

D&M Civil, Inc. 30 Log Bridge Road Building 100S, Suite 102 Middleton, MA 01949

> T. 978.739.4414 F. 978.739.2332

March 3, 2020

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-01) Boston, MA 02109-3912

Re: Notice of Intent for the Remediation General Permit Temporary Construction Dewatering for Site Redevelopment 144 Addison Street, East Boston, Massachusetts

Dear Sir/Madam:

On behalf of 144 Addison St, LLC, D&M Civil (D&M) is submitting this Notice of Intent (NOI) to the U.S. Environmental Protection Agency (U.S. EPA) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) MAG910000 for a portion of 144 Addison Street in East Boston, Massachusetts (the Site). This letter and supporting documentation were prepared in accordance with the U.S. EPA guidance for construction dewatering under the RGP program. D&M is the general contractor for the project and will have responsibility of the subcontractors performing the dewatering activities at the Site. Subcontractors working for D&M on the project will be required to meet the requirements of this NOI and the RGP. The location of the Site and the discharge location into the Chelsea River via a storm drain outfall are shown on Figure 1.

The Site is an approximately 3-acre eastern portion of the property identified by the City of Boston Assessing Department as 144 Addison Street, formerly referred to as 175 McClellan Highway, in East Boston, Massachusetts and is shown on Figure 1. The Site consists of a paved surface parking lot with a small guard house and is currently vacant. Most recently the Site was used as a rental car parking lot operated by Avis Rent-a-Car.

Redevelopment activities at the Site include excavation of urban fill and natural soils to support the construction of two (2) multi-story residential buildings, and the installation of new subgrade utility systems. The Site and proposed redevelopment plans are depicted on Figure 2. During soil pre-characterization activities performed by Sanborn Head in January 2020 to support the proposed redevelopment of the Site, several polycyclic aromatic hydrocarbons (PAHs), lead, arsenic, antimony, barium, zinc, and total petroleum hydrocarbons (TPH) were identified in fill soil samples in excess of the applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations for S-1 soils (RCS-1s). On February 19, 2020 a Release Notification Form (RNF) was submitted to the Massachusetts Department of Environmental Protection (DEP) for the 120-day Reporting Condition, and DEP assigned Release Tracking Number (RTN) 3-36155 for the release to soil.

The Site redevelopment work will be performed under a Release Abatement Measure (RAM) Plan for management under the MCP of contaminated soil generated during construction activities. Groundwater sampling was performed in several wells across the Site as part of

assessment activities and contaminates in groundwater were not detected at concentrations above applicable MCP Reportable Concentrations.

The earthwork to prepare the Site for redevelopment will require excavation of soil to approximately 1 to 12 feet below ground surface (bgs) depending on the location. Groundwater is anticipated to be encountered between approximately 0.5 and 3 feet bgs. Excavations will be sloped to achieve the proposed depths and groundwater that flows into the excavations during construction activities that requires dewatering and cannot be discharged back into the ground will be treated prior to discharge to an existing storm drain such that the discharged effluent meets the effluent limitations established by NPDES Part 2.1 and Appendix V of the RGP Application. Figure 3 includes a schematic of the proposed dewatering treatment system. The completed NOI for the Remediation General Permit form is included as Appendix A.

On January 22 and 23, 2020, Sanborn Head & Associates (Sanborn), the project's environmental consultant, collected four samples to characterize the receiving and source waters in support of this NOI. The source water samples were collected from three existing groundwater monitoring wells, identified as SH-101W through SH-103W. The receiving water was collected from the Chelsea River adjacent to and downstream from the proposed outfall discharge location. The groundwater samples were collected from dedicated, disposable bailers and were submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA for analysis for the 2017 NPDES suite of parameters. Monitoring well SH-102W was resampled for volatile organic compounds (VOCs) due to headspace observed by the laboratory in the sample vials upon receipt.

The receiving surface water discharge point for the treatment system will be the Chelsea River. Information regarding the receiving water was collected from the Massachusetts Year 2016 Integrated List of Waters which is included in Appendix B. Dilution calculation information including correspondence with DEP is included in Appendix C. Analytical laboratory data for on-Site and surface water sampling is summarized in Tables 1 and 2, respectively, and analytical data reports are included in Appendix D. Municipal correspondence in the form of a Dewatering Discharge Permit application is provided in Appendix E, which will be submitted to the Boston Water and Sewer Commission concurrently with the submittal of this NOI. The Dewatering Discharge Permit indicates a discharge into the Chelsea River, via a municipal storm sewer system. Notification for this permit has been provided to the Owner of the discharge system, and a copy of the notification/application is included in Appendix E.

According to the Information for Planning and Conservation (IPaC), available through the U.S. Fish and Wildlife Service (FWS) website, the excavation activities will not impact Areas of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland Wildlife. A letter from the FWS is included in Appendix F. An email requesting information regarding federally listed species in the project discharge area of the Chelsea River was sent to the National Oceanic and Atmospheric Administration (NOAA), and their response, included in Appendix F, states that no listed species are known to occur in the Chelsea River in the area of discharge.

A review of the National Register of Historic Places within East Boston was performed. Based on the review, the discharge and discharge-related activities do not have the potential to cause effects on historic properties. A list of the properties reviewed is included in Appendix G.

Thank you for your consideration of this NOI/Permit. Please feel free to contact us if you wish to discuss the information contained in this application, or if any additional information is needed.

Very truly yours,

Andrew Green D&M Civil (978) 766-5679

Encl. Table 1 – Summary of Groundwater Quality Data

Table 2 – Summary of Surface Water Quality Data

Figure 1 – Locus Plan

Figure 2 - Site Plan

Figure 3 – Proposed Groundwater Treatment Schematic

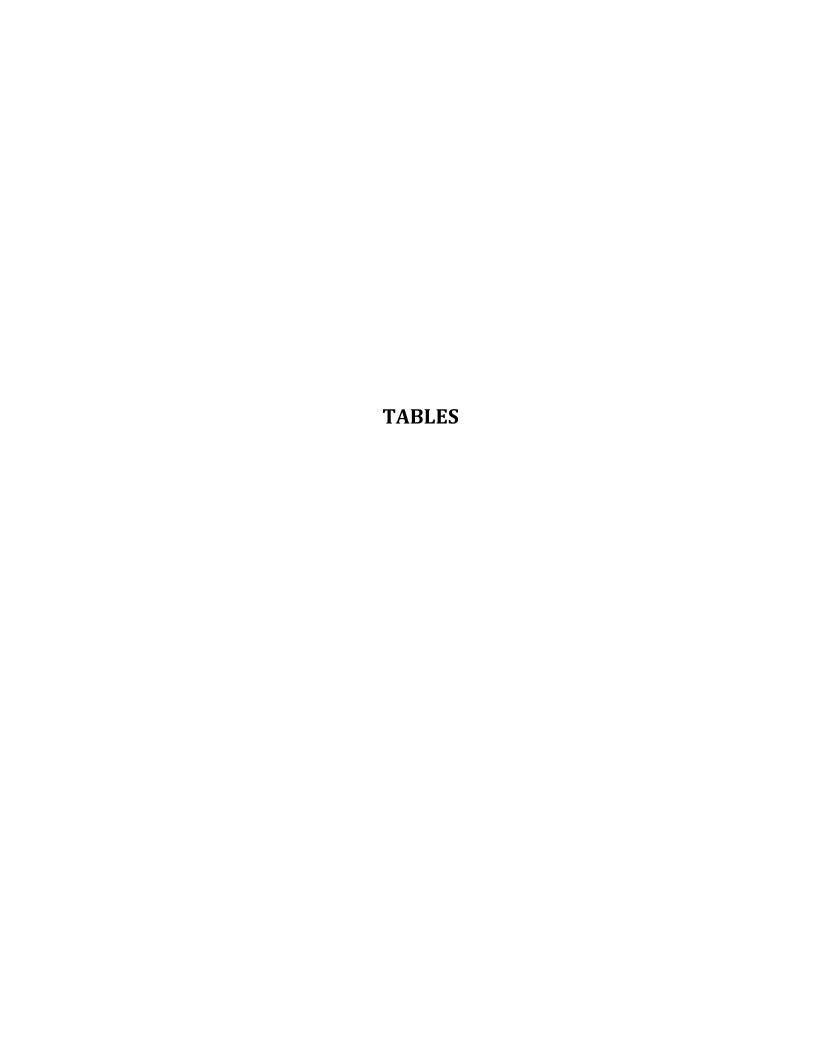
Appendix A – Notice of Intent Form

Appendix B – Selected Massachusetts Category 5 Waters

Appendix C - Chelsea River Dilution Calculations

Appendix D - Analytical Data Reports

Appendix E – Municipal Correspondence


Appendix F – Federal Correspondence

Appendix G - National Register of Historic Places - Boston and Chelsea, MA

cc: City of Boston Board of Health

DEP Bureau of Water Resources

Mr. Stan Sadkowski, P.E. ~ Sanborn, Head & Associates, Inc.

Table 1 Summary of Groundwater Quality Data 144 Addison Street, East Boston, MA

LOCATION	МСР			SH-101W	SH-102W	SH-102WR	SH-103W	Maximum	Average
SAMPLING DATE	RCGW-2	NPDES TBEL	Units	1/22/2020	1/22/2020	1/23/2020	1/23/2020	Detection	Detection Detection
Anions by Ion Chromatograph				1/22/2020	1/22/2020	1/23/2020	1/23/2020	Detection	Detection
Chloride	NS NS	Monitor Only	ug/L	387,000	916,000	-	2,660,000	2,660,000	1,321,000
General Chemistry	110	Pionicor only	ид/ Д	507,000	710,000		2,000,000	2,000,000	1,521,550
Chromium, Trivalent	600	323	ug/L	<10	<10	-	<10	BDL	BDL
Solids, Total Suspended	NS	30	mg/L	170	460	-	150	460	260
Cyanide, Total	30	178,000	ug/L	<5.0	<5.0	-	<5.0	BDL	BDL
Chlorine, Total Residual	NS	200	ug/L	<20	<20	-	<20	BDL	BDL
Nitrogen, Ammonia	NS	Monitor Only	ug/L	1,800	14,500	-	25,200	25,200	13,833.33
TPH, SGT-HEM	5,000	5,000	ug/L	<4,000	<4,000	-	<4,000	BDL	BDL
Phenolics, Total	NS	1,080	ug/L	<30	<30	-	<30	BDL	BDL
Chromium, Hexavalent	300	323	ug/L	<10	<10	-	27	27	27
рН			SU	7	7	-	9	9	8
Microextractables by GC									
1,2-Dibromoethane	2	0.05	ug/L	< 0.01	-	< 0.01	< 0.01	BDL	BDL
Polychlorinated Biphenyls by									
Total PCBs	5	0.000064	ug/L	BDL	BDL	-	BDL	BDL	BDL
Semivolatile Organics by GC/I									
Total Phthalates	NS AC CINA	190	ug/L	BDL	BDL	-	BDL	BDL	BDL
Semivolatile Organics by GC/I		C m-+-1 C		.0.4	0.00		-0.4	0.00	0.00
Acenaphthene Fluoranthene	10,000 200	See "Total Group 2 PAHs"	ug/L	<0.1 0.22	0.82	-	<0.1 <0.1	0.82	0.82
	700	See "Total Group 2 PAHs" 20	ug/L	<0.1	<0.1	-	<0.1 0.62	0.62	0.62
Naphthalene Benzo(a)anthracene	1.000	See "Total Group 1 PAHs"	ug/L ug/L	<0.1 0.12	<0.1 <0.1	-	<0.1	0.62	0.62
Benzo(a)pyrene	500	See "Total Group 1 PAHs"	ug/L ug/L	0.11	<0.1	_	<0.1	0.12	0.12
Benzo(b)fluoranthene	400	See "Total Group 1 PAHs"	ug/L ug/L	0.16	<0.1	_	<0.1	0.16	0.16
Chrysene	70	See "Total Group 1 PAHs"	ug/L ug/L	<0.1	<0.1	-	<0.1	BDL	BDL
Anthracene	30	See "Total Group 2 PAHs"	ug/L	<0.1	0.14		0.28	0.28	0.21
Fluorene	40	See "Total Group 2 PAHs"	ug/L	<0.1	0.44	-	<0.1	0.44	0.44
Phenanthrene	10,000	See "Total Group 2 PAHs"	ug/L	0.12	0.85	-	0.90	0.90	0.62
Pyrene	20	See "Total Group 2 PAHs"	ug/L	0.2	0.19	-	<0.1	0.20	0.20
Total Group 1 PAHs	NS	1.0	ug/L	0.39	BDL (0.1)	-	BDL (0.1)	0.39	0.39
Total Group 2 PAHs	NS	100	ug/L	0.54	2.67	-	1.18	2.67	1.46
Total SVOCs	NS	NS	ug/L	0.93	2.67	-	1.8	2.67	1.80
Total Metals									
Antimony, Total	8,000	206	ug/L	<4.0	<4.0	-	<40	BDL	BDL
Arsenic, Total	900	104	ug/L	4.04	6.4	-	<10	6.40	5.22
Cadmium, Total	4	10.2	ug/L	0.26	0.33	-	<2.0	0.33	0.30
Chromium, Total	300	323	ug/L	1.95	6.21	-	10.75	10.75	6.30
Copper, Total	100,000 NS	242 5,000	ug/L	1.45 44,900	17.46 93,400	-	<10	17.46 93400.00	9.46 47843.33
Iron, Total	10		ug/L	44,900 118.1	93,400 189.7	-	5,230	189.70	108.76
Lead, Total Mercury, Total	20	160 0.739	ug/L ug/L	<0.2	<0.2	_	18.48 <0.2	BDL	BDL
Nickel, Total	200	1450	ug/L ug/L	3.29	3.89	-	<20	3.89	3,59
Selenium, Total	100	235.8	ug/L ug/L	<5.0	<5.0	-	<50	BDL	BDL
Silver, Total	7	35.1	ug/L	<0.4	<0.4	_	<4.0	BDL	BDL
Zinc, Total	900	420	ug/L	414	421	-	150.8	421.00	328.60
Dissolved Metals									
Antimony, Dissolved	8,000	206	ug/L	<4.0	<4.0	-	<40	BDL	BDL
Arsenic, Dissolved	900	104	ug/L	3.7	3.5	-	<10	3.70	3.60
Cadmium, Dissolved	4	10.2	ug/L	<0.2	<0.2	-	<2.0	BDL	BDL
Chromium, Dissolved	300	323	ug/L	<1.0	2.3	-	<10	2.30	2.30
Copper, Dissolved	100,000	242	ug/L	3.0	3.1	-	<10	3.10	3.05
Iron, Dissolved	NS	5,000	ug/L	42,000	88,400	-	494	88400	43631.33
Lead, Dissolved	10	160	ug/L	22.7	10.2	-	<10	22.70	16.45
Mercury, Dissolved	20	0.739	ug/L	<0.2	<0.2	-	<0.2	BDL	BDL
Nickel, Dissolved	200	1,450	ug/L	2.2	<2.0	-	<20	2,20	2,20
Selenium, Dissolved	100 7	235.8	ug/L	<5.0	<5.0	-	<50	BDL	BDL
Silver, Dissolved	900	35.1	ug/L	<0.4 52.8	<0.4	-	<4.0	BDL 52.80	BDL 27.10
Zinc, Dissolved Volatile Organics by GC/MS	900	420	ug/L	54.8	21.4	-	<100	34,80	37.10
Total BTEX	NS	100	ug/I	BDL (2.0)	_	BDL (1.0)	BDL (1.0)	BDL	BDL
Volatile Organics by GC/MS-SI		100	ug/L	DDL (2.0)	•	DDF (1:0)	DDF (1.0)	DDL	DDL
1.4-Dioxane	6,000	200	ug/L	<100	_	<50	<50	BDL	BDL
Ethanol by EPA 1671	0,000	200	ug/L	~100	•	1 \30	\30	DUL	DDF
Ethanol	NS	Report	ug/L	<20,000	<20,000	_	<20,000	BDL	BDL
Dinano:	110	пери	u _{5/ L}	~L01000	~20,000	l	-20,000	DDL	DD1

- Notes:

 1. Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) on the indicated dates and were analyzed by Alpha Analytical Laboratories, Inc. of Westborough, MA and Teklab, Inc. of Collinsville, IL.

 2. Average concentrations for each analyte were calculated as an arithmetic average of detected concentrations and half of the detection limits where analytes were not detected.
- 3. Bolded values indicate detections above the laboratory reporting limits.

5. Bother values indicate detections above the laboratory in A. Abbreviations:

NPDES = National Pollutant Discharge Elimination System

TBEL = Technology based effluent limitation

WQBEL = Water quality based effluent limitation

MCD = Massachusetts Continentcy Plan
RCGW-2 = MCP Reportable Concentration for groundwater category GW-2.
ug/L = micrograms per liter

ag, L = Interlograms per liter
"<" indicates the analyte was not detected above the laboratory reporting limit shown
BDL = below detection limit

BDL (X.X) = total value below detection limit of X.X

NS = No Standard BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes

Table 2 Summary of Surface Water Quality Data

144 Addison Street, East Boston, MA

LOCATION				— Т	SW-1	I	1	
SAMPLING DATE	MCP	NPDES	NPDES	Units	1/23/2020	Maximum	Average	
WATER BODY	RCGW-2 TBEL WQBEL		WQBEL	011113	Chelsea River	Detection	Detection	
Anions by Ion Chromatography				Щ	Cheisea River			
	N.C.	Manitan Only	Manitan Oala	I /T I	17 400 000	17 400 000	17 400 000	
Chloride	NS	Monitor Only	Monitor Only	ug/L	17,400,000	17,400,000	17,400,000	
General Chemistry					10.10	1010	1010	
Hardness				mg/L	4040	4,040	4,040	
рН				SU	7.8	8	8	
Chromium, Trivalent	600	323	1782,5	ug/L	<20	BDL	BDL	
Solids, Total Suspended	NS	30		mg/L	7,400	7,400	7,400	
Cyanide, Total	30	178,000	5.2	ug/L	<5.0	BDL	BDL	
Chlorine, Total Residual	NS	200	11	ug/L	<20	BDL	BDL	
Nitrogen, Ammonia	NS	Monitor Only	Monitor Only	ug/L	<75	BDL	BDL	
TPH, SGT-HEM	5,000	5,000		ug/L	<4,400	BDL	BDL	
Phenolics, Total	NS	1,080	300	ug/L	<30	BDL	BDL	
Chromium, Hexavalent	300	323	11.4	ug/L	<10	BDL	BDL	
Microextractables by GC								
1,2-Dibromoethane	2	0.05		ug/L	<0.01	BDL	BDL	
Polychlorinated Biphenyls by GC								
Total PCBs	5	0.000064	0.5	ug/L	BDL	BDL	BDL	
Semivolatile Organics by GC/MS								
Total Phthalates	NS	190		ug/L	BDL	BDL	BDL	
Semivolatile Organics by GC/MS-SIM								
Fluoranthene	200	See "Total Group 2 PAHs"		ug/L	0.22	0.22	0.22	
Benzo(a)anthracene	1,000	See "Total Group 1 PAHs"	0.0038	ug/L	0.18	0.18	0.18	
Benzo(b)fluoranthene	400	See "Total Group 1 PAHs"	0.0038	ug/L	0.12	0.12	0.12	
Chrysene	70	See "Total Group 1 PAHs"	0.0038	ug/L	0.10	0.10	0.10	
Phenanthrene	10,000	See "Total Group 2 PAHs"	010050	ug/L	0.16	0.16	0.16	
Pyrene	20	See "Total Group 2 PAHs"		ug/L	0.19	0.19	0.19	
Total Group 1 PAHs	NS	1.0		ug/L	0.4	0.40	0.40	
Total Group 2 PAHs	NS	100		ug/L	0.57	0.57	0.57	
Total SVOCs	NS	NS		ug/L	0.97	0.97	0.97	
Total Metals	113	N3		ug/L	0.57	0.57	0.57	
Antimony, Total	8,000	206	640	ug/L	<80	BDL	BDL	
Arsenic, Total	900	104	10	ug/L ug/L	<20	BDL	BDL	
	4	10.2	4.1931		<4.0	BDL	BDL	
Cadmium, Total Chromium, Total	300	323	896.95	ug/L ug/L	<20	BDL	BDL	
		242	220			BDL	BDL	
Copper, Total	100,000		1000	ug/L	<20			
Iron, Total Lead, Total	NS 10	5,000	352,83	ug/L	89	89.00	89.00	
		160		ug/L	<20	BDL	BDL	
Mercury, Total	20	0.739	0.91	ug/L	<0.2	BDL	BDL	
Nickel, Total	200	1450	1192.2	ug/L	<40	BDL	BDL	
Selenium, Total	100	235,8	5	ug/L	<100	BDL	BDL	
Silver, Total	7	35.1	2192.7	ug/L	<8	BDL	BDL	
Zinc, Total	900	420	2751,7	ug/L	<200	BDL	BDL	
Dissolved Metals							_	
Antimony, Dissolved	8,000	206		ug/L	<80	BDL	BDL	
Arsenic, Dissolved	900	104		ug/L	<20	BDL	BDL	
Cadmium, Dissolved	4	10.2		ug/L	<4.0	BDL	BDL	
Chromium, Dissolved	300	323		ug/L	<20	BDL	BDL	
Copper, Dissolved	100,000	242		ug/L	<20	BDL	BDL	
Iron, Dissolved	NS	5,000		ug/L	<50	BDL	BDL	
Lead, Dissolved	10	160		ug/L	<20	BDL	BDL	
Mercury, Dissolved	20	0,739		ug/L	<0.2	BDL	BDL	
Nickel, Dissolved	200	1,450		ug/L	<40	BDL	BDL	
Selenium, Dissolved	100	235,8		ug/L	<100	BDL	BDL	
Silver, Dissolved	7	35.1		ug/L	<8.0	BDL	BDL	
Zinc, Dissolved	900	420		ug/L	<200	BDL	BDL	
Volatile Organics by GC/MS								
Total BTEX	NS	100		ug/L	BDL (1.0)	BDL	BDL	
Volatile Organics by GC/MS-SIM					()			
1,4-Dioxane	6,000	200		ug/L	<50	BDL	BDL	
Ethanol by EPA 1671	2,300	200		<u> ~ъ/ п</u>	.50	220	200	
Ethanol	NS	Report		ug/L	<20.000	BDL	BDL	
Edianoi	110	кероге		u 6/ ь	~20,000	DDL	חתם	

Notes:

- 1, Samples were collected by Sanborn, Head & Associates, Inc. (Sanborn Head) on the indicated dates and were analyzed by Alpha Analytical Laboratories, Inc. of Westborough, MA and Teklab, Inc. of Collinsville, IL.
- $2.\ Average\ concentrations\ for\ each\ analyte\ were\ calculated\ as\ an\ arithmetic\ average\ of\ detected\ concentrations\ and\ half\ of\ the\ detection\ limits\ where\ detection\ limits\ where\ detected\ concentration\ and\ half\ of\ the\ detection\ limits\ where\ detected\ concentration\ and\ half\ of\ the\ detection\ limits\ where\ detection\ limits\ where\ detected\ concentration\ and\ half\ of\ the\ detection\ limits\ where\ detected\ concentration\ and\ half\ of\ the\ detection\ limits\ where\ detected\ concentration\ and\ half\ of\ the\ detection\ limits\ where\ detected\ concentration\ detected\ concentration\ detected\ concentration\ detected\ concentration\ detected\ limits\ detected\ concentration\ detected\ concentration\ detected\ limits\ detected\ concentration\ detected\ limits\ detected\ li$ analytes were not detected.
- 3. Bolded values indicate detections above the laboratory reporting limits.
- 4. Abbreviations:

NPDES = National Pollutant Discharge Elimination System

TBEL = Technology based effluent limitation
WQBEL = Water quality based effluent limitation
MCP = Massachusetts Continentcy Plan

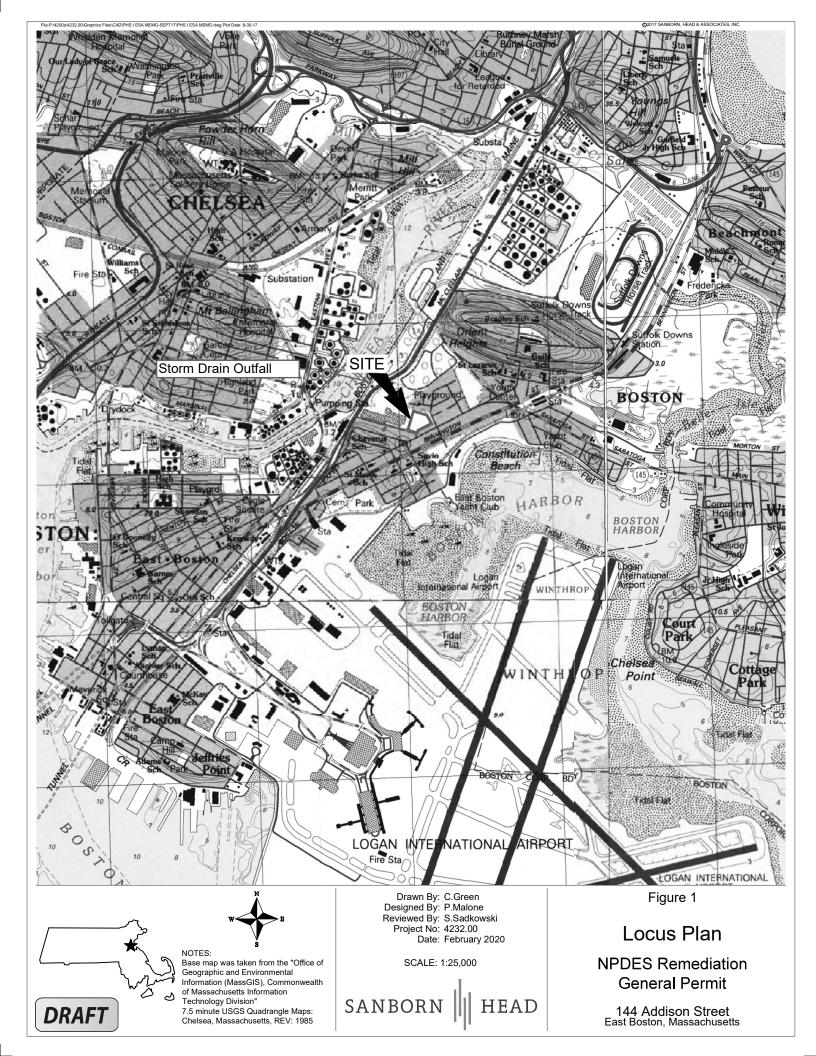
MCF = Massachusetts Continentcy Plan

RCGW-2 = MCP Reportable Concentration for groundwater category GW-2.

ug/L = micrograms per liter

mg/L = milligrams per liter

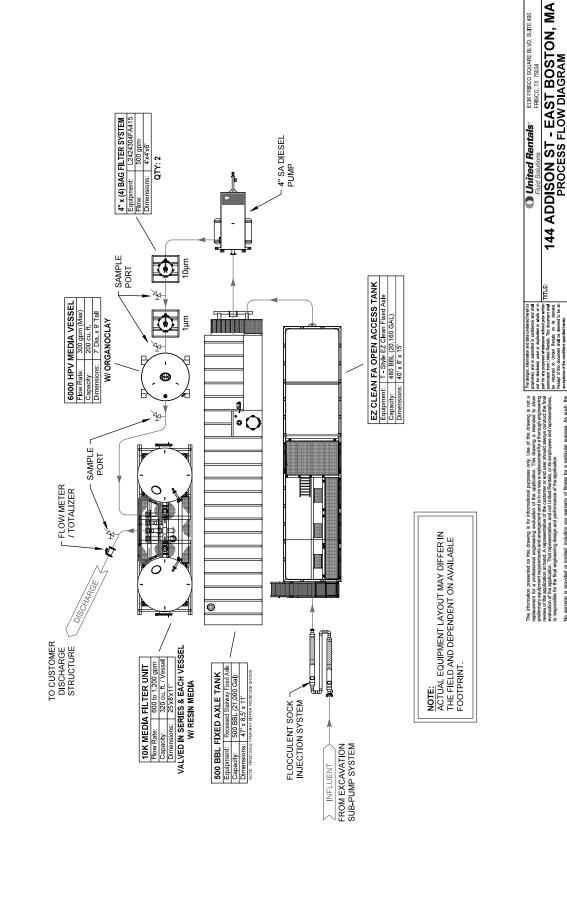
"<" indicates the analyte was not detected above the laboratory reporting limit shown


BDL = below detection limit

BDL (X,X) = total value below detection limit of X,X

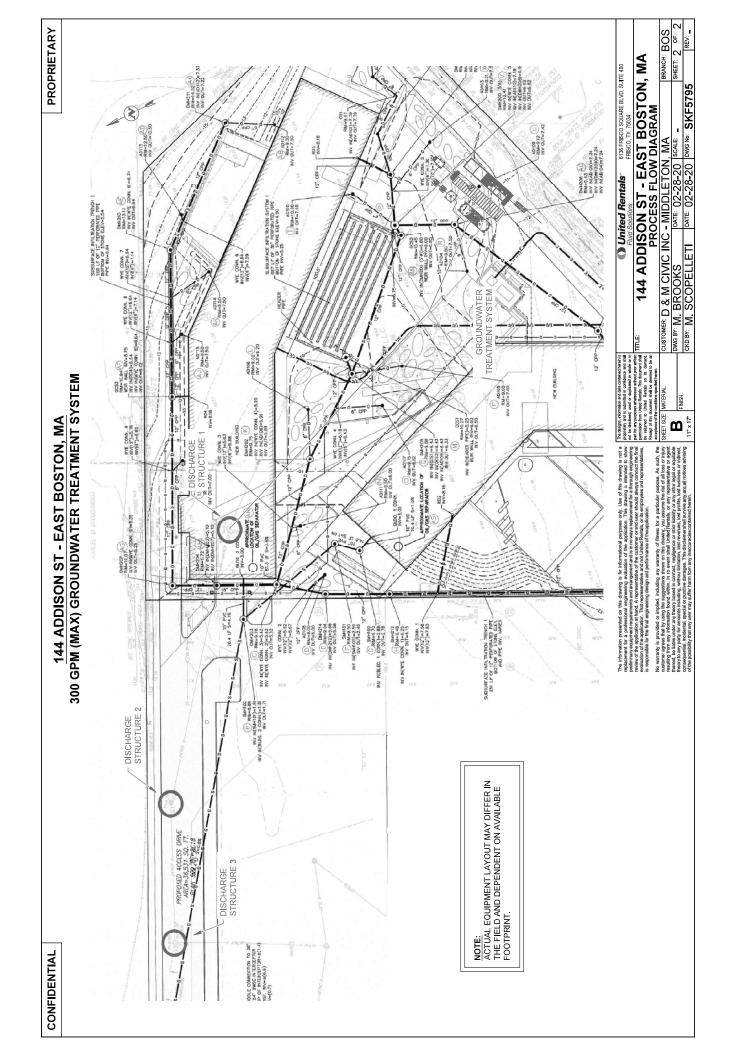
NS = No Standard

BTEX = Benzene, Toluene, Ethylbenzene, and Xylenes



PROPRIETARY

300 GPM (MAX) GROUNDWATER TREATMENT SYSTEM


CONFIDENTIAL

BRANCH: BOS SHEET: 1 OF: 2

CUSTOMER D & M CIVIC INC - MIDDLETON, MA
DWG BY: M. BROOKS DATE 02-28-20 SCALE CKO BY: M. SCOPELLETI DATE 02-28-20 DWG No. SKF5795

 $\mathbf{\omega}$

APPENDIX A NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 144							
144 Addison Street	Street: Addison St							
	City: East Boston		State: MA	^{Zip:} 02128				
2. Site owner 144 Addison Street, LLC	Contact Person: Steve Perdue							
144 Addison Street, LLC	Telephone: 617-904-7016	Email: ste	ve.perdue@	redgate-re.com				
	Mailing address: 265 Franklin St, 6th Floor							
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02110				
3. Site operator, if different than owner	Contact Person: Andrew Green							
D&M Civil	Telephone: 978-766-5679	Email: agreen@dm-civil.com						
	Mailing address:							
	Street: 30 Log Bridge Road, Suite 102							
	City: Middleton		State: MA	Zip: 01949				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):					
NA (Separate CGP issued Permit No. MAR1002FA)	■ MA Chapter 21e; list RTN(s):	□ CERCL	μA					
NINDES a servició de la latada con la PRONTA DONTA CON	3-36155	□ UIC Pro	ogram					
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES payrit □ Otherwifes a greatify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	\square POTW	Pretreatment	:				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Resease Detection Fermit.	☐ CWA Section 404						

■ Yes □ No

D	Receiving	water	infor	mation
υ.	Neceiving	water	ши	manon.

1. Name of receiving water(s):	Waterbody identification of receiving water((s): Classif	ication of receiving water(s):				
Chelsea River	MA71-06	SB/CS	SO				
Receiving water is (check any that apply): □ Outstan	ding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic l	River				
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: ■ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify: Tidal flats & protected open spaces as	·	east. Two schools (to the so	athwest of the site) are within 0.5 min				
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. Yes, listed in 303(d). Impairments include debris, and	s available for any of the indicated pollutants. For m	nore information, contact the	appropriate State as noted in Part				
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 0.00391 MGD - See Appendix C							
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s	1 .	` /	1.0091 - See Appendix C				
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: 2/18/2020	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ■ Yes	□ No				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?				
(check one): ■ Yes □ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
■ Contaminated groundwater □ Contaminated surface water □ The receiving water □ Potable water; if so, in municipality or origin:							
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other					
sampling results as required in Part 4.2 of the RGP n accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP n accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):							

□ Yes □ No

2. Source water contaminants: Chrysene, Anthracene, Fluorene, Phenanthrene, Pyre	enaphthene, Fluoranthene, Naphtalene, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, ne, Arsenic (Total & Dissolved), Total Cadmium, Chromium (Total & Dissolved), Copper (Total & solved), Nickel (Total & Dissolved), Zinc (Total & Dissolved).
a. For source waters that are contaminated groundwater or contaminated	b. For a source water that is a surface water other than the receiving water, potable water
surface water, indicate are any contaminants present that are not included in	or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \square Yes \blacksquare No If yes, indicate the contaminant(s) and	with the instructions in Appendix VIII? (check one): ☐ Yes ■ No
the maximum concentration present in accordance with the instructions in Appendix VIII.	
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \blacksquare New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Chelsea Creek, just upstream of the Chelsea Street Bridge: 29N135 (29NSDO135).	42.387453, -71.018718
Discharges enter the receiving water(s) via (check any that apply): ☐ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
Effluent will enter an existing storm water drainage system that discharge	ges into Chelsea Creek, just upstream of the Chelsea Street Bridge.
☐ A private storm sewer system ■ A municipal storm sewer system	
If the discharge enters the receiving water via a private or municipal storm sew	er system:
Has notification been provided to the owner of this system? (check one): ■ Ye	s 🗆 No
Has the operator has received permission from the owner to use such system for	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
obtaining permission: A Dewatering Discharge Permit has been submitte	d to the BWSC concurrently with the submittal of this NOI - See Appendix E.
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): 03/02/2	2020 - 02/28/2021
Indicate if the discharge is expected to occur over a duration of: ■ less than 12	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	gory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	 ■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds 	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			
	☐ F. Fuels Parameters				

4. Influent and Effluent Characteristics

	Known	Known				In	fluent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	3	4500NH3-121,BH	75	25200	13833.33	Report mg/L	
Chloride		✓	3	44,300.0	25000	2,660,000	1,321,000	Report μg/l	
Total Residual Chlorine	✓		3	121,4500CL-D	20	ND	ND	0.2 mg/L	11 ug/L
Total Suspended Solids		✓	3	121,2540D	16000	460	260	30 mg/L	
Antimony	✓		3	3,200.8	4	ND	ND	206 μg/L	640 ug/L
Arsenic		√	3	3,200.8	1	6.40	5.22	104 μg/L	10 ug/L
Cadmium		✓	3	3,200.8	0.2	0.33	0.30	10.2 μg/L	4.1931 ug/L
Chromium III	✓		3	107	10	ND	ND	323 μg/L	1782.5 ug/L
Chromium VI		✓	3	1,7196A	10	27	27	323 μg/L	11.4 ug/L
Copper		✓	3	3,200.8	1	17.46	9.46	242 μg/L	220.0 ug/L
Iron		✓	3	19,200.7	50	93400	47843.33	5,000 μg/L	1000 ug/L
Lead		✓	3	3,200.8	1	189.7	108.76	160 μg/L	352.83 ug/L
Mercury	✓		3	3,245.1	0.2	ND	ND	0.739 μg/L	0.91 ug/L
Nickel		√	3	3,200.8	2	3.89	3.59	1,450 μg/L	1192.2 ug/L
Selenium	✓		3	3,200.8	5	ND	ND	235.8 μg/L	5.0 ug/L
Silver	✓		3	3,200.8	0.4	ND	ND	35.1 μg/L	2192.7 ug/L
Zinc		✓	3	3,200.8	10	421	328.60	420 μg/L	2751.7 ug/L
Cyanide	✓		3	121,4500CN-CE	5	ND	ND	178 mg/L	5.2 ug/L
B. Non-Halogenated VOC	s	1	1	1	1	,	,	,	
Total BTEX	✓		3	128,624.1	2.0	ND	ND	100 μg/L	
Benzene	✓		3	128,624.1	2.0	ND	ND	5.0 μg/L	
1,4 Dioxane	✓		3	128,624.1	100	ND	ND	200 μg/L	
Acetone	✓		3	128,624.1	20	ND	ND	7.97 mg/L	
Phenol	✓		3	128,624.1	30	ND	ND	1,080 μg/L	300 ug/L

	Known	Known				Int	fluent	t Effluent Limitati	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		3	128,624.1	2.0	ND	ND	4.4 μg/L	1.6
1,2 Dichlorobenzene	✓		3	128,624.1	10	ND	ND	600 μg/L	
1,3 Dichlorobenzene	✓		3	128,624.1	10	ND	ND	320 μg/L	
1,4 Dichlorobenzene	✓		3	128,624.1	10	ND	ND	5.0 μg/L	
Total dichlorobenzene	✓		3	128,624.1	10	ND	ND	763 μg/L in NH	
1,1 Dichloroethane	✓		3	128,624.1	3.0	ND	ND	70 μg/L	
1,2 Dichloroethane	✓		3	128,624.1	3.0	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	✓		3	128,624.1	2.0	ND	ND	3.2 μg/L	
Ethylene Dibromide	✓		3	504.1	0.010	ND	ND	0.05 μg/L	
Methylene Chloride	√		3	128,624.1	2.0	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	✓		3	128,624.1	4.0	ND	ND	200 μg/L	
1,1,2 Trichloroethane	✓		3	128,624.1	3.0	ND	ND	5.0 μg/L	
Trichloroethylene	✓		3	128,624.1	2.0	ND	ND	5.0 μg/L	
Tetrachloroethylene	✓		3	128,624.1	2.0	ND	ND	5.0 μg/L	3.3
cis-1,2 Dichloroethylene	✓		3	128,624.1	2.0	ND	ND	70 μg/L	
Vinyl Chloride	✓		3	128,624.1	2.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Fotal Phthalates	✓		3	129, 625.1	5.0	ND	ND	190 μg/L	
Diethylhexyl phthalate	✓		3	129, 625.1	5.0	ND	ND	101 μg/L	ND
Total Group I PAHs		√	3	129, 625.1	0.10	0.39	0.39	1.0 μg/L	
Benzo(a)anthracene		√	3	129, 625.1	0.10	0.12	0.12	1.0	0.0038 ug/L
Benzo(a)pyrene		✓	3	129, 625.1	0.10	0.11	0.11	1	0.0038 ug/L
Benzo(b)fluoranthene		√	3	129, 625.1	0.10	0.16	0.16	1	0.0038 ug/L
Benzo(k)fluoranthene	✓		3	129, 625.1	0.10	ND	ND	As Total PAHs	0.0038ug/L
Chrysene	✓		3	129, 625.1	0.10	ND	ND	1	0.0038 ug/L
Dibenzo(a,h)anthracene	✓		3	129, 625.1	0.10	ND	ND	1	0.0038ug/L
Indeno(1,2,3-cd)pyrene	√		3	129, 625.1	0.10	ND	ND	1	0.0038ug/L

Known	Known				Influent		Effluent Limitatio	
or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
	✓	3	129, 625.1	0.10	2.67	1.46	100 μg/L	
	✓	3	129, 625.1	0.10	0.62	0.62	20 μg/L	
√		3	127, 608.3	0.250	ND	ND	0.000064 μg/L	
✓		3	129, 625.1	1.0	ND	ND	1.0 μg/L	
·		•	•	•				
✓		3	74,1664A	4000	ND	ND	5.0 mg/L	
✓		3	1671A	20000	ND	ND	Report mg/L	
✓		3	128,624.1	20	ND	ND	70 μg/L	20 ug/L
✓		3	128,624.1	200	ND	ND	120 μg/L in MA 40 μg/L in NH	
✓		3	128,624.1	40	ND	ND	90 μg/L in MA 140 μg/L in NH	
	salinity, LC					IND	T	1
-				30				
	-	3	4300H+-B		930	8 30		
1								
		1		+				
	believed absent	or believed absent present	or believed absent	or believed absent	or believed absent	Note Standard Standard	Note Standard S	Note State Stat

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange ■ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Groundwater encountered during construction activities will be pumped into a treatment system prior to discharge into an existing stormwater catch basin. The first element treatment system will be a fractionalization tank where solids will settle out. The effluent will then pass through the following as necessary: a bag filter, a granular activate and two cation resin vessels plumbed in series. The effluent will be discharged to the existing storm drain system.	nt of the ed carbon vessel,
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Cation resin vessel if needed	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	300
Provide the proposed maximum effluent flow in gpm.	300
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify: dual biopolymer and dry flocculant compounds to aid settling
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:
The time determination has made by teneral one of the operator in the operator in the operator.

