

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-01) Boston, MA 02109-3912 October 4, 2019 File No. 4325.03

Re: Notice of Intent for the Remediation General Permit

Temporary Construction Dewatering for Site Redevelopment

Polar Park

Gold, Assonet and Washington Streets, Worcester, MA

Dear Sir/Madam:

On behalf of the Worcester Redevelopment Authority, W.L French Excavating Corporation (WLF) has submitted this Notice of Intent (NOI) to the U.S. Environmental Protection Agency (U.S. EPA) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) MAG910000 for the Polar Park project located at Gold, Assonet and Washington Streets in Worcester, Massachusetts (the Site). This letter and supporting documentation were prepared in accordance with the U.S. EPA guidance for construction dewatering under the RGP program. WLF is the earthwork contractor for the project and will have direct responsibility of the subcontractors performing the dewatering activities at the Site. Subcontractors working for WLF on the project will be required to meet the requirements of this NOI and the RGP. The location of the Site and the discharge location via a culvert are shown on Figure 1, and the extent of the Site area is shown on Figure 2.

The Site is located in the vicinity of 37-40 Gold Street in Worcester, Massachusetts as shown on Figure 1. Redevelopment activities at the Site include construction of a minor league baseball park, known as Polar Park. Several Massachusetts Contingency Plan (310 CMR 40.0000) (MCP) sites associated with Release Tracking Numbers (RTNs) 2-10256, 2-20972, 2-21011, 2-21012, 2-21013, 2-21030 and 2-21035 are located within the Site area. A summary of releases, contaminants of concern and regulatory status for the releases are summarized in the table below, and the approximate locations of the RTNs are shown on Figure 2.

Release Tracking Number (RTN)	Contaminants of Concern	Regulatory Status
RTN 2-10256	Petroleum hydrocarbons, metals, volatile organic compounds (VOCs), and semi-volatile organic compounds (SVOCs).	Class A-3 Response Action Outcome (RAO) with an Activity and Use Limitation (AUL)
RTN 2-20972	Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals, and petroleum hydrocarbons	Open, within active Release Abatement Measure (RAM) area
RTN 2-21011	Lead	Open, within active RAM area
RTN 2-21012	Arsenic and lead	Open, within active RAM area
RTN 2-21013	Petroleum hydrocarbons, metals, and PAHs	Open, within active RAM area
RTN 2-21030	Arsenic	Open, within active RAM area
RTN 2-21035	Petroleum related constituents from a previously undocumented underground storage tank (UST)	Immediate Response Action

The Site is located between Madison Street and Washington, Summit, and Green Streets in Worcester, Massachusetts. Much of the Site was formerly occupied by surface parking lots and two recently demolished building. Two buildings are located along Madison Street and are actively undergoing demolition, and one building located at 90 Washington Street is planned to remain until the beginning of 2020. The majority of the Site is currently an active construction Site undergoing mass soil excavation. An existing below grade drainage conduit known as the Mill Brook Conduit traverses the Site. The top of the conduit is located approximately 7 to 18 feet below ground surface (bgs). Railroad tracks are immediately adjacent to the Site to the north.

Historically, several tenements and dwellings were located at the Site as early as the 1880s. The dwellings were present on the section of the Site bounded by Madison Street, Gold Street, a former extension of Assonet Street and Washington Street until approximately 1978, when the homes were demolished, and parking lots were constructed. A foundry historically operated on the portion of the Site bounded by Gold Street, Madison Street, the CSX railroad tracks, and a former extension of Assonet Street. The foundry operated in this small section of the Site until at least 1936. By 1950, Wyman Gordon used this land for parking and as a fueling station. The fueling station was present until at least 1978. The remaining portions of the Site located north of Madison Street and east of Washington Street were originally

occupied by dwellings but have been used for commercial purposes or paved parking since approximately 1936. The northeastern most portion of the Site, located north of Plymouth Street, was previously occupied by W.M. Allen Sons Co. boiler works from as early as 1892 through at least 1950. Also located north of W.M. Allen & Sons in 1892 was a railroad freight house. By 1910, the freight house was removed and replaced by Peoples Coal Co. By 1936, Peoples Coal Co. was replaced by a plumbing supply company, followed by an electrical supply company. That parcel is currently occupied by a paved parking lot.

The earthwork to prepare the Site for redevelopment will require excavation of soil from existing grades ranging from approximately Elevation (El.) 450 feet to 490 feet to accommodate a proposed lowest level floor elevation of approximately El. 456.5 feet and the playing field at approximate El. 458 feet. Groundwater is anticipated to be encountered between approximately El. 440 feet to El. 470 feet. Elevations referenced in this report are given in feet and refer to the North American Vertical Datum of 1988. Groundwater that flows into the excavations during construction activities will be treated prior to discharge to an existing storm drain such that the discharged effluent meets the effluent limitations established by NPDES Part 2.1 and Appendix V of the RGP Application. Figure 3 includes a schematic of the proposed dewatering treatment system. The completed NOI for the Remediation General Permit form is included as Appendix A.

The receiving surface water body for the treatment system will be Mill Brook, an underground culvert that daylights at its confluence with the Middle River. At the confluence, the combined water body becomes the Blackstone River. The Middle River was sampled as the receiving surface water body. Information regarding the receiving water was collected from the Massachusetts Year 2014 Integrated List of Waters, which is included in Appendix B. Dilution calculation information including correspondence with DEP is included in Appendix C. Analytical laboratory data for on-Site and surface water sampling is summarized in Tables 1 and 2, respectively, and analytical data reports are included in Appendix D. Municipal correspondence in the form of a memorandum is provided in Appendix E, indicating a notification of discharge into the Middle River, via a municipal storm sewer system has been provided to the Owner of the discharge system. City of Worcester maps and the 2014 Massachusetts Integrated List of Waters map showing the subsurface infrastructure that will be used to convey the discharge are included in Appendix E.

