acceptance range is 80-120% MS acceptance range 75-125%.

LACHAT

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 05/28/20-4

Thomas Budz, Chemist 05/28/20

CG01670

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

LACHAT

Batch 531517 (CG01629)

CG01670

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

NITROGEN

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 05/29/20-1

Ashley Griffith, Chemist 05/29/20

CG01670, CG01671

The initial calibration met all criteria including a standard run at the reporting level.

All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 531429 (CG01432)

CG01670, CG01671

All LCS recoveries were within 85 - 115 with the following exceptions: None.

Additional criteria: LCS acceptance range for waters is 85-115% and for soils is 75-125%. MS acceptance range is 75-125%.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PCB Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

AU-ECD24 05/28/20-1

Saadia Chudary, Chemist 05/28/20

CG01670 (1X)

The initial calibration (PC505Al) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC505Bl) RSD for the compound list was less than 20% except for the following compounds: None.

The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 531237 (CG01432)

CG01670

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

PCB Narration

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

PHENOLS

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

LACHAT 05/28/20-1

CG01670

The initial calibration met all criteria including a standard run at the reporting level. All method verification standards and blanks met criteria.

QC (Batch Specific):

Batch 531345 (CG01670)

CG01670

All LCS recoveries were within 90 - 110 with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 531421 (Samples: CG01670): -----

One or more analytes is below the method criteria. A low bias for these analytes is possible. (Benzidine)

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (2-Nitroaniline)

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (3,3"-Dichlorobenzidine, 4-Chloroaniline)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (2-Methylphenol (o-cresol), 2-Nitroaniline, 3-Nitroaniline, 4-Chloroaniline, Carbazole, Hexachloroethane, N-Nitrosodiphenylamine)

Instrument:

CHEM29 06/01/20-1

Wes Bryon, Chemist 06/01/20

CG01670 (1X)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

SVOA Narration

For 8270 full list, the DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM29/29_SPLIT_0519):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM29/0601 07-29 SPLIT 0519) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

98% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 531421 (CG01365)

CG01670

All LCS recoveries were within 40 - 140 with the following exceptions: 3,3'-Dichlorobenzidine(<10%), 4-Chloroaniline(31%), Benzidine(<10%)

All LCSD recoveries were within 40 - 140 with the following exceptions: 2-Nitroaniline(154%), Benzidine(32%)

All LCS/LCSD RPDs were less than 20% with the following exceptions: 2-Methylphenol (o-cresol)(22.0%), 2-Nitroaniline(30.7%), 3-Nitroaniline(84.0%), 4-Chloroaniline(73.5%), Carbazole(26.4%), Hexachloroethane(21.5%), N-Nitrosodiphenylamine(22.2%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOA-Dioxane

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM22 05/29/20-1

Adam Werner, Chemist 05/29/20

CG01670 (1X)

Initial Calibration Evaluation (CHEM22/DIOX 0303):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM22/0529_04-DIOX_0303) (MCP Compliance):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

SVOA-Dioxane

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 531430 (CG01432)

CG01670

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

SVOASIM Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 531421 (Samples: CG01670): -----

One or more analytes is below the method criteria. A low bias for these analytes is possible. (Hexachlorocyclopentadiene)

Instrument:

CHEM25 06/01/20-1

Wes Bryon, Chemist 06/01/20

CG01670 (1X)

For 8270 BN list, benzidine peak tailing was evaluated in the DFTPP tune and was found to be in control.

Initial Calibration Evaluation (CHEM25/25_SIM18_0528):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0601_03-25_SIM18_0528) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

94% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 531421 (CG01365)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

SVOASIM Narration

CG01670

All LCS recoveries were within 40 - 140 with the following exceptions: Hexachlorocyclopentadiene(32%)

All LCSD recoveries were within 40 - 140 with the following exceptions: Hexachlorocyclopentadiene(37%)

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8270 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 10-110%, for soils 30-130%)

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? No.

