

September 28, 2020

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

100 CambridgeSide Place Cambridge, Massachusetts

Dear Sir/Madam:

On behalf of John Moriarty & Associates, Inc (JMA) Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management groundwater that will be generated during dewatering activities associated with drilling activities. The project is to take place in the existing lower garage of the CambridgeSide Mall located at 100 CambridgeSide Place in Cambridge, Massachusetts (the Site). Work will take place beneath the existing mall in the lowest level of the parking garage. The work is anticipated to be completed within twelve months. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The work includes installation of new micro piles below the existing garage floor to reinforce the garage foundations. LRT understands that the subsurface beneath the garage has the potential for artesian conditions during drilling and therefore the installation of depressurization wells is planned. The water generated during depressurization/dewatering (Source water) will be pumped to a water treatment system. Treated water will discharge to one of two catch basins, both with final outfalls in the Lechmere Canal. LRT collected two representative groundwater samples on September 11, 2020 to characterize groundwater from the proposed dewatering/depressurization area. One sample was collected from the building's existing underdrainage system and one sample was collected from a deep monitoring well

drilled into bedrock. The sample locations are depicted on **Figure 2**. A sample of the receiving water (Lechmere Canal) was also collected on September 11, 2020. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of Arsenic and Total Suspended Solids were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, Source water will undergo treatment that includes chemical aided settling, pH adjustment and bag filtration prior to discharge. It is assumed that metal concentrations will be handled by settling and bag filtration. Carbon filtration and ion exchange have been provided as contingency options if additional analytes are encountered. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to the primary water treatment system with a design flow of up to 300 gallons per minute (gpm); the average effluent flow of the system is estimated to be 150 gpm, and the maximum flow will not exceed 300 gpm. Source water will enter frac tanks, plumbed in parallel, at the head of the system, the water will be treated with pH adjustment (sulfuric acid), LRT E50 coagulant and LRT 823 flocculant inside the frac tanks. From the frac tanks, water will flow to weir tanks plumped in parallel. From the weir tanks, water will then be pumped to a multi-bag filter skid (made up of two multi bag filter housings each housing containing six bag filters). Discharge from the bag filter will pass through a flow/totalizer meter prior to discharge.

If required, contingency treatment will include carbon and/or ion exchange media. Discharge from the media vessels will pass through a flow/totalizer meter prior to discharge into the Lechmere Canal. The discharge will be at one location (Discharge Location 1) as depicted on **Figure 2**. Effluent sampling will correspond with this discharge location.

Chemical and Additive Information

Due to the use of bentonite grout during drilling activities, it is possible the pH of the Source water will become elevated. Therefore, a pH adjustment system will be included to maintain discharge pH to within discharge limits.

The pH reduction system includes an automatic metered acid feed system with a mix tank, acid feed pumps and setpoint controls that maintain the pH to within discharge parameters. The maximum application concentration for sulfuric acid would be 333 mg/L.

The addition of pH conditioners will not add any pollutants in concentrations which exceed permit effluent limitations; 2) The use of these chemicals will not result in the exceedance of any applicable water quality standard; and 3) These chemicals will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit. The addition of sulfuric acid to control pH is a standard treatment for temporary construction dewatering; it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

Based on groundwater samples collected from the site and in efforts to meet the expected effluent limitations, the following chemicals and additives have been proposed for the treatment system: chemical aided settling system through coagulants/flocculants. Product names, chemical formulas, manufacturer information and Chemical Abstract Services (CAS) registry numbers have been provided on Safety Data Sheets (SDSs) included in **Appendix D**.

The chemical aided settling system will be added in two parts, the coagulant (LRT-E-50) will be injected into the influent stream prior to entering the frac tanks while the flocculant (LRT-823) will be added directly into the frac tanks. The coagulant and flocculant continually dose as dewatering activities occur at the maximum dosage rate of 25 parts per million (ppm). Although dosage rate for the coagulant and flocculant will be 25ppm, the detected concentration in the post bag filter (carryover) has been recorded in the parts per trillion (ppt) range, (about 6 order of magnitude less than the dosing concentration). This is because nearly all the chemical becomes incorporated in the sludge and removed from the waste stream as solids from the frac and weir tanks.

The addition of chemical aided settling system chemicals will not add any pollutant in contractions which exceed permit effluent limitations, will not exceed any applicable water quality standard, and will not add any pollutants that would be justify the application of permit conditions that different from or absent in this permit.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix E**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of John Moriarty & Associates, Inc., we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to the Lechmere Canal in support of dewatering activities that are to take place at 100 CambridgeSide Place.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, JMA is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

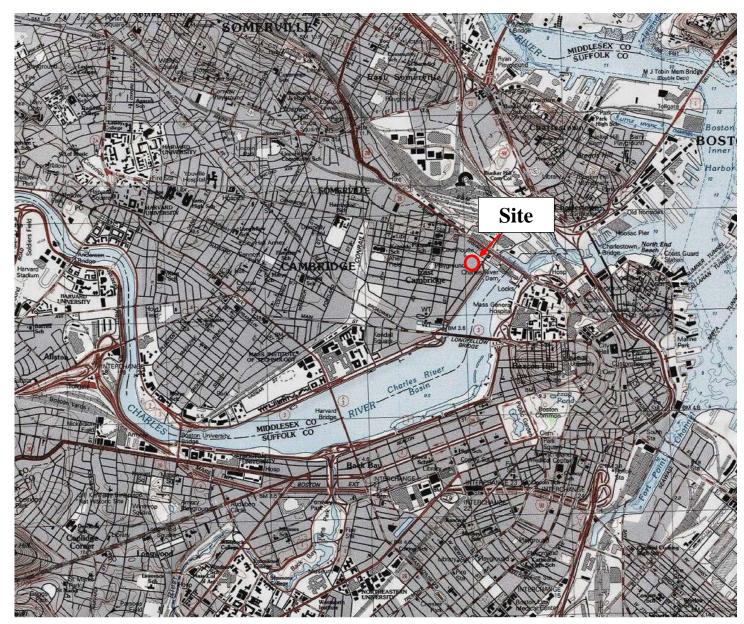
Jacob Jennings Staff Scientist Kim Gravelle, P.G. Senior Project Manager

Kim Gravelle

Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic

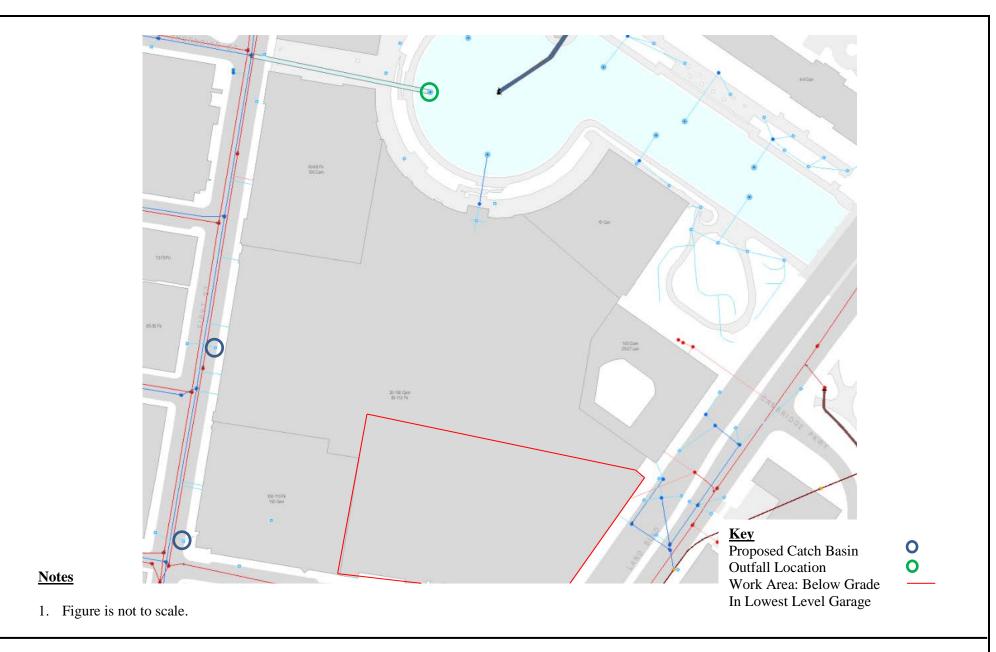

Appendix A - NOI Form Appendix B - Laboratory Data

Appendix C - Water Treatment System Appendix D – Safety Data Sheets Appendix E - Supplemental Information

cc: Cathy Vakalopoulos – Mass DEP

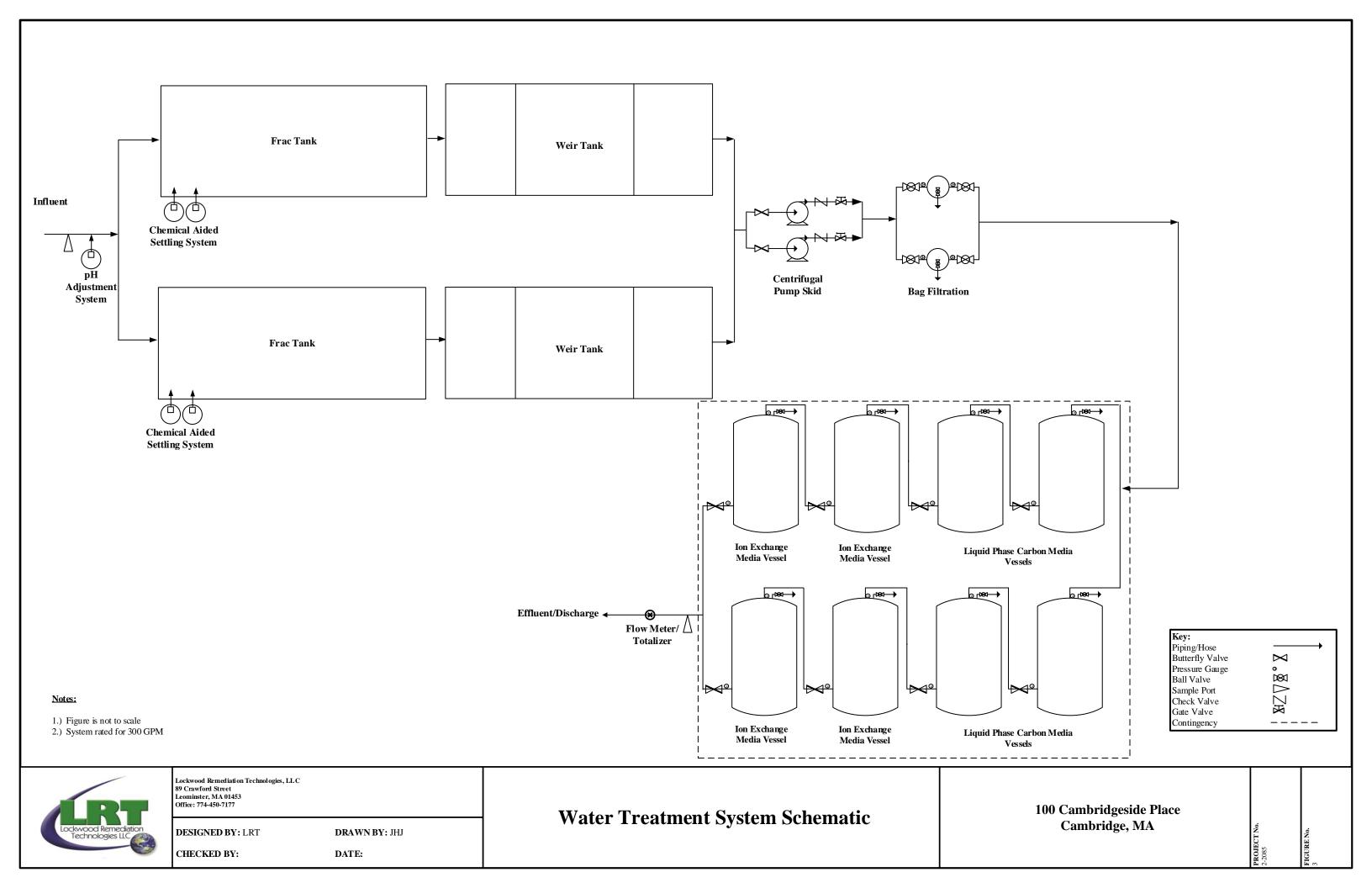
Kim Gravelle – LRT Al Vautour – JMA

Source: ArcGIS Map Viewer


Notes

1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177


Fax: 888.835.0617 www.lrt-llc.net

89 Crawford Street Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net **Figure 2 – Site Layout** 100 Cambridgeside Place Cambridge, Massachusetts

From: Ruan, Xiaodan (DEP)
To: Jake Jennings

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: Dilution Calcs 100 Cambridgeside Place

Date: Thursday, September 24, 2020 2:46:12 PM

Attachments: <u>image001.jpg</u>

Hi Jake,

Yes, there will be no dilution allowed in the Lechmere Canal for the project at 100 Cambridgeside Place, Cambridge. I know you already had the water quality and online application information, but I included them in this email again.

Here is water quality information in assisting you in filling out the NOI:

Waterbody and ID: Charles River (MA72-38) within Charles River Watershed

Classification: B

Outstanding Resource Water?: no

State's most recent Integrated List is located

here: https://www.epa.gov/sites/production/files/2020-01/documents/2016-ma-303d-list-

report.pdf, search for "MA72-38" to see the causes of impairments.

TMDLs: there are two approved TMDL (pathogen and nutrients) for this segment.

As you know, if this is not a *current* MCP site, then in addition to submitting the NOI to EPA, you need to apply with MassDEP and submit a \$500 fee (unless fee exempt, e.g., municipality). For MassDEP's application, please use ePLACE, an online application submittal process where you will set up a user ID and be able to submit NOIs for various projects as well as pay by credit card. The instructions are located on this page: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. Technical assistant information is available on the front page of the ePLACE application webpage.

Please let me know if you have any questions.

Thanks, Xiaodan

From: Jake Jennings < JJennings@Irt-Ilc.net>
Sent: Thursday, September 24, 2020 10:14 AM

To: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Cc: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov> **Subject:** Dilution Calcs 100 Cambridgeside Place

CAUTION: This email originated from a sender outside of the Commonwealth of Massachusetts mail system. Do not click on links or open attachments unless you

recognize the sender and know the content is safe.

Hi Cathy,

Please see dilution calcs for 100 Cambridgeside Place for your review and approval.

The Project:

100 Cambridgeside Place Cambridge, MA

We plan to discharge into a catch basin with a final out fall in the Lechmere Canal (Charles River MA72-38)

The 7 Day 10 year flow value from the streamstats report is not available because the Lechmere canal does not receive enough flow. Please confirm.

Let me know if you have any questions.

Thank you,

Jake Jennings

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774.450.7177 F: 888.835.0617

M: 978.751.5431 jjennings@lrt-llc.net

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		LA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	D NH Consulation Management Demoit on		☐ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
· · · · · · · · · · · · · · · · · · ·		ection 404					

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	ation of receiving water(s):			
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver			
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No				
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No					
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.						
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in				
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s						
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-					
(check one): ☐ Yes ☐ No						
C. Source water information:						
1. Source water(s) is (check any that apply):						
☐ Contaminated groundwater	☐ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, incomparing municipality or origin:					
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other				
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:			
□ Yes □ No	□ Yes □ No					

2. Source water contaminants:						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): ☐ Ye	•					
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No						
Provide the expected start and end dates of discharge(s) (month/year):						
Indicate if the discharge is expected to occur over a duration of: \square less than 1	2 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known	75 5 4	5	Influent		Effluent Lir	nitations
Parameter	Parameter or or # of method limit maximum average parameter believed believed samples (#) Detection method limit maximum average parameter	Daily average (µg/l)	TBEL	WQBEL				
A. Inorganics								
Ammonia							Report mg/L	
Chloride							Report µg/l	
Total Residual Chlorine							0.2 mg/L	
Total Suspended Solids							30 mg/L	
Antimony							206 μg/L	
Arsenic							104 μg/L	
Cadmium							10.2 μg/L	
Chromium III							323 μg/L	
Chromium VI							323 μg/L	
Copper							242 μg/L	
Iron							5,000 μg/L	
Lead							160 μg/L	
Mercury							0.739 μg/L	
Nickel							1,450 μg/L	
Selenium							235.8 μg/L	
Silver							35.1 μg/L	
Zinc							420 μg/L	
Cyanide							178 mg/L	
B. Non-Halogenated VOCs	3							
Total BTEX							100 μg/L	
Benzene							5.0 μg/L	
1,4 Dioxane							200 μg/L	
Acetone							7.97 mg/L	
Phenol							1,080 µg/L	

	Known	Known	_	_	Inf	luent	Effluent Limitations	
Parameter	Parameter or or # of Test Detection	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL			
C. Halogenated VOCs								
Carbon Tetrachloride							4.4 μg/L	
1,2 Dichlorobenzene							600 μg/L	
1,3 Dichlorobenzene							320 μg/L	
1,4 Dichlorobenzene							5.0 μg/L	
Total dichlorobenzene							763 µg/L in NH	
1,1 Dichloroethane							70 μg/L	
1,2 Dichloroethane							5.0 μg/L	
1,1 Dichloroethylene							3.2 µg/L	
Ethylene Dibromide							0.05 μg/L	
Methylene Chloride							4.6 μg/L	
1,1,1 Trichloroethane							200 μg/L	
1,1,2 Trichloroethane							5.0 μg/L	
Trichloroethylene							5.0 μg/L	
Tetrachloroethylene							5.0 μg/L	
cis-1,2 Dichloroethylene							70 μg/L	
Vinyl Chloride							2.0 μg/L	
D. Non-Halogenated SVO	Cs							
Total Phthalates							190 μg/L	
Diethylhexyl phthalate							101 μg/L	
Total Group I PAHs							1.0 μg/L	
Benzo(a)anthracene							_	
Benzo(a)pyrene							_	
Benzo(b)fluoranthene							_	
Benzo(k)fluoranthene							As Total PAHs	
Chrysene							_	
Dibenzo(a,h)anthracene							_	
Indeno(1,2,3-cd)pyrene								

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	ethod limit	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

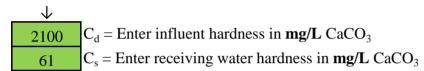
□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \Box Yes \Box No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
BMPP certification statement:	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes \square No \square NA \square
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □ No □ NA □
☐ Other; if so, specify:	
Signature: Date	te:
Print Name and Title:	