According to the Information for Planning and Conservation (IPaC), the excavation activities will not impact Areas of Critical Environmental Concern (ACEC) or Habitats of Rare Wetland Wildlife. A review of the information on the U.S. Fish and Wildlife Service website led to the conclusion that the project will not impact federally-listed threatened or endangered species. A letter from that agency is included in Appendix F. An email requesting information regarding Oceanic Fisheries was sent to the National Oceanic and Atmospheric Administration (NOAA), and their response, included in Appendix F, states that no listed

species are known to occur in the vicinity of Worcester, MA in the area of discharge. Additional supplemental information required by the RGP is included in Appendix G, and is referenced within the completed NOI (Appendix A).

Thank you for your consideration of this NOI/Permit. Please feel free to contact us if you wish to discuss the information contained in this application, or if any additional information is needed.

Very truly yours,

W.L. French Excavating Corp., Operator of Permit

James Ganiatses

James Ganiatsos

Project Manager | W. L. French Excavating Corporation

Encl. Table 1 – Summary of Groundwater Quality

Table 2 – Summary of Surface Water Quality

Figure 1 – Locus Plan

Figure 2 – Site Plan

Figure 3 – Proposed Groundwater Treatment Schematic

Appendix A – Notice of Intent Form

Appendix B – Massachusetts Category 5 Waters "Waters requiring a TDML"

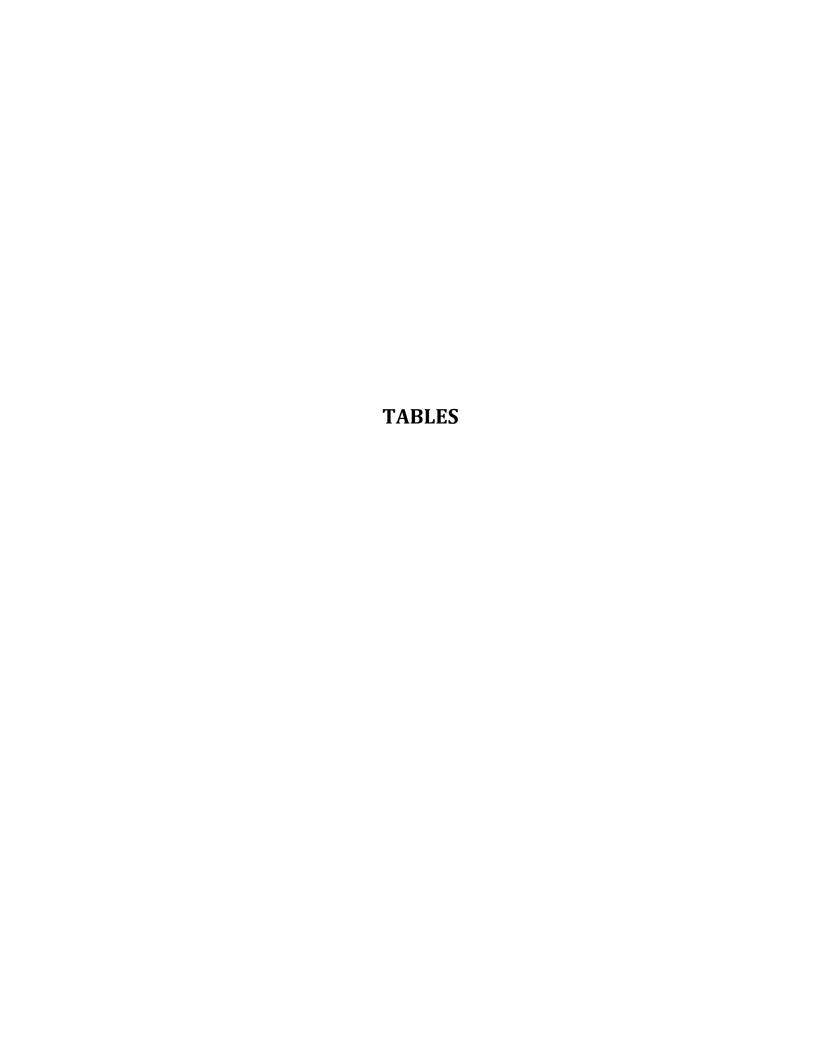
Appendix C – Middle River Dilution Calculations

Appendix D – Analytical Data Reports

Appendix E – Municipal Correspondence

Appendix F – pH Conditioner Material Safety Data Sheet

Appendix G – Federal Correspondence


Appendix H – National Register of Historic Places, Worcester, Massachusetts

cc: City of Worcester

DEP Bureau of Water Resources

Mr. Paul Moosey ~ City of Worcester

Mr. Tom Martinez, AIA ~ DAIQ Architects, Inc.