QC Batch 531415 (Samples: CG01670): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Acetone)

Instrument:

CHEM02 05/29/20-1

Michael Hahn, Chemist 05/29/20

CG01670 (20X)

Chem02 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM02/VT-P052820):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM02/0529_02-VT-P052820) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum MCP response factor of 0.05: None.

CHEM17 05/27/20-2

Michael Hahn, Chemist 05/27/20

CG01670 (1X)

Chem 17 is a 25ml purge instrument. The laboratory minimum response factor is set at 0.01 instead of 0.05 for the 25ml purge instruments.

EPA method 8260D Table 4 supports this approach.

Initial Calibration Evaluation (CHEM17/VT-052120):

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

VOA Narration

96% of target compounds met criteria.

The following compounds had %RSDs >20%: 1,2-Dibromo-3-chloropropane 38% (20%), Bromomethane 23% (20%), trans-1,4-dichloro-2-butene 35% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: 1,2-Dibromo-3-chloropropane 0.033 (0.05), 2-Hexanone 0.071 (0.1), 4-Methyl-2-pentanone 0.090 (0.1), Acetone 0.028 (0.1), Acrylonitrile 0.032 (0.05), Bromoform 0.084 (0.1), Methyl ethyl ketone 0.034 (0.1), Tetrahydrofuran (THF) 0.023 (0.05)

The following compounds did not meet the minimum response factor of 0.05: 1,2-Dibromo-3-chloropropane 0.033 (0.05), Acetone 0.028 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.034 (0.05), Tetrahydrofuran (THF) 0.023 (0.05)

Continuing Calibration Verification (CHEM17/0527_29-VT-052120) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

94% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: 1,2-Dibromo-3-chloropropane 0.035 (0.05), 2-Hexanone 0.061 (0.1), 4-Methyl-2-pentanone 0.088 (0.1), Acetone 0.024 (0.1), Acrylonitrile 0.030 (0.05), Bromoform 0.084 (0.1), Methyl ethyl ketone 0.031 (0.1), Tetrahydrofuran (THF) 0.019 (0.05)

The following compounds did not meet the minimum MCP response factor of 0.05: 1,2-Dibromo-3-chloropropane 0.033 (0.05), Acetone 0.028 (0.05), Acrylonitrile 0.032 (0.05), Methyl ethyl ketone 0.034 (0.05), Tetrahydrofuran (THF) 0.023 (0.05)

QC (Batch Specific):

Batch 531415 (CG01366) CHEM17 5/27/2020-2

CG01670(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: Acetone(35.8%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

Batch 531578 (CG00971) CHEM02 5/29/2020-1

CG01670(20X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of compounds can be outside of acceptance criteria as long as recovery is 10%.

We attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

VOA-OXY Narration

Were all QA/QC performance criteria specified in the MADEP document CAM achieved? Yes.

Instrument:

CHEM16 05/27/20-2

Harry Mullin, Chemist 05/27/20

CG01670 (1X)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

MCP Certification Report

June 05, 2020 SDG I.D.: GCG01670

VOA-OXY Narration

Initial Calibration Evaluation (CHEM16/OXY052720):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM16/0527H17-OXY052720) (MCP Compliance):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 531357 (CG01670) CHEM16 5/27/2020-2

CG01670(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

I attest under the pains and penalties of perjury that, based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Cooler: Yes No Tempolant: IPK TICE NO Data Delivery/Contact Options:	Project P.O. This section MUST be completed with Bottle Quantities.	000 1000 1000 1000 1000 1000 1000 1000	9,0 5	Data Format Excel
CHAIN OF CUSTODY RECORD 87 East Middle Tumpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Project: 174448 - Mill St Lawring. Report to: Scott clivingal/ Avy Crackwith. Invoice to: QUOTE #	AND STATE OF THE PARTY OF THE P	0 00 00 00 00 00 00 00 00 00 00 00 00 0	Richard CI MA Continuation CI MA Continuation CI MA Continuation CI CI Continuation CI Continuation Ci Continuation Ci Ci Ci Ci Ci Ci Ci C
O.	Customer: G7H Cooping Mal, Inc. Address: 249 Vard World WY	Sampler's Signature Swarpwing Water Sammer SL-Sludge S-Soil SD-Soild W-Wipe OIL-Oil B-Bulk Laliquid X = (Other)	3 N R	Relinquished by, Replinquished by, Comments, Special Requirements or Regulations: Retails: Milliand IV, Copper, Lead, Mercury, Capays Nickel, Scientiff, Standard Standard Other Standard Standard Other Sturches