(Flow Regime Modification*)	
Cause Unknown (Sediment Screening Value (Exceedence))	
Chlorophyll-a	33826
Combined Biota/Habitat Bioassessments	
DDT in Fish Tissue	
Dissolved Oxygen	
Dissolved Oxygen Supersaturation	33826
Escherichia Coli (E. Coli)	32371
Harmful Algal Blooms	33826
Nutrient/Eutrophication Biological Indicators	33826
Odor	33826
Oil and Grease	
PCBs In Fish Tissue	
Phosphorus, Total	33826
Salinity	
Temperature	
Transparency / Clarity	33826

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	$Q_R = Enter upstream flow in MGD$
0.432	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

pH in Standard Units
Temperature in °C
Ammonia in mg/L
Hardness in mg/L CaCO ₃
Salinity in ppt
Antimony in μg/L
Arsenic in μg/L
Cadmium in µg/L
Chromium III in µg/L
Chromium VI in µg/L
Copper in µg/L
Iron in μg/L
Lead in µg/L
Mercury in μg/L
Nickel in µg/L
Selenium in µg/L
Silver in µg/L
Zinc in µg/L

Enter **influent** concentrations in the units specified

$\overline{}$	_
0	TRC in µg/L
0.6	Ammonia in mg/L
0	Antimony in μg/L
23	Arsenic in μg/L
0	Cadmium in µg/L
3.3	Chromium III in µg/L
0	Chromium VI in µg/L
36	Copper in µg/L
420	Iron in μg/L
2.7	Lead in µg/L
0	Mercury in µg/L
8.5	Nickel in µg/L
75	Selenium in µg/L
0	Silver in µg/L
18	Zinc in µg/L
1	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

A. Inorganics	TBEL applies if	bolded	WQBEL applies in	f bolded
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	11	μg/L
Total Suspended Solids	30	mg/L		MB/ 2
Antimony	206	μg/L	640	μg/L
Arsenic	104		10	
Cadmium	10.2	μg/L	2.5822	μg/L
Chromium III		μg/L	1043.0	μg/L
	323	μg/L		μg/L
Chromium VI	323	μg/L	11.4	μg/L
Copper	242	μg/L	125.8	μg/L
Iron	5000	$\mu g/L$	1000	$\mu g/L$
Lead	160	$\mu g/L$	153.40	$\mu g/L$
Mercury	0.739	$\mu g/L$	0.91	μg/L
Nickel	1450	μg/L	685.4	μg/L
Selenium	235.8	μg/L	5.0	μg/L
Silver	35.1	μg/L	711.6	μg/L
Zinc	420	μg/L	1580.6	μg/L
Cyanide	178	mg/L	5.2	μg/L
B. Non-Halogenated VOCs	170	mg/L	3.2	μg/L
Total BTEX	100	μg/L		
Benzene	5.0	μg/L		
1,4 Dioxane	200	μg/L		
Acetone	7970	μg/L		
Phenol	1,080	$\mu g/L$	300	$\mu g/L$
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	$\mu g/L$	1.6	$\mu g/L$
1,2 Dichlorobenzene	600	μg/L		
1,3 Dichlorobenzene	320	μ g/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		μg/L		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0	μg/L	2.2	. 7
Tetrachloroethylene	5.0	μg/L	3.3	μg/L
cis-1,2 Dichloroethylene	70	μg/L		

Vinyl Chloride	2.0	μ g/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	$\mu g/L$	2.2	$\mu g/L$
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L
Chrysene	1.0	μg/L	0.0038	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters		1.0		
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		
•				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

September 24, 2020

Jake Jennings Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: 100 Cambridgeside Place

Client Job Number: Project Number: 2-2085

Laboratory Work Order Number: 20I0672

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on September 11, 2020. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
20I0672-01	8
20I0672-02	16
20I0672-03	24
Sample Preparation Information	26
QC Data	29
Volatile Organic Compounds by GC/MS	29
B266407	29
Semivolatile Organic Compounds by GC/MS	31
B266649	31
Semivolatile Organic Compounds by - GC/MS	32
B266582	32
Polychlorinated Biphenyls By GC/ECD	35
B266707	35
Metals Analyses (Total)	36
B266384	36
B266418	36
B266420	36
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	38
B266331	38
B266332	38
B266356	38
B266372	38

Table of Contents (continued)

B266422	38
B266491	39
B266666	39
B266673	39
Drinking Water Organics EPA 504.1	40
B266706	40
Dual Column RPD Report	41
Flag/Qualifier Summary	45
Certifications	46
Chain of Custody/Sample Receipt	50

REPORT DATE: 9/24/2020

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453

ATTN: Jake Jennings

PURCHASE ORDER NUMBER: 2-2085

2-2085

PROJECT NUMBER:

ANALYTICAL SUMMARY

20I0672 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 100 Cambridgeside Place

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW	20I0672-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 350.1	
				EPA 504.1	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Under Drain System	20I0672-02	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 350.1	
				EPA 504.1	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Water	20I0672-03	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 350.1	
				SM21-22 3500 Cr B	
				Tri Chrome Calc.	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT - 9/24/2020 - Project name updated per client's request.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Hexachlorocyclopentadiene

S052469-CCV1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Benzidine

S052469-CCV1, S052471-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

S052469-CCV1, S052471-CCV1

Hexachlorocyclopentadiene

S052469-CCV1, S052471-CCV1

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

Antimony

20I0672-02[Under Drain System]

Cadmium

20I0672-02[Under Drain System]

Chromium

20I0672-02[Under Drain System]

Lead

20I0672-02[Under Drain System]

Nickel

20I0672-02[Under Drain System]

20I0672-02[Under Drain System]

SM21-22 4500 CL G

Qualifications:

Z-01

SM 4500 CL G test had a calibration point outside of acceptable back-calculated recovery. Re-analysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

Chlorine, Residual

20I0672-01[MW], 20I0672-02[Under Drain System], B266332-BLK1, B266332-BS1, B266332-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Kerry K. McGee
Project Manager

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Volatile	Organic	Compound	le hv	CC/MS
voiauie	Organic	Compound	เรเบง	CYC./IVIO

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	50.9	50.0	3.79	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Benzene	< 0.180	1.00	0.180	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Bromodichloromethane	1.59	2.00	0.160	μg/L	1	J	624.1	9/14/20	9/15/20 1:11	LBD
Bromoform	< 0.460	2.00	0.460	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Bromomethane	<1.38	5.00	1.38	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Carbon Tetrachloride	< 0.110	2.00	0.110	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Chlorobenzene	< 0.150	2.00	0.150	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Chlorodibromomethane	1.61	2.00	0.210	μg/L	1	J	624.1	9/14/20	9/15/20 1:11	LBD
Chloroethane	< 0.360	2.00	0.360	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Chloroform	5.87	2.00	0.170	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Chloromethane	< 0.450	2.00	0.450	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,2-Dichlorobenzene	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,3-Dichlorobenzene	< 0.120	2.00	0.120	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,2-Dichloroethane	< 0.410	2.00	0.410	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,1-Dichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,1-Dichloroethylene	< 0.320	2.00	0.320	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
trans-1,2-Dichloroethylene	< 0.310	2.00	0.310	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,2-Dichloropropane	< 0.200	2.00	0.200	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
cis-1,3-Dichloropropene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
1,4-Dioxane	<22.5	50.0	22.5	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
trans-1,3-Dichloropropene	< 0.230	2.00	0.230	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Ethanol	<10.5	50.0	10.5	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Ethylbenzene	< 0.130	2.00	0.130	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Methyl tert-Butyl Ether (MTBE)	< 0.250	2.00	0.250	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Methylene Chloride	< 0.340	5.00	0.340	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
1,1,2,2-Tetrachloroethane	< 0.220	2.00	0.220	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Tetrachloroethylene	0.250	2.00	0.180	$\mu g/L$	1	J	624.1	9/14/20	9/15/20 1:11	LBD
Toluene	2.06	1.00	0.140	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
1,1,1-Trichloroethane	< 0.200	2.00	0.200	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
1,1,2-Trichloroethane	< 0.160	2.00	0.160	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Trichloroethylene	< 0.240	2.00	0.240	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Trichlorofluoromethane (Freon 11)	< 0.330	2.00	0.330	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
Vinyl Chloride	< 0.450	2.00	0.450	μg/L	1		624.1	9/14/20	9/15/20 1:11	LBD
m+p Xylene	0.310	2.00	0.300	μg/L	1	J	624.1	9/14/20	9/15/20 1:11	LBD
o-Xylene	< 0.170	1.00	0.170	$\mu g/L$	1		624.1	9/14/20	9/15/20 1:11	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		76.4		70-130					9/15/20 1:11	
Toluene-d8		92.9		70-130					9/15/20 1:11	
4-Bromofluorobenzene		96.5		70-130					9/15/20 1:11	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

				8						
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.016	0.050	0.016	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Benzo(a)pyrene (SIM)	< 0.012	0.099	0.012	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Benzo(b)fluoranthene (SIM)	< 0.015	0.050	0.015	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Benzo(k)fluoranthene (SIM)	< 0.012	0.20	0.012	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Bis(2-ethylhexyl)phthalate (SIM)	< 0.42	0.99	0.42	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Chrysene (SIM)	< 0.015	0.20	0.015	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Dibenz(a,h)anthracene (SIM)	< 0.017	0.099	0.017	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Indeno(1,2,3-cd)pyrene (SIM)	< 0.018	0.099	0.018	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Pentachlorophenol (SIM)	< 0.33	0.99	0.33	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:23	imr
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
2-Fluorophenol (SIM)		42.8		15-110					9/17/20 10:23	
Phenol-d6 (SIM)		28.9		15-110					9/17/20 10:23	
Nitrobenzene-d5		64.3		30-130					9/17/20 10:23	
2-Fluorobiphenyl		54.6		30-130					9/17/20 10:23	
2,4,6-Tribromophenol (SIM)		72.7		15-110					9/17/20 10:23	
p-Terphenyl-d14		55.3		30-130					9/17/20 10:23	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

		Semiv	olatile Organic Co	mpounds by	- GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Acenaphthylene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Anthracene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Benzo(g,h,i)perylene	<4.95	4.95	$\mu g/L$	1		625.1	9/16/20	9/17/20 12:04	IMR
Butylbenzylphthalate	<9.90	9.90	$\mu g/L$	1		625.1	9/16/20	9/17/20 12:04	IMR
4-Chloro-3-methylphenol	<9.90	9.90	$\mu g/L$	1		625.1	9/16/20	9/17/20 12:04	IMR
2-Chlorophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Di-n-butylphthalate	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2,4-Dichlorophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Diethylphthalate	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2,4-Dimethylphenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Dimethylphthalate	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
4,6-Dinitro-2-methylphenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2,4-Dinitrophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Di-n-octylphthalate	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Bis(2-Ethylhexyl)phthalate	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Fluoranthene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Fluorene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Naphthalene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2-Nitrophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
4-Nitrophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Pentachlorophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Phenanthrene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2-Methylphenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Phenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
3/4-Methylphenol	<19.8	19.8	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Pyrene	<4.95	4.95	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
2,4,6-Trichlorophenol	<9.90	9.90	μg/L	1		625.1	9/16/20	9/17/20 12:04	IMR
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		37.4	15-110					9/17/20 12:04	
Phenol-d6		24.0	15-110					9/17/20 12:04	
Nitrobenzene-d5		56.5	30-130					9/17/20 12:04	
2-Fluorobiphenyl		65.4	30-130					9/17/20 12:04	
2,4,6-Tribromophenol		69.0	15-110					9/17/20 12:04	
p-Terphenyl-d14		70.7	30-130					9/17/20 12:04	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 20I0672

Date Received: 9/11/2020 Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01 Sample Matrix: Ground Water

Polych	larinatad	Rinhanyle	By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0920	0.100	0.0920	μg/L	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1221 [1]	< 0.0805	0.100	0.0805	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1232 [1]	< 0.0995	0.100	0.0995	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1242 [1]	< 0.0865	0.100	0.0865	μg/L	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1248 [1]	< 0.0950	0.100	0.0950	μg/L	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1254 [1]	< 0.0525	0.100	0.0525	μg/L	1		608.3	9/17/20	9/17/20 21:18	PJG
Aroclor-1260 [1]	< 0.0980	0.100	0.0980	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:18	PJG
Surrogates		% Reco	overy	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		96.7		30-150					9/17/20 21:18	
Decachlorobiphenyl [2]		96.4		30-150					9/17/20 21:18	
Tetrachloro-m-xylene [1]		85.1		30-150					9/17/20 21:18	
Tetrachloro-m-xylene [2]		86.2		30-150					9/17/20 21:18	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
•	Results	KL	DL	Units	Dilution	riag/Quai	Method	ттератец	Allalyzeu	Analyst
Antimony	ND	1.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Arsenic	ND	0.80		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Chromium	3.3	1.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Chromium, Trivalent	0.0033			mg/L	1		Tri Chrome Calc.	9/14/20	9/15/20 15:35	QNW
Copper	17	1.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Iron	0.30	0.050		mg/L	1		EPA 200.7	9/14/20	9/15/20 16:57	MJH
Lead	2.7	0.50		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	9/14/20	9/16/20 11:22	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Selenium	3.6	5.0	1.6	$\mu g/L$	1	J	EPA 200.8	9/14/20	9/15/20 15:35	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Zinc	ND	10		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:35	QNW
Hardness	200	1.4		mg/L	1		EPA 200.7	9/14/20	9/15/20 16:57	MJH

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.60	0.10		mg/L	1		EPA 350.1	9/13/20	9/16/20 11:31	MMH
Chloride	310	25		mg/L	25		EPA 300.0	9/15/20	9/15/20 19:52	EC
Chlorine, Residual	ND	0.020		mg/L	1	Z-01	SM21-22 4500 CL G	9/11/20	9/11/20 21:15	AWA
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	9/11/20	9/11/20 20:00	CB2
Total Suspended Solids	15	1.0		mg/L	1		SM21-22 2540D	9/14/20	9/14/20 12:49	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	9/17/20	9/17/20 11:30	LL

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: MW Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	0.012	$\mu g/L$	1		EPA 504.1	9/17/20	9/17/20 15:38	PJG
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,3-Dibromopropane (1)		100		70-130					9/17/20 15:38	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020
Field Sample #: MW

Sampled: 9/11/2020 10:00

Sample ID: 20I0672-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		9/15/20 14:57	AAL

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Volatile Organic Compounds b	v GC/MS	
------------------------------	---------	--

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	<3.79	50.0	3.79	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
tert-Amyl Methyl Ether (TAME)	< 0.140	0.500	0.140	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Benzene	< 0.180	1.00	0.180	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Bromodichloromethane	< 0.160	2.00	0.160	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Bromoform	< 0.460	2.00	0.460	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Bromomethane	<1.38	5.00	1.38	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
tert-Butyl Alcohol (TBA)	<4.17	20.0	4.17	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Carbon Tetrachloride	< 0.110	2.00	0.110	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Chlorobenzene	< 0.150	2.00	0.150	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Chlorodibromomethane	< 0.210	2.00	0.210	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Chloroethane	< 0.360	2.00	0.360	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Chloroform	< 0.170	2.00	0.170	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Chloromethane	< 0.450	2.00	0.450	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,2-Dichlorobenzene	< 0.160	2.00	0.160	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,3-Dichlorobenzene	< 0.120	2.00	0.120	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,4-Dichlorobenzene	< 0.130	2.00	0.130	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,2-Dichloroethane	< 0.410	2.00	0.410	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
cis-1,2-Dichloroethylene	< 0.130	1.00	0.130	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,1-Dichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,1-Dichloroethylene	< 0.320	2.00	0.320	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
trans-1,2-Dichloroethylene	< 0.310	2.00	0.310	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,2-Dichloropropane	< 0.200	2.00	0.200	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
cis-1,3-Dichloropropene	<0.130	2.00	0.130	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,4-Dioxane	<22.5	50.0	22.5	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
trans-1,3-Dichloropropene	< 0.230	2.00	0.230	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Ethanol	<10.5	50.0	10.5	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Ethylbenzene	< 0.130	2.00	0.130	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Methyl tert-Butyl Ether (MTBE)	<0.250	2.00	0.250	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Methylene Chloride	<0.340	5.00	0.340	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
1,1,2,2-Tetrachloroethane	<0.220	2.00	0.220	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Tetrachloroethylene	< 0.180	2.00	0.180	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Toluene	0.250	1.00	0.140	μg/L μg/L	1	J	624.1	9/14/20	9/15/20 3:22	LBD
1,1,1-Trichloroethane	<0.200	2.00	0.200	μg/L μg/L	1	•	624.1	9/14/20	9/15/20 3:22	LBD
1,1,2-Trichloroethane	< 0.160	2.00	0.160	μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Trichloroethylene	<0.240	2.00	0.240	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Trichlorofluoromethane (Freon 11)	< 0.330	2.00	0.330	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Vinyl Chloride	< 0.450	2.00	0.450	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
m+p Xylene	< 0.300	2.00	0.300	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
o-Xylene	< 0.170	1.00	0.300	μg/L μg/L	1		624.1	9/14/20	9/15/20 3:22	LBD
Surrogates	N.170					Flag/Qual	024.1	7/14/20	7113120 3.22	LDD
1,2-Dichloroethane-d4		% Reco	very	70-130	•	r iag/Qual			9/15/20 3:22	
Toluene-d8		93.4		70-130					9/15/20 3:22	
4-Bromofluorobenzene		96.8		70-130					9/15/20 3:22	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Semivolatile Organic	Compounds by	GC/MS
----------------------	--------------	-------