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes 🗆 No; if yes, attach. See Appendix F
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
■ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No See Appendix G
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Appendix B includes the Massachusetts Category 5 Waters listing for the Chelsea River.
Appendix C includes calculations for the dilution factor.
Appendix D includes the analytical laboratory data collected for the influent and effluent water. Appendix E includes municipal correspondence.
Appendix F includes correspondence from the National Oceanic and Atmospheric Administration and the US Fish and Wildlife Service.
Appendix G includes a list of Historic Places in Boston and Chelsea, Massachusetts.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge.	loped and imple	mented upon				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No 🗆				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No □ NA □				
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes ■	No □ NA □				
Signature: Out In	e: 3/4/20					
Print Name and Title: ANDREW GREEN - PROTECT MANAGER						

APPENDIX B

MASSACHUSETTS CATEGORY 5 WATERS AND SITE ASSESSMENT MAP

Revised Dilution Factor Calcs

Based on 300 GPM Flow Rate

PURPOSE:

To re-calculate the dilution factor (DF) for metal concentrations in a potential discharge from on-site construction dewatering activities at the new design flow rate of 300 gpm.

METHOD:

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = Design flow rate of the discharge in million gallons per day (MGD)

Qs = Receiving water 7Q10 flow (MGD) where 7Q10 is the minimum flow for 7 consecutive days with a recurrence interval of 10 years

GIVEN:

1.0 gpm = 0.00144 MGD 1.0 cfs = 0.64632 MGD Qd = 300 gpm = 0.00144 MGD * 300 = 0.432 MGD Qs = 0.00605 cfs = 0.00391 MGD of flow into the Chelsea River [Reference 1]

CALCULATION:

DF =
$$(0.432 \text{ MGD} + 0.00391 \text{ MGD}) / 0.432 \text{ MGD}$$

DF = 1.0091

RESULTS:

The resulting dilution factor to be used when discharging to the Chelsea River is 1.0091.

REFERENCES:

[1] StreamStats Report. Accessed online: http://streamstatsags.usgs.gov/ss/ (Refer to Reference 1)

Appendix B

Category 5 waters listed alphabetically by major watershed The 303(d) List – "Waters requiring a TMDL"

						EPA TMDL
Water Bodv	Segment ID	Description	Size	Units	Impainnent	No.
Chelsea River	IMA71-06	From confluence with Mill Creek, Chetsea/Revere to confluence with Boston Inner Harbor, Chelsea/East Boston.	0.37	Square Miles	(Debris*) (Trash*) Ammonia, Un-ionized	
					Cause Unknovm (Contaminants in Fish and/or Shelifsh; Sedimenl Screening Value (Exceedenee))	
					Dissolved Oxygen	
					Fecal Coiform	
					Odor	
					PCBS In Fish Issue	
					renovemin hydrocarbons Turbidity	
Clay Pit Pond	MA71011	Belmont	12.00	Acres	Chlordane in Fish Tissue	
Cummings Brook	MA71-10	Headwaters east of Wright Street, Woburn to confluence with Fowle Brook, Woburn.	2.10	Miles	Escherichia Coli (E. Coli)	
Ell Pond	MA71014	Melrose	23.00	Acres	ChlorophylLa	
					Fecal Coliform	
					Harmful Atgal Blooms	
					Phosphorus, Total	
					Total Suspended Solids (TSS)	
					Transparency / Clarity	
Fellsmere Pond	MA71016	Malden.	9.00	Acres	Harmful Algal Blooms	
Horn Pond	MA71019	Wobum.	108.00	Acres	(Non-Nalive Aquatic Plants*)	
					DDT in Fish Tissue	
					Dissolved Oxygen	
					Harmful Algal Blooms	
					Phosphorus, Total	
Little Pond	MA71024	Belmont	18.00	Acres	Harmful Algal Blooms	
Lower Mystic Lake	MA71027	Arlington/Medford_	93.00	Acres	DDT in Fish Tissue	
					Dissolved Oxygen	
					Hydrogen Sulfide	
					PCBs in Fish Tissue	
					Salinity	
					Sediment Bioassay (Chronic Toxicity Freshwater)	

Final Massachusetts Year 2016 Integrated List of Waters December, 2019 (9)

* TMDL not required (Non-pollutant)

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Meta Site Information: 144 ADDISON ST 144 ADDISON ST BOSTON, MA NAD83 UTM Meters Department of Environmental Protection 4694570mN , 334181mE (Zone: 19) February 14, 2020 https://www.mass.gov/orgs/massgis-bureau-ofde School WALDEMAR AVENUE VALLAR ROAD WOOD AVENUE FAYWOOD AVENUE Manassan E Bradley School ORIENT HEIGH P Don Orlone Nursing Home CHESTER AVENUE COTTAGE STREET TS STREET LEYDEN STREET SHLEY STREET ERICK STREET Eastpoint CESS AVENUE ORIENT HEIGHTS KSTREET THURSTO CONSTITUTION BEACH 1 500 m 10**0**0 ft OTTAGE STREET Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A ... Hydrography: Open Water, PWS Reservoir, Tidal Flat ... Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source..... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. 🚃 🚭 😂 Non Potential Drinking Water Source Area: Medium, High (Yield).

APPENDIX C DILUTION CALCULATIONS

File No. <u>4232.00</u> Page 1 of 1

Project 144 Addison St

Location East Boston, Massachusetts

Subject <u>Dilution Factor Calculations</u> Calculated By <u>M. Reisenauer</u>

 Calculated By M. Reisenauer
 Date 2/13/2020

 Checked By P. Malone
 Date 2/25/2020

P:\4200s\4232.00\Source Files\NPDES NOI Application\App C - Receiving Water Calculations\20200227 Dilution Factor.docx

PURPOSE:

To calculate the dilution factor (DF) for metal concentrations in a potential discharge from on-site construction dewatering activities.

METHOD:

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = Design flow rate of the discharge in million gallons per day (MGD)

Qs = Receiving water 7Q10 flow (MGD) where 7Q10 is the minimum flow for 7 consecutive days

with a recurrence interval of 10 years

GIVEN:

1.0 gpm = 0.00144 MGD 1.0 cfs = 0.64632 MGD

Qd = 100 gpm = 0.144 MGD

Qs = 0.00605 cfs = 0.00391 MGD of flow into the Chelsea River [Reference 1]

CALCULATION:

$$DF = (0.144 \text{ MGD} + 0.00391 \text{ MGD}) / 0.144 \text{ MGD}$$

DF = 1.0272

RESULTS:

The resulting dilution factor to be used when discharging to the Chelsea River is 1.0272.

REFERENCES:

[1] StreamStats Report.

Accessed online: http://streamstatsags.usgs.gov/ss/ (Refer to Reference 1)

www.sanbornhead.com Sanborn, Head & Associates, Inc.

Appendix C - Reference 1

Region ID: MA

 Workspace ID:
 MA20200212193013985000

 Clicked Point (Latitude, Longitude):
 42.38541, -71.01296

 Time:
 2020-02-12 14:30:30 -0500

144 Addison St, East Boston, MA 02128

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.12	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	1.838	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

General Disclaimers

Parameter values have been edited, computed flows may not apply.

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.12	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	1.838	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors $\frac{1}{2}$

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.00258	ft^3/s
7 Day 10 Year Low Flow	0.00605	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p.

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3,11

Meghan Reisenauer

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Tuesday, February 18, 2020 6:28 PM

To: Meghan Reisenauer

Cc: Patrick Malone; Stan Sadkowski

Subject: RE: Confirm 7Q10 Value for NPDES RGP

Hi Meghan,

Thank you for all of the information that you provided confirming that you will be connecting to a storm drain that flows to Chelsea Creek and for noting that you already have coverage under the CGP.

Best of luck,

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

📥 Please consider the environment before printing this e-mail

From: Meghan Reisenauer [mailto:mreisenauer@sanbornhead.com]

Sent: Tuesday, February 18, 2020 1:19 PM

To: Vakalopoulos, Catherine (DEP) **Cc:** Patrick Malone; Stan Sadkowski

Subject: RE: Confirm 7Q10 Value for NPDES RGP

Hi Cathy,

I haven't heard back from BWSC yet, but I wanted to also let you know that the Site has a NPDES CGP in effect, permit # MAR1002FA.

This permit also confirms the Chelsea River (Creek) as the discharge point, and that the discharge does not flow through a MS4 on its way there. I've attached a PDF for your reference.

Thanks, Meghan

From: Meghan Reisenauer

Sent: Monday, February 17, 2020 11:06 AM

To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Cc: Patrick Malone (pmalone@sanbornhead.com) < pmalone@sanbornhead.com>; Stan Sadkowski

<ssadkowski@sanbornhead.com>

Subject: RE: Confirm 7Q10 Value for NPDES RGP

Hi Cathy,

I haven't corresponded with BWSC about the storm drain flow, but I understand that the storm drain does flow to Chelsea Creek due to the outfall listings from BWSC (attached), from

https://www.bwsc.org/sites/default/files/2019-03/Stormwater Management Report 2018 0.pdf (Tables 1-1 and 2-1). The figure in the report (attached) also shows 29NSD0135 at the same location as the outfall into Chelsea Creek that we determined to be where the drain led.

We received the following emails from Nitsch Engineering, which show the outflow from the site.

"Virtually the entire site flows through a 24" RCP private drain on our site, which connects to a 48" drain which eventually discharges to the Chelsea Creek and then the Atlantic Ocean. The drain is a private drain that our site has permission to drain through. Does not connect to BWSC or MWRA or Deer Island.

GP

Gary F. Pease, PE, LEED AP | Vice President, Director of Client Services

2 Center Plaza, Suite 430, Boston, MA 02108 | www.nitscheng.com Main: 617-338-0063 | Cell: 617-429-6351 | qpease@nitscheng.com

A Women-Owned Business Enterprise

Celebrating 30 years of building better communities with you Boston, MA | Lawrence, MA | Worcester, MA | Washington, DC

Pat, See the image below. I believe this is the outfall into the Chelsea Creek from our site. Chris

Christopher D. Hodney, PE | Senior Project Engineer Nitsch Engineering Direct: 857-206-8673 chodney@nitscheng.com However, you bring up a good point, so I'll confirm that this is the correct outfall with BWSC before we submit the NOI application. I'll let you know when I receive confirmation of the correct location.

In regards to the transmittal form - we have an application with MassDEP in the works for a Dewatering Discharge Permit. The application hasn't been signed yet, but I've attached it here so you can see what we'll be submitting. I've also attached a copy of our transmittal form, although we haven't submitted that either.

Best, Meghan

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Friday, February 14, 2020 5:44 PM

To: Meghan Reisenauer < mreisenauer@sanbornhead.com >

Subject: RE: Confirm 7Q10 Value for NPDES RGP

Hi Meghan,

Have you confirmed with BWSC that the storm drain does indeed flow to Chelsea Creek? Because it would seem to me that storm drains near that address would flow to Winthrop Bay, but I don't have a storm drain map to look at. Regardless, even though you were able to get StreamStats to calculate a tiny 7Q10, MassDEP does not grant dilution factors for discharges to marine waters unless the applicant can show dilution using the results of a dilution study or model.

Here is some information that will help you fill out the NOI:

Chelsea Creek is identified as segment MA71-06, is classified as Class SB(CSO), is not an Outstanding Resource Water, and is on the State's Integrated List of Waters: https://www.mass.gov/doc/final-massachusetts-year-2016-integrated-list-of-waters/download. Go to this link and search for "MA71-06" to see the causes of impairments. There is one approved TMDL for pathogens: https://www.mass.gov/files/documents/2018/12/06/bharbor1.pdf.

Winthrop Bay is identified as segment MA70-10, is classified as SB, is not an Outstanding Resource Water, and is on the State's Integrated List of Waters where you can see the causes of impairments. Winthrop Bay also has one approved TMDL (the same one as linked above).

Also, if the site is not *currently* being regulated by the MCP then in addition to submitting the NOI, you also need to apply with MassDEP by submitting a transmittal form and a \$500 fee (unless fee exempt). The instructions are located here: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Please make sure to also send me a copy of the transmittal form (I'm mentioning this here because it's not in the online instructions yet).

Let me know if you have any questions. I will be out on Monday but back in the office on Tuesday.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Meghan Reisenauer [mailto:mreisenauer@sanbornhead.com]

Sent: Friday, February 14, 2020 5:02 PM **To:** Vakalopoulos, Catherine (DEP) **Cc:** Patrick Malone; Stan Sadkowski

Subject: FW: Confirm 7Q10 Value for NPDES RGP

Good morning,

I would like to confirm the following 7Q10 value for a RGP project located in East Boston, MA.

Using StreamStats, I selected the site, which drains to the outlet within the Chelsea River.

Site Address: 144 Addison St, East Boston, MA 02128

Site CG Permit Number: MAR1002FA

Type of Discharge: Via drain outlet in the Chelsea River with the approximate latitude and longitude

indicated below.

Approximate Lat/Long:

Lat: 42.38541 Long: -71.01296

Design Discharge Flow: 100 gpm = 0.144 MGD

Upstream StreamStats Generated, 7Q10: 0.00605 cfs = 0.00391 MGD

Dilution Factor: DF = 1.0272

I have attached a draft calculation sheet which was used to arrive at the above dilution factor.

Please let me know if you require any further information.

Thank you,

Meghan Reisenauer

From: Meghan Reisenauer

Sent: Thursday, February 13, 2020 11:32 AM

To: susannah.king@mass.gov

Cc: Patrick Malone (pmalone@sanbornhead.com>; Stan Sadkowski

<ssadkowski@sanbornhead.com>

Subject: Confirm 7Q10 Value for NPDES RGP

Good morning,

I would like to confirm the following 7Q10 value for a RGP project located in East Boston, MA.

Using StreamStats, I selected the site, which drains to the outlet within the Chelsea River.

Site Address: 144 Addison St, East Boston, MA 02128

Site CG Permit Number: MAR1002FA

Type of Discharge: Via drain outlet in the Chelsea River with the approximate latitude and longitude

indicated below.

Approximate Lat/Long:

Lat: 42.38541 Long: -71.01296

Design Discharge Flow: 100 gpm = 0.144 MGD

Upstream StreamStats Generated, 7Q10: 0.00605 cfs = 0.00391 MGD

Dilution Factor: DF = 1.0272

I have attached a draft calculation sheet which was used to arrive at the above dilution factor.

Please let me know if you require any further information.

Thank you,

Meghan Reisenauer Engineer

SANBORN | HEAD & ASSOCIATES, INC.

D 857.327.9743 | M 208.596.1279 | 98 N. Washington Street, Suite 101, Boston, MA 02114

Click here to follow us on <u>LinkedIn</u> | <u>Twitter</u> | <u>Facebook</u> | <u>sanbornhead.com</u>

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

From: Bagley, Thomas
To: Meghan Reisenauer
Subject: Addison Street East Boston

Date: Tuesday, February 18, 2020 1:50:44 PM

Good afternoon Mr. Reisenauer,

The storm drain on Addison street that drains to 29NSDO135 is owned by the Commission and empties to the Chelsea creek/river according to our Engineering Department.

Hopefully this helps.

Regards,

Tom Bagley Communications Boston Water and Sewer Commission.

Submitted on Mon, 02/17/2020 - 11:20 AM

Submitted by: Anonymous Submitted values are: *Feedback Type: Other

*Your Name: Meghan Reisenauer

Address:

98 N Washington St #101 Boston, Massachusetts. 02114

*Phone Number: (857) 327-9743

*Phone Type: Landline

*Your Email: mreisenauer@sanbornhead.com

Comments:

Hello, I am contacting you to check which outfall a storm drain leads to.

I'm a consultant with Sanborn Head & Associates, and we have a client with a project at 144 Addison St in East Boston 02128. On the east side of the site, there is a storm drain, which we believe leads to the Chelsea Creek, specifically Outfall 29N135.

However, in correspondence with Cathy Vakalopoulos of MADEP, the question was raised that this drain might flow to Winthrop Bay. We have permission to use the drain, and found that it may also be a private drain which discharges in to the Chelsea Creek.

Please feel free to email me for any further information to help determine which outfall is correct.

APPENDIX D ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L2003068

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Patrick Malone Phone: (978) 392-0900

Project Name: 144 ADDISON ST

Project Number: 4232.00 Report Date: 01/30/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L2003068 01/30/20

Lab Number: Report Date:

Project Name: 144 ADDISON ST

Project Number: 4232.00

01/22/20 14:00 Collection Date/Time EAST BOSTON, MA Sample Location WATER Matrix SH-101W Client ID L2003068-01 Alpha Sample ID

Receive Date

01/22/20

01/22/20 15:00

EAST BOSTON, MA

WATER

SH-102W

L2003068-02

01/22/20

L2003068

Project Name: 144 ADDISON ST Lab Number:

Project Number: 4232.00 Report Date: 01/30/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 Report Date: 01/30/20

Case Narrative (continued)

Report Submission

January 30, 2020: This final report includes the results of all requested analyses.

January 29, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

L2003068-02: Headspace was noted in the sample containers submitted for VOC 624 analysis. The analysis was cancelled at the client's request.

Volatile Organics by Method 624

L2003068-01: The sample has elevated detection limits due to the dilution required by the sample matrix (cloudy).

Volatile Organics by SIM

L2003068-01: The sample has elevated detection limits due to the dilution required by the sample matrix (cloudy).

Microextractables

The WG1333064-2 LCS recovery for 1,2-dibromoethane (75%), associated with L2003068-01, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Total Metals

The WG1332857-3 MS recovery for iron (30%), performed on L2003068-01, does not apply because the sample concentration is greater than four times the spike amount added.

The WG1332861-4 Laboratory Duplicate RPDs for chromium (42%), copper (62%) and nickel (23%),

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

Case Narrative (continued)

performed on L2003068-01, are above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

Dissolved Metals

The WG1333154-3 MS recovery for iron (30%), performed on L2003068-01, does not apply because the sample concentration is greater than four times the spike amount added.

Chlorine, Total Residual

The WG1332824-4 MS recovery (0%), performed on L2003068-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

Nitrogen, Ammonia

The WG1333336-4 MS recovery (76%), performed on L2003068-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ДІРНА

Date: 01/30/20

ORGANICS

VOLATILES

Project Name: Lab Number: 144 ADDISON ST L2003068

Project Number: Report Date: 4232.00 01/30/20

SAMPLE RESULTS

Lab ID: Date Collected: 01/22/20 14:00 L2003068-01

Client ID: Date Received: 01/22/20 SH-101W

Refer to COC Sample Location: EAST BOSTON, MA Field Prep:

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 01/23/20 11:04 Analytical Method: 14,504.1

Analytical Date: 01/23/20 13:58

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

01/22/20 14:00

Refer to COC

01/22/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number: L2003068

Date Collected:

Date Received:

Field Prep:

Report Date: 01/30/20

SAMPLE RESUL

Lab ID: L2003068-01 D

Client ID: SH-101W

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 01/23/20 13:48

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - We	estborough Lab						
Methylene chloride	ND		ug/l	2.0		2	
1,1-Dichloroethane	ND		ug/l	3.0		2	
Carbon tetrachloride	ND		ug/l	2.0		2	
1,1,2-Trichloroethane	ND		ug/l	3.0		2	
Tetrachloroethene	ND		ug/l	2.0		2	
1,2-Dichloroethane	ND		ug/l	3.0		2	
1,1,1-Trichloroethane	ND		ug/l	4.0		2	
Benzene	ND		ug/l	2.0		2	
Toluene	ND		ug/l	2.0		2	
Ethylbenzene	ND		ug/l	2.0		2	
Vinyl chloride	ND		ug/l	2.0		2	
1,1-Dichloroethene	ND		ug/l	2.0		2	
cis-1,2-Dichloroethene	ND		ug/l	2.0		2	
Trichloroethene	ND		ug/l	2.0		2	
1,2-Dichlorobenzene	ND		ug/l	10		2	
1,3-Dichlorobenzene	ND		ug/l	10		2	
1,4-Dichlorobenzene	ND		ug/l	10		2	
p/m-Xylene	ND		ug/l	4.0		2	
o-xylene	ND		ug/l	2.0		2	
Xylenes, Total	ND		ug/l	2.0		2	
Acetone	ND		ug/l	20		2	
Methyl tert butyl ether	ND		ug/l	20		2	
Tert-Butyl Alcohol	ND		ug/l	200		2	
Tertiary-Amyl Methyl Ether	ND		ug/l	40		2	

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-01 D Date Collected: 01/22/20 14:00

Client ID: SH-101W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	103		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	100		60-140	

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number: L2003068

Report Date:

01/30/20

Lab ID: D L2003068-01

Client ID:

EAST BOSTON, MA

Date Collected:

01/22/20 14:00

SH-101W

Date Received:

01/22/20

Sample Location:

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Water

Analytical Method: Analytical Date:

128,624.1-SIM 01/23/20 13:48

Analyst:

GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbord	ugh Lab					
1,4-Dioxane	ND		ug/l	100		2

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Fluorobenzene	85	60-140	
4-Bromofluorobenzene	87	60-140	

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: L2003068

Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/23/20 11:19

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - We	estborough Lab	o for sample(s): 01	Batch:	WG1332770-8
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 144 ADDISON ST **Lab Number**: L2003068

Project Number: 4232.00 Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/23/20 11:19

Analyst: GT

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 01
 Batch:
 WG1332770-8

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
Pentafluorobenzene	102	60-140
Fluorobenzene	98	60-140
4-Bromofluorobenzene	97	60-140

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 01/23/20 12:36 Extraction Date: 01/23/20 11:04

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC -	· Westborough Lab for	sample(s):	01	Batch: WG1333	3064-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

L2003068

Project Name: 144 ADDISON ST Lab Number:

Project Number: 4232.00 Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 01/23/20 11:19

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG1333656-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
	24	20.442	
Fluorobenzene	84	60-140	
4-Bromofluorobenzene	88	60-140	

L2003068 01/30/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

RPD "Recovery CSD5 Vol

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough Lab Associated sample(s):	ab Associated		01 Batch: WG1332770-7	332770-7				
Methylene chloride	85				60-140			28
1,1-Dichloroethane	85				50-150			49
Carbon tetrachloride	105		ı		70-130			41
1,1,2-Trichloroethane	95		ı		70-130			45
Tetrachloroethene	105		ı		70-130			39
1,2-Dichloroethane	06				70-130			49
1,1,1-Trichloroethane	110				70-130			36
Benzene	105		ı		65-135			61
Toluene	105				70-130			41
Ethylbenzene	105		1		60-140			63
Vinyl chloride	55		1		5-195			99
1,1-Dichloroethene	06		ı		50-150			32
cis-1,2-Dichloroethene	92		ı		60-140			30
Trichloroethene	95		ı		65-135			48
1,2-Dichlorobenzene	110		ı		65-135			57
1,3-Dichlorobenzene	100		ı		70-130			43
1,4-Dichlorobenzene	105		ı		65-135			57
p/m-Xylene	100		ı		60-140			30
o-xylene	95		ı		60-140			30
Acetone	80		ı		40-160			30
Methyl tert butyl ether	85		ı		60-140			30
Tert-Butyl Alcohol	92		ı		60-140	ı		30
Tertiary-Amyl Methyl Ether	110		ı		60-140	ı		30

144 ADDISON ST

4232.00

Project Number: Project Name:

Lab Number:

L2003068 01/30/20 Report Date:

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1332770-7

LCSD Acceptance %Recovery Qual Criteria	60-140 60-140 60-140
LCS %Recovery Qual %	104 101 97
Surrogate	Pentafluorobenzene Fluorobenzene 4-Bromofluorobenzene

144 ADDISON ST

4232.00

Project Number:

Project Name:

L2003068 Lab Number:

01/30/20 Report Date:

	Column	
RPD	Limits	
	Qual	
	RPD	
"Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SO7	%Recovery	
	Parameter	

Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1333064-2

⋖ 80-120 Ø 75 1,2-Dibromoethane

L2003068 01/30/20 Lab Number:

Report Date:

144 ADDISON ST 4232.00 **Project Number:** Project Name:

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery **Parameter**

Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1333656-3

20 60-140 28 1,4-Dioxane

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	88 88				60-140 60-140

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST

4232.00

Project Number: Project Name:

L2003068 Lab Number:

01/30/20 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	MS MSD MSD Recovery RPD %Recovery Qual Limits RPD Qual Limits Column	ry RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab Associated sample(s)	Westborough Lab	Associate	ed sample(s):	01 QC Batch	ID: WG13	333064-3	QC Sample: I): 01 QC Batch ID: WG1333064-3 QC Sample: L2002888-01 Client ID: MS Sample	Client ID:	MS Samp	ole	
1,2-Dibromoethane	QN	0.25	0.195	78	Ø			80-120			20	4
1,2-Dibromo-3-chloropropane	QN	0.25	0.210	84		•		80-120	•		20	4
1,2,3-Trichloropropane	QN	0.25	0.236	94				80-120			20	⋖

SEMIVOLATILES

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-01 Date Collected: 01/22/20 14:00

Client ID: SH-101W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 01/23/20 06:06

Analytical Date: 01/24/20 13:21

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	76		42-122
2-Fluorobiphenyl	76		46-121
4-Terphenyl-d14	88		47-138

L2003068

01/23/20 06:21

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number:

Extraction Date:

0.10

0.10

0.10

0.10

0.10

0.10

1.0

__

--

__

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

Report Date: 01/30/20

Lab ID: L2003068-01

Client ID: SH-101W

Sample Location: EAST BOSTON, MA

Sample Depth:

Benzo(ghi)perylene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Pentachlorophenol

Fluorene

Pyrene

Phenanthrene

Matrix: Water

Analytical Method: 129,625.1-SIM Analytical Date: 01/24/20 12:17

Analyst: CB Date Collected: 01/22/20 14:00

Date Received: 01/22/20

Extraction Method: EPA 625.1

Field Prep: Refer to COC

Qualifier RL MDL Result Units **Dilution Factor Parameter** Semivolatile Organics by GC/MS-SIM - Westborough Lab Acenaphthene ND ug/l 0.10 1 Fluoranthene 0.22 ug/l 0.10 1 Naphthalene ND ug/l 0.10 Benzo(a)anthracene 0.12 0.10 1 ug/l Benzo(a)pyrene 0.11 ug/l 0.10 1 0.16 0.10 Benzo(b)fluoranthene ug/l __ 1 Benzo(k)fluoranthene ND 0.10 1 ug/l --Chrysene ND ug/l 0.10 1 Acenaphthylene ND 0.10 1 ug/l __ ND Anthracene 0.10 1 ug/l __

ND

ND

0.12

ND

ND

0.20

ND

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	49	25-87	
Phenol-d6	37	16-65	
Nitrobenzene-d5	87	42-122	
2-Fluorobiphenyl	89	46-121	
2,4,6-Tribromophenol	106	45-128	
4-Terphenyl-d14	102	47-138	

1

1

1

1

1

1

1

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-02 Date Collected: 01/22/20 15:00

Client ID: SH-102W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129.625.1 Extraction Date: 01/23/20 06:06

Analytical Method: 129,625.1 Extraction Date: 01/23/20 06:06

Analytical Date: 01/24/20 13:44

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	/estborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	87		42-122	
2-Fluorobiphenyl	84		46-121	
4-Terphenyl-d14	92		47-138	

L2003068

01/22/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Date Collected: 01/22/20 15:00

Report Date: 01/30/20

Lab Number:

Date Received:

Lab ID: L2003068-02

Client ID: SH-102W

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129.625.1-SIM Extraction Date: 01/23/20 06:21

Analytical Method: 129,625.1-SIM Analytical Date: 01/24/20 12:34

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ıb					
Acenaphthene	0.82		ug/l	0.10		1	
Fluoranthene	0.23		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	0.14		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	0.44		ug/l	0.10		1	
Phenanthrene	0.85		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	0.19		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	55	25-87
Phenol-d6	42	16-65
Nitrobenzene-d5	94	42-122
2-Fluorobiphenyl	79	46-121
2,4,6-Tribromophenol	107	45-128
4-Terphenyl-d14	96	47-138

L2003068

Project Name: 144 ADDISON ST

Project Number: Report Date: 4232.00 01/30/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 01/24/20 10:15

Analyst: SZ Extraction Method: EPA 625.1 01/23/20 06:06 Extraction Date:

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/M	S - Westborough	ո Lab for s	ample(s):	01-02	Batch:	WG1332964-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		

		Acc	eptance
Surrogate	%Recovery (Qualifier C	riteria
Nitrobenzene-d5	73	42	2-122
2-Fluorobiphenyl	72	46	6-121
4-Terphenyl-d14	81	47	7-138

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: L2003068

Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 01/24/20 11:43

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 01/23/20 06:21

arameter	Result	Qualifier	Units	RL	MDL	-
emivolatile Organics by GC/MS-S	SIM - Westbo	rough Lab	for sample((s): 01-02	Batch:	WG1332965-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

%Recovery	Acceptance Qualifier Criteria
47	25-87
34	16-65
80	42-122
71	46-121
87	45-128
88	47-138
	47 34 80 71 87

L2003068 01/30/20 Lab Number:

Report Date:

144 ADDISON ST

4232.00

Project Number: Project Name:

RPD "Recovery TCSD SO7

Parameter	"Recovery Qual		%Recovery Qual		Limits	RPD	RPD Qual Limits	Limits
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1332964-3	ugh Lab Associa	ted sample(s):	01-02 Batch:	WG133296	14-3			
Bis(2-ethylhexyl)phthalate	28		ı		29-137			82
Butyl benzyl phthalate	85		ı		1-140	ı		09
Di-n-butylphthalate	85		1		8-120			47
Di-n-octylphthalate	83		1		19-132			69
Diethyl phthalate	06		ı		1-120			100
Dimethyl phthalate	86				1-120	,		183

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Nitrobenzene-d5 2-Fluorobiphenyl 4-Terphenyl-d14	99 93 100				42-122 46-121 47-138

L2003068 01/30/20 Lab Number:

> 4232.00 **Project Number:**

144 ADDISON ST

Project Name:

Report Date:

RPD	l Limits	
	RPD Qual	
iry	1	
%Recover	Limits	
	y Qual	
TCSD	%Recover	
	, Qual	
SD7	%Recovery	
	Parameter	

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1332965-2 Acenaphthene 89 - 60-132 Fluoranthene 95 - 43-121	stborough Lab As	ssociated sall	nple(s): 01-02	Batch: WG	1332965-2 60-132 43-121		30
Naphthalene Benzo(a)anthracene Benzo(a)pyrene	88 89 66				36-120 42-133 32-148		30 30 30
Benzo(k)fluoranthene Chrysene Acenaphthylene	8 8 8				25-146 25-146 44-140 54-126		3 00 00 00
Anthracene Benzo(ghi)perylene Fluorene	97				43-120 1-195 70-120		30 30
Phenanthrene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Pyrene Pentachlorophenol	96 105 77				65-120 1-200 1-151 70-120 38-152		30 30 30

L2003068 Lab Number:

01/30/20

Report Date: 144 ADDISON ST 4232.00 **Project Number:** Project Name:

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1332965-2

Surrogate	LCS %Recovery Qual	Qual	LCSD %Recovery	Qual	Acceptance Criteria
2-Fluorophenol	26				25-87
Phenol-d6	42				16-65
Nitrobenzene-d5	93				42-122
2-Fluorobiphenyl	80				46-121
2,4,6-Tribromophenol	86				45-128
4-Terphenyl-d14	96				47-138

PCBS

Project Name:144 ADDISON STLab Number:L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-01 Date Collected: 01/22/20 14:00

Client ID: SH-101W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 01/23/20 04:43

Analystical Date: 01/28/20 12:23 Cleanup Method: EPA 3665A
Analyst: CW Cleanup Date: 01/23/20

Cleanup Method: EPA 3660B Cleanup Date: 01/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	76		37-123	В
Decachlorobiphenyl	42		38-114	В
2,4,5,6-Tetrachloro-m-xylene	74		37-123	Α
Decachlorobiphenyl	37	Q	38-114	Α

Project Name:144 ADDISON STLab Number:L2003068

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-02 Date Collected: 01/22/20 15:00

Client ID: SH-102W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 01/23/20 04:43

Analytical Date: 01/28/20 12:35
Analyst: CW

Cleanup Method: EPA 3665A
Cleanup Date: 01/23/20

Cleanup Method: EPA 3660B Cleanup Date: 01/23/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC	- Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	73		37-123	В
Decachlorobiphenyl	40		38-114	В
2,4,5,6-Tetrachloro-m-xylene	74		37-123	Α
Decachlorobiphenyl	36	Q	38-114	Α

L2003068

Project Name: 144 ADDISON ST

Report Date: Project Number: 4232.00

01/30/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 01/24/20 06:14

Analyst: AWS

Extraction Method: EPA 608.3 01/22/20 18:28 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 01/22/20 Cleanup Method: EPA 3660B Cleanup Date: 01/23/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - \	Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG13	32808-1
Aroclor 1016	ND		ug/l	0.250			Α
Aroclor 1221	ND		ug/l	0.250			Α
Aroclor 1232	ND		ug/l	0.250			Α
Aroclor 1242	ND		ug/l	0.250			Α
Aroclor 1248	ND		ug/l	0.250			Α
Aroclor 1254	ND		ug/l	0.250			Α
Aroclor 1260	ND		ug/l	0.200			Α

		Acceptane	ce
Surrogate	%Recovery Q	ualifier Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82	37-123	В
Decachlorobiphenyl	87	38-114	В
2,4,5,6-Tetrachloro-m-xylene	78	37-123	Α
Decachlorobiphenyl	69	38-114	Α

L2003068 01/30/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

RPD "Recovery TCSD SO7

Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits Column	Column
Arodor 1016	ougn Lab Associa	ated sample(s).	01-02 batch.	WG 13320	50-140			36	4

⋖

38

8-140

20

Aroclor 1260

Surrogate	LCS %Recovery G	Qual %Re	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80				37-123	Ф
Decachlorobiphenyl	88				38-114	В
2,4,5,6-Tetrachloro-m-xylene	80				37-123	۷
Decachlorobiphenyl	72				38-114	∢

METALS

Date Collected:

L2003068

01/22/20 14:00

Project Name: 144 ADDISON ST Lab Number:

Project Number: 4232.00 **Report Date:** 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-01 Client ID: SH-101W

Client ID: SH-101W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	01/23/20 01:06	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00404		mg/l	0.00100		1	01/23/20 01:00	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00026		mg/l	0.00020		1	01/23/20 01:00	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Chromium, Total	0.00195		mg/l	0.00100		1	01/23/20 01:0	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Copper, Total	0.00145		mg/l	0.00100		1	01/23/20 01:0	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Iron, Total	44.9		mg/l	0.050		1	01/23/20 01:06	6 01/23/20 15:38	EPA 3005A	19,200.7	LC
Lead, Total	0.1181		mg/l	0.00100		1	01/23/20 01:06	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/23/20 11:02	2 01/23/20 15:27	EPA 245.1	3,245.1	AL
Nickel, Total	0.00329		mg/l	0.00200		1	01/23/20 01:06	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	01/23/20 01:00	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	01/23/20 01:00	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
Zinc, Total	0.4140		mg/l	0.01000		1	01/23/20 01:0	6 01/23/20 12:23	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab	-								
Chromium, Trivalent	ND		mg/l	0.010		1		01/23/20 12:23	NA	107,-	

Dissolved Metals -	Mansfield Lab						
Antimony, Dissolved	ND	mg/l	0.0040	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0037	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0030	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Iron, Dissolved	42.0	mg/l	0.050	 1	01/23/20 12:49 01/23/20 19:16 EPA 3005A	19,200.7	LC
Lead, Dissolved	0.0227	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND	mg/l	0.00020	 1	01/23/20 12:12 01/23/20 15:40 EPA 245.1	3,245.1	AL
Nickel, Dissolved	0.0022	mg/l	0.0020	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0528	mg/l	0.0100	 1	01/23/20 12:49 01/23/20 22:42 EPA 3005A	3,200.8	AM

L2003068

01/22/20 15:00

Lab Number:

Date Collected:

Project Name: 144 ADDISON ST

Project Number: Report Date: 4232.00 01/30/20

SAMPLE RESULTS

Lab ID: L2003068-02

Client ID: SH-102W Date Received: 01/22/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00640		mg/l	0.00100		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00033		mg/l	0.00020		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Chromium, Total	0.00621		mg/l	0.00100		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Copper, Total	0.01746		mg/l	0.00100		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Iron, Total	93.4		mg/l	0.050		1	01/23/20 01:06	01/23/20 16:23	EPA 3005A	19,200.7	LC
Lead, Total	0.1897		mg/l	0.00100		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/24/20 10:27	01/24/20 17:09	EPA 245.1	3,245.1	AL
Nickel, Total	0.00389		mg/l	0.00200		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
Zinc, Total	0.4210		mg/l	0.01000		1	01/23/20 01:06	01/23/20 12:27	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		01/23/20 12:27	NA	107,-	

Dissolved Metals -	Mansfield Lab						
Antimony, Dissolved	ND	mg/l	0.0040	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0035	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0023	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0031	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Iron, Dissolved	88.4	mg/l	0.050	 1	01/23/20 12:49 01/23/20 19:21 EPA 3005A	19,200.7	LC
Lead, Dissolved	0.0102	mg/l	0.0010	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND	mg/l	0.00020	 1	01/23/20 12:12 01/23/20 15:53 EPA 245.1	3,245.1	AL
Nickel, Dissolved	ND	mg/l	0.0020	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0214	mg/l	0.0100	 1	01/23/20 12:49 01/23/20 22:47 EPA 3005A	3,200.8	AM

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003068

Report Date:

01/30/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-02	Batch: W	G13328	57-1				
Iron, Total	ND	mg/l	0.050		1	01/23/20 01:06	01/23/20 15:20	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	ield Lab for sample(s):	01-02 I	Batch: W0	G13328	61-1				
Antimony, Total	ND	mg/l	0.00400		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	01/23/20 01:06	01/23/20 10:58	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - M	ansfield Lab	for sample	e(s): 01-0	2 Batch	: WG1	333091-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	01/23/20 12:12	01/23/20 15:36	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003068

Report Date:

01/30/20

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical **Result Qualifier Factor Prepared Analyzed** Method Analyst **Parameter Units** RL MDL Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1333126-1 Mercury, Total ND 0.00020 01/23/20 15:18 mg/l 1 01/23/20 11:02 3,245.1 ΑL

Prep Information

Digestion Method: EPA 245.1

Analytical **Dilution** Date **Date** Method Analyst **Parameter Result Qualifier Units** RL MDL **Factor Prepared Analyzed** Dissolved Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1333154-1 Iron, Dissolved ND 01/23/20 12:49 19,200.7 LC mg/l 0.050 01/23/20 19:07

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualif	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab for sar	mple(s): 01-02	2 Batch	: WG1	333155-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	01/23/20 12:49	01/23/20 22:11	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

L2003068

Project Name: 144 ADDISON ST

Lab Number: Project Number: 4232.00

Report Date: 01/30/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mans	sfield Lab for sample(s):	02 Batc	h: WG13	333641-	1				
Mercury, Total	ND	mg/l	0.00020		1	01/24/20 10:27	01/24/20 17:42	2 3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

L2003068 Lab Number:

01/30/20

Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02 Batch:	e(s): 01-02 Ba	ich: WG1332857-2	2857-2					
Iron, Total	104		ı		85-115	ı		
Total Metals - Mansfield Lab Associated sample(s): 01-02 Batch:	e(s): 01-02 Bat		WG1332861-2					
Antimony, Total	102		ı		85-115	ı		
Arsenic, Total	26		ı		85-115	,		
Cadmium, Total	104		ı		85-115	,		
Chromium, Total	86		ı		85-115	1		
Copper, Total	93		ı		85-115	,		
Lead, Total	66		ı		85-115	1		
Nickel, Total	95		ı		85-115	,		
Selenium, Total	91		ı		85-115	1		
Silver, Total	96		ı		85-115	,		
Zinc, Total	103		ı		85-115	,		

85-115

Dissolved Metals - Mansfield Lab Associated sample(s): 01-02 Batch: WG1333091-2

104

Mercury, Dissolved

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1333126-2

103

Mercury, Total

85-115

Lab Control Sample Analysis Batch Quality Control

L2003068 01/30/20 Lab Number:

Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

RPD RPD Limits	
%Recovery Limits	
LCSD %Recovery	Batch: WG1333154-2
LCS "Recovery	issolved Metals - Mansfield Lab Associated sample(s): 01-02
Parameter	Dissolved N

85-115	
102	
Iron, Dissolved	

- 85-115		85-115 -	85-115 -	85-115 -	85-115 -	85-115 -	85-115
,	Batch: WG1333155-2		•		1	•	1
102	ıple(s): 01-02	102	102	107	103	66	105
Iron, Dissolved	Dissolved Metals - Mansfield Lab Associated sample(s): 01-02 Batch: WG1333155-2	Antimony, Dissolved	Arsenic, Dissolved	Cadmium, Dissolved	Chromium, Dissolved	Copper, Dissolved	Lead, Dissolved

85-115 85-115 85-115 85-115 85-115

Batch: WG1333641-2
Associated sample(s): 02
otal Metals - Mansfield Lab

105

Selenium, Dissolved

Silver, Dissolved

Zinc, Dissolved

Nickel, Dissolved

101 110

105 100

85-115
•
103
Mercury, Total

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST Project Name:

4232.00 Project Number:

L2003068 01/30/20 Lab Number:

Report Date:

Parameter	Native Sample	MS Added	MS	MS %Recovery	Qual	MSD Found	MSD %Recovery Qual	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02	sociated san	1ple(s): 01-02	QC Batc	QC Batch ID: WG1332857-3	857-3	QC Samp	QC Sample: L2003068-01	Client ID:	SH-101W	
Iron, Total	44.9	-	45.2	30	Ø			75-125		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	sociated san	nple(s): 01-02	QC Batc	QC Batch ID: WG1332861-3	2861-3	QC Samp	QC Sample: L2003068-01	Client ID:	SH-101W	
Antimony, Total	QN	0.5	0.4958	66				70-130		20
Arsenic, Total	0.00404	0.12	0.1318	106			ı	70-130		20
Cadmium, Total	0.00026	0.051	0.05182	101				70-130		20
Chromium, Total	0.00195	0.2	0.2014	100				70-130		20
Copper, Total	0.00145	0.25	0.2449	26		,	ı	70-130		20
Lead, Total	0.1181	0.51	0.6223	66		,	ı	70-130		20
Nickel, Total	0.00329	0.5	0.4811	96		,		70-130	ı	20
Selenium, Total	Q	0.12	0.09915	83		,		70-130	ı	20
Silver, Total	QN	0.05	0.04784	96		ı	ı	70-130	1	20
Zinc, Total	0.4140	0.5	1.001	117			•	70-130		20
Dissolved Metals - Mansfield Lab Associated sample(s): 0	ıb Associatec	sample(s): 0	11-02 QC	QC Batch ID: WG1333091-3	133309		QC Sample: L2003068-01		Client ID: SH-101W	
Mercury, Dissolved	Q	0.005	0.00523	105		ı	ı	75-125	ı	20
Total Metals - Mansfield Lab Associated sample(s): 01	sociated san		C Batch II	QC Batch ID: WG1333126-3		C Sample: I	QC Sample: L2003068-01	Client ID: SH-101W	01W	
Mercury, Total	QN	0.005	0.00488	86		•	•	70-130	•	20
Total Metals - Mansfield Lab Associated sample(s): 01	sociated san		C Batch II	QC Batch ID: WG1333126-5		C Sample: I	QC Sample: L2000001-180	Client ID: MS Sample	Sample	
Mercury, Total	N	0.005	0.00399	80		ı	ı	70-130	ı	20
Dissolved Metals - Mansfield Lab Associated sample(s): 0	ıb Associated	sample(s): 0	11-02 QC	QC Batch ID: WG1333154-3	133315		QC Sample: L2003068-01	38-01 Client ID:	D: SH-101W	
Iron, Dissolved	42.0	~	42.3	30	a	•	ı	75-125		20

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST

4232.00 Project Number:

Project Name:

Lab Number:

L2003068 01/30/20 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	b Associatec	sample(s)	01-02	QC Batch ID: WG1333155-3		QC Sample: L2003068-01		Client ID: SH-101W	
Antimony, Dissolved	ND	0.5	0.5140	103		ı	70-130		20
Arsenic, Dissolved	0.0037	0.12	0.1264	102		ı	70-130		20
Cadmium, Dissolved	ND	0.051	0.0510	100			70-130		20
Chromium, Dissolved	ND	0.2	0.2064	103			70-130		20
Copper, Dissolved	0.0030	0.25	0.2415	95			70-130		20
Lead, Dissolved	0.0227	0.51	0.5427	102			70-130		20
Nickel, Dissolved	0.0022	0.5	0.4898	86	•		70-130		20
Selenium, Dissolved	ND	0.12	0.1132	94			70-130		20
Silver, Dissolved	ND	0.05	0.0476	95			70-130		20
Zinc, Dissolved	0.0528	0.5	0.6011	110			70-130		20
Total Metals - Mansfield Lab Associated sample(s): 02	sociated san	nple(s): 02	QC Batch	QC Batch ID: WG1333641-3	QC Sample	QC Sample: L2003068-02	Client ID: SH-102W	02W	

20

70-130

72

0.00361

0.005

N_D

Mercury, Total

Lab Duplicate Analysis Batch Quality Control

L2003068 01/30/20 Lab Number: Report Date:

> 4232.00 **Project Number:**

144 ADDISON ST

Project Name:

Parameter	Native Sample		Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02		QC Batch ID: WG1332857-4	QC Sample:	L2003068-01	Client ID:	SH-101W	
Iron, Total	44.9		44.2	l/gm	2		20
Total Metals - Mansfield Lab Associated sample(s): 01-02		QC Batch ID: WG1332861-4	QC Sample:	L2003068-01	Client ID:	Client ID: SH-101W	
Antimony, Total	ND		ND	mg/l	NC		20
Arsenic, Total	0.00404	0	0.00433	mg/l	7		20
Cadmium, Total	0.00026	0	0.00025	mg/l	က		20
Chromium, Total	0.00195	0	0.00127	mg/l	42	Ø	20
Copper, Total	0.00145	0	0.00275	mg/l	62	Ø	20
Lead, Total	0.1181	0	0.1245	mg/l	2		20
Nickel, Total	0.00329	0	0.00261	mg/l	23	Ø	20
Selenium, Total	QN		ND	mg/l	S		20
Silver, Total	ND		ND	mg/l	NO		20
Zinc, Total	0.4140	0	0.3994	l/gm	4		20
Dissolved Metals - Mansfield Lab Associated sample(s): 01-02		QC Batch ID: WG1333091-4		QC Sample: L2003068-01 Client ID: SH-101W	-01 Clien	t ID: SH-10)1W
Mercury, Dissolved	N		ND	l/gm	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	1 QC Batch ID: WG1333126-4		QC Sample: L2003068-01	003068-01 Clie	Client ID: SH-101W	I-101W	
Mercury, Total	Q		ND	l/gm	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	1 QC Batch ID: WG1333126-6		QC Sample: L2000001-180 Client ID: DUP Sample	000001-180 C	ient ID: D	UP Sample	
Mercury, Total	ON		ND	l/ɓw	S		20

Lab Duplicate Analysis Batch Quality Control

L2003068 01/30/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 **Project Number:**

Project Name:

Parameter	Native Sample	Duplicate Sample	ole Units	RPD	RPD Limits	S
Dissolved Metals - Mansfield Lab Associated sample(s): 07	01-02 QC Batch ID: WG1333154-4		QC Sample: L2003068-01 Client ID: SH-101W	3068-01 Clier	nt ID: SH-101W	
Iron, Dissolved	42.0	42.1	l/gm	0	20	
Dissolved Metals - Mansfield Lab Associated sample(s): 07	01-02 QC Batch ID: WG1333155-4		QC Sample: L2003068-01 Client ID: SH-101W	3068-01 Clier	nt ID: SH-101W	
Antimony, Dissolved	ND	QN	l/gm	NC	20	
Arsenic, Dissolved	0.0037	0.0041	l/gm	1	20	
Cadmium, Dissolved	ND	QN	l/ɓm	NO	20	
Chromium, Dissolved	ND	QN	l/ɓm	NO	20	
Copper, Dissolved	0.0030	0.0025	l/ɓm	18	20	
Lead, Dissolved	0.0227	0.0231	l/gm	2	20	
Nickel, Dissolved	0.0022	QN	l/gm	NO	20	
Selenium, Dissolved	ND	QN	l/ɓm	NO	20	
Silver, Dissolved	ND	QN	l/gm	NO	20	
Zinc, Dissolved	0.0528	0.0553	l/gm	D.	20	
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG1333641-4		QC Sample: L2003068-02 Client ID: SH-102W	Client ID: Sh	H-102W	
Mercury, Total	ND	0.00024	l/ɓш	NC	20	

INORGANICS & MISCELLANEOUS

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003068

Report Date: 01/30/20

SAMPLE RESULTS

Lab ID:

L2003068-01

Client ID:

SH-101W

Sample Location: EAST BOSTON, MA

Date Collected:

01/22/20 14:00

Date Received:

01/22/20

Field Prep:

Refer to COC

Sample Depth:

Matrix:

Water

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
stborough Lab									
170		mg/l	16	NA	3.3	-	01/23/20 10:35	121,2540D	EM
ND		mg/l	0.005		1	01/23/20 12:30	01/23/20 14:46	121,4500CN-CE	LH
ND		mg/l	0.02		1	-	01/22/20 19:15	121,4500CL-D	AS
1.80		mg/l	0.075		1	01/24/20 03:41	01/27/20 21:36	121,4500NH3-BH	H AT
ND		mg/l	4.00		1	01/23/20 16:30	01/23/20 20:30	74,1664A	ML
ND		mg/l	0.030		1	01/23/20 05:40	01/23/20 12:01	4,420.1	MV
ND		mg/l	0.010		1	01/22/20 21:30	01/22/20 22:05	1,7196A	AS
graphy - Westb	orough	Lab							
387.		mg/l	25.0		50	-	01/23/20 06:01	44,300.0	DS
	stborough Lab 170 ND ND 1.80 ND	stborough Lab 170 ND ND 1.80 ND ND ND ND ND ND ND ND ND N	stborough Lab 170 mg/l ND mg/l ND mg/l 1.80 mg/l ND mg/l ND mg/l ND mg/l ND mg/l Qraphy - Westborough Lab	stborough Lab 170 mg/l 16 ND mg/l 0.005 ND mg/l 0.02 1.80 mg/l 0.075 ND mg/l 0.075 ND mg/l 4.00 ND mg/l 0.030 ND mg/l 0.010 graphy - Westborough Lab	stborough Lab 170 mg/l 16 NA ND mg/l 0.005 ND mg/l 0.02 1.80 mg/l 0.075 ND mg/l 4.00 ND mg/l 0.030 ND mg/l 0.010 graphy - Westborough Lab	Result Qualifier Units RL MDL Factor Stborough Lab 170 mg/l 16 NA 3.3 ND mg/l 0.005 1 ND mg/l 0.02 1 1.80 mg/l 0.075 1 ND mg/l 4.00 1 ND mg/l 0.030 1 ND mg/l 0.010 1 graphy - Westborough Lab	Result Qualifier Units RL MDL Factor Prepared stborough Lab 170 mg/l 16 NA 3.3 - ND mg/l 0.005 1 01/23/20 12:30 ND mg/l 0.02 1 01/24/20 03:41 ND mg/l 4.00 1 01/23/20 16:30 ND mg/l 0.030 1 01/23/20 05:40 ND mg/l 0.010 1 01/22/20 21:30 graphy - Westborough Lab	Result Qualifier Units RL MDL Factor Prepared Analyzed Stborough Lab 170 mg/l 16 NA 3.3 - 01/23/20 10:35 ND mg/l 0.005 1 01/23/20 12:30 01/23/20 14:46 ND mg/l 0.02 1 - 01/22/20 19:15 1.80 mg/l 0.075 1 01/24/20 03:41 01/27/20 21:36 ND mg/l 4.00 1 01/23/20 16:30 01/23/20 20:30 ND mg/l 0.030 1 01/23/20 05:40 01/23/20 12:01 ND mg/l 0.010 1 01/22/20 21:30 01/22/20 22:05	Result Qualifier Units RL MDL Factor Prepared Analyzed Method stborough Lab 170 mg/l 16 NA 3.3 - 01/23/20 10:35 121,2540D ND mg/l 0.005 1 01/23/20 12:30 01/23/20 14:46 121,4500CN-CE ND mg/l 0.02 1 - 01/22/20 19:15 121,4500CL-D 1.80 mg/l 0.075 1 01/24/20 03:41 01/27/20 21:36 121,4500NH3-BH ND mg/l 4.00 1 01/23/20 16:30 01/23/20 20:30 74,1664A ND mg/l 0.030 1 01/23/20 05:40 01/23/20 12:01 4,420.1 ND mg/l 0.010 1 01/22/20 21:30 01/22/20 22:05 1,7196A

Project Name: 144 ADDISON ST

Project Number: 4232.00 Lab Number:

L2003068

Report Date:

01/30/20

SAMPLE RESULTS

Lab ID: L2003068-02

Client ID: SH-102W

Sample Location: EAST BOSTON, MA

Date Collected: 01/22/20 15:00 Date Received: 01/22/20

Refer to COC Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab									
Solids, Total Suspended	460		mg/l	25	NA	5	-	01/23/20 10:35	121,2540D	EM
Cyanide, Total	ND		mg/l	0.005		1	01/23/20 12:30	01/23/20 14:48	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/22/20 19:15	121,4500CL-D	AS
Nitrogen, Ammonia	14.5		mg/l	0.750		10	01/24/20 03:41	01/27/20 21:46	121,4500NH3-BH	TA I
TPH, SGT-HEM	ND		mg/l	4.00		1	01/23/20 16:30	01/23/20 20:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	01/23/20 05:40	01/23/20 12:03	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	01/22/20 21:30	01/22/20 22:07	1,7196A	AS
Anions by Ion Chromatog	graphy - Westl	orough	Lab							
Chloride	916.		mg/l	25.0		50	-	01/23/20 06:12	44,300.0	DS

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003068

Report Date: 0

01/30/20

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	R	L	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1332824-1				
Chlorine, Total Residual	ND		mg/l	0	.02		1	-	01/22/20 19:15	121,4500CL-D	AS
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1332848-1				
Chromium, Hexavalent	ND		mg/l	0.	010		1	01/22/20 21:30	01/22/20 22:05	1,7196A	AS
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1332946-1				
Phenolics, Total	ND		mg/l	0.	030		1	01/23/20 05:40	01/23/20 11:51	4,420.1	MV
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1332967-1				
Solids, Total Suspended	ND		mg/l	Ę	5.0	NA	1	-	01/23/20 10:35	121,2540D	EM
Anions by Ion Chron	natography - Westb	orough l	_ab for	sampl	e(s):	01-02	Batch: W	G1332978-1			
Chloride	ND		mg/l	0.	500		1	-	01/23/20 04:22	44,300.0	DS
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1333086-1				
Cyanide, Total	ND		mg/l	0.	005		1	01/23/20 12:30	01/23/20 14:40	121,4500CN-CE	E LH
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1333235-1				
TPH, SGT-HEM	ND		mg/l	4	.00		1	01/23/20 16:30	01/23/20 20:30	74,1664A	ML
General Chemistry -	Westborough Lab	for sam	ple(s):	01-02	Bato	ch: WG	1333336-1				
Nitrogen, Ammonia	ND		mg/l	0.	075		1	01/24/20 03:41	01/27/20 21:17	121,4500NH3-B	H AT

Lab Control Sample Analysis Batch Quality Control

L2003068 01/30/20 Lab Number:

Report Date:

144 ADDISON ST

4232.00

Project Number: Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s): 01-03	Batch: WG1332824-2	824-2				
Chlorine, Total Residual	92		•		90-110	,		
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s): 01-02	Batch: WG1332848-2	348-2				
Chromium, Hexavalent	102		ı		85-115	1		20
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s	(): 01-05	Batch: WG1332946-2	946-2				
Phenolics, Total	96		,		70-130	,		
Anions by Ion Chromatography - Westborough Lab Associated	ugh Lab Associat		sample(s): 01-02 Batc	Batch: WG1332978-2	2978-2			
Chloride	86		,		90-110			
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s): 01-02	Batch: WG1333086-2	386-2				
Cyanide, Total	6		,		90-110			
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s	;): 01-02	Batch: WG1333235-2	235-2				
ТРН	104				64-132			34
General Chemistry - Westborough Lab Associated sample(s): 01-02	sociated sample(s): 01-02	Batch: WG1333336-2	336-2				
Nitrogen, Ammonia	06		,		80-120	1		20

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST Project Name:

Project Number:

4232.00

L2003068 01/30/20 Lab Number:

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD Recovery RPD %Recovery Qual Limits
General Chemistry - Westborough Lab Associated sample(ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	QC Batch ID: WG1332824-4	QC Sample: L2003068-01 Client ID: SH-101W
Chlorine, Total Residual	ΩN	0.25	Q	0	ď	- 80-120 - 20
General Chemistry - Westborough Lab Associated sample(ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	QC Batch ID: WG1332848-4	QC Sample: L2003068-02 Client ID: SH-102W
Chromium, Hexavalent	ΩN	0.1	0.099	66		- 85-115 - 20
General Chemistry - Westborough Lab Associated sample(ugh Lab Asso	ciated samp	le(s): 01-02		QC Batch ID: WG1332946-4	QC Sample: L2003068-01 Client ID: SH-101W
Phenolics, Total	Q	0.4	0.36	88	ı	- 70-130 - 20
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01-02 Sample	- Westborou	gh Lab Assc	ciated samp	le(s): 01-02	QC Batch ID: WG1332978-3	1332978-3 QC Sample: L2003087-01 Client ID: MS
Chloride	358	100	441	83	ď	- 90-110 - 18
General Chemistry - Westborough Lab Associated sample(s): 01-02	ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	QC Batch ID: WG1333086-4	QC Sample: L2003068-02 Client ID: SH-102W
Cyanide, Total	Q	0.2	0.192	96	ı	- 90-110 - 30
General Chemistry - Westborough Lab Associated sample(ugh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	QC Batch ID: WG1333235-4	QC Sample: L2003112-02 Client ID: MS Sample
ТРН	Q	22.2	20.0	06	ı	- 64-132 - 34
General Chemistry - Westborough Lab Associated sample(ıgh Lab Asso	ciated samp	le(s): 01-02		QC Batch ID: WG1333336-4	QC Sample: L2003068-01 Client ID: SH-101W
Nitrogen, Ammonia	1.80	4	4.83	92	g	- 80-120 - 20

Lab Duplicate Analysis Batch Quality Control

144 ADDISON ST

4232.00

Project Number: Project Name:

L2003068 01/30/20 Lab Number: Report Date:

Parameter Nativ	ive Sample	ole Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1332824-3	QC Sample:	L2003068-01	Client ID:	SH-101W
Chlorine, Total Residual	N	QN	l/gm	N N		20
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1332848-3	QC Sample:	QC Sample: L2003068-01	Client ID: SH-101W	SH-101W
Chromium, Hexavalent	N	QN	l/gm	O N		20
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1332946-3	QC Sample:	L2003068-01	Client ID:	SH-101W
Phenolics, Total	N	QN	l/gm	S		20
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1332967-2	QC Sample:	L2002951-03 Client ID: DUP Sample	Client ID:	DUP Sample
Solids, Total Suspended	370	360	l/gm	က		59
Anions by Ion Chromatography - Westborough Lab Associated Sample	d sample	sample(s): 01-02 QC Batch ID: WG1332978-4		C Sample: L	2003087-01	QC Sample: L2003087-01 Client ID: DUP
Chloride	358	362	l/gm	~		18
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1333086-3	QC Sample:	L2003068-01	Client ID:	SH-101W
Cyanide, Total	N	QN	l/gm	O Z		30
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1333235-3	QC Sample:	QC Sample: L2003087-01	Client ID:	DUP Sample
ТРН	N	QN	l/gm	S		34
General Chemistry - Westborough Lab Associated sample(s):	01-02	QC Batch ID: WG1333336-3	QC Sample:	QC Sample: L2003068-01 Client ID: SH-101W	Client ID:	SH-101W
Nitrogen, Ammonia	1.80	1.76	l/gm	2		20

144 ADDISON ST Project Name:

Project Number: 4232.00

Lab Number: L2003068 Serial_No:01302012:37

Report Date: 01/30/20

Sample Receipt and Container Information

У Ц Х

YES				
Were project specific reporting limits specified?		Custody Seal	Absent	Absent
Were project specific r	Cooler Information	Cooler	⋖	В

Frozen	Date/Time Analysis(*)	624.1-RGP(7),624.1-SIM-RGP(7)	624.1-RGP(7),624.1-SIM-RGP(7)	624.1-RGP(7),624.1-SIM-RGP(7)	624.1-RGP(7),624.1-SIM-RGP(7)	504(14)	504(14)	504(14)	504(14)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	AG-2008S(180),CR-2008S(180),FE- R(180),AS-2008S(180),ZN-2008S(180),PB- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)	CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),AG-2008T(180),SE-2008T(180),HG-U(28),PB-2008T(180),SB-2008T(180),CR-2008T(180)	TCN-4500(14)	NH3-4500(28)	CL-300(28),HEXCR-7196(1),TRC-4500(1)	TSS-2540(7)	TPHENOL-420(28)
	Sea!	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Pres	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
Temp	deg C	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
Final	Н												7	75	>12	%	7	7	~
Initial	Н	ΑN	Ą	Ą	Α̈́	Α̈́	Ą	Ą	Ą	Ą	Ą	Α̈́	%	75	>12	%	7	7	7
	Cooler	4	∢	۷	۷	۷	∢	∢	⋖	⋖	∢	4	∢	∢	⋖	⋖	∢	۷	۷
ırmation	Container Type	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial unpreserved	Vial unpreserved	Vial unpreserved	Plastic 250ml HNO3 preserved Filtrates	Plastic 250ml HNO3 preserved	Plastic 250ml NaOH preserved	Plastic 500ml H2SO4 preserved	Plastic 950ml unpreserved	Plastic 950ml unpreserved	Amber 950ml H2SO4 preserved
Container Information	Container ID	L2003068-01A	L2003068-01B	L2003068-01C	L2003068-01D	L2003068-01E	L2003068-01F	L2003068-01G	L2003068-01H	L2003068-01I	L2003068-01J	L2003068-01K	L2003068-01L	L2003068-01M	L2003068-01N	L2003068-01O	L2003068-01P	L2003068-01Q	L2003068-01R

Project Name: 144 ADDISON ST Project Number: 4232.00

Serial_No:01302012:37 *Lab Number:* L2003068

Report Date: 01/30/20

Frozen	Date/Time Analysis(*)	TPH-1664(28)	TPH-1664(28)	625.1-SIM-RGP(7)	625.1-SIM-RGP(7)	625.1-RGP(7)	625.1-RGP(7)	PCB-608.3(7)	PCB-608.3(7)	HOLD-624(7)	HOLD-624(7)	HOLD-624(7)	HOLD-624(7)	HOLD-504/8011(14)	HOLD-504/8011(14)	HOLD-504/8011(14)	HOLD-504/8011(14)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),ZN-2008S(180),PB- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)	CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),SE- 2008T(180),HG-U(28),PB-2008T(180),SB- 2008T(180),CR-2008T(180)	TCN-4500(14)	NH3-4500(28)	HEXCR-7196(1),CL-300(28),TRC-4500(1)
	-	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ	Ħ	ŧ	ŧ	ŧ	ŧ	ŧ	ŧ
	s Seal	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
•	? Pres	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
Temp	deg C	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	23.88	2.8	2.8	2.8	2.8
Final	Н			7	7	7	7	7	7												7	7	>12	<2	7
Initial	Н	A A	ΑN	7	7	7	7	7	7	N A	N A	N A	N A	%	8	>12	~	7							
	Cooler	∢	∢	∢	∢	∢	4	∢	∢	В	В	В	В	В	В	В	В	В	В	В	ш	Ф	В	В	В
ormation	Container Type	Amber 1000ml HCl preserved	Amber 1000ml HCl preserved	Amber 1000ml Na2S2O3	Vial Na2S2O3 preserved	Vial unpreserved	Vial unpreserved	Vial unpreserved	Plastic 250ml HNO3 preserved Filtrates	Plastic 250ml HNO3 preserved	Plastic 250ml NaOH preserved	Plastic 500ml H2SO4 preserved	Plastic 950ml unpreserved												
Container Information	Container ID	L2003068-01S	L2003068-01T	L2003068-01U	L2003068-01V	L2003068-01W	L2003068-01X	L2003068-01Y	L2003068-01Z	L2003068-02A	L2003068-02B	L2003068-02C	L2003068-02D	L2003068-02E	L2003068-02F	L2003068-02G	L2003068-02H	L2003068-02I	L2003068-02J	L2003068-02K	L2003068-02L	L2003068-02M	L2003068-02N	L2003068-02O	L2003068-02P

Project Name: 144 ADDISON ST Project Number: 4232.00

Lab Number: L2003068

Serial_No:01302012:37

Report Date: 01/30/20

Container Information	ırmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	Н	Н	deg C Pres	Pres	Seal	Date/Time	Analysis(*)
L2003068-02Q	Plastic 950ml unpreserved	В	7	7	2.8	>	Absent		TSS-2540(7)
L2003068-02R	Amber 950ml H2SO4 preserved	В	%	~	2.8	>	Absent		TPHENOL-420(28)
L2003068-02S	Amber 1000ml HCl preserved	В	ΑN		2.8	>	Absent		TPH-1664(28)
L2003068-02T	Amber 1000ml HCl preserved	В	ΑN		2.8	>	Absent		TPH-1664(28)
L2003068-02U	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		625.1-SIM-RGP(7)
L2003068-02V	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		625.1-SIM-RGP(7)
L2003068-02W	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		625.1-RGP(7)
L2003068-02X	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		625.1-RGP(7)
L2003068-02Y	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		PCB-608.3(7)
L2003068-02Z	Amber 1000ml Na2S2O3	В	7	7	2.8	>	Absent		PCB-608.3(7)

Project Name: Lab Number: 144 ADDISON ST L2003068

Project Number: Report Date: 4232.00 01/30/20

GLOSSARY

Acronyms

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL. - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:144 ADDISON STLab Number:L2003068Project Number:4232.00Report Date:01/30/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name: 144 ADDISON ST Lab Number: L2003068 Report Date: **Project Number:** 4232.00 01/30/20

Data Qualifiers

than 5x the RL. (Metals only.)

R - Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

 \mathbf{S} - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: 144 ADDISON ST Lab Number: L2003068

Project Number: 4232.00 Report Date: 01/30/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance Title: Certificate/Approval Program Summary

Published Date: 8/15/2019 9:53:42 AM

Page 1 of 1

ID No.:17873

Revision 15

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3- Methyl thiophene, 2- Ethyl thiophene, 1, 2, 3- Trimethyl benzene, Indan, Indene, 1, 2, 4, 5- Tetramethyl benzene, Benzothiophene, 1- Methyl naphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHAIN OF	CHAIN OF CUSTODY	PÁGE	Date	Date Rec'd in Lab: (-22-20)		ALPHA Job #: _2003068
Control of the control		Project Information	h	Rej	Report Information - Data Deliverables		Billing Information
Westboro, MA 01581 Tel: 508-898-9220	Mansheld MA 02048 Tel. 508-822-9300	Project Name: 144 Appleary ST	a) St	P	SI ADEX ON EMAIL	×	Same as Client Info PO #;
Client Information		Project Location EdsT Rosm	V Morson	M Rei	Regulatory Requirements	& Project Infor	Project Information Requirements
Client SAN BORN HEAD Address: 98 N WASHIN	Address: 98 N WASHINGTON ST	Project # 1933.00 Project Manager Par Manager Par	ANOT	55530	 □ Yes N No. MA MCP Analytical Methods □ Yes N No. Matrix Spike Required on this SDG? (Required for MCP Inorganics) □ Yes N No. GW1 Standards (Info Required for Metals & EPH with Targets) N Ne N N N N N N N N N N N N N N N N N	Methods ed on this SDG? (Re to Required for Metal	☐ Yes ▼ No CT RCP Analytical Methods quired for MCP Inorganics) s & EPH with Targets) Criteria
Phone:		Turn-Around Time		ı	51	1///	14111
Mail: PMILOINE G Additional Proje	Email: PMHLOINE @ SANGORN'NE AD.Com. Additional Project Information:	A Standard D RUSH (now)	y confirmed # to electrically	SISATVI	MCP 14 DRCP	fluo segum	SAMPLEINFO
				Vb	C ABN C P.	Seguel & see State of the Seguel Seguel & seguel Seguel & seguel	Filtration St Field Club to do Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Time	Sample	Sampler Voc.	EDH: DI WELVE WELVE SNOC:	O Hal	Sam
03068-01	SH-101W	1/23/2012-14:00	GW	MRR			
02	SH-103W	Kaho 4-150	GW GW			*	
+	Preservative A= None		Container Type	r Type		9/4/P	
	CHING OF HISO		Prese	Preservative		00	
B= Bacteria cup C= Cube C= Cube E= Encora D= B-DD Bottle	E= NaOH F= NaOH G= NaOH G= NaOH G= NaSSaOs H= NaSSaOs H= NaSSaOs H= NaSSaOs H= Ascorbio Adrd H= Zn Acchaise	Retinquished By. Who are	Value 15:30	17 cs:30	While My FOR	Date/Time Majoo 15:30	13, 26, 20
Page 63 of 74	0- Other			V			FORM NO; 01-01 (rev. 12-Mar-2012)

ALPHA		797 202	Subcontract Chair Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425	Subcontract Chain of Custody Lab, Inc. 15 Horsehoe Lake Road Ilinsville, IL 62234-7425		Alpha Job Number L2003068
Clien	Client Information		Project Information	ormation	Regulatory Req	Regulatory Requirements/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	ucal Labs Drive h, MA 01581-1019	Project Location: MA Project Manager: Ashaley Kane Turnaround & Deliver	:: MA r:: Ashaley Kar und & Delive	t Location: MA t Manager: Ashaley Kane Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:	
Phone: 508-439-5132 Email: akane@alphalab.com	32 nalab.com	Due Date: Deliverables:				
		Project Specifi	c Requireme	Project Specific Requirements and/or Report Requirements	rements	
Refe	Reference following Alpha Job Number on final report/deliverables: L2003068 Additional Comments: Send all results/reports to subreports@alphalab.com	b Number on final report s to subreports@alphala	Vdeliverables: Ib.com		Report to include Method Blank, LCS/LCSD:	k, LCS/LCSD:
Lab ID	Client ID	Collection Date/Time	Sample	Analysis		Batch
	SH-101W SH-102W	01-22-20 14:00 01-22-20 15:00	WATER	Ethanol by EPA 1671 Revision A		
				Date (Time)	on province	Date/Time
	College Dy.	elecus		1/33/20	Received by:	2000
Form No: AL_subcoc						

AP ACCREC

January 29, 2020

Nichole Hunt Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (508) 898-9220

FAX:

RE: L2003068 **WorkOrder:** 20011394

Dear Nichole Hunt:

TEKLAB, INC received 2 samples on 1/24/2020 9:37:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Client Project: L2003068

Report Contents

http://www.teklabinc.com/

Work Order: 20011394

Report Date: 29-Jan-2020

This reporting package includes the following:

Client: Alpha Analytical

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011394

Client Project: L2003068 Report Date: 29-Jan-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 20011394

Report Date: 29-Jan-2020

Client: Alpha Analytical
Client Project: L2003068

Cooler Receipt Temp: 1.4 °C

Locations

	Collinsville		Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air		Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011394

Client Project: L2003068 Report Date: 29-Jan-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
	· · · · · · · · · · · · · · · · · · ·		•		
Illinois	IEPA	100226	NELAP	1/31/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2020	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2020	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Indiana	ISDH	C-IL-06		1/31/2020	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Tennessee	TDEC	04905		3/3/2020	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011394

Client Project: L2003068 Report Date: 29-Jan-2020

Lab ID: 20011394-001 Client Sample ID: SH-101W

Matrix: AQUEOUS Collection Date: 01/22/2020 14:00

	Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 1	671A, PHARMACEU	TICAL MANUFAC	TURING INDUSTRY NO	N-PURGEA	BLE VOLA	TILE OR	GANICS	
Ethanol		*	20	ND	mg/L	1	01/27/2020 18:21	R272233

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011394

Client Project: L2003068 Report Date: 29-Jan-2020

Lab ID: 20011394-002 Client Sample ID: SH-102W

Matrix: AQUEOUS Collection Date: 01/22/2020 15:00

Analyses	Certification	RL Qual	Result	Units	DF	Date Analyzed	Batch
EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS							
Ethanol	*	20	ND	mg/L	1	01/27/2020 18:59	R272233

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011394

Client Project: L2003068 Report Date: 29-Jan-2020

EPA 600 1671A, Ph	HARMACEU	TICAL	MANUF	ACTURING IN	DUSTRY	NON-F	URGEABLE	VOLAT	ILE ORG		
Batch R272233	SampType:	MBLK		Units mg/L							
SampID: MBLK-0127	720										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		ND						01/27/2020
Batch R272233	SampType:	LCS		Units mg/L							
SampID: LCS-01272	0										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		230	250.0	0	91.9	70	132	01/27/2020
Batch R272233	SampType:	MS		Units mg/L							
SampID: 20011318-0	002AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		230	250.0	0	91.2	70	132	01/27/2020
				11.2					505		
2	SampType:	MSD		Units mg/L					RPL	Limit 30	
SampID: 20011318-0	JU2AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	/al %RPD	Analyzed
Ethanol			20		270	250.0	0	108.6	228.0	17.38	01/27/2020

Receiving Check List

http://www.teklabinc.com/

Work Order: 20011394

Client: Alpha Analytical Client Project: L2003068 Report Date: 29-Jan-2020 Carrier: UPS Received By: AH Elizabeth a Hurley (matter Completed by: Reviewed by: On: On: 27-Jan-2020 27-Jan-2020 Amanda R. Ham Elizabeth A. Hurley Extra pages included 0 Pages to follow: Chain of custody Shipping container/cooler in good condition? Yes **~** No 🗌 Not Present Temp °C Type of thermal preservation? Ice 🗹 Blue Ice Dry Ice None No 🗆 Chain of custody present? **V** Yes **V** No 🗌 Chain of custody signed when relinquished and received? Yes **V** No 🗌 Chain of custody agrees with sample labels? Yes **V** No 🗌 Samples in proper container/bottle? Yes **V** Sample containers intact? Yes No Sufficient sample volume for indicated test? Yes ~ No V No 🗌 All samples received within holding time? Yes Field NA 🗸 Lab \square Reported field parameters measured: Yes 🗸 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Yes No 🗸 No VOA vials Water - at least one vial per sample has zero headspace? No TOX containers Yes No 🗌 Water - TOX containers have zero headspace? Yes 🗹 No 🗌 Water - pH acceptable upon receipt? Yes No 🗌 NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Any No responses must be detailed below or on the COC.