APPENDIX CCALCULATION SHEETS FOR EFFLUENT LIMITATIONS

DILUTION FACTOR CALCULATIONS

NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT Sewer System Rehabilitation and Improvements, Lawrence, Massachusetts

$$DF = \frac{Q_d + Q_s}{Q_d}$$

Where.

DF = Dilution Factor

 Q_d = Maximum Flow Rate of the Discharge in million gallons per day (MGD)

 Q_s = Receiving Water 7Q10 Flow (MGD) where,

7Q10 = Minimum Flow (MGD) for 7 Consecutive Days with a Recurrence Interval of 10 Years.

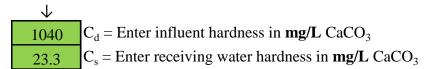
 $Q_d = 50 \text{ gpm} = 0.072 \text{ MGD}$

 $Q_s = 935 \text{ cfs} = 604.3 \text{ MGD}$ (7Q10 provided by MassDEP in email dated 4/16/2020)

$$\therefore DF = \frac{Q_d + Q_s}{Q_d} = \frac{0.072 + 604.3}{0.072} = 8,394.056$$

 $K:\label{eq:K:l74651-l00.SMO} K:\label{eq:K:l74651-l00.SMO} RGP\label{eq:K:l74651-l00.SMO} RGP\label{eq:K:l74651-l00.SMO}$

Enter number values in green boxes below


Enter values in the units specified

\downarrow	_
604.3	$Q_R = Enter upstream flow in MGD$
0.072	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
8.14	pH in Standard Units
23.55	Temperature in °C
0.13	Ammonia in mg/L
23.3	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
299	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
4	Zinc in µg/L

Enter **influent** concentrations in the units specified

\perp	_
870	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
2	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
3840	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
3	Nickel in µg/L
0	Selenium in µg/L
1	Silver in µg/L
6	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
220	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0.05	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
1.3	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