			Schiive	intile Organic C	ompounds by	GC/1115				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.015	0.048	0.015	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Benzo(a)pyrene (SIM)	< 0.012	0.096	0.012	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Benzo(b)fluoranthene (SIM)	< 0.014	0.048	0.014	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Benzo(k)fluoranthene (SIM)	< 0.012	0.19	0.012	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Bis(2-ethylhexyl)phthalate (SIM)	< 0.41	0.96	0.41	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Chrysene (SIM)	< 0.014	0.19	0.014	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Dibenz(a,h)anthracene (SIM)	< 0.016	0.096	0.016	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Indeno(1,2,3-cd)pyrene (SIM)	< 0.017	0.096	0.017	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Pentachlorophenol (SIM)	< 0.32	0.96	0.32	$\mu g/L$	1		625.1	9/16/20	9/17/20 10:51	imr
Surrogates		% Reco	very	Recovery Limit	ts	Flag/Qual				
2-Fluorophenol (SIM)		47.4		15-110					9/17/20 10:51	
Phenol-d6 (SIM)		34.6		15-110					9/17/20 10:51	
Nitrobenzene-d5		76.8		30-130					9/17/20 10:51	
2-Fluorobiphenyl		64.6		30-130					9/17/20 10:51	
2,4,6-Tribromophenol (SIM)		84.3		15-110					9/17/20 10:51	
p-Terphenyl-d14		64.8		30-130					9/17/20 10:51	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Acenaphthylene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Anthracene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Benzo(g,h,i)perylene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Butylbenzylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
4-Chloro-3-methylphenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
2-Chlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Di-n-butylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
2,4-Dichlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Diethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
2,4-Dimethylphenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Dimethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
4,6-Dinitro-2-methylphenol	<9.62	9.62	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
2,4-Dinitrophenol	<9.62	9.62	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
Di-n-octylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Bis(2-Ethylhexyl)phthalate	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Fluoranthene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Fluorene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Naphthalene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
2-Nitrophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
4-Nitrophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Pentachlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Phenanthrene	<4.81	4.81	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
2-Methylphenol	<9.62	9.62	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
Phenol	<9.62	9.62	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
3/4-Methylphenol	<19.2	19.2	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
Pyrene	<4.81	4.81	μg/L	1		625.1	9/16/20	9/17/20 13:01	IMR
2,4,6-Trichlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	9/16/20	9/17/20 13:01	IMR
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol		44.6	15-110					9/17/20 13:01	
Phenol-d6		30.6	15-110					9/17/20 13:01	
Nitrobenzene-d5		66.6	30-130					9/17/20 13:01	

9/17/20 21:30

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

95.4

Sample ID: 2010672-02
Sample Matrix: Ground Water

Tetrachloro-m-xylene [2]

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0902	0.0980	0.0902	μg/L	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1221 [1]	< 0.0789	0.0980	0.0789	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1232 [1]	< 0.0975	0.0980	0.0975	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1242 [1]	< 0.0848	0.0980	0.0848	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1248 [1]	< 0.0931	0.0980	0.0931	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1254 [1]	< 0.0515	0.0980	0.0515	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Aroclor-1260 [1]	< 0.0961	0.0980	0.0961	$\mu g/L$	1		608.3	9/17/20	9/17/20 21:30	PJG
Surrogates		% Reco	very	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		99.6		30-150					9/17/20 21:30	
Decachlorobiphenyl [2]		99.8		30-150					9/17/20 21:30	
Tetrachloro-m-xylene [1]		93.6		30-150					9/17/20 21:30	

30-150

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	5.0		μg/L	5	DL-15	EPA 200.8	9/14/20	9/17/20 7:41	QNW
Arsenic	23	1.6		$\mu g/L$	2		EPA 200.8	9/14/20	9/16/20 10:50	QNW
Cadmium	ND	0.40		$\mu g/L$	2	DL-15	EPA 200.8	9/14/20	9/16/20 10:50	QNW
Chromium	ND	2.0		$\mu g/L$	2	DL-15	EPA 200.8	9/14/20	9/16/20 10:50	QNW
Chromium, Trivalent	ND	2.0		mg/L	1		Tri Chrome Calc.	9/14/20	9/16/20 10:50	QNW
Copper	36	2.0		$\mu g/L$	2		EPA 200.8	9/14/20	9/16/20 10:50	QNW
Iron	0.42	0.050		mg/L	1		EPA 200.7	9/14/20	9/15/20 17:05	MJH
Lead	ND	2.5		$\mu g/L$	5	DL-15	EPA 200.8	9/14/20	9/16/20 10:46	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	9/14/20	9/16/20 11:23	CJV
Nickel	ND	10		$\mu g/L$	2	DL-15	EPA 200.8	9/14/20	9/16/20 10:50	QNW
Selenium	75	10	3.3	$\mu g/L$	2		EPA 200.8	9/14/20	9/16/20 10:50	QNW
Silver	ND	0.40		$\mu g/L$	2	DL-15	EPA 200.8	9/14/20	9/16/20 10:50	QNW
Zinc	18	10		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:45	QNW
Hardness	2100	14		mg/L	10		EPA 200.7	9/14/20	9/17/20 11:59	ONW

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sam

Sample ID: 2010672-02
Sample Matrix: Ground Water

Sampled: 9/11/2020 10:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.22	0.10		mg/L	1		EPA 350.1	9/13/20	9/16/20 11:32	MMH
Chloride	2800	200		mg/L	200		EPA 300.0	9/16/20	9/16/20 18:35	CB2
Chlorine, Residual	ND	0.020		mg/L	1	Z-01	SM21-22 4500 CL G	9/11/20	9/11/20 21:15	AWA
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	9/11/20	9/11/20 20:00	CB2
Total Suspended Solids	7.4	1.0		mg/L	1		SM21-22 2540D	9/14/20	9/14/20 12:49	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	9/17/20	9/17/20 11:30	LL

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.020	0.012	μg/L	1		EPA 504.1	9/17/20	9/17/20 16:02	PJG
Surrogates		% Reco	very	Recovery Limit	ts	Flag/Qual				
1.2 Dibromonronono (1)		06.8		70.120					0/17/20 16:02	

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Under Drain System Sampled: 9/11/2020 10:30

Sample ID: 2010672-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Cyanide		0.001	0.005	0.001	mg/L	1		SM21-22 4500 CN E		9/15/20 14:59	AAL

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Receiving Water Sampled: 9/11/2020 10:45

Sample ID: 20I0672-03
Sample Matrix: Ground Water

				Metals Ana	lyses (Total)					
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Arsenic	ND	0.80		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Chromium	1.0	1.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Chromium, Trivalent	0.0010			mg/L	1		Tri Chrome Calc.	9/14/20	9/15/20 15:52	QNW
Copper	14	1.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Iron	0.20	0.050		mg/L	1		EPA 200.7	9/14/20	9/15/20 17:13	MJH
Lead	0.62	0.50		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	9/14/20	9/16/20 11:25	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Zine	11	10		$\mu g/L$	1		EPA 200.8	9/14/20	9/15/20 15:52	QNW
Hardness	7.5	1.4		mg/L	1		EPA 200.7	9/14/20	9/15/20 17:13	MJH

Project Location: 100 Cambridgeside Place Sample Description: Work Order: 2010672

Date Received: 9/11/2020

Field Sample #: Receiving Water Sampled: 9/11/2020 10:45

Sample ID: 2010672-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	ND	0.10		mg/L	1		EPA 350.1	9/13/20	9/16/20 11:33	MMH
Hexavalent Chromium	ND	0.0040		ma/I	1		SM21-22 3500 Cr B	9/11/20	9/11/20 20:00	CB2

Sample Extraction Data

Prep Method: SW-846 3510C Analytical Method: 608.3

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266707	1000	5.00	09/17/20
20I0672-02 [Under Drain System]	B266707	1020	5.00	09/17/20

Prep Method: SW-846 5030B Analytical Method: 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266407	5	5.00	09/14/20
20I0672-02 [Under Drain System]	B266407	5	5.00	09/14/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266582	1010	1.00	09/16/20
20I0672-02 [Under Drain System]	B266582	1040	1.00	09/16/20

Prep Method: SW-846 3510C Analytical Method: 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266649	1010	1.00	09/16/20
20I0672-02 [Under Drain System]	B266649	1040	1.00	09/16/20

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
20I0672-01 [MW]	B266673	1000	09/17/20
20I0672-02 [Under Drain System]	B266673	1000	09/17/20

Prep Method: EPA 200.7 Analytical Method: EPA 200.7

Batch	Initial [mL]	Final [mL]	Date	
B266418	50.0	50.0	09/14/20	
B266418	50.0		09/14/20	
B266418	50.0	50.0	09/14/20	
B266418	50.0		09/14/20	
B266418	50.0	50.0	09/14/20	
B266418	50.0		09/14/20	
•	B266418 B266418 B266418 B266418 B266418	B266418 50.0 B266418 50.0 B266418 50.0 B266418 50.0 B266418 50.0	B266418 50.0 50.0 B266418 50.0 B266418 50.0 50.0 B266418 50.0 50.0 B266418 50.0 50.0	B266418 50.0 50.0 09/14/20 B266418 50.0 09/14/20 B266418 50.0 50.0 09/14/20 B266418 50.0 09/14/20 B266418 50.0 50.0 09/14/20 B266418 50.0 50.0 09/14/20

Prep Method: EPA 200.8 Analytical Method: EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266420	50.0	50.0	09/14/20
20I0672-02 [Under Drain System]	B266420	50.0	50.0	09/14/20
20I0672-03 [Receiving Water]	B266420	50.0	50.0	09/14/20

Sample Extraction Data

Prep Method: EPA 245.1 Analytical Method: EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266384	6.00	6.00	09/14/20
20I0672-02 [Under Drain System]	B266384	6.00	6.00	09/14/20
20I0672-03 [Receiving Water]	B266384	6.00	6.00	09/14/20

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266491	10.0	10.0	09/15/20

Prep Method: EPA 300.0 Analytical Method: EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-02 [Under Drain System]	B266666	10.0	10.0	09/16/20

EPA 350.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266356	50.0	50.0	09/13/20
20I0672-02 [Under Drain System]	B266356	50.0	50.0	09/13/20
20I0672-03 [Receiving Water]	B266356	50.0	50.0	09/13/20

Prep Method: EPA 504 water Analytical Method: EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266706	34.2	35.0	09/17/20
20I0672-02 [Under Drain System]	B266706	35.0	35.0	09/17/20

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
20I0672-01 [MW]	B266372	500	09/14/20

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
20I0672-02 [Under Drain System]	B266422	500	09/14/20

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
20I0672-01 [MW]	B266331	50.0	50.0	09/11/20
20I0672-02 [Under Drain System]	B266331	50.0	50.0	09/11/20
20I0672-03 [Receiving Water]	B266331	50.0	50.0	09/11/20

Sample Extraction Data

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
2010672-01 [MW]	B266332	100	100	09/11/20
2010672-02 [Under Drain System]	B266332	100	100	09/11/20

Prep Method: EPA 200.8 Analytical Method: Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
20I0672-01 [MW]	B266420	50.0	09/14/20
20I0672-02 [Under Drain System]	B266420	50.0	09/14/20
20I0672-03 [Receiving Water]	B266420	50.0	09/14/20

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B266407 - SW-846 5030B										
Blank (B266407-BLK1)				Prepared & A	Analyzed: 09	/14/20				
Acetone	ND	50.0	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	$\mu g/L$							
tert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.00	$\mu g/L$							
1,3-Dichlorobenzene	ND	2.00	μg/L							
1,4-Dichlorobenzene	ND	2.00	μg/L							
1,2-Dichloroethane	ND	2.00	μg/L							
cis-1,2-Dichloroethylene	ND	1.00	$\mu g/L$							
1,1-Dichloroethane	ND	2.00	μg/L							
1,1-Dichloroethylene	ND	2.00	$\mu g/L$							
1,4-Dioxane	ND	50.0	μg/L							
Ethanol	ND	50.0	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
Tetrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
Trichloroethylene	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
o-Xylene	ND	1.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	19.6		$\mu g/L$	25.0		78.6	70-130			
Surrogate: Toluene-d8	23.2		μg/L	25.0		93.0	70-130			
Surrogate: 4-Bromofluorobenzene	23.8		μg/L	25.0		95.4	70-130			
LCS (B266407-BS1)				Prepared & A	Analyzed: 09	/14/20				
Acetone	180	50.0	μg/L	200		92.2	70-160			
ert-Amyl Methyl Ether (TAME)	19	0.500	μg/L	20.0		95.0	70-130			
Benzene	20	1.00	μg/L	20.0		101	65-135			
ert-Butyl Alcohol (TBA)	210	20.0	μg/L	200		104	40-160			
Carbon Tetrachloride	18	2.00	μg/L	20.0		89.2	70-130			
1,2-Dichlorobenzene	20	2.00	μg/L	20.0		102	65-135			
,3-Dichlorobenzene	21	2.00	μg/L	20.0		103	70-130			
1,4-Dichlorobenzene	20	2.00	μg/L	20.0		99.4	65-135			
1,2-Dichloroethane	17	2.00	μg/L	20.0		84.0	70-130			
cis-1,2-Dichloroethylene	20	1.00	μg/L	20.0		100	70-130			
,1-Dichloroethane	21	2.00	μg/L	20.0		104	70-130			
,1-Dichloroethylene	19	2.00	μg/L	20.0		96.0	50-150			
,4-Dioxane	210	50.0	μg/L	200		103	40-130			
Ethanol	190	50.0	μg/L	200		96.3	40-160			
Ethylbenzene	21	2.00	μg/L	20.0		104	60-140			
Methyl tert-Butyl Ether (MTBE)	19	2.00	μg/L	20.0		94.9	70-130			
Methylene Chloride	20	5.00	μg/L	20.0		101	60-140			
Tetrachloroethylene	21	2.00	μg/L	20.0		106	70-130			
Toluene	20	1.00	μg/L	20.0		98.2	70-130			
,1,1-Trichloroethane	19	2.00	μg/L	20.0		95.0	70-130			
1,1,2-Trichloroethane	20	2.00	μg/L	20.0		102	70-130			
Trichloroethylene	20	2.00	μg/L	20.0		101	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266407 - SW-846 5030B										
LCS (B266407-BS1)				Prepared &	Analyzed: 09	/14/20				
Vinyl Chloride	19	2.00	μg/L	20.0		92.8	5-195			
m+p Xylene	41	2.00	$\mu g\!/\!L$	40.0		103	70-130			
o-Xylene	21	1.00	$\mu g/L$	20.0		103	70-130			
Surrogate: 1,2-Dichloroethane-d4	19.6		μg/L	25.0		78.2	70-130			
Surrogate: Toluene-d8	23.7		$\mu g/L$	25.0		94.8	70-130			
Surrogate: 4-Bromofluorobenzene	24.0		$\mu g/L$	25.0		96.0	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266649 - SW-846 3510C										
Blank (B266649-BLK1)				Prepared &	Analyzed: 09	/16/20				
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	μg/L							
Benzo(k)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							
Chrysene (SIM)	ND	0.050	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
urrogate: 2-Fluorophenol (SIM)	88.9		μg/L	200		44.5	15-110			
Surrogate: Phenol-d6 (SIM)	59.7		$\mu g/L$	200		29.9	15-110			
Surrogate: Nitrobenzene-d5	82.1		$\mu g/L$	100		82.1	30-130			
Surrogate: 2-Fluorobiphenyl	73.3		$\mu g/L$	100		73.3	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	191		$\mu g/L$	200		95.4	15-110			
urrogate: p-Terphenyl-d14	77.6		$\mu g/L$	100		77.6	30-130			
.CS (B266649-BS1)				Prepared &	Analyzed: 09	/16/20				
Benzo(a)anthracene (SIM)	39.4	1.0	μg/L	50.0		78.9	33-143			
Benzo(a)pyrene (SIM)	39.0	2.0	μg/L	50.0		78.0	17-163			
Benzo(b)fluoranthene (SIM)	43.5	1.0	μg/L	50.0		87.0	24-159			
Benzo(k)fluoranthene (SIM)	41.4	4.0	μg/L	50.0		82.8	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	41.6	20	μg/L	50.0		83.2	8-158			
Chrysene (SIM)	40.4	4.0	μg/L	50.0		80.8	17-168			
Dibenz(a,h)anthracene (SIM)	43.8	2.0	μg/L	50.0		87.7	10-227			
ndeno(1,2,3-cd)pyrene (SIM)	43.5	2.0	μg/L	50.0		87.0	10-171			
entachlorophenol (SIM)	39.3	20	μg/L	50.0		78.7	14-176			
Surrogate: 2-Fluorophenol (SIM)	92.8		μg/L	200		46.4	15-110			
Surrogate: Phenol-d6 (SIM)	63.7		μg/L μg/L	200		31.9	15-110			
Surrogate: Nitrobenzene-d5	71.6		μg/L	100		71.6	30-130			
Surrogate: 2-Fluorobiphenyl	73.6		μg/L	100		73.6	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	195		μg/L	200		97.5	15-110			
surrogate: p-Terphenyl-d14	67.5		μg/L	100		67.5	30-130			
.CS Dup (B266649-BSD1)				Prepared &	Analyzed: 09	/16/20				
Benzo(a)anthracene (SIM)	40.5	1.0	μg/L	50.0	mary zea. 05	80.9	33-143	2.55	53	
Benzo(a)pyrene (SIM)	40.1	2.0	μg/L	50.0		80.1	17-163	2.63	72	
Benzo(b)fluoranthene (SIM)	44.5	1.0	μg/L μg/L	50.0		89.1	24-159	2.32	71	
Benzo(k)fluoranthene (SIM)	42.1	4.0	μg/L μg/L	50.0		84.2	11-162	1.68	63	
Bis(2-ethylhexyl)phthalate (SIM)	42.1	20	μg/L μg/L	50.0		85.5	8-158	2.80	82	
Chrysene (SIM)	41.2	4.0	μg/L μg/L	50.0		82.3	17-168	1.86	87	
Dibenz(a,h)anthracene (SIM)	44.7	2.0	μg/L μg/L	50.0		89.4	10-227	1.99	126	
ndeno(1,2,3-cd)pyrene (SIM)	44.7	2.0	μg/L μg/L	50.0		89.1	10-227	2.41	99	
Pentachlorophenol (SIM)	40.3	20	μg/L μg/L	50.0		80.6	14-176	2.36	86	
Surrogate: 2-Fluorophenol (SIM)	105									
Surrogate: 2-Fluorophenol (SIM) Surrogate: Phenol-d6 (SIM)			μg/L	200		52.5 35.0	15-110			
Surrogate: Prienoi-do (SIM)	71.8 83.9		μg/L μg/I	200 100		35.9 83.9	15-110 30-130			
Surrogate: Nitrobenzene-d5	78.1		μg/L μg/L	100		78.1	30-130			
Surrogate: 2-Fitorootipnenyi	201			200		100	15-110			
ourrogate. 2,4,0-1110101110pilelloi (SIM)	67.1		μg/L	200		100	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266582 - SW-846 3510C										
Blank (B266582-BLK1)				Prepared &	Analyzed: 09	/16/20				
Acenaphthene	ND	5.00	μg/L							
Acenaphthylene	ND	5.00	$\mu g/L$							
Anthracene	ND	5.00	$\mu g/L$							
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
-Chloro-3-methylphenol	ND	10.0	$\mu g/L$							
-Chlorophenol	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
,4-Dichlorophenol	ND	10.0	$\mu g/L$							
Diethylphthalate	ND	10.0	μg/L							
,4-Dimethylphenol	ND	10.0	μg/L							
Dimethylphthalate	ND	10.0	μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
,4-Dinitrophenol	ND	10.0	μg/L							
Di-n-octylphthalate	ND	10.0	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10.0	μg/L							
luoranthene	ND	5.00	μg/L							
luorene	ND	5.00	μg/L							
laphthalene -Nitrophenol	ND	5.00	μg/L							
-Nitrophenol	ND	10.0 10.0	μg/L μg/L							
entachlorophenol	ND	10.0	μg/L μg/L							
henanthrene	ND ND	5.00	μg/L μg/L							
-Methylphenol	ND ND	10.0	μg/L μg/L							
henol	ND ND	10.0	μg/L μg/L							
/4-Methylphenol	ND ND	20.0	μg/L μg/L							
Pyrene	ND ND	5.00	μg/L							
,4,6-Trichlorophenol	ND	10.0	μg/L							
urrogate: 2-Fluorophenol	81.0		μg/L	200		40.5	15-110			
urrogate: Phenol-d6	53.0		$\mu g/L$	200		26.5	15-110			
urrogate: Nitrobenzene-d5	72.6		$\mu g/L$	100		72.6	30-130			
urrogate: 2-Fluorobiphenyl	79.2		μg/L	100		79.2	30-130			
urrogate: 2,4,6-Tribromophenol	167		μg/L	200		83.4	15-110			
urrogate: p-Terphenyl-d14	89.0		μg/L	100		89.0	30-130			
LCS (B266582-BS1)			-	Prepared &	Analyzed: 09					
cenaphthene	40.3	5.00	μg/L	50.0		80.7	47-145			
cenaphthylene	44.0	5.00	μg/L	50.0		88.1	33-145			
Anthracene	46.1	5.00	μg/L	50.0		92.3	27-133			
Senzo(g,h,i)perylene	42.1	5.00	μg/L	50.0		84.2	10-219			
Sutylbenzylphthalate -Chloro-3-methylphenol	40.5	10.0 10.0	μg/L μg/L	50.0		81.0	10-152			
-Chlorophenol	41.5	10.0	μg/L μg/L	50.0 50.0		83.1 70.6	22-147 23-134			
vi-n-butylphthalate	35.3	10.0	μg/L μg/L	50.0		70.6 86.7	10-120			
,4-Dichlorophenol	43.4	10.0	μg/L μg/L	50.0		86.7 85.0	39-135			
Diethylphthalate	42.5 42.7	10.0	μg/L μg/L	50.0		85.4	10-120			
,4-Dimethylphenol	42.7	10.0	μg/L μg/L	50.0		82.2	32-120			
Dimethylphthalate	41.1	10.0	μg/L μg/L	50.0		90.4	10-120			
,6-Dinitro-2-methylphenol	45.2 32.4	10.0	μg/L μg/L	50.0		64.7	10-120			
,4-Dinitrophenol	21.3	10.0	μg/L μg/L	50.0		42.6	10-181			
Di-n-octylphthalate	38.2	10.0	μg/L μg/L	50.0		76.3	4-146			
bis(2-Ethylhexyl)phthalate	39.4	10.0	μg/L μg/L	50.0		78.8	8-158			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266582 - SW-846 3510C		· ·		<u> </u>					<u> </u>	
LCS (B266582-BS1)				Prepared & A	Analyzed: 09	16/20				
Fluoranthene	48.0	5.00	μg/L	50.0		96.1	26-137			
Fluorene	45.2	5.00	$\mu g/L$	50.0		90.3	59-121			
Naphthalene	36.0	5.00	$\mu \text{g/L}$	50.0		72.0	21-133			
2-Nitrophenol	42.2	10.0	$\mu g/L$	50.0		84.4	29-182			
4-Nitrophenol	22.5	10.0	$\mu g/L$	50.0		45.1	10-132			
Pentachlorophenol	26.8	10.0	$\mu g/L$	50.0		53.6	14-176			
Phenanthrene	46.2	5.00	μg/L	50.0		92.4	54-120			
2-Methylphenol	33.4	10.0	μg/L	50.0		66.7	40-140			
Phenol	17.6	10.0	μg/L	50.0		35.1	5-120			
3/4-Methylphenol	32.4	20.0	μg/L	50.0		64.9	40-140			
Pyrene	43.4	5.00	μg/L	50.0		86.8	52-120			
2,4,6-Trichlorophenol	44.9	10.0	μg/L	50.0		89.7	37-144			
Surrogate: 2-Fluorophenol	103		μg/L	200		51.6	15-110			
Surrogate: Phenol-d6	68.5		$\mu g/L$	200		34.2	15-110			
Surrogate: Nitrobenzene-d5	81.4		$\mu g/L$	100		81.4	30-130			
Surrogate: 2-Fluorobiphenyl	96.1		$\mu g/L$	100		96.1	30-130			
Surrogate: 2,4,6-Tribromophenol	207		μg/L	200		104	15-110			
Surrogate: p-Terphenyl-d14	105		μg/L	100		105	30-130			
LCS Dup (B266582-BSD1)				Prepared &	Analyzed: 09/	16/20				
Acenaphthene	36.6	5.00	μg/L	50.0		73.3	47-145	9.56	48	
Acenaphthylene	39.7	5.00	$\mu g/L$	50.0		79.4	33-145	10.4	74	
Anthracene	41.3	5.00	$\mu g/L$	50.0		82.6	27-133	11.0	66	
Benzo(g,h,i)perylene	38.4	5.00	$\mu g/L$	50.0		76.9	10-219	9.11	97	
Butylbenzylphthalate	36.5	10.0	$\mu \text{g/L}$	50.0		73.1	10-152	10.3	60	
I-Chloro-3-methylphenol	39.7	10.0	$\mu \text{g/L}$	50.0		79.5	22-147	4.43	73	
2-Chlorophenol	35.1	10.0	μg/L	50.0		70.1	23-134	0.625	61	
Di-n-butylphthalate	39.2	10.0	μg/L	50.0		78.4	10-120	10.1	47	
2,4-Dichlorophenol	39.3	10.0	μg/L	50.0		78.6	39-135	7.82	50	
Diethylphthalate	38.4	10.0	μg/L	50.0		76.8	10-120	10.6	100	
2,4-Dimethylphenol	38.4	10.0	μg/L	50.0		76.8	32-120	6.79	58	
Dimethylphthalate	40.7	10.0	μg/L	50.0		81.3	10-120	10.6	183	
4,6-Dinitro-2-methylphenol	29.4	10.0	μg/L	50.0		58.9	10-181	9.51	203	
2,4-Dinitrophenol	19.4	10.0	μg/L	50.0		38.8	10-191	9.53	132	
Di-n-octylphthalate	35.1	10.0	μg/L	50.0		70.2	4-146	8.38	69	
Bis(2-Ethylhexyl)phthalate	35.1	10.0	μg/L	50.0		70.2	8-158	11.5	82	
Fluoranthene	43.3	5.00	μg/L	50.0		86.7	26-137	10.3	66	
Fluorene	40.4	5.00	μg/L	50.0		80.8	59-121	11.1	38	
Naphthalene 2 Nitrophenol	33.6	5.00	μg/L μα/I	50.0		67.2	21-133	6.95	65 55	
2-Nitrophenol 4-Nitrophenol	39.7	10.0 10.0	μg/L μg/L	50.0 50.0		79.4 44.4	29-182	6.08	55	
Pentachlorophenol	22.2	10.0	μg/L μg/L	50.0		44.4	10-132 14-176	1.39 14.1	131 86	
Phenanthrene	23.3	5.00	μg/L μg/L	50.0		46.6 82.4	54-120	14.1	39	
2-Methylphenol	41.2 34.6	10.0	μg/L μg/L	50.0		69.1	40-140	3.47	39	
Phenol	34.6 17.8	10.0	μg/L μg/L	50.0		35.6	5-120	1.25	64	
3/4-Methylphenol	32.7	20.0	μg/L μg/L	50.0		65.4	40-140	0.829	30	
Pyrene	38.8	5.00	μg/L μg/L	50.0		77.7	52-120	11.0	49	
2,4,6-Trichlorophenol	40.0	10.0	μg/L μg/L	50.0		79.9	37-144	11.6	58	
Surrogate: 2-Fluorophenol	102		μg/L	200		51.2	15-110			
Surrogate: Phenol-d6	68.4		μg/L	200		34.2	15-110			
Surrogate: Nitrobenzene-d5	78.1		μg/L	100		78.1	30-130			
Surrogate: 2-Fluorobiphenyl	85.8		μg/L	100		85.8	30-130			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B266582 - SW-846 3510C