Table 1Summary of Groundwater Quality Polar Park Worcester, MA

LOCATION		I	T	67.0	BATAT 4	11440 6 (0140	HA40 ((OH))	11440 2(OM)		
LOCATION SAMPLING DATE	RCGW-2	NPDES	Units	GZ-8 7/23/2019	MW-1 7/23/2019	HA19-6 (OW) 7/23/2019	HA19-6(OW) 8/8/2019	HA19-2(OW) 7/26/2019	Maximum	Average
SAMPLE TYPE	IKCUW-2	TBEL	Units	WATER	WATER	WATER	WATER	WATER	Detection	Detection
Anions by Ion Chromatogra	aphy				***************************************			**********		
Chloride	NS	NS	ug/l	11,600	136,000	343,000	NT	191,000	343,000	170,400
Dissolved Metals										
Antimony, Dissolved	8,000	206	ug/l	<4	<4	<4	<4	<4	BDL	BDL
Arsenic, Dissolved	900	104	ug/l	<1	1.1	104.8	2.2	49.4	49.4	13
Cadmium, Dissolved	4	10.2	ug/l	<0.2	<0.2	1.6	<0.2	<0.2	0.1	0.1
Chromium, Dissolved Copper, Dissolved	300	323 242	ug/l	<1 4.4	2.2	190.4 225.2	1.4 1.8	<1 <1	2 4.4	1.1 2.2
Iron, Dissolved	NS	5,000	ug/l ug/l	59	434	33,000	599	162	599	314
Lead, Dissolved	10	160	ug/l	<1	<1	122.1	1.3	<1	1.3	0.7
Mercury, Dissolved	20	0.739	ug/l	<0.2	<0.2	0.2	<0.2	<0.2	BDL	BDL
Nickel, Dissolved	200	1,450	ug/l	<2	5.3	143	5.6	<2	5.6	3.2
Selenium, Dissolved	100	235.8	ug/l	5.5	<5	39.5	<5	<5	5.5	3.25
Silver, Dissolved	7	35.1	ug/l	< 0.4	< 0.4	< 0.4	< 0.4	<0.4	BDL	BDL
Zinc, Dissolved	900	420	ug/l	14.1	32.1	259.5	<10	<10	32.1	14.1
General Chemistry	NO	222		4.0	F4	700		10	5 00	100
Chromium, Trivalent Total	NS NS	323 30	ug/l	<10 34	51 430	732	-	<10 140	732	198
Solids, Total Suspended Cyanide, Total	0.03	178	mg/l mg/l	<0.005	<0.005	47,000 < 0.005	-	<0.005	47,000 BDL	11,901 BDL
Chlorine, Total Residual	NS	0.2	mg/l	<0.003	<0.003	<0.003	-	<0.003	BDL	BDL
pH (H)	NS	NS	SU	6.6	7.1	6.9	-	7.5	7.5	7
Nitrogen, Ammonia	NS	NS	mg/l	<0.075	<0.150	<0.375	-	0.089	0.188	0.097
Sulfate	NS	NS	ug/l	32,000	36,000	79,000	-	100,000	100,000	61,750
ТРН, SGT-HEM	5	5	mg/l	<4	<4	<4.4	-	<4	BDL	BDL
Phenolics, Total	NS	NS	ug/l	<30	<30	<30	-	<30	BDL	BDL
Chromium, Hexavalent	300	323	ug/l	<10	<10	<10	-	<10	BDL	BDL
Microextractables by GC	_ ^	0.07	'	2.21	0.01	2.21		0.01	P.P.*	BD.
1,2-Dibromoethane	2	0.05	ug/l	<0.01	<0.01	<0.01	-	<0.01	BDL	BDL
1,2-Dibromo-3-chloropropar Polychlorinated Biphenyls		NS	ug/l	<0.01	< 0.01	<0.01	-	NT	BDL	BDL
Aroclor 1016	5	NS	ug/l	<0.25	<0.25	<0.272	-	<0.25	BDL	BDL
Aroclor 1221	5	NS	ug/l	<0.25	<0.25	<0.272		<0.25	BDL	BDL
Aroclor 1232	5	NS	ug/l	<0.25	<0.25	<0.272	<u> </u>	<0.25	BDL	BDL
Aroclor 1242	5	NS	ug/l	<0.25	<0.25	<0.272	-	<0.25	BDL	BDL
Aroclor 1248	5	NS	ug/l	<0.25	<0.25	<0.272	-	<0.25	BDL	BDL
Aroclor 1254	5	NS	ug/l	<0.25	<0.25	<0.272	-	<0.25	BDL	BDL
Aroclor 1260	5	NS	ug/l	<0.2	<0.2	< 0.217	-	< 0.25	BDL	BDL
Semivolatile Organics by G	C/MS									