Headspace was present in the volatile vials. Per Ashley Kane, proceed with analysis. - aham - 1/27/2020 11:44:29 AM

ANALYTICAL World Class Chomistry		SUBCOLLE	Subcollelace Cilalli of Custouy		
roitcmroful taoil)		Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425	ake Road 234-7425		Alpha Job Number L2003068
Client Information		Project In	Project Information	Regulatory Requirements/Report Limits	nts/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Projec Projec	Project Location: MA Project Manager: Ashaley Kane Turnaround & Deliver	t Location: MA t Manager: Ashaley Kane Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:	
Phone: 508-439-5132 Email: akane@alphalab.com	Du Delive	Due Date: Deliverables:			
	Project !	Specific Requirem	Project Specific Requirements and/or Report Requirements	ements	
Reference following Alpha Job Number on final report/delive Additional Comments: Send all results/reports to subreports@alphalab.com	Reference following Alpha Job Number on final report/deliverables: L2003068 ments: Send all results/reports to subreports@alphalab.com	al report/deliverables alphalab.com	12003068 Rep	Report to include Method Blank, LCS/LCSD: Per Ashaky, Proceeds With analysis	14sis HA
Harris St.	44	# ***			91.61
Lab ID Client ID	Collection Date/Time	on Sample Matrix	Analysis		Batch
W201-1920- WPE 11000	01-22-20 14:00 01-22-20 15:00	.00 WATER WATER	Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A	\frac{2}{2}	A DATE OF THE PARTY OF THE PART
	Relinquished By:		Date/Time:	I.He Tou CIC	MIMO Date/Hme:
	Collegi		1/2/3/20 C	and wos	eto cepen
Form No: AL_subcoc					

ANALYTICAL REPORT

Lab Number: L2003286

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Patrick Malone Phone: (978) 392-0900

Project Name: 144 ADDISON ST

Project Number: 4232.00 Report Date: 02/05/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

L2003286 02/05/20

Lab Number: Report Date:

144 ADDISON ST Project Name:

4232.00 Project Number: Alp San L20

Alpha			Sample	Collection	
Sample ID	Client ID	Matrix	Location	Date/Time	Receive Date
L2003286-01	SH-102WR	WATER	EAST BOSTON, MA	01/23/20 09:00	01/23/20
L2003286-02	SH-103W	WATER	EAST BOSTON, MA	01/23/20 10:00	01/23/20
L2003286-03	SW-1	WATER	EAST BOSTON, MA	01/23/20 11:10	01/23/20
L2003286-04	TRIP BLANKS	WATER	EAST BOSTON, MA	01/23/20 00:00	01/23/20

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

Case Narrative (continued)

Report Submission

February 05, 2020: This final report includes the results of all requested analyses.

January 29, 2020: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

The analyses performed were specified by the client.

L2003286-04: A sample identified as "TRIP BLANKS" was received, but not listed on the Chain of Custody.

This sample was not analyzed.

Volatile Organics by Method 624

L2003286-02: Due to the matrix of the sample (foam generation during purging/analysis), the laboratory used Anti-Foam solution in the sample and associated QC.

Volatile Organics by SIM

L2003286-02: Due to the matrix of the sample (foam generation during purging/analysis), the laboratory used Anti-Foam solution in the sample and associated QC.

Microextractables

The WG1333569-2 LCS recovery for 1,2-dibromoethane (78%), associated with L2003286-01 through -03, is outside Alpha's acceptance criteria, but within the acceptance criteria specified in the method.

Total Metals

L2003286-02 and -03: The sample has elevated detection limits for all elements, with the exception of iron and mercury, due to the dilution required by the high concentrations of non-target elements.

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

Case Narrative (continued)

Dissolved Metals

L2003286-02 and -03: The sample has elevated detection limits for all elements, with the exception of iron and mercury, due to the dilution required by the high concentrations of non-target elements.

Nitrogen, Ammonia

The WG1333337-4 MS recovery, performed on L2003286-03, is outside the acceptance criteria for ammonia (66%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/05/20

Jufani Morrissey-Tiffani Morrissey

Дірна

ORGANICS

VOLATILES

01/23/20 09:00

Not Specified

01/23/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number: L2003286

Report Date: 02/05/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2003286-01

Client ID: SH-102WR

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/26/20 17:53

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
Tetrachloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	5.0		1	
1,3-Dichlorobenzene	ND		ug/l	5.0		1	
1,4-Dichlorobenzene	ND		ug/l	5.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
Acetone	ND		ug/l	10		1	
Methyl tert butyl ether	ND		ug/l	10		1	
Tert-Butyl Alcohol	ND		ug/l	100		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1	

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-01 Date Collected: 01/23/20 09:00

Client ID: SH-102WR Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	106		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	102		60-140	

01/23/20 09:00

Not Specified

01/23/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number: L2003286

Report Date: 02/05/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2003286-01

Client ID: SH-102WR

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 01/26/20 17:53

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - V	Vestborough Lab					
1,4-Dioxane	ND		ug/l	50		1

1,4-Dioxane	ND	ug/l	50		1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene		87		60-140	
4-Bromofluorobenzene		88		60-140	

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-01 Date Collected: 01/23/20 09:00

Client ID: SH-102WR Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14.504.1 Extraction Date: 01/24/20 15:31

Analytical Method: 14,504.1 Extraction Date: 01/24/20 15:31

Analytical Date: 01/24/20 20:07

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L2003286

01/23/20 10:00

Refer to COC

01/23/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Report Date: 02/05/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2003286-02

Client ID: SH-103W

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/26/20 19:07

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		60-140	
Fluorobenzene	102		60-140	
4-Bromofluorobenzene	95		60-140	

60-140

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 01/26/20 19:07

Analyst: KJD

4-Bromofluorobenzene

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - W	estborough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier		ptance iteria	
Fluorobenzene			88		6	60-140	

90

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

PLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14.504.1 Extraction Date: 01/24/20 15:31

Analytical Method: 14,504.1 Extraction Date: 01/24/20 15:31

Analytical Date: 01/24/20 20:23

Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

01/23/20 11:10

Refer to COC

01/23/20

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Lab Number: L2003286

Report Date: 02/05/20

Date Collected:

Date Received:

Field Prep:

Lab ID: L2003286-03

Client ID: SW-1

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 01/26/20 18:30

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
Tetrachloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	5.0		1	
1,3-Dichlorobenzene	ND		ug/l	5.0		1	
1,4-Dichlorobenzene	ND		ug/l	5.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-xylene	ND		ug/l	1.0		1	
Xylenes, Total	ND		ug/l	1.0		1	
Acetone	ND		ug/l	10		1	
Methyl tert butyl ether	ND		ug/l	10		1	
Tert-Butyl Alcohol	ND		ug/l	100		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1	

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-03 Date Collected: 01/23/20 11:10

Client ID: SW-1 Date Received: 01/23/20

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		60-140	
Fluorobenzene	101		60-140	
4-Bromofluorobenzene	95		60-140	

L2003286

01/23/20 11:10

Refer to COC

01/23/20

60-140

Project Name: 144 ADDISON ST

Project Number: 4232.00

SAMPLE RESULTS

Report Date: 02/05/20

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2003286-03

Client ID: SW-1

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 01/26/20 18:30

Analyst: KJD

4-Bromofluorobenzene

Parameter	Result	Qualifier Units	RL	MDL D	ilution Factor
Volatile Organics by GC/MS-SIN	/I - Westborough Lab				
1,4-Dioxane	ND	ug/l	50		1
Surrogate		% Recovery	Qualifier	Acceptar Criteri	
Fluorobenzene		87		60-14	40

88

01/23/20 11:10

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

SAMPLE RESULTS

PLE RESULTS

Date Collected:

Lab ID: L2003286-03

Client ID: SW-1 Date Received: 01/23/20

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 01/24/20 15:31

Analytical Date: 01/24/20 20:39 Analyst: AMM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 01/24/20 19:19 Extraction Date: 01/24/20 15:31

Analyst: AMM

Parameter	Result	Qualifier Units	RL	MDL	
Microextractables by GC	- Westborough Lab for	sample(s): 01	-03 Batch:	WG1333569-1	
1,2-Dibromoethane	ND	ug/l	0.010		Α

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: L2003286

Report Date: 02/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/26/20 16:02

Analyst: KJD

Parameter	Result	Qualifier Units	RL	MDL
/olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1334250-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	<u></u>
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 144 ADDISON ST **Lab Number:** L2003286

Project Number: 4232.00 Report Date: 02/05/20

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 01/26/20 16:02

Analyst: KJD

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Volatile Organics by GC/MS - Westborough Lab for sample(s):
 01-03
 Batch:
 WG1334250-4

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
Pentafluorobenzene	104	60-140
Fluorobenzene	100	60-140
4-Bromofluorobenzene	100	60-140

Project Name: 144 ADDISON ST **Lab Number:** L2003286

Project Number: 4232.00 Report Date: 02/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 01/26/20 16:02

Analyst: KJD

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01-03	Batch:	WG1334251-4	
1,4-Dioxane	ND		ug/l	50			

		Acceptance	
Surrogate	%Recovery Qualifie	r Criteria	
Fluorobenzene	87	60-140	
4-Bromofluorobenzene	91	60-140	

144 ADDISON ST

4232.00

Project Number:

Project Name:

L2003286 Lab Number:

02/02/20 Report Date:

Column RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery

Microextractables by GC - Westborough Lab Associated sample(s): 01-03 Batch: WG1333569-2 Parameter

⋖ 80-120 Ø 28 1,2-Dibromoethane

L2003286 02/02/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

	SO7		TCSD		%Recovery			RPD	
rameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	

Parameter	LCS %Recovery Q	L'A Qual %Rei	LCSD %Recovery Qual	%Kecovery Limits	RPD	Qual	KPD Limits
Volatile Organics by GC/MS - Westhorough Lab Associated sample(s): 01-03	ab Associated same		Batch: WG1334250-3				
	ימס המשנכת משול		Jaion - 100-1200 - 0				
Methylene chloride	06		1	60-140			28
1,1-Dichloroethane	85		1	50-150	•		49
Carbon tetrachloride	110		ı	70-130			41
1,1,2-Trichloroethane	06		ı	70-130			45
Tetrachloroethene	105		ı	70-130			39
1,2-Dichloroethane	95		ı	70-130			49
1,1,1-Trichloroethane	115		ı	70-130			36
Benzene	105		ı	65-135			61
Toluene	100		ı	70-130			41
Ethylbenzene	105		ı	60-140			63
Vinyl chloride	20		ı	5-195			99
1,1-Dichloroethene	06		ı	50-150			32
cis-1,2-Dichloroethene	92		ı	60-140			30
Trichloroethene	100		ı	65-135			48
1,2-Dichlorobenzene	105		1	65-135	•		57
1,3-Dichlorobenzene	100		1	70-130	•		43
1,4-Dichlorobenzene	100		1	65-135	•		57
p/m-Xylene	102		ı	60-140	ı		30
o-xylene	100		1	60-140	•		30
Acetone	72		ı	40-160			30
Methyl tert butyl ether	80		1	60-140	,		30
Tert-Butyl Alcohol	82		ı	60-140			30
Tertiary-Amyl Methyl Ether	110		ı	60-140			30

Lab Number: 144 ADDISON ST

Project Name:

L2003286 02/02/20 Report Date: 4232.00 **Project Number:**

Limits
Qual
RPD
Limits
Qual
%Recovery
Qual
%Recovery
ameter

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1334250-3

Acceptance Criteria	60-140 60-140 60-140
LCSD covery Qual	
LCSD Qual %Recovery	
LCS %Recovery	109 103 102
gate	Pentafluorobenzene Fluorobenzene 4-Bromofluorobenzene
Surrogate	Pentafl⊍ Fluorob≀ 4-Bromc

L2003286 Lab Number:

> 4232.00 Project Number:

144 ADDISON ST

Project Name:

Report Date:

02/02/20

RPD Limits

Qual

	SO7		TCSD		"Recovery		
Parameter	"Recovery	Qual	"Recovery	Qual	Limits	RPD	_

Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1334251-3

20 60-140 86 1,4-Dioxane

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	88 86				60-140 60-140

Matrix Spike Analysis Batch Quality Control

L2003286 02/02/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 Project Number: Project Name:

Column		⋖
RPD Limits	102WR	20
Qual): SH-1	
, RPD	Client II	•
Recovery Limits	03286-01	80-120
Qual	ole: L20	
MSD MSD Recovery RPD Found %Recovery Qual Limits Column	s): 01-03 QC Batch ID: WG1333569-3 QC Sample: L2003286-01 Client ID: SH-102WR	,
MSD Found	/G1333569-3	,
Qual	ch ID: W	
IMS "Recovery Qual	QC Bat	81
ו Re⊄	01-03	
MS Found		0.198
MS Added	Associate	0.246
<i>Native</i> Sample	estborough Lab	QN
Parameter	Microextractables by GC - Westborough Lab Associated sample(s	1,2-Dibromoethane

SEMIVOLATILES

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

•

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129.625.1 Extraction Date: 01/24/20 03:07

Analytical Method: 129,625.1 Extraction Date: 01/24/20 03: Analytical Date: 01/28/20 14:44

Analyst: JG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Nitrobenzene-d5	85		42-122	
2-Fluorobiphenyl	85		46-121	
4-Terphenyl-d14	77		47-138	

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20
Sample Location: FAST ROSTON MA

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 01/24/20 03:12
Analytical Date: 01/25/20 21:55

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	IS-SIM - Westborough La	b				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	0.62		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	0.28		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	0.90		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	25-87
Phenol-d6	42	16-65
Nitrobenzene-d5	93	42-122
2-Fluorobiphenyl	96	46-121
2,4,6-Tribromophenol	69	45-128
4-Terphenyl-d14	81	47-138

Project Name: 144 ADDISON ST **Lab Number:** L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-03 Date Collected: 01/23/20 11:10

Client ID: SW-1 Date Received: 01/23/20

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 01/24/20 03:07

Analyst: SZ

01/27/20 15:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	ceptance Criteria
Nitrobenzene-d5	82	42-122
2-Fluorobiphenyl	78	46-121
4-Terphenyl-d14	88	47-138

L2003286

Project Name: Lab Number: 144 ADDISON ST

Project Number: Report Date: 4232.00 02/05/20

SAMPLE RESULTS

Lab ID: Date Collected: 01/23/20 11:10 L2003286-03

SW-1 Date Received: 01/23/20 Client ID:

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 01/24/20 03:12 Analytical Method: 129,625.1-SIM Analytical Date: 01/25/20 22:12

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	-SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.22		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	0.18		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	0.12		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	0.10		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	0.16		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	0.19		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	50	25-87
Phenol-d6	49	16-65
Nitrobenzene-d5	87	42-122
2-Fluorobiphenyl	91	46-121
2,4,6-Tribromophenol	93	45-128
4-Terphenyl-d14	93	47-138

L2003286

Lab Number:

Project Name: 144 ADDISON ST

Project Number: Report Date: 4232.00 02/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 01/24/20 10:15

Analyst: SZ Extraction Method: EPA 625.1 01/23/20 06:06 Extraction Date:

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS - \	Nestborough	Lab for s	ample(s):	02-03	Batch:	WG1332964-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		-
Dimethyl phthalate	ND		ug/l	5.0		

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Nitrobenzene-d5	73	42-122	
2-Fluorobiphenyl	72	46-121	
4-Terphenyl-d14	81	47-138	

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: L2003286

Report Date: 02/05/20

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 01/24/20 11:43

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 01/23/20 06:21

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS-	-SIM - Westbo	rough Lab	for sample(s)	: 02-03	Batch:	WG1332965-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	47	25-87
Phenol-d6	34	16-65
Nitrobenzene-d5	80	42-122
2-Fluorobiphenyl	71	46-121
2,4,6-Tribromophenol	87	45-128
4-Terphenyl-d14	88	47-138

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2003286

Project Number: 4232.00

144 ADDISON ST

Project Name:

Report Date: 02/05/20

RPD %Recovery Limits Qual LCSD %Recovery Qual "Recovery <u>Parameter</u>

RPD Limits

Qual

69 100 82 9 47 29-137 19-132 1-140 8-120 1-120 Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 02-03 Batch: WG1332964-3 82 8 87 82 83 Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate Di-n-butylphthalate Di-n-octylphthalate Diethyl phthalate

183

1-120

86

Dimethyl phthalate

Acceptance Criteria 42-122 46-121 47-138 Qual "Recovery TCSD Qual "Recovery SO7 99 93 100 Nitrobenzene-d5 2-Fluorobiphenyl 4-Terphenyl-d14 Surrogate

Lab Control Sample Analysis Batch Quality Control

L2003286 Lab Number:

144 ADDISON ST 4232.00 Project Number: Project Name:

02/02/20 Report Date:

RPD	Limits	
	Qual	
	RPD	
"Recovery	Limits	
	Qual	
TCSD	%Recovery	
	Qual	
SJ7	%Recovery	
	Parameter	

Parameter	LCS **Recovery	Qual	"Recovery	Qual	%Kecovery Limits	RPD	Qual	KPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): U2-03	tborough Lab As	ssociated san	nple(s): 02-03	Batch: WG1332965-2	1332965-2			
Acenaphthene	88		•		60-132	•		30
Fluoranthene	96				43-121	,		30
Naphthalene	88		ı		36-120	ı		30
Benzo(a)anthracene	96		•		42-133	,		30
Benzo(a)pyrene	96		•		32-148	ı		30
Benzo(b)fluoranthene	103		ı		42-140			30
Benzo(k)fluoranthene	28		ı		25-146	ı		30
Chrysene	88		ı		44-140	1		30
Acenaphthylene	98		ı		54-126			30
Anthracene	88		ı		43-120	,		30
Benzo(ghi)perylene	26		ı		1-195	,		30
Fluorene	91		ı		70-120	,		30
Phenanthrene	46		ı		65-120			30
Dibenzo(a,h)anthracene	96		ı		1-200	,		30
Indeno(1,2,3-cd)pyrene	105		ı		1-151	ı		30
Pyrene	93		•		70-120	,		30
Pentachlorophenol	11				38-152			30

Lab Control Sample Analysis Batch Quality Control

L2003286 Lab Number:

02/02/20

Report Date: 144 ADDISON ST 4232.00 Project Number: Project Name:

RPD	Limits
	Qual
	RPD
%Recovery	Limits
	Qual
TCSD	%Recovery
	Qual
SO7	%Recovery
	Paramete

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02-03 Batch: WG1332965-2

Surrogate	LCS %Recovery G	LCSD Qual %Recovery	o ry Qual	Acceptance Criteria
2-Fluorophenol	56			25-87
Phenol-d6	42			16-65
Nitrobenzene-d5	93			42-122
2-Fluorobiphenyl	80			46-121
2,4,6-Tribromophenol	86			45-128
4-Terphenyl-d14	96			47-138

PCBS

Project Name:144 ADDISON STLab Number:L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02 Date Collected: 01/23/20 10:00

Client ID: SH-103W Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 01/24/20 10:06

Analystical Date: 01/28/20 21:29 Cleanup Method: EPA 3665A Analyst: AWS Cleanup Date: 01/24/20

Cleanup Method: EPA 3660B Cleanup Date: 01/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	56		37-123	В
Decachlorobiphenyl	49		38-114	В
2,4,5,6-Tetrachloro-m-xylene	65		37-123	Α
Decachlorobiphenyl	43		38-114	Α

Project Name:144 ADDISON STLab Number:L2003286

Project Number: 4232.00 **Report Date:** 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-03 Date Collected: 01/23/20 11:10

Client ID: SW-1 Date Received: 01/23/20 Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 01/24/20 10:06

Analytical Date: 01/28/20 21:41 Cleanup Method: EPA 3665A
Analyst: AWS Cleanup Date: 01/24/20

Cleanup Method: EPA 3660B Cleanup Date: 01/25/20

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - W	estborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		37-123	В
Decachlorobiphenyl	84		38-114	В
2,4,5,6-Tetrachloro-m-xylene	75		37-123	Α
Decachlorobiphenyl	69		38-114	Α

L2003286

Project Name: 144 ADDISON ST

Report Date: Project Number: 4232.00

02/05/20

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 01/28/20 22:42

Analyst: AWS

Extraction Method: EPA 608.3 01/24/20 10:06 Extraction Date: Cleanup Method: EPA 3665A Cleanup Date: 01/24/20 Cleanup Method: EPA 3660B Cleanup Date: 01/25/20

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	02-03	Batch:	WG13	33512-1
Aroclor 1016	ND		ug/l	0.250			Α
Aroclor 1221	ND		ug/l	0.250			Α
Aroclor 1232	ND		ug/l	0.250			Α
Aroclor 1242	ND		ug/l	0.250			Α
Aroclor 1248	ND		ug/l	0.250			Α
Aroclor 1254	ND		ug/l	0.250			Α
Aroclor 1260	ND		ug/l	0.200			Α

		Acceptance				
Surrogate	%Recovery Qu	ualifier Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	81	37-123	В			
Decachlorobiphenyl	77	38-114	В			
2,4,5,6-Tetrachloro-m-xylene	80	37-123	Α			
Decachlorobiphenyl	68	38-114	Α			

Lab Control Sample Analysis Batch Quality Control

L2003286 Lab Number:

02/05/20

Report Date:

4232.00 Project Number:

144 ADDISON ST

Project Name:

Column RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery

Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 02-03 Batch: WG1333512-2 Parameter

⋖ ⋖ 36 38 50-140 8-140 7.7 2 Aroclor 1016 Aroclor 1260

	SO7		TCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81				37-123	В
Decachlorobiphenyl	81				38-114	В
2,4,5,6-Tetrachloro-m-xylene	83				37-123	A
Decachlorobiphenyl	72				38-114	∢

METALS

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: Report Date:

L2003286 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02

Client ID: SH-103W Sample Location: EAST BOS

EAST BOSTON, MA

Date Collected: 01/23/20 10:00

Date Received: 01/23/20

Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield I ah										
Total Motals - Mail	Silcia Lab										
Antimony, Total	ND		mg/l	0.04000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.01000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00200		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Chromium, Total	0.01075		mg/l	0.01000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.01000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Iron, Total	5.23		mg/l	0.050		1	01/24/20 12:3	5 01/27/20 16:58	EPA 3005A	19,200.7	LC
Lead, Total	0.01848		mg/l	0.01000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/24/20 14:2	7 01/24/20 18:26	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.02000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.05000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00400		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
Zinc, Total	0.1508		mg/l	0.1000		10	01/24/20 12:3	5 01/25/20 00:00	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		01/25/20 00:00	NA	107,-	
				2.0.0		•		2 = 2 . 20 00100		,	

Dissolved Metals -	Mansfield Lab						
Antimony, Dissolved	ND	mg/l	0.0400	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0100	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0020	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0100	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0100	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Iron, Dissolved	0.494	mg/l	0.050	 1	01/24/20 15:24 01/27/20 19:42 EPA 3005A	19,200.7	LC
Lead, Dissolved	ND	mg/l	0.0100	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND	mg/l	0.00020	 1	01/24/20 12:47 01/24/20 17:44 EPA 245.1	3,245.1	AL
Nickel, Dissolved	ND	mg/l	0.0200	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0500	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0040	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.1000	 10	01/24/20 15:24 01/25/20 01:21 EPA 3005A	3,200.8	AM

L2003286

01/23/20 11:10

Lab Number:

Date Collected:

Project Name: 144 ADDISON ST

Project Number: Report Date: 4232.00 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-03

Client ID: SW-1 Date Received: 01/23/20

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.08000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.02000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00400		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.02000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.02000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Iron, Total	0.089		mg/l	0.050		1	01/24/20 12:35	01/27/20 17:03	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.02000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	01/24/20 14:27	01/24/20 18:28	EPA 245.1	3,245.1	AL
Nickel, Total	ND		mg/l	0.04000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.1000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00800		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.2000		20	01/24/20 12:35	01/25/20 02:39	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab	-								
Chromium, Trivalent	ND		mg/l	0.020		1		01/25/20 02:39	NA	107,-	

Dissolved Metals -	Mansfield Lab						
Antimony, Dissolved	ND	mg/l	0.0800	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0200	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0040	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0200	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0200	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Iron, Dissolved	ND	mg/l	0.050	 1	01/24/20 15:24 01/27/20 20:23 EPA 3005A	19,200.7	LC
Lead, Dissolved	ND	mg/l	0.0200	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND	mg/l	0.00020	 1	01/24/20 12:47 01/24/20 17:55 EPA 245.1	3,245.1	AL
Nickel, Dissolved	ND	mg/l	0.0400	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.1000	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0080	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.2000	 20	01/24/20 15:24 01/25/20 02:07 EPA 3005A	3,200.8	AM

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003286

Report Date:

02/05/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Ma	ansfield Lab for sample(s):	02-03	Batch: W	G13335	553-1				
Iron, Total	ND	mg/l	0.050		1	01/24/20 12:35	01/27/20 13:20	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	02-03 I	Batch: W0	G13335	57-1				
Antimony, Total	ND	mg/l	0.00400		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	01/24/20 12:35	01/25/20 00:18	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - Ma	nsfield Lab	for sample	(s): 02-0	3 Batch	: WG1	333565-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	01/24/20 12:47	01/24/20 17:15	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003286

Report Date:

02/05/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfiel	d Lab for sample(s):	02-03	Batch: Wo	G13335	95-1				
Mercury, Total	ND	mg/l	0.00020		1	01/24/20 14:27	01/24/20 17:57	3,245.1	AL

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qua	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mai	nsfield Lab for s	ample(s): 02-03	Batch	: WG1	333598-1				
Iron, Dissolved	ND	mg/l	0.050		1	01/24/20 15:24	01/27/20 19:16	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	(s): 02-03	Batch	: WG1	333601-1				
Antimony, Dissolved	ND		mg/l	0.0040		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Arsenic, Dissolved	ND		mg/l	0.0010		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Lead, Dissolved	ND		mg/l	0.0010		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Nickel, Dissolved	ND		mg/l	0.0020		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	01/24/20 15:24	01/25/20 00:22	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

144 ADDISON ST

4232.00

Project Number: Project Name:

Lab Number:

L2003286 02/02/20 Report Date:

	ual RPD Limits	
	RPD Q	
%Recovery	Limits	
	Qual	
CSD	%Recovery	
	Qual	
CCS	%Recovery	
	Parameter	

	85-115
3 Batch: WG1333553-2	
otal Metals - Mansfield Lab Associated sample(s): 02-03 E	107
Total Metals - N	Iron, Total

Iron, Total	107		85-115	
Total Metals - Mansfield Lab Associated sample(s): 02-03 Batch:	(s): 02-03 Bat	tch: WG1333557-2		
Antimony, Total	98	,	85-115	,
Arsenic, Total	108	•	85-115	
Cadmium, Total	115	•	85-115	
Chromium, Total	101	•	85-115	,
Copper, Total	95	•	85-115	,
Lead, Total	103	•	85-115	
Nickel, Total	66	•	85-115	
Selenium, Total	113	•	85-115	,
Silver, Total	101	•	85-115	
Zinc, Total	107	•	85-115	

	ı
	85-115
3 Batch: WG1333565-2	
mple(s): 02-03	102
Dissolved Metals - Mansfield Lab Associated sar	Mercury, Dissolved

	85-115
02-03 Batch: WG1333595-2	
	102
Total Metals - Mansfield Lab Associated sample(s)	Mercury, Total

Lab Control Sample Analysis Batch Quality Control

L2003286 02/02/20 Lab Number: Report Date:

> 4232.00 Project Number:

144 ADDISON ST

Project Name:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	ample(s): 02-03	Batch: WG1333598-2			
Iron, Dissolved	103		85-115	,	
Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	ample(s): 02-03	Batch: WG1333601-2			
Antimony, Dissolved	68	٠	85-115	,	
Arsenic, Dissolved	108	•	85-115		
Cadmium, Dissolved	114		85-115		
Chromium, Dissolved	104	•	85-115		
Copper, Dissolved	103	•	85-115	•	
Lead, Dissolved	104		85-115		
Nickel, Dissolved	100	•	85-115	•	
Selenium, Dissolved	112	•	85-115	•	
Silver, Dissolved	103	•	85-115		
Zinc, Dissolved	110		85-115		

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST Project Name:

Project Number:

4232.00

L2003286 02/05/20 Lab Number:

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery (Qual	MSD Found	MSD %Recovery Qual	Recovery ual Limits	y RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02-03	sociated san	nple(s): 02-03	QC Batc	QC Batch ID: WG1333553-3	53-3	QC Sam	QC Sample: L2003271-01	Client ID:	MS Sample	
Iron, Total	0.084	~	1.11	103		,		75-125		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	sociated san	1ple(s): 02-03	QC Batc	QC Batch ID: WG1333553-7	53-7	QC Sam	QC Sample: L2003341-01	Client ID:	MS Sample	
Iron, Total	3.10	~	4.18	108				75-125		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	sociated san	1ple(s): 02-03	QC Batc	QC Batch ID: WG1333557-3	57-3	QC Sam	QC Sample: L2003341-01	Client ID:	MS Sample	
Antimony, Total	Q	0.5	0.4905	86				70-130		20
Arsenic, Total	Q	0.12	0.1299	108		ı		70-130		20
Cadmium, Total	Q	0.051	0.05736	112			1	70-130		20
Chromium, Total	Q.	0.2	0.1974	66		,		70-130		20
Copper, Total	0.00464	0.25	0.2424	95			1	70-130		20
Lead, Total	Q.	0.51	0.5296	104			1	70-130		20
Nickel, Total	Q	0.5	0.4643	63		ı		70-130		20
Selenium, Total	Q.	0.12	0.1472	123			1	70-130		20
Silver, Total	Q.	0.05	0.04959	66			1	70-130		20
Zinc, Total	0.06638	0.5	0.6056	108		1		70-130	•	20
Dissolved Metals - Mansfield Lab Associated sample(s): 02	b Associated	d sample(s): 02	-03	QC Batch ID: WG1333565-3	33356		QC Sample: L2003286-02	36-02 Client ID:	D: SH-103W	
Mercury, Dissolved	ND	0.005	0.00384	77		1		75-125		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	sociated san	1ple(s): 02-03	QC Batc	QC Batch ID: WG1333595-3	95-3	QC Sam	QC Sample: L2003059-02	Client ID: MS Sample	AS Sample	
Mercury, Total	QN	0.005	0.00504	101				70-130	•	20
Total Metals - Mansfield Lab Associated sample(s): 02-03	sociated san	1ple(s): 02-03	QC Batc	QC Batch ID: WG1333595-5	92-2	QC Sam	QC Sample: L2003193-01	Client ID:	MS Sample	
Mercury, Total	Q	0.005	0.00527	106				70-130		20
										The state of the s

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST Project Name:

4232.00 Project Number:

Lab Number:

L2003286

02/02/20 Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - N	Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	sample(s): (QC Batch ID: WG1333598-3		QC Sample: L2003286-02		Client ID: SH-103W	
Iron, Dissolved	0.494	-	1.44	96	•	•	75-125	,	20
Dissolved Metals - N	Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	sample(s): (QC Batch ID: WG1333601-3		QC Sample: L2003286-02		Client ID: SH-103W	
Antimony, Dissolved	QN	0.5	0.4978	100		ı	70-130	,	20
Arsenic, Dissolved	QN	0.12	0.1244	104		•	70-130		20
Cadmium, Dissolved	QN	0.051	0.0511	100		ı	70-130		20
Chromium, Dissolved	QN	0.2	0.1975	66		ı	70-130		20
Copper, Dissolved	QN	0.25	0.2369	95			70-130		20
Lead, Dissolved	QN	0.51	0.5228	102			70-130		20
Nickel, Dissolved	QN	0.5	0.4829	96		•	70-130		20
Selenium, Dissolved	QN	0.12	0.1117	93	•	•	70-130		20
Silver, Dissolved	QN	0.05	0.0487	26		•	70-130		20
Zinc, Dissolved	QN	0.5	0.4647	93			70-130	,	20

Lab Duplicate Analysis Batch Quality Control

L2003286 02/05/20 Lab Number: Report Date:

144 ADDISON ST 4232.00 Project Number:

Project Name:

Parameter	Native Sample Du	Duplicate Sample	Units	RPD	Qual RP	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02-03	3 QC Batch ID: WG1333553-4		QC Sample: L2003271-01	Client ID:	DUP Sample	
Iron, Total	0.084	0.081	l/gm	4		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	3 QC Batch ID: WG1333553-8		QC Sample: L2003341-01		Client ID: DUP Sample	
Iron, Total	3.10	3.12	l/gm	-		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	3 QC Batch ID: WG1333557-4		QC Sample: L2003341-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	l/gm	NC		20
Arsenic, Total	ND	0.00100	l/gm	NC		20
Cadmium, Total	ND	ND	l/gm	NC		20
Chromium, Total	ND	ND	l/gm	NC		20
Copper, Total	0.00464	0.00401	l/gm	41		20
Lead, Total	ND	ND	l/gm	NC		20
Nickel, Total	ND	ND	l/gm	NC		20
Selenium, Total	ND	ND	l/gm	NC		20
Silver, Total	ND	ND	l/gm	NC		20
Zinc, Total	0.06638	0.06268	l/gm	9		20
Dissolved Metals - Mansfield Lab Associated sample(s): 02-0	32-03 QC Batch ID: WG1333565-4		QC Sample: L2003286-02		Client ID: SH-103W	
Mercury, Dissolved	ND	ND	l/gm	NC		20
Total Metals - Mansfield Lab Associated sample(s): 02-03	3 QC Batch ID: WG1333595-4		QC Sample: L2003059-02		Client ID: DUP Sample	
Mercury, Total	ND	N	l/gm	NC		20

Lab Duplicate Analysis Batch Quality Control

L2003286 02/05/20 Lab Number: Report Date:

144 ADDISON ST

4232.00

Project Number: Project Name:

Parameter	Native Sample	Duplicate Sample	ple Units	RPD	RPD Limits	s
Total Metals - Mansfield Lab Associated sample(s): 02-03	QC Batch ID: WG1333595-6		QC Sample: L2003193	-01 Client I	L2003193-01 Client ID: DUP Sample	
Mercury, Total	ND	QN	l/bm	OZ	20	
Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	2-03 QC Batch ID: WG1333598-4		C Sample: L200	3286-02 CI	QC Sample: L2003286-02 Client ID: SH-103W	
Iron, Dissolved	0.494	0.480	l/bm	က	20	
Dissolved Metals - Mansfield Lab Associated sample(s): 02-03	2-03 QC Batch ID: WG1333601-4		C Sample: L200	3286-02 CI	QC Sample: L2003286-02 Client ID: SH-103W	
Antimony, Dissolved	ND	QN	l/gm	NC	20	
Arsenic, Dissolved	ND	QN	l/gm	N	20	
Cadmium, Dissolved	ND	QN	l/gm	S	20	
Chromium, Dissolved	ND	QN	l/gm	S	20	
Copper, Dissolved	ND	QN	l/gm	N	20	
Lead, Dissolved	ND	QN	l/gm	N	20	
Nickel, Dissolved	ND	QN	l/gm	S	20	
Selenium, Dissolved	ND	QN	l/gm	O _N	20	
Silver, Dissolved	ND	QN	l/gm	O _N	20	
Zinc, Dissolved	ND	QN	l/gm	NO	20	

