

HALEY & ALDRICH, INC.
465 Medford Street, Suite 2200
Boston, MA 02129
(617) 886.7400

20 November 2019
File No. 130319-005

US Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square – Suite 100 (OEP06-01)
Boston, MA 02109-3912

Attention: Shauna Little, EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)
Temporary Construction Dewatering
Seaport Square Parcel N/P
391 Congress Street
Boston, Massachusetts

Dear Ms. Little:

On behalf of our client, Seaport N/P Title Holder LLC, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the Seaport Square Parcel N/P site, located at 391 Congress Street, in Boston, Massachusetts.

Site Location and Historical Site Usage

The Seaport Square Parcel N/P site is currently a paved parking lot bordered to the north by Congress Street; to the east by the at-grade I-90 East Bound Ramp C and the I-93 North and South Bound Ramp I; to the west by West Service Road Ext/Boston Wharf Road and to the south by the United States Postal Service lot. The Summer Street Bridge runs east-west above the south side of the site. The site gradually slopes from approximately El. 20¹ at the east side of the site to approximately El. 16 at the south end of the site. The Summer Street Bridge is elevated above the site at El. 40 above West Service Road and sloping to El. 43 above the I-90/I-93 Ramps. The general site location and adjacent site conditions are included in Figure 1 and Figure 2. The area is surrounded by public infrastructure, commercial and residential buildings, and proposed future development parcels.

¹ Elevations used herein are in feet and referenced to Boston City Base (BCB).

Haley & Aldrich assessed past and present usage and filling history of the Site through a review of available historical records including Sanborn maps dated 1888 to 2002, aerial photographs from 1938 to 2008 and documentation in "Gaining Ground: A History of Landmaking in Boston".

The subject site was originally part of the South Boston tidal flats and was filled in the 1870s. The area was filled with material dredged from Boston Harbor and covered with several feet of sand and gravel at the surface. The property and vicinity were developed with a railroad terminal yard including rail spurs, platforms, and freight warehouses in the 1880s. The historical alignment of Congress Street (currently abutting the site to the north) intersected the north and northeast portions of the site. The rail spurs and railroad buildings were removed from the subject site by the mid-1980s, and the property remained vacant until it was paved for use as a parking lot in the late 1980s.

The site was mainly used for parking, but also served as a construction staging area during the Central Artery Tunnel (CA/T) highway construction in the early 1990s. Congress Street has shifted through the site over time and was used as a temporary road during the CA/T project as shown on the attached aerial photographs.

Support of the elevated Summer Street also changed over time. A steel viaduct for Summer Street was constructed over the southern portion of the site by 1899. A truss bridge was visible in the 1938 aerial photograph. The 1969 aerial photograph shows the bridge partially demolished around the time of the railyard decommissioning. Summer Street was subsequently re-constructed as a soil embankment-supported road as shown on the 1978 aerial photograph. Removal of the embankment and construction of the current Summer Street bridge were conducted in conjunction with the CA/T project during the late 1990s-early 2000s.

Proposed Construction

The subject site is located within the Seaport Square Master Plan in South Boston, Massachusetts. Below-grade space (mostly parking garage) and foundations will be constructed across the subject site. The building proposed to be constructed above a portion of the subject site includes a high-rise tower with commercial space. New building loads will be supported on reinforced concrete foundations consisting of footings and mat foundations bearing on undisturbed, naturally deposited Marine Deposits, as well as load bearing elements (LBEs) that extend into sound, competent bedrock.

The lowest level (P3) floor slab is planned at El. -18.5. Construction of the underground garage and foundations will require excavations extending from current ground surface down to approximately El. -24.75, corresponding to excavation depths of about 45 ft below current site grades. The excavations are expected to extend through Fill, Organic Soils, Marine (sand) Deposits, and terminate within the Marine (clay) Deposits. The garage foundation walls will be concrete diaphragm walls constructed by the slurry trench excavation method (i.e.; slurry wall) on all sides which will serve as temporary earth support during construction and the permanent foundation wall.

A 4-story, air right portion of the building proposed to be constructed spans over the at-grade I-90 East Bound Ramp C, the I-93 North and South Bound Ramp I, Massport Haul Road, and land just west of the existing Vent Building No. 5. It is planned to span from the eastern edge of the proposed slurry wall to the foundations historically installed during the CA/T Project. The existing foundations consist of caissons (drilled shafts) bearing in rock or column bases bearing on the walls of the below-grade CA/T tunnels.

The “back-of-house” portion of building will be constructed below the existing Summer Street Bridge to provide space for storage, loading docks, a rainwater tank, trash and recycling management and similar uses. A one-level garage will be constructed on the west side with a finished floor elevation of El. 1.5, within the existing steel sheeting installed during the CA/T construction and will connect to the proposed garage north of the Summer Street bridge. The east side of the back-of-house building will be constructed on shallow foundations over the existing soil and CA/T and pump house tunnels.

Regulatory Status

RTN 3-14803

A portion of the subject site is a listed Disposal Site assigned release tracking number (RTN) 3-14803 due to the discovery of two Underground Storage tanks (USTs) and related petroleum impacts in 1997 during the CA/T construction. The tanks were removed, and petroleum impacted soil was excavated and removed from the site. A Response Action Outcome Statement (RAO) was filed with the Massachusetts Department of Environmental Protection (MassDEP) in April 1997 to achieve regulatory closure. The RAO concluded that sources of contamination related to the release had been controlled, a condition of “No Significant Risk” which did not rely on an Activity and Use Limitation (AUL) was achieved, and no additional response actions, operations, or monitoring were needed. The RAO indicated that residual levels of petroleum impacted soil remain in the vicinity of the former USTs which exceed background concentrations but are below MCP S-1 residential soil standards. No groundwater impacts were previously identified. During the recent precharacterization program, results of analytical testing of soil samples in the vicinity of the former USTs were generally consistent with those addressed in the April 1997 RAO.

RTN 3-35801

Recent precharacterization programs were conducted at the project Site during March and April 2019 to obtain geotechnical information and representative environmental soil and groundwater quality data. The test results of the soil samples collected during the precharacterization program detected volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), petroleum hydrocarbons and metals (arsenic, antimony, lead, and mercury) exceeding MCP RCS-1 Reportable Concentrations in soil in granular fill and cohesive fill. These data are believed to relate to typical urban fill and historic site use in this part of Boston. The recent exploration data were judged to constitute a new 120-day reporting condition under the MCP, relative to conditions previously identified under RTN 3-14803 and considered by the 1997 RAO. Accordingly, a BWSC 103 Release Notification Form (RNF) was submitted via eDEP on 27 August 2019 for the Site and RTN 3-35801 was issued by MassDEP.

Groundwater Quality Data

On 25 April 2019, a groundwater sample was collected from observation well HA19-D2(OW). The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semi-volatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, pesticides, polychlorinated biphenyls, total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above applicable Massachusetts Contingency Plan RCGW-2 reportable concentrations. The construction dewatering effluent at the Site will be managed under an RGP. The location of the observation well HA19-D2(OW) is shown on Figure 2.

Receiving Water Quality Information and Dilution Factor

On 25 April 2019, Haley & Aldrich collected a receiving water sample from Boston Inner Harbor and Fort Point Channel using a disposable polyethylene bailer. The surface water samples were collected and submitted to Alpha for chemical analysis of pH, ammonia, and salinity. Field parameters, including pH and temperature, were collected from surface water sample at the time of sampling. The results of water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a saltwater body, hardness does not need to be analyzed on either the effluent water or receiving water. We have additionally confirmed with the MassDEP that the dilution factor for the receiving waters is 1.

Effluent Criteria Determination

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site. Groundwater and Receiving Water data were input and the resulting criteria was tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

Dewatering System and Off-site Discharge

During the remedial activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable remedial excavations in-the-dry. Dewatering activities are anticipated to start in November 2019 and is anticipated to be required for up to 18 months. On average, we estimate effluent discharge rates of about 75 gallons per minute (gpm), with occasional peak flows of approximately 100 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the site.

Construction dewatering includes piping and discharging to storm drains located on or near the site that discharge to either the Boston Inner Harbor or the Fort Point Channel, as shown on Figure 3. An effluent treatment system has been designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water is routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and undissolved chemical constituents, as shown on Figure 4.

National Marine Fisheries Service Eligibility

Based on our review of the National Marine Fisheries Service (NMFS) criterion, it is the opinion of Haley & Aldrich that related activities under the NPDES RGP are not likely to adversely affect federally threatened

or endangered listed species or critical habitat under the jurisdiction of NMFS and should not result in a take of listed species.

According to Appendix I: Endangered Species Act (ESA) Guidance and Eligibility Criteria in the NPDES RGP, and reference footnoted below², the Atlantic Sturgeon and the Shortnose Sturgeon are the only ESA-listed species under the NMFS jurisdiction that may have a critical habitat in Massachusetts Bay. The Shortnose Sturgeon mainly occupy deep channel sections of large coastal rivers and nearshore marine waters.

The outfall to be used for the Parcel N/P discharge is not situated adjacent to large coastal rivers and is not expected to affect the Shortnose Sturgeon population. The closest river to the outfall is the Charles River, which is approximately 1.25 miles from the site. Similarly, the Atlantic Sturgeon is more commonly found in large rivers and brackish waters; adults who live in coastal waters are typically found in shallow areas with sand and gravel substrates. The outfall proposed for discharge is not located in an area where Atlantic Sturgeon may be found, and the discharge is similarly not expected to affect its population. Furthermore, according the CRWA and NRWA references below³, resident populations of Sturgeon no longer exist in the Charles River.

Owner and Operator Information

Owner:

Seaport N/P Title Holder LLC
33 Boylston Street, Suite 3000
Chestnut Hill, MA 02467
Contact: Daniel Preysman
Vice President

Operator:

Suffolk Construction
65 Allerton Street
Boston, MA 02219
Contact: Peter Knudsen
Title: Senior Superintendent

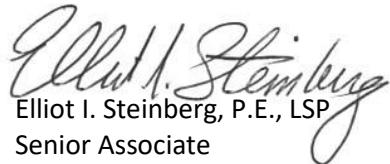
Appendices

The completed “Suggested Notice of Intent” form as provided in the RGP is enclosed in Appendix A. The site owner is the Seaport N/P Title Holder LLC. Seaport N/P Title Holder LLC has hired Suffolk Construction as the general contractor conducting the site work, including dewatering activities. The excavation subcontractor will operate the dewatering system. Haley & Aldrich is monitoring the Contractor’s dewatering activities on behalf of Seaport N/P Title Holder LLC in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and ESA Documentation, respectively. Appendix D provides a copy of the Boston Water and Sewer Commission (BWSC) Dewatering Permit provided by the BWSC as part of the previous RGP submission. Copies of the groundwater testing laboratory data reports are provided in Appendix E. Appendix F provides the Site Contractor’s dewatering submittal which includes details of the dewatering system. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

² <https://www3.epa.gov/region1/npdes/remediation/RGPNMFSletter.pdf>

³ <http://blog.crwa.org/blog/5-migratory-fish-found-in-the-charles-river-ecosystem>
<https://www.neponset.org/your-watershed/natural-history/aquatic-habitat/aquatic-life/migratory-fish/>


Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,
HALEY & ALDRICH, INC

Keila T. Munz
Scientist

Elliot I. Steinberg, P.E., LSP
Senior Associate

Attachments:

Table I – Summary of Groundwater Quality Data

Figure 1 – Site Locus

Figure 2 – Site and Subsurface Location Plan

Figure 3 – Proposed Discharge Route

Figure 4 – Proposed Treatment System Schematic

Appendix A – NOI for RGP

Appendix B – National Register of Historic Places and Massachusetts
Historical Commission Documentation

Appendix C – Endangered Species Act Documentation

Appendix D – BWSC Permit Application

Appendix E – Laboratory Data Reports

Appendix F – Contractor Dewatering Submittal

C: Ali Ribeiro, WS Development

\\haleyaldrich.com\\share\\bos_common\\130319 - Seaport Parcel P\\Parcel P\\RG\\Permit Application\\Text\\2019-1120-Parcel P NPDES RGP Text-F.docx

TABLE I
SUMMARY OF ANALYTICAL RESULTS
SEAPORT PARCEL N/P
BOSTON, MA
FILE NO. 130319

Precharacterization Grid	Action Level		HA19-D2-NPDES 04/25/2019 Primary L1917160-01	HA19-BOSTON HARBOR 04/25/2019 Primary L1917161-01	HA19-FORT POINT 04/25/2019 Primary L1917161-02
	Location Name Sample Name Sample Date Sample Type Lab Sample ID	MCP Reportable Concentration RCGW-2 2014	NPDES Project Specific Criteria		
Volatile Organic Compounds (ug/L)					
1,1,1-Trichloroethane	4000	200	ND (2)	-	-
1,1,2-Trichloroethane	900	5	ND (1.5)	-	-
1,1-Dichloroethane	2000	70	ND (1.5)	-	-
1,1-Dichloroethene	80	3.2	ND (1)	-	-
1,2-Dibromoethane (Ethylene Dibromide)	2	0.05	ND (0.01)	-	-
1,2-Dichlorobenzene	2000	600	ND (5)	-	-
1,2-Dichloroethane	5	5	ND (1.5)	-	-
1,3-Dichlorobenzene	6000	320	ND (5)	-	-
1,4-Dichlorobenzene	60	5	ND (5)	-	-
Acetone	50000	7.97	ND (10)	-	-
Benzene	1000	5	ND (1)	-	-
Carbon tetrachloride	2	4.4	ND (1)	-	-
cis-1,2-Dichloroethene	20	70	ND (1)	-	-
Ethylbenzene	5000	NA	ND (1)	-	-
Methyl Tert Butyl Ether	5000	70	ND (10)	-	-
Methylene chloride	2000	4.6	ND (1)	-	-
Tert-Amyl Methyl Ether (TAME)	NA	90	ND (20)	-	-
Tert-Butyl Alcohol (tert-Butanol)	NA	120	ND (100)	-	-
Tetrachloroethene	50	5	ND (1)	-	-
Toluene	40000	NA	ND (1)	-	-
Trichloroethene	5	5	ND (1)	-	-
Vinyl chloride	2	2	ND (1)	-	-
Xylene (total)	3000	NA	ND (1)	-	-
SUM Volatile Organic Compounds	NA	NA	ND	-	-
Semi-Volatile Organic Compounds (ug/L)					
bis(2-Ethylhexyl)phthalate	50000	101	ND (2.2)	-	-
Butyl benzylphthalate	10000	NA	ND (5)	-	-
Diethyl phthalate	9000	NA	ND (5)	-	-
Dimethyl phthalate	50000	NA	ND (5)	-	-
Di-n-butylphthalate	5000	NA	ND (5)	-	-
Di-n-octyl phthalate	100000	NA	ND (5)	-	-
SUM Semi-Volatile Organic Compounds	NA	NA	ND	-	-
Semi-Volatile Organic Compounds (SIM) (ug/L)					
Acenaphthene	6000	NA	ND (0.1)	-	-
Acenaphthylene	40	NA	ND (0.1)	-	-
Anthracene	30	NA	ND (0.1)	-	-
Benzo(a)anthracene	1000	1	ND (0.1)	-	-
Benzo(a)pyrene	500	1	ND (0.1)	-	-
Benzo(b)fluoranthene	400	1	ND (0.1)	-	-
Benzo(g,h,i)perylene	20	NA	ND (0.1)	-	-
Benzo(k)fluoranthene	100	1	ND (0.1)	-	-
Chrysene	70	1	ND (0.1)	-	-
Dibenz(a,h)anthracene	40	1	ND (0.1)	-	-
Fluoranthene	200	NA	ND (0.1)	-	-
Fluorene	40	NA	ND (0.1)	-	-
Indeno(1,2,3-cd)pyrene	100	1	ND (0.1)	-	-
Naphthalene	700	20	ND (0.1)	-	-
Pentachlorophenol	200	1	ND (1)	-	-
Phenanthrene	10000	NA	ND (0.1)	-	-
Pyrene	20	NA	ND (0.1)	-	-
Total Petroleum Hydrocarbons (ug/L)					
Petroleum hydrocarbons	5000	5000	ND (4000)	-	-
Inorganic Compounds (ug/L)					
Chromium VI (Hexavalent), Dissolved	300	323	ND (10)	-	-
Antimony, Total	8000	206	ND (4)	-	-
Arsenic, Total	900	104	4.72	-	-
Cadmium, Total	4	10.2	ND (0.2)	-	-
Chromium, Total	300	NA	ND (1)	-	-
Copper, Total	100000	242	ND (1)	-	-
Cyanide, Total	30	178000	ND (5)	-	-
Hardness, Total	NA	NA	326000	-	-
Iron, Total	NA	5000	40700	-	-
Lead, Total	10	160	ND (1)	-	-
Mercury, Total	20	0.739	ND (0.2)	-	-
Nickel, Total	200	1450	3.64	-	-
Selenium, Total	100	235.8	ND (5)	-	-
Silver, Total	7	35.1	ND (0.4)	-	-
Zinc, Total	900	86	153.6	-	-

TABLE I
SUMMARY OF ANALYTICAL RESULTS
SEAPORT PARCEL N/P
BOSTON, MA
FILE NO. 130319

Precharacterization Grid	Action Level		HA19-D2-NPDES HA19-D2-NPDES-20190425 04/25/2019 Primary L1917160-01	HA19-BOSTON HARBOR HA19-BOSTON HARBOR_04252019 04/25/2019 Primary L1917161-01	HA19-FORT POINT HA19-FORT POINT_04252019 04/25/2019 Primary L1917161-02
	Location Name Sample Name Sample Date Sample Type Lab Sample ID	MCP Reportable Concentration RCGW-2 2014	NPDES Project Specific Criteria		
Other					
pH (lab), Total (pH units)	NA	NA	-	7.7	7.8
Salinity, Total (SU)	NA	NA	-	19	18
Ammonia, Total (ug/L)	NA	Report	2800	201	92
Chloride, Total (ug/L)	NA	Report	1400000	-	-
Chlorine, residual, Total (ug/L)	NA	7.5	ND (20)	-	-
Chromium III (Trivalent), Total (ug/L)	600	323	ND (10)	-	-
Total phenols (ug/L)	NA	1080	ND (30)	-	-
Total Suspended Solids (TSS) (ug/L)	NA	30000	10000	-	-
Pesticides and PCBs (ug/L)					
Aroclor-1016 (PCB-1016)	5	NA	ND (0.25)	-	-
Aroclor-1221 (PCB-1221)	5	NA	ND (0.25)	-	-
Aroclor-1232 (PCB-1232)	5	NA	ND (0.25)	-	-
Aroclor-1242 (PCB-1242)	5	NA	ND (0.25)	-	-
Aroclor-1248 (PCB-1248)	5	NA	ND (0.25)	-	-
Aroclor-1254 (PCB-1254)	5	NA	ND (0.25)	-	-
Aroclor-1260 (PCB-1260)	5	NA	ND (0.2)	-	-
SUM PCBs	NA	0.000064	ND	-	-
Volatile Organic Compounds SIM (ug/L)					
1,4-Dioxane	6000	200	ND (50)	-	-

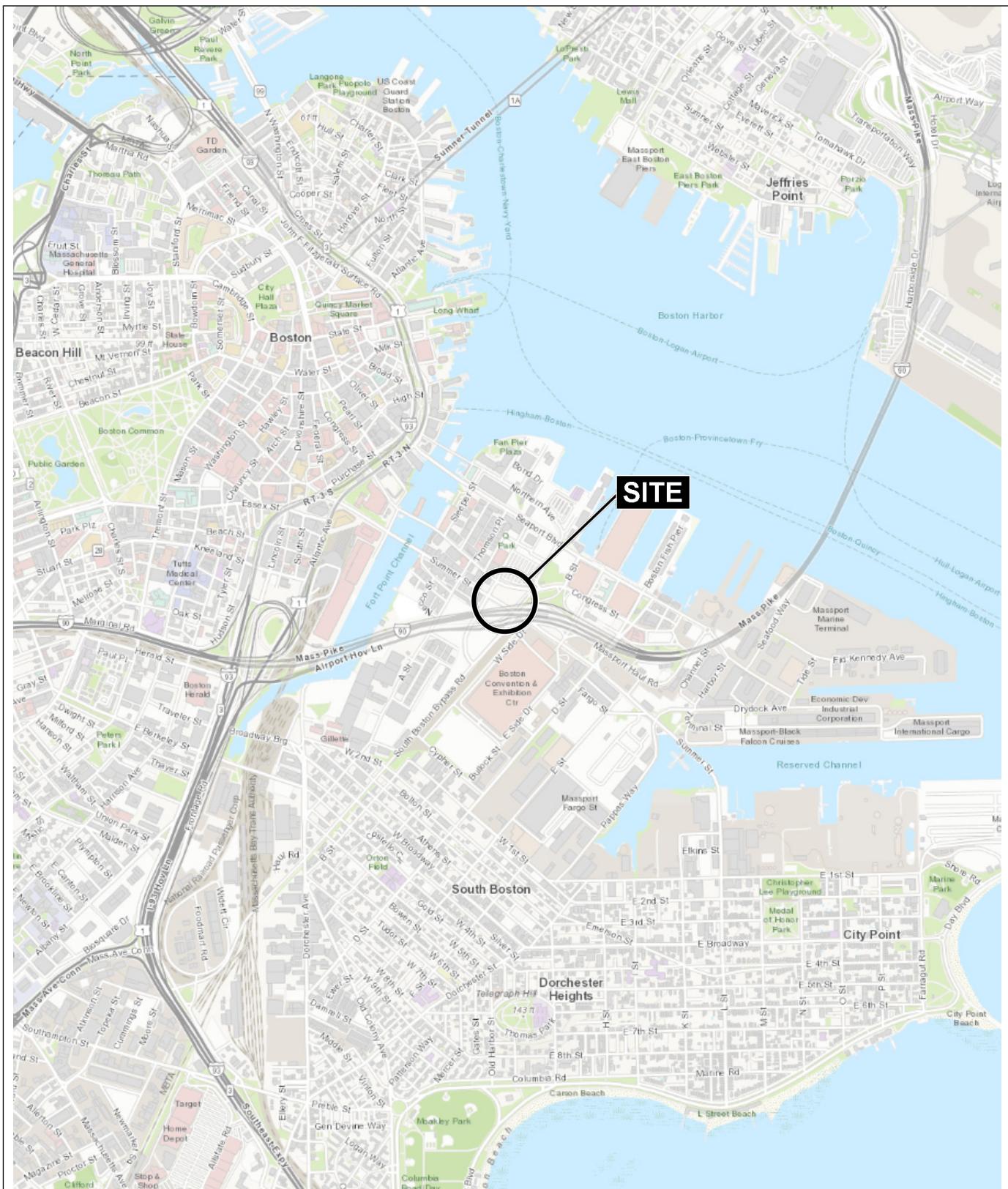
ABBREVIATIONS AND NOTES:

-: Not Analyzed

µg/L: micrograms per liter

MCP: 310 CMR 40.000 Massachusetts Contingency Plan effective 25 April 2014; revisions 23 May 2014.

NA: Not Applicable


ND (2.5): Not detected, number in parentheses is the laboratory detection limit

RC: MCP Reportable Concentration

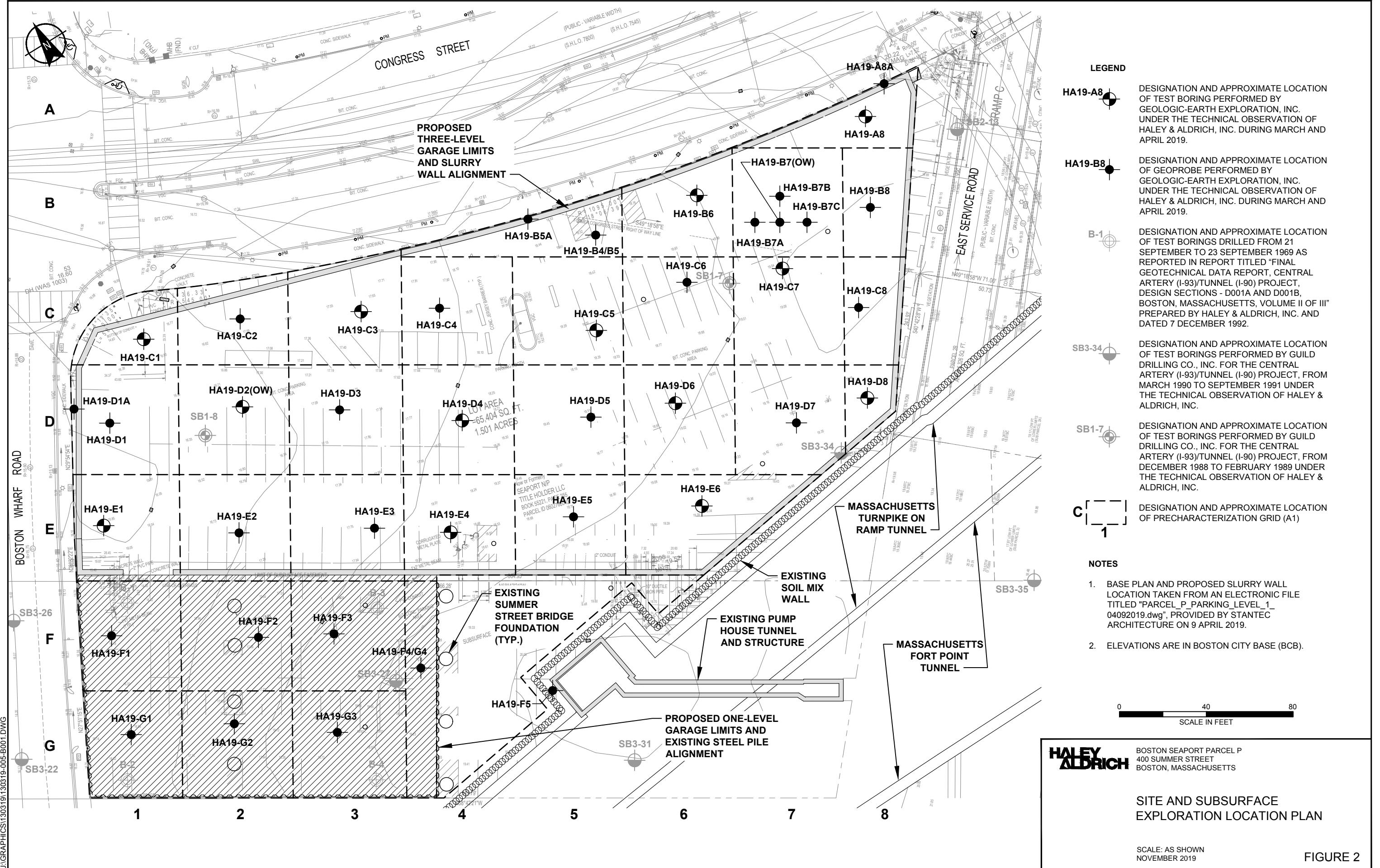
- Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.

- Bold values indicate an exceedance of the NPDES RGP criteria.

- Groundwater samples analyzed for dissolved metals were filtered in the field with a 0.45 micrometer filter.