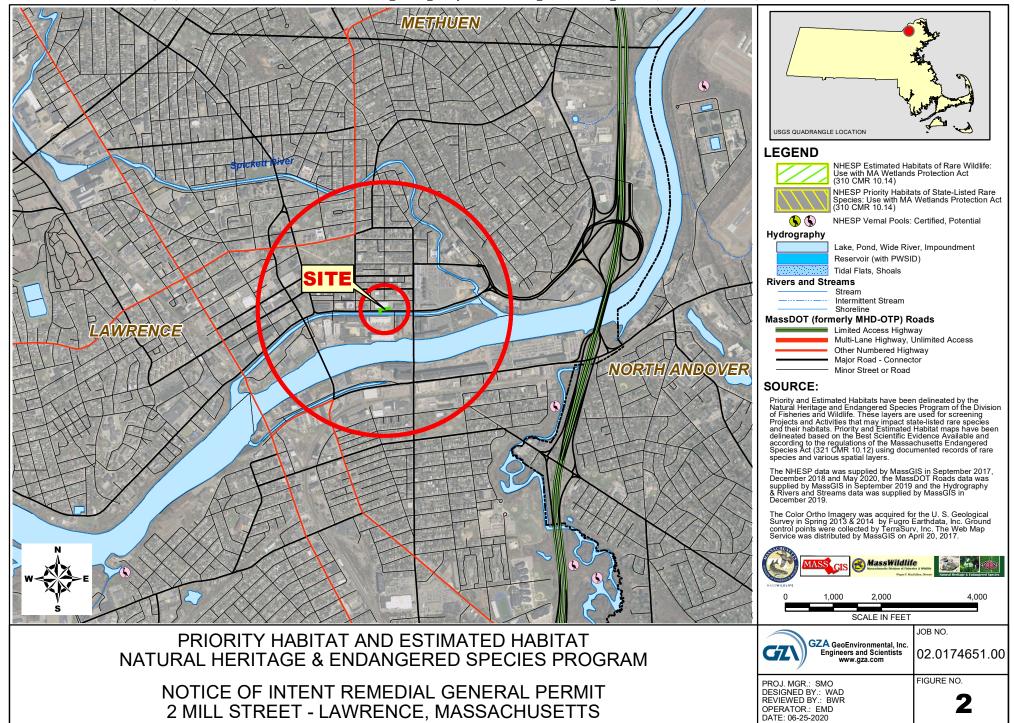
	3552			
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	92335	μg/L
Total Suspended Solids	30	mg/L		1.0
Antimony	206	μg/L	5372196	μg/L
Arsenic	104	μg/L μg/L	83941	μg/L
Cadmium	10.2	μg/L μg/L	774.9586	μg/L
Chromium III	323		220336.0	
Chromium VI		μg/L	95981.9	μg/L
	323	μg/L	22653.3	μg/L
Copper	242	μg/L		μg/L
Iron	5000	μg/L	5884532	μg/L
Lead	160	μg/L	4208.50	μg/L
Mercury	0.739	μg/L	7604.03	μg/L
Nickel	1450	μg/L	128239.8	μg/L
Selenium	235.8	$\mu g/L$	41970.3	$\mu g/L$
Silver	35.1	$\mu g/L$	2616.4	$\mu g/L$
Zinc	420	μg/L	260434.2	μg/L
Cyanide	178	mg/L	43649.1	μg/L
B. Non-Halogenated VOCs				
Total BTEX	100	$\mu g/L$		
Benzene	5.0	μg/L		
1,4 Dioxane	200	μg/L		
Acetone	7970	μg/L	2519217	/1
Phenol C. Hologopated VOCs	1,080	μg/L	2518217	μg/L
C. Halogenated VOCs Carbon Tetrachloride	4.4	μg/L	13430.5	μg/L
1,2 Dichlorobenzene	600	μg/L μg/L		μβД
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		$\mu g/L$		
1,1 Dichloroethane	70	$\mu g/L$		
1,2 Dichloroethane	5.0	μ g/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene Tetrochloroethylene	5.0 5.0	μg/L	27700.4	u o/I
Tetrachloroethylene cis-1,2 Dichloroethylene	70	μg/L μg/L	<i>211</i> 00.4	μg/L
515-1,2 Diemoloculyiene	7 0	μg/L		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	18466.9	μg/L
Total Group I Polycyclic		. 0		
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	31.8974	μg/L
Benzo(a)pyrene	1.0	μg/L	31.8974	μg/L
Benzo(b)fluoranthene	1.0	μg/L	31.8974	μg/L
Benzo(k)fluoranthene	1.0	μg/L	31.8974	μg/L
Chrysene	1.0	μg/L	31.8974	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	31.8974	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	31.8974	μg/L
Total Group II Polycyclic				, -
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	167881	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		
•				

Compliance Level applies if shown

--- μg/L

--- μg/L


--- μg/L
--- μg/L
--- μg/L
--- μg/L
--- μg/L
--- μg/L
--- μg/L
--- μg/L

0.5 $\mu g/L$

APPENDIX D

ACEC AND FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS EVALUATION

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

June 29, 2020

In Reply Refer To:

Consultation Code: 05E1NE00-2020-SLI-3091

Event Code: 05E1NE00-2020-E-09428

Project Name: 2 Mill Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-3091

Event Code: 05E1NE00-2020-E-09428

Project Name: 2 Mill Street

Project Type: LAND - RESTORATION / ENHANCEMENT

Project Description: Sewer Rehabilitation Project

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.70679887165172N71.15578266357159W

Counties: Essex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

APPENDIX EMACRIS SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Lawrence; Street No: 2; Street Name: mill; Resource Type(s): Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Monday, June 15, 2020 Page 1 of 1