INORGANICS & MISCELLANEOUS

Project Name: 144 ADDISON ST

Project Number: 4232.00 Lab Number:

Field Prep:

L2003286

Report Date: 02/05/20

SAMPLE RESULTS

Lab ID: L2003286-02

Client ID: SH-103W

Sample Location: EAST BOSTON, MA

Date Collected: 01/23/20 10:00

Date Received: 01/23/20

Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total Suspended	150		mg/l	12	NA	2.5	-	01/24/20 09:10	121,2540D	EM
Cyanide, Total	ND		mg/l	0.005		1	01/24/20 02:06	01/24/20 11:47	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/23/20 21:22	121,4500CL-D	AS
Nitrogen, Ammonia	25.2		mg/l	0.750		10	01/24/20 03:41	01/27/20 21:20	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	01/24/20 16:30	01/24/20 21:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	01/27/20 05:15	01/28/20 06:58	4,420.1	MV
Chromium, Hexavalent	0.027		mg/l	0.010		1	01/24/20 01:30	01/24/20 02:28	1,7196A	СВ
Anions by Ion Chromatog	graphy - Wes	borough	Lab							
Chloride	2660		mg/l	50.0		100	-	01/24/20 01:53	44,300.0	DS

Project Name: 144 ADDISON ST

Project Number: 4232.00 Lab Number:

L2003286

Report Date:

02/05/20

SAMPLE RESULTS

Lab ID: L2003286-03

Client ID: SW-1

Sample Location: EAST BOSTON, MA

Date Received: 01/23/20

Field Prep:

Date Collected:

Refer to COC

01/23/20 11:10

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	7.4		mg/l	5.0	NA	1	-	01/24/20 09:10	121,2540D	EM
Cyanide, Total	ND		mg/l	0.005		1	01/24/20 02:06	01/24/20 11:48	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/23/20 21:22	121,4500CL-D	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	01/26/20 03:47	01/27/20 23:33	121,4500NH3-BH	TA H
TPH, SGT-HEM	ND		mg/l	4.40		1.1	01/24/20 16:30	01/24/20 21:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	01/27/20 05:15	01/28/20 06:59	4,420.1	MV
Chromium, Hexavalent	ND		mg/l	0.010		1	01/24/20 01:30	01/24/20 02:31	1,7196A	СВ
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	17400		mg/l	250		500	-	01/24/20 03:51	44,300.0	DS

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number:

L2003286

Report Date: 02/05/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab	for sam	ıple(s): 02-	03 Bat	ch: WC	91333289-1	1			
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/23/20 21:22	121,4500CL-D	AS
General Chemistry - W	/estborough Lab	for sam	ple(s): 02	Batch:	WG13	33336-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	01/24/20 03:41	01/27/20 21:17	121,4500NH3-BH	H AT
General Chemistry - W	/estborough Lab	for sam	ple(s): 03	Batch:	WG13	33337-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	01/26/20 03:47	01/27/20 23:19	121,4500NH3-BH	H AT
General Chemistry - W	/estborough Lab	for sam	ple(s): 02-	03 Bat	ch: WC	91333347-	1			
Chromium, Hexavalent	ND		mg/l	0.010		1	01/24/20 01:30	01/24/20 02:16	1,7196A	СВ
General Chemistry - W	/estborough Lab	for sam	ple(s): 02-	03 Bat	ch: WC	91333359- <i>^</i>	1			
Cyanide, Total	ND		mg/l	0.005		1	01/24/20 02:06	01/24/20 11:37	121,4500CN-CE	LH
Anions by Ion Chroma	tography - Westb	orough	Lab for sa	mple(s):	02-03	Batch: W	/G1333389-1			
Chloride	ND		mg/l	0.500		1	-	01/24/20 00:42	44,300.0	DS
General Chemistry - W	/estborough Lab	for sam	ple(s): 02-	03 Bat	ch: WC	91333416- <i>1</i>	1			
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	01/24/20 09:10	121,2540D	EM
General Chemistry - W	/estborough Lab	for sam	ple(s): 02-	03 Bat	ch: WC	91333658-	1			
TPH, SGT-HEM	ND		mg/l	4.00		1	01/24/20 16:30	01/24/20 21:00	74,1664A	ML
General Chemistry - W	/estborough Lab	for sam	ple(s): 02-	03 Bat	ch: WC	91334060-1	1			
Phenolics, Total	ND		mg/l	0.030		1	01/27/20 05:15	01/28/20 06:55	4,420.1	MV

Lab Control Sample Analysis Batch Quality Control

L2003286 Lab Number:

02/02/20

Report Date:

4232.00 **Project Number:**

144 ADDISON ST

Project Name:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 02-03	ciated sample(s		Batch: WG1333289-2	289-2				
Chlorine, Total Residual	108		•		90-110	ı		
General Chemistry - Westborough Lab Associated sample(s): 02	ciated sample(s		Batch: WG1333336-2	-5				
Nitrogen, Ammonia	06		,		80-120			20
General Chemistry - Westborough Lab Associated sample(s): 03	ciated sample(s		Batch: WG133337-2	-2				
Nitrogen, Ammonia	96				80-120			20
General Chemistry - Westborough Lab Associated sample(s): 02-03	ciated sample(s		Batch: WG1333347-2	347-2				
Chromium, Hexavalent	105				85-115	,		20
General Chemistry - Westborough Lab Associated sample(s): 02-03	ciated sample(s		Batch: WG1333359-2	359-2				
Cyanide, Total	63				90-110			
Anions by Ion Chromatography - Westborough Lab Associated	gh Lab Associat		sample(s): 02-03 Batc	Batch: WG1333389-2	3389-2			
Chloride	66				90-110			
General Chemistry - Westborough Lab Associated sample(s): 02-03	ciated sample(s		Batch: WG1333658-2	358-2				
ТРН	98		,		64-132			34

Lab Control Sample Analysis Batch Quality Control

L2003286 02/02/20 Lab Number: Report Date: 144 ADDISON ST 4232.00 **Project Number:** Project Name:

RPD Limits RPD %Recovery Limits LCSD %Recovery LCS %Recovery Parameter

General Chemistry - Westborough Lab Associated sample(s): 02-03 Batch: WG1334060-2

70-130 86 Phenolics, Total

Matrix Spike Analysis Batch Quality Control

144 ADDISON ST Project Name:

4232.00 Project Number:

L2003286 02/05/20 Lab Number:

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD Recovery RPD %Recovery Qual Limits
General Chemistry - Westborough Lab Associated sample	igh Lab Asso	ciated samp	le(s): 02-03	QC Batch II	QC Batch ID: WG1333289-4	QC Sample: L2003286-03 Client ID: SW-1
Chlorine, Total Residual	Q	0.25	0.25	100	•	- 80-120 - 20
General Chemistry - Westborough Lab Associated sample	igh Lab Asso	ciated samp	(s): 05	C Batch ID: V	QC Batch ID: WG133336-4 Q	QC Sample: L2003068-01 Client ID: MS Sample
Nitrogen, Ammonia	1.80	4	4.83	92	ď	- 80-120 - 20
General Chemistry - Westborough Lab Associated sample	igh Lab Asso	ciated samp	(s): 03	C Batch ID: V	QC Batch ID: WG133337-4 C	QC Sample: L2003286-03 Client ID: SW-1
Nitrogen, Ammonia	Q	4	2.62	99		- 80-120 - 20
General Chemistry - Westborough Lab Associated sample(igh Lab Asso	ciated samp	ole(s): 02-03	QC Batch II	QC Batch ID: WG1333347-4	QC Sample: L2003286-03 Client ID: SW-1
Chromium, Hexavalent	Q	0.1	0.107	107	•	- 85-115 - 20
General Chemistry - Westborough Lab Associated sample(igh Lab Asso	ciated samp	le(s): 02-03		QC Batch ID: WG1333359-4	QC Sample: L2003357-02 Client ID: MS Sample
Cyanide, Total	0.020	0.2	0.188	84	·	- 90-110 - 30
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 02-03 Sample	- Westborou	gh Lab Asso	ociated samp	le(s): 02-03	QC Batch ID: WG1333389-3	1333389-3 QC Sample: L2003355-01 Client ID: MS
Chloride	5640	2000	0999	51	ď	- 90-110 - 18
General Chemistry - Westborough Lab Associated sample(igh Lab Asso	ciated samp	ole(s): 02-03	QC Batch II	QC Batch ID: WG1333658-4	QC Sample: L2003271-02 Client ID: MS Sample
ТРН	Q	20	18.9	94	•	- 64-132 - 34
General Chemistry - Westborough Lab Associated sample	igh Lab Asso	ciated samp	ole(s): 02-03	QC Batch II	QC Batch ID: WG1334060-4	QC Sample: L2003493-02 Client ID: MS Sample
Phenolics, Total	Q	4.0	0.28	0.2	•	- 70-130 - 20

Lab Duplicate Analysis Batch Quality Control

L2003286 02/05/20 Lab Number: Report Date:

> 4232.00 Project Number:

144 ADDISON ST

Project Name:

Parameter	Native Sample	ple Duplicate Sample	e Units	RPD	Qual RP	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1333289-3	QC Sample:	QC Sample: L2003286-02	Client ID:	SH-103W
Chlorine, Total Residual	N	QN	l/gm	N		20
General Chemistry - Westborough Lab Associated sample(s): 02		QC Batch ID: WG133336-3 Q	C Sample: L2	003068-01 CI	QC Sample: L2003068-01 Client ID: DUP Sample	ample
Nitrogen, Ammonia	1.80	1.76	l/gm	2		20
General Chemistry - Westborough Lab Associated sample(s): 03		QC Batch ID: WG133337-3 Q	QC Sample: L2003286-03 Client ID:	003286-03 CI	ient ID: SW-1	
Nitrogen, Ammonia	N	N	l/gm	NC		20
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1333347-3	QC Sample:	L2003286-02	Client ID: SH-103W	.103W
Chromium, Hexavalent	0.027	0.028	l/gm	4		20
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1333359-3	QC Sample:	L2003357-01	QC Sample: L2003357-01 Client ID: DUP Sample	P Sample
Cyanide, Total	0.118	0.113	l/gm	4		30
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 02-03 Sample	ed sample	e(s): 02-03 QC Batch ID: WG1333389-4		ეC Sample: L	QC Sample: L2003355-01 Client ID:	lient ID: DUP
Chloride	5640	5850	l/gm	4		18
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1333416-2	QC Sample:	QC Sample: L2003357-01 Client ID:	Client ID: DUF	DUP Sample
Solids, Total Suspended	3200	3400	l/gm	9		29
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1333658-3	QC Sample:	L2003271-01	Client ID:	DUP Sample
ТРН	Q N	QN	l/gm	ON N		34
General Chemistry - Westborough Lab Associated sample(s): 02-03	: 02-03	QC Batch ID: WG1334060-3	QC Sample:	L2003493-02	Client ID: DUP	P Sample
Phenolics, Total	Q.	QN	l/gm	N		20

144 ADDISON ST Project Name:

Project Number: 4232.00

Lab Number: L2003286 Serial_No:02052012:13

Report Date: 02/05/20

Sample Receipt and Container Information

ζ 9

YES

Were project specific reporting limits specified?		Custody Seal	Absent	Absent
Were project specific re	Cooler Information	Cooler	⋖	В

	Analysis(*)	504(14)	624.1-RGP(7),624.1-SIM-RGP(7)	504(14)	624.1-RGP(7),624.1-SIM-RGP(7)	504(14)	624.1-RGP(7),624.1-SIM-RGP(7)	504(14)	624.1-RGP(7),624.1-SIM-RGP(7)	504(14)	624.1-SIM-RGP(7),624.1-RGP(7)	504(14)	624.1-SIM-RGP(7),624.1-RGP(7)	504(14)	624.1-SIM-RGP(7),624.1-RGP(7)	504(14)	624.1-SIM-RGP(7),624.1-RGP(7)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	SUB-ETHANOL(14)	FE-RI(180),AG-2008S(180),CR-2008S(180),AS-2008S(180),PB-2008S(180),NI-2008S(180),CD-2008S(180),CD-2008S(180),CD-2008S(180),HG-R(28)
Frozen	Date/Time																				
	Seal	Absent	Absent	Absent	Absent	Absent	Absent														
	Pres	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>-
Temp	deg C	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	1.6
Final	Н																				3
Initial	Н	Ϋ́	ΑN	A A	ΑN	ΑN	ΑN	ΑN	A A	A A	ΑN	ΑN	A A	A A	ΑN	A A	N A	A A	A A	A A	7
	Cooler	В	В	Ф	Ф	Ф	Ф	В	В	В	Ф	В	В	Ф	Ф	В	Ф	Ф	Ф	Ф	Ф
ormation	Container Type	Vial Na2S2O3 preserved	Vial Na2S2O3 preserved	Vial unpreserved	Vial unpreserved	Vial unpreserved	Plastic 250ml HNO3 preserved														
Container Information	Container ID	L2003286-01A	L2003286-01A1	L2003286-01B	L2003286-01B1	L2003286-01C	L2003286-01C1	L2003286-01D	L2003286-01D1	L2003286-02A	L2003286-02A1	L2003286-02B	L2003286-02B1	L2003286-02C	L2003286-02C1	L2003286-02D	L2003286-02D1	L2003286-02E	L2003286-02F	L2003286-02G	L2003286-02H

144 ADDISON ST Project Name:

Project Number: 4232.00

Lab Number: L2003286 Serial_No:02052012:13 Report Date: 02/05/20

Container Information	rmation		Loitial	Final	200			2000	
Container ID	Container Type	Cooler	рН	ь	deg C	Pres	Sea!	Date/Time	Analysis(*)
L2003286-02I	Plastic 250ml HNO3 preserved	Ф	<2	2	3.1	>	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),ZN- 2008S(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),SE- 2008S(180),SB-2008S(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L2003286-02J	Plastic 250ml NaOH preserved	В	>12	>12	3.1	>	Absent		TCN-4500(14)
L2003286-02K	Plastic 500ml H2SO4 preserved	В	<2	~	3.1	>	Absent		NH3-4500(28)
L2003286-02L	Plastic 950ml unpreserved	В	6	6	3.1	>	Absent		HEXCR-7196(1),CL-300(28),TRC-4500(1)
L2003286-02M	Plastic 950ml unpreserved	В	6	6	3.1	>	Absent		TSS-2540(7)
L2003286-02N	Amber 950ml H2SO4 preserved	В	~	~	3.1	>	Absent		TPHENOL-420(28)
L2003286-02O	Amber 1000ml HCl preserved	В	ΑN		3.1	>	Absent		TPH-1664(28)
L2003286-02P	Amber 1000ml HCl preserved	В	AN		3.1	>	Absent		TPH-1664(28)
L2003286-02Q	Amber 1000ml Na2S2O3	В	6	6	3.1	>	Absent		PCB-608.3(7)
L2003286-02R	Amber 1000ml Na2S2O3	В	6	6	3.1	>	Absent		PCB-608.3(7)
L2003286-02S	Amber 1000ml Na2S2O3	В	6	6	3.1	>	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2003286-02T	Amber 1000ml Na2S2O3	В	0	6	3.1	>	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2003286-02U	Amber 1000ml Na2S2O3	В	6	6	3.1	>	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2003286-02V	Amber 1000ml Na2S2O3	В	6	6	3.1	>	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L2003286-03A	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		504(14)
L2003286-03A1	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2003286-03B	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		504(14)
L2003286-03B1	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2003286-03C	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		504(14)
L2003286-03C1	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2003286-03D	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		504(14)
L2003286-03D1	Vial Na2S2O3 preserved	∢	ΑN		2.2	>	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L2003286-03E	Vial unpreserved	∢	ΑN		2.2	>	Absent		SUB-ETHANOL(14)
L2003286-03F	Vial unpreserved	∢	ΑN		2.2	>	Absent		SUB-ETHANOL(14)
L2003286-03G	Vial unpreserved	4	ΑN		2.2	>	Absent		SUB-ETHANOL(14)

Project Name: 144 ADDISON ST

Project Number: 4232.00

Lab Number: L2003286 Report Date: 02/05/20

Serial_No:02052012:13

	Analysis(*)	AG-2008S(180), CR-2008S(180), FE- RI(180), AS-2008S(180), PB-2008S(180), NI- 2008S(180), CD-2008S(180), CU- 2008S(180), HG-R(28)	CD-2008T(180),NI-2008T(180),ZN-2008T(180),FE-UI(180),ZN-2008S(180),CU-2008T(180),AG-2008T(180),SE-2008T(180),HG-U(28),AS-2008T(180),SB-2008T(180),PB-2008T(180),CR-2008T(1	TCN-4500(14)	NH3-4500(28)	CL-300(28),HEXCR-7196(1),TRC-4500(1)	TSS-2540(7)	TPHENOL-420(28)	TPH-1664(28)	TPH-1664(28)	PCB-608.3(7)	PCB-608.3(7)	625.1-RGP(7),625.1-SIM-RGP(7)	625.1-RGP(7),625.1-SIM-RGP(7)	625.1-RGP(7),625.1-SIM-RGP(7)	625.1-RGP(7),625.1-SIM-RGP(7)	HOLD-504/8011(14)	HOLD-504/8011(14)	HOLD-624(7)	HOLD-624(7)	HOLD-624(7)	HOLD-624(7)
Frozen	Date/Time																					
	Seal	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
	Pres	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>
Temp	deg C	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	3.1	3.1	3.1	3.1	3.1	3.1
Final	Н	2	75	>12	%	_∞	_∞	%			∞	œ	_∞	œ	œ	œ						
Initial	Н	7	7	>12	%	80	80	4	ΑN	ΑN	œ	80	80	80	80	80	ΑN	ΑN	A	ΑN	A A	A
	Cooler	∢	∢	∢	∢	∢	∢	∢	∢	∢	٨	∢	∢	∢	∢	∢	В	В	В	В	В	В
rmation	Container Type	Plastic 250ml HNO3 preserved	Plastic 250ml HNO3 preserved	Plastic 250ml NaOH preserved	Plastic 500ml H2SO4 preserved	Plastic 950ml unpreserved	Plastic 950ml unpreserved	Amber 950ml H2SO4 preserved	Amber 1000ml HCl preserved	Amber 1000ml HCl preserved	Amber 1000ml Na2S2O3	Amber 1000ml Na2S2O3	Amber 1000ml Na2S2O3	Amber 1000ml Na2S2O3	Amber 1000ml Na2S2O3	Amber 1000ml Na2S2O3	Vial Na2S2O3 preserved					
Container Information	Container ID	L2003286-03H	L2003286-03I	L2003286-03J	L2003286-03K	L2003286-03L	L2003286-03M	L2003286-03N	L2003286-03O	L2003286-03P	L2003286-03Q	L2003286-03R	L2003286-03S	L2003286-03T	L2003286-03U	L2003286-03V	L2003286-04A	L2003286-04B	L2003286-04C	L2003286-04D	L2003286-04E	L2003286-04F

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

GLOSSARY

Acronyms

LOD

MDI

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:144 ADDISON STLab Number:L2003286Project Number:4232.00Report Date:02/05/20

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:144 ADDISON STLab Number:L2003286Project Number:4232.00Report Date:02/05/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

 ${f S}$ - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: 144 ADDISON ST Lab Number: L2003286

Project Number: 4232.00 Report Date: 02/05/20

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial No:02052012:13

Alpha Analytical, Inc. Facility: Company-wide **Department:** Quality Assurance

Revision 15 Published Date: 8/15/2019 9:53:42 AM Title: Certificate/Approval Program Summary

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3- Methyl thiophene, 2- Ethyl thiophene, 1, 2, 3- Trimethyl benzene, Indan, Indene, 1, 2, 4, 5- Tetramethyl benzene, Benzothiophene, 1- Methyl naphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3; Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN OF CUSTODY	custo	DY PAGE		10	Date Rec'd in Lab: 33	30	ALPHA Job#: L7003
8 Walkup Drive	320 Forbes Blvd	Project Information	tion			Report Information - Data Deliverables		Billing Information
Westboro, MA 01581 Tel: 508-898-9220	3	Project Name: 144 Applean ST	A ADDISON	Si		SADEX DEMAIL	ź	D.Same as Client info PO #:
Client Information		Project Location!	DE BELLON	AM MA	-	Regulatory Requirements &	Project Infor	Project Information Requirements
Client: SANBORN	FEAD	Project # 4272.00	8	T		☐ Yes ☐ No MA MCP Analytical Methods ☐ Yes ☐ No Matrix Spike Recuired on this SDG?	hods in this SDG? (Re	☐ Yes ☐No CT RCP Analytical Methods (Required for MCP Inorganics)
Address: 018 N	N WASHINGTON ST	Project Managen PAT	8	ALONE		Dives Q No GW1 Standards (Info Required for Metals & EPH with Targets)	equired for Meta	s & EPH with Targets)
HELDE, BOSTON	IN MA COLD	ALPHA Quote #:				Other State /Fed Program		Criteria
Phone: (603) 339-1900		Turn-Around Time	me			\$1.0	1/4	11111
Email: PM/ALONE Additional Pro	Email: PM/ALONE @ SAN BOONHDAD.com Distandard Additional Project Information: Date Due:	5.0	☐ RUSH (may care	francistic art p paus	(jyakiti)	MCP 14 DRCP	In Sepher	SAMPLE INFO
						C ABN C PASSES C Targets C PASSES	O PEST	Filtration D-Field D-Field D-Field Preservation
ALPHA Lab ID (Lab Use Only)	Sample ID	Col	Collection	Sample Matrix	Sampler	METAL: D PCB	TOO HALL	Sample Comments
03286-015	NWEST-HO	1/3%	8530 Ok	Gw	M.Co.		×	
-63	¥-103W	66/59	00501-100 OCKEY	GW	ANN AND AND AND AND AND AND AND AND AND		×	
-03	5W-1	REW	MAY WOLLING	CAW	MAR		×	
	Preservative Am Novem			Conta	Container Type		V 9 //	
	Ba-Hole Ca-HNO			Pre	Preservative		OCH	
B= Bacteria cup C= Cube O= Other E= Encre D= BOD Battle	E= NaOH G= NaOH G= NaHSO H = NaSSO H = Ascobe Acid	Relinquished By:		7507	Date/Time	Received By:	Date/Time	18/11
	J = NH,CI K= Zn Acetate O= Other	122000	,	000	8 6	10/ HVV	11382	Acc see reverse side.

ALPHA	531	Tek Col	Subcontract Chair Tek Lab, Inc. 5445 Horsehoe Lake Road Collinsville, IL 62234-7425	Subcontract Chain of Custody k Lab, Inc. 15 Horsehoe Lake Road linsville, IL 62234-7425		Alpha Job Number L2003286
Cli	Client Information		Project Information	formation	Regulatory Rec	Regulatory Requirements/Report Limits
Client: Alpha Ar ddress: Eight We Westbor	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Project Location: MA Project Manager: Ashaley Kane Turnaround & Delivera	n: MA er: Ashafey Kar und & Deliv	ger: Ashaley Kane round & Deliverables Information	State/Federal Program: Regulatory Criteria:	
Phone: 508-439-5132 Email: akane@alphalab.com	-5132 alphalab.com	Due Date: 02/11/20 Deliverables:	: 02/11/20			
	oference following Alaba Lot	Project Specifi	ic Requireme	or Report Req	irements	200 1100 11
Additional Comm	Additional Comments: Send all results/reports to subreports@alphalab.com	s to subreports@alphala	sb.com		Report to include Metrod Diank, LC3/LC3D:	ווי רכשרכשה:
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis		Batch
	SW-103W	01-23-20 10:00	WATER	Ethanol by EPA 1671 Revision A		
	Relinquished By:	ned By:		Date/Time:	Received By:	Date/Time:
		8		92/4/1		
Form No: AL_subcoc	200					

AP ACCREC

February 04, 2020

Ashaley Kane Alpha Analytical 145 Flanders Road Westborough, MA 01581 TEL: (508) 439-5132

FAX:

RE: L2003286 **WorkOrder:** 20011529

Dear Ashaley Kane:

TEKLAB, INC received 2 samples on 1/28/2020 9:40:00 AM for the analysis presented in the following report.

Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative.

All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Marvin L. Darling

Project Manager

(618)344-1004 ex 41

mdarling@teklabinc.com

Mowin L. Darling II

Report Contents

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

This reporting package includes the following:

Cover Letter	1
Report Contents	2
Definitions	3
Case Narrative	4
Accreditations	5
Laboratory Results	6
Quality Control Results	8
Receiving Check List	9
Chain of Custody	Appended

Definitions

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

Abbr Definition

- * Analytes on report marked with an asterisk are not NELAP accredited
- CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration.
- CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL.
 - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors.
 - DNI Did not ignite
- DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision.
- ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated.
- IDPH IL Dept. of Public Health
- LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system.
- LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses.
- MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results."
- MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request).
- MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request).
- MW Molecular weight
- ND Not Detected at the Reporting Limit

NELAP NELAP Accredited

- PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions.
 - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL.
- RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request).
- SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes
- Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples.
- TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET"
- TNTC Too numerous to count (> 200 CFU)

Qualifiers

- # Unknown hydrocarbon
- C RL shown is a Client Requested Quantitation Limit
- H Holding times exceeded
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside recovery limits
- X Value exceeds Maximum Contaminant Level

- B Analyte detected in associated Method Blank
- E Value above quantitation range
- I Associated internal standard was outside method criteria
- M Manual Integration used to determine area response
- R RPD outside accepted recovery limits
- T TIC(Tentatively identified compound)

Case Narrative

http://www.teklabinc.com/

Work Order: 20011529

Report Date: 04-Feb-2020

Client Project: L2003286

Cooler Receipt Temp: 1.6 °C

Client: Alpha Analytical

Locations

	Collinsville	_	Springfield		Kansas City
Address	5445 Horseshoe Lake Road	Address	3920 Pintail Dr	Address	8421 Nieman Road
	Collinsville, IL 62234-7425		Springfield, IL 62711-9415		Lenexa, KS 66214
Phone	(618) 344-1004	Phone	(217) 698-1004	Phone	(913) 541-1998
Fax	(618) 344-1005	Fax	(217) 698-1005	Fax	(913) 541-1998
Email	jhriley@teklabinc.com	Email	KKlostermann@teklabinc.com	Email	jhriley@teklabinc.com
	Collinsville Air	_	Chicago		
Address	5445 Horseshoe Lake Road	Address	1319 Butterfield Rd.		
	Collinsville, IL 62234-7425		Downers Grove, IL 60515		
Phone	(618) 344-1004	Phone	(630) 324-6855		
Fax	(618) 344-1005	Fax			
Email	EHurley@teklabinc.com	Email	arenner@teklabinc.com		

Accreditations

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

State	Dept	Cert #	NELAP	Exp Date	Lab
Illinois	IEPA	100226	NELAP	3/3/2020	Collinsville
Kansas	KDHE	E-10374	NELAP	4/30/2020	Collinsville
Louisiana	LDEQ	166493	NELAP	6/30/2020	Collinsville
Louisiana	LDEQ	166578	NELAP	6/30/2020	Collinsville
Oklahoma	ODEQ	9978	NELAP	8/31/2020	Collinsville
Arkansas	ADEQ	88-0966		3/14/2021	Collinsville
Illinois	IDPH	17584		5/31/2021	Collinsville
Kentucky	UST	0073		1/31/2020	Collinsville
Missouri	MDNR	00930		5/31/2021	Collinsville
Missouri	MDNR	930		1/31/2022	Collinsville
Tennessee	TDEC	04905		3/3/2020	Collinsville

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

Lab ID: 20011529-001 Client Sample ID: SH-103W

Matrix: AQUEOUS Collection Date: 01/23/2020 10:00

Analyse	s Certification	RL Qua	l Result	Units	DF	Date Analyzed Batch
EPA 600 1671A, PH	ARMACEUTICAL MANUFACTURII	NG INDUSTR	Y NON-PURGEA	BLE VOLA	TILE OR	RGANICS
Ethanol	*	20	ND	mg/L	1	01/29/2020 12:16 R272345

Laboratory Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

Lab ID: 20011529-002 Client Sample ID: SW-1

Matrix: AQUEOUS Collection Date: 01/23/2020 11:10

	Analyses	Certification	RL	Qual	Result	Units	DF	Date Analyzed	Batch		
EPA 600 1	EPA 600 1671A, PHARMACEUTICAL MANUFACTURING INDUSTRY NON-PURGEABLE VOLATILE ORGANICS										
Ethanol		*	20		ND	mg/L	1	01/29/2020 12:54	R272345		

Quality Control Results

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529

Client Project: L2003286 Report Date: 04-Feb-2020

EPA 600 1671A, PHAR	RMACEU	TICAL	MANUF.	ACTURING IN	DUSTRY	NON-P	URGEABLE	VOLAT	ILE ORG		
Batch R272345 Sar	mpType:	MBLK		Units mg/L							
SampID: MBLK-012920											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		ND						01/29/2020
				11.7							
****	mpType:	LCS		Units mg/L							
SampID: LCS-012920											Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		260	250.0	0	103.3	70	132	01/29/2020
Batch R272345 Sar	прТуре:	MS		Units mg/L							
SampID: 20011529-002A	AMS										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	Low Limit	High Limit	Analyzed
Ethanol			20		270	250.0	0	107.4	70	132	01/29/2020
Batch R272345 Sar	прТуре:	MSD		Units mg/L					RPE	Limit 30	
SampID: 20011529-002A	AMSD										Date
Analyses			RL	Qual	Result	Spike	SPK Ref Val	%REC	RPD Ref	Val %RPD	Analyzed
Ethanol			20		260	250.0	0	103.7	268.5	3.53	01/29/2020

Receiving Check List

http://www.teklabinc.com/

Client: Alpha Analytical Work Order: 20011529
Client Project: L2003286 Report Date: 04-Feb-2020

Completed by:
On:
28-Jan-2020
Amber M. Dilallo

Received By: KMT

Reviewed by:
On:
28-Jan-2020
Elizabeth A. Hurley

Pages to follow: Chain of custody 1 Extra pages included 0

Pages to follow: Chain of custody 1	Extra pages included				
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present	Temp °C	1.6
Type of thermal preservation?	None \square	Ice 🗹	Blue Ice	Dry Ice	
Chain of custody present?	Yes 🗹	No 🗌			
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌			
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌			
Samples in proper container/bottle?	Yes 🗹	No 🗌			
Sample containers intact?	Yes 🗹	No 🗌			
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌			
All samples received within holding time?	Yes 🗹	No 🗌			
Reported field parameters measured:	Field	Lab 🗌	NA 🗹		
Container/Temp Blank temperature in compliance?	Yes 🗹	No 🗌			
When thermal preservation is required, samples are complia 0.1°C - 6.0°C, or when samples are received on ice the sam	•	between			
Water – at least one vial per sample has zero headspace?	Yes 🗹	No 🗌	No VOA vials		
Water - TOX containers have zero headspace?	Yes	No 🗌	No TOX containers ✓		
Water - pH acceptable upon receipt?	Yes 🗹	No 🗌	NA 🗆		
NPDES/CWA TCN interferences checked/treated in the field?	Yes	No 🗆	NA 🗹		
Any No responses	must be detailed bel	ow or on the	COC.		

		firs.	hcontrac	Subcontract Chain of Custody				
		Tek Lat	b, Inc.			L	Alpha Job Number	mber
AN ALY TICAL		5445 H Collinsv	5445 Horsehoe Lake Road Collinsville, IL 62234-7425	ike Road 34-7425			L2003286	
Client Information	uc	P	Project Information	irmation	Regulatory R	equirements	Regulatory Requirements/Report Limits	S
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	-1019	Project Location: MA Project Manager: Ashaley Kane Turnaround & Deliver	գ shaley Kan։ I & Delive	ion: MA ger: Ashaley Kane round & Deliverables Information	State/Federal Program: Regulatory Criteria:	Ë		
Phone: 508-439-5132 Email: akane@alphalab.com		Due Date: 02/11/20 Deliverables:	11/20					
		Project Specific Re	equireme	cific Requirements and/or Report Requirements	nents			
Reference followin	ng Alpha Job Num	Reference following Alpha Job Number on final report/deliverables: L2003286	iverables:		Report to include Method Blank, LCS/LCSD	lank, LCS/LCS	;D:	
Additional Comments: Send all results/reports to subreports@alphalab.com	sults/reports to su	ibreports@alphalab.cc	ш					
Lab ID Client ID	O	Collection Date/Time	Sample Matrix	Analysis			ш	Batch QC
100/15/29-001 SH-103W	<i>:</i>	01-23-20 10:00 01-23-20 11:10	WATER WATER	Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A				
			J.W 1144114			6		
					0		-	
						0		
						ጎ		
				27. 1.10	3 5 205 25	163M	- Variety	
						SINING	\	
				9 2	048e)		0e/8e	
	Relinquished By	/		Date/Time:	Received By:		Date/Time:	
		\phi		12/2/	M. 02	295	1/38/90 C	240
Form No: AL_subcoc								

ANALYTICAL REPORT

Lab Number: L2006214

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Patrick Malone Phone: (978) 392-0900

Project Name: 144 ADDISON ST.

Project Number: 4232.00 Report Date: 02/17/20

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

144 ADDISON ST. Project Name:

4232.00 Project Number: Alpha Sample ID

Client ID SW-1

L2006214-01

Lab Number:

L2006214 02/17/20 Report Date:

Receive Date 01/23/20 01/23/20 11:10 Collection Date/Time EAST BOSTON, MA Sample Location WATER Matrix

ALPHA

Project Name: 144 ADDISON ST. Lab Number: L2006214
Project Number: 4232.00 Report Date: 02/17/20

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i ioaco comaci	r rojout managome	one at ooo or 1 orr	o man any quodadi	10.	

Please contact Project Management at 800-624-9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/17/20

Sufani Morrissey-Tiffani Morrissey

METALS

Project Name: Lab Number: 144 ADDISON ST. L2006214

Project Number: 4232.00 **Report Date:** 02/17/20

SAMPLE RESULTS

Lab ID: L2006214-01

Client ID: SW-1

Sample Location: EAST BOSTON, MA Date Collected: 01/23/20 11:10

Date Received: 01/23/20 Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness	s by SM 2340B	- Mansfield	d Lab								
Hardness	4040		mg/l	0.660	NA	1	02/12/20 14:1	2 02/14/20 18:28	EPA 3005A	19,200.7	LC

Project Name: 144 ADDISON ST.

Project Number: 4232.00

Lab Number:

L2006214

Report Date:

02/17/20

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	2340B - Mansfield Lal	o for sam	ple(s): C	1 Bate	ch: WG133	9926-1			
Hardness	ND	mg/l	0.660	NA	1	02/12/20 14:12	02/14/20 11:46	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

L2006214 Lab Number:

> 4232.00 Project Number:

144 ADDISON ST.

Project Name:

02/17/20 Report Date:

%Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1339926-2

100

Hardness

85-115

RPD Limits

Qual

RPD

Matrix Spike Analysis Batch Quality Control

Lab Number:

L2006214 02/17/20 Report Date: 144 ADDISON ST.

4232.00

Project Number: Project Name:

Daramotor	Native Sample	MS Added	MS	MS MS MSD one WSD one WSD	C	MSD Found	MSD Recovery RPD %Recovery Qual Limits RPD Outlines	E E	Recovery Limits	טממ	R E	RPD Limits
	-				5		(10.000 to/	555	2		222	ĺ
Total Hardness by SM 2340B - Mansfield Lab Associate	- Mansfield La	b Associated	sample(s):	sample(s): 01 QC Batch ID: WG1339926-3 QC Sample: L2005829-02 Client ID: MS Sample	th ID: WG	31339926-3	3 QC Samp	le: L200	5829-02	Client ID): MS S	amble
Hardness	10.6	66.2	74.9	26					75-125	,		20

INORGANICS & MISCELLANEOUS

Project Name: 144 ADDISON ST. Lab Number: L2006214

Project Number: 4232.00 Report Date: 02/17/20

SAMPLE RESULTS

Lab ID: L2006214-01 Date Collected: 01/23/20 11:10

Client ID: SW-1 Date Received: 01/23/20

Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
pH (H)	7.8		SU	-	NA	1	-	02/12/20 06:42	121,4500H+-B	JA

Lab Control Sample Analysis Batch Quality Control

144 ADDISON ST.

4232.00

Project Number: Project Name:

02/17/20

L2006214

Lab Number:

Report Date:

RPD Limits Qual RPD %Recovery Limits Qual LCSD %Recovery Qual LCS %Recovery Parameter

General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1339795-1

H

2 99-101 100

Lab Duplicate Analysis
Batch Quality Control

L2006214 02/17/20 Lab Number: Report Date:

144 ADDISON ST. 4232.00

Project Number: Project Name:

RPD Limits 2 General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1339795-2 QC Sample: L2006214-01 Client ID: SW-1 Qual RPD Units S **Duplicate Sample** 7.7 Native Sample 7.8 Parameter (H) Hd

Project Name: 144 ADDISON ST.

Project Number: 144 AUDISON Project Number: 4232.00

Serial_No:02172012:59 *Lab Number:* L2006214 *Report Date:* 02/17/20

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

Absent

Container Information	Container Information Container ID Container Type	Cooler	Initial pH	Final pH	Temp dea C	Pres	Seal	<i>Frozen</i> <i>Date/Time</i>	Analysis(*)
)	}			
.2006214-01A	Plastic 950ml unpreserved	⋖	œ	œ	2.2	>	2.2 Y Absent		PH-4500(.01)
.2006214-01B	Plastic 250ml HNO3 preserved	⋖	^2	<2	2.2	Y Absent	Absent		HARDU(180)

Project Name: Lab Number: 144 ADDISON ST. L2006214

Report Date: Project Number: 4232.00 02/17/20

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL. - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:144 ADDISON ST.Lab Number:L2006214Project Number:4232.00Report Date:02/17/20

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less

Report Format: Data Usability Report

Project Name:144 ADDISON ST.Lab Number:L2006214Project Number:4232.00Report Date:02/17/20

Data Qualifiers

than 5x the RL. (Metals only.)