MAP SOURCE: ESRI

SITE COORDINATES: 42°20'56"N, 71°24'8"W


**HALEY
ALDRICH**

350 AND 400 SUMMER STREET
BOSTON, MASSACHUSETTS

PROJECT LOCUS

APPROXIMATE SCALE: 1 IN = 2000 FT
NOVEMBER 2019

FIGURE 1

FIGURE 2

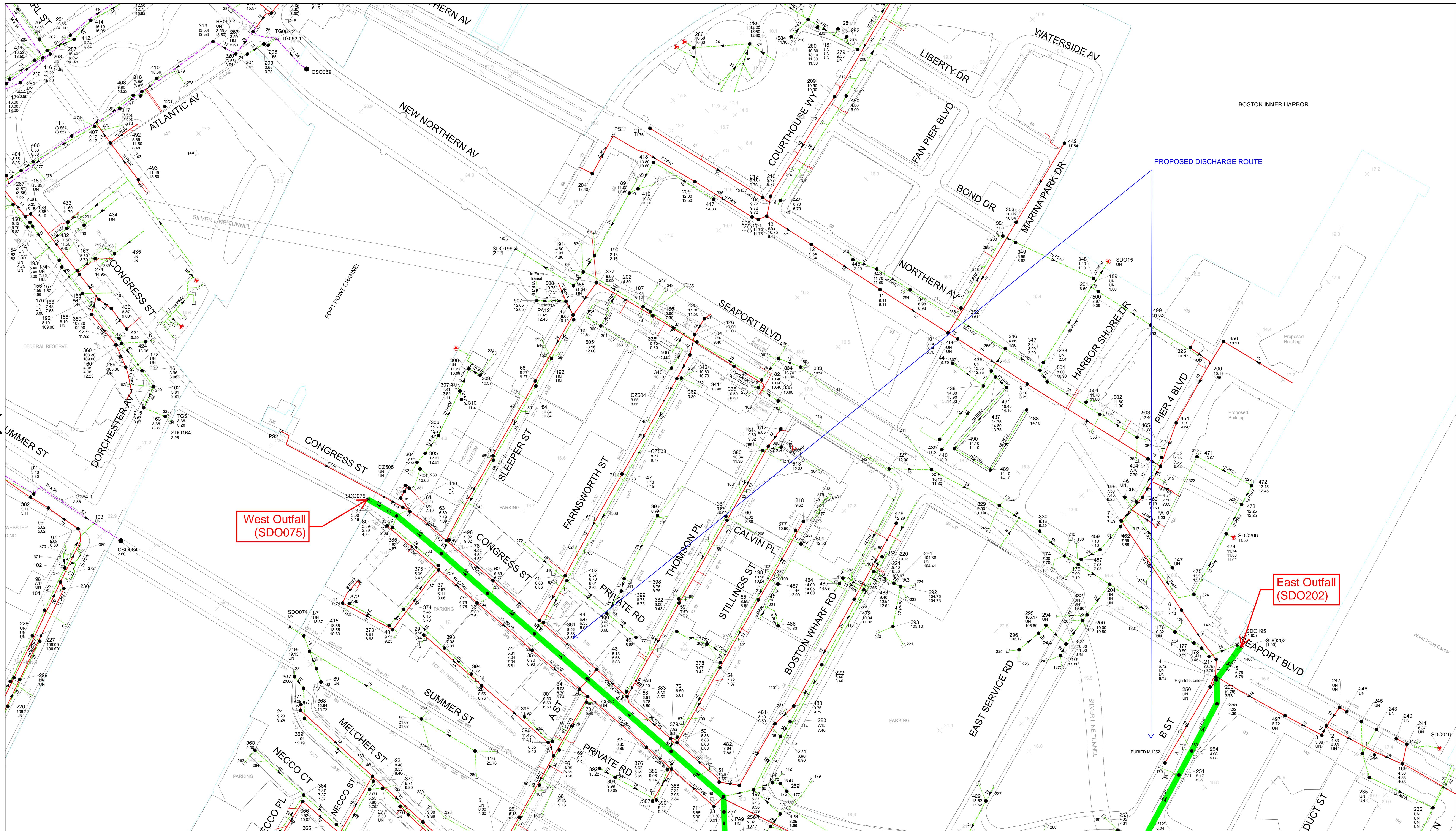

NOVEMBER 2019

FIGURE 3a

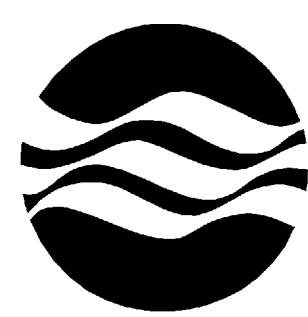
24K

24L

24M

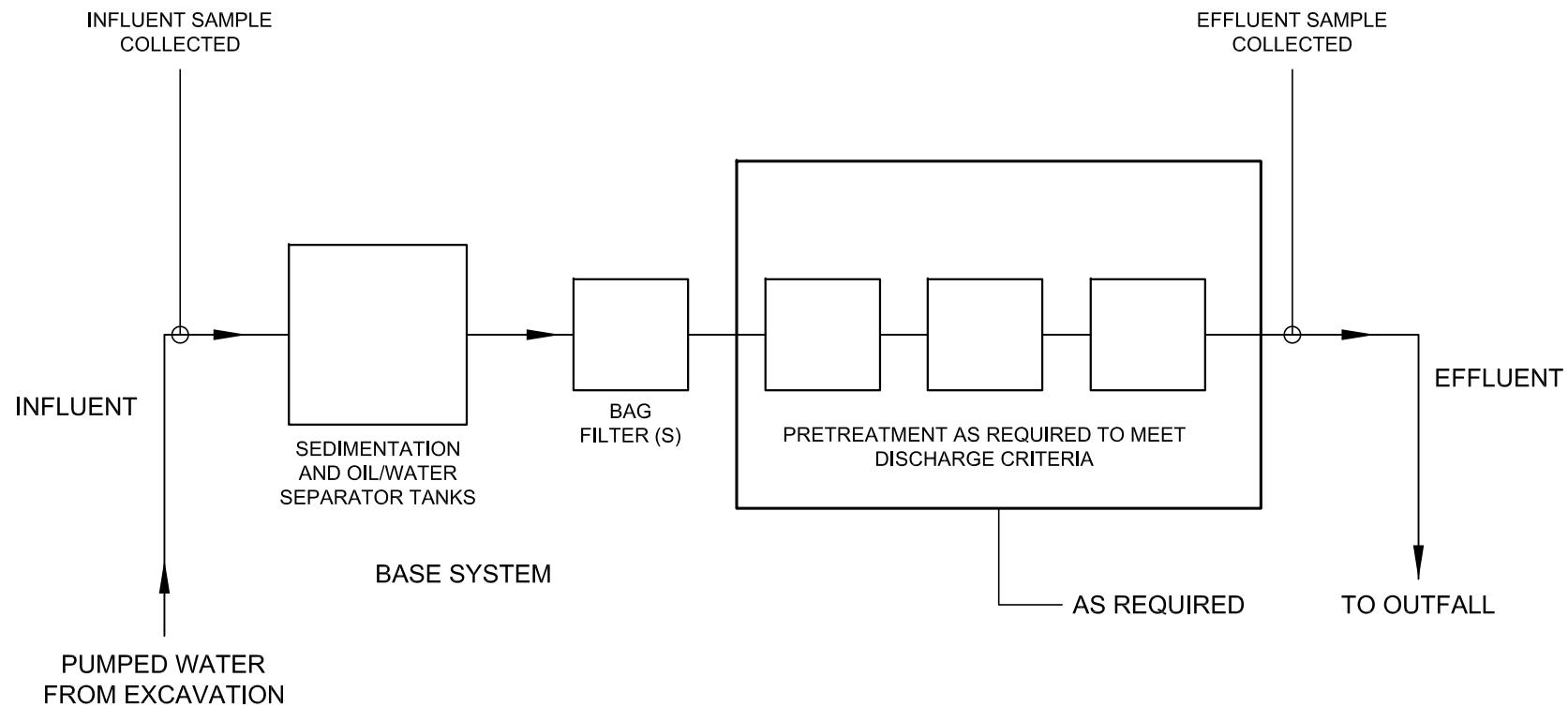
22K

22L


22M

NOTE: Spot Elevations shown are plotted in Boston City Base

DATE OF PHOTOGRAPHY - MARCH 30, APRIL 1 & 17, 1995
 VERTICAL DATUM BASED ON THE BOSTON CITY BASE


THE LANDBASE ON THIS MAP WAS COMPILED TO MEET THE
 ASPRS STANDARD FOR CLASS 1 MAP ACCURACY

Date Produced:
 1/26/2017

BOSTON WATER AND SEWER COMMISSION

HALEY ALDRICH
 SEAPORT PARCEL N/P
 BOSTON, MASSACHUSETTS
 PROPOSED DISCHARGE
 ROUTE
 OCTOBER 2019
 SHEET NO.
 FIGURE 3d
 23L

LEGEND:

→ DIRECTION OF FLOW

NOTE:

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

SEAPORT PARCEL N/P
BOSTON, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE
NOVEMBER 2019

FIGURE 4

APPENDIX A

NOI for RGP

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Seaport Square Parcel N/P	Site address: Street: 391 Congress Street/400 Summer Street		
	City: Boston	State: MA	Zip: 02110
2. Site owner Seaport N/P Title Holder LLC Owner is (check one): <input type="checkbox"/> Federal <input type="checkbox"/> State/Tribal <input checked="" type="checkbox"/> Private <input type="checkbox"/> Other; if so, specify: Suffolk Construction	Contact Person: Daniel Preysman Telephone: 617-646-3130 Email: Daniel.Preysman@wsdevelopment.com Mailing address: Street: 33 Boylston Street, Suite 3000 City: Chestnut Hill State: MA Zip: 02467		
3. Site operator, if different than owner Suffolk Construction	Contact Person: Jason Seaburg Telephone: 617-445-3500 Email: JSeaburg@suffolk.com Mailing address: Street: City: Boston State: MA Zip: 02119		
4. NPDES permit number assigned by EPA: N/A NPDES permit is (check all that apply): <input type="checkbox"/> RGP <input type="checkbox"/> DGP <input type="checkbox"/> CGP <input type="checkbox"/> MSGP <input type="checkbox"/> Individual NPDES permit <input type="checkbox"/> Other; if so, specify:	5. Other regulatory program(s) that apply to the site (check all that apply): <input checked="" type="checkbox"/> MA Chapter 21e; list RTN(s): RTN 3-35801 <input type="checkbox"/> CERCLA <input type="checkbox"/> NH Groundwater Management Permit or Groundwater Release Detection Permit: <input type="checkbox"/> UIC Program <input type="checkbox"/> POTW Pretreatment <input type="checkbox"/> CWA Section 404		

B. Receiving water information:

1. Name of receiving water(s): Fort Point Channel / Boston Inner Harbor	Waterbody identification of receiving water(s): MA70-02	Classification of receiving water(s): SB
Receiving water is (check any that apply): <input type="checkbox"/> Outstanding Resource Water <input type="checkbox"/> Ocean Sanctuary <input type="checkbox"/> territorial sea <input type="checkbox"/> Wild and Scenic River		
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Are sensitive receptors present near the site? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No If yes, specify:		
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. No		
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.		N/A - Receiving water is an ocean
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.		1 - Receiving water is an ocean
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No If yes, indicate date confirmation received:		
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No		

C. Source water information:

1. Source water(s) is (check any that apply):			
<input checked="" type="checkbox"/> Contaminated groundwater Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> Contaminated surface water Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): <input type="checkbox"/> Yes <input type="checkbox"/> No	<input type="checkbox"/> The receiving water <input type="checkbox"/> A surface water other than the receiving water; if so, indicate waterbody: <input checked="" type="checkbox"/> Other; if so, specify: Although "Contaminated Groundwater" is listed, see table for compounds actually detected	<input type="checkbox"/> Potable water; if so, indicate municipality or origin:

2. Source water contaminants: Total suspended solids, iron, zinc	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in the RGP? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance with the instructions in Appendix VIII? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No	

D. Discharge information

1. The discharge(s) is a(n) (check any that apply): <input type="checkbox"/> Existing discharge <input checked="" type="checkbox"/> New discharge <input type="checkbox"/> New source	
Outfall(s): 1) SDO075, 2) SDO202	Outfall location(s): (Latitude, Longitude) 1) 42.350697 2) 42.350697 -71.042631 -71.042631
Discharges enter the receiving water(s) via (check any that apply): <input type="checkbox"/> Direct discharge to the receiving water <input checked="" type="checkbox"/> Indirect discharge, if so, specify: <input type="checkbox"/> A private storm sewer system <input checked="" type="checkbox"/> A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system: Has notification been provided to the owner of this system? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No Has the operator has received permission from the owner to use such system for discharges? (check one): <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No, if so, explain, with an estimated timeframe for obtaining permission: BWSC permit application being submitted concurrently with this NOI Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	
Provide the expected start and end dates of discharge(s) (month/year): November 2018 - March 2021 Indicate if the discharge is expected to occur over a duration of: <input type="checkbox"/> less than 12 months <input checked="" type="checkbox"/> 12 months or more <input type="checkbox"/> is an emergency discharge	
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No	

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)	
<input type="checkbox"/> I – Petroleum-Related Site Remediation <input type="checkbox"/> II – Non-Petroleum-Related Site Remediation <input checked="" type="checkbox"/> III – Contaminated Site Dewatering <input type="checkbox"/> IV – Dewatering of Pipelines and Tanks <input type="checkbox"/> V – Aquifer Pump Testing <input type="checkbox"/> VI – Well Development/Rehabilitation <input type="checkbox"/> VII – Collection Structure Dewatering/Remediation <input type="checkbox"/> VIII – Dredge-Related Dewatering	a. If Activity Category I or II: (check all that apply)	
	<input type="checkbox"/> A. Inorganics <input type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds <input type="checkbox"/> C. Halogenated Volatile Organic Compounds <input type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds <input type="checkbox"/> F. Fuels Parameters	
	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)	
	<input checked="" type="checkbox"/> G. Sites with Known Contamination	<input type="checkbox"/> H. Sites with Unknown Contamination
	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) <input checked="" type="checkbox"/> A. Inorganics <input checked="" type="checkbox"/> B. Non-Halogenated Volatile Organic Compounds <input type="checkbox"/> C. Halogenated Volatile Organic Compounds <input checked="" type="checkbox"/> D. Non-Halogenated Semi-Volatile Organic Compounds <input checked="" type="checkbox"/> E. Halogenated Semi-Volatile Organic Compounds <input checked="" type="checkbox"/> F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

*detected in soil only

4. Influent and Effluent Characteristics

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		X	1	4500NH3-BH	75	2800	2800	Report mg/L	---
Chloride		X	1	300.0	50000	1400000	1400000	Report µg/l	---
Total Residual Chlorine	X		1	4500CL	20	ND	ND	0.2 mg/L	7.5 µg/L
Total Suspended Solids		X	1	2540D	5000	10000	10000	30 mg/L	—
Antimony Total		X*	1	200.8	4	ND	ND	206 µg/L	640
Arsenic Total		X	1	200.8	1	4.72	4.72	104 µg/L	36
Cadmium Total		X*	1	200.8	0.2	ND	ND	10.2 µg/L	8.9
Chromium III	X		1	NA	10	ND	ND	323 µg/L	100
Chromium VI	X		1	200.8	10	ND	ND	323 µg/L	50
Copper Total	X		1	200.8	1	ND	ND	242 µg/L	3.7
Iron Total		X	1	200.7	50	40700	40700	5,000 µg/L	
Lead Total		X*	1	200.8	1	ND	ND	160 µg/L	8.5
Mercury Total		X*	1	245.1	0.2	ND	ND	0.739 µg/L	1.11
Nickel Total		X	1	200.8	2	3.64	3.64	1,450 µg/L	8.3
Selenium Total		X*	1	200.8	5	ND	ND	235.8 µg/L	71
Silver Total		X*	1	200.8	0.4	ND	ND	35.1 µg/L	2.2
Zinc Total		X	1	200.8	10	153.6	153.6	420 µg/L	86
Cyanide Total	X		1	4500CN	0.005	ND	ND	178 mg/L	1.0
B. Non-Halogenated VOCs									
Total BTEX		X*	1	624.1	NA	ND	ND	100 µg/L	---
Benzene		X*	1	624.1	1	ND	ND	5.0 µg/L	---
1,4 Dioxane	X		1	8260C-SIM	50	ND	ND	200 µg/L	---
Acetone		X*	1	624.1	10	ND	ND	7.97 mg/L	---
Phenol	X		1	420.1	30	ND	ND	1,080 µg/L	300

X* - detected in soil only

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	X		1	624.1	1.0	ND	ND	4.4 µg/L	1.6
1,2 Dichlorobenzene	X		1	624.1	5.0	ND	ND	600 µg/L	---
1,3 Dichlorobenzene	X		1	624.1	5.0	ND	ND	320 µg/L	---
1,4 Dichlorobenzene	X		1	624.1	5.0	ND	ND	5.0 µg/L	---
Total dichlorobenzene	X		1	624.1	NA	NA	NA	763 µg/L in NH	---
1,1 Dichloroethane	X		1	624.1	1.5	ND	ND	70 µg/L	---
1,2 Dichloroethane		X*	1	624.1	1.5	ND	ND	5.0 µg/L	---
1,1 Dichloroethylene	X		1	624.1	1.0	ND	ND	3.2 µg/L	---
Ethylene Dibromide	X		1	504.1	0.01	ND	ND	0.05 µg/L	---
Methylene Chloride	X		1	624.1	1.0	ND	ND	4.6 µg/L	---
1,1,1 Trichloroethane	X		1	624.1	2.0	ND	ND	200 µg/L	---
1,1,2 Trichloroethane	X		1	624.1	1.5	ND	ND	5.0 µg/L	---
Trichloroethylene	X		1	624.1	1.0	ND	ND	5.0 µg/L	---
Tetrachloroethylene		X*	1	624.1	1.0	ND	ND	5.0 µg/L	3.3
cis-1,2 Dichloroethylene	X		1	624.1	1.0	ND	ND	70 µg/L	---
Vinyl Chloride	X		1	624.1	1.0	ND	ND	2.0 µg/L	---
D. Non-Halogenated SVOCs									
Total Phthalates	X		1	625.1	NA	ND	ND	190 µg/L	
Diethylhexyl phthalate	X		1	625.1	2.2	ND	ND	101 µg/L	2.2
Total Group I PAHs		X*	1	625.1	NA	ND	ND	1.0 µg/L	---
Benzo(a)anthracene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Benzo(a)pyrene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Benzo(b)fluoranthene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Benzo(k)fluoranthene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Chrysene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Dibenzo(a,h)anthracene		X*	1	625.1 SIM	0.1	ND	ND		0.0038
Indeno(1,2,3-cd)pyrene		X*	1	625.1 SIM	0.1	ND	ND		0.0038

X* - detected in soil only

Parameter	Known or believed absent	Known or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
						Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		X*	1	625.1 SIM	NA	ND	ND	100 µg/L	---
Naphthalene		X*	1	625.1 SIM	0.1	ND	ND	20 µg/L	---
E. Halogenated SVOCs									
Total PCBs		X*	1	608.3	NA	ND	ND	0.000064 µg/L	---
Pentachlorophenol	X		1	625.1 SIM	1	ND	ND	1.0 µg/L	---
F. Fuels Parameters									
Total Petroleum Hydrocarbons		X*	1	1664A	4.0	ND	ND	5.0 mg/L	---
Ethanol	X							Report mg/L	---
Methyl-tert-Butyl Ether	X		1	624.1	10	ND	ND	70 µg/L	
tert-Butyl Alcohol	X		1	624.1	100	ND	ND	120 µg/L in MA 40 µg/L in NH	---
tert-Amyl Methyl Ether	X		1	624.1	20	ND	ND	90 µg/L in MA 140 µg/L in NH	---
Other (i.e., pH, temperature, hardness, salinity, LC₅₀, additional pollutants present); if so, specify:									
Hardness	X	1	200.7	660	622000	622000	ug/L		
See Attached Table 1									

X* - detected in soil only

Additional compounds detected in soil only:

VOCs

1,2,4-Trimethylbenzene
1,2-Dichloroethane
1,3,5-Trimethylbenzene
2-Butanone (Methyl Ethyl Ketone)
2-Phenylbutane (sec-Butylbenzene)
Acetone
Benzene
Carbon disulfide
Cymene (p-Isopropyltoluene)
Ethylbenzene
Isopropylbenzene (Cumene)
Naphthalene
n-Butylbenzene
Tetrachloroethene
Tetrahydrofuran
Toluene
Xylene (total)

SVOCS

2-Methylnaphthalene
3&4-Methylphenol
Acenaphthene
Acenaphthylene
Anthracene
Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene
Benzo(g,h,i)perylene
Benzo(k)fluoranthene
bis(2-Ethylhexyl)phthalate
Butyl benzylphthalate
Chrysene
Dibenz(a,h)anthracene
Dibenzofuran
Fluoranthene
Fluorene
Indeno(1,2,3-cd)pyrene
Naphthalene
Phenanthrene
Pyrene

Metals

Barium
Beryllium
Chromium
Vanadium

Other

Lead TCLP
Aroclor-1254 (PCB-1254)
Aroclor-1260 (PCB-1260)
Total Solids (%)
Reactive Sulfide (mg/kg)
Conductivity (umhos/cm)

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

Adsorption/Absorption Advanced Oxidation Processes Air Stripping Granulated Activated Carbon (“GAC”)/Liquid Phase Carbon Adsorption
 Ion Exchange Precipitation/Coagulation/Flocculation Separation/Filtration Other; if so, specify:

Following will be applied IF REQUIRED per effluent monitoring sampling

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary treatment components (potentially: Ion exchange, GAC, oil/water separator), to remove suspended solids and undissolved chemical constituents, as shown on Figure 4 of the NPDES permit application.

Identify each major treatment component (check any that apply):

Fractionation tanks Equalization tank Oil/water separator Mechanical filter Media filter
 Chemical feed tank Air stripping unit Bag filter Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

Chlorination De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component: **Flow meter**

Is use of a flow meter feasible? (check one): Yes No, if so, provide justification:

Provide the proposed maximum effluent flow in gpm. **100 gpm**

Provide the average effluent flow in gpm. **75 gpm**

If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:

4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): Yes No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

Algaecides/biocides Antifoams Coagulants Corrosion/scale inhibitors Disinfectants Flocculants Neutralizing agents Oxidants Oxygen
scavengers pH conditioners Bioremedial agents, including microbes Chlorine or chemicals containing chlorine Other; if so, specify:

2. Provide the following information for each chemical/additive, using attachments, if necessary: See attached manufacturers cut sheets and SDSs for equipment which may be utilized if necessary. This information is only included as a contingency and is not currently needed based on groundwater data. Exact specifications on frequency, duration, quantity, and method of application are not known at this time. If the system eventually requires chemical additives, these details will be provided to EPA.

- a. Product name, chemical formula, and manufacturer of the chemical/additive;
- b. Purpose or use of the chemical/additive or remedial agent;
- c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
- d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
- e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
- f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): Yes No

See above

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the “action area”.

FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are “not likely to adversely affect” listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): Yes No; if no, is consultation underway? (check one): Yes No

FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have “no effect” on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) the operator EPA Other; if so, specify:

NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have “no effect” or are “not likely to adversely affect” any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): Yes No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Criterion A:** No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- Criterion B:** Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C:** Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes N/A

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.

Refer to attached Haley & Aldrich, Inc. letter

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No

Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): Yes No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

BMPP certification statement: A BMPP meeting the requirements of this general permit will be implemented upon initiation of discharge.

Notification provided to the appropriate State, including a copy of this NOI, if required.

Check one: Yes No N/A

Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.

Check one: Yes No

Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.

Check one: Yes No NA
BWSC Permit being submitted concurrently with this NOI

Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.

Check one: Yes No NA

Notification provided to the owner/operator of the area associated with activities covered by an additional discharge

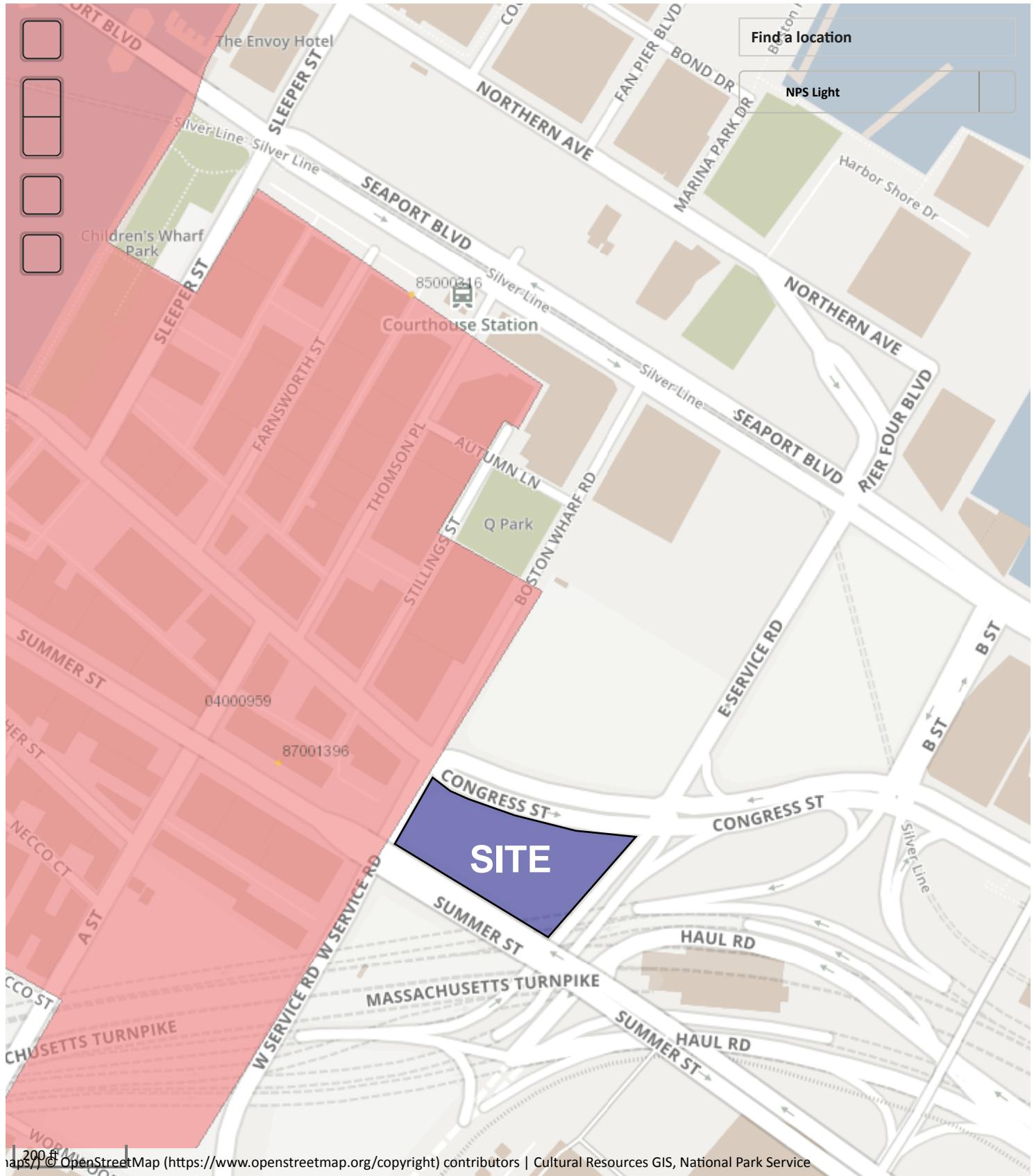
permit(s). Additional discharge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit

Check one: Yes No NA

Other; if so, specify:

Signature:

Date: 11/19/19


Print Name and Title: Jason Seaburg, Vice president, Operations

APPENDIX B

**National Register of Historic Places and
Massachusetts Historical Commission Documentation**

National Register of Histori...

Public, non-restricted data depicting National Register spatial data proce...