LCS Dup (B266582-BSD1)			Prepared & Ana	alyzed: 09/16/20		
Surrogate: 2,4,6-Tribromophenol	177	μg/L	200	88.7	15-110	
Surrogate: p-Terphenyl-d14	92.2	$\mu g/L$	100	92.2	30-130	

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266707 - SW-846 3510C										
Blank (B266707-BLK1)				Prepared &	Analyzed: 09	/17/20				
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1260	ND	0.100	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.100	μg/L							
Surrogate: Decachlorobiphenyl	0.894		μg/L	1.00		89.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.894		$\mu g/L$	1.00		89.4	30-150			
Surrogate: Tetrachloro-m-xylene	0.774		$\mu g/L$	1.00		77.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.786		$\mu g/L$	1.00		78.6	30-150			
LCS (B266707-BS1)				Prepared &	Analyzed: 09	/17/20				
Aroclor-1016	0.478	0.200	μg/L	0.500		95.5	50-140			
Aroclor-1016 [2C]	0.457	0.200	$\mu g/L$	0.500		91.5	50-140			
Aroclor-1260	0.452	0.200	$\mu g/L$	0.500		90.4	8-140			
Aroclor-1260 [2C]	0.428	0.200	$\mu g \! / \! L$	0.500		85.6	8-140			
Surrogate: Decachlorobiphenyl	1.94		μg/L	2.00		96.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.93		$\mu g/L$	2.00		96.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.63		$\mu g/L$	2.00		81.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.65		$\mu g/L$	2.00		82.3	30-150			
LCS Dup (B266707-BSD1)				Prepared &	Analyzed: 09	/17/20				
Aroclor-1016	0.501	0.200	μg/L	0.500		100	50-140	4.76		
Aroclor-1016 [2C]	0.483	0.200	μg/L	0.500		96.6	50-140	5.43		
Aroclor-1260	0.476	0.200	μg/L	0.500		95.2	8-140	5.21		
Aroclor-1260 [2C]	0.449	0.200	μg/L	0.500		89.7	8-140	4.70		
Surrogate: Decachlorobiphenyl	2.02		μg/L	2.00		101	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.02		μg/L	2.00		101	30-150			
Surrogate: Tetrachloro-m-xylene	1.80		μg/L	2.00		89.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.82		μg/L	2.00		91.0	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266384 - EPA 245.1										
Blank (B266384-BLK1)				Prepared: 09	0/14/20 Anal	yzed: 09/16/2	20			
Mercury	ND	0.00010	mg/L							
LCS (B266384-BS1)				Prepared: 09	9/14/20 Anal	yzed: 09/16/2	20			
Mercury	0.00398	0.00010	mg/L	0.00400		99.5	85-115			
LCS Dup (B266384-BSD1)				Prepared: 09	9/14/20 Anal	yzed: 09/16/2	20			
Mercury	0.00403	0.00010	mg/L	0.00400		101	85-115	1.26	20	
Batch B266418 - EPA 200.7										
Blank (B266418-BLK1)				Prepared: 09	9/14/20 Anal	yzed: 09/15/2	20			
Iron	ND	0.050	mg/L							
Hardness	ND	1.4	mg/L							
LCS (B266418-BS1)				Prepared: 09	0/14/20 Anal	yzed: 09/15/2	20			
Iron	4.16	0.050	mg/L	4.00		104	85-115			
Hardness	27	1.4	mg/L	26.4		101	85-115			
LCS Dup (B266418-BSD1)				Prepared: 09	9/14/20 Anal	yzed: 09/15/2	20			
ron	4.03	0.050	mg/L	4.00		101	85-115	3.30	20	
Hardness	26	1.4	mg/L	26.4		98.2	85-115	3.13	20	
Batch B266420 - EPA 200.8										
Blank (B266420-BLK1)				Prepared: 09	0/14/20 Anal	yzed: 09/15/2	20			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	$\mu g\!/\!L$							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	μg/L							
Selenium	ND	5.0	μg/L							
Silver Zinc	ND ND	0.20 10	μg/L μg/L							
	ND	10	μg/∟							
LCS (B266420-BS1)				•	0/14/20 Anal					
Antimony	498	10	μg/L	500		99.6	85-115			
Arsenic	512	8.0	μg/L	500		102	85-115			
Cadmium	519	2.0	μg/L	500		104	85-115			
Chromium	516	10	μg/L	500		103	85-115			
Copper	1000	10	μg/L	1000		100	85-115			
Lead	508	5.0	μg/L	500		102	85-115			
		50	μg/L	500		103	85-115			
Nickel	516									
Nickel Selenium	502	50	$\mu g/L$	500		100	85-115			
Nickel Selenium Silver Zinc						100 102 101	85-115 85-115 85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266420 - EPA 200.8										
LCS Dup (B266420-BSD1)				Prepared: 09	9/14/20 Anal	yzed: 09/15/2	20			
Antimony	493	10	μg/L	500		98.7	85-115	0.911	20	
Arsenic	510	8.0	μg/L	500		102	85-115	0.354	20	
Cadmium	518	2.0	μg/L	500		104	85-115	0.192	20	
Chromium	518	10	μg/L	500		104	85-115	0.415	20	
Copper	1010	10	μg/L	1000		101	85-115	0.0732	20	
Lead	510	5.0	μg/L	500		102	85-115	0.389	20	
Nickel	517	50	μg/L	500		103	85-115	0.237	20	
Selenium	507	50	μg/L	500		101	85-115	1.15	20	
Silver	516	2.0	μg/L	500		103	85-115	0.838	20	
Zinc	1010	100	μg/L	1000		101	85-115	0.0983	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266331 - SM21-22 3500 Cr B		<u> </u>							· · ·	
Blank (B266331-BLK1)				Prepared & A	Analyzed: 09	/11/20				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B266331-BS1)				Prepared & A	Analyzed: 09	/11/20				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	90-115			
LCS Dup (B266331-BSD1)				Prepared & A	Analyzed: 09	/11/20				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		105	90-115	1.24	11	
Batch B266332 - SM21-22 4500 CL G										
Blank (B266332-BLK1)				Prepared & A	Analyzed: 09	/11/20				
Chlorine, Residual	ND	0.020	mg/L							Z-01
LCS (B266332-BS1)				Prepared & A	Analyzed: 09	/11/20				
Chlorine, Residual	0.71	0.020	mg/L	0.641		110	85.3-130			Z-01
LCS Dup (B266332-BSD1)				Prepared & Analyzed: 09/11/20						
Chlorine, Residual	0.70	0.020	mg/L	0.641		109	85.3-130	1.10	13.6	Z-01
Batch B266356 - EPA 350.1										
Blank (B266356-BLK1)				Prepared: 09	/13/20 Anal	yzed: 09/16/	20			
Ammonia as N	ND	0.10	mg/L							
LCS (B266356-BS1)				Prepared: 09	/13/20 Anal	yzed: 09/16/	20			
Ammonia as N	1.9	0.10	mg/L	2.00		95.6	90-110			
LCS Dup (B266356-BSD1)				Prepared: 09	/13/20 Anal	yzed: 09/16/	20			
Ammonia as N	1.9	0.10	mg/L	2.00		93.8	90-110	2.01	20	
Batch B266372 - SM21-22 2540D										
Blank (B266372-BLK1)				Prepared & A	Analyzed: 09	/14/20				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B266372-BS1)				Prepared & A	Analyzed: 09	/14/20				
Total Suspended Solids	146	10	mg/L	200		73.0	57.4-123			
Batch B266422 - SM21-22 2540D										
Blank (B266422-BLK1)				Prepared & A	Analyzed: 09	/14/20				
Total Suspended Solids	ND	2.5	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B266422 - SM21-22 2540D										
LCS (B266422-BS1)				Prepared &	Analyzed: 09	/14/20				
Total Suspended Solids	146	10	mg/L	200		73.0	57.4-123			
Batch B266491 - EPA 300.0										
Blank (B266491-BLK1)				Prepared &	Analyzed: 09	/15/20				
Chloride	ND	1.0	mg/L							
LCS (B266491-BS1)				Prepared &	Analyzed: 09	/15/20				
Chloride	9.8		mg/L	10.0		97.8	90-110			
LCS Dup (B266491-BSD1)				Prepared &	Analyzed: 09	/15/20				
Chloride	9.8		mg/L	10.0		98.0	90-110	0.246	20	
Batch B266666 - EPA 300.0										
Blank (B266666-BLK1)				Prepared &	Analyzed: 09	/16/20				
Chloride	ND	1.0	mg/L							
LCS (B266666-BS1)				Prepared &	Analyzed: 09	/16/20				
Chloride	9.9		mg/L	10.0		99.3	90-110			
LCS Dup (B266666-BSD1)				Prepared &	Analyzed: 09	/16/20				
Chloride	9.9		mg/L	10.0		99.4	90-110	0.0725	20	
Batch B266673 - EPA 1664B										
Blank (B266673-BLK1)				Prepared &	Analyzed: 09	/17/20				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B266673-BS1)				Prepared &	Analyzed: 09	/17/20				
Silica Gel Treated HEM (SGT-HEM)	9.9		mg/L	10.0		99.0	64-132			

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

A	D14	Reporting	T I:4-	Spike	Source	0/DEC	%REC	DDD	RPD	NI-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B266706 - EPA 504 water										
Blank (B266706-BLK1)				Prepared &	Analyzed: 09	/17/20				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
Surrogate: 1,3-Dibromopropane	1.06		$\mu g/L$	1.04		102	70-130			
LCS (B266706-BS1)				Prepared &	Analyzed: 09	/17/20				
1,2-Dibromoethane (EDB)	0.238	0.021	μg/L	0.260		91.6	70-130			
Surrogate: 1,3-Dibromopropane	1.04		μg/L	1.04		99.8	70-130			
LCS Dup (B266706-BSD1)				Prepared &	Analyzed: 09	/17/20				
1,2-Dibromoethane (EDB)	0.233	0.021	μg/L	0.263		88.4	70-130	2.21		
Surrogate: 1,3-Dibromopropane	1.09		μg/L	1.05		103	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

EPA 504.1

La	b Sample ID: B26	6706-BS1	<u> </u>	Da	ate(s) Analy	zed: 09/17/2020	09/1	7/2020
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	ТО			
	1.2-Dibromoethane (FDR)	-1	2 /27	0.000	0.000	0.220		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