Bis(2-ethylhexyl)phthalate	50,000	101	ug/l	<2.2	<2.2	<2.2	-	<2.2	BDL	BDL
Butyl benzyl phthalate	10,000	NS	ug/l	<5	<5	<5	-	<4.9	BDL	BDL
Di-n-butylphthalate	5,000	NS	ug/l	<5	<5	<5	-	<4.9	BDL	BDL
Di-n-octylphthalate	100,000	NS	ug/l	<5	<5	<5	-	<4.9	BDL	BDL
Diethyl phthalate	9,000	NS	ug/l	<5	<5	<5 .f	-	<4.9	BDL	BDL
Dimethyl phthalate	50,000	NS 100	ug/l	<5	<5	<5	-	<4.9	BDL	BDL
Total Phthalates Semivolatile Organics by G	NS C/MS SIM	190	ug/l	<27.2	<27.2	<27.2	-	<26.7	BDL	BDL
Pentachlorophenol	200	1	ug/l	<1	<1	<1	_	<0.98	BDL	BDL
Group I Polycyclic Aromatic		hons	ug/1	\1	\1	\1	<u>-</u>	<0.70	DDL	DDL
Benzo(a)anthracene	1,000	NS	ug/l	0.35	<0.1	<0.1	_	<0.1	0.35	0.13
Benzo(a)pyrene	500	NS	ug/l	0.34	<0.1	<0.1	-	<0.1	0.34	0.12
Benzo(b)fluoranthene	400	NS	ug/l	0.74	0.19	<0.1	-	<0.1	0.74	0.26
Benzo(k)fluoranthene	100	NS	ug/l	0.21	<0.1	<0.1	-	<0.1	0.21	0.09
Chrysene	70	NS	ug/l	0.38	<0.1	<0.1	-	<0.1	0.38	0.13
Dibenzo(a,h)anthracene	40	NS	ug/l	<0.1	<0.1	<0.1	-	<0.1	BDL	BDL
Indeno(1,2,3-cd)pyrene	100	NS	ug/l	0.48	0.2	<0.1	-	<0.1	0.48	0.2
Total Group I PAHs	NS	1	ug/l	2.6	0.89	<0.7	-	<0.7	2.6	1.0
Group II Polycyclic Aromati				0.4	0.1	0.4		0.1	P	B.D.*
Acenaphthene	10,000	NS NC	ug/l	<0.1	<0.1	<0.1	-	<0.1	BDL	BDL
Acenaphthylene Anthracene	40 30	NS NS	ug/l	<0.1 <0.1	<0.1	<0.1	-	<0.1	BDL BDL	BDL
Anthracene Benzo(ghi)perylene	20	NS NS	ug/l	<0.1 0.45	<0.1 0.25	<0.1 <0.1	-	<0.1 <0.1	0.45	BDL 0.2
Fluoranthene	200	NS NS	ug/l ug/l	0.45	0.25	<0.1	-	<0.1 <0.1	0.45	0.24
Fluorene	40	NS NS	ug/l ug/l	<0.1	<0.1	<0.1	-	<0.1	BDL	BDL
Naphthalene	700	20	ug/l	0.2	<0.1	<0.1	-	<0.1	0.2	0.1
Phenanthrene	10,000	NS	ug/l	0.2	<0.1	<0.1	-	<0.1	0.2	0.1
Pyrene	20	NS	ug/l	0.56	0.12	<0.1	-	<0.1	0.56	0.2
Total Group II PAHs	NS	100	ug/l	2.53	1.11	<0.9	-	<0.9	2.53	1.14
Total Hardness by SM 2340										
Hardness	NS	NS	ug/l	156,000	388,000	681,000	-	401,000	681,000	406,500
Total Metals		00:							P	P
Antimony, Total	NS NC	206	ug/l	<4	<4	<4	-	<4	BDL	BDL
Arsenic, Total	NS NC	104	ug/l	2.78	11.55	141.6	-	52.42	141.6	52.1
Cadmium, Total	NS NC	10.2	ug/l	<0.2	<0.2	2.1 721.0	-	<0.2	2.1	0.6
Chromium, Total Copper, Total	NS NS	323 242	ug/l	2.21 8.94	51.06 21.25	731.9 403.2	<u>-</u>	3.78 3.47	731.9 403.2	197 109
Iron, Total	NS NS	5,000	ug/l ug/l	1,090	17,100	145,000	-	2,400	145,000	41,398
Lead, Total	NS	160	ug/l	6.86	9.24	510	-	1.09	510	132
Mercury, Total	NS	0.739	ug/l	<0.2	<0.2	0.2	-	<0.2	0.2	0.1
Nickel, Total	NS	1,450	ug/l	2.13	68.88	498.4	-	2.37	498.4	143
Selenium, Total	NS	235.8	ug/l	<5	<5	54.44	-	<5	54.44	15.49
Silver, Total	NS	35.1	ug/l	<0.4	<0.4	1.4	-	<0.4	1.4	0.5
Zinc, Total	NS	420	ug/l	21.96	229	790.2	-	12.66	790.2	263