200 ft
maps/ © OpenStreetMap (<https://www.openstreetmap.org/copyright>) contributors | Cultural Resources GIS, National Park Service

National Register of Historic Places: Listed Properties

As of July 2015

Note: Not all properties are digitized

Reference State Number	County	City	Resource Name	Address	Listed Date	Text	Photos
83000601 MASSACHUSETTS	Suffolk	Boston	Charles Street African Methodist Episcopal Church	551 Warren St.	19830901	Text	Photos
83000602 MASSACHUSETTS	Suffolk	Boston	Codman Square District	Norfolk, Talbot, Epping, Lithgow, Cer	19830623	Text	Photos
83000603 MASSACHUSETTS	Suffolk	Boston	Gardner, Isabella Stewart, Museum	280 The Fenway	19830127	Text	Photos
83000605 MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Fire Station	16 Harvard Ave.	19830331	Text	Photos
83000606 MASSACHUSETTS	Suffolk	Boston	Lawrence Model Lodging Houses	79, 89, 99 and 109 E. Canton St.	19830922	Text	Photos
83000607 MASSACHUSETTS	Suffolk	Boston	Newspaper Row	322-328 Washington St., 5-23 Milk St	19830707	Text	Photos
82000486 MASSACHUSETTS	Suffolk	Boston	Wiglesworth Building	89-83 Franklin St.	19821021	Text	Photos
83004098 MASSACHUSETTS	Suffolk	Boston	Leather District	Roughly bounded by Atlantic Ave., K	19831221	Text	Photos
83004285 MASSACHUSETTS	Suffolk	Boston	Baker, Sarah J., School	33 Perrin St.	19830707	Text	Photos
79000370 MASSACHUSETTS	Suffolk	Boston	Washington Street Theatre District	511-559 Washington St.	19790319	Text	Photos
85000318 MASSACHUSETTS	Suffolk	Boston	Dorchester Pottery Works	101-105 Victory Rd.	19850221	Text	Photos
79000368 MASSACHUSETTS	Suffolk	Boston	Bedford Building	89-103 Bedford St.	19790821	Text	Photos
80000442 MASSACHUSETTS	Suffolk	Boston	Wirth, Jacob, Buildings	31-39 Stuart St.	19801209	Text	Photos
80000445 MASSACHUSETTS	Suffolk	Boston	Metropolitan Theatre	252-272 Tremont St.	19801209	Text	Photos
80000446 MASSACHUSETTS	Suffolk	Boston	Hayden Building	681-683 Washington St.	19801209	Text	Photos
80000448 MASSACHUSETTS	Suffolk	Boston	Dill Building	11-25 Stuart St.	19801209	Text	Photos
80000450 MASSACHUSETTS	Suffolk	Boston	Boylston Building	2-22 Boylston St.	19801209	Text	Photos
80000451 MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Union	48 Boylston St.	19801209	Text	Photos
80000453 MASSACHUSETTS	Suffolk	Boston	Boston Edison Electric Illuminating Company	25-39 Boylston St.	19801209	Text	Photos
80000455 MASSACHUSETTS	Suffolk	Boston	West Street District	West St.	19801209	Text	Photos
80000460 MASSACHUSETTS	Suffolk	Boston	Liberty Tree District	Roughly bounded by Harrison Ave., \	19801209	Text	Photos
80000462 MASSACHUSETTS	Suffolk	Boston	Beach-Knapp District	Roughly bounded by Harrison Ave., \	19801209	Text	Photos
80000465 MASSACHUSETTS	Suffolk	Boston	Oak Square School	35 Nonantum St.	19801110	Text	Photos
66000127 MASSACHUSETTS	Suffolk	Boston	Arnold Arboretum	22 Divinity Ave.	19661015	Text	Photos
73000313 MASSACHUSETTS	Suffolk	Boston	Arlington Street Church	Arlington and Boylston Sts.	19730504	Text	Photos
73000322 MASSACHUSETTS	Suffolk	Boston	Old Corner Bookstore	NW corner of Washington and Schoc	19730411	Text	Photos
75000299 MASSACHUSETTS	Suffolk	Boston	South Station Headhouse	Atlantic Ave. and Summer St.	19750213	Text	Photos
74000392 MASSACHUSETTS	Suffolk	Boston	Winthrop Building	7 Water St.	19740418	Text	Photos
80000668 MASSACHUSETTS	Suffolk	Boston	United Shoe Machinery Corporation Building	138-164 Federal St.	19800819	Text	Photos
75000300 MASSACHUSETTS	Suffolk	Boston	St. Stephen's Church	Hanover St. between Clark and Harri	19750414	Text	Photos
80000669 MASSACHUSETTS	Suffolk	Boston	Union Wharf	295-353 Commercial St.	19800622	Text	Photos
80000670 MASSACHUSETTS	Suffolk	Boston	Suffolk County Jail	215 Charles St.	19800423	Text	Photos
80000674 MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, School	20 Hutchings St.	19800416	Text	Photos
80001683 MASSACHUSETTS	Suffolk	Boston	Dillaway School	16-20 Kenilworth St.	19800409	Text	Photos
66000366 MASSACHUSETTS	Suffolk	Boston	Ether Dome, Massachusetts General Hospital	Fruit St.	19661015	Text	Photos
70000539 MASSACHUSETTS	Suffolk	Boston	Otis, (First) Harrison Gray, House	141 Cambridge St.	19701230	Text	Photos
73000314 MASSACHUSETTS	Suffolk	Boston	Armory of the First Corps of Cadets	97-105 Arlington St. and 130 Columb	19730522	Text	Photos
73000315 MASSACHUSETTS	Suffolk	Boston	Blackstone Block Historic District	Area bound by Union, Hanover, Blac	19730526	Text	Photos
72000145 MASSACHUSETTS	Suffolk	Boston	Crowninshield House	164 Marlborough St.	19720223	Text	Photos
72000146 MASSACHUSETTS	Suffolk	Boston	First Baptist Church	Commonwealth Ave. and Clarendon	19720223	Text	Photos
74000391 MASSACHUSETTS	Suffolk	Boston	John Adams Courthouse	Pemberton Sq.	19740508	Text	Photos
72000150 MASSACHUSETTS	Suffolk	Boston	Trinity Rectory	Clarendon and Newbury Sts.	19720223	Text	Photos
74000385 MASSACHUSETTS	Suffolk	Boston	Copp's Hill Burial Ground	Charter, Snowhill, and Hull Sts.	19740418	Text	Photos
74000393 MASSACHUSETTS	Suffolk	Boston	Youth's Companion Building	209 Columbus Ave.	19740502	Text	Photos
66000764 MASSACHUSETTS	Suffolk	Boston	Harding, Chester, House	16 Beacon St.	19661015	Text	Photos
74002044 MASSACHUSETTS	Suffolk	Boston	Howe, Samuel Gridley and Julia Ward, House	13 Chestnut St.	19740913	Text	Photos
74002045 MASSACHUSETTS	Suffolk	Boston	King's Chapel	Tremont and School Sts.	19740502	Text	Photos
70000682 MASSACHUSETTS	Suffolk	Boston	Massachusetts General Hospital	Fruit Street	19701230	Text	Photos
80000678 MASSACHUSETTS	Suffolk	Boston	All Saints' Church	211 Ashmont St.	19800616	Text	Photos
81000620 MASSACHUSETTS	Suffolk	Boston	Fields Corner Municipal Building	1 Arcadia St., 195 Adams St.	19811112	Text	Photos
66000770 MASSACHUSETTS	Suffolk	Boston	Massachusetts Historical Society Building	1154 Boylston St.	19661015	Text	Photos
66000771 MASSACHUSETTS	Suffolk	Boston	Massachusetts Statehouse	Beacon Hill	19661015	Text	Photos
76001979 MASSACHUSETTS	Suffolk	Boston	Nell, William C., House	3 Smith Ct.	19760511	Text	Photos
70000687 MASSACHUSETTS	Suffolk	Boston	Old City Hall	School and Providence Sts.	19701230	Text	Photos
70000690 MASSACHUSETTS	Suffolk	Boston	Old South Church in Boston	645 Boylston St.	19701230	Text	Photos
70000691 MASSACHUSETTS	Suffolk	Boston	Old West Church	131 Cambridge St.	19701230	Text	Photos
66000782 MASSACHUSETTS	Suffolk	Boston	Parkman, Francis, House	50 Chestnut St.	19661015	Text	Photos
80000444 MASSACHUSETTS	Suffolk	Boston	Shubert, Sam S., Theatre	263-265 Tremont St.	19801209	Text	Photos
80000458 MASSACHUSETTS	Suffolk	Boston	Piano Row District	Boston Common, Park Sq., Boylston	19801209	Text	Photos
80000443 MASSACHUSETTS	Suffolk	Boston	Wilbur Theatre	244-250 Tremont St.	19801209	Text	Photos
66000765 MASSACHUSETTS	Suffolk	Boston	Headquarters House	55 Beacon St.	19661015	Text	Photos
68000042 MASSACHUSETTS	Suffolk	Boston	Pierce-Hichborn House	29 North Sq.	19681124	Text	Photos
66000784 MASSACHUSETTS	Suffolk	Boston	Quincy Market	S. Market St.	19661113	Text	Photos

70000730	MASSACHUSETTS	Suffolk	Boston	St. Paul's Church	136 Tremont St.	19701230	Text	Photos
70000731	MASSACHUSETTS	Suffolk	Boston	Sears, David, House	42 Beacon St.	19701230	Text	Photos
73001953	MASSACHUSETTS	Suffolk	Boston	Sumner, Charles, House	20 Hancock St.	19731107	Text	Photos
66000130	MASSACHUSETTS	Suffolk	Boston	Beacon Hill Historic District	Bounded by Beacon St., the Charles I	19661015	Text	Photos
73001955	MASSACHUSETTS	Suffolk	Boston	Otis, (Second) Harrison Gray, House	85 Mt. Vernon St.	19730727	Text	Photos
66000768	MASSACHUSETTS	Suffolk	Boston	Long Wharf and Customhouse Block	Foot of State St.	19661113	Text	Photos
66000132	MASSACHUSETTS	Suffolk	Boston	Boston Athenaeum	10 1/2 Beacon St.	19661015	Text	Photos
66000788	MASSACHUSETTS	Suffolk	Boston	Tremont Street Subway	Beneath Tremont, Boylston, and Wa	19661015	Text	Photos
70000733	MASSACHUSETTS	Suffolk	Boston	Trinity Church	Copley Sq.	19700701	Text	Photos
82004456	MASSACHUSETTS	Suffolk	Boston	Adams-Nervine Asylum	990-1020 Centre St.	19820601	Text	Photos
79000369	MASSACHUSETTS	Suffolk	Boston	International Trust Company Building	39-47 Milk St.	19790910	Text	Photos
74000388	MASSACHUSETTS	Suffolk	Boston	Eliot Burying Ground	Eustis and Washington Sts.	19740625	Text	Photos
80000463	MASSACHUSETTS	Suffolk	Boston	Russia Wharf Buildings	518-540 Atlantic Ave., 270 Congress	19801202	Text	Photos
71000087	MASSACHUSETTS	Suffolk	Boston	African Meetinghouse	8 Smith St.	19711007	Text	Photos
85002015	MASSACHUSETTS	Suffolk	Boston	Building at 138--142 Portland Street	138--142 Portland St.	19850905	Text	Photos
84000421	MASSACHUSETTS	Suffolk	Boston	Vermont Building	6-12 Thacher St.	19841113	Text	Photos
75000301	MASSACHUSETTS	Suffolk	Boston	Symphony and Horticultural Halls	Massachusetts and Huntington Aves	19750530	Text	Photos
73000324	MASSACHUSETTS	Suffolk	Boston	South End District	South Bay area between Huntington	19730508	Text	Photos
74000390	MASSACHUSETTS	Suffolk	Boston	Park Street District	Tremont, Park, and Beacon Sts.	19740501	Text	Photos
73000319	MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets District	Fulton, Commercial, Mercantile, Lew	19730321	Text	Photos
84002875	MASSACHUSETTS	Suffolk	Boston	Fenway-Boylston Street District	Fenway, Boylston, Westland, and He	19840904	Text	Photos
78000473	MASSACHUSETTS	Suffolk	Boston	Fenway Studios	30 Ipswich St.	19780913	Text	Photos
73000318	MASSACHUSETTS	Suffolk	Boston	Cyclorama Building	543-547 Tremont St.	19730413	Text	Photos
83004097	MASSACHUSETTS	Suffolk	Boston	Codman Building	55 Kilby St.	19831019	Text	Photos
80000676	MASSACHUSETTS	Suffolk	Boston	Charles Playhouse	74-78 Warenton St.	19800616	Text	Photos
74000382	MASSACHUSETTS	Suffolk	Boston	Ames Building	1 Court St.	19740426	Text	Photos
77001541	MASSACHUSETTS	Suffolk	Boston	Appleton, Nathan, Residence	39-40 Beacon St.	19771222	Text	Photos
66000134	MASSACHUSETTS	Suffolk	Boston	Boston Naval Shipyard	E of Chelsea St., Charlestown	19661115	Text	Photos
66000050	MASSACHUSETTS	Suffolk	Boston	Dorchester Heights National Historic Site	South Boston	19661015	Text	Photos
74002222	MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Inner harbor at mouth of Charles Riv	19741026	Text	Photos
66000785	MASSACHUSETTS	Suffolk	Boston	Revere, Paul, House	19 North Sq.	19661015	Text	Photos
66000776	MASSACHUSETTS	Suffolk	Boston	Old North Church	193 Salem St.	19661015	Text	Photos
66000778	MASSACHUSETTS	Suffolk	Boston	Old South Meetinghouse	Milk and Washington Sts.	19661015	Text	Photos
66000368	MASSACHUSETTS	Suffolk	Boston	Faneuil Hall	Dock Sq.	19661015	Text	Photos
66000779	MASSACHUSETTS	Suffolk	Boston	Old State House	Washington and State Sts.	19661015	Text	Photos
85003074	MASSACHUSETTS	Suffolk	Boston	Dudley Station Historic District	Washington, Warren, and Dudley Sts	19851205	Text	Photos
86000140	MASSACHUSETTS	Suffolk	Boston	Christ Church	1220 River Rd.	19860130	Text	Photos
73000317	MASSACHUSETTS	Suffolk	Boston	Boston Public Library	Copley Sq.	19730506	Text	Photos
86001909	MASSACHUSETTS	Suffolk	Boston	Filene's Department Store	426 Washington St.	19860724	Text	Photos
86001913	MASSACHUSETTS	Suffolk	Boston	Second Brazer Building	25--29 State St.	19860724	Text	Photos
86001486	MASSACHUSETTS	Suffolk	Boston	Sears' Crescent and Sears' Block	38--68 and 70--72 Cornhill	19860809	Text	Photos
86001504	MASSACHUSETTS	Suffolk	Boston	Richardson Block	113--151 Pearl and 109--119 High Sts	19860809	Text	Photos
85003375	MASSACHUSETTS	Suffolk	Boston	Engine House No. 34	444 Western Ave.	19851024	Text	Photos
80000671	MASSACHUSETTS	Suffolk	Boston	Stearns, R. H., House	140 Tremont St.	19800616	Text	Photos
86001911	MASSACHUSETTS	Suffolk	Boston	Locke--Ober Restaurant	3--4 Winter Pl.	19860724	Text	Photos
80000677	MASSACHUSETTS	Suffolk	Boston	Berger Factory	37 Williams St.	19800409	Text	Photos
85000316	MASSACHUSETTS	Suffolk	Boston	Bigelow School	350 W. 4th St.	19850221	Text	Photos
84002890	MASSACHUSETTS	Suffolk	Boston	Moreland Street Historic District	Roughly bounded by Kearsarge, Blue	19840329	Text	Photos
70000921	MASSACHUSETTS	Suffolk	Boston	Fort Independence	Castle Island	19701015	Text	Photos
86000375	MASSACHUSETTS	Suffolk	Boston	Harriswood Crescent	60--88 Harold St.	19860313	Text	Photos
66000789	MASSACHUSETTS	Suffolk	Boston	U.S.S. CONSTITUTION	Boston Naval Shipyard	19661015	Text	Photos
87000757	MASSACHUSETTS	Suffolk	Boston	Harvard Stadium	60 N. Harvard St.	19870227	Text	Photos
72000144	MASSACHUSETTS	Suffolk	Boston	Boston Common and Public Garden	Beacon, Park, Tremont, Boylston, an	19720712	Text	Photos
87000760	MASSACHUSETTS	Suffolk	Boston	Boston Common	Beacon, Park, Tremont, Boylston, an	19870227	Text	Photos
87000761	MASSACHUSETTS	Suffolk	Boston	Boston Public Garden	Beacon, Charles, Boylston, and Arling	19870227	Text	Photos
87001128	MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Monument Sq.	19870602	Text	Photos
66000138	MASSACHUSETTS	Suffolk	Boston	Bunker Hill Monument	Breed's Hill	19661015	Text	Photos
86000274	MASSACHUSETTS	Suffolk	Boston	Bulfinch Triangle Historic District	Roughly bounded by Canal, Market,	19860227	Text	Photos
80000675	MASSACHUSETTS	Suffolk	Boston	Dorchester-Milton Lower Mills Industrial District	Both sides of Neponset River	19800402	Text	Photos
86000084	MASSACHUSETTS	Suffolk	Boston	USS CASSIN YOUNG (destroyer)	Charlestown Navy Yard	19860114	Text	Photos
66000133	MASSACHUSETTS	Suffolk	Boston	Boston Light	Little Brewster Island, Boston Harbor	19661015	Text	Photos
87001481	MASSACHUSETTS	Suffolk	Boston	Long Island Head Light	Long Island	19870615	Text	Photos
87001394	MASSACHUSETTS	Suffolk	Boston	New Riding Club	52 Hemenway St.	19870820	Text	Photos
87001396	MASSACHUSETTS	Suffolk	Boston	Congress Street Fire Station	344 Congress St.	19870903	Text	Photos
87000885	MASSACHUSETTS	Suffolk	Boston	Abbotsford	300 Walnut Ave.	19870916	Text	Photos
87001889	MASSACHUSETTS	Suffolk	Boston	Sumner Hill Historic District	Roughly bounded by Seaverns Ave.,	19871022	Text	Photos
87001771	MASSACHUSETTS	Suffolk	Boston	Bunker Hill School	65 Baldwin St.	19871015	Text	Photos
87001398	MASSACHUSETTS	Suffolk	Boston	House at 17 Cranston Street	17 Cranston St.	19871120	Text	Photos
87001399	MASSACHUSETTS	Suffolk	Boston	Hoxie, Timothy, House	135 Hillside St.	19871120	Text	Photos
87001495	MASSACHUSETTS	Suffolk	Boston	Saint Augustine Chapel and Cemetery	Dorchester St. between W. Sixth and	19870918	Text	Photos

87002549	MASSACHUSETTS	Suffolk	Boston	District 13 Police Station	28 Seaverns Ave.	19880210	Text	Photos
85003323	MASSACHUSETTS	Suffolk	Boston	Boston Harbor Islands Archeological District	Address Restricted	19851221	Text	Photos
82004448	MASSACHUSETTS	Suffolk	Boston	Roughan Hall	15-18 City Sq.	19820415	Text	Photos
82004450	MASSACHUSETTS	Suffolk	Boston	McKay, Donald, House	78-80 White St.	19820602	Text	Photos
82004453	MASSACHUSETTS	Suffolk	Boston	Haffenreffer Brewery	Germania St.	19820502	Text	Photos
73000850	MASSACHUSETTS	Suffolk	Boston	Town Hill District	Bounded roughly by Rutherford Ave.	19730511	Text	Photos
74000907	MASSACHUSETTS	Suffolk	Boston	Phipps Street Burying Ground	Phipps St.	19740514	Text	Photos
74000911	MASSACHUSETTS	Suffolk	Boston	Clapp Houses	199 and 195 Boston St.	19740502	Text	Photos
74000915	MASSACHUSETTS	Suffolk	Boston	Dorchester North Burying Ground	Stoughton St. and Columbia Rd.	19740418	Text	Photos
80004396	MASSACHUSETTS	Suffolk	Boston	Boston African American National Historic Site	Museum of Afro American History, C	19801010	Text	Photos
66000141	MASSACHUSETTS	Suffolk	Boston	Brook Farm	670 Baker St.	19661015	Text	Photos
73000856	MASSACHUSETTS	Suffolk	Boston	Roxbury High Fort	Beech Glen St. at Fort Ave.	19730423	Text	Photos
73000855	MASSACHUSETTS	Suffolk	Boston	Kittredge, Alvah, House	12 Linwood St.	19730508	Text	Photos
73000854	MASSACHUSETTS	Suffolk	Boston	John Eliot Square District	John Eliot Sq.	19730423	Text	Photos
66000653	MASSACHUSETTS	Suffolk	Boston	Garrison, William Lloyd, House	125 Highland St.	19661015	Text	Photos
72000544	MASSACHUSETTS	Suffolk	Boston	Loring-Greenough House	12 South St.	19720426	Text	Photos
74000917	MASSACHUSETTS	Suffolk	Boston	Pierce House	24 Oakton Ave.	19740426	Text	Photos
70000540	MASSACHUSETTS	Suffolk	Boston	Fort Warren	Georges Island, Boston Harbor	19700829	Text	Photos
74002350	MASSACHUSETTS	Suffolk	Boston	Blake, James, House	735 Columbia Rd.	19740501	Text	Photos
83000604	MASSACHUSETTS	Suffolk	Boston	Loring, Harrison, House	789 E. Broadway St.	19830901	Text	Photos
88000908	MASSACHUSETTS	Suffolk	Boston	Goodwin, Ozias, House	7 Jackson Ave.	19880623	Text	Photos
88000957	MASSACHUSETTS	Suffolk	Boston	Greek Orthodox Cathedral of New England	520 Parker St.	19880630	Text	Photos
88000427	MASSACHUSETTS	Suffolk	Boston	Temple Place Historic District	11--55, 26--58 Temple Pl.	19880726	Text	Photos
88000959	MASSACHUSETTS	Suffolk	Boston	Eliot Hall	7A Eliot St.	19880715	Text	Photos
87001478	MASSACHUSETTS	Suffolk	Boston	Austin, Francis B., House	58 High St.	19881021	Text	Photos
89000004	MASSACHUSETTS	Suffolk	Boston	Mount Pleasant Historic District	Roughly bounded by Forest St. and N	19890209	Text	Photos
89000147	MASSACHUSETTS	Suffolk	Boston	Roxbury Highlands Historic District	Roughly bounded by Dudley St., Was	19890222	Text	Photos
73000325	MASSACHUSETTS	Suffolk	Boston	Hale, Edward Everett, House	12 Morley St.	19790321	Text	Photos
83004099	MASSACHUSETTS	Suffolk	Boston	LUNA (tugboat)	NDC Pier, Charles River	19831006	Text	Photos
89000974	MASSACHUSETTS	Suffolk	Boston	Massachusetts School of Art	364 Brookline Ave.	19890803	Text	Photos
89001747	MASSACHUSETTS	Suffolk	Boston	Mission Hill Triangle Historic District	Roughly bounded by Smith St., Wort	19891106	Text	Photos
89002169	MASSACHUSETTS	Suffolk	Boston	St. Joseph's Roman Catholic Church Complex	Bounded by Circuit, Regent, Hulbert,	19891228	Text	Photos
89002251	MASSACHUSETTS	Suffolk	Boston	Bellevue Standpipe	On Bellevue Hill at Washington St. ar	19900118	Text	Photos
88000955	MASSACHUSETTS	Suffolk	Boston	First Church of Jamaica Plain	6 Eliot St.	19880715	Text	Photos
90000631	MASSACHUSETTS	Suffolk	Boston	Copp's Hill Terrace	Between Commercial and Charter St	19900419	Text	Photos
89002271	MASSACHUSETTS	Suffolk	Boston	Chestnut Hill Reservoir Historic District	Beacon St. and Commonwealth Ave.	19900118	Text	Photos
90001095	MASSACHUSETTS	Suffolk	Boston	Calf Pasture Pumping Station Complex	435 Mount Vernon St.	19900802	Text	Photos
90001145	MASSACHUSETTS	Suffolk	Boston	Bowditch School	80--82 Greene St.	19900803	Text	Photos
90001536	MASSACHUSETTS	Suffolk	Boston	Monument Square Historic District	Roughly bounded by Jamaicaway, Pc	19901011	Text	Photos
90001537	MASSACHUSETTS	Suffolk	Boston	Upham's Corner Market	600 Columbia Rd.	19901011	Text	Photos
89002125	MASSACHUSETTS	Suffolk	Boston	Roxbury Presbyterian Church	328 Warren St.	19910315	Text	Photos
90001992	MASSACHUSETTS	Suffolk	Boston	Sears Roebuck and Company Mail Order Store	309 Park Dr. and 201 Brookline Ave.	19910115	Text	Photos
92000356	MASSACHUSETTS	Suffolk	Boston	Trinity Neighborhood House	406 Meridian St.	19920414	Text	Photos
73001948	MASSACHUSETTS	Suffolk	Boston	Back Bay Historic District	Roughly bounded by the Charles Rive	19730814	Text	Photos
90001757	MASSACHUSETTS	Suffolk	Boston	Textile District	Roughly, Essex St. from Phillips Sq. to	19901129	Text	Photos
93001489	MASSACHUSETTS	Suffolk	Boston	Massachusetts Mental Health Center	74 Fenwood Rd.	19940121	Text	Photos
93001573	MASSACHUSETTS	Suffolk	Boston	House at 1 Bay Street	1 Bay St.	19940209	Text	Photos
93001587	MASSACHUSETTS	Suffolk	Boston	Eliot Congregational Church	56 Dale St., corner 118--120 Walnut:	19940209	Text	Photos
85000317	MASSACHUSETTS	Suffolk	Boston	Dimock Community Health Center Complex	41 and 55 Dimock St.	19850221	Text	Photos
80000672	MASSACHUSETTS	Suffolk	Boston	New England Conservatory of Music	290 Huntington Ave.	19800514	Text	Photos
94001494	MASSACHUSETTS	Suffolk	Boston	Lower Roxbury Historic District	Roughly, area surrounding Coventry,	19941209	Text	Photos
94001492	MASSACHUSETTS	Suffolk	Boston	Faneuil, Peter, School	60 Joy St.	19941216	Text	Photos
95001450	MASSACHUSETTS	Suffolk	Boston	Riviera, The	270 Huntington Ave.	19951207	Text	Photos
73000321	MASSACHUSETTS	Suffolk	Boston	Custom House District	Between J.F.K. Expwy. and Kirby St. a	19730511	Text	Photos
96001063	MASSACHUSETTS	Suffolk	Boston	Douglass, Frederick, Square Historic District	Roughly bounded by Hammond St., (19961003	Text	Photos
97000969	MASSACHUSETTS	Suffolk	Boston	Charlestown Heights	Roughly bounded by St. Martin, Bun	19980108	Text	Photos
97000920	MASSACHUSETTS	Suffolk	Boston	Brighton Evangelical Congregational Church	404-410 Washington St.	19970821	Text	Photos
97000970	MASSACHUSETTS	Suffolk	Boston	Students House	96 The Fenway	19970911	Text	Photos
97000971	MASSACHUSETTS	Suffolk	Boston	North Terminal Garage	600 Commercial St.	19970911	Text	Photos
97001239	MASSACHUSETTS	Suffolk	Boston	Dorchester Temple Baptist Church	670 Washington St.	19980116	Text	Photos
97001377	MASSACHUSETTS	Suffolk	Boston	Allston Congregational Church	31-41 Quint Ave.	19971107	Text	Photos
97001472	MASSACHUSETTS	Suffolk	Boston	St. Luke's and St. Margaret's Church	5-7 St. Luke's Rd.	19971112	Text	Photos
98000149	MASSACHUSETTS	Suffolk	Boston	Eagle Hill Historic District	Roughly bounded by Border, Lexingt	19980226	Text	Photos
98001082	MASSACHUSETTS	Suffolk	Boston	Boston Young Men's Christian Association	312-320 Huntington Ave.	19980820	Text	Photos
97001278	MASSACHUSETTS	Suffolk	Boston	ROSEWAY (schooner)	Boston Harbor	19970925	Text	Photos
98001292	MASSACHUSETTS	Suffolk	Boston	St. Mary's Episcopal Church	14-16 Cushing Ave.	19981030	Text	Photos
98001330	MASSACHUSETTS	Suffolk	Boston	Roslindale Baptist Church	52 Cummins Hwy.	19981105	Text	Photos
98001361	MASSACHUSETTS	Suffolk	Boston	Cathedral of St. George Historic District	517-523-525 E. Broadway	19981125	Text	Photos
98001381	MASSACHUSETTS	Suffolk	Boston	Baker Congregational Church	760 Saratoga St.	19981119	Text	Photos
99000593	MASSACHUSETTS	Suffolk	Boston	Woodbourne Historic District	Roughly bounded by Walk Hill, Good	19990604	Text	Photos