1.00 D	
LCS Dup	

EPA 504.1

La	b Sample ID: B266	6706-BSD	1	Da	Date(s) Analyzed: 09/17/2020		09/1	7/2020
Ins	strument ID (1):			In	strument ID	(2):		
G	C Column (1):	ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD]
				FROM	TO			
Ī	1,2-Dibromoethane (EDB)	1	3 437	0.000	0.000	0.233		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

608.3

Lab Sample ID:	B266707-BS1		Date(s) Analyzed:	09/17/2020	09/17/202	20
Instrument ID (1):	ECD10		Instrument ID (2):	ECD10		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	ANALYTE COL RT RT WINDOV		NDOW	CONCENTRATION	%RPD	
7.10.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.478	
	2	0.000	0.000	0.000	0.457	4.9
Aroclor-1260	1	0.000	0.000	0.000	0.452	
	2	0.000	0.000	0.000	0.428	5.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

608.3

Lab Sample ID:	B266707-BSD1		Date(s) Analyzed:	09/17/2020	09/17/202	20
Instrument ID (1):	ECD10	-	Instrument ID (2):	ECD10		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.1.0.1.1.2	002		FROM	TO	0011021111111111111	70111 2
Aroclor-1016	1	0.000	0.000 0.000		0.501	
	2	0.000	0.000	0.000	0.483	3.5
Aroclor-1260	1	0.000	0.000	0.000	0.476	
	2	0.000	0.000	0.000	0.449	6.7

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
Z-01	SM 4500 CL G test had a calibration point outside of acceptable back-calculated recovery. Re-analysis yielded similar non-conformance.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,MA,NH,RI,NC,ME,VA	
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA	
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
tert-Butyl Alcohol (TBA)	NY,MA	
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA	
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,2-Dichloroethylene	NY,MA	
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA	
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
1,4-Dioxane	MA	
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA	
Ethanol	NY,MA,NH	
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Naphthalene	NY,MA,NC	
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA	

CERTIFICATIONS

Certified Analyses included in this Report

EPA 200.7 in Water

Analyte	Certifications
624.1 in Water	
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
Pentachlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol 2/4 Mathylphonol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene 2.4.6 Triablaranhanal	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol 2-Fluorophenol	CT,MA,NH,NY,NC,RI,ME,VA NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA VA
THE COOK TO MAKE	1/1

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Hardness	CT,MA,NH,NY,RI,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
EPA 350.1 in Water		
Ammonia as N	NC,NY,MA,NH,RI,ME,VA	
SM21-22 2540D in Water		
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA	
SM21-22 3500 Cr B in Water		
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC	
SM21-22 4500 CL G in Water		
Chlorine, Residual	CT,MA,RI,ME	
SM21-22 4500 CN E in Water		
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA	

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2021
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2021
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2021
RI	Rhode Island Department of Health	LAO00112	12/30/2020
NC	North Carolina Div. of Water Quality	652	12/31/2020
NJ	New Jersey DEP	MA007 NELAP	06/30/2021
FL	Florida Department of Health	E871027 NELAP	06/30/2021
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2021
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2020
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2021
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2021
NC-DW	North Carolina Department of Health	25703	07/31/2021
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2021
MI	Dept. of Env, Great Lakes, and Energy	9100	10/1/2020

http://www.contestlabs.com

Doc # 381 Rev 1_03242017

CON-test

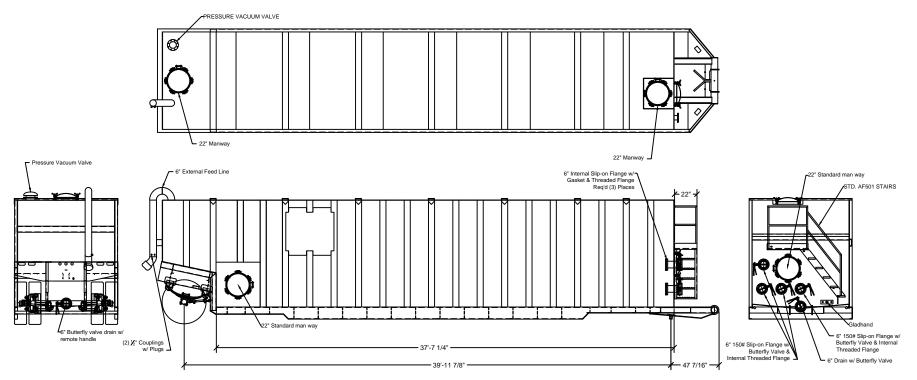
Phone: 413-525-2332 CHAIN OF CUSTODY RECORD

39 Spruce Street East Longmeadow, MA 01028

Page	1	of	1

AMILIA VINVELHICAT EVRONALORA	Fax: 413-525-6405		Re	quested Tu	irnarot	mri Time					-	ust Lo	5	uu on	, ,,,,,,,	,,,,,,					
	Email: info@contestlabs.com		7-Day		10-Da	у		3	2	2	2	2	6	4	4	4	2	6	3	3	# of Containers
Company Name:	Lockwood Remediation Technol	ogies	Due Date:		5-d	lay		S			N	Х	Н	-	_	S.	١	T	N	ı	² Preservation Code
Address: 89 Crawford Stree	t, Leominster, MA 01453			Rush-Appro	val Re	quired		Р	Р	p	Р	P	V	Α	Α	Α	Р	V	Р	Р	³ Container Code
Phone: (774) 450-7177			1-Day		3-Day					1	ANALY:	IS RI	QUE	STE) _						Dissolved Metals samples
Project Name:			2-Day		4-Day							i									O Field Filtered
Project Location:				No. of the contract of the con	Deliver				l		r III, s, Zn)										O Lab to Filter
Project Number: 2-2085			Format:	PDF 🗹	EXCEL	- 니					ا, ح ک, A										
Project Manager: Jake Jennings			Other:]			s,Cd,	Ì							-		Or Hophesphale Samples
Con-Test Quote Name/Number:			CLP Like D	ata Pkg Red				1		ļ .	(Sb,As, Ig, Ni,		•								O Field Filtered
Invoice Recipient:			Email To:			<u> Dirt-Ilc.r</u>		1			1 % ∸										O Lab to Filter
Sampled By:			CC:	<u>kgra</u>	velle@	@Irt-Ilc.i	<u>net</u>	nja Pi	象	1	Metal e, Pb,	بو		ξÿ	l		1	İ	ess	niun	
Con-Test Work Orden#	Client Sample ID / Description	Beginning Date/Time	Ending Date/Time	Composite	Grab	Matrix Code	Conc Code	Ammonia	Chloride	TRC	Total / Cu, Fe	Cyanide	Vocs	Semi-Voc's	PCB's	Hdi	TSS	ED8	Hardness	Chromium	¹ <u>Matrix Codes:</u> GW = Ground Water
(ww	9111	05.00		х	GW	U	X	x	х	х	х	х	х	х	х	х	х	х	Х	WW = Waste Water DW = Drinking Water
2	Under Drain System	9111	(O'.30		Х	GW	U	X	х	х	х	x	Х	х	х	х	х	х	х	Х	A = Air S = Soil
3	Receiving Water	9110	1045		Х	GW	U	x			Х								Х	Х	SL = Sludge SOL = Solid
			ì																		O = Other (please define)
									ļ .												
																					² <u>Preservation Codes</u> : 1 = lced
																					H = HCL M = Methanol
																					N = Nitric Acid S = Sulfuric Acid
								<u>L</u>				<u> </u>						L			B = Sodium Bisulfate X = Sodium Hydroxide
											:- 40		\	la mi					<u> </u>		T = Sodium Thiosulfate
Comments: pH In: ////	7.8 pl	TRW 7, 2)			DI		•			is 10)U (am	ibrio	age	SIG	e Pi	ace		-	0 = Other (please
1 banga	diamete 6,4	•				Please	usper												ie i	Conc	define)
							-Kr	(M	9/24	4/20)20										³ Container Codes:
Samples are for	NPDES RGP Parame							4				·····	***********								A = Amber Glass
Relinquished by: (signature)	Date/Time:		Limit Rec	uirentente		Special	Brain Constitioner	ALURZUPS/SEPIEZ	oltosnownestos												G = Glass P = Plastic
	19/11 2:co	AA					MA MC		•		utll) i						18 8 6	Đ.			ST = Sterile
Decerved by: (signature)	Date/Time: 4/0	*****				CP Certifi						1 (Œ		***			V = Vial
Relinguished by: (signature)	Date/Time:	6.7			R	J CP Certifi	CT RO			900	mm		MALY								S = Summa Canister T = Tedlar Bag
1/10/-	- 9/4/20 MY		24		+ -			,,,,,,,,,		Ŧ	estru		*****	cont	estia	bs.cc	H11)				O = Other (please
T vector: (signature)	Date/Time:	†				MA	State D	W Req	uired	1											define)
Quished by: (signature)	-30,2,4 9/1/20 1745	Other			PWSI	D #						(FLA	and	AlliA	LAP,	LLC.	4ccre	dired			
	Date/Time:	Project Er	tity										Oth	er							PCB ONLY
ŏ			Governme	ent 🔲	Muni	cipality		M	WRA		WRTA						gram				Soxhlet
Of ived by: (signature)	Date/Time:		Federal		21 J				thool					لــا	AIH.	A-LAP	,LLC				Non Soxhlet
7			City		Brow	/nfield		N	ABTA				<u></u>								1

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____



Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client Receive	LRT ed By	9821		Date	9/11/20		Time	1245	
How were th	-	In Cooler		No Cooler		n Ice		No Ice	**************************************
receiv	•		-1:	INO COOICI		nbient	<u> </u>	Melted Ice	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Direct from Samp				-	F		
Were samp	les within		By Gun#	<u> </u>	Actu	ıal Tem <u>p</u>	1-3.0, 2.6	<u> </u>	
Temperatur		T	By Blank #		Actu	ıal Temp	<u> </u>		
•	Custody S	eal Intact?	nla_	We	ere Samples Tar	mpered v	with?	n la	-
Was	COC Relin	quished?	7	Does	s Chain Agree V	Vith Sam	nples?		
Are the	re broken/l	eaking/loose caps	on any sam		F				
Is COC in inl	√ Legible?		_	Were san	nples received v			T	
Did COC in	clude all	Client		Analysis		Sample		F	-
pertinent Inf	ormation?	Project		. ID's	Co	llection I	Dates/Times		-
Are Sample	labels filled	d out and legible?		•					
Are there Lat	to Filters?	?	F		Who was not				-
Are there Ru	shes?		F		Who was not	_			-
Are there Sh			T	•	Who was not	ified?	Manch:		-
ls there enou	gh Volume	?	<u> </u>	•		_			
	•	ere applicable?	T		MS/MSD?	<u>+ </u>		-	
Proper Media		Committee Committee of the Committee of		•	Is splitting samp		uired?	<u> </u>	•
Were trip bla		no man a to the to	F		Ou COCs	<u>t</u>			
Do all sample	es have the	proper pH?		Acid			Base	- T	-
Vials	#	Containers:	#			#			
Unp-		1 Liter Amb.	12			2		Amb.	
HCL-	Co	500 mL Amb.	<u> </u>		. Plastic			b/Clear	
Meoh-		250 mL Amb.		<u> </u>	. Plastic	4		b/Clear	
Bisulfate-		Flashpoint			acteria			b/Clear core	-
DI-	~~~	Other Glass			Plastic		Frozen:	OLE	
Thiosulfate-	9	SOC Kit Perchlorate			ic Bag lock		1 102611.		
Sulfuric-		Felchiorate							
				Unused					#
Vials	#	Containers:	#	4.1.4		#	16	Amala	# #
Unp-		1 Liter Amb.			Plastic			: Amb. ib/Clear	
HCL-		500 mL Amb.			Plastic			b/Clear	
Meoh-		250 mL Amb.			Plastic			nb/Clear	
Bisulfate-		Col./Bacteria			npoint Glass			core	1
DI-		Other Plastic SOC Kit			ic Bag		Frozen:	3010	
Thiosulfate- Sulfuric-		Perchlorate		···	lock		1.020		
Comments:		1 Ciciliorate			IOOK	l			
Comments.									

STANDARD SPECIFICATION

CAPACITY: 21,000 GALLONS (500 BBL)

SIDE SHEETS: 1/4" A36 PLATE TOP SHEET: 1/4" A36 PLATE FRONT SHEET: 1/4" A36 PLATE REAR SHEET: 1/4" A36 PLATE

FLOOR: 1/4" A36 PLATE

MAIN FLOOR RAILS: 12" x 20.7# STRUCTURAL CHANNEL

FLOOR CROSSMEMBERS: 1/4" A36 PLATE

SIDE STAKES: ONE PIECE 3/16" A36 PLATE SUSPENSION: 3 LEAF SPRING, 22,500 LBS. CACPACITY

AXLE: 77.5" TRACK, 22,500 LBS. CAPACITY

TIRES: 11R22.5

WHEELS: 8.25 x 22.5 STEEL

MANWAYS: 3 - 22" DIA. FRONT & TOP

1 - 22" DIA. CURB SIDE

VALVES: 1 - BLAYLOCK PRESSURE VALVE

5 - 6" BUTTERFLY (FRONT)

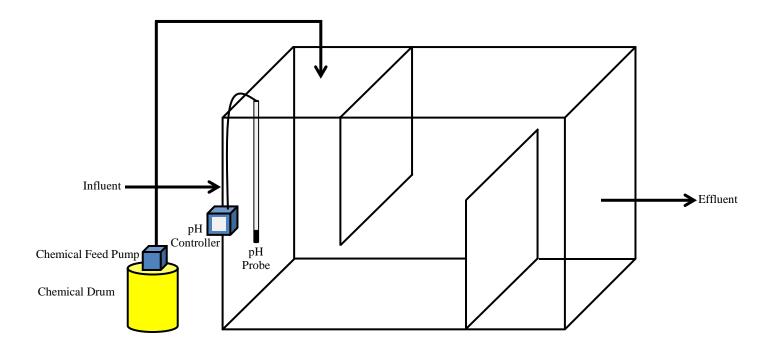
1 - 6" BUTTERFLY VALVE (REAR DRAIN)

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)

BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)

PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.


(EXTERIOR) PRIMER COAT EPOXY 3.0 TO 4.0 MILS D.F.T. (EXTERIOR) FINISH COAT POLURETHANE 3.0 TO 4.0 D.F.T.

21,000 Gal. Frac Tank

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

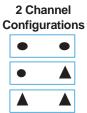
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous I	Vlodels		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's I	Broad Range of Digital and Analog Sensors	
Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•
Chlorine Dioxide	9185 sc	•
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A
Dissolved Oxygen	LDO® Model 2, 5740 sc	•
Dissolved Oxygen	5500	A
Flow	U53, F53 Sensors	A
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•
Oil in Water	FP360 sc	•
Organics	UVAS sc	•
Ozone	9187 sc	•
pH/ORP	pHD	•
pH/ORP	pHD, pH Combination, LCP	
Phosphate	PHOSPHAX™ sc	•
Sludge Level	SONATAX™sc	•
Suspended Solids	SOLITAX™ sc, TSS sc	•
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A
Ultra Pure pH/ORP	8362	

 \bullet = Digital \triangle = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

backlighting, transreflective

Display Size

1.9 x 2.7 in. (48 mm x 68 mm)

100 - 240 V AC, 24 V DC

Display Resolution Weight

240 x 160 pixels 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

Power Requirements

(Hz)

Operating **Temperature Range**

Analog Outputs

50/60 Hz

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion

module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode

Linear, Logarithmic, Bi-linear, PID

Security Levels Mounting

2 password-protected levels Wall, pole, and panel mounting

Enclosure Rating Conduit Openings

Configurations

1/2 in NPT Conduit Primaryorsecondary

NEMA 4X/IP66

Relay: Operational Mode

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Relays

Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

Communication

MODBUS RS232/RS485, PROFIBUS DPV1, or HART7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

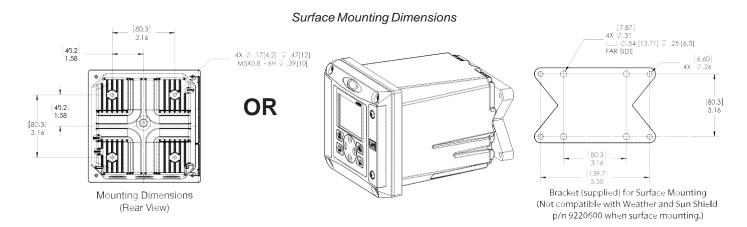
- EMC Immunity EN 61326-1 (Industrial limits)

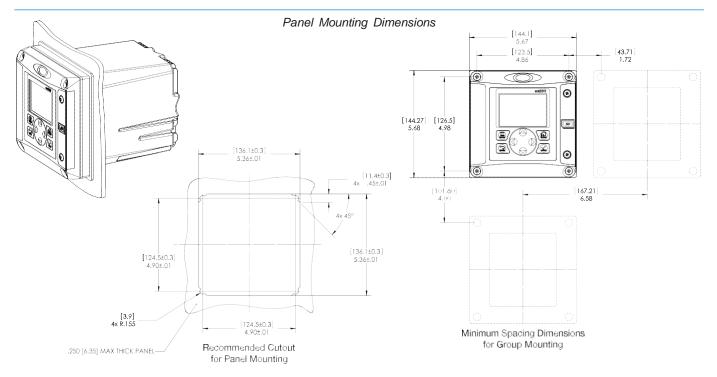
Safety

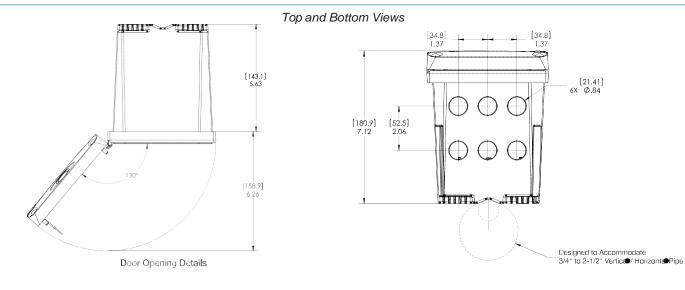
cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller

Dimensions

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS® (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

 $DW = drinking \ water \ WW = wastewater \ municipal \ PW = pure \ water / power$ $IW = industrial \ water \ E = environmental \ C = collections \ FB = food \ and \ beverage$

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

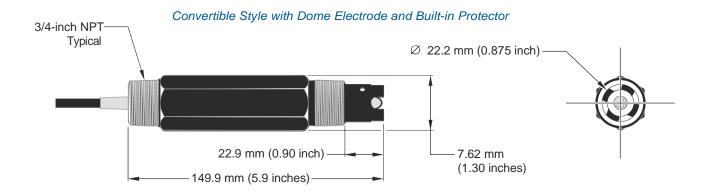
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS® RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor

Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within ± 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

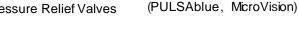
Manual Stroke Rate Manual Stroke Length External Pacing-Optional External Pace With Stop-

Optional (125 SPM only)

C	ontrols Options	
F	Standard	Optional
Feature	Configuration	Configuration ¹
External Pacing		Auto / Manual Selection /
External Pace w/ Stop		Auto / Manual Selection 2
(125SPMonly)		
Manual Stroke Rate	10:1 Ratio	100:1 Raio
Manual Stroke Length	10:1 Ratio	10:1 Ratio
Total Turndown Ratio	1001 Ratio	1000:1 Ratio

Note 1:On S2,S3 & S4 sizes only.