Table 1Summary of Groundwater Quality Polar Park Worcester, MA

LOCATION		NDDEC		GZ-8	MW-1	HA19-6 (OW)	HA19-6(OW)	HA19-2(OW)	36 .	
SAMPLING DATE	RCGW-2	NPDES	Units	7/23/2019	7/23/2019	7/23/2019	8/8/2019	7/26/2019	Maximum	Average
SAMPLE TYPE		TBEL		WATER	WATER	WATER	WATER	WATER	Detection	Detection
Volatile Organics by GC/MS			•							
Methylene chloride	2,000	4.6	ug/l	<1	<1	<1	-	<1	BDL	BDL
1,1-Dichloroethane	2,000	70	ug/l	<1.5	<1.5	<1.5	-	<1.5	BDL	BDL
Carbon tetrachloride	2	4.4	ug/l	<1	<1	<1	-	<1	BDL	BDL
1,1,2-Trichloroethane	900	5	ug/l	<1.5	<1.5	<1.5	-	<1.5	BDL	BDL
Tetrachloroethene	50	5	ug/l	<1	<1	<1	-	<1	BDL	BDL
1,2-Dichloroethane	5	5	ug/l	<1.5	<1.5	<1.5	-	<1.5	BDL	BDL
1,1,1-Trichloroethane	4,000	5	ug/l	<2	<2	<2	-	<2	BDL	BDL
Benzene	1,000	5	ug/l	<1	<1	<1	-	<1	BDL	BDL
Toluene	40,000	NS	ug/l	<1	<1	<1	-	<1	BDL	BDL
Ethylbenzene	5,000	NS	ug/l	<1	<1	<1	-	<1	BDL	BDL
Vinyl chloride	2	2	ug/l	<1	<1	<1	-	<1	BDL	BDL
1,1-Dichloroethene	80	3.2	ug/l	<1	<1	<1	-	<1	BDL	BDL
cis-1,2-Dichloroethene	20	70	ug/l	<1	<1	<1	-	<1	BDL	BDL
Trichloroethene	5	5	ug/l	<1	<1	<1	-	<1	BDL	BDL
1,2-Dichlorobenzene	2,000	600	ug/l	<5	<5	<5	-	<5	BDL	BDL
1,3-Dichlorobenzene	6,000	320	ug/l	<5	<5	<5	-	<5	BDL	BDL
1,4-Dichlorobenzene	60	5	ug/l	<5	<5	<5	-	<5	BDL	BDL
p/m-Xylene	3,000	NS	ug/l	<2	<2	<2	-	<2	BDL	BDL
o-xylene	3,000	NS	ug/l	<1	<1	<1	-	<1	BDL	BDL
Xylenes, Total	3,000	NS	ug/l	<1	<1	<1	1	<1	BDL	BDL
Acetone	50	7.97	mg/l	< 0.010	< 0.010	< 0.010	1	< 0.010	BDL	BDL
Methyl tert butyl ether	5,000	70	ug/l	<10	<10	<10	-	<10	BDL	BDL
Tert-Butyl Alcohol	NS	120	ug/l	<100	<100	<100	-	<100	BDL	BDL
Tertiary-Amyl Methyl Ether	NS	90	ug/l	<20	<20	<20	-	<20	BDL	BDL
Volatile Organics by GC/MS	S-SIM									
1,4-Dioxane	6,000	NS	ug/l	<50	<50	<50	-	<50	BDL	BDL

Notes:

- 1. The samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated and analyzed by Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts.
- 2. HA19-6(OW) was re-sampled for additional dissolved metals analysis due to high total suspended solids, iron, and arsenic detections in the July 23, 2019 sample.
- 3. Average concentrations for each analyte were calculated as an average of detected concentrations where half of the detection limit was used where analytes were not detected. Please note, for the maximum and average calcuations, the metals data from July 23, 2019 for the HA19-6(OW) samples was excluded based on elevated total solids likely related to elevated concentrations of dissolved metals in the sample.
- 4. Bolded values indicate detections of that analyte above laboratory reporting limits.
- 5. Italicized values indicate detections of that analyte above the applicable Massachusetts Contingency Plan (MCP) Reportable Concentrations for Groundwater (MCP RCGW-2).
- 6. Highlighted values indicate detections of that analyte above the National Pollution Discharge Elimination System (NPDES) Technology-Based Effluent Limitation (TBEL) criteria.
- $7.\ Total\ metals\ are\ provided\ for\ informational\ purposes\ only\ and\ are\ not\ compared\ to\ RCGW-2\ or\ NPDES\ TBEL\ criteria.$
- 8. Abbreviations:
- "<" indicates the analyte was not detected above the laboratory reporting limit shown