 \boldsymbol{R} — Analytical results are from sample re-analysis.

RE - Analytical results are from sample re-extraction.

 ${f S}$ - Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:144 ADDISON ST.Lab Number:L2006214Project Number:4232.00Report Date:02/17/20

REFERENCES

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 16 Published Date: 2/17/2020 10:46:05 AM

Published Date: 2/17/2020 10:46:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

EPA TO-12 Non-methane organics

EPA 3C Fixed gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

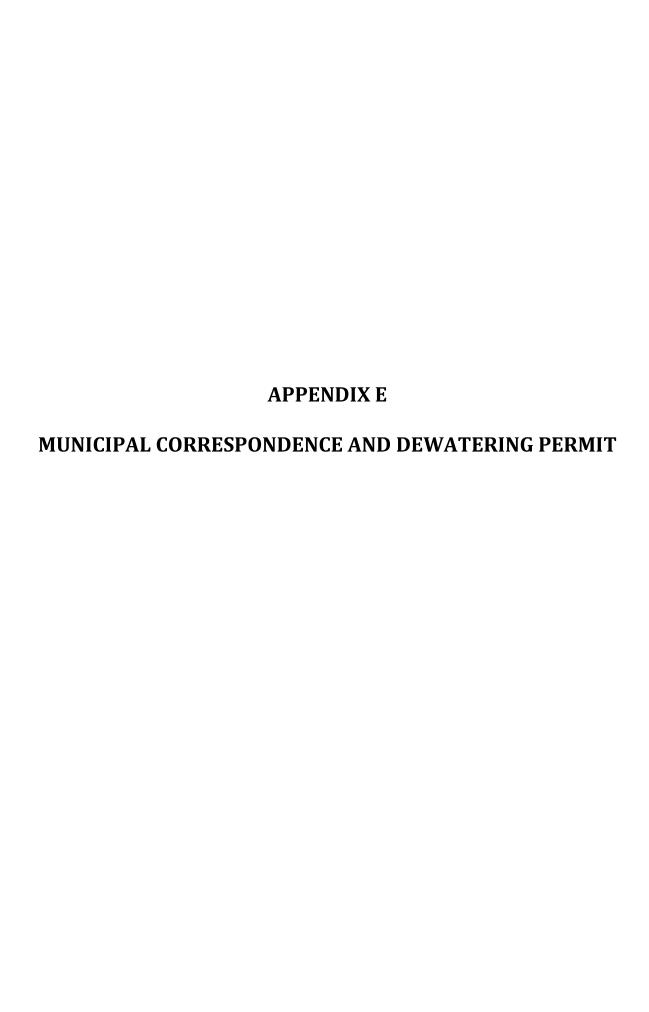
Drinking Water

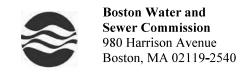
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.


EPA 245.1 Hg.


SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ALPHA	Project Information	Project Information	ation		Or -	Date Rec'd in Lab: 13330		ALPHA Job#: L	# [] COO
Westboro, NA, 01551 Tel. 506-608-9220	Nanafeel, NA 02048 Ter 508-822-9300	Project Name: 144 ApySon ST	44 ADMSON	St		TO ADEX DEMAIL	D.Sam	D.Same as Client info	it info PO#:
		Project Location: EglsT	EAST BOS	Beston MA		Regulatory Requirements & Pr	Project Information Requirements	tion Requ	nation Requirements
Chemi SANBAN FEAD	100	Project Manager: Par	Par Ma.	MA. mis		O Yes O No GW1 Standards (Info Required for Metals & EPH with Targets)	is SDG? (Requir	EPH with	Pinorganics) Targets)
PLOC ROSTON	ECO DW C	ALPHA Quote #.	1	4		Dother State /Fed Program		Criteria	
Phone: (603) 739 - 1900		Turn-Around Time	Time			1 4 6 94	1111	11	///
Email: PMALONE @ SAN BRONHDA Additional Project Information:	Email: IMMLONE @ SANBAUNHBAD.com Additional Project Information:	Date Due:	O RUSH (any confirmation	Antimos June 2000	- Grand	D Ranges On	tulidiopin	1	SAMPLE INFO
						CARN C PA	LS3d O		PH Filtration DEField DLab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Dale	Collection le Time	Sample	Sampler	NETALS	4年4年	/	Sample Comments
DS2861ctSit	1-403WK	1/3/30	80	EN EN	11.00		X	L	
9	₩-103W	12/30	00501-100	1000	1//65		\ X X		
06214-0703	Siu-1	See	VEST WAS THE	MP CAW	MPR		*	×	×
-	Preservative			Contail	Container Type		V 0 //	F	
	HOU			Pre	Preservative		こうら		
	NaOH MeOH	Relinquished By:	Į.	Date	Date/Time	Received By:	a/Time		
D. DOD Bottle	G= NayS,O; H = NayS,O; I = Azcorbe Asid J = NH,Cl	Chief C	C	odsell	350	Miles In 1	183/26)	3	All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name: Dellbrook JKS		Address: One Adan	ns Place,	859 Willard Street	
Phone Number:	I	Fax number:			
Contact person name:	7	ritle: Project Mana	ger		
Cell number:	I	Email address:			
Permit Request (check one): 🗹 No				- · · -	
Owner's Information (if different Owner of property being dewatered	from above):				
Owner's mailing address: 265 Fra	anklin St, 6th Floor	r, Boston, MA 021	10 Phon	e number: 617-904-70	000
Location of Discharge & Propose	d Treatment System	n(s):			
Street number and name: 144 A	ddison Street	Neigh	borhood E	ast Boston	
Discharge is to a: ☐ Sanitary Sewe			,	• • • • • • • • • • • • • • • • • • • •	
Describe Proposed Pre-Treatment S	System(s): Settling to	ank, bag filter, othe	er treatme	nt components	
BWSC Outfall No. 29N135	Receiving	Waters Chelsea Riv	/er		
Temporary Discharges (Provide A	nticipated Dates of Disc	 charge): From	03/01/2	2020 _{To}	02/01/2021
□ Groundwater Remediation□ Utility/Manhole Pumping□ Accumulated Surface Water	_	Fank Removal/Installation Fest Pipe Hydrogeologic Testing	on		
Permanent Discharges □ Foundation Drainage □ Accumulated Surface Water □ Non-contact/Uncontaminated Process	□ 1	Crawl Space/Footing Dra Non-contact/Uncontamin Other;	nin nated Cooling		
 Attach a Site Plan showing the source number, size, make and start reading. If discharging to a sanitary or combine If discharging to a separate storm drain as other relevant information. Dewatering Drainage Permit will be de Submit Completed Application to: 	Note. All discharges to the discharges to the discharges to the discharges and the discharges to the discharge the discharge that a copy of EPA's Notenied or revoked if applicant Boston Water and Sewer Gengineering Customer Se 980 Harrison Avenue, Boston Avenue, Boston Epigeneering Customer Se 980 Harrison Avenue, Boston Boston Avenue, Boston Boston Avenue, Boston Epigeneering Customer Se 980 Harrison Epigeneering Custo	e Commission's sewer syste MWRA's Sewer Use Discha IPDES Permit or NOI applic Int fails to obtain the necessa Commission rvices ston, MA 02119	m will be asse rge permit or a cation, or NPD	essed current sewer charges. Application. DES Permit exclusion letter for	
Signature of Authorized Representative for	or Property Owner:			Date:	

Table 1-1. BWSC Stormwater Outfalls

		I		SIZE	
OUTFALL NUMBER		LOCATION	NEIGHBORHOOD	(INCHES)	RECEIVING WATER
23H042	MAJOR	DEERFIELD ST	BOSTON PROPER	116X120	CHARLES RIVER
23L015	NON MAJOR	NORTHERN AVE	SOUTH BOSTON	24	BOSTON INNER HARBOR
23L074	NON MAJOR	SUMMER ST BRIDGE	SOUTH BOSTON	15	FORT POINT CHANNEL
23L075	MAJOR	CONGRESS ST BRIDGE	SOUTH BOSTON	54 48	FORT POINT CHANNEL
23L164	MAJOR MAJOR	CONGRESS ST BRIDGE NORTHERN AVE	BOSTON PROPER	36	FORT POINT CHANNEL BOSTON INNER HARBOR
23L195 23L196	MAJOR	NEW NORTHERN AVE BRIDGE	SOUTH BOSTON SOUTH BOSTON	36	FORT POINT CHANNEL
23L202	MAJOR	NORTHERN AVE BRIDGE	SOUTH BOSTON	36	BOSTON INNER HARBOR
24C039	NON MAJOR	NEWTON ST	ALLSTON/BRIGHTON	21	CHARLES RIVER
24C174	NON MAJOR	EASEMENT/NEWTON STREET	ALLSTON/BRIGHTON	24	CHARLES RIVER
24D032	MAJOR	N OF BEACON ST. ABOUT 800' E OF PARSONS ST	ALLSTON/BRIGHTON	119X130	CHARLES RIVER
24D150	MAJOR	SOLDIERS FIELD PLACE	ALLSTON/BRIGHTON	36	CHARLES RIVER
24G034	MAJOR	SOLDIERS FIELD ROAD, S OF CAMBRDIGE ST	ALLSTON/BRIGHTON	36	CHARLES RIVER
24G035	MAJOR	SOLDIERS FIELD ROAD/BABCOCK ST	ALLSTON/BRIGHTON	90X84	CHARLES RIVER
24L022	MAJOR	COURTHOUSE WAY	SOUTH BOSTON	48	BOSTON HARBOR
24L233	MAJOR	ROWE'S WHARF/ATLANTIC AVE	BOSTON PROPER	42	BOSTON HARBOR
25D040	MAJOR	ABOUT 390' N OF INTERSECTION OF SOLDIERS FIELD & WESTERN AVE	ALLSTON/BRIGHTON	36	CHARLES RIVER
25E037	MAJOR	EASEMENT/TELFORD ST	ALLSTON/BRIGHTON	66	CHARLES RIVER
25G041	NON MAJOR	SOLDIERS FIELD RD/NORTH OF WESTERN AVE BRIDGE	ALLSTON/BRIGHTON	24	CHARLES RIVER
25L058	MAJOR	CHRISTOPHER COLUMBUS PARK-WATERFRONT	BOSTON PROPER	84	BOSTON INNER HARBOR
25L144	NON MAJOR	CLARK STREET	BOSTON PROPER	12	BOSTON INNER HARBOR
25M006	MAJOR	MARGINAL ST EXT	EAST BOSTON	36	BOSTON INNER HARBOR
25M007	MAJOR	MARGINAL ST EXT (NEAR ORLEANS ST)	EAST BOSTON	42	BOSTON INNER HARBOR
26F038	MAJOR	HARVARD ST EXT	ALLSTON/BRIGHTON	36	CHARLES RIVER
26G001	MAJOR	SOLDIERS FIELD ROAD/EAST OF HARVARD UNIVERSITY	ALLSTON/BRIGHTON	36	CHARLES RIVER
26J049	MAJOR	NASHUA STREET	BOSTON PROPER	60	CHARLES RIVER
26J052	NON MAJOR	MONSIGNOR O'BRIEN HWY	BOSTON PROPER	12	CHARLES RIVER
26J101 (replaced 26J055)	MAJOR	LEVERETT CIRCLE	BOSTON PROPER	36	BOSTON INNER HARBOR
26K035	MAJOR	BEVERLY STREET NEAR WARREN BRIDGE	BOSTON PROPER	48x72	CHARLES RIVER
26K050	MAJOR	NASHUA STREET	BOSTON PROPER	36	CHARLES RIVER
26K052	NON MAJOR	COMMERCIAL STREET AT CHARTER ST.	BOSTON PROPER	16x24	CHARLES RIVER
26K099	MAJOR	WARREN ST EXT (FORMERLY CHELSEA ST/JOINER EXT)	CHARLESTOWN	84	CHARLES RIVER
26K254	MAJOR	NORTH WASHINGTON ST BRIDGE	CHARLESTOWN	36	BOSTON HARBOR
26L106	MAJOR	NEAR BATTERY WHARF	BOSTON PROPER	24X24	BOSTON INNER HARBOR
26L070	MAJOR	HANOVER ST EXT	BOSTON PROPER	36	BOSTON INNER HARBOR
26L084	MAJOR	LEWIS STREET	EAST BOSTON	18	BOSTON INNER HARBOR
27J001	MAJOR	EASEMENT/INTERSTATE 93	CHARLESTOWN	72	MILLERS RIVER
27J044	MAJOR	PRISON POINT BRIDGE	CHARLESTOWN	15	MILLERS RIVER
27J096	MAJOR	EASEMENT/INTERSTATE 93	CHARLESTOWN	54	MILLERS RIVER
27L020/22	MAJOR	PIER 4 EASEMENT - NAVY YARD	CHARLESTOWN	2-20&24	BOSTON INNER HARBOR
28K010	MAJOR	OLD LANDING WAY EXT	CHARLESTOWN	42	LITTLE MYSTIC CHANNEL
28K061	MAJOR	EASEMENT/MEDFORD ST/OLD IRONSIDE	CHARLESTOWN	42	LITTLE MYSTIC CHANNEL
28K386	MAJOR	EASEMENT/TERMINAL ST	CHARLESTOWN	30	LITTLE MYSTIC CHANNEL
28L073	NON MAJOR	EASEMENT/5TH AVE - NAVY YARD	CHARLESTOWN	6	LITTLE MYSTIC CHANNEL
28L074/075/076	MAJOR	16TH ST/5TH AVE - NAVY YARD	CHARLESTOWN	3-30	LITTLE MYSTIC CHANNEL
28L077	NON MAJOR	EASEMENT/16TH ST - NAVY YARD	CHARLESTOWN	10	LITTLE MYSTIC CHANNEL
28N156	NON MAJOR	COLERIDGE ST EXT	EAST BOSTON	12	BOSTON HARBOR
28N207	MAJOR	MOORE ST	EAST BOSTON	54X57	BOSTON HARBOR
280025	NON MAJOR	COLERIDGE/WADSWORTH ST. EXT	EAST BOSTON	30	BOSTON HARBOR
28P001	NON MAJOR	EASEMENT/NANCIA STREET	EAST BOSTON	12	BOSTON HARBOR
29J029	NON MAJOR	ALFORD STREET/RYAN PLGD	CHARLESTOWN	15	MYSTIC RIVER
29J129 29 J212	MAJOR	ALFORD STREET SOUTH	CHARLESTOWN CHARLESTOWN	15 72	MYSTIC RIVER
29J212 20M040	MAJOR	EASEMENT/MEDFORD ST(NEXT TO CSO 017)		48	MYSTIC RIVER
29M049 29N015	MAJOR MAJOR	CONDOR STREET	EAST BOSTON	42X44.5	CHELSEA RIVER CHELSEA RIVER
29N015 29N135	MAJOR	CHELSEA STREET ADDISON ST	EAST BOSTON EAST BOSTON	30X30	CHELSEA RIVER
290001	MAJOR	BENNINGTON ST (CONSTITUTION BEACH)	EAST BOSTON	30X30 66	
290001 29P005	NON MAJOR	SARATOGA STREET	EAST BOSTON EAST BOSTON	12	BOSTON HARBOR NEAR CONSTITUTION BEACH BOSTON HARBOR
29P044	NON MAJOR	SHAWSHEEN ST	EAST BOSTON	12	BOSTON HARBOR
30J006	MAJOR MAJOR			18	
		EASEMENT/ALFORD ST/EVERETT ALFORD ST/NORTH	CHARLESTOWN	15	MYSTIC RIVER
			CHARLESTOWN	110	MYSTIC RIVER
30J019	MAJOR		CHARLESTOWN	1/2	MYSTIC BIVER
30J019 30J030	MAJOR	EASEMENT/ARLINGTON AVE	CHARLESTOWN	42	MYSTIC RIVER
30J019 30J030 30P062	MAJOR NON MAJOR	EASEMENT/ARLINGTON AVE PALERMO AVE EXT	EAST BOSTON	12	WETLANDS
30J019 30J030	MAJOR	EASEMENT/ARLINGTON AVE			•

	able 2 1, 2017 DR	Y WEATHER OUT FA	ALL SCREENING R	ESULTS										
Facility ID	Street Location	Beceiving Water	Location Type	Inspection Date	Outfall Sign	Tidal Impact	Outfall Located	Outfall Accessible	Sampling Location	Flow	Flow Velocity	Percent Submerged	Sediment Depth	Water Depth
29N5D0135	ADDISON 5T	Chelsea River	SDO	5/30/2017	Nα	Yes	Yes:	Yes	Outfall	Flow	Slow	1	1 9	4

APPENDIX F FEDERAL CORRESPONDENCE

Meghan Reisenauer

From: Christine Vaccaro - NOAA Federal <christine.vaccaro@noaa.gov>

Sent: Friday, February 14, 2020 2:01 PM

To: Meghan Reisenauer

Cc: Patrick Malone; Stan Sadkowski

Subject: Re: Information for RGP

We do not expect any listed species to be exposed to any effects of this action.

-Chris

Chris Vaccaro
Fisheries Biologist
Protected Resources Division
NOAA Fisheries, Greater Atlantic Region
Gloucester, MA

Phone: 978-281-9167

Email: christine.vaccaro@noaa.gov

For additional ESA Section 7 information and Critical Habitat guidance, please see: www.greateratlantic.fisheries.noaa.gov/protected/section7

On Fri, Feb 14, 2020 at 1:59 PM Meghan Reisenauer <mreisenauer@sanbornhead.com> wrote:

Good afternoon,

I am writing to request information to be included as part of a Notice of Intent (NOI) for a Remediation General Permit (RGP). The NOI is for construction dewatering during excavation activities at 144 Addison St in East Boston, MA 02128. Effluent will be discharged to the Chelsea Creek/River in East Boston, MA by means of the existing storm drain on site. The Outfall through which the storm drain flows is #29N135 (29NSDO135).

Approximate Location of Discharge:

Lat: 42.387453, Long: -71.018718

As part of the application to the USEPA for the RGP, we need to determine if this proposed temporary discharge has the potential to adversely affect any federally listed species in the reach of the Chelsea River downstream of the discharge point.

Attached is the species list requested from the USFWS, which identified no threatened/endangered/candidate species or critical habitats in the area.

Please let me know if you require any further information.
Thank you,
Meghan Reisenauer Engineer
SANBORN HEAD & ASSOCIATES, INC.

D 857.327.9743 | M 208.596.1279 | 98 N. Washington Street, Suite 101, Boston, MA 02114

Click here to follow us on $\underline{LinkedIn} \mid \underline{Twitter} \mid \underline{Facebook} \mid \underline{sanbornhead.com}$

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: February 14, 2020

Consultation Code: 05E1NE00-2020-SLI-1415

Event Code: 05E1NE00-2020-E-04058

Project Name: 144 Addison

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-1415

Event Code: 05E1NE00-2020-E-04058

Project Name: 144 Addison

Project Type: DEVELOPMENT

Project Description: The location is 144 Addison St, East Boston, MA 02128. Only the eastern

portion of the address, the vacant parking lot bounded by the alley behind houses on Saratoga St and Brandywyne Dr, an area of about 3 acres, will be part of this project. Lat: 42.385721, Long: -71.014321. The proposed construction is 2 residential buildings of 4-5 levels of timber frame; first floor parking podiums for each building (including cutting the south garage to El. 10 ft); landscaped areas, retaining walls, multiple stormwater

garage to El. 10 ft); landscaped areas, retaining walls, multiple stormwater management systems, and utilities. The finished floor elevation of the

ground level is proposed to be at El. 21 ft.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.38567361313279N71.01436703292424W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

APPENDIX G

NATIONAL REGISTER OF HISTORICAL PLACES, BOSTON AND CHELSEA, MASSACHUSETTS

Appendix G National Register of Historic Places Research Documentation Boston, Massachusetts

	Bennington Street Burying Ground Ohabel Shalom Cemetery Baker Congregational Church	State State	County Suffolk Suffolk Suffolk	City Boston Boston Boston	Street & Number Bennington St, ber, Swift and harmony Sts. 147 Wordsworth St, 77 OS Saratiops 35,
00000160 00000415 00000871 01000088 01000304 01000872	Falton-Commercial Streets Historic District (Boundary Increase) Harvard Avenue Historic District Dearborn School Brighton Center Historic District Dorchester-Militon Lower Mills Industrial District (Boundary Increase) Penbody. The	3/3/2000 MASSACHUSETTS 4/28/2000 MASSACHUSETTS 8/2/2000 MASSACHUSETTS 2/20/2001 MASSACHUSETTS 4/6/2001 MASSACHUSETTS 8/8/2001 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston Boston	81-9'S Bichmond St. Roughly bounded by Linden St., Commonwealth AVe., Harvard Ave., and Park Vale Ave. 25 Ambrose St. Academy Hill R, Chestmut Hill Ave., Dighton, Elko, Henshaw, Leicester, Market, Washington, and Winship Sts. Roughly Adams, River, Methway Sts., Millers Lane, Eliot and Adams Sts. 193-19'A Shannon St.
01001048 01001557 02000081 02000154 02001039	Gibson House Boston Consumptives Hospital Frances and Isabella Apartments Greenwood Memorial United Methodist Church Pane Farnture Building	8/7/2001 MASSACHUSETTS 2/7/2002 MASSACHUSETTS 2/22/2002 MASSACHUSETTS 3/8/2002 MASSACHUSETTS 9/12/2002 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	137 Bezon St. 249 River St. 430-432 and 434-436 Dudley St. 3780-380 Washington St. 75-611 Arlington St.
02001190 03000385 03000645 03000781 04000023	Harrison Square Historic District Savin Hill Historic District Union Oyster House Publicity Bullding Benedict Fenwick School	10/22/2002 MASSACHUSETTS 5/9/2003 MASSACHUSETTS 5/27/2003 MASSACHUSETTS 8/20/2003 MASSACHUSETTS 2/11/2004 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Bounded by MBTA Braintree line embankment, Park Everett, Freeport, Mill, Asland, Blanche Sts., Victory Rd. Roughly bounded by Sarist Hill Ave., Morrissey Blvd., Dorchester Bay, and 1-93 41-63 Union Street 40-44 Promifield 5. 15 Magnolia St.
04000085 04000119 04000189 04000426 04000534	Haskell, Edward H., Home for Nurses YUCA Boston Nix's Mate Paybeacon Nazing Court Apartments Hibermain Hall	2/26/2004 MASSACHUSETTS 3/3/2004 MASSACHUSETTS 3/18/2004 MASSACHUSETTS 5/12/2004 MASSACHUSETTS 6/2/2004 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	220 Psther Ave. 63 Parker Hill Ave.
04001572	Fort Point Channel Historic District Forest Hills Centerery Tramana Parkway—Metropolitan Park System of Greater Boston VPW Parkway, Metropolitan Park System of Greater Boston Morton Street, Metropolitan Park System of Greater Boston	9/10/2004 MASSACHUSETTS 11/17/2004 MASSACHUSETTS 1/5/2005 MASSACHUSETTS 1/5/2005 MASSACHUSETTS 1/24/2005 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Necos Court, Thomson Place, A, Binford, Congress, Farnsworth, Melcher, Midway, Sieeper, Stillings, Summer Sts. 95 Forest Hills, Carlosses, Stransworth, Melcher, Midway, Sieeper, Stillings, Summer Sts. 17 Tuman Parkway 17 Warkway, Det, Spring And Centre Sts. Morron St. 18 Morron St.
04001573 05000459 05000559 05000879 05000936 05001509	Neponset Valley Parkway, Metorpolitan Park System of Greater Boston Ayer, Frederick Mansion Collins Bullding Home for Aged Couples South Boston Boat Clubs Historic District	1/24/2005 MASSACHUSETTS 4/5/2005 MASSACHUSETTS 6/8/2005 MASSACHUSETTS 8/11/2005 MASSACHUSETTS 9/1/2005 MASSACHUSETTS 1/2005 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston Boston	Neponset Valley Parkway 395 Commonwelth Avenue 213-217 Washington St. 409, 419 Walnut Ave, and 2055 Columbas Ave. 1793-1849 William J. Day Blvd.
05001509 05001530 06000127 07000510 07000861 08000089	Stony Brook Reservation Parkways, Netropolitan Park System of Great Boston MPS Charles River Reservation Parkways East Boston High School, Old Goldsmith Block Boston Transit Commission Building Dorchester Park	1/3/2006 MASSACHUSETTS 1/18/2006 MASSACHUSETTS 3/15/2006 MASSACHUSETTS 6/5/2007 MASSACHUSETTS 6/3/1/2007 MASSACHUSETTS 8/31/2007 MASSACHUSETTS 2/20/2008 MASSACHUSETTS	Middlesex Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston Boston	Dedham, Enneking, Turtle Pond Parkways, Smith Field, Reservation, W, Border Rds, Soldiers Field, Nonatum, Leo Birmingham, Arsenal, Greenough, N, Beacon, Charles River, Norumbega, Recreation, 127 Marion St. 41 Ruggles St. 746-750 Shawmut Ave. 15 Beacon St. 41 Ruggles St. 746-750 Shawmut Ave. 15 Beacon St.
08000693 08000793 08001284 09000612 09000717	Old Harbor Reservation Parkways, Metropolitan Park System of Greater Boston Joshua Bates School	7/24/2008 MASSACHUSETTS 8/22/2008 MASSACHUSETTS 8/22/2008 MASSACHUSETTS 12/31/2008 MASSACHUSETTS 8/14/2009 MASSACHUSETTS 9/16/2009 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston	Bounded by Dorchester Ave, Richmond, Adams & Richview Sts, William L.Das Wic, Columbia Rd, between Farragat Rd and Kosciuszko Cir., Old Colony Ave, between Pacuska Ave, 731 Harrison Ave, 139, 161/175 Devensture St, 18-20 Arch St. 2060 Commonwealth Ave.
09000767 09000936 10000039 100001314 100001315	Pairview Cennetery Moddlesse, Canal Historic and Archeological District EDMAG, shipworek (Edstern Rig dragger) Boston Fish Pier Historic District Columbia Road—Powo Street Historic District Columbia Road—Powo Street Historic District	9/16/2009 MASSACHUSETTS 9/24/2009 MASSACHUSETTS 11/19/2009 MASSACHUSETTS 11/22/2010 MASSACHUSETTS 7/13/2017 MASSACHUSETTS 7/17/2017 MASSACHUSETTS	Suffolk Suffolk Middlesex Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston Boston	45 Fairstew Ave. 355 Walk Hill St. Address Restricted 212-224 Northern Ave. 193-223 (odd 8.00-204 (even) Columbia Rd.
100001458 100001582 100002734 100002790	Columnia rosar—Pervis Guider (en motor, to sixtic. Quimy Grainman (en motor) (en sixtic. Columbia Road—Bellevue Street Historic District Columbia Road—Bellevue Street Historic District Benjamin Silverman Apartments Benjamin Silverman Apartments Highand Spring Forewry Bottling and Storage Bulldings	7/17/2017 MASSACHUSETTS 8/1/2017 MASSACHUSETTS 9/8/2017 MASSACHUSETTS 8/3/2018 MASSACHUSETTS 8/24/2018 MASSACHUSETTS 5/28/2010 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	159-243 (10d) & 200-201 (veel) Columbia Rd. 863-90 Tyler St. 400-500 Bb, of Columbia Rd., portions of Bellevue St. 90-94(102-108) Bb, of Columbia Rd., portions of Bellevue St. 90-94(102-108) Bi-11, 1120-155, 137, 145-147, 150-156 Columbia & 16 Strathcona Rds, 114-126 Washington St. 55-52 Lorne & 4 Wilson St. 159-54 Derme & 4 Wilson St. 159-55 (100-108) Bb, of Columbia Rd. 159-167, 100-168, 114-126 Washington St. 159-54 (100-108) Bb, of Columbia Rd. 159-167, 100-168, 114-126 Washington St. 159-54 (100-108) Bb, of Columbia Rd. 159-168, 114-126 Washington St. 159-54 (100-108) Bb, of Columbia Rd. 159-168, 114-16
100003070 100003470	Esmond Street Historic District Intervale Street-Columbia Road Historic District Sammel Edelman Apartments Second Church in Boston Natham Warrick Apartments Anaham Warrick Apartments	11/5/2018 MASSACHUSETTS 2/28/2019 MASSACHUSETTS 3/5/2019 MASSACHUSETTS 6/24/2010 MASSACHUSETTS 12/23/2019 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Bicknetl, Bradsthaw, Esmond, & Harvard Sts. 1174-121, 128-127, 128-1155, 137-143, 145-159, 161, 162 Intervale St. & 282-284, 286-288 Columbia Rd. 97-103 Nordick St. 874, 876, 880 Beacon St. 578 Bicknetl St.
12000069	Ascension-Caproni Historic District Charles River Reservation (Speedway)—Upper Basin Headquarters Egleston Substation United State Post Office, Courthouse, and Federal Building Fenway Park	12/23/2019 MASSACHUSETTS 7/19/2010 MASSACHUSETTS 12/27/2010 MASSACHUSETTS 4/8/2011 MASSACHUSETTS 3/7/2012 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Roughly bounded by Washington St. Newcomb St, Thoradike St. & Reed St. 1420-1449 Soldiers Field Rd 3025 Washington St 5 Post Office Square 24, 8.2 4 Yawkey W., 64-76 Brookline Ave., & 70-80 Lansdowne St.
12000099 12000783 12000978 12001012 12001162	Terminal Storage Warehouse District Saint Marris E piscopal Church Sherman Apartments Historic District Central Congregational Church Commonwealth Pier Five	3/12/2012 MASSACHUSETTS 7/3/2014 MASSACHUSETTS 11/28/2012 MASSACHUSETTS 10/16/2012 MASSACHUSETTS 10/10/1979 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	2-67-281 Medford St, 40 & 50 Terminal St, 73 Columbia Rd. 544-546 Washington, 4-6, 12-14, 18 Lynchurst Sts. 67 Newbury St. 165 Northern Ave.
13000621 13000928 13000929 13000930 14000272	Roslindale Substation Davidson, Sarah, Apartment Block Pilgrin Congregational Church Walton and Roslin Halls Blake and Amory Budiding	8/27/2013 MASSACHUSETTS 12/18/2013 MASSACHUSETTS 12/18/2013 MASSACHUSETTS 12/18/2013 MASSACHUSETTS 6/2/2014 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston	4228 Washington St. 3 Gaylord St. 540-544 Columbia Rd. 702-708 710-726 Washington St. 3-5 Walton St. 557 Temple Pt.
14000365 14000561 14000698 14000840 14000974	Dorchester South Burying Ground Buldings at 255–267 Blue Hill Avenue Almont Apartments Home for Destitute Jewish Children Gridley Street Historic District	6/27/2014 MASSACHUSETTS 9/10/2014 MASSACHUSETTS 9/22/2014 MASSACHUSETTS 10/8/2014 MASSACHUSETTS 12/3/2014 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	2095 Dorchester Ave. 925-820 Bine IIII Ave. Address Restricted Address Restricted Bounded by Congress, High, Pearl & Purchase Sts.
14000975 14001095 15000048 15000195 15000942	Lyman. Theodore, School South End District (Boundary Increase) Boston Police Station Number One—Traffic Tunnel Administration Building Boston National Historical Park Fox, Li, Building	12/2/2014 MASSACHUSETTS 12/29/2014 MASSACHUSETTS 3/3/2015 MASSACHUSETTS 5/5/2015 MASSACHUSETTS 12/29/2015 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	30 Gove St. 200-224 Northampton St. 128, 150 North & 130 -140 Richmond St. Charlestown Navy Yard 407 Washington St.
16000409 16000454 66000050 66000127 66000130	Francis Street-Fenwood Road Historic District Governor Shirley Square Historic Ustrict Dorchester Heights National Historic Site Arnold Arboretum Beacon Hill Historic District	6/23/2016 MASSACHUSETTS 7/18/2016 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Roughb bounded by Huntington Ave, Francis, Vining & Fernwood Sts, St. Albans Rd. Dudley, Hampden, Dummore & Magarine Sts, Blue Hill & Mr. Pleasant Ave. South Boston 22 Divinity Ave. Bounded by Beacon St, the Charles River Embankment, and Pinickney, Revere, and Hancock Sts.
66000132 66000133 66000134 66000138 66000141	Boston Albenseum Boston Light Boston Naval Shipyard Bunkor Hill Monument Brook Farm	10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 11/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	10 1/2 Beacon St. Little Brewster Island, Boston Harbor E of Cheles St., Charlestown Breed's HIII 670 Baker St.
66000368 66000653 66000764 66000765	Ether Dome, Massachusetts General Hospital Faneuil Hall Garrison, William Lloyd, House Harding, Chester, House Handquarters House	10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Fruit S, Dock Su, 125 Highland S, 16 Beacon S. 55 Beacon S.
66000768 66000770 66000771 66000776 66000778	Long Wharf and Customhouse Block Massachusett Britorical Society Building Massachusett Statehouse Old North Church Old South Meetinghouse	11/13/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Foot of State St. 1154 Boylston St, Beacon Hill 193 Salem St. Milk and Washington Sts.
	Old State House Parkman, Francis, House Quincy Market Revere, Paul, House Tremont Street Subway	10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 11/13/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS 10/15/1966 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Washington and State Sts. 50 Chestrant St. S. Market St. 19 North Sq. Henerath Tremont, Boylston, and Washington Sts.
66000789 68000042 70000539 70000540 70000682	U.S.S. CONSTITUTION Perce-Hichorn House Oits, (First) Harrison Gray, House Fort Warren Bassachusetts General Hospital	10/15/1966 MASSACHUSETTS 11/24/1968 MASSACHUSETTS 12/30/1970 MASSACHUSETTS 8/29/1970 MASSACHUSETTS 12/30/1970 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Boston Naval Shipyard 29 North Sq. 141 Cambridge St. Georges Island, Boston Harbor Fruit Street
70000687 70000690 70000691 70000730 70000731	Old City Hall	12/30/1970 MASSACHUSETTS 12/30/1970 MASSACHUSETTS 12/30/1970 MASSACHUSETTS 12/30/1970 MASSACHUSETTS 12/30/1970 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	School and Providence Sts. 605 Boylston St. 131 Cambridge St. 136 Termont St. 42 Beacon St.
70000733 70000921 71000087 72000144 72000145	Trinity Church Fort Independence African Meetinghouse Boston Common and Public Garden Growainshield House	7/1/1970 MASSACHUSETTS 10/15/1970 MASSACHUSETTS 10/7/1971 MASSACHUSETTS 7/12/1972 MASSACHUSETTS 2/23/1972 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Copley Sq. Castle Stland 8 Smith St. Beacon, Park, Tremont, Boyleton, and Arlington Sts. 1164 Maribrorugh St.
72000544 73000313 73000314	First Baptis: Church Trintin) Rectory Loring-Greenough House Arlington Street Church Armony of the First Corps of Cadets	2/23/1972 MASSACHUSETTS 2/23/1972 MASSACHUSETTS 4/26/1972 MASSACHUSETTS 5/4/1973 MASSACHUSETTS 5/22/1973 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Commonwealth Ave. and Clarendon St. Clarendon and Newbury Sts. 12 South St. Arlington and Boylston Sts. 97-105 Arlington St. and 130 Columbus Ave.
73000317 73000318 73000319 73000321	Blackstone Block Historic Ustrict Boston Public Livrary Cyclorama Building Fulton-Commercial Streets District Costom House District Costom House District	5/26/1973 MASSACHUSETTS 5/6/1973 MASSACHUSETTS 4/13/1973 MASSACHUSETTS 3/21/1973 MASSACHUSETTS 5/11/1973 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	Area bound by Union, Hanover, Blackstone, and North Sts. Copiny Stg. 543-547 Tremont St. Fulton, Commercial, Mercantile, Lewis, and Richmond Sts. Between J.F.R., Expwy, and Kirby St, and S. Market and High and Batterymarch Sts.
73000322 73000324 73000325 73000850 73000854	Old Corner Boolstore South End District Hale, Edward Everett, House Town Hill District John Bliof Square District	4/11/1973 MASSACHUSETTS 5/8/1973 MASSACHUSETTS 3/21/1979 MASSACHUSETTS 5/11/1973 MASSACHUSETTS 4/23/1973 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	NW corner of Washington and School Sts. South Bay area between Huntington and Harrison Aves. 12 Morley St. Bounded roughly by Rutherford Ave, and Main and Warren Sts. John Ellor Stg. John Ellor Stg.
73000855 73000856 73001948 73001953 73001955	Kitredge, Alvah, House Roshury High Fort Back Bay Historic District Sunner: Charles, House Ust, Second) Harrison Gray, House	5/8/1973 MASSACHUSETTS 4/23/1973 MASSACHUSETTS 8/14/1973 MASSACHUSETTS 11/7/1973 MASSACHUSETTS 7/27/1973 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	12 Linvood St. Beech Glien St. at Fort Ave. Roughly bounded by the Charles River, Arlington, Providence, Boylston and Newbury Sts., and Charlesgate East 20 Hannock St. SS Mr. Vernon St.
74000382 74000385 74000388 74000390 74000391	Ames Building Copps Hill Burtial Ground Eilot Burying Ground Park Street District Only Addams Courtboase	4/26/1974 MASSACHUSETTS 4/18/1974 MASSACHUSETTS 6/25/1974 MASSACHUSETTS 5/1/1974 MASSACHUSETTS 5/8/1974 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston Boston	1 Court S. Charter, Showhill, and Hull Sts, Eustis and Washington Sts, Tremont, Park, and Beacon Sts, Pemberton Sp.
74000907	Winthrop Building Youth's Companion Building Phipps Street Burying Ground Clapp Houses	4/18/1974 MASSACHUSETTS 5/2/1974 MASSACHUSETTS 5/14/1974 MASSACHUSETTS 5/2/1974 MASSACHUSETTS	Suffolk Suffolk Suffolk Suffolk	Boston Boston Boston Boston	7 Water St. 20 Autor St. Phipps St. 199 and 195 Boston St.