Note 2: Not available on 1000:1turndown pumps.


Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- **KOPkits**
- Gauges
- **Dampeners**
- Pressure Relief Valves
- Tanks
- **Pre-Engineered Systems**
 - **Process Controllers**

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina			114'IDX	318' OD			318'DX 112'OD	114	!D X 318' O[)
		Pioina					1	14'FNPT				
Strokes/Minute		SPM		125							250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC **PVDF**

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capady

Viscosity Max CPS: 1000CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

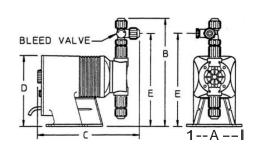
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hput Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	Serie	s A PLU	JS Dime	nsions	(inches	,
						Shipping
Model No.	Α	В	С	D	Ε	Weight
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10
LBC2	5.0	9.9	9.5	6.5	8.5	10
LBC3	5.0	9.9	9.5	6.5	8.5	10
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10
LB64	5.0	9.9	9.5	6.5	8.5	10
LBC4	5.0	9.9	9.5	6.5	8.5	10

NOTE: hches X2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Office: 774-450-7177 • Fax: 888-835-0617

CHEMTRADE

Sulfuric Acid, 70-100%

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's

Hazardous Products Regulation, February 11, 2015.

Date of Issue: 05/31/2016 Revision Date: 05/07/2018 Version: 4.0

SECTION 1: IDENTIFICATION

Product Identifier

Product Form: Mixture

Product Name: Sulfuric Acid, 70-100%

Formula: H2-O4-S

Intended Use of the Product

Use Of The Substance/Mixture: Industrial use.

Name, Address, and Telephone of the Responsible Party

Manufacturer

CHEMTRADE LOGISTICS INC. 155 Gordon Baker Road Suite 300

Toronto, Ontario M2H 3N5 For SDS Info: (416) 496-5856 www.chemtradelogistics.com

Emergency Telephone Number

Emergency Number : Canada: CANUTEC +1-613-996-6666 / US: CHEMTREC +1-800-424-9300

> INTERNATIONAL: +1-703-741-5970 Chemtrade Emergency Contact: (866) 416-4404

For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call CHEMTREC - Day or Night

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

GHS Classification

Met. Corr. 1 H290 Skin Corr. 1A H314 Eye Dam. 1 H318 H350 Carc. 1A Aquatic Acute 3 H402

Full text of hazard classes and H-statements: see section 16

Label Elements GHS Labeling

Hazard Pictograms

Signal Word : Danger

Hazard Statements : H290 - May be corrosive to metals.

H314 - Causes severe skin burns and eye damage.

H318 - Causes serious eye damage. H350 - May cause cancer (Inhalation).

H402 - Harmful to aquatic life.

Precautionary Statements : P201 - Obtain special instructions before use.

P202 - Do not handle until all safety precautions have been read and understood.

P234 - Keep only in original container.

P260 - Do not breathe vapors, mist, or spray.

P264 - Wash hands, forearms, and other exposed areas thoroughly after handling.

P273 - Avoid release to the environment.

P280 - Wear protective gloves, protective clothing, and eye protection. P301+P330+P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

05/07/2018 SDS#: CHE-1010S 1/9 EN (English US)

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

P303+P361+P353 - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water.

P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing.

P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P308+P313 - If exposed or concerned: Get medical advice/attention.

P310 - Immediately call a POISON CENTER or doctor.

P321 - Specific treatment (see section 4 on this SDS).

P363 - Wash contaminated clothing before reuse.

P390 - Absorb spillage to prevent material damage.

P405 - Store locked up.

P406 - Store in corrosive resistant container with a resistant inner liner.

P501 - Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Other Hazards

Exposure may aggravate pre-existing eye, skin, or respiratory conditions.

Unknown acute toxicity

No data available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

Mixture

Name	Product Identifier	%*	GHS Ingredient Classification
Sulfuric acid**	(CAS-No.) 7664-93-9	70 - 100	Met. Corr. 1, H290
			Skin Corr. 1A, H314
			Eye Dam. 1, H318
			Carc. 1A, H350
			Aquatic Acute 3, H402
Water	(CAS-No.) 7732-18-5	0.1 - 30	Not classified

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First-aid Measures

General: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible).

Inhalation: When symptoms occur: go into open air and ventilate suspected area. Obtain medical attention if breathing difficulty persists.

Skin Contact: Remove contaminated clothing. Immediately flush skin with plenty of water for at least 30 minutes. Get immediate medical advice/attention. Wash contaminated clothing before reuse.

Eye Contact: Rinse cautiously with water for at least 30 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical advice/attention.

Ingestion: Rinse mouth. Do NOT induce vomiting. Obtain medical attention.

Most Important Symptoms and Effects Both Acute and Delayed

General: Corrosive to eyes, respiratory system and skin. May cause cancer.

Inhalation: May be corrosive to the respiratory tract.

Skin Contact: Causes severe irritation which will progress to chemical burns. **Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

05/07/2018 EN (English US) SDS#: CHE-1010S 2/9

^{*}Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients. Gas ingredients are listed in volume by volume percentage (v/v%).

^{**}Strong inorganic acid aerosols/mists containing this substance are carcinogenic to humans via inhalation. Under normal conditions of use this route of exposure is not expected.

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

<u>Indication of Any Immediate Medical Attention and Special Treatment Needed</u>

If exposed or concerned, get medical advice and attention. If medical advice is needed, have product container or label at hand.

SECTION 5: FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Foam, carbon dioxide, dry chemical.

Unsuitable Extinguishing Media: Do not use water. Do not get water inside containers. Do not apply water stream directly at source of leak

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Not flammable.

Explosion Hazard: Product is not explosive.

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire.

Firefighting Instructions: Use water spray or fog for cooling exposed containers.

Protection During Firefighting: Do not enter fire area without proper protective equipment, including respiratory protection.

Hazardous Combustion Products: Toxic fumes are released.

Other Information: Do not allow run-off from fire fighting to enter drains or water courses.

Reference to Other Sections

Refer to Section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Do not get in eyes, on skin, or on clothing. Do not breathe vapor, mist or spray. Do not handle until all safety precautions have been read and understood.

For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protective equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel.

For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Upon arrival at the scene, a first responder is expected to recognize the presence of dangerous goods, protect oneself and the public, secure the area, and call for the assistance of trained personnel as soon as conditions permit. Ventilate area.

Environmental Precautions

Prevent entry to sewers and public waters. Avoid release to the environment.

Methods and Materials for Containment and Cleaning Up

For Containment: Contain any spills with dikes or absorbents to prevent migration and entry into sewers or streams. As an immediate precautionary measure, isolate spill or leak area in all directions.

Methods for Cleaning Up: Clean up spills immediately and dispose of waste safely. Absorb spillage to prevent material damage. Cautiously neutralize spilled liquid. Transfer spilled material to a suitable container for disposal. Contact competent authorities after a spill.

Reference to Other Sections

See Section 8 for exposure controls and personal protection and Section 13 for disposal considerations.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Wash hands and other exposed areas with mild soap and water before eating, drinking or smoking and when leaving work. Handle empty containers with care because they may still present a hazard. Do not get in eyes, on skin, or on clothing. Do not breathe vapors, mist, spray. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.

Additional Hazards When Processed: May be corrosive to metals. May release corrosive vapors. NEVER pour water into this substance; when dissolving or diluting always add it slowly to the water.

05/07/2018 EN (English US) SDS#: CHE-1010S 3/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures.

Conditions for Safe Storage, Including Any Incompatibilities

Technical Measures: Comply with applicable regulations.

Storage Conditions: Keep container closed when not in use. Store in a dry, cool place. Keep/Store away from extremely high or low

temperatures and incompatible materials. Store in original container or corrosive resistant and/or lined container.

Incompatible Materials: Combustible materials. Reducing agents. Strong oxidizers. Strong bases. Metals. Water.

Specific End Use(s)

Industrial use.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

For substances listed in section 3 that are not listed here, there are no established Exposure limits from the manufacturer, supplier, importer, or the appropriate advisory agency including: ACGIH (TLV), AIHA (WEEL), NIOSH (REL), OSHA (PEL), Canadian provincial governments, or the Mexican government.

Sulfuric acid (7664-93-9)	-	
Mexico	OEL TWA (mg/m³)	1 mg/m³
USA ACGIH	ACGIH TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)
USA ACGIH	ACGIH chemical category	Suspected Human Carcinogen contained in strong inorganic acid mists
USA OSHA	OSHA PEL (TWA) (mg/m³)	1 mg/m ³
USA NIOSH	NIOSH REL (TWA) (mg/m³)	1 mg/m³
USA IDLH	US IDLH (mg/m³)	15 mg/m³
Alberta	OEL STEL (mg/m³)	3 mg/m ³
Alberta	OEL TWA (mg/m³)	1 mg/m³
British Columbia	OEL TWA (mg/m³)	0.2 mg/m³ (Thoracic, contained in strong inorganic acid mists)
Manitoba	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)
New Brunswick	OEL STEL (mg/m³)	3 mg/m³
New Brunswick	OEL TWA (mg/m³)	1 mg/m³
Newfoundland & Labrador	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)
Nova Scotia	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)
Nunavut	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)
Nunavut	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)
Northwest Territories	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction, strong acid mists only)
Northwest Territories	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction, strong acid mists only)
Ontario	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic)
Prince Edward Island	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)
Québec	VECD (mg/m³)	3 mg/m ³
Québec	VEMP (mg/m³)	1 mg/m³
Saskatchewan	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)
Saskatchewan	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)
Yukon	OEL STEL (mg/m³)	1 mg/m³
Yukon	OEL TWA (mg/m³)	1 mg/m³

Exposure Controls

Appropriate Engineering Controls: Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Ensure adequate ventilation, especially in confined areas. Ensure all national/local regulations are observed.

Personal Protective Equipment: Gloves. Protective clothing. Protective goggles. Face shield. Insufficient ventilation: wear respiratory protection.

05/07/2018 EN (English US) SDS#: CHE-1010S 4/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Materials for Protective Clothing: Acid-resistant clothing.

Hand Protection: Wear protective gloves.

Eye Protection: Chemical safety goggles and face shield. **Skin and Body Protection:** Wear suitable protective clothing.

Respiratory Protection: If exposure limits are exceeded or irritation is experienced, approved respiratory protection should be worn. In case of inadequate ventilation, oxygen deficient atmosphere, or where exposure levels are not known wear approved respiratory protection.

Other Information: When using, do not eat, drink or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State : Liquid

Appearance : Clear, Colorless to Amber, Oily

Odor Threshold : Pungent : Not available

pH : 0.3

Evaporation Rate Not available **Melting Point** 10.56 °C (51.01 °F) **Freezing Point** Not available **Boiling Point** 290 °C (554 °F) **Flash Point** Not applicable **Auto-ignition Temperature** Not applicable Not available **Decomposition Temperature** Flammability (solid, gas) Not applicable **Lower Flammable Limit** Not applicable **Upper Flammable Limit** Not applicable

Vapor Pressure : 0.00027 - 0.16 kPa at 25 °C (77 °F)

Relative Vapor Density at 20°C: 3.4 (air = 1)Relative Density: Not availableSpecific Gravity: 1.84 g/l

Solubility : Water: Miscible
Partition Coefficient: N-Octanol/Water : Not available
Viscosity : Not available

SECTION 10: STABILITY AND REACTIVITY

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Chemical Stability: Stable under recommended handling and storage conditions (see section 7).

<u>Possibility of Hazardous Reactions</u>: Hazardous polymerization will not occur.

Conditions to Avoid: Extremely high or low temperatures and incompatible materials.

<u>Incompatible Materials</u>: Combustible materials. Reducing agents. Strong bases. Strong oxidizers. Metals. Water.

Hazardous Decomposition Products: Thermal decomposition generates: Corrosive vapors.

SECTION 11: TOXICOLOGICAL INFORMATION

<u>Information on Toxicological Effects - Product</u>

Acute Toxicity (Oral): Not classified
Acute Toxicity (Dermal): Not classified
Acute Toxicity (Inhalation): Not classified

LD50 and LC50 Data: Not available

Skin Corrosion/Irritation: Causes severe skin burns and eye damage.

pH: 0.3

Eye Damage/Irritation: Causes serious eye damage.

05/07/2018 EN (English US) SDS#: CHE-1010S 5/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

pH: 0.3

Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

Carcinogenicity: May cause cancer (Inhalation).

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): Not classified

Aspiration Hazard: Not classified

Symptoms/Effects After Inhalation: May be corrosive to the respiratory tract.

Symptoms/Effects After Skin Contact: Causes severe irritation which will progress to chemical burns. **Symptoms/Effects After Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Symptoms/Effects After Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

<u>Information on Toxicological Effects - Ingredient(s)</u>

LD50 and LC50 Data:

1550 and 1650 bata.	
Water (7732-18-5)	
LD50 Oral Rat	> 90000 mg/kg
Sulfuric acid (7664-93-9)	
LD50 Oral Rat	2140 mg/kg
LC50 Inhalation Rat	510 mg/m³ (Exposure time: 2 h)
Sulfuric acid (7664-93-9)	
IARC Group	1
OSHA Hazard Communication Carcinogen List	In OSHA Hazard Communication Carcinogen list.
Strong inorganic acid mists containing sulfuric acid	
National Toxicology Program (NTP) Status	Known Human Carcinogens.

SECTION 12: ECOLOGICAL INFORMATION

Toxicity

Ecology - General: Harmful to aquatic life.

Sulfuric acid (7664-93-9)	
LC50 Fish 1	500 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [static])
LC50 Fish 2	42 mg/l (Exposure time: 96 h - Species: Gambusia affinis [static])

Persistence and Degradability

Sulfuric Acid, 70-100%	
Persistence and Degradability	Not established.

Bioaccumulative Potential

Sulfuric Acid, 70-100%	
Bioaccumulative Potential	Not established.
Sulfuric acid (7664-93-9)	
BCF Fish 1	(no bioaccumulation)

Mobility in Soil Not available

Other Adverse Effects

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Recommendations: Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Additional Information: Container may remain hazardous when empty. Continue to observe all precautions.

Ecology - Waste Materials: Avoid release to the environment. This material is hazardous to the aquatic environment. Keep out of sewers and waterways.

05/07/2018 EN (English US) SDS#: CHE-1010S 6/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

SECTION 14: TRANSPORT INFORMATION

The shipping description(s) stated herein were prepared in accordance with certain assumptions at the time the SDS was authored, and can vary based on a number of variables that may or may not have been known at the time the SDS was issued.

TRANSPORTATION	DOT	TDG	IMDG	IATA
CLASSIFICATION				
Identification Number	UN1830	UN1830	UN1830	UN1830
Proper Shipping Name	SULFURIC ACID	SULFURIC ACID	SULPHURIC ACID	SULPHURIC ACID
Transport Hazard	8	8	8	8
Class(es)				
	CORROSIVE		8	8
Packing Group	II	II	II	II
Environmental Hazards	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant:
				N/A
Emergency Response	ERG Number: 137	ERAP Index: 3 000	EMS: F-A, S-B	ERG code (IATA):
				8L
Additional Information	Not applicable	Not applicable	Not applicable	Not applicable

SECTION 15: REGULATORY INFORMATION

US Federal Regulations

Chemical Name (CAS No.)	CERCLA RQ	EPCRA 304 RQ	SARA 302 TPQ	SARA 313
Sulfuric acid (7664-93-9)	1000 lb	1000 lb	1000 lb	Yes

SARA 311/312

Sulfuric Acid, 70-100%

Immediate (acute) health hazard. Delayed (chronic) health hazard. Reactive hazard

US TSCA Flags Not present

US State Regulations

California Proposition 65

Chemical Name (CAS No.)	Carcinogenicity	Developmental Toxicity	Female Reproductive Toxicity	Male Reproductive Toxicity
Sulfuric acid (7664-93-9)	Yes	No	No	No
Strong inorganic acid mists containing sulfuric acid	Yes	No	No	No

State Right-To-Know Lists

Sulfuric acid (7664-93-9)

- U.S. Massachusetts Right To Know List Yes
- U.S. New Jersey Right to Know Hazardous Substance List Yes
- U.S. Pennsylvania RTK (Right to Know) Environmental Hazard List Yes
- U.S. Pennsylvania RTK (Right to Know) Special Hazardous Substances No
- U.S. Pennsylvania RTK (Right to Know) List Yes

Canadian Regulations

Sulfuric acid (7664-93-9)

Listed on the Canadian DSL (Domestic Substances List)

Not listed on the Canadian NDSL (Non-Domestic Substances List)

International Inventories/Lists

Chemical Name (CAS No.)	Australia	Turkey	Korea	EU	EU	EU	EU	Mexico
	AICS	CICR	ECL	EINECS	ELINCS	SVHC	NLP	INSQ
Sulfuric acid (7664-93-9)	Yes	No	Yes	Yes	No	No	No	No

05/07/2018 EN (English US) SDS#: CHE-1010S 7/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chemical Name (CAS No.)	China IECSC	Japan ENCS	Japan ISHL	Japan PDSCL	Japan PRTR	Philippines PICCS	New Zealand NZIOC	US TSCA
Sulfuric acid (7664-93-9)	Yes	Yes	No	Yes	No	Yes	Yes	Yes

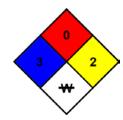
SECTION 16: OTHER INFORMATION, INCLUDING DATE OF PREPARATION OR LAST REVISION

Date of Preparation or Latest Revision : 05/07/2018

Revision Summary

Section	Change	Date Changed
16	Data modified	05/07/2018

Other Information


: This document has been prepared in accordance with the SDS requirements of the OSHA Hazard Communication Standard 29 CFR 1910.1200 and Canada's Hazardous Products Regulations (HPR).