BDL = below detection limit

NS = no standard NT = not tested

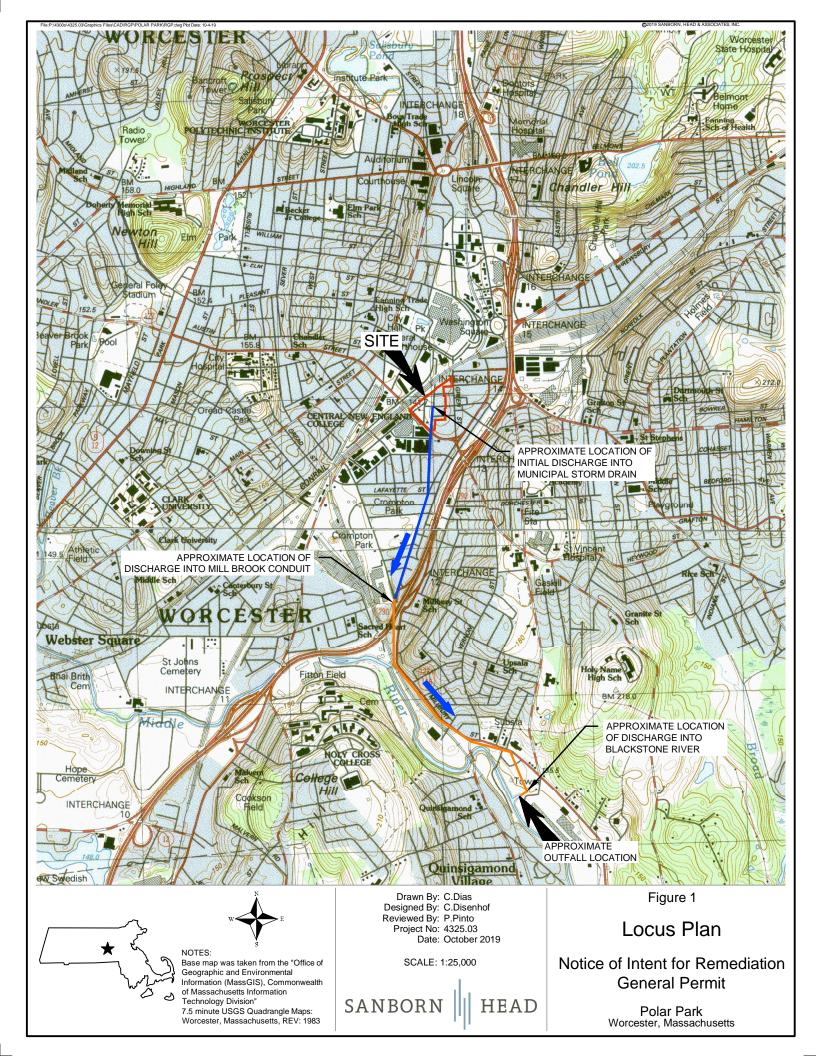
ug/l = micrograms per liter

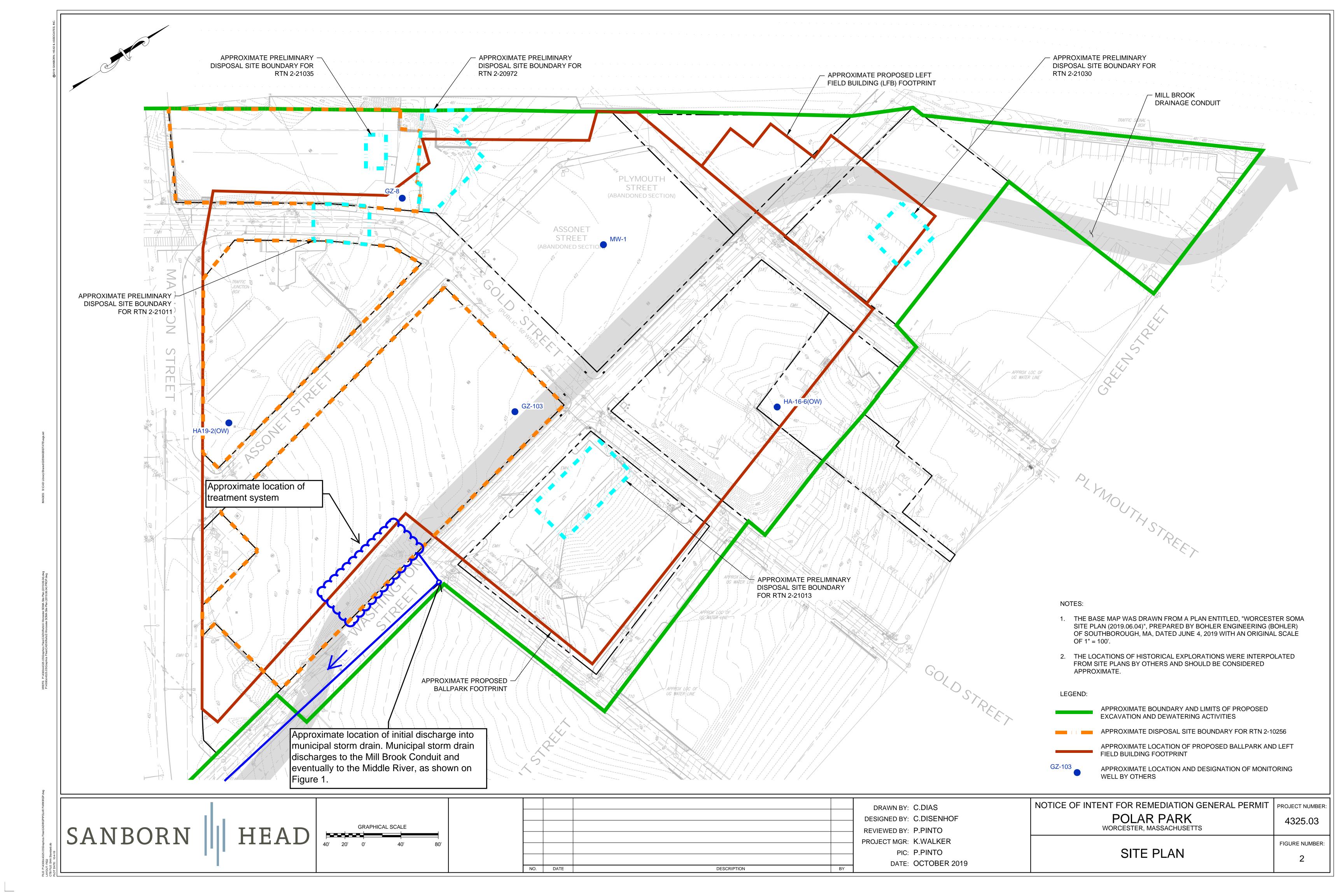
mg/l = milligrams per liter

Table 2

Summary of Surface Water Quality Polar Park Worcester, MA

LOCATION		MIDDLE RIVER
SAMPLING DATE	Units	7/26/2019
SAMPLE TYPE		WATER
General Chemistry		
рН (Н)	SU	7.5
Nitrogen, Ammonia	mg/l	0.125
Total Hardness by SM 234	0B	
Hardness	ug/l	56,600
Total Metals		
Antimony, Total	ug/l	<4
Arsenic, Total	ug/l	17.16
Cadmium, Total	ug/l	0.66
Chromium, Total	ug/l	5.63
Copper, Total	ug/l	17.31
Iron, Total	ug/l	4,970
Lead, Total	ug/l	25.32
Mercury, Total	ug/l	<0.2
Nickel, Total	ug/l	4.38
Selenium, Total	ug/l	<5
Silver, Total	ug/l	<0.4
Zinc, Total	ug/l	57.55


Notes:


- 1. The samples were collected by Sanborn, Head & Associates, Inc. on the dates indicated and analyzed by Alpha Analytical Laboratories, Inc. of Westborough, Massachusetts.
- 2. Bolded values indicate detections of that analyte above laboratory reporting limits.
- 3. Abbreviations:

mg/l = milligrams per liter

"<" indicates the analyte was not detected above the laboratory reporting limit shown NS = no standard ug/l = micrograms per liter

PRECIPITATION

NOTES:

- 1. SYSTEM ASSUMES A MAXIMUM FLOW OF 200 GALLONS PER
- MINUTE (GPM).
 2. SAMPLING PORTS TO BE LOCATED ON ALL TREATMENT SYSTEM COMPONENTS.