Appendix G National Register of Historic Places Research Documentation Boston, Massachusetts

74000915	Dorchester North Burying Ground	4/18/1974 MAS	SSACHUSETTS	Suffolk	Boston	Stroughton St. and Columbia Rd.
74000917 74002044	Pierce House Howe, Samuel Gridley and Julia Ward, House	4/26/1974 MAS 9/13/1974 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	24 Oakton Ave. 13 Chestnut St
74002045 74002222 74002350	King's Chapel Boston National Historical Park Blake, James, House	5/2/1974 MAS 10/26/1974 MAS 5/1/1974 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	Tremont and School Sts. Inner harbor at mouth of Charles River 735 Columbia Rd,
75000300	South Station Headhouse St. Stephen's Church	2/13/1975 MAS 4/14/1975 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	Atlantic Ave. and Summer St. Hanover St. between Clark and Harris Sts.
	Symphony and Horticultural Halls Nell, William C, House Appleton, Nathan, Residence	5/30/1975 MAS 5/11/1976 MAS 12/22/1977 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	Massachusetts and Huntington Aves. 3 Smith Ct. 39-40 Reacon St.
78000473 79000368	Fenway Studios Bedford Building	9/13/1978 MAS 8/21/1979 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	30 (pswich St. 89-103 Bedford St.
79000369 79000370 80000442	International Trust Company Building Washington Street Theatre District Wirth, Jacob, Buildings	9/10/1979 MAS 3/19/1979 MAS 12/9/1980 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	39-47 Milk St. 511-559 Washington St. 31-39 Stuart St.
80000443 80000444	Wilbur Theatre Shubert, Sam S., Theatre	12/9/1980 MAS 12/9/1980 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	244-250 Tremont St. 263-265 Tremont St.
80000445 80000446 80000448	Metropolitan Theatre Hayden Building Dill Building	12/9/1980 MAS 12/9/1980 MAS 12/9/1980 MAS		Suffolk Suffolk Suffolk	Boston Boston Boston	252-272 Tremont St. 681-683 Washington St. 11-25 Stuart St.
80000450 80000451	Boylston Building Boston Young Men's Christian Union	12/9/1980 MAS 12/9/1980 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	2-22 Boylston St. 48 Boylston St.
80000453 80000455 80000458	Boston Edison Electric Illuminating Company West Street District Piano Row District	12/9/1980 MAS 12/9/1980 MAS 12/9/1980 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	25-39 Boylston St. West St. Boston Common, Park Sq. Boylston Pl. and Tremont St.
80000450 80000462	Hand Now District Liberty Tree District Beach-Knapp District	12/9/1980 MAS 12/9/1980 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	Roughly bounded by Harrison Ave, Washington, Essex and Beach Sts. Roughly bounded by Harrison Ave, Washington, Kneeland, and Beach Sts.
80000463 80000465 80000668	Russia Wharf Buildings Oak Square School United Shoe Machinery Corporation Building	12/2/1980 MAS 11/10/1980 MAS 8/19/1980 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	518-540 Atlantic Ave. 270 Congress St. and 276-290 Congress St. 35 Nonantum St. 138-164 Federal St.
80000669	Union Wharf Suffolk County Jail	6/22/1980 MAS 6/22/1980 MAS 4/23/1980 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	295-353 Commercial St. 215 Charles St.
80000671 80000672 80000674	Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School	6/16/1980 MAS 5/14/1980 MAS 4/16/1980 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	140 Tremont St. 290 Hutthigton Ave. 290 Hutthigs St.
	Garrison, winiam Loyu, school Dorchester-Milton Lower Mills Industrial District Charles Playhouse	4/2/1980 MAS 4/2/1980 MAS 6/16/1980 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	20 nutrings st. Both sides of Neponset River 74-78 Warenton St.
	Berger Factory All Saints' Church	4/9/1980 MAS 6/16/1980 MAS 4/9/1980 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	37 Williams St. 211 Ashmont St.
80004396	Dillaway School Boston African American National Historic Site Fields Corner Municipal Building	10/10/1980 MAS 10/12/1981 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	1.6-20 Kenllworth St. Museum of Afro-American History, Dudley Station, Box S 1 Arcada St, 195 Adams St.
82000486 82004448	Wigglesworth Building Roughan Hall	10/21/1982 MAS 4/15/1982 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston	89-83 Franklin St. 15-18 City Sq.
82004450 82004453 82004456	McKay, Donald, House Haffenreffer Brewery Adams-Nervine Asylum	5/2/1982 MAS 6/1/1982 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	78-80 White St. Germania St. 1990-1020 Centre St.
83000601 83000602	Charles Street African Methodist Episcopal Church Codman Square District	9/1/1983 MAS 6/23/1983 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	551 Warren St. Norfolk, Talbot, Epping, Lithgow, Centre, and Moultrie Sts.
	Gardner, Isabella Stewart, Museum Loring, Harrison, House Harvard Avenue Fire Station	1/27/1983 MAS 9/1/1983 MAS 3/31/1983 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	280 The Fenway 789 F. Broadway St. 16 Harvard Ave.
83000606 83000607	Lawrence Model Lodging Houses Newspaper Row	9/22/1983 MAS 7/7/1983 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	79, 89, 99 and 109 E. Canton St. 322-328 Washington St. 5-23 Milk St. and 11 Hawley St.
	Godman Building Leather District LUNA (tugboat)	10/19/1983 MAS 12/21/1983 MAS 10/6/1983 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	55 Kilby St. Roughly bounded by Atlantic Ave., Kneeland, Lincoln, and Essex Sts. NDC Pier, Charles River
83004285 84000421	Baker, Sarah J. School Vermont Building	7/7/1983 MAS 11/13/1984 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	33 Perrin St. 6-12 Thacher St.
	Fenway-Boylston Street District Moreland Street Historic District Bigelow School	9/4/1984 MAS 3/29/1984 MAS 2/21/1985 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	Fenway, Boylston, Westland, and Hemenway Sts. Roughly bounded by Kearsarge, Blue Hill Aves, Warren, Waverly, and Winthrop Sts. 350 W. 4th St.
85000317 85000318	Dimock Community Health Center Complex Dorchester Pottery Works	2/21/1985 MAS 2/21/1985 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	41 and 55 Dimock St. 101-105 Victory Rd.
85003074	Building at 138–142 Portland Street Dudley Station Historic District Boston Harbor Islands Archeological District	9/5/1985 MAS 12/5/1985 MAS 12/21/1985 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	138-142 Portland St. Washington, Warren, and Dudley Sts. Address Restricted
85003375 86000084	Engine House No. 34 USS CASSIN YOUNG (destroyer)	10/24/1985 MAS 1/14/1986 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	444 Western Ave, Charlestown Navy Yard
86000140 86000274 86000375	Christ Church Bulfinch Triangle Historic District Harriswood Crescent	2/27/1986 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	1220 River Rd. Roughly bounded by Canal, Market, Merrimac, and Causeway Sts. 60–88 Harold St.
86001486 86001504	Sears' Crescent and Sears' Block Richardson Block	8/9/1986 MAS 8/9/1986 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	38-68 and 70-72 Cornhill 113-151 Pearl and 109-119 High Sts
86001909 86001911 86001913	Filen's Department Store LockeOber Restaurant Second Brazer Building	7/24/1986 MAS 7/24/1986 MAS 7/24/1986 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	426 Washington St. 34 Winter Pl. 2529 State St.
87000757 87000760	Harvard Stadium Boston Common	2/27/1987 MAS 2/27/1987 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	60 N. Harvard St. Beacon, Park, Tremont, Boylston, and Charles St.
87000885	Boston Public Garden Abbotsford Monument Square Historic District	2/27/1987 MAS 9/16/1987 MAS 6/2/1987 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	Beacon, Charles, Boylston, and Arlington Sts. 300 Walnut Ave Monument So.
87001394 87001396	New Riding Club Congress Street Fire Station	8/20/1987 MAS 9/3/1987 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	52 Hemenway St. 344 Congress St.
87001399	House at 17 Cranston Street Hoxie, Timothy, House Austin, Francis B, House	11/20/1987 MAS 11/20/1987 MAS 10/21/1988 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	17 Cranston St. 13 Cranston St. 58 High St.
87001481 87001495	Long Island Head Light Saint Augustine Chapel and Cemetery	6/15/1987 MAS 9/18/1987 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	Long Island Dorchester St. between W. Sixth and Tudor Sts.
87001889	Bunker Hill School Sumner Hill Historic District District 13 Police Station	10/15/1987 MAS 10/22/1987 MAS 2/10/1988 MAS	SACHUSETTS	Suffolk Suffolk	Boston Boston Boston	65 Baldwin St. Roughly bounded by Seaverns Ave., Everett St., Carolina Ave., & Newbern St. 28 Seaverns Ave.
88000427 88000908	Temple Place Historic District Goodwin, Ozias, House	7/26/1988 MAS 6/23/1988 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	1155, 2658 Temple Pl. 7 Jackson Ave.
88000957 88000959	First Church of Jamaica Plain Greek Orthodox Cathedral of New England Eliot Hall	7/15/1988 MAS 6/30/1988 MAS 7/15/1988 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	6 Eliof St. 520 Parker St. 7A Eliof St.
89000004 89000147	Mount Pleasant Historic District Roxbury Highlands Historic District	2/9/1989 MAS 2/22/1989 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	Roughly bounded by Forest St. and Mount Pleasant Ave. Roughly bounded by Dudley St. Washington St. and Columbus Ave.
89000974 89001747 89002125	Massachusetts School of Art Mission Hill Triangle Historic District Roxbury Presbyterian Church	8/3/1989 MAS 11/6/1989 MAS 3/15/1991 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	364 Brookline Ave. Roughly bounded by Smith St., Worthington St., Tremont St., and Huntington Ave. 328 Warren St.
89002169 89002251	St. Joseph's Roman Catholic Church Complex Bellevue Standpipe Chestnut Hill Reservoir Historic District	12/28/1989 MAS 1/18/1990 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	Bounded by Circuit, Regent, Hulbert, and Fenwick Sts. On Bellevue Hill at Washington St. and Roxbury Pkwy.
90000631 90001095	Copp's Hill Terrace Calf Pasture Pumping Station Complex	1/18/1990 MAS 4/19/1990 MAS 8/2/1990 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	Beacon St, and Commonwealth Ave. Between Commercial and Charter Sts. W of Jackson Place 435 Mount Version St.
90001145 90001536	Bowditch School Monument Square Historic District	8/3/1990 MAS 10/11/1990 MAS 10/11/1990 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	8082 Greene St. Roughly bounded by Jamaicaway, Pond, Centre and Eliot Sts.
90001757 90001992	Upham's Corner Market Textile District Sears Roebuck and Company Mail Order Store	11/29/1990 MAS 1/15/1991 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	600 Columbia Rd. Roughly, Essex St. from Phillips Sq. to Columbia St. and Chauncy St. from Phillips Sq. to Rowe Pl. 309 Park Dr. and 201 Brookline Ave.
92000356 93001489	Trinity Neighborhood House Massachusetts Mental Health Center	4/14/1992 MAS 1/21/1994 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	406 Meridian St. 74 Fenwood Rd.
93001587 94001492	House at 1 Bay Street Eliot Congregational Church Faneuil, Peter, School	2/9/1994 MAS 2/9/1994 MAS 12/16/1994 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	1 Bay St. 56 Dale St, corner 118–120 Walnut St. 66 Day St.
94001494 95001450	Lower Roxbury Historic District Riviera, The	12/9/1994 MAS 12/7/1995 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	Roughly, area surrounding Coventry, Cunard, and Walpole Sts. 270 Huntington Ave.
97000920 97000969	Douglass, Frederick, Square Historic District Brighton Evangelical Congregational Church Charlestown Heights	10/3/1996 MAS 8/21/1997 MAS 1/8/1998 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	Roughly bounded by Hammond St., Cobat St., Windsor St., and Westminister St., Lower Roxbury 404-410 Washington St. Roughly bounded by St. Martin, Bunker Hill, Medford, and Sackville Sts.
	Students House North Terminal Garage	9/11/1997 MAS 9/11/1997 MAS	SSACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston	96 The Fenway 600 Commercial St.
97001278	Dorchester Temple Baptist Church ROSEWAY (schooner) Allston Congregational Church	1/16/1998 MAS 9/25/1997 MAS 11/7/1997 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	670 Washington St. Boston Harbor 33-41 Quint Ave.
97001472 98000149	St. Luke's and St. Margaret's Church Eagle Hill Historic District	11/12/1997 MAS 2/26/1998 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	5-7 St. Luke's Rd. Roughly bounded by Border, Lexington, Trenton, and Falcon Sts.
98001292 98001330	Boston Young Men's Christian Association St, Mary's Episcopal Church Roslindale Baptist Church	8/20/1998 MAS 10/30/1998 MAS 11/5/1998 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	312-320 Huntington Ave. 14-16 Cushing Ave. 52 Cummins Hwy.
98001361 99000593	Cathedral of St. George Historic District Woodbourne Historic District	11/25/1998 MAS 6/4/1999 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Boston Boston	517-523-525 F. Broadway Roughly bounded by Walk Hill, Goodway, and Wachusett Sts.
99001302	Symphony Hall Mariner's House Congregation Adath Jeshurun	1/20/1999 MAS 11/12/1999 MAS 11/12/1999 MAS	SACHUSETTS	Suffolk Suffolk Suffolk	Boston Boston Boston	301 Massachusetts Avenue 11 North Square 397 Blue Hill Ave.
99001308 99001614	First Congregational Church of Hyde Park Church Green Buildings Historic District	11/12/1999 MAS 12/30/1999 MAS	SACHUSETTS SSACHUSETTS	Suffolk Suffolk	Boston Boston Chelsea	6 Webster St. 101-113 Summer St.
07001241 09000144	Chelsea Garden Cemetery Revere Boach ParkwayMetropolitan Park System of Greater Boston Chelsea Square Historic District	2/9/2001 MAS 12/6/2007 MAS 4/8/1982 MAS	SACHUSETTS SACHUSETTS	Suffolk Middlesex Suffolk	Chelsea Chelsea Chelsea	70 Central Ave. [formerly Shawmut SL] Revere Beach Pkwy Roughly area around Broadway, Medford, Tremont, Park, Cross and Winnisimmet Sts.
73000851 74000908	Naval Hospital Boston Historic District Bellingham-Cary House	8/14/1973 MAS 9/6/1974 MAS	SACHUSETTS SACHUSETTS	Suffolk Suffolk	Chelsea Chelsea	1 Broadway 34 Parker St.
88000718	Kimball, C. Henry, House Bellingham Square Historic District Downtown Chelsea Residential Historic District		SSACHUSETTS SSACHUSETTS	Suffolk Suffolk Suffolk	Chelsea Chelsea Chelsea	295 Washington St. Roughly bounded by Broadway, Shawmut, Chestnut, and Shurtleff Sts. Roughly bounded by Shurtleff, Marginal, and Division Sts. and Bellingham Sc.
	Congregation Agudath Shalom	4/16/1993 MAS		Suffolk	Chelsea	145 Walnut St.

Notes:
1. Sanborn, Head & Associates, Inc. (Sanborn Head) conducted a review of the National Register of Historic Places within Boston and Chelsea, Massachusetts. The search returned the results listed above. The Site is not listed on the National Register of Historic Places.
2. Shaded results are located within 0.5 mile of the Site.

March 11, 2020 U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square - Suite 100 (OEP06-01) Boston, MA 02109-3912

East Boston, Massachusetts,

Re:

Deficiency Response for Notice of Intent (NOI) for Remediation General Permit 144 Addison Street Project Construction Dewatering Discharge of Treated Groundwater to Chelsea River

Flocculants

All information required in Part 2.5.2.g.iii

- 1) Product name, chemical formula, and manufacturer of the chemical or additive; Provided in the Safety Data Sheet included as Attachment 1. Products used are either the combination of DBS-2100 and Gel-Floc OR the BHR-P50 Hybrid Flocculant. A determination of which flocculant system should be used, will be conducted with field test kits prior to start-up of the treatment system.
- 2) Purpose or use of the chemical or additive; To achieve effluent limitations, set for the TSS, flocculant tubes, as part of the HaloKlear Dual Polymer System (DPS) are a required part of the treatment system design. The DPS uses a sequence of coagulation (DBS-2100) and flocculation (Gel-Floc) treatment reactions to remove particles from the influent. The same result is achieved with the liquid BHR-P50 Hybrid Flocculant when it is injected with a metering pump. A determination of which flocculant system should be used, will be conducted with field test kits prior to start-up of the treatment system.

The coagulant will neutralize the electrical charges which make particles suspended in solution, and the flocculant will collect the particles, so they can agglomerate. Agglomerates will then settle out of solution in the fractionation tanks or be removed as influent passes through the bag and media filters, prior to discharge. Additionally, some metals in the influent are suspected to be adsorbed to soil particles. Through the removal of soil particles via flocculant tubes OR dosed liquid flocculant, it is expected that the metal concentrations in the effluent will decrease.

- 3) Safety Data Sheet (SDS) and Chemical Abstract Service (CAS) Registry number for each chemical or additive; Provided in Attachment 2.
- 4) The frequency (e.g. hourly, daily), duration (e.g., hours, days), magnitude (i.e. frequency as maximum and average concentration), and method of application for the chemical or additive; The DPS uses a sequence of polymers that perform coagulation and flocculation reactions. Both the coagulant (DBP-2100) and flocculant (Gel-Floc) are dry powders integrated in the treatment system as socks, placed within the flocculant tube. The socks continuously dose as the influent flows through the tube; therefore, the method of application for the coagulants/flocculants would be in-line discharge prior to water entering the fractionation tanks. Each sock doses at 100 ppm for a flow of 150 gallons per minute (GPM). The pump rate through the flocculant tube at the Site is approximately 300 GPM; therefore, the maximum concentration would be 200 ppm per minute. When water stops flowing through the system, dosing will also cease. Since the dosing is dependent on the flow through the treatment system, the frequency and duration at which the influent is exposed to the coagulant/flocculant is continuous flow, whenever dewatering is occurring. The coagulation and flocculant will be added at a constant dosage rate of 200 ppm per minute per sock. The treatment system will be operated for a maximum of 8 hours per day for a maximum daily concentration of 96,000 ppm per day per sock. The same frequency calcs apply for the liquid flocculant, BHR-P50.
- 5) Any material compatibility risks for storage of the chemical or additive; Provided in the SDS in Attachment 1.
- 6) If available, the vendor's reported aquatic toxicity; Provided in the SDS in Attachment 1.
- 7) A description of the material management control measures employed; The operational description of the DPS is provided as Attachement 2. IF the liquid flocculant, BHR-P50 is the chosen flocculant for the project, it will arrive on-site in 275-gallon totes and be stored in a secondary containment berm. A metering pump will draw from the tote and dose small amounts of BHR-P50 through an injection spool, installed on the influent hose, in-line after the NaOH dosing system and prior to the second 21K frac tank. The dosing will be adjusted based on influent flowrates. The containment berm will be capable of containing the full 275-

gallon tote of BHR-P50 in the event of a catastrophic failure of the tote. Proper PPE and decontamination procedures will be utilized if and when a tote change out is required.

An explanation which demonstrates that the addition of such chemicals:

- 1) Will not add any pollutants in concentrations which exceed permit effluent limitations; The addition of the flocculants will not add any pollutants in concentrations which exceed permit effluent limitations. Chemicals included in the DPS are naturally derived and 100% biodegradable. The coagulant (DBP-2100) is a dry powder formulated from a plant-based protein, and the flocculant (GEL-Floc) is made from chitosan lactate, which is made from crustacean exoskeletons. The chemical combinations in the proposed HaloKlear DPS have additionally passed fish kill studies.
- 2) Will not exceed any applicable water quality standard; The addition of the flocculants will not exceed any applicable water quality standard due to the proposed flocculant being derived from plant-based proteins and crustacean exoskeletons.
- 3) Will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit; The addition of flocculants will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit. There is no concern for the addition of pollutants from the addition of flocculants; therefore, there is no concern for the application of permit conditions that are different or absent from this permit.

pH adjustment

All information required in Part 2.5.2.g.iii

- 1) Product name, chemical formula, and manufacturer of the chemical or additive; Sodium Hydroxide (NaOH). Additional Information are provided in the Safety Data Sheet included as Attachment 3.
- 2) Purpose or use of the chemical or additive; Based on review of the groundwater analytical data for the site where dewatering activities will occur, significant dissolved metals (mainly iron) are present. In order to decrease the dissolved concentrations of iron the pH adjustment system will dose sodium hydroxide at the required rate to achieve an optimal pH of 8.2 to minimize the solubility of iron in the groundwater. This adjustment will maximize the application of the flocculants and effectiveness of the bag filter and ion exchange elements of the treatment system.
- 3) Safety Data Sheet (SDS) and Chemical Abstract Service (CAS) Registry number for each chemical or additive; Provided in Attachment 3.
- 4) The frequency (e.g. hourly, daily), duration (e.g., hours, days), magnitude (i.e. frequency as maximum and average concentration), and method of application for the chemical or additive; The treatment system will be operated for a maximum of eight hours per day. The pH control system will continuously monitor the influent as it passes through the system. If the pH is below the optimal pH of 8.2, the control system will add sodium hydroxide to the influent to increase the pH prior to passing through the in-line flocculant system. The sodium hydroxide will dose at a maximum of 15-25% solution by weight into the influent when the system registers a pH less than 8.2. The method of application for the sodium hydroxide will be in-line application to the stream of water as it passes through the pH control system.
- 5) Any material compatibility risks for storage of the chemical or additive; Provided in the SDS in Attachment 3.
- 6) If available, the vendor's reported aquatic toxicity; Provided in the SDS in Attachment 3.
- 7) A description of the material management control measures employed; Sodium Hydroxide will arrive on-site in 55-gallon drums and be stored on a secondary containment pallet. A pH adjustment system with pH probes and metering pumps will draw from the drum and dose small amounts of NaOH through an injection spool, installed on the influent hose, in-line prior to storage in a 21K frac tank. The dosing will be automatically adjusted based on influent pH measurements of the water and effluent pH measurements of the water in the 21K frac tank. The containment pallet will be capable of containing the full 55-gallon drum of NaOH in the event of a catastrophic failure of the drum. Proper PPE and decontamination procedures will be utilized if and when a drum change out is required.

An explanation which demonstrates that the addition of such chemicals:

- 1) Will not add any pollutants in concentrations which exceed permit effluent limitations; The addition of sodium hydroxide will not add any pollutants in concentrations which exceed permit effluent limitations.
- 2) Will not exceed any applicable water quality standard; The addition of the Sodium Hydroxide will not exceed any applicable water quality standard due to the proposed concentration of hydroxide to be added and the immediate dissolution of sodium hydroxide into less harmful chemical compounds, sodium and hydroxyl ions.
- 3) Will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit; The addition of the Sodium Hydroxide will not add any pollutants that would justify the application of permit conditions that are different or absent in this permit. The sodium hydroxide is only being added and diluted in solution for pH adjustments, which will be monitored with a pH meter in the field prior to discharge.

HaloKlear

PRODUCT FACTS

BHR-P50 HYBRID FLOCCULANT

Description

HaloKlear's unique hybrid flocculant, **BHR-P50**, offers a greener alternative to commodity chemicals. Our blend is free of acrylamide monomers and is part of our continued efforts to innovate towards more eco-friendly water treatment solutions. From industrial wastewater clarification to nutrient control in ponds and lakes, **BHR-P50** offers a wide range of performance benefits without increasing costs.

Industry Applications

- Stormwater management
- Construction
- · Environmental Water remediation

Deployment Method

The liquid **BHR-P50** is deployed similar to commodity polyaluminum chloride. Typical application uses metering pumps. **BHR-P50** can be applied using several delivery methods, including semi-passive and active systems.

Packaging

Lot Number must be legible on each container. Container types: 275-gallon IBC tote with camlock or threaded outlet or 55-gallon drum.

Handling and Storage

All containers must be free of leaks, damage, and gross contamination. Product should be maintained between 40°F and 90°F. Keep from freezing.

Product Benefits

- · High Shear Strength & Filterability
- Dense Floc That is Easily Dewaterable
- Low Bioaccumulation of Inorganic Salts
- Low Ecotoxicity Profile
- Effective Across a Wide Spectrum of pH and Salinity.

Product Properties

Appearance	Homogenous white-to-yellow opaque liquid
Viscosity	500 – 1,300 cP
Specific Gravity	0.95 – 1.15
рН	2.3 – 3.7
LC50 fish 1	3222 ppm Rainbow Trout; 96 hour

Field Handling Recommendations

Keep out of direct sunlight. Some separation may occur but will not affect performance. For more information, contact your Dober representative.

Safety Data

BHR-P50 is a corrosive substance. Before handling this material read the corresponding Material Safety Data Sheet for safety and health data.

For additional information contact Dober at: (800) 323-4983

(000) 020-4900

info@dober.com

www.dober.com/water_treatment

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Date of issue: 03/02/2016 Revision date: 09/16/2019 Supersedes: 05/24/2017 Version: 2.0

SECTION 1: Identification of the substance/mixture and of the company/undertaking

Product identifier

Product form : Mixtures

Product name : HaloKlear BHR-P50

Product code 301420

Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture : Flocculates solids

Details of the supplier of the safety data sheet

Dober Chemical Corp. 543 Forest Road

Hazle Township, PA 18202 - USA T 630-410-7300 - F 630-410-7444 regulatory@dober.com - www.dober.com

Emergency telephone number

: 1-800-255-3924 / 1-813-248-0585 **Emergency number**

ChemTel

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

GHS US classification

Met. Corr. 1 H290 Eye Dam. 1 H318

Full text of H statements : see section 16

Label elements

GHS US labeling

Hazard pictograms (GHS US)

GHS05

Signal word (GHS US) : Danger

Hazard statements (GHS US) : H290 - May be corrosive to metals

H318 - Causes serious eye damage

Precautionary statements (GHS US) P234 - Keep only in original container.

P280 - Wear eye protection, protective clothing, protective gloves.

P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes. Remove contact

lenses, if present and easy to do. Continue rinsing P310 - Immediately call a poison center or doctor P390 - Absorb spillage to prevent material-damage.

P406 - Store in corrosive resistant container with a resistant inner liner.

Other hazards 2.3

No additional information available

Unknown acute toxicity (GHS US)

16% of the mixture consists of ingredient(s) of unknown acute toxicity (Dermal)

16% of the mixture consists of ingredient(s) of unknown acute toxicity (Inhalation (Dust/Mist))

SECTION 3: Composition/Information on ingredients

3.1. **Substances**

Not applicable

3.2. **Mixtures**

09/16/2019 EN (English US) Page 1

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Name	Product identifier	%	GHS US classification
Aluminum chloride hydroxide sulfate	(CAS-No.) 39290-78-3	10 - 30	Met. Corr. 1, H290 Eye Dam. 1, H318

Full text of H-phrases: see section 16

SECTION 4: First aid measures

Description of first aid measures

: Remove person to fresh air and keep comfortable for breathing. First-aid measures after inhalation

First-aid measures after skin contact Wash skin with plenty of water.

Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to First-aid measures after eye contact

do. Continue rinsing. Call a physician immediately.

: Call a poison center/doctor/physician if you feel unwell. First-aid measures after ingestion

Most important symptoms and effects, both acute and delayed

Symptoms/effects after eye contact : Serious damage to eyes.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5: Firefighting measures

Extinguishing media

Suitable extinguishing media : Water spray. Dry powder. Foam. Carbon dioxide.

5.2. Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions of use, storage and transport.

Advice for firefighters

Protection during firefighting : Do not attempt to take action without suitable protective equipment. Self-contained breathing

apparatus. Complete protective clothing.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

6.1.1. For non-emergency personnel

Emergency procedures : Ventilate spillage area. Avoid contact with skin and eyes.

6.1.2. For emergency responders

: Do not attempt to take action without suitable protective equipment. For further information Protective equipment

refer to section 8: "Exposure controls/personal protection".

Environmental precautions

No additional information available

Methods and material for containment and cleaning up 6.3.

Methods for cleaning up : Take up liquid spill into absorbent material.

Dispose of materials or solid residues at an authorized site. Other information

Reference to other sections

For further information refer to section 13.

SECTION 7: Handling and storage

Precautions for safe handling

Precautions for safe handling : Ensure good ventilation of the work station. Avoid contact with skin and eyes. Wear personal

protective equipment.

Wash hands and other exposed areas with mild soap and water before eating, drinking or Hygiene measures smoking and when leaving work. Do not eat, drink or smoke when using this product. Always

wash hands after handling the product.

Conditions for safe storage, including any incompatibilities

Storage conditions Store in corrosive resistant container with a resistant inner liner. Keep only in original container.

Store in a well-ventilated place. Keep cool.

Incompatible materials : Metals.

Specific end use(s)

No additional information available

09/16/2019 EN (English US) 2/6

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 8: Exposure controls/personal protection

8.1. Control parameters

HaloKlear BHR-P50		
ACGIH	Not applicable	
OSHA	Not applicable	
Aluminum chloride hydroxide sulfate (39290-78-3)		
ACGIH Not applicable		
OSHA	Not applicable	

8.2. Exposure controls

Appropriate engineering controls : Ensure good ventilation of the work station.

Hand protection : Protective gloves.

Eye protection : Chemical goggles or safety glasses.
Skin and body protection : Wear suitable protective clothing.

Respiratory protection : Use a properly fitted, particulate filter respirator complying with an approved standard if a risk

assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the

selected respirator

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state : Liquid

Color : Yellow to amber

Odor : odorless

Odor threshold : No data available

pH : 3 - 3.5

Relative evaporation rate (butyl acetate=1) : No data available Melting point : Not applicable Freezing point No data available Boiling point No data available : No data available Flash point No data available Auto-ignition temperature Decomposition temperature : No data available : No data available Flammability (solid, gas) No data available Vapor pressure Relative vapor density at 20 °C No data available Relative density No data available Solubility : Water: 100% Log Pow No data available Log Kow No data available Viscosity, kinematic No data available Viscosity, dynamic No data available No data available Explosive properties No data available Oxidizing properties

9.2. Other information

No additional information available

SECTION 10: Stability and reactivity

10.1. Reactivity

Explosion limits

The product is non-reactive under normal conditions of use, storage and transport.

10.2. Chemical stability

Stable under normal conditions.

09/16/2019 EN (English US) 3/6

No data available

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

10.3. Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

10.4. Conditions to avoid

None under recommended storage and handling conditions (see section 7).

10.5. Incompatible materials

metals.

10.6. Hazardous decomposition products

Under normal conditions of storage and use, hazardous decomposition products should not be produced.

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity : Not classified

Aluminum chloride hydroxide sulfate (39290-78-3)			
LD50 oral rat	> 5000 mg/kg		
Skin corrosion/irritation	: Not classified		
	pH: 3 - 3.5		
Serious eye damage/irritation	: Causes serious eye damage.		
	pH: 3 - 3.5		
Respiratory or skin sensitization	: Not classified		
Germ cell mutagenicity	: Not classified		
Carcinogenicity	: Not classified		
Reproductive toxicity	: Not classified		
STOT-single exposure	: Not classified		
STOT-repeated exposure	: Not classified		
Aspiration hazard	: Not classified		

Symptoms/effects after eye contact : Serious damage to eyes.

SECTION 12: Ecological information

12.1. Toxicity

Ecology - general : The product is not considered harmful to aquatic organisms or to cause long-term adverse

effects in the environment.

HaloKlear BHR-P50	
LC50 fish 1	3222 ppm Rainbow Trout; 96 hour

12.2. Persistence and degradability

No additional information available

12.3. Bioaccumulative potential

Aluminum chloride hydroxide sulfate (39290-	78-3)
Log Pow	< 3

12.4. Mobility in soil

No additional information available

12.5. Other adverse effects

Effect on global warming : No known effects from this product.

Other information : No other effects known.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

Waste treatment methods : Dispose of contents/container in accordance with licensed collector's sorting instructions.

Ecology - waste materials : None known.

09/16/2019 EN (English US) 4/6

acc. to OSHA HCS

1 IDENTIFICATION

· Product identifier

· Trade name: HaloKlear: Gel-Floc

- · Details of the supplier of the safety data sheet
- · Manufacturer/Supplier:

Sound Environmental Concepts 22726 102nd Ave SE, Woodinville, WA 98077 1 (206) 730 - 5376 ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

· Classification of the substance or mixture

The product is not classified according to the Globally Harmonized System (GHS).

3

· Classification according to Directive 67/548/EEC or Directive 1999/45/EC *Not applicable*. Information concerning particular hazards for human and environment:

The product does not have to be labeled due to the calculation procedure of international guidelines Classification system:

The classification was made according to the latest editions of international substances lists, and expanded upon from company and literature data.

Trade Name: HaloKlear: Gel-Floc

2 HAZARD(S) IDENTIFICATION CONTD.

- · Label elements
- Labelling according to EU guidelines:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

- · Classification System
 - · NFPA ratings (scale 0 4)
 - · Health = 0
 - · Fire = 0
 - · Reactivity = 0

- · HMIS-ratings (scale 0 4)
 - · *Health* = 0
 - · Fire = 0
 - · Reactivity = 0

.....

- Other hazards
- · Results of PBT and vPvB assessment
- · PBT: Not applicable
- vPvB: Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

· Chemical characterization: Mixtures

· **Description:** *Mixture of the substances listed below with nonhazardous additions.*

· Dangerous components: Void

4 FIRST-AID MEASURES

- · Description of first aid measures
- · **General information:** *No special measures required.*
- · **After inhalation:** Supply fresh air; consult doctor in case of complaints.
- · **After skin contact:** Generally the product does not irritate the skin.
- · **After eye contact:** Rinse opened eye for several minutes under running water.
- · After swallowing: If symptoms persist consult doctor.

Trade Name: HaloKlear: Gel-Floc

4 FIRST AID MEASURES CONTD.

- · Information for doctor:
- Most important symptoms and effects, both acute and delayed *No further relevant information available.*
- · Indication of any immediate medical attention and special treatment needed No further relevant information available

5 FIRE-FIGHTING MEASURES

- · Extinguishing media
- Suitable extinguishing agents: CO2, extinguishing powder or water spray. Fight larger fires with water spray or alcohol resistant foam.
- · Special hazards arising from the substance or mixture *No further relevant information available.*
- · Advice for firefighters
- · Protective equipment: No special measures required.

6 ACCIDENTAL RELEASE MEASURES

- · Personal precautions, protective equipment and emergency procedures Not required.
- · Environmental precautions: Do not allow to enter sewers/ surface or ground
- · Methods and material for containment and cleaning up: Pick up mechanically
- · Reference to other sections

See Section 7 for information on safe handling.

See Section 8 for information on personal protection equipment.

See Section 13 for disposal information.

7 HANDLING AND STORAGE

- · Handling:
- Precautions for safe handling No special measures required.
- · Information about protection against explosions and fires: No special measures required.
- · Conditions for safe storage, including any incompatibilities
- · Storage:
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: *Not required.*
- · Further information about storage conditions: None.
- Specific end use(s) Water flocculent

Trade Name: HaloKlear: Gel-Floc

8 EXPOSURE CONTROLS/PERSONAL PROTECTION CONTD.

- · Additional information about design of technical systems: No further data; see item 7.
- · Control parameters
- · Components with limit values that require monitoring at the workplace:

The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.

- · Additional information: The lists that were valid during the creation were used a basis.
- · Exposure controls
- · Personal protective equipment:
- General protective and hygienic measures:

The usual precautionary measures for handling chemicals should be followed.

- · Breathing equipment: Not required.
- Protection of hands:

The glove material has to be impermeable and resistant to the product/ the substance/ the preparation. Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture. Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation

Material of gloves

The selection of the suitable gloves does not only depend on the material, but also on further marks of quality and varies from manufacturer to manufacturer. As the product is a preparation of several substances, the resistance of the glove material can't be calculated in advance and has therefore to be checked prior to the application.

Penetration time of glove material

The exact break through time has to be found out by the manufacturer of the protective gloves and has to be observed.

• **Eye protection:** *Not required.*

9 PHYSICAL AND CHEMICAL PROPERTIES

- · Information on basic physical and chemical properties
- **General Information**
- · Appearance:

Form: PowderColor: Whitish

Odor: Product specificOdour threshold: Not determined

pH-value at 20 °C (68 °F):

Not applicable

Trade Name: HaloKlear: Gel-Floc

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD.				
· Change in condition				
Melting point/Melting range:	Undetermined			
· Boiling point/Boiling range:	> 999 °C (> 1830 °F)			
· Flash point:	Not applicable			
· Flammability (solid, gaseous):	Not determined			
· Ignition temperature:				
· Decomposition temperature:	Not determined			
· Auto igniting:	Product is not selfigniting			
· Danger of explosion:	Product does not present an explosion hazard.\			
· Explosion limits:				
Lower:	Not determined			
Upper:	Not determined 			
· Vapor pressure at 20 °C (68 °F):	Not applicable			
· Density at 20 °C (68 °F):	Not determined			
· Relative density	Not determined			
· Vapour density	Not applicable			
· Evaporation rate	Not applicable			
· Solubility in / Miscibility with				
Water:	Insoluble			
· Partition coefficient (n-octanol/water):	Not determined			
· Viscosity:				
Dynamic:	Not applicable			
Kinematic:	Not applicable			

Trade Name: HaloKlear: Gel-Floc

9 PHYSICAL AND CHEMICAL PROPERTIES CONTD.

Solvent content:

Organic solvents: 0.0 % Solids content: 100.0%

· **Other information** No further relevant information available.

10 STABILITY AND REACTIVITY

- · Reactivity
- · Chemical stability
- Thermal decomposition / conditions to be avoided: No decomposition if used according to specifications.
- · Possibility of hazardous reactions *No dangerous reactions known.*
- · Conditions to avoid No further relevant information available.
- · Incompatible materials: No further relevant information available.
- · Hazardous decomposition products: No dangerous decomposition products known.

11 TOXICOLOGICAL INFORMATION

- · Information on toxicological effects
- · Acute toxicity:
- · Primary irritant effect:
- · on the skin: No irritant effect.
- · on the eye: No irritating effect.
- · Sensitization: No sensitizing effects known.
- · Additional toxicological information:

The product is not subject to classification according to internally approved calculation methods for preparations:

When used and handled according to specifications, the product does not have any harmful effects according to our experience and the information provided to us.