GHS Full Text Phrases:

Aquatic Acute 3	Hazardous to the aquatic environment - Acute Hazard Category 3
Carc. 1A	Carcinogenicity Category 1A
Eye Dam. 1	Serious eye damage/eye irritation Category 1
Met. Corr. 1	Corrosive to metals Category 1
Skin Corr. 1A	Skin corrosion/irritation Category 1A
H290	May be corrosive to metals
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H350	May cause cancer
H402	Harmful to aquatic life

NFPA 704

NFPA Health Hazard : 3
NFPA Fire Hazard : 0
NFPA Reactivity Hazard : 2
NFPA Specific Hazards : W

HMIS Rating

Health : 3
Flammability : 0
Physical : 2

PPE See Section 8

Abbreviations and Acronyms

AICS – Australian Inventory of Chemical Substances LC50 - Median Lethal Concentration

ACGIH – American Conference of Governmental Industrial Hygienists LD50 - Median Lethal Dose

AIHA – American Industrial Hygiene Association

LOAEL - Lowest Observed Adverse Effect Level

ATE - Acute Toxicity Estimate

LOEC - Lowest-observed-effect Concentration

BEF - Biological Exposure Indices (BEI)

ATE - Acute Toxicity Estimate

LOEC - Lowest-observed-effect Concentration

Log Pow - Octanol/water Partition Coefficient

NFPA 704 - National Fire Protection Association

BEI - Biological Exposure Indices (BEI)

NFPA 704 – National Fire Protection Association - Standard System for the CAS No. - Chemical Abstracts Service number

Identification of the Hazards of Materials for Emergency Response

CERCLA RQ - Comprehensive Environmental Response, Compensation, and NIOSH - National Institute for Occupational Safety and Health

Liability Act - Reportable Quantity

CICR - Turkish Inventory and Control of Chemicals

DOT - 49 CFR - US Department of Transportation - Code of Federal

Regulations Title 49 - Transportation.

NZIOC - New Zealand Inventory of Chemicals

Regulations Title 49 – Transportation.

EC50 - Median effective concentration

NZIOC - New Zealand Inventory of Chemicals
OEL - Occupational Exposure Limits

ECL - Korea Existing Chemicals List

OSHA – Occupational Safety and Health Administration

EINECS - European Inventory of Existing Commercial Chemical Substances

PEL - Permissible Exposure Limits

ELINCS - European List of Notified Chemical Substances

EMS - IMDG Emergency Schedule Fire & Spillage

PICCS - Philippine Inventory of Chemicals and Chemical Substances

PDSCL - Japan Poisonous and Deleterious Substances Control Law

ENCS - Japanese Existing and New Chemical Substances Inventory PPE - Personal Protective Equipment

05/07/2018 EN (English US) SDS#: CHE-1010S 8/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

EPA - Environmental Protection Agency

EPCRA 304 RQ – EPCRA 304 Extremely Hazardous Substance Emergency Planning and Community Right-to-Know-Act – Reportable Quantity ERAP Index – Emergency Response Assistance Plan Quantity Limit

ErC50 - EC50 in Terms of Reduction Growth Rate

 ${\sf ERG\ code\ (IATA)-Emergency\ Response\ Drill\ Code\ as\ found\ in\ the\ International}$

Civil Aviation Organization (ICAO)

ERG No. - Emergency Response Guide Number HCCL - Hazard Communication Carcinogen List HMIS – Hazardous Materials Information System IARC - International Agency for Research on Cancer

IATA - International Air Transport Association – Dangerous Goods Regulations

IDLH - Immediately Dangerous to Life or Health

IECSC - Inventory of Existing Chemical Substances Produced or Imported in

China

IMDG - International Maritime Dangerous Goods Code INSQ - Mexican National Inventory of Chemical Substances

ISHL - Japan Industrial Safety and Health Law

PRTR - Japan Pollutant Release and Transfer Register

REL - Recommended Exposure Limit

SADT - Self Accelerating Decomposition Temperature SARA - Superfund Amendments and Reauthorization Act

SARA 302 - Section 302, 40 CFR Part 355

SARA 311/312 - Sections 311 and 312, 40 CFR Part 370 Hazard Categories

SARA 313 - Section 313, 40 CFR Part 372 SRCL - Specifically Regulated Carcinogen List

STEL - Short Term Exposure Limit

SVHC – European Candidate List of Substance of Very High Concern TDG – Transport Canada Transport of Dangerous Goods Regulations

TLM - Median Tolerance Limit TLV - Threshold Limit Value TPQ - Threshold Planning Quantity

TSCA - United StatesToxic Substances Control Act

TWA - Time Weighted Average

WEEL - Workplace Environmental Exposure Levels

Handle product with due care and avoid unnecessary contact. This information is supplied under U.S. OSHA'S "Right to Know" (29 CFR 1910.1200) and Canada's WHMIS regulations. Although certain hazards are described herein, we cannot guarantee these are the only hazards that exist. The information contained herein is based on data available to us and is believed to be true and accurate but it is not offered as a product specification. No warranty, expressed or implied, regarding the accuracy of this data, the hazards connected with the use of the product, or the results to be obtained from the use thereof, is made and Chemtrade and its affiliates assume no responsibility. Chemtrade is a member of the CIAC (Chemistry Industry Association of Canada) and adheres to the codes and principles of Responsible Care™.

Chemtrade NA GHS SDS 2015

05/07/2018 EN (English US) SDS#: CHE-1010S 9/9

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7
Capacity	GPH	0.50	1.00	2.00	4.00	10.00
nominal	GPD	12	24	48	96	240
(max.)	LPH	1.9	3.8	7.6	15.1	37.9
Pressure	PSIG	150	150	110	110	80
(max.)	BAR	10	10	7	7	5.6
Connections:	Tubing	(S) .50" I.D. X .75" O.D38" I.D. X .50" OD (LVB3 & F4 or (S & D) .50" I.D. X .75" O.D. (LVG4.G5 & H7 only)				

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GFF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

AALIITE EE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

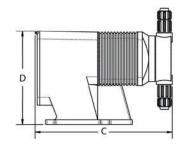
Average Current Draw:

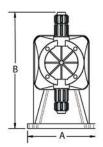
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

Custom Engineered Designs – Pre-Engineered Systems


Pre-Engineered Systems


Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series HV Dimensions (inches)								
Model No. A B C D					Shipping Weight			
LVB3	5.4	9.3	9.5	7.5	13			
LVF4	5.4	10.8	10.8	7.5	18			
LVG4	5.4	9.5	10.6	7.5	18			
LVG5	5.4	10.8	10.8	7.5	18			
LVH7	6.1	11.5	11	8.2	25			

NOTE: Inches X 2.54 = cm



MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

SAFETY DATA SHEET

Revision date 2018-06-11 Revision number 2

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product name Redux E50

Other means of identification

Product code

Synonyms Water And Wastewater Treatment Coagulant/Flocculant

Recommended use of the chemical and restrictions on use

Recommended use [RU] No information available Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: (774) 450-7177

Hours: Monday-Friday 9:00-5:00 EST

Emergency telephone number

24 Hour Emergency Phone Number CHEMTREC: (800) 424-9300

Outside USA - +1 (703) 527-3887 collect calls accepted

Contact Point info@reduxtech.com

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Corrosive to metals	Category 1

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Physical state	Color	Appearance	Odor
liquid	colorless to yellow	clear	no appreciable odor

WARNING

Hazard statements

Causes skin irritation Causes serious eye irritation May be corrosive to metals

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container

Precautionary Statements - Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention

Take off contaminated clothing and wash before reuse

Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store in corrosive resistant container with a resistant inner liner

Other information

• May be harmful in contact with skin

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No	weight-%	TRADE SECRET
Trade Secret Ingredient	PROPRIETARY	45 - 55%	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret

4. FIRST AID MEASURES

Page 2/11

First Aid Measures

Eve contact

Immediately flush with plenty of water for at least 20 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek immediate medical attention.

Skin contact

Immediately wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.

Ingestion

Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

Inhalation

Remove to fresh air.

Most important symptoms and effects, both acute and delayed

Acute effects

Possible eye, skin and respiratory tract irritation.

Chronic effects

May aggravate existing skin, eye, and lung conditions. Persons with kidney disorders have an increased risk from exposure based on general information found on aluminum salts.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable extinguishing media

Water Spray, Carbon Dioxide, Foam, Dry Chemical.

Extinguishing media which must not be used for safety reasons

No information available

Special hazards arising from the substance or mixture

Special Hazard

May produce hazardous fumes or hazardous decomposition products.

Advice for firefighters

Firefighting measures

Product is a water solution and nonflammable. In a fire, this product may build up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid breathing mist or spray.

Special protective equipment for firefighters

Not determined

Explosion data

Sensitivity to Mechanical Impact

None.

Sensitivity to Static Discharge

None.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Wear suitable protective clothing and gloves.

Environmental precautions

Environmental precautions

Do not permit run-off to get into sewers or surface waterways.

Methods and material for containment and cleaning up

Methods for containment

Prevent further leakage or spillage if safe to do so. Dike to collect large liquid spills.

Methods for cleaning up

Clear spills immediately. Contain large spill and remove using a vacuum truck. Soak up small spills with inert absorbent material and place in a labeled waste container for disposal. Ventilate area of leak or spill. Spills of solution are extremely slippery so all residue must be removed promptly.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Keep container closed when not in use

Keep away from heat and open flame.

Avoid contact with eyes, skin and clothing

Wash thoroughly after handling

Wear chemical splash goggles, gloves, and protective clothing when handling.

Avoid breathing vapor or mist

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

FOR INDUSTRIAL USE ONLY.

Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Do not store in unlined metal containers.

Product may slowly corrode iron, brass, copper, aluminum, mild steel, and stainless steel.

Store in a cool, dry place away from direct heat.

Keep in tightly closed container.

Incompatible products

Oxidizing agents.

A EVENOUED CONTROL OFFICIAL PROTECTION

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

Appropriate engineering controls

Engineering controls

Local exhaust ventilation as necessary to maintain exposures to within applicable limits. Please refer to the ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Wear chemical splash goggles and face shield (when eye and face contact is possible due to splashing or spraying of material).

Hand Protection

Appropriate chemical resistant gloves should be worn.

Skin and body protection

Standard work clothing and work shoes.

Respiratory protection

If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.

Other personal protection data

Eyewash fountains and safety showers must be easily accessible.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liquid

Color colorless to yellow

Appearance clear

Odor no appreciable odor
Odor threshold No information available

<u>Property</u>	<u>Values</u>	Remarks / Method
рН	3.5	as is
Melting / freezing point	-7 °C / 19 °F	No information available
Boiling point / boiling range	No information available	No information available
Flash point	Not applicable	No information available
Evaporation rate	No information available	No information available

No information available

Flammability Limit in Air

Flammability (solid, gas)

Upper flammability limitNot applicableNo information availableLower flammability limitNot applicableNo information available

 Vapor pressure
 No information available
 No information available

Not applicable

Vapor density No information available No information available

Specific gravity 1.33 - 1.35 No information available

Solubility (water) Soluble No information available

Solubility in other solvents No information available No information available

Partition coefficient: n-octanol/water No information available No information available

Autoignition temperature Not applicable No information available

Decomposition temperatureNo information available
No information available

Kinematic viscosity

No information available

No information available

Dynamic viscosity < 100 cps @ 20 °C No information available

Other information

Density	11.0 - 11.3 lb/gal
Bulk Density	No information available
Explosive properties	No information available.
Oxidizing properties	No information available
Softening point	No information available
Molecular weight	No information available
Volatile organic compounds (VOCs) content	No information available
Percent Volatile, wt.%	40 - 50%

10. STABILITY AND REACTIVITY

Reactivity

Reactivity

No data available.

Chemical stability

Chemical stability

Stable.

Possibility of hazardous reactions

Possibility of hazardous reactions

None under normal processing.

Hazardous polymerization

No.

Conditions to avoid

Conditions to avoid

None

Incompatible materials

Materials to avoid

Oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products

Thermal decomposition may release toxic and/or hazardous gases such as Cl2 and HCl.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Eye contact

May cause moderate eye irritation that can become severe with prolonged contact. Prolonged exposure to Aluminum salts may cause conjunctivitis.

Skin contact

May be harmful in contact with skin. Prolonged and/or repeated contact may cause skin irritation.

Ingestion

May cause irritation of the mouth, throat and stomach. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhea.

Inhalation

Inhalation of mist or vapor may cause respiratory tract irritation.

Acute toxicity - Product Information

Oral LD50 No information available

Dermal LD50 No information available

Inhalation LC50 No information available

Acute toxicity - Component Information

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/kg (Rat)	

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Irritating to skin

Serious eye damage/eye irritation

Causes serious eye irritation

Sensitization

No information available

Germ cell mutagenicity

No information available

Carcinogenicity

This product does not contain any components in concentrations greater than or equal to 0.1% that are listed as known or suspected carcinogens by NTP, IARC, ACGIH, or OSHA.

Reproductive toxicity

No information available

Specific target organ toxicity - Single exposure

No information available.

Specific target organ toxicity - Repeated exposure

No information available

Aspiration hazard

No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document

ATEmix (oral) 18374 mg/kg **ATEmix (dermal)** 4004 mg/kg

Other information

Conclusions are drawn from sources other than direct testing.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

NOEC (7 day chronic, static) 200 mg/L Ceriodaphnia dubia (Water Flea) ¹

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L	
			(Brachydanio rerio)	
			(Brachydanio rerio)	

Persistence and degradability

Persistence and degradability

No information available

Bioaccumulative potential

Bioaccumulative potential

No information available.

Mobility

Mobility

No information available

Results of PBT and vPvB assessment

PBT and vPvB assessment

No information available

Other adverse effects

Other information

¹ Generated from tests conducted by ECT-Superior Laboratories May 2010

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Do NOT mix with other chemical wastes. Do not put solutions containing this product into sewer systems. Dispose of product in an approved chemical waste landfill or incinerate in accordance with applicable Federal, state and local regulations. Do not re-use empty containers.

Contaminated packaging

Since empty containers retain product residue, follow label warnings even after container is emptied.

14. TRANSPORT INFORMATION

DOT NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging

material must not be aluminum, steel or be degraded by this product

<u>ICAO/IATA</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class8Packing groupIIIERG Code8L

<u>IMDG</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
EmS F-A, S-B

Harmonized Tariff Number 2827.32

15. REGULATORY INFORMATION

International Inventories

TSCA (United States)

All ingredients are on the inventory or exempt from listing

Australia (AICS)

All ingredients are on the inventory or exempt from listing

Canada (DSL)

All ingredients are on the inventory or exempt from listing

Canada (NDSL)

None of the ingredients are on the inventory.

China (IECSC)

All ingredients are on the inventory or exempt from listing

EINECS (European Inventory of Existing Chemical Substances)

All ingredients are on the inventory or exempt from listing

ELINCS (European List of Notified Chemical Substances)

None of the ingredients are on the inventory.

ENCS (Japan)

All ingredients are on the inventory or exempt from listing

South Korea (KECL)

All ingredients are on the inventory or exempt from listing

Philippines (PICCS)

All ingredients are on the inventory or exempt from listing

Legend

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

AICS - Australian Inventory of Chemical Substances

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

IECSC - China Inventory of Existing Chemical Substances

EINECS/ELINCS - European Inventory of Existing Commercial Chemical Substances/EU List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

U.S. Federal Regulations

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

SARA 311/312 Hazard Categories

Acute health hazard Yes
Chronic health hazard No
Fire hazard No
Sudden release of pressure hazard No
Reactive hazard No

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

U.S. State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals.

U.S. State Right-to-Know Regulations

This product does not contain any substances regulated under applicable state right-to-know regulations

16. OTHER INFORMATION

NFPA Rating Health - 1 Flammability - 0 Instability - 0 Special Hazard - HMIS Rating Health - 1 Flammability - 0 Physical hazard - 0 Personal protection - B

Product code

Revision date 2015-03-12

Revision number 1

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

SAFETY DATA SHEET

I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

Email: plockwood@Irt-llc.net

For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident

Call **CHEMTEL** - Day or Night - 1800-255-3924

II. Composition and Ingredient Information

Components: CAS #:

Anionic Polyacrylamide 25085-02-3

Permissible Exposure Limit (PEL): No information available.

Threshold Limit Value (TLV): Information not available.

III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

IV. First Aid Measures

Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation

persists, get medical attention.

Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately

contact a physician for additional treatment.

Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce

vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not

induce vomiting or give water.

Inhalation: Remove to fresh air.

V. Fire-Fighting Measures

Flammability Classification: NFPA - Minimal - Will not burn under normal conditions.

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCl vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures: Wear self-contained breathing apparatus.

Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to

clean area; product is very slippery when wet.

Waste Disposal: Incineration and/or disposal in a chemical landfill. Disposer must

comply with Federal, State, and Local disposal or discharge laws.

VII. Handling and Storage Avoid contact with skin, eyes, or clothing.

Do not inhale mist if formed.

Use normal personal hygiene and housekeeping.

Store in a cool dry place.

VIII. Exposure Controls and Personal Protection

Eye Protection: Safety glasses for normal handling conditions.

Splash-proof goggles when handling solutions.

Do not wear contact lens.

Hand Protection: Rubber gloves.

Ventilation: Local exhaust - if dusting occurs. Natural ventilation adequate in

absence of dust.

Respiratory Protection: If dusty conditions are encountered, wear NIOSH

approved respirator.

Other Protection: Eye wash recommended, full work clothing, add protective

rubber clothing if splashing or repeated contact with solution is

likely.