99000633	MASSACHUSETTS	Suffolk	Boston	Symphony Hall	301 Massachusetts Avenue	19990120	Text	Photos
99001302	MASSACHUSETTS	Suffolk	Boston	Mariner's House	11 North Square	19991112	Text	Photos
99001304	MASSACHUSETTS	Suffolk	Boston	Congregation Adath Jeshurun	397 Blue Hill Ave.	19991112	Text	Photos
99001308	MASSACHUSETTS	Suffolk	Boston	First Congregational Church of Hyde Park	6 Webster St.	19991112	Text	Photos
99001614	MASSACHUSETTS	Suffolk	Boston	Church Green Buildings Historic District	101-113 Summer St.	19991230	Text	Photos
00000160	MASSACHUSETTS	Suffolk	Boston	Fulton-Commercial Streets Historic District (Boundary Incre	81-95 Richmond St.	20000303	Text	Photos
00000415	MASSACHUSETTS	Suffolk	Boston	Harvard Avenue Historic District	Roughly bounded by Linden St., Com	20000428	Text	Photos
00000871	MASSACHUSETTS	Suffolk	Boston	Dearborn School	25 Ambrose St.	20000802	Text	Photos
01000088	MASSACHUSETTS	Suffolk	Boston	Brighton Center Historic District	Academy Hill R., Chestnut Hill Ave., E	20010220	Text	Photos
01000872	MASSACHUSETTS	Suffolk	Boston	Peabody, The	195-197 Ashmont St.	20010808	Text	Photos
01001048	MASSACHUSETTS	Suffolk	Boston	Gibson House	137 Beacon St.	20010807	Text	Photos
01001557	MASSACHUSETTS	Suffolk	Boston	Boston Consumptives Hospital	249 River St.	20020207	Text	Photos
02000081	MASSACHUSETTS	Suffolk	Boston	Frances and Isabella Apartments	430-432 and 434-436 Dudley St.	20020222	Text	Photos
02000154	MASSACHUSETTS	Suffolk	Boston	Greenwood Memorial United Methodist Church	378A-380 Washington St.	20020308	Text	Photos
02000548	MASSACHUSETTS	Suffolk	Boston	Bennington Street Burying Ground	Bennington St., bet. Swift and harmc	20020522	Text	Photos
02001039	MASSACHUSETTS	Suffolk	Boston	Paine Furniture Building	75-81 Arlington St.	20020912	Text	Photos
02001190	MASSACHUSETTS	Suffolk	Boston	Harrison Square Historic District	Bounded by MBTA Braintree line em	20021022	Text	Photos
03000385	MASSACHUSETTS	Suffolk	Boston	Savin Hill Historic District	Roughly bounded by Savin Hill Ave., I	20030509	Text	Photos
03000645	MASSACHUSETTS	Suffolk	Boston	Union Oyster House	41-43 Union Street	20030527	Text	Photos
03000781	MASSACHUSETTS	Suffolk	Boston	Publicity Building	40-44 Bromfield St.	20030820	Text	Photos
04000023	MASSACHUSETTS	Suffolk	Boston	Benedict Fenwick School	150 Magnolia St.	20040211	Text	Photos
04000085	MASSACHUSETTS	Suffolk	Boston	Haskell, Edward H., Home for Nurses	220 Fishter Ave., 63 Parker Hill Ave.	20040226	Text	Photos
04000119	MASSACHUSETTS	Suffolk	Boston	YWCA Boston	140 Clarendon St.	20040303	Text	Photos
04000189	MASSACHUSETTS	Suffolk	Boston	Nix's Mate Daybeacon	Nubble Channel, The Narrows, Bostc	20040318	Text	Photos
04000426	MASSACHUSETTS	Suffolk	Boston	Nazing Court Apartments	224-236 Seaver St. and 1-8 Nazing Cc	20040512	Text	Photos
04000534	MASSACHUSETTS	Suffolk	Boston	Hibernian Hall	182-186 Dudley St.	20040602	Text	Photos
04000959	MASSACHUSETTS	Suffolk	Boston	Fort Point Channel Historic District	Necco Court, Thomson Place, A, Binf	20040910	Text	Photos
04001219	MASSACHUSETTS	Suffolk	Boston	Forest Hills Cemetery	95 Forest Hills Ave.	20041117	Text	Photos
04001430	MASSACHUSETTS	Suffolk	Boston	Truman Parkway--Metropolitan Park System of Greater Bo	Truman Parkway	20050105	Text	Photos
04001432	MASSACHUSETTS	Suffolk	Boston	VFW Parkway, Metropolitan Park System of Greater Bosto	VFW Parkway, bet. Spring And Centr	20050105	Text	Photos
04001572	MASSACHUSETTS	Suffolk	Boston	Morton Street, Metropolitan Park System of Greater Bosto	Morton Street, Metropolitan Park System of Greater Bosto	20050124	Text	Photos
04001573	MASSACHUSETTS	Suffolk	Boston	Neponset Valley Parkway, Metorpolitan Park System of Gre	Neponset Valley Parkway	20050124	Text	Photos
05000459	MASSACHUSETTS	Suffolk	Boston	Ayer, Frederick, Mansion	395 Commonwealth Avenue	20050405	Text	Photos
05000559	MASSACHUSETTS	Suffolk	Boston	Collins Building	213-217 Washington St.	20050608	Text	Photos
05000879	MASSACHUSETTS	Suffolk	Boston	Home for Aged Couples	409, 419 Walnut Ave. and 2055 Colu	20050811	Text	Photos
05000936	MASSACHUSETTS	Suffolk	Boston	South Boston Boat Clubs Historic District	1793-1849 William J. Day Blvd.	20050901	Text	Photos
05001509	MASSACHUSETTS	Suffolk	Boston	Stony Brook Reservation Parkways, Metropolitan Park Syst	Dedham, Enneking, Turtle Pond Park	20060103	Text	Photos
06000127	MASSACHUSETTS	Suffolk	Boston	East Boston High School, Old	127 Marion St.	20060315	Text	Photos
01000304	MASSACHUSETTS	Suffolk	Boston	Dorchester--Milton Lower Mills Industrial District (Boundar	Roughly: Adams, River, Medway Sts.	20010406	Text	Photos
07000510	MASSACHUSETTS	Suffolk	Boston	Goldsmith Block	41 Ruggles St., 746-750 Shawmut Ave	20070605	Text	Photos
07000861	MASSACHUSETTS	Suffolk	Boston	Boston Transit Commission Building	15 Beacon St.	20070831	Text	Photos
08000089	MASSACHUSETTS	Suffolk	Boston	Dorchester Park	Bounded by Dorchester Ave., Richm	20080220	Text	Photos
08000693	MASSACHUSETTS	Suffolk	Boston	Old Harbor Reservation Parkways, Metropolitan Park Syst	William J. Day Blvd., Columbia Rd. be	20080724	Text	Photos
08000793	MASSACHUSETTS	Suffolk	Boston	Joshua Bates School	731 Harrison Ave.	20080822	Text	Photos
08000795	MASSACHUSETTS	Suffolk	Boston	Ohabei Shalom Cemetery	147 Wordsworth St.	20080819	Text	Photos
08001284	MASSACHUSETTS	Suffolk	Boston	Compton Building	159, 161-175 Devonshire St., 18-20 A	20081231	Text	Photos
09000612	MASSACHUSETTS	Suffolk	Boston	Evergreen Cemetery	2060 Commonwealth Ave.	20090814	Text	Photos
09000717	MASSACHUSETTS	Suffolk	Boston	Fairview Cemetery	45 Fairview Ave.	20090916	Text	Photos
09000767	MASSACHUSETTS	Suffolk	Boston	Mount Hope Cemetery	355 Walk Hill St.	20090924	Text	Photos
10000039	MASSACHUSETTS	Suffolk	Boston	EDNA G. shipwreck (Eastern Rig dragger)	Address Restricted	20101122	Text	Photos
10000300	MASSACHUSETTS	Suffolk	Boston	Highland Spring Brewery Bottling and Storage Buildings	154-166 Terrace St	20100528	Text	Photos
10000391	MASSACHUSETTS	Suffolk	Boston	Second Church in Boston	874, 876, 880 Beacon St	20100624	Text	Photos
10000506	MASSACHUSETTS	Suffolk	Boston	Charles River Reservation (Speedway)--Upper Basin Headq	1420-1440 Soldiers Field Rd	20100719	Text	Photos
10001066	MASSACHUSETTS	Suffolk	Boston	Egleston Substation	3025 Washington St	20101227	Text	Photos
11000160	MASSACHUSETTS	Suffolk	Boston	United State Post Office, Courthouse, and Federal Building	5 Post Office Square	20110408	Text	Photos
12000069	MASSACHUSETTS	Suffolk	Boston	Fenway Park	24, & 2-4 Yawkey Wy., 64-76 Brooklin	20120307	Text	Photos
12000099	MASSACHUSETTS	Suffolk	Boston	Terminal Storage Warehouse District	267-281 Medford St., 40 & 50 Termir	20120312	Text	Photos
12000783	MASSACHUSETTS	Suffolk	Boston	Saint Mark's Episcopal Church	73 Columbia Rd.	20140703	Text	Photos
12000978	MASSACHUSETTS	Suffolk	Boston	Sherman Apartments Historic District	544-546 Washington, 4-6, 12-14, 18 I	20121128	Text	Photos
12001012	MASSACHUSETTS	Suffolk	Boston	Central Congregational Church	67 Newbury St.	20121016	Text	Photos
12001162	MASSACHUSETTS	Suffolk	Boston	Commonwealth Pier Five	165 Northern Ave.	19791010	Text	Photos
13000621	MASSACHUSETTS	Suffolk	Boston	Roslindale Substation	4228 Washington St.	20130827	Text	Photos
13000928	MASSACHUSETTS	Suffolk	Boston	Davidson, Sarah, Apartment Block	3 Gaylord St.	20131218	Text	Photos
13000929	MASSACHUSETTS	Suffolk	Boston	Pilgrim Congregational Church	540-544 Columbia Rd.	20131218	Text	Photos
13000930	MASSACHUSETTS	Suffolk	Boston	Walton and Roslin Halls	702-708 & 710-726 Washington St., E	20131218	Text	Photos
14000272	MASSACHUSETTS	Suffolk	Boston	Blake and Amory Building	59 Temple Pl.	20140602	Text	Photos
14000365	MASSACHUSETTS	Suffolk	Boston	Dorchester South Burying Ground	2095 Dorchester Ave.	20140627	Text	Photos
14000561	MASSACHUSETTS	Suffolk	Boston	Buildings at 825--829 Blue Hill Avenue	825-829 Blue Hill Ave.	20140910	Text	Photos
14000698	MASSACHUSETTS	Suffolk	Boston	Almont Apartments	1439-1443 & 1447-1451 Blue Hill Ave	20140922	Text	Photos
14000974	MASSACHUSETTS	Suffolk	Boston	Gridley Street Historic District	Bounded by Congress, High, Pearl &	20141203	Text	Photos

14000975 MASSACHUSETTS	Suffolk	Boston	Lyman, Theodore, School	30 Gove St.	20141202 Text	Photos
14001095 MASSACHUSETTS	Suffolk	Boston	South End District (Boundary Increase)	200-224 Northampton St.	20141229 Text	Photos
15000048 MASSACHUSETTS	Suffolk	Boston	Boston Police Station Number One--Traffic Tunnel Adminis	128, 150 North & 130 -140 Richmond	20150303 Text	Photos
15000195 MASSACHUSETTS	Suffolk	Boston	Boston National Historical Park	Charlestown Navy Yard	20150505 Text	Photos
86001378 MASSACHUSETTS	Suffolk	South Boston	US Post Office Garage	135 A St.	19860626 Text	Photos

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

[Home](#) | [Feedback](#) | [Contact Us](#)

[MHC Home](#)

Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

[Click here to begin your search of the MACRIS database.](#)

[Home](#) | [Search](#) | [Index](#) | [Feedback](#) | [Contact](#)

MACRIS
MAPS 2.0 beta

[About](#) || [Help](#) || [Disclaimer](#)

<input type="text" value="Address or MHC#"/>	<input type="button" value="Search"/>
<input type="button" value="Bing"/> <input type="button" value="MassDOT"/> <input type="button" value="Street View"/>	

Available Layers

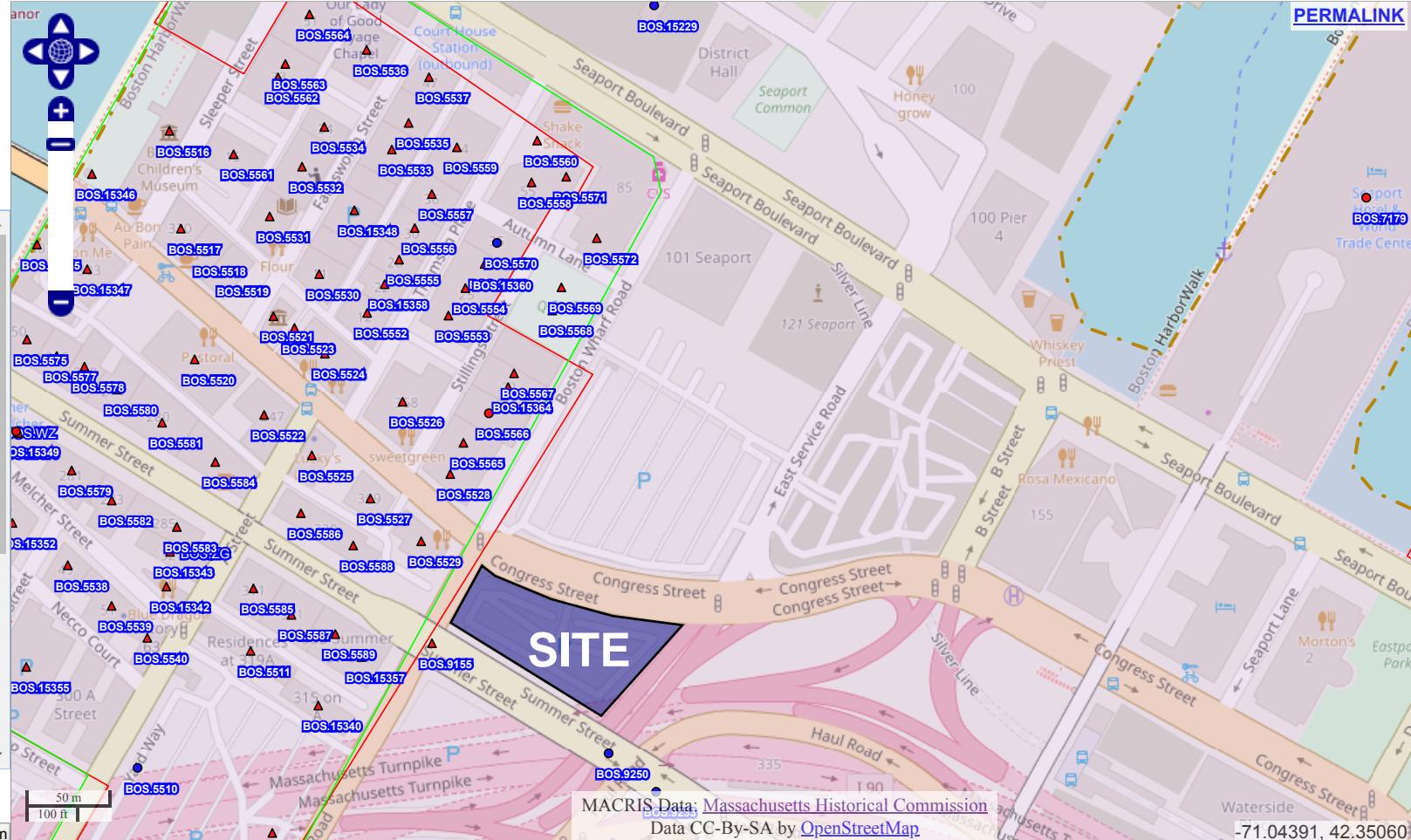
Base Layer

Inventory Layers

MassGIS Layers

Legend

MHC Inventory Points


- Nat'l Register of Historic Places
- ★ Preservation Restriction
- ▲ Local Historic District
- ▲ NRHP and LHD
- Inventoried Property

Archaeology Login

Username:

Password:

[Login](#)

MACRIS Maps Last Updated 08/28/2018

Massachusetts Cultural Resource Information System

MACRIS

[MHC Home](#) | [MACRIS Home](#)

For more information about this page and how to use it, [click here](#).

Inventory No: BOS.WZ
Historic Name: Fort Point Channel Historic District
Common Name:
Address:

City/Town: Boston
Village/Neighborhood: Fort Point Channel; South Boston
Local No:
Year Constructed:
Architect(s): Prescott, Howard S. B.; Safford, Morton D.
Architectural Style(s):

Use(s): Commercial District; Industrial Complex or District; Other Processing; Other Road Related; Other Transportation; Other Water Related; Residential District

Significance: Architecture; Commerce; Community Planning; Engineering; Industry; Maritime History; Transportation

Area(s):
Designation(s): Nat'l Register District (09/10/2004)
Building Material(s):

[New Search](#) | [Previous](#)

[MHC Home](#) | [MACRIS Home](#)

APPENDIX C
ESA Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE
New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
Phone: (603) 223-2541 Fax: (603) 223-0104
<http://www.fws.gov/newengland>

In Reply Refer To:

July 30, 2019

Consultation Code: 05E1NE00-2019-SLI-2436

Event Code: 05E1NE00-2019-E-06304

Project Name: Parcel N/P

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

<http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF>

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (<http://www.fws.gov/windenergy/>) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm>; <http://www.towerkill.com>; and <http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html>.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

- Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5094
(603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-2436

Event Code: 05E1NE00-2019-E-06304

Project Name: Parcel N/P

Project Type: DEVELOPMENT

Project Description: Temporary Construction Dewatering Permit NPDES RGP

Project Location:

Approximate location of the project can be viewed in Google Maps: <https://www.google.com/maps/place/42.348987968488736N71.04659860760962W>

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. [NOAA Fisheries](#), also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office
70 Commercial Street, Suite 300
Concord, NH 03301-5087
<http://www.fws.gov/newengland>

January 31, 2019

To Whom It May Concern:

The U.S. Fish and Wildlife Service's (Service) New England Field Office has determined that individual project review for certain types of activities associated with communication towers **is not required**. These comments are submitted in accordance with provisions of the Endangered Species Act (ESA) of 1973 (87 Stat. 884, as amended; 16 U.S.C. 1531 *et seq.*).

Due to the rapid expansion of the telecommunication industry, we are receiving a growing number of requests for review of **existing** and **new** telecommunication facilities in relation to the presence of federally-listed or proposed, threatened or endangered species, critical habitat, wilderness areas and/or wildlife preserves. We have evaluated our review process for proposed communications towers and believe that individual correspondence with this office is not required for the following types of actions relative to **existing** facilities:

1. the re-licensing of existing telecommunication facilities;
2. audits of existing facilities associated with acquisition;
3. routine maintenance of existing tower sites, such as painting, antenna or panel replacement, upgrading of existing equipment, etc.;
4. co-location of new antenna facilities on/in existing structures;
5. repair or replacement of existing towers and/or equipment, provided such activities do not significantly increase the existing tower mass and height, or require the addition of guy wires.

In order to obviate the need to contact this office in the future for individual environmental review for **existing** communication towers or antenna facilities, please note that we are not aware of any federally-listed, threatened or endangered species that are being adversely affected by any existing communication tower or antenna facility in the following states: Vermont, New Hampshire, Rhode Island, Connecticut and Massachusetts. Furthermore, we are not aware of any **existing** telecommunication towers in federally-designated critical habitats, wilderness areas or wildlife preserves. Therefore, no further consultation with this office relative to the impact of the above referenced activities on federally-listed species is required.

Future Coordination with this Office Relative to **New** Telecommunication Facilities

We have determined that proposed projects are not likely to adversely affect any federally listed or proposed species when the following steps are taken to evaluate new telecommunication facilities:

1. If the facility will be installed within or on an existing structure, such as in a church steeple or on the roof of an existing building, no further coordination with this office is necessary. Similarly, new antennas or towers in urban and other developed areas, in which no natural vegetation will be affected, do not require further review.
2. If the above criteria cannot be met, your review of our lists of threatened and endangered species locations within Vermont, New Hampshire, Rhode Island, Connecticut and Massachusetts may confirm that no federally-listed endangered or threatened species are known to occur in the town or county where the project is proposed.
3. If a listed species is present in the town or county where the project is proposed, further review of our lists of threatened and endangered species may allow you to conclude that suitable habitat for the species will not be affected. Based on past experiences, we anticipate that there will be few, if any, projects that are likely to impact piping plovers, roseate terns, bog turtles, Jesup's milk-vetch or other such species that are found on coastal beaches, riverine habitats or in wetlands because communication towers typically are not located in these habitats.

For projects that meet the above criteria, there is no need to contact this office for further project review. A copy of this letter should be retained in your file as the Service's determination that no listed species are present, or that listed species in the general area will not be affected. Due to the high workload associated with responding to many individual requests for threatened and endangered species information, we will no longer be providing response letters for activities that meet the above criteria. This correspondence and the species lists remain valid until January 1, 2020. Updated consultation letters and species lists are available on our website:

<http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm> (accessed January 2019)

Thank you for your cooperation, and please contact David Simmons of this office at 603-227-6425 if you need further assistance.

Sincerely yours,

Thomas R. Chapman
Supervisor
New England Field Office

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN
MASSACHUSETTS**

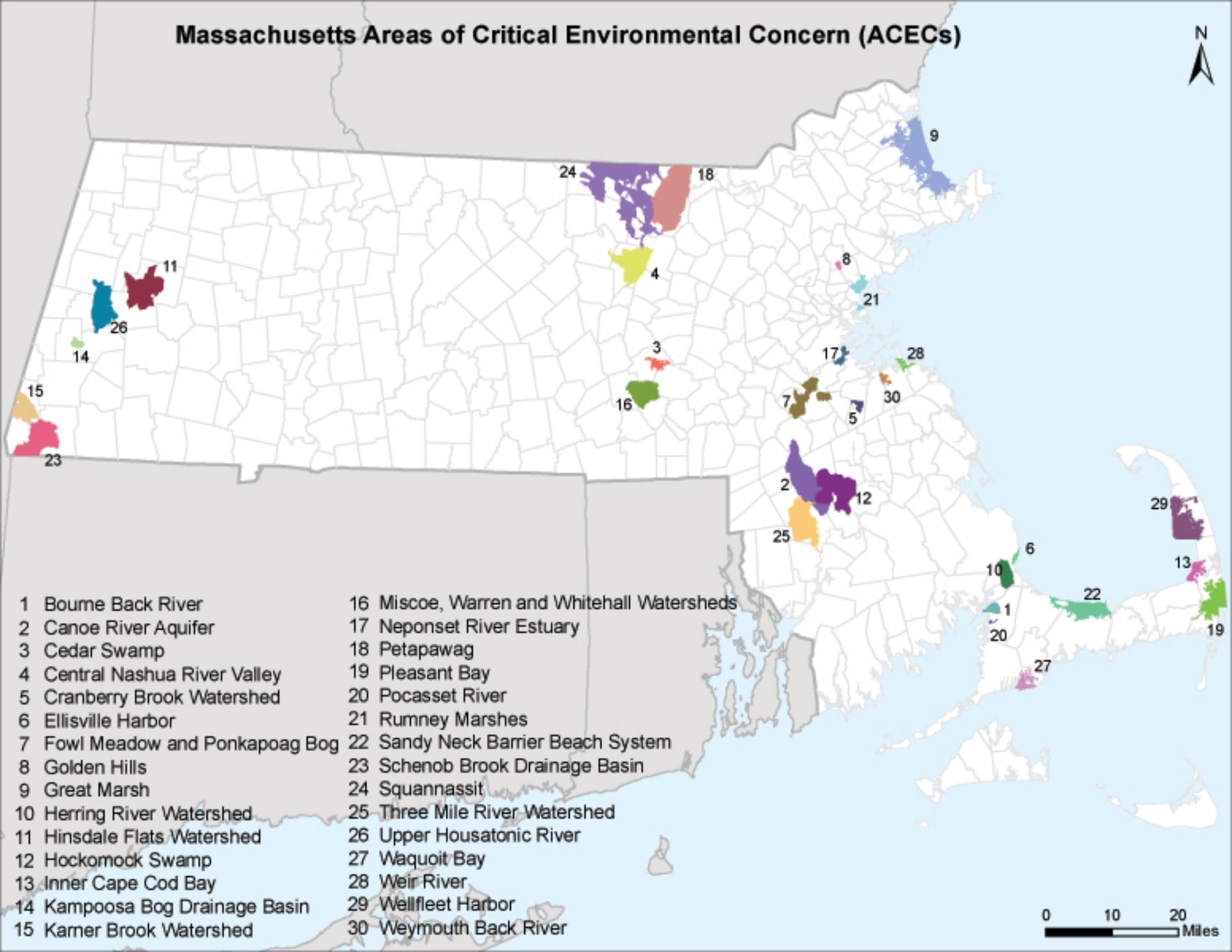
COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Barnstable	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Berkshire	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Bristol	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Dukes	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES
IN MASSACHUSETTS**

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Franklin	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampshire	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Hampden	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Middlesex	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Nantucket	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

**FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES
IN MASSACHUSETTS**

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red-bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Suffolk	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long-eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide


¹Migratory only, scattered along the coast in small numbers

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

Massachusetts Areas of Critical Environmental Concern (ACECs)

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN

November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

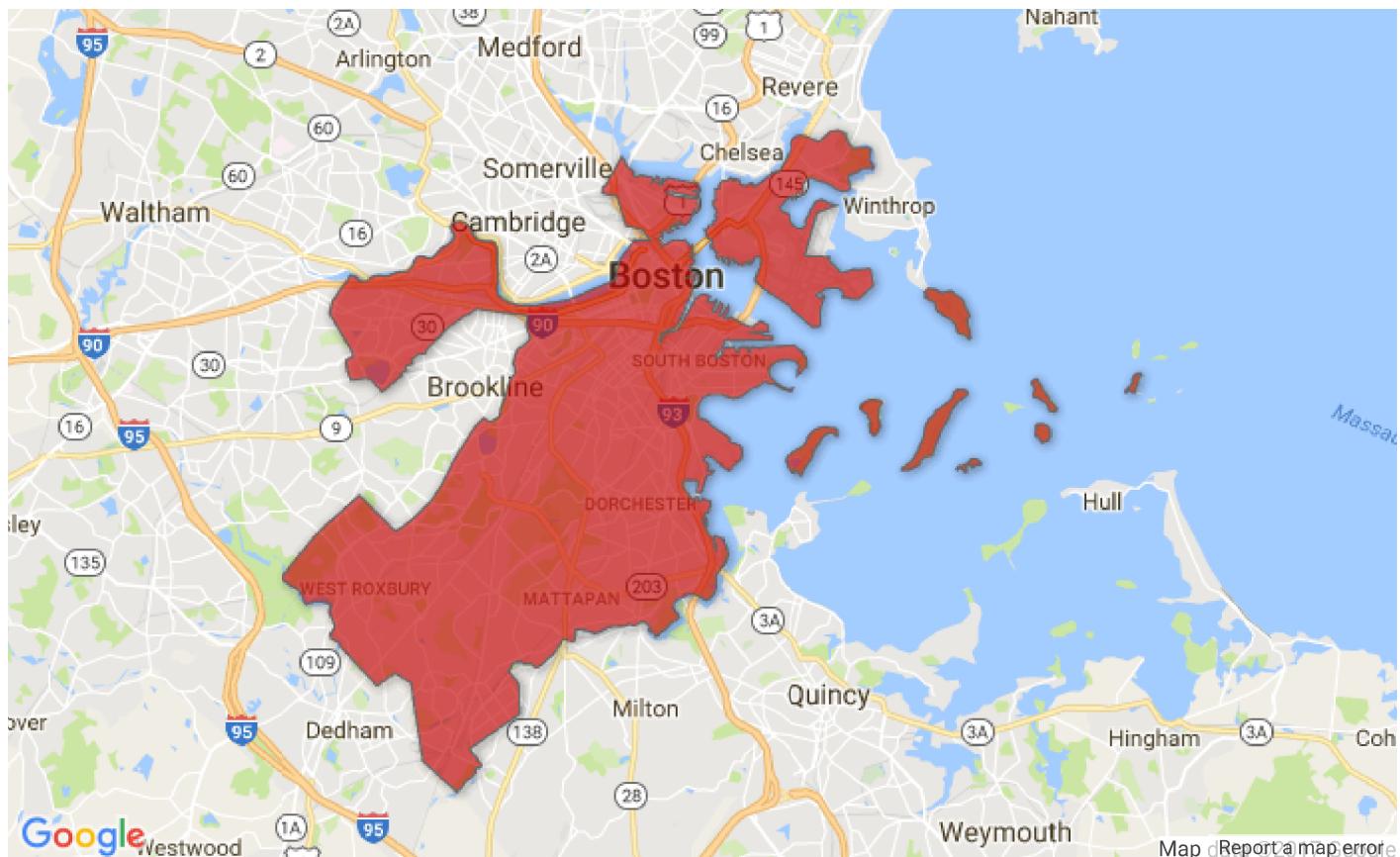
(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, <http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm>.