· Carcinogenic categories

· IARC (International Agency for Research on Cancer)

None of the ingredients is listed.

AITD (AL .' LT ' L D)

· NTP (National Toxicology Program)

None of the ingredients is listed.

Trade Name: HaloKlear: Gel-Floc

11 TOXICOLOGICAL INFORMATION CONTD.

· OSHA-Ca (Occupational Safety & Health Administration)

None of the ingredients is listed.

12 ECOLOGICAL INFORMATION

- · Toxicity
- · Aquatic toxicity: No further relevant information available.
- · Persistence and degradability No further relevant information available.
- · Behavior in environmental systems:
- · Bioaccumulative potential No further relevant information available.
- · Mobility in soil No further relevant information available.
- · Additional ecological information:
- General notes: Water hazard class 1 (self-assessment): Slightly hazardous for water.
 Do not allow undiluted product or large quantities of it to reach ground water, water course or sewage system.
- · Results of PBT and vPvB assessment
- **PBT:** Not applicable.
- · **vPvB:** Not applicable.
- · Other adverse effects No further relevant information available.

13 DISPOSAL CONSIDERATIONS

- · Waste treatment methods
- · **Recommendation:** Smaller quantities can be disposed of with household waste.
- · Uncleaned packaging:
- · **Recommendation:** *Disposal must be made according to official regulations.*

14 TRANSPORT INFORMATION

- · UN-Number
- · DOT, IMDG, IATA

Not regulated

- · UN proper shipping name
- · DOT, IMDG, IATA

Not regulated

Trade Name: HaloKlear: Gel-Floc 14 TRANSPORT INFORMATION CONTD.

 Transport hazard class(es) · DOT, IMDG, IATA · Class Not regulated · Packing group · DOT, IMDG, IATA Not regulated · Special precautions for user Not applicable · Transport in bulk according to Annex II of MARPOL73/78 and the IBC Code Not applicable UN "Model Regulation":

15 REGULATORY INFORMATION

· Safety, health and environmental regulations/legislation specific for the substance or mixture · Sara · Section 355 (extremely hazardous substances): None of the ingredients are listed. Section 313 (Specific toxic chemical listings): None of the ingredients are listed. TSCA (Toxic Substances Control Act): All ingredients are listed. · Proposition 65 · Chemicals known to cause cancer: None of the ingredients are listed. · Chemicals known to cause reproductive toxicity for females: None of the ingredients are listed.

Chemicals known to cause reproductive toxicity for males:

None of the ingredients are listed.

Trade Name: HaloKlear: Gel-Floc

15 REGULATORY INFORMATION CONTD.

· Chemicals known to cause developmental toxicity:

None of the ingredients are listed.

- · Carcinogenic categories
- EPA (Environmental Protection Agency)
 None of the ingredients are listed.
- TLV (Threshold Limit Value established by ACGIH)

 None of the ingredients are listed.
- NIOSH-Ca (National Institute for Occupational Safety and Health)

 None of the ingredients are listed.
- Product related hazard informations:

Observe the general safety regulations when handling chemicals. The product is not subject to identification regulations according to directives on hazardous materials.

· Chemical safety assessment: A Chemical Safety Assessment has not been carried out.

16 OTHER INFORMATION

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

- Department issuing SDS: Environment protection department.
- · Contact: Mrs. Jackson

Date of preparation / last revision 02/09/2015 / - Present

· Abbreviations and acronyms:

ADR: Accord européen sur le transport des marchandises dangereuses par Route (European Agreement concerning the International

Carriage of Dangerous Goods by Road)

IMDG: International Maritime Code for Dangerous Goods

DOT: US Department of Transportation

IATA: International Air Transport Association

ACGIH: American Conference of Governmental Industrial Hygienists EINECS: European Inventory of Existing Commercial Chemical Substances

ELINCS: European List of Notified Chemical Substances

Trade Name: HaloKlear: Gel-Floc

16 OTHER INFORMATION CONTD.

CAS: Chemical Abstracts Service (division of the American Chemical Society)

NFPA: National Fire Protection Association (USA)

HMIS: Hazardous Materials Identification System (USA)

acc. to OSHA HCS

1 IDENTIFICATION

· Product identifier

Product form : Substance

Product name : HaloKlear DBP-2100 Socks

Chemical name : Xanthan Gum
CAS No : 11138-66-2
Product code : 210014

· Relevant identified uses of the substance or mixture and uses advised against

Uses of the substance/mixture : Flocculant

Manufacturer/Supplier:

Sound Environmental Concepts

22726 102nd Ave SE, Woodinville, WA 98077

1 (206) 730 - 5376

ray@soundenvirocon.com

- · Information department: Product safety department
- · Telephone number:
 - + 1 (206) 730 5376
- · Information department: Product safety department
- · Emergency telephone number: +1 (800) 424-9300 (24 Hours)

During normal opening times: +1 (425) 881-6464

CHEMTREC (Domestic, North America) +1-703-527-3887 CHEMTREC (International, collect calls accepted)

2 HAZARD(S) IDENTIFICATION

 Classification of the substance or mixture GHS-US Classification

Not classified

Trade Name: HaloKlear DBP-2100 Socks

2 HAZARD(S) IDENTIFICATION CONTD.

Label Elements
 GHS-US Labelling
 No labeling applicable

· Other hazards

Other hazards not contributing to

the classification

: May form combustible dust concentrations in air. May cause eye irritation.

Unknown acute toxicity (GHS-US)

Not applicable

3 COMPOSITION/INFORMATION ON INGREDIENTS

· Substance

Substance type : Mono-constituent

Name : HaloKlear DBP-2100 Socks

CAS No : 11138-66-2

Fulltext of H-statements: see section 16

MixtureNot applicable

4 FIRST AID MEASURES

· Description of first aid measures

First-aid measures general : Never give anything by mouth to an unconscious

person. If you feel unwell, seek medical advice (show

the label where possible).

First-aid measures after inhalation

First-aid measures after skin contact

: Allow breathing of fresh air. Allow the victim to rest.

: Removed affected clothing and wash all exposed skin area with mild soap and water, followed by warm

water rinse.

First-aid measures after eye contact : Rinse immediately with plenty of water. Obtain

medical attention if pain, blinking or redness

persist.

First-aid measures after ingestion

: Rinse mouth. Do NOT induce vomiting. Obtain

emergency medical attention.

Trade Name: HaloKlear DBP-2100 Socks

4 FIRST AID MEASURES

· Most important symptoms and effects, both acute and delayed

Symptoms/Injuries after eye contact : Not expected to present a significant hazard under

anticipated conditions of normal use.

· Indication of any immediate medical attention and special treatment needed

No additional information available

5 FIRE-FIGHTING MEASURES

· Extinguishing media

Suitable extinguished media : Foam. Dry powder. Carbon dioxide. Water spray. Sand.

Unsuitable extinguishing media : Do not use a heavy water stream.

· Special hazards arising from the substance or mixture

Reactivity : The product is non-reactive under normal conditions

of use, storage and transport.

· Advice for firefighters

Firefighting instructions : Exercise caution when fighting any chemical fire.

Eliminate all ignition sources if safe to do so.

Use water spray of fog for cooling exposed containers.

Protection during firefighting : Do not enter fire area without proper protective

equipment, including respiratory protection.

Other information : Spills produce extremely slippery surfaces. Avoid dust

formation.

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

· For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

· For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public

waters.

Trade Name: HaloKlear DBP-2100 Socks

6 ACCIDENTAL RELEASE MEASURES

· Personal precautions, protective equipment and emergency procedures

General measures : Use special care to avoid static electric charges.

For non-emergency personnel

Emergency procedures : Evacuate unnecessary personnel.

· For emergency responders

Protective equipment : Equip cleanup crew with proper protection.

Emergency procedures : Ventilate area.

Environmental precautions

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters.

· Methods and material for containment and cleaning up

Methods of cleaning up : On land, sweep or shovel into suitable containers.

Minimize generation of dust. Store away from other

materials.

· Reference to other sections

See Section 8. Exposure controls and personal protection.

7 HANDLING AND STORAGE

Precautions for safe handling

Precautions for safe handling : Wash hands and other exposed areas with mild soap

and water before eating, drinking or smoking and leaving work. Provide good ventilation in process area

to prevent formation of vapor. No smoking.

· Conditions for safe storage, including and incompatibles

Storage conditions : Keep only in the original container in a cool, well-

ventilated place. Keep container closed when not in use.

Incompatible products : Oxidizing agent.
Incompatible materials : Sources of ignition.

Specific end use(s)

No additional information available

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

HaloKlear DBP-2100 Socks

ACGIH : Not applicable
OSHA : Not applicable

Trade Name: HaloKlear DBP-2100 Socks

8 EXPOSURE CONTROLS/PERSONAL PROTECTION

· Exposure controls

Personal protective equipment : Avoid all unnecessary exposure.

Hand protection : Wear protective gloves/protective clothing/eye

protection/face protection protective gloves.

Eye protection : Chemical goggles or safety glasses.

Respiratory protection : Use a property fitted, particulate filter respirator

complying with an approved standard if a risk

assessment indicates this necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits

of the selected respirator.

Other information : Do not eat, drink or smoke during use.

9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state : Solid

Color : White to tan
Odor : odorless

Odour threshold : No data available

pH : approximately neutral (1% solution)

Relative evaporation rate : No data available Melting point : No data available Freezing point : No data available **Boiling** point : No data available Flash point : No data available Auto-ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas) : No data available Vapor pressure : No data available Relative vapor density : No data available : No data available Relative density : Water: 100 % Solubility : No data available Log Pow Log Kow : No data available

Viscosity, kinematic : No data available

Trade Name: HaloKlear DBP-2100 Socks

9 PHYSICAL AND CHEMICAL PROPERTIES

Viscosity, dynamic : No data available
Explosive properties : No data available
Oxidizing properties : No data available
Explosive limits : No data available

· Other Information

No additional information available

10 STABILITY AND REACTIVITY

· Reactivity

The product is non-reactive under normal conditions of use, storage and transport.

· Chemical stability

Stable under normal conditions.

· Possibility of hazardous reactions

No dangerous reactions known under normal conditions of use.

· Conditions to avoid

Avoid dust formation.

· Incompatible materials

Oxidizing agent.

· Hazardous decomposition products

Thermal decomposition generates: Carbon dioxide. Carbon monoxide. Fume.

11 TOXICOLOGICAL INFORMATION

· Information on toxicological effects

Acute toxicity : Not classified Skin corrosion/irritation : Not classified

pH: approximately neutral (1% solution)

Serious eye damage/irritation : Not classified

pH: approximately neutral (1% solution)

Respiratory or skin sensitization : Not classified
Germ cell mutagenicity : Not classified
Carcinogenicity : Not classified
Reproductive toxicity : Not classified
Specific target organ toxicity : Not classified

(single exposure)

Trade Name: HaloKlear DBP-2100 Socks

11 TOXICOLOGICAL INFORMATION

Specific target organ toxicity

: Not classified

(repeated exposure)

Aspiration hazard : Not classified

Potential adverse human health

effects and symptoms : Based on available data, the classification criteria are

not met.

12 ECOLOGICAL INFORMATION

· Toxicity

HaloKlear DBP-2100 Socks (11138-66-2)

LC50 fish 1 491 mg/l Rainbow Trout; 96 hour

· Persistence and degradability

HaloKlear DBP-2100 Socks (11138-66-2)

· Bioaccumulative potential

HaloKlear DBP-2100 Socks (11138-66-2)

Bioaccumulative potential Inherently biodegradable

· Mobility in soil

HaloKlear DBP-2100 Socks (11138-66-2)

Mobility in soil Not available

· Other adverse effects

Effect on Global warming : No known ecological damaged caused by this product.

Other information : No other effects known.

13 DISPOSAL CONSIDERATIONS

· Waste treatment methods

Waste disposal recommendations : Dispose of contents/container in accordance with

Licensed collector's sorting instructions.

Ecology – waste materials : None known.

Trade Name: HaloKlear DBP-2100 Socks

14 TRANSPORT INFORMATION

UN-No. (DOT):: Non RegulatedUN-No. (IMDG):: Non RegulatedUN-No. (IATA):: Non Regulated

· UN proper shipping name

Proper Shipping Name (DOT): : Not applicable
Proper Shipping Name (IMDG): : Not applicable
Proper Shipping Name (IATA): : Not applicable

· Transport hazard class(es)

Transport hazard class(es) (DOT): : Not applicable
Transport hazard class(es) (IMDG): : Not applicable
Transport hazard class(es) (IATA): : Not applicable

· Packing group

Packing group (DOT):: Not applicablePacking group (IMDG):: Not applicablePacking group (IATA):: Not applicable

Environmental hazards

Marine pollutant(IMDG): : No Marine pollutant(IATA): : No

15 REGULATORY INFORMATION

US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency ToxicSubstances Control Act (TSCA) inventory.

This product or mixture does not contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

· International Regulations

Canada

Aluminum chloride hydroxide sulfate (39290-78-3)

No additional information available

Safety Data Sheet

Trade Name: HaloKlear DBP-2100 Socks

15 REGULATORY INFORMATION

· US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm.

16 OTHER INFORMATION

Other information: : None

NFPA health hazard : 0 - Exposure under fire conditions would offer no

hazard beyond that of ordinary combustible

materials.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity : 0 - Normally stable, even under fire exposure

conditions, and are not reactive with water.

NFPA specific hazard : NA - Not Applicable

HMIS III Rating

Health : 0 - No significant risk to health

Flammability : 0
Physical : 0
Personal Protection : B

HaloKlear BHR-P50

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

SECTION 14: Transport information

: Non Regulated when transported in packaging constructed of materials that will not react dangerously with or be degraded by the material. UN-No.(DOT)

UN-No. (IMDG) : 3264 : 3264 UN-No. (IATA)

14.2. **UN proper shipping name**

Proper Shipping Name (DOT) : Not applicable.

: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. Proper Shipping Name (IMDG)

(Aluminum Chloride Hydroxide Sulfate)

Proper Shipping Name (IATA) : Corrosive liquid, acidic, inorganic, n.o.s.

(Aluminum Chloride Hydroxide Sulfate)

Transport hazard class(es)

Class (DOT) : Not applicable.

Transport hazard class(es) (IMDG) : 8

Hazard labels (IMDG) : 8

Transport hazard class(es) (IATA) : 8

Hazard labels (IATA) : 8

Packing group

Packing group (DOT) : Not applicable.

Packing group (IMDG) : 111

Packing group (IATA) : 111

14.5. **Environmental hazards**

Marine pollutant(IMDG) : No Marine pollutant(IATA) : No

SECTION 15: Regulatory information

15.1. US Federal regulations

All components of this product are listed, or excluded from listing, on the United States Environmental Protection Agency Toxic Substances Control Act (TSCA) inventory

09/16/2019 EN (English US) 5/6

HaloKlear BHR-P50

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

This product or mixture is not known to contain a toxic chemical or chemicals in excess of the applicable de minimis concentration as specified in 40 CFR §372.38(a) subject to the reporting requirements of section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR Part 372.

Aluminum chloride hydroxide sulfate (39290-78-3)							
EPA TSCA Regulatory Flag PMN							
Guar Gum (9000-30-0)							
EPA TSCA Regulatory Flag	XU - XU - indicates a substance exempt from reporting under the Chemical Data Reporting Rule, (40 CFR 711).						

15.2. International regulations

CANADA

Aluminum chlo	oride hydroxide sulfate (39290-78-3)
Listed on the Ca	anadian DSL (Domestic Substances List)

15.3. US State regulations

California Proposition 65 - This product does not contain any substances known to the state of California to cause cancer, developmental and/or reproductive harm

SECTION 16: Other information

Revision date	: 09/16/2019
Abbreviations and acronyms	 Acute Toxicity Estimate. Bioconcentration factor. Median effective concentration. International Air Transport Association. International Maritime Dangerous Goods. Median lethal concentration. Median lethal dose.
Other information	: None.

Full text of H-phrases:

H290	May be corrosive to metals
H318	Causes serious eye damage

	H290	May be corrosive to metals				
	H318	Causes serious eye damage				
NFPA I	nealth hazard	: 3 - Materials that, under emergency conditions, can cause serious or permanent injury.				
NFPA fire hazard		: 0 - Materials that will not burn under typical fire conditions, including intrinsically noncombustible materials such as concrete, stone, and sand.				
NFPA reactivity		: 0 - Material that in themselves are normally stable, even under fire conditions.				
Hazard	Rating					
Health		: 3 Serious Hazard - Major injury likely unless prompt action is taken and medical treatment is given				
Flamma	ability	: 0 Minimal Hazard				
Physica	al	: 0 Minimal Hazard				

Personal protection : C

Dober SDS US

To the best of our knowledge, the information contained herein is accurate. However, neither the above-named supplier, nor any of its subsidiaries, assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

09/16/2019 EN (English US) 6/6

How to Use the Dual Floc Water Treatment System

DBP-2100 Floc Sock 2 lbs.

Specifications:

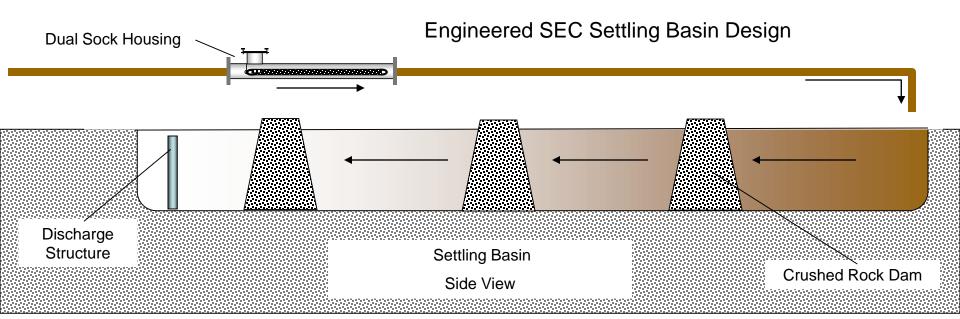
Length: 72 Inches

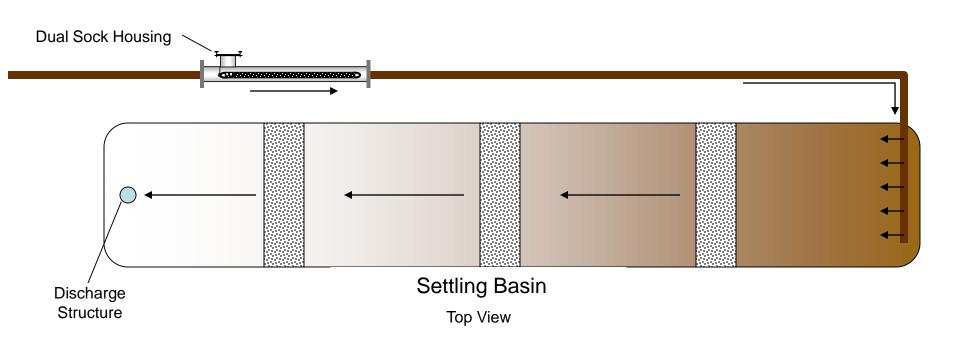
Width: 6 in. diameter
Fabric: Knit fabric

Natural Polymer: 2.0 lbs. (dry weight)

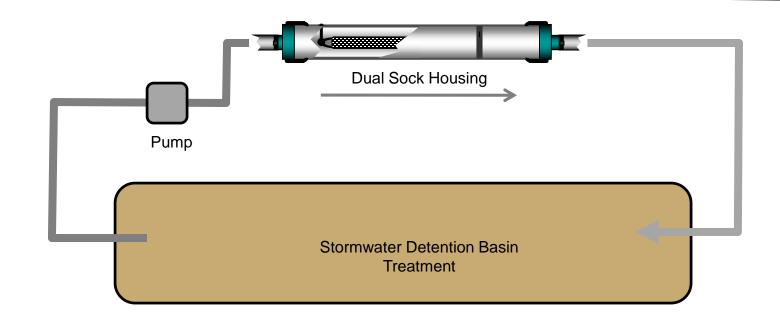
Treatment: 200,000 gal. @ 1 mg/L

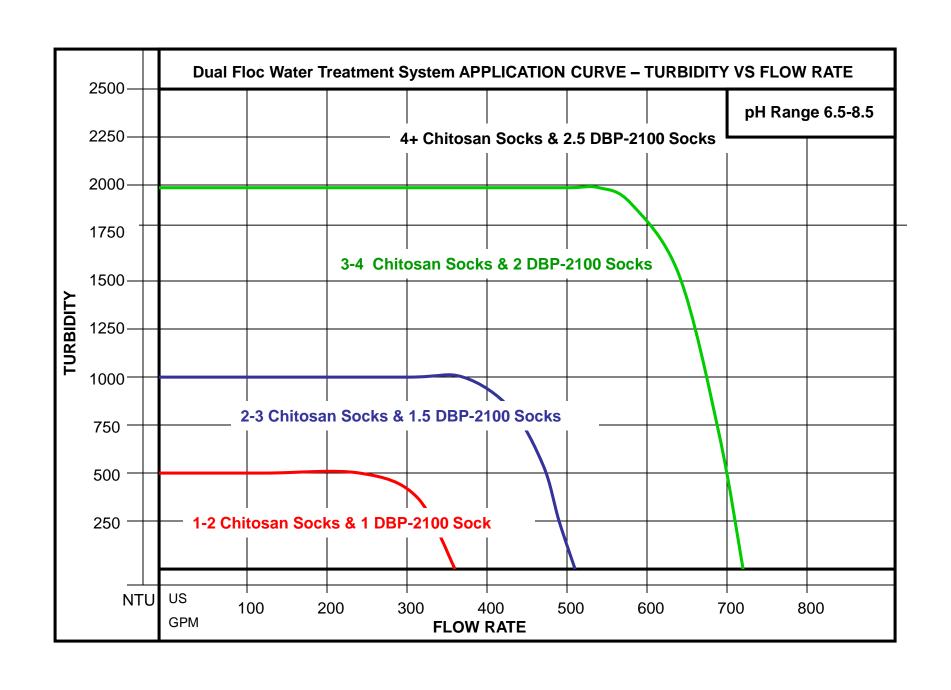
Passive Treatment Sock 2-lb.


Specifications:


Length 72 Inches

Width: 5 in. diameter


Fabric: Woven polypropylene Chitosan: 2.0 lbs. (dry weight)


Treatment: 200,000 gal. @ 1 mg/L

SAFETY DATA SHEET

Creation Date 22-Sep-2009 Revision Date 18-Jan-2018 Revision Number 5

1. Identification

Product Name Sodium hydroxide

Cat No.: SS4141; SS256500; SS263500; SS2641; SS264-1LC; SS414-200

Synonyms Caustic soda; Lye.

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Corrosive to metals

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Specific target organ toxicity (single exposure)

Category 1

Category 1

Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word

Danger

Hazard Statements

May be corrosive to metals Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wash face, hands and any exposed skin thoroughly after handling

Wear protective gloves/protective clothing/eye protection/face protection

Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing **Ingestion**

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

None identified

3. Composition/Information on Ingredients

Component	CAS-No	Weight %
Water	7732-18-5	75 - 85
Sodium hydroxide	1310-73-2	15 - 25

4. First-aid measures

General Advice Immediate medical attention is required. Show this safety data sheet to the doctor in

attendance.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Immediate medical

attention is required.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. Obtain medical attention.

Ingestion Do not induce vomiting. Obtain medical attention.

Most important symptoms and

effects

Causes burns by all exposure routes. . Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should

be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media No information available

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper
LowerNo data available
No data availableOxidizing PropertiesNot oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Thermal decomposition can lead to release of irritating gases and vapors

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

HealthFlammabilityInstabilityPhysical hazards30N/A

6. Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation. Evacuate personnel to

safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment. See Section 12 for additional ecological

information.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

HandlingUse only under a chemical fume hood. Wear personal protective equipment. Do not breathe

vapors or spray mist. Do not get in eyes, on skin, or on clothing. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component ACGIH TLV		OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sodium hydroxide	Ceiling: 2 mg/m ³	Ceiling: 2 mg/m ³	IDLH: 10 mg/m ³	Ceiling: 2 mg/m ³
		TWA: 2 mg/m ³	Ceiling: 2 mg/m ³	

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure that eyewash stations and safety showers

are close to the workstation location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protectionWear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical StateLiquidAppearanceClearOdorOdorless

Odor Threshold No information available

pH 14 @ 20°C Alkaline **Melting Point/Range** < 0 °C / 32 °F

Boiling Point/Range approx 120 °C / 248 °F

Flash Point Not applicable

Evaporation RateNo information available

Flammability (solid,gas) Not applicable

Flammability or explosive limits

UpperNo data availableLowerNo data available

Vapor Pressure14 mmHgVapor Density> 1.0Specific Gravity1.182

SolubilitySoluble in waterPartition coefficient; n-octanol/waterNo data availableAutoignition TemperatureNo information availableDecomposition TemperatureNo information available

Viscosity No information available

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Metals, Acids, halocarbons

Hazardous Decomposition Products Thermal decomposition can lead to release of irritating gases and vapors

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing. Contact with metals may evolve flammable hydrogen gas.

Corrosive to metals.

11. Toxicological information

Acute Toxicity

Product Information

Oral LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg.

Revision Date 18-Jan-2018 Sodium hydroxide

Dermal LD50 Mist LC50

Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Based on ATE data, the classification criteria are not met. ATE > 5 mg/l.

Component Information

Component LD50 Oral Water -		LD50 Dermal	LC50 Inhalation		
		Not listed	Not listed		
	Sodium hydroxide	Not listed	LD50 = 1350 mg/kg(Rabbit)	Not listed	

Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component CAS-No		IARC	NTP	ACGIH	OSHA	Mexico
Water	7732-18-5	Not listed				
Sodium hydroxide	1310-73-2	Not listed				

No information available **Mutagenic Effects**

No information available. **Reproductive Effects**

Developmental Effects No information available.

Teratogenicity No information available.

STOT - single exposure Respiratory system STOT - repeated exposure None known

No information available **Aspiration hazard**

delayed

Symptoms / effects,both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

No information available **Endocrine Disruptor Information**

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Contains no substances known to be hazardous to the environment or that are not degradable in waste water treatment plants. Large amounts will affect pH and harm aquatic organisms.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sodium hydroxide	Not listed	LC50: = 45.4 mg/L, 96h static (Oncorhynchus mykiss)	Not listed	Not listed

Persistence and Degradability Soluble in water Persistence is unlikely based on information available.

No information available. **Bioaccumulation/ Accumulation**

Will likely be mobile in the environment due to its water solubility. **Mobility**

13. Disposal considerations

Waste Disposal Methods Chemical waste generators must determine whether a discarded chemical is classified as a

hazardous waste. Chemical waste generators must also consult local, regional, and

national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1824

Proper Shipping Name SODIUM HYDROXIDE SOLUTION

Hazard Class 8
Packing Group

TDG

UN-No UN1824

Proper Shipping Name SODIUM HYDROXIDE SOLUTION

Hazard Class
Packing Group

IATA

UN-No UN1824

Proper Shipping Name SODIUM HYDROXIDE SOLUTION

Hazard Class 8
Packing Group

IMDG/IMO

UN-No UN1824

Proper Shipping Name SODIUM HYDROXIDE SOLUTION

Hazard Class 8
Packing Group ||

15. Regulatory information

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Water	Х	Χ	-	231-791-2	-		Х	-	Χ	Χ	Х
Sodium hydroxide	Х	Χ	-	215-185-5	-		Х	Χ	Χ	Х	Х

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313 Not applicable

SARA 311/312 Hazard Categories See section 2 for more information

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Sodium hydroxide	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA Not applicable

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sodium hydroxide	1000 lb	-

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Water	-	-	X	-	-
Sodium hydroxide	X	X	X	-	X

U.S. Department of Transportation

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 22-Sep-2009

 Revision Date
 18-Jan-2018

 Print Date
 18-Jan-2018

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

Safety Data Sheet

Citric Acid 50% (w/w)

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name: Citric Acid 50% (w/w)

Synonyms/Generic Names: 3-carboxy-3-hydroxy pentanedioic acid, 2-hydroxypropane- 1,2,3-tricarboxylic

acid, 3-hydroxypentanedioic acid-3-carboxylic acid, hydrogen citrate

Product Number: 8481

Product Use: Industrial, Manufacturing or Laboratory use

Manufacturer: Columbus Chemical Industries, Inc.

N4335 Temkin Rd. Columbus, WI. 53925

For More Information Call: 920-623-2140 (Monday-Friday 8:00-4:30)

In Case of Emergency Call: CHEMTREC – 800-424-9300 or 703-527-3887 (24 Hours/Day, 7 Days/Week)

2. HAZARDS IDENTIFICATION

OSHA Hazards: Irritant
Target Organs: None
Signal Words: Warning
Pictograms: None

GHS Classification:

Eve Irritant	Category 2B
Lyc initant	Catogory 2D

GHS Label Elements, including precautionary statements:

Hazard Statements:

Hazard Statements.				
H320	Causes eye irritation.			

Precautionary Statements:

P264	Wash hands thoroughly after handling.	
	IF IN EYES: Rinse cautiously with water for several minutes. Remove	
P305+P351+P338	contact lenses, if present and easy to do. Continue rinsing.	
P337+P313	If eye irritation persists: Get medical advice/attention.	

Potential Health Effects

Eyes	Causes eye irritation.	
Inhalation	May cause respiratory tract irritation.	
Skin	May cause skin irritation.	
Ingestion	May be harmful if swallowed.	

Revised on 10/21/2015 Page 1 of 6

NFPA Ratings

Health	1
Flammability	0
Reactivity	0
Specific hazard	Not Available

HMIS Ratings

Health	1
Fire	0
Reactivity	0
Personal	В

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	Weight %	CAS#	EINECS# / ELINCS#	Formula	Molecular Weight
Citric Acid	49-51	77-92-2	201-069-1	C ₆ H ₈ O ₇	210.14 g/mol
Water	Balance	7732-18-5	231-791-2	H ₂ O	18.00 g/mol

4. FIRST-AID MEASURES

Eyes	Rinse with plenty of water for at least 15 minutes and seek medical attention if necessary.		
Inhalation	Move casualty to fresh air and keep at rest. If breathing is difficult, give oxygen. If not		
	breathing, give artificial respiration. Get medical attention if necessary.		
Skin	Flush with plenty of water and wash using soap. Get medical attention if necessary.		
Ingestion	Do Not Induce Vomiting! Never give anything by mouth to an unconscious person. If		
	conscious, wash out mouth with water. Get medical attention if necessary.		

5. FIREFIGHTING MEASURES

Suitable (and unsuitable) extinguishing media	Product is not flammable. Use appropriate media for adjacent fire. Use water spray, dry chemical, or carbon dioxide to extinguish supporting fire. Cool unopened containers with water.
Special protective equipment	Wear self-contained, approved breathing apparatus and full protective
and precautions for firefighters	clothing, including eye protection and boots.
Specific hazards arising from	Emits toxic fumes (carbon oxides) under fire conditions. (See also
the chemical	Stability and Reactivity section).

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures	See section 8 for recommendations on the use of personal protective equipment.
Environmental precautions	Do not let product enter drains. Any release to the environment may be subject to federal/national or local reporting requirements.
Methods and materials for containment and cleaning up	Absorb neutralized spill with vermiculite or other inert absorbent material, then place in a suitable container for disposal. Clean surfaces thoroughly with water to remove residual contamination. Dispose of all waste and cleanup materials in accordance with regulations. Containers, even when empty, will retain residue and vapors.

Revised on 10/21/2015 Page 2 of 6

7. HANDLING AND STORAGE

Precautions for safe handling

See section 8 for recommendations on the use of personal protective equipment. Use with adequate ventilation. Wash thoroughly after using. Keep container closed when not in use. Avoid formation of aerosols.

Conditions for safe storage, including any incompatibilities

Store in cool, dry well ventilated area. Protect against moisture and light. Maintain adequate ventilation. Keep away from incompatible materials (see section 10 for incompatibilities).

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Occupational Exposure Controls:

Component	Exposure Limits	Basis	Entity
Citric Acid	5 mg/m ³	PEL	OSHA

TWA: Time Weighted Average over 8 hours of work. TLV: Threshold Limit Value over 8 hours of work.

REL: Recommended Exposure Limit PEL: Permissible Exposure Limit

STEL: Short Term Exposure Limit during x minutes. IDLH: Immediately Dangerous to Life or Health WEEL: Workplace Environmental Exposure Levels

CEIL: Ceiling

Personal Protection

Eyes	Wear chemical safety glasses with a face shield for splash protection.
Inhalation	Provide local exhaust, preferably mechanical. If exposure levels are excessive, use an
	approved respirator.
Skin	Wear neoprene or rubber gloves, apron and other protective clothing appropriate to the
	risk of exposure.
Other	Not Available

Other Recommendations

Provide eyewash stations, quick-drench showers and washing facilities accessible to areas of use and handling. Have supplies and equipment for neutralization and running water available.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance (physical state, color, etc.)	Clear, colorless solution. Liquid
Odor	Odorless
Odor threshold	Not Available
pH	Not Available
Melting point/freezing point	Not Available
Initial boiling point and boiling range	Not Available
Flash point	Not Flammable
Evaporation rate	Not Available
Flammability (solid, gas)	Not Flammable
Upper/lower flammability or explosive limit	Not Explosive
Vapor pressure	Not Available
Vapor density	Not Available
Specific gravity	1.2410
Solubility (ies)	Soluble in water
Partition coefficient: n-octanol/water	Not Available

Revised on 10/21/2015 Page 3 of 6

Auto-ignition temperature	Not Available
Decomposition temperature	Not Available

10. STABILITY AND REACTIVITY

Chemical Stability	Stable
Possibility of Hazardous Reactions	Will not occur.
Conditions to Avoid	Not Available
Incompatible Materials	Oxidizers, alkalis
Hazardous Decomposition Products	Carbon oxides

11. TOXICOLOGICAL INFORMATION

Acute Toxicity Citric Acid

Skin	Skin – rabbit – Mild skin irritation 24 hours
Eyes	Eyes – rabbit – Severe eye irritation 24 hours
Respiratory	Not Available
Ingestion	LD50 Oral – rat – 3,000 mg/kg

Carcinogenicity

IARC	No components of this product present at levels greater than or equal to 0.1% is identified
	as probable, possible or confirmed human carcinogen by IARC.
ACGIH	No components of this product present at levels greater than or equal to 0.1% is identified
	as a carcinogen or potential carcinogen by ACGIH.
NTP	No components of this product present at levels greater than or equal to 0.1% is identified
	as a known or anticipated carcinogen by NTP.
OSHA	No components of this product present at levels greater than or equal to 0.1% is identified
	as a carcinogen or potential carcinogen by OSHA.

Signs & Symptoms of Exposure

Skin	Irritation, itching, swelling, redness and pain.	
Eyes	Irritation.	
Respiratory	Irritation to the mucous membranes and upper respiratory tract.	
Ingestion	Gastrointestinal discomfort and possible pain upon ingestion.	

Chronic Toxicity	Not Available
Teratogenicity	Not Available
Mutagenicity	Not Available
Embryotoxicity	Not Available
Specific Target Organ Toxicity	Not Available
Reproductive Toxicity	Not Available
Respiratory/Skin Sensitization	Not Available

12. ECOLOGICAL INFORMATION

EcotoxicityCitric Acid

Aquatic Vertebrate	LC50 – Leuciscus idus melanotus – 440 mg/l – 48 h	
Aquatic Invertebrate	Not Available	
Terrestrial	Not Available	

Page 4 of 6 Revised on 10/21/2015

Persistence and Degradability	Not Available
Bioaccumulative Potential	Does not accumulate
Mobility in Soil	Not Available
PBT and vPvB Assessment	Not Available
Other Adverse Effects	Not Available

13. DISPOSAL CONSIDERATIONS

Waste Product or	Users should review their operations in terms of the applicable federal/national or
Residues	local regulations and consult with appropriate regulatory agencies if necessary before
	disposing of waste product or residue.
Product	Users should review their operations in terms of the applicable federal/national or
Containers	local regulations and consult with appropriate regulatory agencies if necessary
	before disposing of waste product container.

The information offered in section 13 is for the product as shipped. Use and/or alterations to the product may significantly change the characteristics of the material and alter the waste classification and proper disposal methods.

14. TRANSPORTATION INFORMATION

US DOT	Not Dangerous Goods
TDG	Not Dangerous Goods
IMDG	Not Dangerous Goods
Marine Pollutant	No
IATA/ICAO	Not Dangerous Goods

15. REGULATORY INFORMATION

TSCA Inventory Status	All ingredients are listed on the TSCA inventory.	
DSCL (EEC)	All ingredients are listed on the DSCL inventory.	
California Proposition 65	Not Listed	
SARA 302	Not Listed	
SARA 304	Not Listed	
SARA 311	Acute Health Hazard	
SARA 312	Acute Health Hazard	
SARA 313	Not Listed	
WHMIS Canada	Class E: Corrosive material	

Revised on 10/21/2015 Page 5 of 6

16. OTHER INFORMATION

Revision	Date
Revision 1	08/27/2013
Revision 2	10/21/2015

Disclaimer: Columbus Chemical Industries, Inc. ("Columbus") believes that the information herein is factual but is not intended to be all inclusive. The information relates only to the specific material designated and does not relate to its use in combination with other materials or its use as to any particular process. Because safety standards and regulations are subject to change and because Columbus has no continuing control over the material, those handling, storing or using the material should satisfy themselves that they have current information regarding the particular way the material is handled, stored or used and that the same is done in accordance with federal, state and local law. COLUMBUS MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING (WITHOUT LIMITATION) WARRANTIES WITH RESPECT TO THE COMPLETENESS OR CONTINUING ACCURACY OF THE INFORMATION CONTAINED HEREIN OR WITH RESPECT TO FITNESS FOR ANY PARTICULAR USE.

Revised on 10/21/2015 Page 6 of 6