R PARKR							DRAWN BY: C.DIAS	NOTICE OF INTENT FOR REMEDIATION GENERAL PERMI	T PROJECT NUMBER:
зерирот — — — — — — — — — — — — — — — — — — —							DESIGNED BY: C.DISENHOF	POLAR PARK	4325.03
SANBORN	HEAD	NOT TO SCALE					REVIEWED BY: P.PINTO	WORCESTER, MASSACHUSETTS	1020100
	NEAD	NOT TO SCALL					PROJECT MGR: K.WALKER	PROPOSED GROUNDWATER	FIGURE NUMBER:
M4325.03)	'l'						PIC: P.PINTO		3
PA43008 OUT: FIGS OT DATE: TO TO TES TO			NO.	DATE	DESCRIPTION	BY	DATE: OCTOBER 2019	TREATMENT SCHEMATIC	

APPENDIX A NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Gold, Assonet and Washington Street							
Polar Park	Street:							
	City: Worcester		State: MA	^{Zip:} 01610				
2. Site owner	Contact Person: Greg Ormsby							
Worcester Redevelopment Authority	Telephone: (508) 799-1400	Email: Orr	msbyG@worcesterma.gov					
	Mailing address: City Hall 4th Floor 455 Main Street							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: Local Municipality	City: Worcester		State: MA	Zip: 01608				
3. Site operator, if different than owner	Contact Person: James Ganiatsos							
W.L. French Excavating Corporation	Telephone: 978-600-2134	Email: jga	aniatsos@wlfrench.com					
	Mailing address: 14 Sterling Road Street:							
	City: N. Billerica		State: MA	Zip: 01862				
4. NPDES permit number assigned by EPA: NA	5. Other regulatory program(s) that apply to the site (check all that apply): ■ MA Chapter 21e; list RTN(s):2-21030, and 2-21035□ CERCLA							
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	2-10256, 2-20972, 2-21011, 2-21012, 2-21013 NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ UIC Pro	ogram Pretreatment					

P Descriving water information.

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classifi	cation of receiving water(s):
Blackstone River	MA51-03	Class E	3
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic F	River
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No See Figure	1
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes ■ No		
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP. See Appendix B			
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in	1.90 MGD See Appendix C
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s			7.60
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: August 13 7. Has the operator attached a summary of receiving (check one): ■ Yes □ No See Table 1 and Appendix 13	, 2019 water sampling results as required in Part 4.2 of the		
C. Source water information:			
1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other	
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No See Appendix D	☐ Yes ☐ No		

2. Source water contaminants: Chloride, Arsenic, Cadmium, Chromium, Copper, Iron, Li pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Ch	ead, Mercury, Nickel, Selenium, Silver, Zinc, 155, Ammonia, Sulfate, Benzo(a)anthracene, Benzo(a) rrysene, Indeno(1,2,3-cd)pyrene, Benzo(ghi)perylene, Fluoranthene, Naphthalene, Phenanthrene, Pyrene
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	v discharge ■ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Via drain to an underground culvert, Unnamed Tributary "Mill Brook" (MA51-08), which discharges to Blackstone River	42.23402, -71.79342
Discharges enter the receiving water(s) via (check any that apply): ☐ Direct dis	scharge to the receiving water Indirect discharge, if so, specify:
Effluent will enter an existing storm water drainage system that discharges into Mill Brook, an exist	sting below-grade conduit. Mill Brook discharges into the Blackstone River at the approximate Lat/Long specified.
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	er system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No See Appendix E
Has the operator has received permission from the owner to use such system for obtaining permission: Prior to discharge, a copy of the NOI approval will be	or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for one provided to the City of Worcester as requested.
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): Novem	ber 2019 to April 2020
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)
	a. If Activity Categ	ory I or II: (check all that apply)
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organi □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organi □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)
 II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	B. If Activity Category III, IV G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

4. Influent and Effluent Characteristics

	Known	Known		75 7. 4	D ()	In	fluent	Effluent Li	imitations
Parameter belie	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	4	4500NH3-	0.075	0.188	0.097	Report mg/L	
Chloride		V	4	300.0	0.5	343,000	170,400	Report µg/l	
Total Residual Chlorine	~		4	4500CL-D	0.02	ND		0.2 mg/L	84
Total Suspended Solids		V	4	2540D	16	47,000	11,901	30 mg/L	
Antimony	~		4	200.8	40	ND		206 μg/L	
Arsenic		~	4	200.8	1	141.6	52.09	104 μg/L	10
Cadmium		~	4	200.8	0.2	2.1	0.6	10.2 μg/L	0.2759
Chromium III		V	4	200.8	1	731.9	197.2	323 µg/L	
Chromium VI	~		4	200.8	10	ND		323 µg/L	
Copper		~	4	200.8	1	403.2	109.2	242 μg/L	9.5
Iron		~	4	200.7	50	145,000	41,398	5,000 μg/L	1000
Lead		~	4	200.8	1	510	132	160 μg/L	3.29
Mercury		~	4	245.1	0.2	0.2	0.1	0.739 μg/L	
Nickel		~	4	200.8	2	498.4	142.9	1,450 μg/L	376.3
Selenium		~	4	200.8	5	54.44	15.49	235.8 μg/L	38
Silver		~	4	200.8	0.4	1.4	0.5	35.1 μg/L	
Zinc		~	4	200.8	10	790.2	263.5	420 μg/L	
Cyanide	~		4	4500CN-C	0.005	ND		178 mg/L	
B. Non-Halogenated VOCs	6								
Total BTEX	~		4	624.1	1	ND		100 μg/L	
Benzene	~		4	624.1	1	ND		5.0 μg/L	
1,4 Dioxane	~		4	624.1-SIM		ND		200 μg/L	
Acetone	~		4	624.1	0.010	ND		7.97 mg/L	
Phenol	V		4	420.1	30	ND		1,080 µg/L	