Towns with ACECs within their Boundaries


November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag	Schenob Brook	
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	Pepperell	Pleasant Bay
	Bourne Back River		Petapawag
	Herring River Watershed		Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	Quincy	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Randolph	Neponset River Estuary
Chatham	Pleasant Bay	Raynham	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Revere	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Rowley	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Sandwich	Great Marsh
Dighton	Three Mile River Watershed	Saugus	Sandy Neck Barrier Beach System
Dunstable	Petapawag		Rumney Marshes
Eastham	Inner Cape Cod Bay	Sharon	Golden Hills
	Wellfleet Harbor		Canoe River Aquifer
Easton	Canoe River Aquifer	Sheffield	Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Shirley	Schenob Brook
Egremont	Karner Brook Watershed	Stockbridge	Squannassit
Essex	Great Marsh	Taunton	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay		Hockomock Swamp
Foxborough	Canoe River Aquifer	Truro	Canoe River Aquifer
Gloucester	Great Marsh	Townsend	Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall Watersheds	Tyngsborough	Wellfleet Harbor
		Upton	Squannassit
Groton	Petapawag		Petapawag
	Squannassit		Miscoe-Warren-Whitehall Watersheds
Harvard	Central Nashua River Valley	Wakefield	Golden Hills
	Squannassit	Washington	Hinsdale Flats Watershed
Harwich	Pleasant Bay		Upper Housatonic River
Hingham	Weir River	Wellfleet	Wellfleet Harbor
	Weymouth Back River	W Bridgewater	Hockomock Swamp
Hinsdale	Hinsdale Flats Watershed	Westborough	Cedar Swamp
Holbrook	Cranberry Brook Watershed	Westwood	Fowl Meadow and Ponkapoag Bog
Hopkinton	Miscoe-Warren-Whitehall Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see its distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Town: or Species (Common Name): or Species (Scientific Name):

Showing 1 to 46 of 46 entries

Search:

[First](#) [Previous](#) [1](#) [Next](#) [Last](#)

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Butterfly/Moth	<i>Abagrotis nefascia</i>	Coastal Heathland Cutworm	SC	2001
BOSTON	Vascular Plant	<i>Ageratina aromatica</i>	Lesser Snakeroot	E	1896
BOSTON	Amphibian	<i>Ambystoma laterale</i>	Blue-spotted Salamander	SC	2015
BOSTON	Bird	<i>Ammodramus savannarum</i>	Grasshopper Sparrow	T	1993
BOSTON	Butterfly/Moth	<i>Apodrepanulatrix liberaria</i>	New Jersey Tea Inchworm	E	Historic
BOSTON	Vascular Plant	<i>Aristida purpurascens</i>	Purple Needlegrass	T	Historic
BOSTON	Vascular Plant	<i>Aristida tuberculosa</i>	Seabeach Needlegrass	T	1877

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
BOSTON	Vascular Plant	<i>Asclepias verticillata</i>	Linear-leaved Milkweed	T	1878
BOSTON	Bird	<i>Bartramia longicauda</i>	Upland Sandpiper	E	1993
BOSTON	Vascular Plant	<i>Boechera missouriensis</i>	Green Rock-cress	T	1930
BOSTON	Vascular Plant	<i>Carex striata</i>	Walter's Sedge	E	Historic
BOSTON	Bird	<i>Charadrius melanotos</i>	Piping Plover	T	2016
BOSTON	Beetle	<i>Cicindela duodecimguttata</i>	Twelve-spotted Tiger Beetle	SC	1910
BOSTON	Beetle	<i>Cicindela purpurea</i>	Cow Path Tiger Beetle	SC	1928
BOSTON	Beetle	<i>Cicindela rufiventris hentzii</i>	Eastern Red-bellied Tiger Beetle	T	1927
BOSTON	Vascular Plant	<i>Desmodium cuspidatum</i>	Large-bracted Tick-trefoil	T	1896
BOSTON	Vascular Plant	<i>Eriophorum gracile</i>	Slender Cottongrass	T	1885
BOSTON	Bird	<i>Falco peregrinus</i>	Peregrine Falcon	T	2014
BOSTON	Fish	<i>Gasterosteus aculeatus</i>	Threespine Stickleback	T	2014
BOSTON	Bird	<i>Gavia immer</i>	Common Loon	SC	1824
BOSTON	Vascular Plant	<i>Houstonia longifolia</i>	Long-leaved Bluet	E	1918
BOSTON	Vascular Plant	<i>Liatris scariosa var. novae-angliae</i>	New England Blazing Star	SC	1933
BOSTON	Mussel	<i>Ligumia nasuta</i>	Eastern Pondmussel	SC	1841
BOSTON	Vascular Plant	<i>Linum medium var. texanum</i>	Rigid Flax	T	1909
BOSTON	Vascular Plant	<i>Lycopus rubellus</i>	Gypsywort	E	1896
BOSTON	Vascular Plant	<i>Malaxis unifolia</i>	Green Adder's Mouth	T	1883
BOSTON	Butterfly/Moth	<i>Metarranthis apiciaria</i>	Barrens Metarranthis	E	1934
BOSTON	Vascular Plant	<i>Myriophyllum alterniflorum</i>	Alternate-flowered Water-milfoil	E	Historic
BOSTON	Vascular Plant	<i>Ophioglossum pusillum</i>	Adder's-tongue Fern	T	1884
BOSTON	Vascular Plant	<i>Platanthera flava var. herbacea</i>	Pale Green Orchis	T	1908
BOSTON	Bird	<i>Pooecetes gramineus</i>	Vesper Sparrow	T	1985
BOSTON	Butterfly/Moth	<i>Pyrrhia aurantiago</i>	Orange Sallow Moth	SC	1988
BOSTON	Vascular Plant	<i>Ranunculus micranthus</i>	Tiny-flowered Buttercup	E	1891
BOSTON	Vascular Plant	<i>Rumex pallidus</i>	Seabeach Dock	T	1984
BOSTON	Vascular Plant	<i>Sanicula odorata</i>	Long-styled Sanicle	T	Historic
BOSTON	Amphibian	<i>Scaphiopus holbrookii</i>	Eastern Spadefoot	T	1932
BOSTON	Vascular Plant	<i>Scirpus longii</i>	Long's Bulrush	T	1907
BOSTON	Vascular Plant	<i>Setaria parviflora</i>	Bristly Foxtail	SC	2001
BOSTON	Dragonfly/Damselfly	<i>Somatochlora linearis</i>	Mocha Emerald	SC	2009
BOSTON	Bird	<i>Sterna hirundo</i>	Common Tern	SC	2013
BOSTON	Bird	<i>Sternula antillarum</i>	Least Tern	SC	2014
BOSTON	Vascular Plant	<i>Suaeda calceoliformis</i>	American Sea-blite	SC	1909
BOSTON	Reptile	<i>Terrapene carolina</i>	Eastern Box Turtle	SC	1939
BOSTON	Bird	<i>Tyto alba</i>	Barn Owl	SC	1989
BOSTON	Bird	<i>Vermivora chrysoptera</i>	Golden-winged Warbler	E	Historic
BOSTON	Vascular Plant	<i>Viola brittoniana</i>	Britton's Violet	T	1909

Show 100 ▾ entries

Show Additional Info

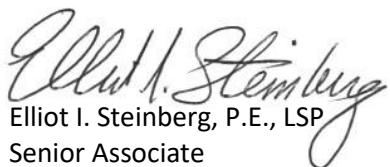
APPENDIX D
BWSC PERMIT

20 November 2019
File No. 130319-005

Boston Water and Sewer Commission
Engineering Customer Services
900 Harrison Avenue
Boston, MA 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering
Seaport Square Parcel N/P
391 Congress Street
Boston, Massachusetts


Dear Mr. Tuttle:

On behalf of our client, Seaport N/P Title Holder LLC, this letter submits the Dewatering Discharge Permit Application in support of the proposed Seaport Square Parcel P project, located at 391 Congress Street, in Boston, Massachusetts.

Dewatering is necessary to enable construction excavations in-the-dry and is anticipated to begin in November 2019 and continue for up to 18 months. Prior to discharge, collected water will be routed through a sedimentation tank and bag filter at minimum to remove suspended solids and undissolved chemical constituents. The proposed dewatering discharge route and BWSC outfall locations are shown on Figure 1.

A submittal was provided to USEPA for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.

Sincerely yours,
HALEY & ALDRICH, INC.

Elliot I. Steinberg, P.E., LSP
Senior Associate

Attachments:

- Dewatering Discharge Permit Application
- Figure 1 – Proposed Discharge Route
- Copy of NPDES RGP Permit Application

Boston Water and
Sewer Commission
980 Harrison Avenue
Boston, MA 02119-2540

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name: Seaport N/P Title Holder LLC Site Address: 400 Summer Street, Boston, MA 02210
Address: Owner Mailing Address: 33 Boylston Street, Suite 3000, Chestnut Hill, MA 02467

Phone Number: 617-646-3130 Fax number: _____

Contact person name: Daniel Preysman Title: Vice President of Finance

Cell number: 617-646-3130 Email address: Daniel.preysman@wsdevelopment.com

Permit Request (check one): New Application Permit Extension Other (Specify): _____

Owner's Information (if different from above):

Owner of property being dewatered: _____

Owner's mailing address: _____ Phone number: _____

Location of Discharge & Proposed Treatment System(s):

Street number and name: 400 Summer Street - Parcel N/P Neighborhood Seaport Boston

Discharge is to a: Sanitary Sewer Combined Sewer Storm Drain Other (specify): _____
Sedimentation Tank, Bag Filter, and any other components as necessary

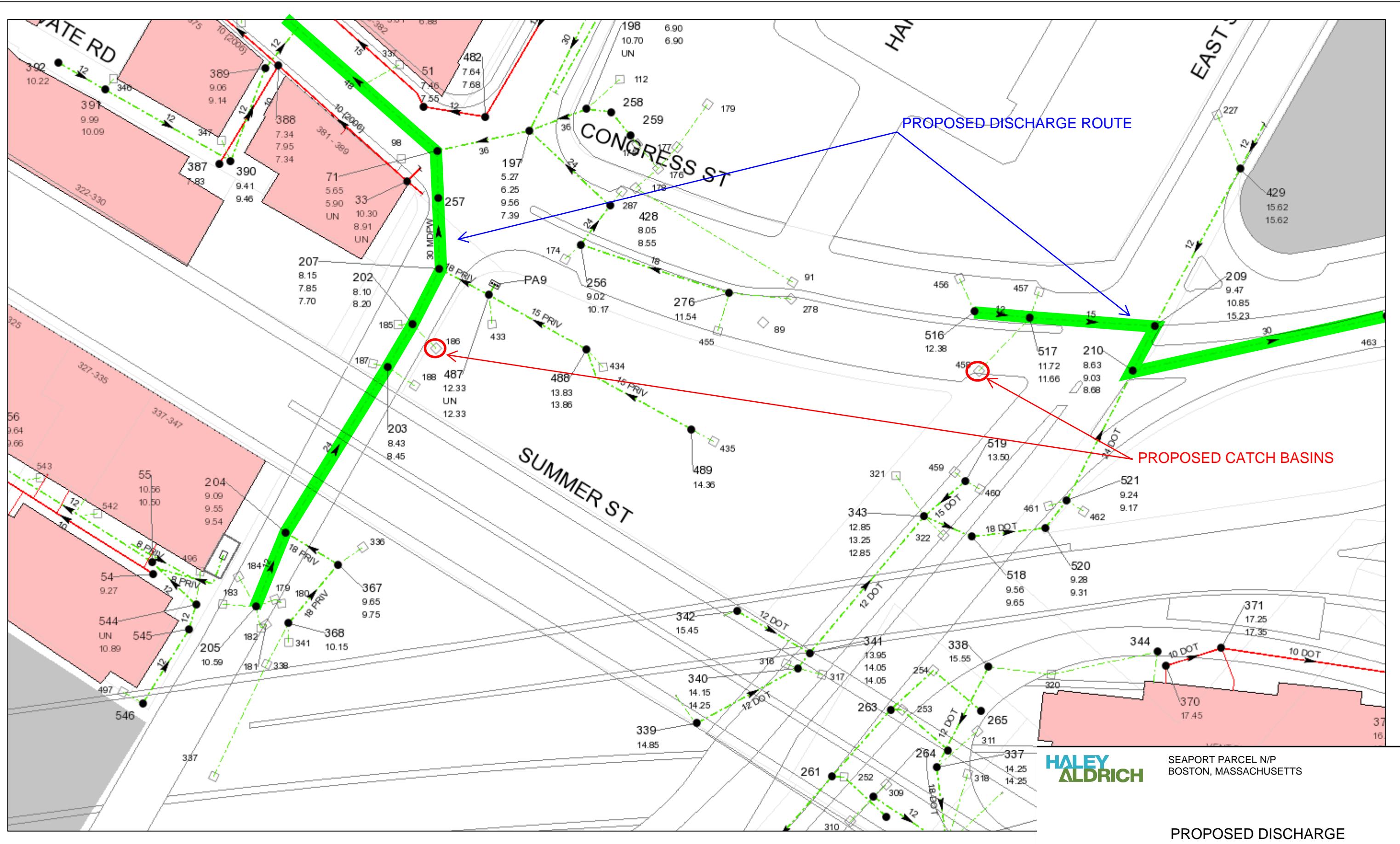
Describe Proposed Pre-Treatment System(s): (refer to attached RGP Application)

BWSC Outfall No. SDO075, SDO202 Receiving Waters Fort Point Channel, Boston Inner Harbor

Temporary Discharges (Provide Anticipated Dates of Discharge): From November 2019 To March 2021

<input type="checkbox"/> Groundwater Remediation	<input type="checkbox"/> Tank Removal/Installation	<input checked="" type="checkbox"/> Foundation Excavation
<input type="checkbox"/> Utility/Manhole Pumping	<input type="checkbox"/> Test Pipe	<input checked="" type="checkbox"/> Trench Excavation
<input checked="" type="checkbox"/> Accumulated Surface Water	<input type="checkbox"/> Hydrogeologic Testing	<input type="checkbox"/> Other _____

Permanent Discharges


<input type="checkbox"/> Foundation Drainage	<input type="checkbox"/> Crawl Space/Footing Drain
<input type="checkbox"/> Accumulated Surface Water	<input type="checkbox"/> Non-contact/Uncontaminated Cooling
<input type="checkbox"/> Non-contact/Uncontaminated Process	<input type="checkbox"/> Other: _____

1. Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges.
2. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application.
3. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information.
4. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA.

Submit Completed Application to: Boston Water and Sewer Commission
Engineering Customer Services
980 Harrison Avenue, Boston, MA 02119
Attn: Matthew Tuttle, Engineering Customer Service
E-mail: tuttlemp@bwsc.org
Phone: 617-989-7204 Fax: 617-989-7716

Signature of Authorized Representative for Property Owner: R. P. Tuttle

Date: 11/19/2019

BOSTON WATER AND SEWER

Copyright © Boston Water and Sewer Commission.
All rights reserved. Printed on: 4/16/2019

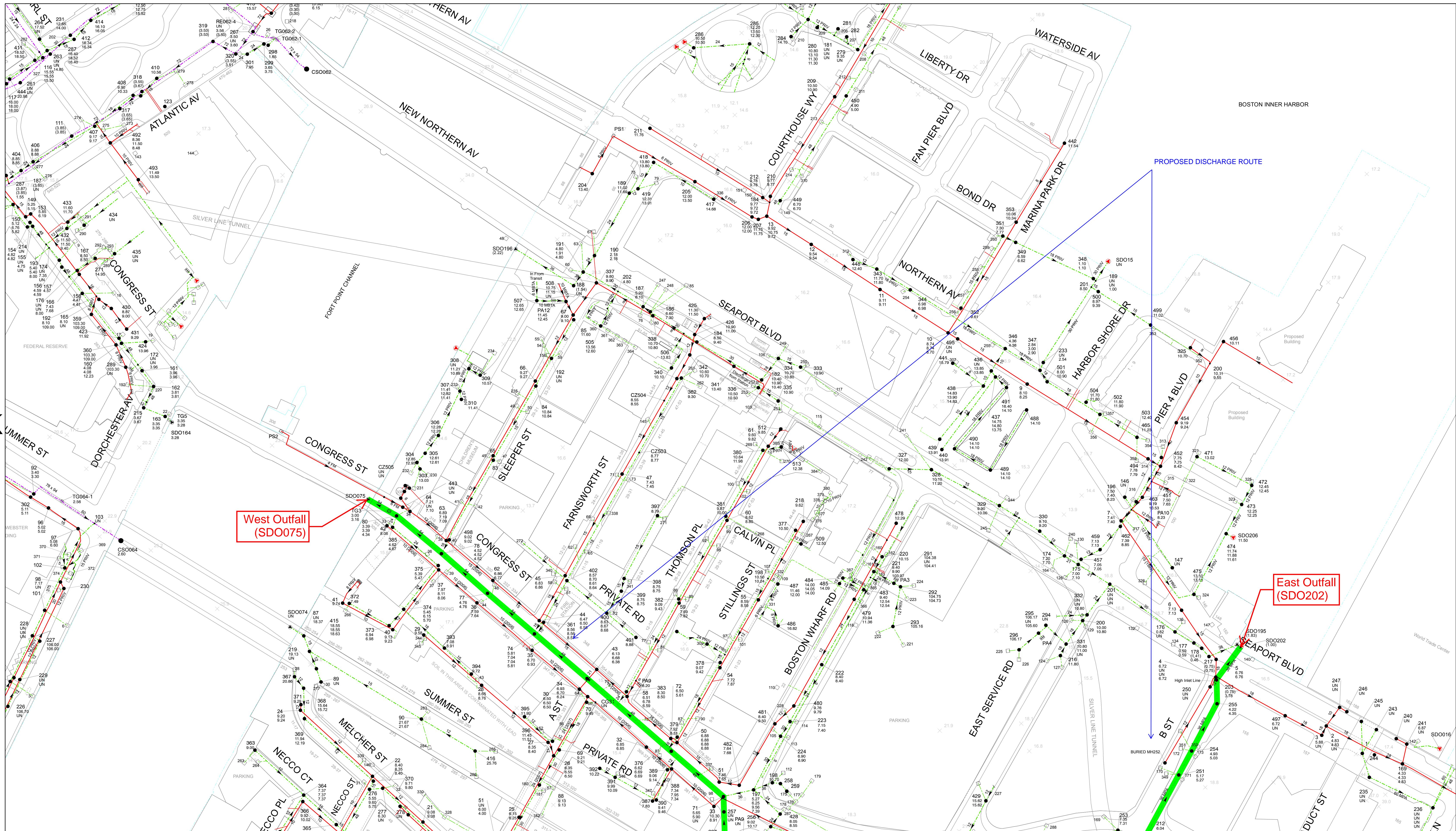

0 30 60 120 180 240 Feet

FIGURE 1a

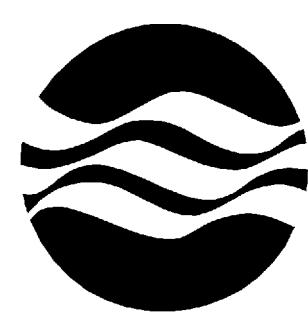
24K

24L

24M

22K

22L


22M

NOTE: Spot Elevations shown are plotted in Boston City Base

DATE OF PHOTOGRAPHY - MARCH 30, APRIL 1 & 17, 1995
 VERTICAL DATUM BASED ON THE BOSTON CITY BASE

THE LANDBASE ON THIS MAP WAS COMPILED TO MEET THE
 ASPRS STANDARD FOR CLASS 1 MAP ACCURACY

Date Produced:
 1/26/2017

BOSTON WATER AND SEWER COMMISSION

HALEY ALDRICH
 SEAPORT PARCEL N/P
 BOSTON, MASSACHUSETTS
 PROPOSED DISCHARGE
 ROUTE
 OCTOBER 2019
 SHEET NO.
 FIGURE 1b
 23L

APPENDIX E
Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L1917160
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Heather Scranton
Phone:	(617) 886-7400
Project Name:	SEAPORT PARCEL LP
Project Number:	130319-005 SID 5
Report Date:	05/03/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019
508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1917160-01	HA19-D2-NPDES	WATER	SEAPORT, BOSTON, MA	04/25/19 11:00	04/25/19

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Case Narrative (continued)

Report Revision

May 03, 2019: The Client ID has been changed.

Sample Receipt

L1917160-01 (HA19-D2-NPDES): The sample was received above the appropriate pH for the Dissolved Metals analysis. The laboratory added additional HNO₃ to a pH <2.

Semivolatile Organics by SIM

L1917160-01 (HA19-D2-NPDES): The surrogate recovery is above the acceptance criteria for 2-fluorobiphenyl (127%). Since the sample was non-detect for all target analytes, re-analysis was not required.

Chlorine, Total Residual

The WG1230522-4 MS recovery (0%), performed on L1917160-01 (HA19-D2-NPDES), is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

 Kelly Stenstrom

Title: Technical Director/Representative

Date: 05/03/19

ORGANICS

VOLATILES

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

SAMPLE RESULTS

Lab ID:	L1917160-01	Date Collected:	04/25/19 11:00
Client ID:	HA19-D2-NPDES	Date Received:	04/25/19
Sample Location:	SEAPORT, BOSTON, MA	Field Prep:	Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 04/29/19 12:13
Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough Lab						
Methylene chloride	ND	ug/l	1.0	--	--	1
1,1-Dichloroethane	ND	ug/l	1.5	--	--	1
Carbon tetrachloride	ND	ug/l	1.0	--	--	1
1,1,2-Trichloroethane	ND	ug/l	1.5	--	--	1
Tetrachloroethene	ND	ug/l	1.0	--	--	1
1,2-Dichloroethane	ND	ug/l	1.5	--	--	1
1,1,1-Trichloroethane	ND	ug/l	2.0	--	--	1
Benzene	ND	ug/l	1.0	--	--	1
Toluene	ND	ug/l	1.0	--	--	1
Ethylbenzene	ND	ug/l	1.0	--	--	1
Vinyl chloride	ND	ug/l	1.0	--	--	1
1,1-Dichloroethene	ND	ug/l	1.0	--	--	1
cis-1,2-Dichloroethene	ND	ug/l	1.0	--	--	1
Trichloroethene	ND	ug/l	1.0	--	--	1
1,2-Dichlorobenzene	ND	ug/l	5.0	--	--	1
1,3-Dichlorobenzene	ND	ug/l	5.0	--	--	1
1,4-Dichlorobenzene	ND	ug/l	5.0	--	--	1
p/m-Xylene	ND	ug/l	2.0	--	--	1
o-Xylene	ND	ug/l	1.0	--	--	1
Xylenes, Total	ND	ug/l	1.0	--	--	1
Acetone	ND	ug/l	10	--	--	1
Methyl tert butyl ether	ND	ug/l	10	--	--	1
Tert-Butyl Alcohol	ND	ug/l	100	--	--	1
Tertiary-Amyl Methyl Ether	ND	ug/l	20	--	--	1

Project Name: SEAPORT PARCEL LP

Lab Number: L1917160

Project Number: 130319-005 SID 5

Report Date: 05/03/19

SAMPLE RESULTS

Lab ID:	L1917160-01	Date Collected:	04/25/19 11:00
Client ID:	HA19-D2-NPDES	Date Received:	04/25/19
Sample Location:	SEAPORT, BOSTON, MA	Field Prep:	Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
-----------	--------	-----------	-------	----	-----	-----------------

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	97		60-140
Fluorobenzene	89		60-140
4-Bromofluorobenzene	92		60-140

Project Name: SEAPORT PARCEL LP

Lab Number: L1917160

Project Number: 130319-005 SID 5

Report Date: 05/03/19

SAMPLE RESULTS

Lab ID:	L1917160-01	Date Collected:	04/25/19 11:00
Client ID:	HA19-D2-NPDES	Date Received:	04/25/19
Sample Location:	SEAPORT, BOSTON, MA	Field Prep:	Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM

Analytical Date: 04/29/19 12:13

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westborough Lab						
1,4-Dioxane	ND		ug/l	50	--	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Fluorobenzene	101		60-140
4-Bromofluorobenzene	97		60-140

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Serial_No:05031913:14

Lab Number: L1917160
Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01
Client ID: HA19-D2-NPDES
Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:00
Date Received: 04/25/19
Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 14,504.1
Analytical Date: 04/30/19 19:07
Analyst: SL

Extraction Method: EPA 504.1
Extraction Date: 04/29/19 23:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010	--	1	A

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1
Analytical Date: 04/29/19 10:49
Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1231535-8					
Methylene chloride	ND		ug/l	1.0	--
1,1-Dichloroethane	ND		ug/l	1.5	--
Carbon tetrachloride	ND		ug/l	1.0	--
1,1,2-Trichloroethane	ND		ug/l	1.5	--
Tetrachloroethene	ND		ug/l	1.0	--
1,2-Dichloroethane	ND		ug/l	1.5	--
1,1,1-Trichloroethane	ND		ug/l	2.0	--
Benzene	ND		ug/l	1.0	--
Toluene	ND		ug/l	1.0	--
Ethylbenzene	ND		ug/l	1.0	--
Vinyl chloride	ND		ug/l	1.0	--
1,1-Dichloroethene	ND		ug/l	1.0	--
cis-1,2-Dichloroethene	ND		ug/l	1.0	--
Trichloroethene	ND		ug/l	1.0	--
1,2-Dichlorobenzene	ND		ug/l	5.0	--
1,3-Dichlorobenzene	ND		ug/l	5.0	--
1,4-Dichlorobenzene	ND		ug/l	5.0	--
p/m-Xylene	ND		ug/l	2.0	--
o-xylene	ND		ug/l	1.0	--
Xylenes, Total	ND		ug/l	1.0	--
Acetone	ND		ug/l	10	--
Methyl tert butyl ether	ND		ug/l	10	--
Tert-Butyl Alcohol	ND		ug/l	100	--
Tertiary-Amyl Methyl Ether	ND		ug/l	20	--

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1
Analytical Date: 04/29/19 10:49
Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - Westborough Lab for sample(s):	01	Batch:	WG1231535-8		

Surrogate	%Recovery	Qualifier	Acceptance Criteria
Pentafluorobenzene	97		60-140
Fluorobenzene	91		60-140
4-Bromofluorobenzene	91		60-140

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 14,504.1
Analytical Date: 04/30/19 18:25
Analyst: SL

Extraction Method: EPA 504.1
Extraction Date: 04/29/19 23:21

Parameter	Result	Qualifier	Units	RL	MDL
Microextractables by GC - Westborough Lab for sample(s): 01 Batch: WG1231671-1					
1,2-Dibromoethane	ND		ug/l	0.010	--

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1-SIM
Analytical Date: 04/29/19 10:49
Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-SIM - Westborough Lab for sample(s):	01	Batch:	WG1231908-4		
1,4-Dioxane	ND		ug/l	50	--

Surrogate	%Recovery	Qualifier	Acceptance Criteria
Fluorobenzene	106		60-140
4-Bromofluorobenzene	101		60-140

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1231535-7								
Methylene chloride	85		-		60-140	-		28
1,1-Dichloroethane	85		-		50-150	-		49
Carbon tetrachloride	95		-		70-130	-		41
1,1,2-Trichloroethane	110		-		70-130	-		45
Tetrachloroethene	120		-		70-130	-		39
1,2-Dichloroethane	100		-		70-130	-		49
1,1,1-Trichloroethane	100		-		70-130	-		36
Benzene	85		-		65-135	-		61
Toluene	115		-		70-130	-		41
Ethylbenzene	95		-		60-140	-		63
Vinyl chloride	75		-		5-195	-		66
1,1-Dichloroethene	90		-		50-150	-		32
cis-1,2-Dichloroethene	90		-		60-140	-		30
Trichloroethene	110		-		65-135	-		48
1,2-Dichlorobenzene	105		-		65-135	-		57
1,3-Dichlorobenzene	100		-		70-130	-		43
1,4-Dichlorobenzene	105		-		65-135	-		57
p/m-Xylene	98		-		60-140	-		30
o-xylene	95		-		60-140	-		30
Acetone	96		-		40-160	-		30
Methyl tert butyl ether	90		-		60-140	-		30
Tert-Butyl Alcohol	88		-		60-140	-		30
Tertiary-Amyl Methyl Ether	85		-		60-140	-		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	<i>LCS</i> %Recovery	Qual	<i>LCSD</i> %Recovery	Qual	<i>%Recovery</i> <i>Limits</i>	<i>RPD</i>	Qual	<i>RPD</i> <i>Limits</i>
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1231535-7								
Surrogate			<i>LCS</i> %Recovery	Qual	<i>LCSD</i> %Recovery	Qual		Acceptance Criteria
Pentafluorobenzene			107					60-140
Fluorobenzene			90					60-140
4-Bromofluorobenzene			93					60-140