IX. Physical and Chemical Properties

Appearance White granular

State Solid
Specific Gravity (Water = 1) 0.8 - 1.0
Solubility in Water Complete

X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information

XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

XVI. Other Information

Health 0 4 = Severe
Flammability 1 3 = Serious
Reactivity 0 2 = Moderate
Personal Protection F 1 = Slight
0 = Insignificant

Personal Protective Equipment Guide

A = Safety Glasses, Gloves, and

Vapor Respirator

B = Safety Glasses, Gloves H = Splash Goggles, Gloves,

Apron, Vapor Respirator C =

Safety Glasses, Gloves, Apron I = Safety Glasses, Gloves, and

Dust & Vapor Respirator

D = Gloves, Apron, Face shield J = Splash Goggles, Gloves, Apron,

and Dust & Vapor Respirator

E = Safety Glasses, Gloves, and Dust K = Air Line Hood/Mask, Respirator Gloves, Full Suit, Boots

F = Safety Glasses, Gloves, Apron X = Ask supervisor for special and Dust Respirator handling instructions

ABBREVIATIONS:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissible Exposure Limit

TWA - Time Weighted Average

STEL - Short-Term Exposure Limit

ANSI - American National Standard Institute

MSHA - Mine Safety and Health Administration

NIOSH - National Institute for Occupational Safety & Health

NA - Not Applicable

NE - Not Established

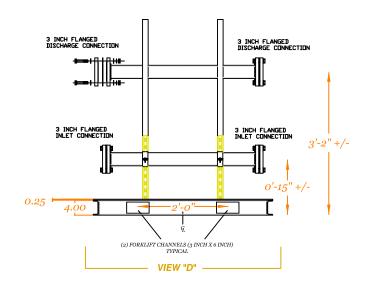
NR - Not Required

PPE - Personal Protective Equipment

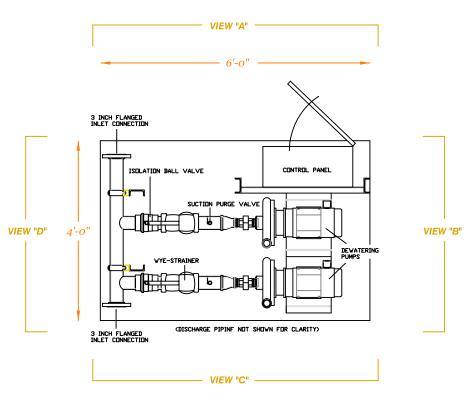
LEL - Lower Exposure Level

UEL - Upper Exposure Level

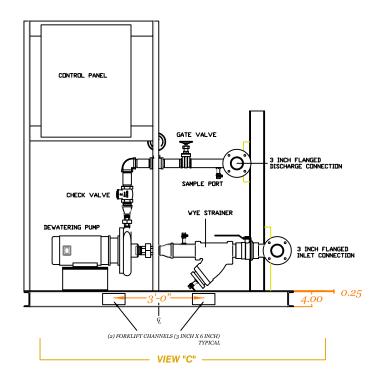
NOTE: This drawing is a representation baseline for this model of tank. Variations between this drawing and the actual equipment do exist, primarily with appurtenance locations, sizes and quantities.


INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)

18,000 gal. Weir Tank

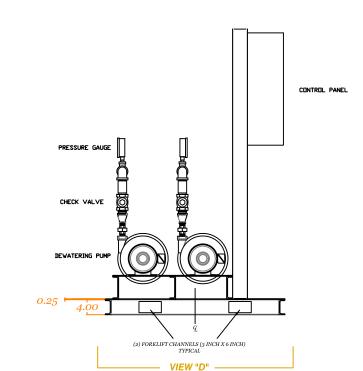

Lockwood Remediation Technologies, LLC

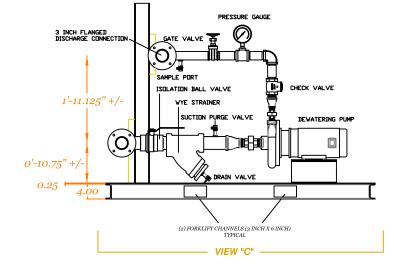
89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617



5 HP DEWATERING PUMPSKID

ELEVATIONAL VIEW

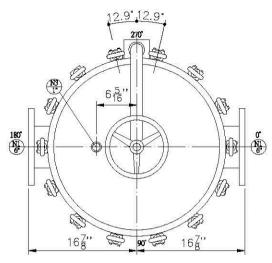

5 HP DEWATERING PUMPSKID TOP VIEW


5 HP DEWATERING PUMPSKID

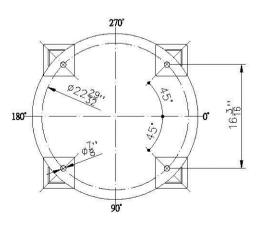
ELEVATIONAL VIEW

Performance Curves – 60 Hz, 3500 RPM Curvas de desempeño – 60 Hz, 3500 RPM

| Model 3656/3756 S-Group | 3500 RPM | NOTE: Not recommended for operation beyond printed H-O curve. | NOTE: NOTE: Not recommended for operation beyond printed H-O curve. | NOTE: N


5 HP DEWATERING PUMPSKID

ELEVATIONAL VIEW


5 HP DEWATERING PUMPSKID

ELEVATIONAL VIEW

567 (1) 99112 13 (8) 0.D.ø26" 615° $36\frac{7}{32}$ " 2 INLET OUTLET 16 16 (N) (15) N4 18 DRAIN NPT. 67" SIDE VIEW

TOP VIEW

ANCHOR

BILL OF MATERIALS (QUANTITY PER UNIT)

CUSTOMER DESIGN 150 PSIG 90 "C DESTINATION MAX. A.W.P. 150 PSIG 90 "C CUST. P.O. HYDROSTATIC TESTED 225 PSIG PSIG 90 "C CUST. P.O. HYDROSTATIC TESTED 225 PSIG PSIG 90 "C CUST. P.O. HYDROSTATIC TESTED 225 PSIG 90 "C CUST. P.O. CODE CODE	PROD	PROD ORDERS.O MFG. SERIAL NO				
DESTINATION MAX. A.W.P. 150 PSIG 90 ℃ CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST.EQUIP CODE CODE CODE STAMP N.B. NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 6 14 BAG-LOCK DEVICE 304	CUSTO	CUSTOMER DESIGN150 PSIG90 _*C				
CUST.EQUIP CODE N.B						
CUST.EQUIP CODE N.B	CUST.	P.O. H	HYDROST/	ATIC TE	STED _2	225_ PSIG
CODE STAMP	1					
NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 1 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1	0001.					
WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 6 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 <td< td=""><td>NO O</td><td></td><td></td><td></td><td></td><td>N.D</td></td<>	NO O					N.D
NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 14 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 14 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1						
1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	WEIGH	T EMPTY KG.	FULL		_ KG	
2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	NO.	DESCRIPTION	MATERIAL	UNIT	QUAN.	PART NO.
3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	1	FILTER COVER	304		1	
4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	2	FILTER SHELL	304		1	
5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	3	GASKET	EPDM	hoon yangan yangan ya	1	
6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	4	LEG WELDMENT	304		4	
7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	5	DAVIT HANDWHEEL	304		1	
8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	6	DAVIT SCREW	304		1	
9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	7	DAVIT ARM	304		1	
10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	8	SEPARATE PLATE	304		1	
11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	9	EYENUT	304		14	
12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	10	WASHER	304		14	
13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	11	EYEBOLT	304		14	
14 BAC-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	12	BOLT SUPPORT	304		14	
15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	13	BASKET	304		6	
16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	14	BAG-LOCK DEVICE	304		6	
17 VENT NPT 1" 304 1	15	INLET 6" ANSI 150B RF	304		1	
	16	OUTLET 6" ANSI 150B RF	304		1	
18 DRAIN NPT 1" 304 1	17	VENT NPT 1"	304		1	
	18	DRAIN NPT 1"	304		1	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA

NAME		REV: A
Multi-Bag Filter Ve	ssel	SCALE: NONE
PROJECT NO.	ORDER NO.	ITEM NO.
DATE:	LINIT	

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

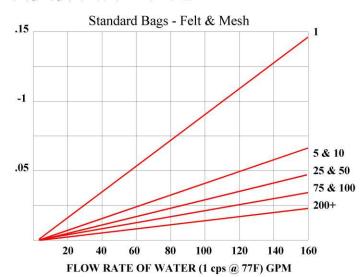
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media

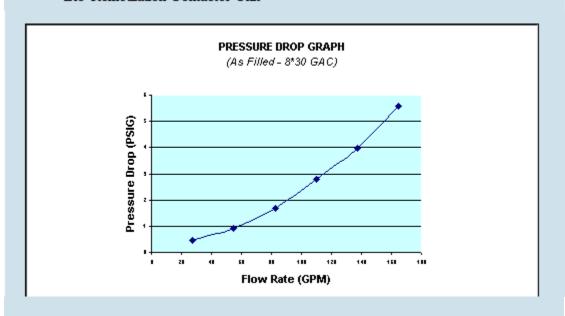
Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

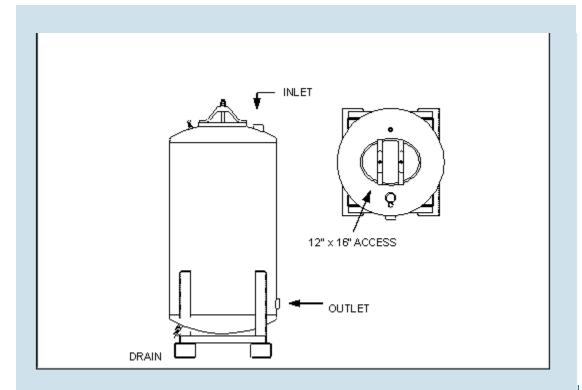
Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

89 Crawford Street


Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-3000

The HPAF-3000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- Dissolved and Precipitated Metals Removal
- Special Organics (Resin/Carbon Blend)
- Catalytic Reactor (Chlorine and Peroxide Removal)
- Bio-Remediation Contactor Unit

HPAF-3000 SPECIFICATIONS				
Overall Height	8'11"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC	
Diameter	60"	Internal Coating	Polyamide Epoxy Resin	
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic	
Drain / Vent (FNPT)	1" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F	
GAC Fill (lbs)	3,000	Cross Sectional Bed Area	19.5 FT ²	
Shipping / Operational Weight (lbs)	3,525/10,635	Bed Depth/Volume	5.5 FT / 107 FT ³	

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

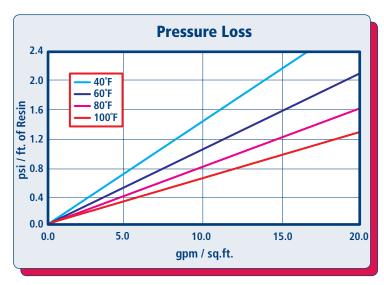
FEATURES & BENEFITS

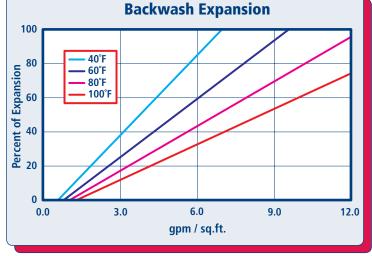
RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY


93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop


COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

PRESSURE LOSS

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

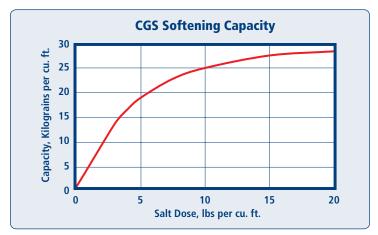
Same as service flow

Rinse volume

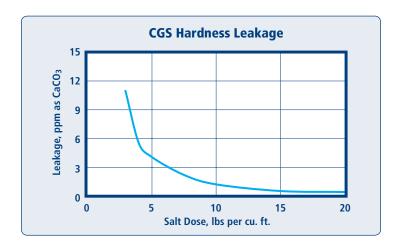
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

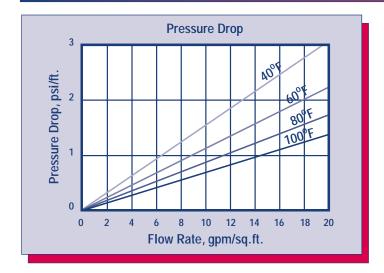
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

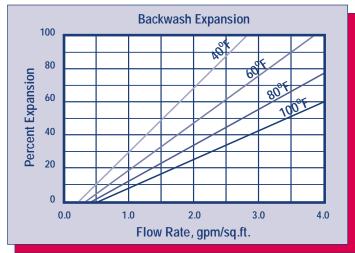
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.
OH Form 41 lbs/cu.ft.
Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F
alt Form 170°F
Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot					
NaOH/ft ³	HCI	H_2SO_4	H ₂ SiO ₃	H_2CO_3		
4	11.3	14.0	14.7	18.6		
6	12.8	16.3	17.3	19.8		
8	14.3	13.3	19.5	21.6		
10	15.5	20.0	22.2	22.2		

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 **SPECIFICATIONS**

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below)
HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

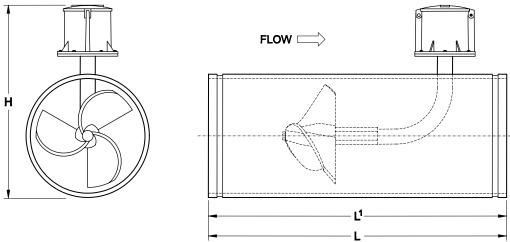
160°F constant

PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.
Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- · Straightening vanes and register extensions available
- Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.

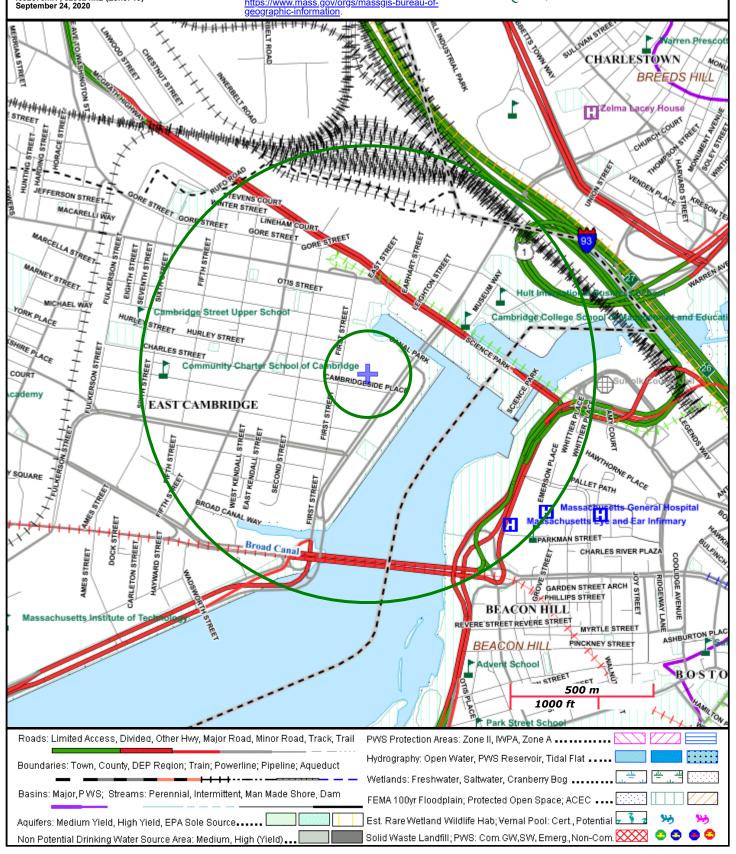
MG100 / MS100							DIMEN	ISIONS					
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100	Note		13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


100 CAMBRIDGESIDE PLACE 100 CAMBRIDGESIDE PLACE CAMBRIDGE, MA

NAD83 UTM Meters: 4692675mN , 329024mE (Zone: 19) September 24, 2020

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found as be found at:

https://www.mass.gov/orgs/massgis-bureau-of-

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix II of the NPDES RGP, the project located at 100 Cambridgeside Place Cambridge, MA is eligible for coverage under this general permit under FWS Criterion A. This project is located in Middlesex County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

No Endangered species found at this location.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: September 24, 2020

Consultation Code: 05E1NE00-2020-SLI-4140

Event Code: 05E1NE00-2020-E-12809 Project Name: 100 Cambridgeside Place

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-4140

Event Code: 05E1NE00-2020-E-12809

Project Name: 100 Cambridgeside Place

Project Type: Water Withdrawal / Depletion

Project Description: Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.367430574621665N71.07599691825939W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street No: 100; Street Name: Cambridgeside PI; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Thursday, September 24, 2020 Page 1 of 1

PERMIT TO DEWATER

Location:	Temporary
Owner:	
Contractor:	Permanent

The property owner, agrees to hold harmless and indemnify the City of Cambridge for any liability on the part of the City directly or indirectly arising out of the dewatering operation.

The issuance of this permit is based in part in the submission packet of the applicant with documentation as follows:

In addition, the application has been reviewed by the City under third party agreement as documented in the following reports:

All activities conducted in conjunction with the issuance of this permit must be in accordance with the provisions of the aforementioned reports. Any deviations in conditions must be reported to and approved by the Commissioner of Public Works.

This permit is in addition to any other street permit issued by the Department in connection with any street excavation or obstruction; and all conditions as specified in the Discharge Permit for Dewatering.

For the entire period of time the groundwater is being discharged to a storm drain, the property owner shall provide copies of each Discharge Monitoring Report Form submitted to the EPA, pursuant to the owner's discharge permit.

If in the future the EPA requires the City of Cambridge to bring existing stormwater drainage into compliance with EPA quality standards, as a condition to the continuation of discharge of that stormwater (also including groundwater) into an EPA regulated system into which the (property owner) drains, the owner will agree to maintain its water discharge with such EPA water quality standards.

The property owner and contractor shall at all times meet the conditions specified in the requisite legal agreement/affidavits.

All groundwater pumped from the work shall be disposed of without damage to pavements, other surfaces or property.

Where material or debris has washed or flowed into or has been placed in existing gutters, drains, pipes or structures, such material or debris shall be entirely removed and satisfactorily disposed of by the

Contractor during the progress of work as directed by the Public Works Department.

Any flooding or damage of property and possessions caused by siltation of existing gutters, pipes or structures shall be the responsibility of the Contractor.

Provisions shall be made to insure that no material, water or solid, will freeze on any pavement or in any location which will cause inconvenience or hazard to the general public.

Upon completion of the work, existing gutters, drains, pipes and structures shall be (bucket) cleaned and material disposed of satisfactorily prior to release by the Public Works Department.

Any permit issued by the City of Cambridge shall be revoked upon transfer of any ownership interest unless and until subsequent owner(s) or parties of interest agree to the foregoing terms.

This permit shall remain in effect for one year and shall be renewable thereafter at the agreement of the parties.

The following special conditions as set forth below are part of the permit.

Commissioner of Inspectional Services

	Hereunto Duly Authorized
City Manager	Property Manager: Corporate Entity
	President, General Partner or Trustee
	Trustee with Instrument of Authority
	9/28/20
Date	Date
City Solicitor	Contractor (Al Vautour, John Moriarty & Associates, Inc.)
	9/28/2020
Date	Date
Commissioner of Public	Contractor
Date	Date
Date	Date
CC: Engineering	
Supervisor of Sewer Maintenance and	Engineering
Superintendent of Streets	