Lab Control Sample Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	<i>LCS</i>	<i>LCSD</i>	%Recovery		%Recovery		<i>RPD</i>	<i>Qual</i>	<i>RPD</i>	<i>Limits</i>	<i>Column</i>
	<i>%Recovery</i>	<i>Qual</i>	<i>%Recovery</i>	<i>Qual</i>	<i>Limits</i>						
Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1231671-2											
1,2-Dibromoethane		119		-	80-120		-		-		A

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS	LCSD		%Recovery		RPD	Qual	RPD
	%Recovery	Qual	%Recovery	Qual	Limits			
Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1231908-3								
1,4-Dioxane	82	-	-	-	60-140	-	-	20

Surrogate	LCS	LCSD		Acceptance Criteria
	%Recovery	Qual	%Recovery	Qual
Fluorobenzene	107	-	-	60-140
4-Bromofluorobenzene	101	-	-	60-140

Matrix Spike Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD RPD	Qual Qual	RPD Limits	Column Column
Microextractables by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1231671-3 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES													
1,2-Dibromoethane	ND	0.252	0.273	108		-	-	-	80-120	-	20	A	

SEMIVOLATILES

Project Name: SEAPORT PARCEL LP

Lab Number: L1917160

Project Number: 130319-005 SID 5

Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01
 Client ID: HA19-D2-NPDES
 Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:00
 Date Received: 04/25/19
 Field Prep: Refer to COC

Sample Depth:

Matrix: Water
 Analytical Method: 129,625.1
 Analytical Date: 05/01/19 04:21
 Analyst: SZ

Extraction Method: EPA 625.1
 Extraction Date: 04/28/19 00:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2	--	1
Butyl benzyl phthalate	ND		ug/l	5.0	--	1
Di-n-butylphthalate	ND		ug/l	5.0	--	1
Di-n-octylphthalate	ND		ug/l	5.0	--	1
Diethyl phthalate	ND		ug/l	5.0	--	1
Dimethyl phthalate	ND		ug/l	5.0	--	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	90		42-122
2-Fluorobiphenyl	88		46-121
4-Terphenyl-d14	106		47-138

Project Name: SEAPORT PARCEL LP

Lab Number: L1917160

Project Number: 130319-005 SID 5

Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01
 Client ID: HA19-D2-NPDES
 Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:00
 Date Received: 04/25/19
 Field Prep: Refer to COC

Sample Depth:

Matrix: Water
 Analytical Method: 129,625.1-SIM
 Analytical Date: 05/01/19 11:01
 Analyst: CB

Extraction Method: EPA 625.1
 Extraction Date: 04/28/19 00:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ug/l	0.10	--	1
Fluoranthene	ND		ug/l	0.10	--	1
Naphthalene	ND		ug/l	0.10	--	1
Benzo(a)anthracene	ND		ug/l	0.10	--	1
Benzo(a)pyrene	ND		ug/l	0.10	--	1
Benzo(b)fluoranthene	ND		ug/l	0.10	--	1
Benzo(k)fluoranthene	ND		ug/l	0.10	--	1
Chrysene	ND		ug/l	0.10	--	1
Acenaphthylene	ND		ug/l	0.10	--	1
Anthracene	ND		ug/l	0.10	--	1
Benzo(ghi)perylene	ND		ug/l	0.10	--	1
Fluorene	ND		ug/l	0.10	--	1
Phenanthrene	ND		ug/l	0.10	--	1
Dibenzo(a,h)anthracene	ND		ug/l	0.10	--	1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	--	1
Pyrene	ND		ug/l	0.10	--	1
Pentachlorophenol	ND		ug/l	1.0	--	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	45		25-87
Phenol-d6	28		16-65
Nitrobenzene-d5	78		42-122
2-Fluorobiphenyl	127	Q	46-121
2,4,6-Tribromophenol	119		45-128
4-Terphenyl-d14	81		47-138

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 129,625.1
Analytical Date: 04/28/19 16:01
Analyst: SZ

Extraction Method: EPA 625.1
Extraction Date: 04/27/19 00:49

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS - Westborough Lab for sample(s):	01		Batch:	WG1230973-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2	--
Butyl benzyl phthalate	ND		ug/l	5.0	--
Di-n-butylphthalate	ND		ug/l	5.0	--
Di-n-octylphthalate	ND		ug/l	5.0	--
Diethyl phthalate	ND		ug/l	5.0	--
Dimethyl phthalate	ND		ug/l	5.0	--

Surrogate	%Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	79		42-122
2-Fluorobiphenyl	73		46-121
4-Terphenyl-d14	83		47-138

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 129,625.1-SIM
Analytical Date: 04/30/19 15:01
Analyst: CB

Extraction Method: EPA 625.1
Extraction Date: 04/27/19 00:54

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):	01		Batch:	WG1230974-1	
Acenaphthene	ND		ug/l	0.10	--
Fluoranthene	ND		ug/l	0.10	--
Naphthalene	ND		ug/l	0.10	--
Benzo(a)anthracene	ND		ug/l	0.10	--
Benzo(a)pyrene	ND		ug/l	0.10	--
Benzo(b)fluoranthene	ND		ug/l	0.10	--
Benzo(k)fluoranthene	ND		ug/l	0.10	--
Chrysene	ND		ug/l	0.10	--
Acenaphthylene	ND		ug/l	0.10	--
Anthracene	ND		ug/l	0.10	--
Benzo(ghi)perylene	ND		ug/l	0.10	--
Fluorene	ND		ug/l	0.10	--
Phenanthrene	ND		ug/l	0.10	--
Dibenzo(a,h)anthracene	ND		ug/l	0.10	--
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	--
Pyrene	ND		ug/l	0.10	--
Pentachlorophenol	ND		ug/l	1.0	--

Surrogate	%Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	45		25-87
Phenol-d6	28		16-65
Nitrobenzene-d5	76		42-122
2-Fluorobiphenyl	75		46-121
2,4,6-Tribromophenol	79		45-128
4-Terphenyl-d14	74		47-138

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	<i>LCS</i> %Recovery	<i>Qual</i>	<i>LCSD</i> %Recovery	<i>Qual</i>	<i>%Recovery</i> <i>Limits</i>	<i>RPD</i>	<i>Qual</i>	<i>RPD</i> <i>Limits</i>
Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1230973-3								
Bis(2-ethylhexyl)phthalate	103		-		29-137	-		30
Butyl benzyl phthalate	114		-		1-140	-		30
Di-n-butylphthalate	105		-		8-120	-		30
Di-n-octylphthalate	112		-		19-132	-		30
Diethyl phthalate	99		-		1-120	-		30
Dimethyl phthalate	99		-		1-120	-		30

Surrogate	<i>LCS</i> %Recovery	<i>Qual</i>	<i>LCSD</i> %Recovery	<i>Qual</i>	Acceptance Criteria
Nitrobenzene-d5	91				42-122
2-Fluorobiphenyl	87				46-121
4-Terphenyl-d14	87				47-138

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1230974-2								
Acenaphthene	82		-		60-132	-		30
Fluoranthene	84		-		43-121	-		30
Naphthalene	79		-		36-120	-		30
Benzo(a)anthracene	82		-		42-133	-		30
Benzo(a)pyrene	86		-		32-148	-		30
Benzo(b)fluoranthene	89		-		42-140	-		30
Benzo(k)fluoranthene	111		-		25-146	-		30
Chrysene	86		-		44-140	-		30
Acenaphthylene	79		-		54-126	-		30
Anthracene	84		-		43-120	-		30
Benzo(ghi)perylene	51		-		1-195	-		30
Fluorene	82		-		70-120	-		30
Phenanthrene	79		-		65-120	-		30
Dibenzo(a,h)anthracene	57		-		1-200	-		30
Indeno(1,2,3-cd)pyrene	69		-		1-151	-		30
Pyrene	83		-		70-120	-		30
Pentachlorophenol	51		-		38-152	-		30

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	<i>LCS</i> %Recovery	Qual	<i>LCSD</i> %Recovery	Qual	<i>%Recovery</i> <i>Limits</i>	<i>RPD</i>	Qual	<i>RPD</i> <i>Limits</i>
------------------	-------------------------	------	--------------------------	------	-----------------------------------	------------	------	-----------------------------

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1230974-2

Surrogate	<i>LCS</i> %Recovery	Qual	<i>LCSD</i> %Recovery	Qual	<i>Acceptance</i> <i>Criteria</i>
2-Fluorophenol	48				25-87
Phenol-d6	30				16-65
Nitrobenzene-d5	76				42-122
2-Fluorobiphenyl	76				46-121
2,4,6-Tribromophenol	84				45-128
4-Terphenyl-d14	72				47-138

PCBS

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01
Client ID: HA19-D2-NPDES
Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:00
Date Received: 04/25/19
Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 127,608.3
Analytical Date: 05/01/19 13:14
Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 04/28/19 15:31
Cleanup Method: EPA 3665A
Cleanup Date: 04/29/19
Cleanup Method: EPA 3660B
Cleanup Date: 04/30/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westborough Lab							
Aroclor 1016	ND		ug/l	0.250	--	1	A
Aroclor 1221	ND		ug/l	0.250	--	1	A
Aroclor 1232	ND		ug/l	0.250	--	1	A
Aroclor 1242	ND		ug/l	0.250	--	1	A
Aroclor 1248	ND		ug/l	0.250	--	1	A
Aroclor 1254	ND		ug/l	0.250	--	1	A
Aroclor 1260	ND		ug/l	0.200	--	1	A

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		37-123	B
Decachlorobiphenyl	52		38-114	B
2,4,5,6-Tetrachloro-m-xylene	69		37-123	A
Decachlorobiphenyl	51		38-114	A

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3
Analytical Date: 05/01/19 12:12
Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 04/28/19 09:22
Cleanup Method: EPA 3665A
Cleanup Date: 04/29/19
Cleanup Method: EPA 3660B
Cleanup Date: 04/30/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - Westborough Lab for sample(s):	01		Batch:	WG1231250-1		
Aroclor 1016	ND		ug/l	0.250	--	A
Aroclor 1221	ND		ug/l	0.250	--	A
Aroclor 1232	ND		ug/l	0.250	--	A
Aroclor 1242	ND		ug/l	0.250	--	A
Aroclor 1248	ND		ug/l	0.250	--	A
Aroclor 1254	ND		ug/l	0.250	--	A
Aroclor 1260	ND		ug/l	0.200	--	A

Surrogate	%Recovery	Qualifier	Acceptance Criteria		Column
			Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	74		37-123		B
Decachlorobiphenyl	65		38-114		B
2,4,5,6-Tetrachloro-m-xylene	71		37-123		A
Decachlorobiphenyl	62		38-114		A

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS	LCSD		%Recovery		RPD	Qual	RPD	Column
	%Recovery	Qual	%Recovery	Qual	Limits			Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Associated sample(s): 01 Batch: WG1231250-2									
Aroclor 1016	77		-		50-140	-		36	A
Aroclor 1260	68		-		8-140	-		38	A

Surrogate	LCS	LCSD		Acceptance Criteria	Column
	%Recovery	Qual	%Recovery	Qual	
2,4,5,6-Tetrachloro-m-xylene	81			37-123	B
Decachlorobiphenyl	80			38-114	B
2,4,5,6-Tetrachloro-m-xylene	78			37-123	A
Decachlorobiphenyl	75			38-114	A

METALS

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01 Date Collected: 04/25/19 11:00
 Client ID: HA19-D2-NPDES Date Received: 04/25/19
 Sample Location: SEAPORT, BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/l	0.00400	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00472		mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Iron, Total	40.7		mg/l	0.050	--	1	04/26/19 13:50	04/30/19 18:56	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020	--	1	04/26/19 12:22	04/27/19 00:56	EPA 245.1	3,245.1	EA
Nickel, Total	0.00364		mg/l	0.00200	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Zinc, Total	0.1536		mg/l	0.01000	--	1	04/26/19 13:50	04/29/19 10:08	EPA 3005A	3,200.8	AM
Total Hardness by SM 2340B - Mansfield Lab											
Hardness	326		mg/l	0.660	NA	1	04/26/19 13:50	04/30/19 18:56	EPA 3005A	19,200.7	AB

General Chemistry - Mansfield Lab

Chromium, Trivalent	ND	mg/l	0.010	--	1	04/29/19 10:08	NA	107,-
---------------------	----	------	-------	----	---	----------------	----	-------

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1230750-1									
Mercury, Total	ND	mg/l	0.0002	--	1	04/26/19 12:22	04/27/19 00:09	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1230783-1									
Iron, Total	ND	mg/l	0.050	--	1	04/26/19 13:50	04/30/19 17:10	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1230783-1									
Hardness	ND	mg/l	0.660	NA	1	04/26/19 13:50	04/30/19 17:10	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1230794-1									
Antimony, Total	ND	mg/l	0.00400	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Copper, Total	ND	mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis Batch Quality Control

Lead, Total	ND	mg/l	0.00100	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	--	1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1230750-2								
Mercury, Total	90	-	-	-	85-115	-	-	-
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1230783-2								
Iron, Total	103	-	-	-	85-115	-	-	-
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1230783-2								
Hardness	103	-	-	-	85-115	-	-	-
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1230794-2								
Antimony, Total	85	-	-	-	85-115	-	-	-
Arsenic, Total	104	-	-	-	85-115	-	-	-
Cadmium, Total	100	-	-	-	85-115	-	-	-
Chromium, Total	100	-	-	-	85-115	-	-	-
Copper, Total	95	-	-	-	85-115	-	-	-
Lead, Total	104	-	-	-	85-115	-	-	-
Nickel, Total	99	-	-	-	85-115	-	-	-
Selenium, Total	110	-	-	-	85-115	-	-	-
Silver, Total	103	-	-	-	85-115	-	-	-
Zinc, Total	106	-	-	-	85-115	-	-	-

Matrix Spike Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230750-3 QC Sample: L1917057-01 Client ID: MS Sample												
Mercury, Total	ND	0.005	0.0052	104	-	-	-	-	70-130	-	-	20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230750-5 QC Sample: L1917095-01 Client ID: MS Sample												
Mercury, Total	ND	0.005	0.0043	86	-	-	-	-	70-130	-	-	20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230783-3 QC Sample: L1917134-01 Client ID: MS Sample												
Iron, Total	0.694	1	1.71	102	-	-	-	-	75-125	-	-	20
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230783-3 QC Sample: L1917134-01 Client ID: MS Sample												
Hardness	133	66.2	194	92	-	-	-	-	75-125	-	-	20
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230783-7 QC Sample: L1916629-01 Client ID: MS Sample												
Iron, Total	0.102	1	1.18	108	-	-	-	-	75-125	-	-	20
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230783-7 QC Sample: L1916629-01 Client ID: MS Sample												
Hardness	227	66.2	291	97	-	-	-	-	75-125	-	-	20

Matrix Spike Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1230794-3 QC Sample: L1917134-01 Client ID: MS Sample									
Antimony, Total	ND	0.5	0.6319	126	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1328	111	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05722	112	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2184	109	-	-	70-130	-	20
Copper, Total	0.00729	0.25	0.2719	106	-	-	70-130	-	20
Lead, Total	0.00388	0.51	0.5455	106	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5468	109	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1360	113	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05744	115	-	-	70-130	-	20
Zinc, Total	0.02050	0.5	0.6472	125	-	-	70-130	-	20

Lab Duplicate Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1230750-4	QC Sample: L1917057-01	Client ID: DUP Sample		
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1230750-6	QC Sample: L1917095-01	Client ID: DUP Sample		
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1230783-4	QC Sample: L1917134-01	Client ID: DUP Sample		
Iron, Total	0.694	0.677	mg/l	2		20
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1230783-4	QC Sample: L1917134-01	Client ID: DUP Sample		
Hardness	133	132	mg/l	1		20
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1230794-4	QC Sample: L1917134-01	Client ID: DUP Sample		
Antimony, Total	ND	0.00595	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00729	0.00759	mg/l	4		20
Lead, Total	0.00388	0.00379	mg/l	2		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.02050	0.01994	mg/l	3		20

INORGANICS & MISCELLANEOUS

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

SAMPLE RESULTS

Lab ID: L1917160-01
Client ID: HA19-D2-NPDES
Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:00
Date Received: 04/25/19
Field Prep: Refer to COC

Sample Depth:
Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
Solids, Total Suspended	10.		mg/l	5.0	NA	1	-	04/26/19 15:55	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005	--	1	04/26/19 06:17	04/26/19 12:39	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02	--	1	-	04/26/19 03:02	121,4500CL-D	JW
Nitrogen, Ammonia	2.80		mg/l	0.075	--	1	04/26/19 02:00	04/26/19 21:13	121,4500NH3-BH	AT
TPH, SGT-HEM	ND		mg/l	4.00	--	1	04/26/19 16:30	04/26/19 21:30	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030	--	1	04/26/19 03:50	04/26/19 06:21	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010	--	1	04/26/19 02:30	04/26/19 03:17	1,7196A	MA
Anions by Ion Chromatography - Westborough Lab										
Chloride	1400		mg/l	50.0	--	100	-	04/26/19 19:43	44,300.0	AU

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Method Blank Analysis
Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230492-1									
Nitrogen, Ammonia	ND	mg/l	0.075	--	1	04/26/19 02:00	04/26/19 20:45	121,4500NH3-BH	AT
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230507-1									
Chromium, Hexavalent	ND	mg/l	0.010	--	1	04/26/19 02:30	04/26/19 03:14	1,7196A	MA
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230522-1									
Chlorine, Total Residual	ND	mg/l	0.02	--	1	-	04/26/19 03:02	121,4500CL-D	JW
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230524-1									
Phenolics, Total	ND	mg/l	0.030	--	1	04/26/19 03:50	04/26/19 06:49	4,420.1	GD
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230561-1									
Cyanide, Total	ND	mg/l	0.005	--	1	04/26/19 06:17	04/26/19 12:27	121,4500CN-CE	LH
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230612-1									
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	04/26/19 15:55	121,2540D	DR
General Chemistry - Westborough Lab for sample(s): 01 Batch: WG1230860-1									
TPH, SGT-HEM	ND	mg/l	4.00	--	1	04/26/19 16:30	04/26/19 21:30	74,1664A	ML
Anions by Ion Chromatography - Westborough Lab for sample(s): 01 Batch: WG1231608-1									
Chloride	ND	mg/l	0.500	--	1	-	04/26/19 16:54	44,300.0	AU

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230492-2								
Nitrogen, Ammonia	90	-	-	-	80-120	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230507-2								
Chromium, Hexavalent	96	-	-	-	85-115	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230522-2								
Chlorine, Total Residual	92	-	-	-	90-110	-	-	
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230524-2								
Phenolics, Total	88	-	-	-	70-130	-	-	
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230561-2								
Cyanide, Total	93	-	-	-	90-110	-	-	
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1230860-2								
TPH	84	-	-	-	64-132	-	-	34
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 Batch: WG1231608-2								
Chloride	98	-	-	-	90-110	-	-	

Matrix Spike Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD Qual	RPD Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230492-4 QC Sample: L1916923-17 Client ID: MS Sample												
Nitrogen, Ammonia	0.130	4	3.67	88	-	-	-	-	80-120	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230507-4 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES												
Chromium, Hexavalent	ND	0.1	0.097	97	-	-	-	-	85-115	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230522-4 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES												
Chlorine, Total Residual	ND	0.25	ND	0	Q	-	-	-	80-120	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230524-4 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES												
Phenolics, Total	ND	0.4	0.39	97	-	-	-	-	70-130	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230561-4 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES												
Cyanide, Total	ND	0.2	0.199	100	-	-	-	-	90-110	-	-	30
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230860-4 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES												
TPH	ND	20	16.4	82	-	-	-	-	64-132	-	-	34
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1231608-3 QC Sample: L1916804-02 Client ID: MS Sample												
Chloride	112	100	221	109	-	-	-	-	90-110	-	-	18

Lab Duplicate Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230492-3 QC Sample: L1916923-17 Client ID: DUP Sample						
Nitrogen, Ammonia	0.130	0.130	mg/l	0		20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230507-3 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES						
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230522-3 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES						
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230524-3 QC Sample: L1917160-01 Client ID: HA19-D2-NPDES						
Phenolics, Total	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230561-3 QC Sample: L1917134-01 Client ID: DUP Sample						
Cyanide, Total	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230612-2 QC Sample: L1917079-01 Client ID: DUP Sample						
Solids, Total Suspended	7300	7100	mg/l	3		29
General Chemistry - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1230860-3 QC Sample: L1917132-01 Client ID: DUP Sample						
TPH	ND	ND	mg/l	NC		34
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1231608-4 QC Sample: L1916804-02 Client ID: DUP Sample						
Chloride	112	114	mg/l	2		18

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L1917160-01A	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01A1	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01B	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01B1	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01C	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01C1	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1917160-01D	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		504(14)
L1917160-01E	Vial Na2S2O3 preserved	A	NA		1.9	Y	Absent		504(14)
L1917160-01F	Plastic 250ml HNO3 preserved	A	7	<2	1.9	N	Absent		HOLD-METAL-DISSOLVED(180)
L1917160-01G	Plastic 250ml HNO3 preserved	A	<2	<2	1.9	Y	Absent		CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),HARDU(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180)
L1917160-01H	Vial HCl preserved	A	NA		1.9	Y	Absent		ARCHIVE()
L1917160-01I	Vial HCl preserved	A	NA		1.9	Y	Absent		ARCHIVE()
L1917160-01J	Vial HCl preserved	A	NA		1.9	Y	Absent		ARCHIVE()
L1917160-01K	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		PCB-608.3(7)
L1917160-01L	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		PCB-608.3(7)
L1917160-01M	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		PCB-608.3(7)
L1917160-01N	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1917160-01O	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1917160-01P	Amber 1000ml Na2S2O3	A	7	7	1.9	Y	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1917160-01R	Plastic 950ml unpreserved	A	7	7	1.9	Y	Absent		CL-300(28),HEXCR-7196(1),HOLD-WETCHEM(),TRC-4500(1)
L1917160-01S	Plastic 950ml unpreserved	A	7	7	1.9	Y	Absent		TSS-2540(7)

*Values in parentheses indicate holding time in days

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L1917160-01T	Plastic 500ml H ₂ SO ₄ preserved	A	<2	<2	1.9	Y	Absent		NH3-4500(28)
L1917160-01U	Plastic 250ml NaOH preserved	A	>12	>12	1.9	Y	Absent		TCN-4500(14)
L1917160-01V	Amber 1000ml HCl preserved	A	NA		1.9	Y	Absent		TPH-1664(28)
L1917160-01W	Amber 1000ml HCl preserved	A	NA		1.9	Y	Absent		TPH-1664(28)
L1917160-01X	Amber 950ml H ₂ SO ₄ preserved	A	<2	<2	1.9	Y	Absent		TPHENOL-420(28)

*Values in parentheses indicate holding time in days

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A** - Spectra identified as "Aldol Condensation Product".
- B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G** - The concentration may be biased high due to matrix interferences (i.e. co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- J** - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND** - Not detected at the reporting limit (RL) for the sample.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedances are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917160
Report Date: 05/03/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical - In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at its own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; **SCM:** Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO₂, NO₃.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; **EPA 353.2:** Nitrate-N, Nitrite-N; **SM4500NO3-F:** Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B**

EPA 332: Perchlorate; **EPA 524.2:** THMs and VOCs; **EPA 504.1:** EDB, DBCP.

Microbiology: **SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.**

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, **EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B:** Ammonia-N, **EPA 351.1, SM4500NO3-F, EPA 353.2:** Nitrate-N, **SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300:** Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045:** PCB-Oil.

Microbiology: **SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.**

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1 Hg. EPA 522.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

CHAIN OF CUSTODY		Service Centers Brewer, ME 04412 Portsmouth, NH 03801 Mahwah, NJ 07430 Albany, NY 12205 Tonawanda, NY 14210 Holmes, PA 19043		Page of		Date Rec'd in Lab <i>4/25/19</i>		ALPHA Job # <i>L1917160</i>													
										Westborough, MA 01581											
										8 Walkup Dr. TEL: 508-889-0220 FAX: 508-889-0193											
Mansfield, MA 02048		320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3268		Project Information		Deliverables		Billing Information													
Project Name: Seaport Parcel LP				<input checked="" type="checkbox"/> Email <input type="checkbox"/> Fax <input checked="" type="checkbox"/> EQuIS (1 File) <input type="checkbox"/> EQuIS (4 File) <input type="checkbox"/> Other:				<input checked="" type="checkbox"/> Same as Client Info PO #													
Project Location: Seaport, Boston, MA																					
H&A Information		Project # 130319-005 SID 5				Regulatory Requirements (Program/Criteria)		Disposal Site Information													
H&A Client: Seaport N/P Title Holder LLC		(Use Project name as Proj#)						Please identify below location of applicable disposal facilities.													
H&A Address 465 Medford St		Project Manager: H. Scranton						Disposal Facility:													
Boston, MA 0212-1400		ALPHAQuote #:						<input type="checkbox"/> NJ <input type="checkbox"/> NY <input type="checkbox"/> Other:													
H&A Phone: 617-686-7400		Turn-Around Time																			
H&A Fax: lhoward@haleyaldrich.com		Standard <input checked="" type="checkbox"/>		Due Date:																	
H&A Email: kalepidis@haleyaldrich.com		(only if pre approved) <input type="checkbox"/>		# of Days:		Note: Select State from menu & identify criteria.															
These samples have been previously analyzed by Alpha																					
Other project specific requirements/comments: 3. HOLD PACN & ACN 11. Dissolved Metals ON HOLD (Field Filtered) Please sample per EPA Approved 2017 RGP Permit methods																					
Please specify Metals or TAL..																					
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection		Sample Matrix	Sampler's Initials	ANALYSIS				Sample Filtration											
		Date	Time			1. TSS - 2540	2. TRC-4500	3. TCN-4500 HOLD PACN & ACN	4. 504	5. 8260 & 8260 SIM for Dioxane	6. HEXCR-3500 & Trivalent Chromium	7. TPHENOL-420	8. 8270TCL (including Diethylhydipthalate)	9. 8270TCL-SIM	10. CL-300	11. Total Metals - Ag, As, Cd, Cr, Cu, Ni, Pb, Sb, Se, Zn, Fe, Hg	12. Ammonia	13. Total Hardness	14. TPH-1664	15. PCB-608	16. PCB-608
17160-01	HA19-D2 L4 NPDES	4/25/19	1100	AQ	SP2	X	X	X	X	X	X	X	X	X	X	X	X	26			
NPDES																					
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ SO ₄ K/E = Zn Ac/NaOH O = Other		Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle		Westboro: Certification No: MA935 Mansfield: Certification No: MA015		Container Type		P	P	P	A	A	P	A	A	A	T	P	P	P	AA
						Preservative	A	A	E	G	B	A	D	C	G	A	C	D	E	B	G
<i>A. Pml</i> <i>M. C. H</i> <i>M. C. H</i>		<i>4/25/19 1400</i> <i>4/25/19 1613</i> <i>4/25/19 1827</i>		<i>M. C. H</i> <i>M. C. H</i> <i>M. C. H</i>		<i>Received By:</i> <i>M. C. H</i> <i>M. C. H</i>		<i>Date/Time:</i> <i>4/25/19 1613</i> <i>4/25/19 1630</i> <i>4/26/19 10:27</i>		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody shall be performed in accordance with terms and conditions within Blanket Service Agreement 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.											

Document ID: 20455 Rev 1 (1/28/2016)

ANALYTICAL REPORT

Lab Number:	L1917161
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN:	Heather Scranton
Phone:	(617) 886-7400
Project Name:	SEAPORT PARCEL LP
Project Number:	130319-005 SID 5
Report Date:	04/29/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019
508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1917161-01	HA19-BOSTON HARBOR_04252019	WATER	SEAPORT, BOSTON, MA	04/25/19 11:45	04/25/19
L1917161-02	HA19-FORT POINT_04252019	WATER	SEAPORT, BOSTON, MA	04/25/19 12:30	04/25/19

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

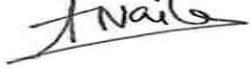
Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.


HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

 Amita Naik

Title: Technical Director/Representative

Date: 04/29/19

INORGANICS & MISCELLANEOUS

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

SAMPLE RESULTS

Lab ID: L1917161-01
Client ID: HA19-BOSTON HARBOR_04252019
Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 11:45
Date Received: 04/25/19
Field Prep: Not Specified

Sample Depth:
Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
SALINITY	19	SU	2.0	--	1	-	04/26/19 03:55	121,2520B	JW	
pH (H)	7.7	SU	-	NA	1	-	04/25/19 22:47	121,4500H+-B	AS	
Nitrogen, Ammonia	0.201	mg/l	0.075	--	1	04/26/19 02:00	04/26/19 20:52	121,4500NH3-BH	AT	

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

SAMPLE RESULTS

Lab ID: L1917161-02
Client ID: HA19-FORT POINT_04252019
Sample Location: SEAPORT, BOSTON, MA

Date Collected: 04/25/19 12:30
Date Received: 04/25/19
Field Prep: Not Specified

Sample Depth:
Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab										
SALINITY	18	SU	2.0	--	1	-	04/26/19 03:55	121,2520B	JW	
pH (H)	7.8	SU	-	NA	1	-	04/25/19 22:47	121,4500H+-B	AS	
Nitrogen, Ammonia	0.092	mg/l	0.075	--	1	04/26/19 02:00	04/26/19 20:53	121,4500NH3-BH	AT	

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

Method Blank Analysis
Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborough Lab for sample(s): 01-02 Batch: WG1230492-1									
Nitrogen, Ammonia	ND	mg/l	0.075	--	1	04/26/19 02:00	04/26/19 20:45	121,4500NH3-BH	AT

Lab Control Sample Analysis

Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1230452-1								
pH	100	-	-	-	99-101	-	-	5
General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1230492-2								
Nitrogen, Ammonia	90	-	-	-	80-120	-	-	20
General Chemistry - Westborough Lab Associated sample(s): 01-02 Batch: WG1230518-1								
SALINITY	100	-	-	-	-	-	-	-

Matrix Spike Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual	MSD Found	MSD %Recovery	MSD Qual	Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1230492-4 QC Sample: L1916923-17 Client ID: MS Sample												
Nitrogen, Ammonia	0.130	4	3.67	88	-	-	-	-	80-120	-	-	20

Lab Duplicate Analysis
Batch Quality Control

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1230452-2 QC Sample: L1917057-01 Client ID: DUP Sample						
pH	11.0	10.8	SU	2		5
General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1230492-3 QC Sample: L1916923-17 Client ID: DUP Sample						
Nitrogen, Ammonia	0.130	0.130	mg/l	0		20
General Chemistry - Westborough Lab Associated sample(s): 01-02 QC Batch ID: WG1230518-2 QC Sample: L1917161-01 Client ID: HA19-BOSTON HARBOR_04252019						
SALINITY	19	19	SU	0		

Sample Receipt and Container Information

Were project specific reporting limits specified? YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information

Container ID	Container Type	Cooler	Initial pH	Final pH	Temp deg C	Pres	Seal	Frozen Date/Time	Analysis(*)
L1917161-01A	Amber 120ml unpreserved	A	8	8	1.9	Y	Absent		SALINITY(28)
L1917161-01B	Plastic 500ml H ₂ SO ₄ preserved	A	<2	<2	1.9	Y	Absent		NH3-4500(28)
L1917161-01C	Plastic 950ml unpreserved	A	8	8	1.9	Y	Absent		PH-4500(.01)
L1917161-02A	Amber 120ml unpreserved	A	8	8	1.9	Y	Absent		SALINITY(28)
L1917161-02B	Plastic 500ml H ₂ SO ₄ preserved	A	<2	<2	1.9	Y	Absent		NH3-4500(28)
L1917161-02C	Plastic 250ml unpreserved	A	8	8	1.9	Y	Absent		PH-4500(.01)

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.) Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A** - Spectra identified as "Aldol Condensation Product".
- B** - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C** - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D** - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E** - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G** - The concentration may be biased high due to matrix interferences (i.e. co-elution) with non-target compound(s). The result should be considered estimated.
- H** - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I** - The lower value for the two columns has been reported due to obvious interference.
- J** - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M** - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND** - Not detected at the reporting limit (RL) for the sample.
- NJ** - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P** - The RPD between the results for the two columns exceeds the method-specified criteria.
- Q** - The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedances are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R** - Analytical results are from sample re-analysis.
- RE** - Analytical results are from sample re-extraction.
- S** - Analytical results are from modified screening analysis.

Project Name: SEAPORT PARCEL LP
Project Number: 130319-005 SID 5

Lab Number: L1917161
Report Date: 04/29/19

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF.
Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at its own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; **SCM:** Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO₂, NO₃.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; **EPA 353.2:** Nitrate-N, Nitrite-N; **SM4500NO3-F:** Nitrate-N, Nitrite-N; **SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B**

EPA 332: Perchlorate; **EPA 524.2:** THMs and VOCs; **EPA 504.1:** EDB, DBCP.

Microbiology: **SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.**

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, **EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B:** Ammonia-N, **EPA 351.1, SM4500NO3-F, EPA 353.2:** Nitrate-N, **SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300:** Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045:** PCB-Oil.

Microbiology: **SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.**

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1 Hg. EPA 522.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA ANALYTICAL		CHAIN OF CUSTODY		Service Centers Brewer, ME 04412 Portsmouth, NH 03801 Mahwah, NJ 07430 Albany, NY 12205 Tonawanda, NY 14150 Holmes, PA 19043	Page 1 of 1	Date Rec'd in Lab 4/25/19	ALPHA Job # L1917161																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
		Westborough, MA 01581 6 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
Project Information				<input checked="" type="checkbox"/> Email <input type="checkbox"/> Fax <input type="checkbox"/> EQuIS (1 File) <input type="checkbox"/> EQuIS (4 File) <input type="checkbox"/> Other:	Billing Information <input checked="" type="checkbox"/> Same as Client Info PO #																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
H&A Information		Project # 130319-005 SID 5		Regulatory Requirements (Program/Criteria)		Disposal Site Information																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
H&A Client: Seaport N/P Title Holder LLC (Use Project name as Project #) <input type="checkbox"/>		H&A Address: 465 Medford St Boston, MA 0212-1400		Project Manager: H Scranton ALPHAQuote #:		EPA NPDES																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
H&A Phone: 617-886-7400		Turn-Around Time				Please identify below location of applicable disposal facilities.																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
H&A Fax: lhoward@haleyaldrich.com		Standard <input checked="" type="checkbox"/>		Due Date:		Disposal Facility:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
H&A Email: kalepidis@haleyaldrich.com		Rush (only if pre approved) <input type="checkbox"/>		# of Days:		<input type="checkbox"/> NJ <input type="checkbox"/> NY <input type="checkbox"/> Other:																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Note: Select State from menu & identify criteria.						ANALYSIS																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
These samples have been previously analyzed by Alpha <input type="checkbox"/>						Sample Filtration																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Other project specific requirements/comments: Use 2017 NPDES RGP Approved methods						<input type="checkbox"/> Done <input type="checkbox"/> Lab to do <input type="checkbox"/> Preservation <input type="checkbox"/> Lab to do (Please Specify below)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
Please specify Metals or TAL.						Sample Specific Comments																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection		Sample Matrix	Sampler's Initials	1. pH	2. Salinity	3. Ammonia	4. Dissolved Solids	5. Chloride	6. Nitrate	7. Nitrite	8. Phosphate	9. Hardness	10. Specific Conductance	11. Dissolved Oxygen	12. Total Dissolved Solids	13. Total Hardness	14. Total Dissolved Solids	15. Total Hardness	16. Dissolved Oxygen	17. Specific Conductance	18. Phosphate	19. Hardness	20. Dissolved Solids	21. Dissolved Oxygen	22. Specific Conductance	23. Phosphate	24. Hardness	25. Dissolved Solids	26. Dissolved Oxygen	27. Specific Conductance	28. Phosphate	29. Hardness	30. Dissolved Solids	31. Dissolved Oxygen	32. Specific Conductance	33. Phosphate	34. Hardness	35. Dissolved Solids	36. Dissolved Oxygen	37. Specific Conductance	38. Phosphate	39. Hardness	40. Dissolved Solids	41. Dissolved Oxygen	42. Specific Conductance	43. Phosphate	44. Hardness	45. Dissolved Solids	46. Dissolved Oxygen	47. Specific Conductance	48. Phosphate	49. Hardness	50. Dissolved Solids	51. Dissolved Oxygen	52. Specific Conductance	53. Phosphate	54. Hardness	55. Dissolved Solids	56. Dissolved Oxygen	57. Specific Conductance	58. Phosphate	59. Hardness	60. Dissolved Solids	61. Dissolved Oxygen	62. Specific Conductance	63. Phosphate	64. Hardness	65. Dissolved Solids	66. Dissolved Oxygen	67. Specific Conductance	68. Phosphate	69. Hardness	70. Dissolved Solids	71. Dissolved Oxygen	72. Specific Conductance	73. Phosphate	74. Hardness	75. Dissolved Solids	76. Dissolved Oxygen	77. Specific Conductance	78. Phosphate	79. Hardness	80. Dissolved Solids	81. Dissolved Oxygen	82. Specific Conductance	83. Phosphate	84. Hardness	85. Dissolved Solids	86. Dissolved Oxygen	87. Specific Conductance	88. Phosphate	89. Hardness	90. Dissolved Solids	91. Dissolved Oxygen	92. Specific Conductance	93. Phosphate	94. Hardness	95. Dissolved Solids	96. Dissolved Oxygen	97. Specific Conductance	98. Phosphate	99. Hardness	100. Dissolved Solids	101. Dissolved Oxygen	102. Specific Conductance	103. Phosphate	104. Hardness	105. Dissolved Solids	106. Dissolved Oxygen	107. Specific Conductance	108. Phosphate	109. Hardness	110. Dissolved Solids	111. Dissolved Oxygen	112. Specific Conductance	113. Phosphate	114. Hardness	115. Dissolved Solids	116. Dissolved Oxygen	117. Specific Conductance	118. Phosphate	119. Hardness	120. Dissolved Solids	121. Dissolved Oxygen	122. Specific Conductance	123. Phosphate	124. Hardness	125. Dissolved Solids	126. Dissolved Oxygen	127. Specific Conductance	128. Phosphate	129. Hardness	130. Dissolved Solids	131. Dissolved Oxygen	132. Specific Conductance	133. Phosphate	134. Hardness	135. Dissolved Solids	136. Dissolved Oxygen	137. Specific Conductance	138. Phosphate	139. Hardness	140. Dissolved Solids	141. Dissolved Oxygen	142. Specific Conductance	143. Phosphate	144. Hardness	145. Dissolved Solids	146. Dissolved Oxygen	147. Specific Conductance	148. Phosphate	149. Hardness	150. Dissolved Solids	151. Dissolved Oxygen	152. Specific Conductance	153. Phosphate	154. Hardness	155. Dissolved Solids	156. Dissolved Oxygen	157. Specific Conductance	158. Phosphate	159. Hardness	160. Dissolved Solids	161. Dissolved Oxygen	162. Specific Conductance	163. Phosphate	164. Hardness	165. Dissolved Solids	166. Dissolved Oxygen	167. Specific Conductance	168. Phosphate	169. Hardness	170. Dissolved Solids	171. Dissolved Oxygen	172. Specific Conductance	173. Phosphate	174. Hardness	175. Dissolved Solids	176. Dissolved Oxygen	177. Specific Conductance	178. Phosphate	179. Hardness	180. Dissolved Solids	181. Dissolved Oxygen	182. Specific Conductance	183. Phosphate	184. Hardness	185. Dissolved Solids	186. Dissolved Oxygen	187. Specific Conductance	188. Phosphate	189. Hardness	190. Dissolved Solids	191. Dissolved Oxygen	192. Specific Conductance	193. Phosphate	194. Hardness	195. Dissolved Solids	196. Dissolved Oxygen	197. Specific Conductance	198. Phosphate	199. Hardness	200. Dissolved Solids	201. Dissolved Oxygen	202. Specific Conductance	203. Phosphate	204. Hardness	205. Dissolved Solids	206. Dissolved Oxygen	207. Specific Conductance	208. Phosphate	209. Hardness	210. Dissolved Solids	211. Dissolved Oxygen	212. Specific Conductance	213. Phosphate	214. Hardness	215. Dissolved Solids	216. Dissolved Oxygen	217. Specific Conductance	218. Phosphate	219. Hardness	220. Dissolved Solids	221. Dissolved Oxygen	222. Specific Conductance	223. Phosphate	224. Hardness	225. Dissolved Solids	226. Dissolved Oxygen	227. Specific Conductance	228. Phosphate	229. Hardness	230. Dissolved Solids	231. Dissolved Oxygen	232. Specific Conductance	233. Phosphate	234. Hardness	235. Dissolved Solids	236. Dissolved Oxygen	237. Specific Conductance	238. Phosphate	239. Hardness	240. Dissolved Solids	241. Dissolved Oxygen	242. Specific Conductance	243. Phosphate	244. Hardness	245. Dissolved Solids	246. Dissolved Oxygen	247. Specific Conductance	248. Phosphate	249. Hardness	250. Dissolved Solids	251. Dissolved Oxygen	252. Specific Conductance	253. Phosphate	254. Hardness	255. Dissolved Solids	256. Dissolved Oxygen	257. Specific Conductance	258. Phosphate	259. Hardness	260. Dissolved Solids	261. Dissolved Oxygen	262. Specific Conductance	263. Phosphate	264. Hardness	265. Dissolved Solids	266. Dissolved Oxygen	267. Specific Conductance	268. Phosphate	269. Hardness	270. Dissolved Solids	271. Dissolved Oxygen	272. Specific Conductance	273. Phosphate	274. Hardness	275. Dissolved Solids	276. Dissolved Oxygen	277. Specific Conductance	278. Phosphate	279. Hardness	280. Dissolved Solids	281. Dissolved Oxygen	282. Specific Conductance	283. Phosphate	284. Hardness	285. Dissolved Solids	286. Dissolved Oxygen	287. Specific Conductance	288. Phosphate	289. Hardness	290. Dissolved Solids	291. Dissolved Oxygen	292. Specific Conductance	293. Phosphate	294. Hardness	295. Dissolved Solids	296. Dissolved Oxygen	297. Specific Conductance	298. Phosphate	299. Hardness	300. Dissolved Solids	301. Dissolved Oxygen	302. Specific Conductance	303. Phosphate	304. Hardness	305. Dissolved Solids	306. Dissolved Oxygen	307. Specific Conductance	308. Phosphate	309. Hardness	310. Dissolved Solids	311. Dissolved Oxygen	312. Specific Conductance	313. Phosphate	314. Hardness	315. Dissolved Solids	316. Dissolved Oxygen	317. Specific Conductance	318. Phosphate	319. Hardness	320. Dissolved Solids	321. Dissolved Oxygen	322. Specific Conductance	323. Phosphate	324. Hardness	325. Dissolved Solids	326. Dissolved Oxygen	327. Specific Conductance	328. Phosphate	329. Hardness	330. Dissolved Solids	331. Dissolved Oxygen	332. Specific Conductance	333. Phosphate	334. Hardness	335. Dissolved Solids	336. Dissolved Oxygen	337. Specific Conductance	338. Phosphate	339. Hardness	340. Dissolved Solids	341. Dissolved Oxygen	342. Specific Conductance	343. Phosphate	344. Hardness	345. Dissolved Solids	346. Dissolved Oxygen	347. Specific Conductance	348. Phosphate	349. Hardness	350. Dissolved Solids	351. Dissolved Oxygen	352. Specific Conductance	353. Phosphate	354. Hardness	355. Dissolved Solids	356. Dissolved Oxygen	357. Specific Conductance	358. Phosphate	359. Hardness	360. Dissolved Solids	361. Dissolved Oxygen	362. Specific Conductance	363. Phosphate	364. Hardness	365. Dissolved Solids	366. Dissolved Oxygen	367. Specific Conductance	368. Phosphate	369. Hardness	370. Dissolved Solids	371. Dissolved Oxygen	372. Specific Conductance	373. Phosphate	374. Hardness	375. Dissolved Solids	376. Dissolved Oxygen	377. Specific Conductance	378. Phosphate	379. Hardness	380. Dissolved Solids	381. Dissolved Oxygen	382. Specific Conductance	383. Phosphate	384. Hardness	385. Dissolved Solids	386. Dissolved Oxygen	387. Specific Conductance	388. Phosphate	389. Hardness	390. Dissolved Solids	391. Dissolved Oxygen	392. Specific Conductance	393. Phosphate	394. Hardness	395. Dissolved Solids	396. Dissolved Oxygen	397. Specific Conductance	398. Phosphate	399. Hardness	400. Dissolved Solids	401. Dissolved Oxygen	402. Specific Conductance	403. Phosphate	404. Hardness	405. Dissolved Solids	406. Dissolved Oxygen	407. Specific Conductance	408. Phosphate	409. Hardness	410. Dissolved Solids	411. Dissolved Oxygen	412. Specific Conductance	413. Phosphate	414. Hardness	415. Dissolved Solids	416. Dissolved Oxygen	417. Specific Conductance	418. Phosphate	419. Hardness	420. Dissolved Solids	421. Dissolved Oxygen	422. Specific Conductance	423. Phosphate	424. Hardness	425. Dissolved Solids	426. Dissolved Oxygen	427. Specific Conductance	428. Phosphate	429. Hardness	430. Dissolved Solids	431. Dissolved Oxygen	432. Specific Conductance	433. Phosphate	434. Hardness	435. Dissolved Solids	436. Dissolved Oxygen	437. Specific Conductance	438. Phosphate	439. Hardness	440. Dissolved Solids	441. Dissolved Oxygen	442. Specific Conductance	443. Phosphate	444. Hardness	445. Dissolved Solids	446. Dissolved Oxygen	447. Specific Conductance	448. Phosphate	449. Hardness	450. Dissolved Solids	451. Dissolved Oxygen	452. Specific Conductance	453. Phosphate	454. Hardness	455. Dissolved Solids	456. Dissolved Oxygen	457. Specific Conductance	458. Phosphate	459. Hardness	460. Dissolved Solids	461. Dissolved Oxygen	462. Specific Conductance	463. Phosphate	464. Hardness	465. Dissolved Solids	466. Dissolved Oxygen	467. Specific Conductance	468. Phosphate	469. Hardness	470. Dissolved Solids	471. Dissolved Oxygen	472. Specific Conductance	473. Phosphate	474. Hardness	475. Dissolved Solids	476. Dissolved Oxygen	477. Specific Conductance	478. Phosphate	479. Hardness	480. Dissolved Solids	481. Dissolved Oxygen	482. Specific Conductance	483. Phosphate	484. Hardness	485. Dissolved Solids	486. Dissolved Oxygen	487. Specific Conductance	488. Phosphate	489. Hardness	490. Dissolved Solids	491. Dissolved Oxygen	492. Specific Conductance	493. Phosphate	494. Hardness	495. Dissolved Solids	496. Dissolved Oxygen	497. Specific Conductance	498. Phosphate	499. Hardness	500. Dissolved Solids	501. Dissolved Oxygen	502. Specific Conductance	503. Phosphate	504. Hardness	505. Dissolved Solids	506. Dissolved Oxygen	507. Specific Conductance	508. Phosphate	509. Hardness	510. Dissolved Solids	511. Dissolved Oxygen	512. Specific Conductance	513. Phosphate	514. Hardness	515. Dissolved Solids	516. Dissolved Oxygen	517. Specific Conductance	518. Phosphate	519. Hardness	520. Dissolved Solids	521. Dissolved Oxygen	522. Specific Conductance	523. Phosphate	524. Hardness	525. Dissolved Solids	526. Dissolved Oxygen	527. Specific Conductance	528. Phosphate	529. Hardness	530. Dissolved Solids	531. Dissolved Oxygen	532. Specific Conductance	533. Phosphate	534. Hardness	535. Dissolved Solids	536. Dissolved Oxygen	537. Specific Conductance	538. Phosphate	539. Hardness	540. Dissolved Solids	541. Dissolved Oxygen	542. Specific Conductance	543. Phosphate	544.

APPENDIX F
Contractor Dewatering Submittal

sc200™ UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

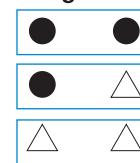
Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

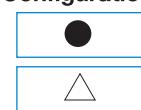
Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison

Features	Previous Models		sc200™ Controller	Benefits
	sc100™ Controller	GLI53 Controller		
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	<ul style="list-style-type: none"> Improved user interface—50% bigger Easier to read in daylight and sunlight
Data Management	IrDA Port/PDA Service Cable	N/A	SD Card Service Cable	<ul style="list-style-type: none"> Simplifies data transfer Standardized accessories/max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	<ul style="list-style-type: none"> Simplifies analog sensor connections Works with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	<ul style="list-style-type: none"> Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	<ul style="list-style-type: none"> Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	<ul style="list-style-type: none"> Unprecedented combination of sensor breadth and digital communication options


Choose from Hach's Broad Range of Digital and Analog Sensors

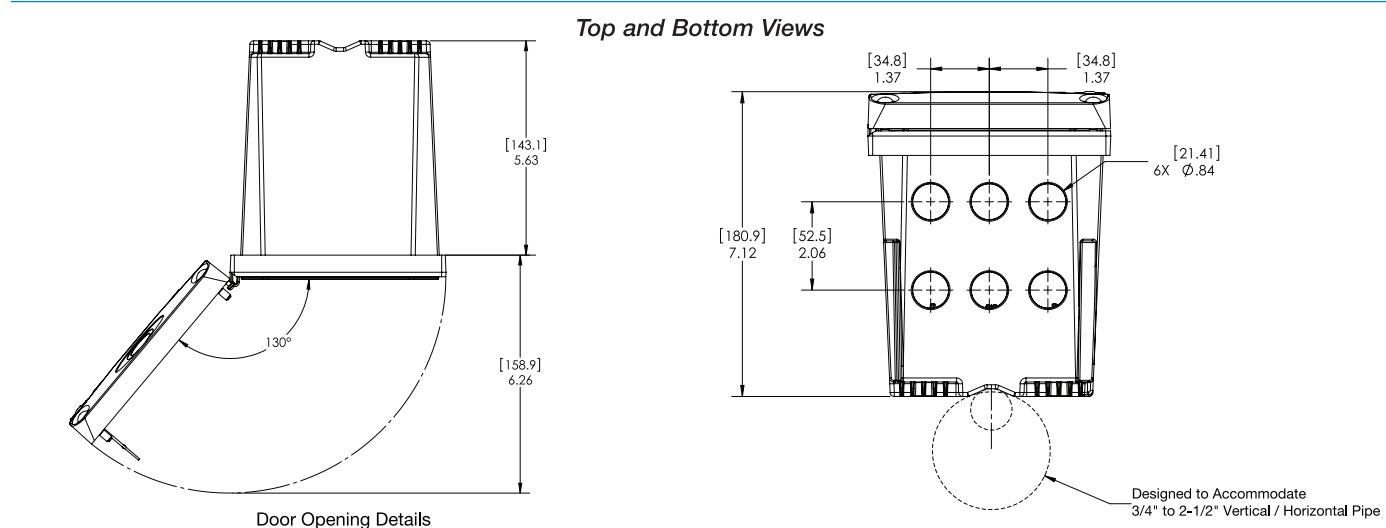
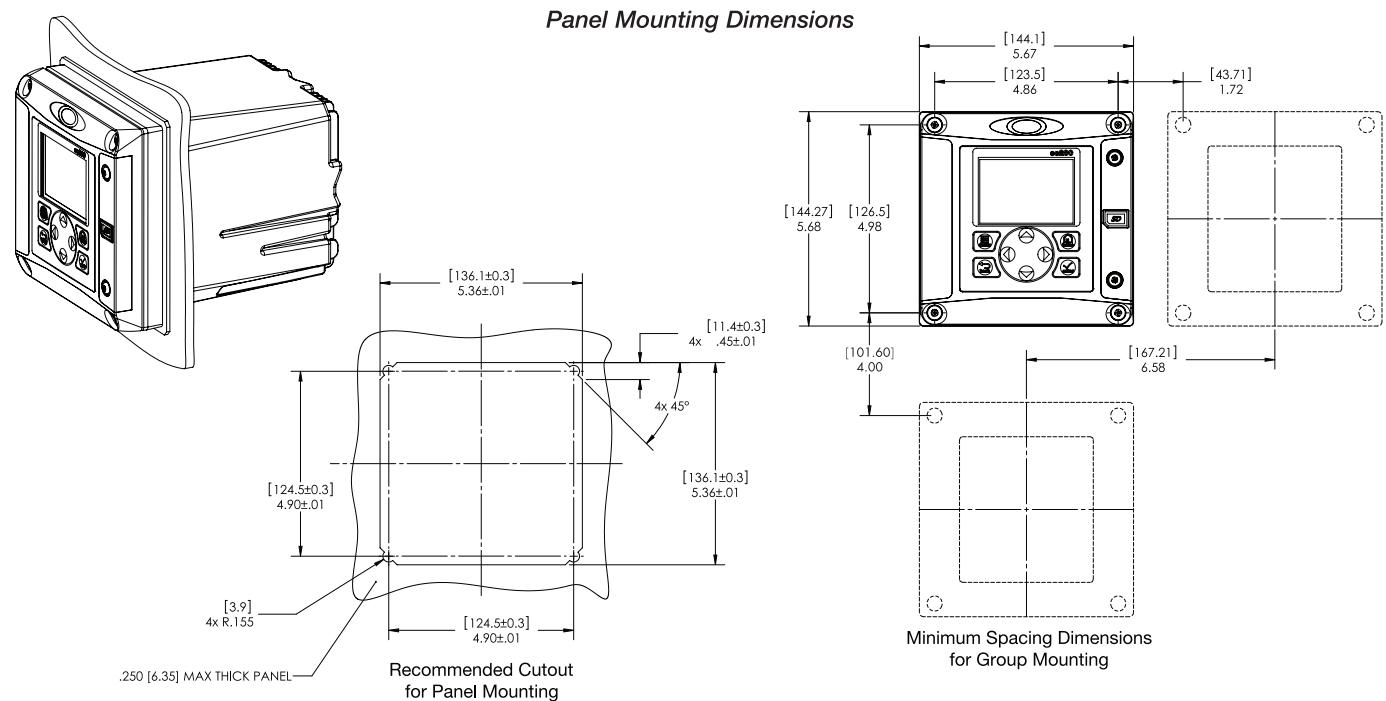
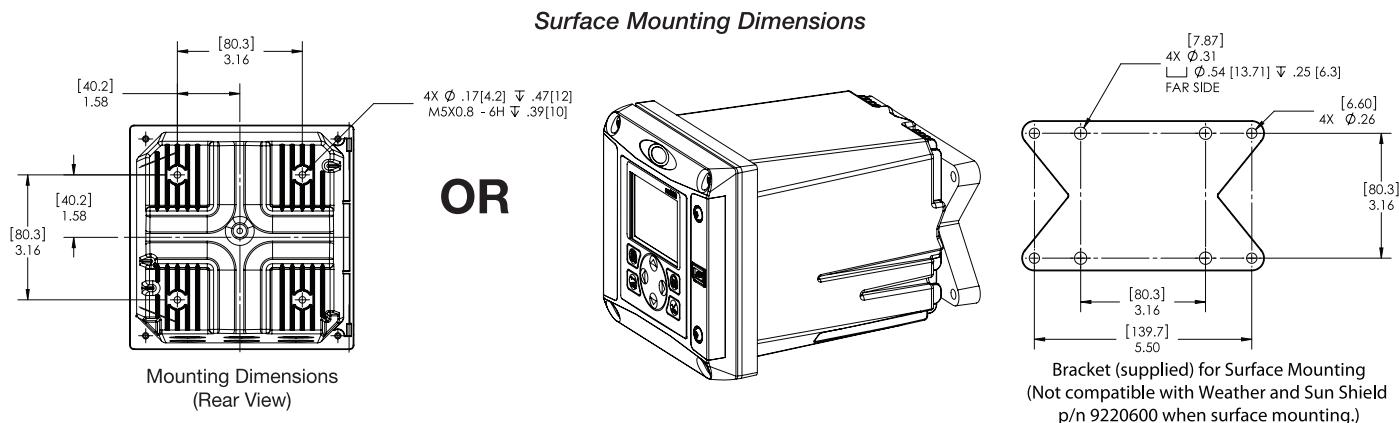
Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	●
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	●
Chlorine Dioxide	9185 sc	●
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	△
Dissolved Oxygen	LDO® Model 2, 5740 sc	●
Dissolved Oxygen	5500	△
Flow	U53, F53 Sensors	△
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	●
Oil in Water	FP360 sc	●
Organics	UVAS sc	●
Ozone	9187 sc	●
pH/ORP	pHD	●
pH/ORP	pHD, pH Combination, LCP	△
Phosphate	PHOSPHAX™ sc	●
Sludge Level	SONATAX™ sc	●
Suspended Solids	SOLITAX™ sc, TSS sc	●
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	●
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	△
Ultra Pure pH/ORP	8362	△


● = Digital △ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

2 Channel Configurations

1 Channel Configurations

Specifications*

Dimensions (H x W x D)	5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm)	Relay Functions	Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control, and Warning
Display	Graphic dot matrix LCD with LED backlighting, transreflective	Relays	Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A
Display Size	1.9 x 2.7 in. (48 mm x 68 mm)	Communication	MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2 optional
Display Resolution	240 x 160 pixels	Memory Backup	Flash memory
Weight	3.75 lbs. (1.70 kg)	Electrical Certifications	EMC
Power Requirements (Voltage)	100 - 240 V AC, 24 V DC		CE compliant for conducted and radiated emissions:
Power Requirements (Hz)	50/60 Hz		<ul style="list-style-type: none"> - CISPR 11 (Class A limits) - EMC Immunity EN 61326-1 (Industrial limits)
Operating Temperature Range	-20 to 60 °C, 0 to 95% RH non-condensing	Safety	Safety
Analog Outputs	Two (Five with optional expansion module) to isolated current outputs, max 550 Ω, Accuracy: ± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C range		cETLus safety mark for:
	Operational Mode: measurement or calculated value		<ul style="list-style-type: none"> - General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1
Analog Output Functional Mode	Linear, Logarithmic, Bi-linear, PID		<ul style="list-style-type: none"> - Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors
Security Levels	2 password-protected levels	cULus safety mark	cULus safety mark
Mounting Configurations	Wall, pole, and panel mounting		<ul style="list-style-type: none"> - General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1
Enclosure Rating	NEMA 4X/IP66		
Conduit Openings	1/2 in NPT Conduit		
Relay: Operational Mode	Primary or secondary measurement, calculated value (dual channel only) or timer		

*Subject to change without notice.

Dimensions

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552	sc200 controller, 2 channels, digital
LXV404.99.00502	sc200 controller, 1 channel, digital
LXV404.99.00102	sc200 controller, 1 channel, pH/DO
LXV404.99.00202	sc200 controller, 1 channel, Conductivity
LXV404.99.01552	sc200 controller, 2 channels, digital, Modbus RS232/RS485
LXV404.99.00112	sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602	sc200 controller, 1 channel, ultrapure conductivity
9500.99.00702	sc200 controller, 1 channel, ultrapure pH
9500.99.00662	sc200 controller, 2 channel, ultrapure conductivity
9500.99.00772	sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900	Analog pH/ORP and DO module for GLI Sensors
9013000	Analog Conductivity module for GLI Sensors
9012700	Flow module
9012800	4-20 mA Input Module
9525700	Analog pH/ORP Module for Polymetron Sensors
9525800	Analog Conductivity Module for Polymetron Sensors
9013200	Modbus 232/485 Module
9173900	Profibus DP Module
9328100	HART Module
9334600	4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600	sc200 Weather and Sun Shield with UV Protection Screen
8809200	sc200 UV Protection Screen
9218200	SD card reader (USB) for connection to PC
9218100	4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: 800-227-4224 tel 970-669-2932 fax orders@hach.com
 Outside United States: 970-669-3050 tel 970-461-3939 fax int@hach.com
hach.com

LIT2665 Rev 7

K13 Printed in U.S.A.

©Hach Company, 2013. All rights reserved.

In the interest of improving and updating its equipment,
 Hach Company reserves the right to alter specifications to equipment at any time.

3/4-inch Combination pH and ORP Sensor Kits

pH/ORP

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS® (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

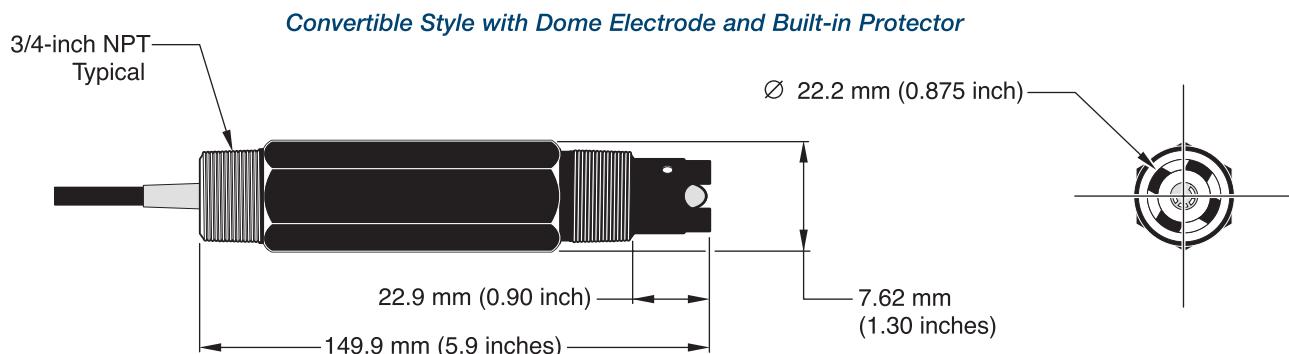
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

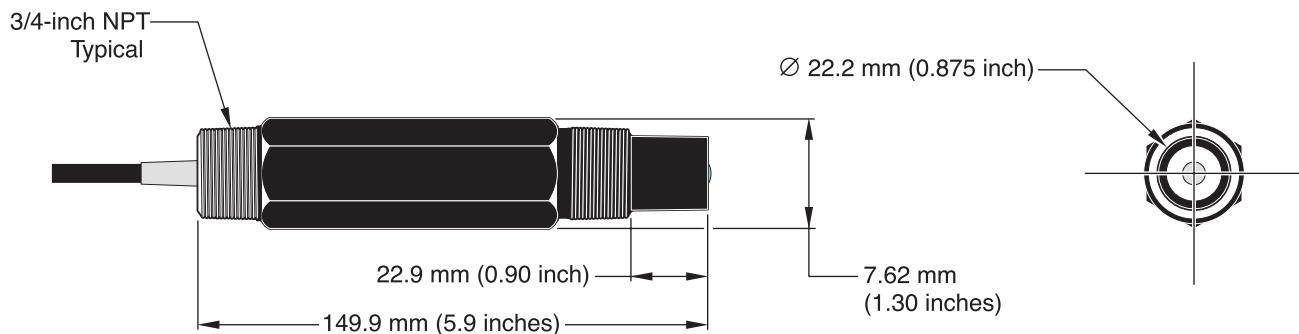
1. The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
2. The convertible style sensor shall have a Ryton® body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton® O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
4. The sensor shall communicate via MODBUS® RS-485 to a Hach sc Digital Controller.
5. The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

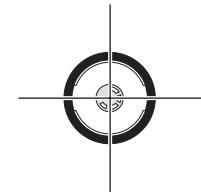
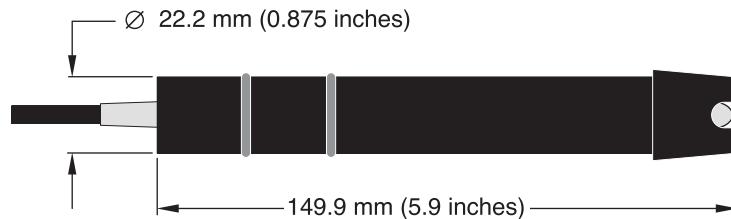
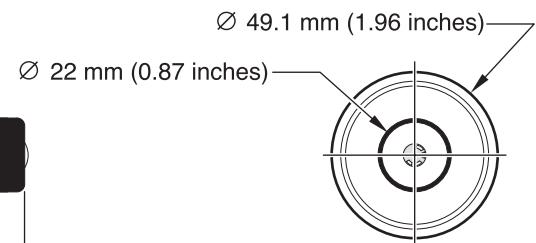
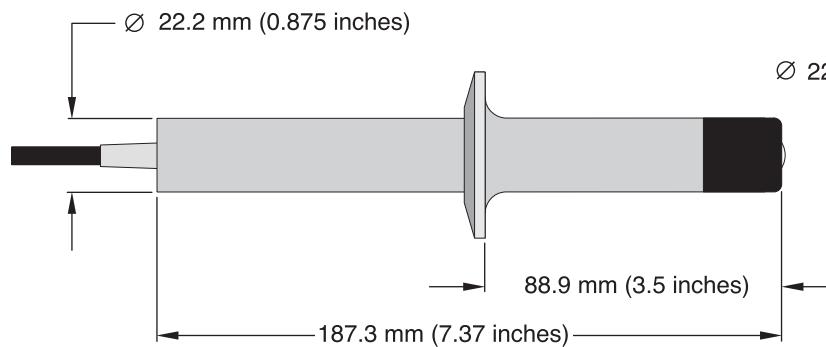
Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton® body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.





Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton® sanitary gasket.

Convertible Style with Flat Electrode

Dimensions *continued**Insertion Style with Dome Electrode and Built-In Protector**Sanitary Style*

Ordering Information

Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	<u>Electrode Type</u>	<u>Temp. Comp.</u>
DPC1R1N	pH	Convertible	Ryton	General purpose glass	None
DPC1R1A	pH	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
DPC1R2N	pH	Convertible	Ryton	Flat glass, general purpose	None
DPC1R2A	pH	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
DPC1R3A	pH	Convertible	Ryton	HF-resistant glass (see Note)	Pt 1000 ohm RTD
DPC2K1A	pH	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
DPC2K2A	pH	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
DPC3K2A	pH	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
DRC1R5N	ORP	Convertible	Ryton	Platinum	None
DRC2K5N	ORP	Insertion	PVDF	Platinum	None

NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

Replacement Digital Gateway

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

Ordering Information *continued*

Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	<u>Electrode Type</u>	<u>Temp. Comp.</u>
PC1R1N	pH	Convertible	Ryton	General purpose glass	None
PC1R1A	pH	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
PC1R2N	pH	Convertible	Ryton	Flat glass, general purpose	None
PC1R2A	pH	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
PC1R3A	pH	Convertible	Ryton	HF-resistant glass	Pt 1000 ohm RTD
PC2K1A	pH	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
PC2K2A	pH	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
PC3K2A	pH	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
RC1R5N	ORP	Convertible	Ryton	Platinum	None
RC2K5N	ORP	Insertion	PVDF	Platinum	None

Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

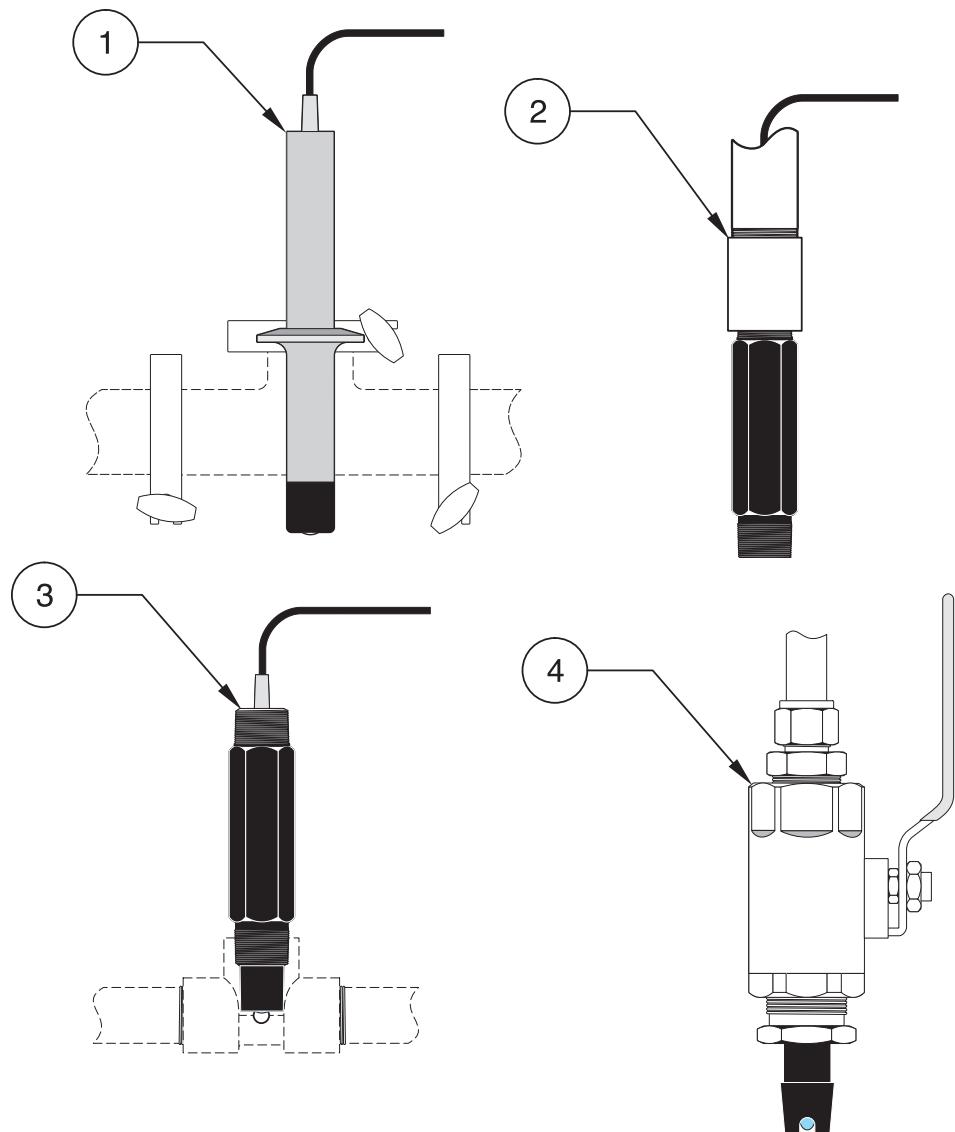
6122400	Digital Extension Cable, 1 m (3.3 ft)
5796000	Digital Extension Cable, 7.7 m (25 ft)
5796100	Digital Extension Cable, 15 m (50 ft)
5796200	Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

1W1100	Analog Interconnect Cable (order per foot)
---------------	--

Digital Termination Box

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).


5867000	Digital Termination Box
----------------	-------------------------

Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.

60A2053	Junction Box, Surface-mount, aluminum (includes mounting hardware)
60A9944	Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)
60G2052	Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)
76A4010-001	Junction Box, NEMA 4X (no mounting hardware included)

Ordering Information *continued*

1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

Mounting Hardware for PC sc and RC sc Combination Sensors

Sanitary Mount Hardware

- 9H1310** 2-inch Sanitary Tee
- 9H1132** 2-inch Sanitary Clamp
- 9H1384** 2-inch Sanitary Viton Gasket

Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe, 1/2 x 3/4-inch NPT coupling, and plastic pipe-mount junction box with terminal strip.

MH432G CPVC Pipe

Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

- MH313N3NZ** 316 SS Tee
- MH333N3NZ** CPVC Tee
- MH373N3NZ** PVC Tee

Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut.

MH116M3MZ 316 SS Hardware

To complete your pH and ORP measurement system, choose from these Hach controllers...

Model sc200 Controller

(see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.

sc200 for Hach Digital Sensors

LXV404.99.00552	sc200 controller, 2 channel, digital
LXV404.99.00502	sc200 controller, 1 channel, digital
LXV404.99.00542	sc200 controller, 2 channel, digital & mA input
LXV404.99.00512	sc200 controller, 2 channel, digital & pH/DO
LXV404.99.00522	sc200 controller, 2 channel, digital & Conductivity
LXV404.99.00532	sc200 controller, 2 channel, digital & Flow

sc200 for Hach Analog Sensors

LXV404.99.00102	sc200 controller, 1 channel, pH/DO
LXV404.99.00112	sc200 controller, 2 channel, pH/DO
LXV404.99.00202	sc200 controller, 1 channel, Conductivity
LXV404.99.00222	sc200 controller, 2 channel, Conductivity
LXV404.99.00212	sc200 controller, 2 channel, pH/DO & Conductivity
LXV404.99.00302	sc200 controller, 1 channel, Flow
LXV404.99.00332	sc200 controller, 2 channel, Flow
LXV404.99.00312	sc200 controller, 2 channel, Flow & pH/DO
LXV404.99.00322	sc200 controller, 2 channel, Flow & Conductivity

Note: Other sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS and Profibus DPV1) are available.

Model sc1000 Controller

(see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

LXV402.99.00002	sc1000 Display Module
LXV400.99.1R572	sc1000 Probe Module, 4 sensors, 4 mA Out, 4 mA In, 4 Relays, 110-230V
LXV400.99.1B572	sc1000 Probe Module, 4 sensors, 4 mA Out, 4 mA In, 4 Relays, RS-485 (MODBUS), 110-230V
LXV400.99.1F572	sc1000 Probe Module, 4 sensors, 4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V
LXV400.99.1R582	sc1000 Probe Module, 6 sensors, 4 mA Out, 4 mA In, 4 Relays, 110-230V

LIT2470 Rev 2
Printed in U.S.A.

©Hach Company, 2016. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure.

Make it simple.

Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters
P.O. Box 389
Loveland, Colorado 80539-0389
U.S.A.
Telephone: 800-227-4224
Fax: 970-669-2932
E-mail: orders@hach.com
www.hach.com

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters
P.O. Box 389
Loveland, Colorado 80539-0389
U.S.A.
Telephone: 970-669-3050
Fax: 970-461-3939
E-mail: intl@hach.com
www.hach.com

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH
Willstätterstraße 11
D-40549 Düsseldorf
GERMANY
Tel: +49 (0) 211 5288-0
Fax: +49 (0) 211 5288-143
E-mail: info@hach-lange.de
www.hach-lange.com

Be Right™

95-Gallon OverPack Salvage Drum #A95OVER - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- **DOT-Approved for Salvage:** All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- **Perfect for Spill Kits:** Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- **Sturdy Construction:** 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- **Customized for You:** We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A95OVER Specifications

Dimensions:	ext. dia. 32" x 41.5" H
Shipping Dimensions:	31.75" W x 41.5" L x 31.75" H
Sold as:	
Sold as:	1 per package
Color:	Yellow
Composition:	Polyethylene
Weight:	48 lbs.
# per Pallet:	3
Incinerable:	No
UN RATING:	1H2/X295/S
Ship Class:	250

Metric Equivalent Specifications

Dimensions:	ext. dia. 81.3cm x 105.4cm H
Shipping	80.6cm W x 105.4cm L x 80.6cm H
Dimensions:	
Weight:	21.8 kg

A95OVER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Technical Documents:

(Available at spilltech.com)

Product Data Sheet (PDS)

Chemical Compatibility (CCG)

Online:
spilltech.com

Phone:

1-800-228-3877 (N.Am.)
1-770-475-3877 (Other)

Fax:

1-800-872-3764 (N.Am.)
1-770-410-1812 (Other)

Email:

sales@spilltech.com

SAFETY DATA SHEET

Creation Date 12-Nov-2010

Revision Date 24-May-2017

Revision Number 5

1. Identification

Product Name Sulfuric Acid (Certified ACS Plus)

Cat No. : A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB;
A300C212; A300C212EA; A300P500; A300S212; A300S212EA;
A300S500; A300SI212

Synonyms Hydrogen sulfate; Vitriol brown oil; Oil of vitriol

Recommended Use Laboratory chemicals.
Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific
One Reagent Lane
Fair Lawn, NJ 07410
Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300

CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation	Category 1 A
Serious Eye Damage/Eye Irritation	Category 1
Specific target organ toxicity (single exposure)	Category 3
Target Organs - Respiratory system.	

Label Elements

Signal Word

Danger

Hazard Statements

Causes severe skin burns and eye damage

May cause respiratory irritation

Precautionary Statements**Prevention**

Do not breathe dust/fume/gas/mist/vapors/spray
Wear protective gloves/protective clothing/eye protection/face protection
Wash face, hands and any exposed skin thoroughly after handling
Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower
Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

Ingestion

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up
Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Unknown Acute Toxicity**3. Composition / information on ingredients**

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures**General Advice**

Show this safety data sheet to the doctor in attendance. Immediate medical attention is required.

Eye Contact

Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.
Immediate medical attention is required.

Skin Contact

Wash off immediately with plenty of water for at least 15 minutes. Remove and wash contaminated clothing before re-use. Call a physician immediately.

Inhalation

If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Call a physician immediately.

Ingestion

Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an unconscious person. Call a physician immediately.

Most important symptoms/effects

Causes burns by all exposure routes. Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO₂, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media DO NOT USE WATER

Flash Point Not applicable
Method - No information available

Autoignition Temperature No information available
Explosion Limits

Upper No data available
Lower No data available

Sensitivity to Mechanical Impact No information available

Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
3	0	2	W

6. Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment.

Methods for Containment and Clean Up Soak up with inert absorbent material. Keep in suitable, closed containers for disposal.

Up

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³ TWA: 1 mg/m ³	IDLH: 15 mg/m ³ TWA: 1 mg/m ³	TWA: 1 mg/m ³

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures	Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations and safety showers are close to the workstation location.
Personal Protective Equipment	
Eye/face Protection	Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.
Skin and body protection	Long sleeved clothing.
Respiratory Protection	Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.
Hygiene Measures	Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State	Liquid
Appearance	Clear, Colorless to brown
Odor	Odorless
Odor Threshold	No information available
pH	0.3 (1N)
Melting Point/Range	10 °C / 50 °F
Boiling Point/Range	290 - 338 °C / 554 - 640.4 °F
Flash Point	Not applicable
Evaporation Rate	Slower than ether
Flammability (solid,gas)	Not applicable
Flammability or explosive limits	
Upper	No data available
Lower	No data available
Vapor Pressure	< 0.001 mmHg @ 20 °C
Vapor Density	3.38 (Air = 1.0)
Specific Gravity	1.84
Solubility	Soluble in water
Partition coefficient; n-octanol/water	No data available
Autoignition Temperature	No information available
Decomposition Temperature	340°C
Viscosity	No information available
Molecular Formula	H ₂ SO ₄
Molecular Weight	98.08

10. Stability and reactivity

Reactive Hazard	Yes
Stability	Reacts violently with water. Hygroscopic.
Conditions to Avoid	Incompatible products. Excess heat. Exposure to moist air or water.
Incompatible Materials	Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides
Hazardous Decomposition Products	Sulfur oxides, Hydrogen
Hazardous Polymerization	Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Oral LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg.

Dermal LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg.

Vapor LC50 Based on ATE data, the classification criteria are not met. ATE > 20 mg/l.

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Sulfuric acid	2140 mg/kg (Rat)	Not listed	LC50 = 510 mg/m ³ (Rat) 2 h
Water	-	Not listed	Not listed

Toxicologically Synergistic Products No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Causes severe burns by all exposure routes

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen. Exposure to strong inorganic mists containing sulfuric acid may cause cancer by inhalation.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Sulfuric acid	7664-93-9	Group 1	Known	A2	X	A2
Water	7732-18-5	Not listed				

IARC: (International Agency for Research on Cancer)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans

Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human Carcinogen

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen

A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

Teratogenicity No information available.

STOT - single exposure Respiratory system

STOT - repeated exposure None known

Aspiration hazard No information available

Symptoms / effects, both acute and delayed Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sulfuric acid	-	LC50: > 500 mg/L, 96h static (Brachydanio rerio)	-	EC50: 29 mg/L/24h

Persistence and Degradability No information available

Bioaccumulation/ Accumulation No information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1830
Proper Shipping Name Sulfuric acid
Hazard Class 8
Packing Group II

TDG

UN-No UN1830
Proper Shipping Name SULFURIC ACID
Hazard Class 8
Packing Group II

IATA

UN-No UN1830
Proper Shipping Name SULFURIC ACID
Hazard Class 8
Packing Group II

IMDG/IMO

UN-No UN1830
Proper Shipping Name SULFURIC ACID
Hazard Class 8
Packing Group II

15. Regulatory information

All of the components in the product are on the following inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	X	X	-	231-639-5	-		X	X	X	X	X
Water	X	X	-	231-791-2	-		X	-	X	X	X

Legend:

X - Listed

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

N - Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.

P - Indicates a commenced PMN substance

R - Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.

S - Indicates a substance that is identified in a proposed or final Significant New Use Rule

T - Indicates a substance that is the subject of a Section 4 test rule under TSCA.

XU - Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B)).

Y1 - Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.

Y2 - Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard	Yes
Chronic Health Hazard	Yes
Fire Hazard	No
Sudden Release of Pressure Hazard	No
Reactive Hazard	Yes

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Sulfuric acid	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration
Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb

California Proposition 65 This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen

U.S. State Right-to-Know Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	X	X	X	X	X
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information

Prepared By Regulatory Affairs
Thermo Fisher Scientific
Email: EMSDS.RA@thermofisher.com

Creation Date 12-Nov-2010
Revision Date 24-May-2017
Print Date 24-May-2017
Revision Summary SDS sections updated. 2.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

PULSAFEEDER®

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPD (1.9 lph), and flow capacities to 58 GPD (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within $\pm 3\%$ of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with auto-reset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing - Optional

External Pace With Stop - Optional (125 SPM only)

Controls Options

Feature	Standard Configuration	Optional Configuration ¹
External Pacing	---	Auto / Manual Selection ²
External Pace w/ Stop (125 SPM only)	---	Auto / Manual Selection ²
Manual Stroke Rate	10:1 Ratio	100:1 Ratio
Manual Stroke Length	10:1 Ratio	10:1 Ratio
Total Turndown Ratio	100:1 Ratio	1000:1 Ratio

Note 1: On S2, S3 & S4 sizes only.

Note 2: Not available on 1000:1 turndown pumps.

1. Tested and Certified by WQA against NSF/ANSI 61 & 372.

1. PVDF and Degassing Head Pumps
See www.wqa.org for certification parameters.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers (MicroVision)

PULSATRON® Series A Plus
Electronic Metering Pumps

PULSATRON® Series A Plus

Specifications and Model Selection

MODEL			LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4	
Capacity nominal (max.)			GPH	0.25	0.25	0.42	0.50	1.00	1.25	2.00	0.50	1.38	2.42
			GPD	6	6	10	12	24	30	48	12	33	58
			LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)			PSIG (Bar)	250 (17)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)	250 (17)	150 (10)	100 (7)
				150 (10)							150 (10)		
Connections:		Tubing		1/4" ID X 3/8" OD				3/8" ID X 1/2" OD		1/4" ID X 3/8" OD			
		Piping		1/4" FNPT									
Strokes/Minute		SPM		125				250					

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available:

GFPPL

PVC

PVDF

316 SS

Diaphragm:

PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings:

PTFE

CSPE

Viton

Balls:

Ceramic

PTFE

316 SS

Alloy C

Fittings Materials Available:

GFPPL

PVC

PVDF

Bleed Valve:

Same as fitting and check valve selected, except 316SS

Injection Valve & Foot Valve Assy:

Same as fitting and check valve selected

Tubing:

Clear PVC

White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility:

+/- 3% at maximum capacity

Viscosity Max CPS:

1000 CPS

Stroke Frequency Max SPM:

125 / 250 by Model

Stroke Frequency Turn-Down Ratio:

10:1 / 100:1 by Model

Stroke Length Turn-Down Ratio:

10:1

Power Input:

115 VAC/50-60 HZ/1 ph

230 VAC/50-60 HZ/1 ph

Average Current Draw:

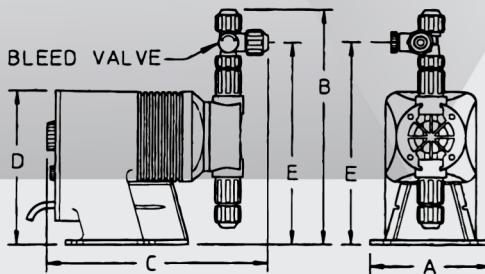
0.6 Amps

@ 230 VAC; Amps:

0.3 Amps

Peak Input Power:

130 Watts


Average Input Power @ Max SPM:

50 Watts

Custom Engineered Designs – Pre-Engineered Systems

Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

NOTE: Inches X 2.54 = cm

PULSAFEEDER®

27101 Airport Road
Punta Gorda, FL 33982
Phone: +1(941) 575-3800
Fax: +1(941) 575-4085

www.pulsatron.com

An ISO 9001 Certified Company

EMP025 A17

IMEX