	Known	Known		# of samples Test method (#)		Int	fluent	Effluent Limitations		
Parameter	or believed absent	or believed present	_		Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride	V		4	624.1	1	ND		4.4 μg/L		
1,2 Dichlorobenzene	~		4	624.1	5	ND		600 μg/L		
1,3 Dichlorobenzene	~		4	624.1	5	ND		320 µg/L		
1,4 Dichlorobenzene	~		4	624.1	5	ND		5.0 μg/L		
Total dichlorobenzene	~		4	624.1	5	ND		763 µg/L in NH		
1,1 Dichloroethane	~		4	624.1	1.5	ND		70 μg/L		
1,2 Dichloroethane	~		4	624.1	1.5	ND		5.0 μg/L		
1,1 Dichloroethylene	~		4	624.1	1	ND		3.2 μg/L		
Ethylene Dibromide								0.05 μg/L		
Methylene Chloride	~		4	624.1	1	ND		4.6 μg/L		
1,1,1 Trichloroethane	~		4	624.1	2	ND		200 μg/L		
1,1,2 Trichloroethane	~		4	624.1	1.5	ND		5.0 μg/L		
Trichloroethylene	~		4	624.1	1	ND		5.0 μg/L		
Tetrachloroethylene	~		4	624.1	1	ND		5.0 μg/L		
cis-1,2 Dichloroethylene	~		4	624.1	1	ND		70 μg/L		
Vinyl Chloride	~		4	624.1	1	ND		2.0 μg/L		
D. Non-Halogenated SVO	Ce.									
Total Phthalates	· •		4	625.1	5	ND		190 μg/L		
Diethylhexyl phthalate	~		4	625.1	2.2	ND		101 μg/L		
Total Group I PAHs		~	4	625.1-SIM	0.1	2.6	1.05	1.0 μg/L		
Benzo(a)anthracene		~	4	625.1-SIM	0.1	0.35	0.13		0.0289	
Benzo(a)pyrene		~	4	625.1-SIM	0.1	0.34	0.12		0.0289	
Benzo(b)fluoranthene		~	4	625.1-SIM	0.1	0.74	0.26		0.0289	
Benzo(k)fluoranthene		~	4	625.1-SIM	0.1	0.21	0.09	As Total PAHs	0.0289	
Chrysene		~	4	625.1-SIM	0.1	0.38	0.13		0.0289	
Dibenzo(a,h)anthracene	~		4	625.1-SIM	0.1	ND				
Indeno(1,2,3-cd)pyrene		~	4	625.1-SIM	0.1	0.48	0.2	7	0.0289	

	Known	Known	# of samples	Test method (#)		Inf	fluent	Effluent Limitations		
Parameter	or believed absent	or believed present			Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs		~	4	625.1-SIM	0.1	2.53	1.14	100 μg/L		
Naphthalene		V	4	625.1-SIM	0.1	0.2	0.1	20 μg/L		
E. Halogenated SVOCs										
Total PCBs	V		4	608.3	0.25	ND		0.000064 µg/L		
Pentachlorophenol	~		4	625.1-SIM	1	ND		1.0 µg/L		
F. Fuels Parameters Total Petroleum	·		4	1664A	4	ND		5.0 mg/L		
Hydrocarbons Ethanol								Report mg/L		
Methyl-tert-Butyl Ether	V		4	624.1	10	ND		70 μg/L		
tert-Butyl Alcohol	~		4	624.1	100	ND		120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether	~		4	624.1	20	ND		90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C50, addition	nal pollutan 4500H+-B		if so, specify:	7			
Hardness			4	200.7	660	681,000	406,500			
Sulfate		~	4	4500SO4-	10,000	100,000	61,750			
_										
-										

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify: pH adjustment (if needed)	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. The first element of the treatment system will be a fractionalization tank where solids will settle out. The effluent will then pass through the following as necessary: a bag factivated carbon vessel, and a cation resin vessel. The effluent will be discharged to an existing catch basin on-site with discharges to the existing storm drain system.	filter, a granular
Identify each major treatment component (check any that apply):	
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Cation resin vessel and/or carbon vessels (if needed)	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Fractionalization tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200
Provide the proposed maximum effluent flow in gpm.	200
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
Sulfuric Acid (See Appendix F)
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes 🗆 No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
■ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ■ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No See Appendix F
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach. See Appendix G
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No
See Appendix H
See Appendix H Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No I. Supplemental information
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Appendix B includes the Massachusetts Category 5 Waters "Waters requiring a TMDL" and lists pollutants for the Middle River Appendix C includes calculations for the dilution factor Appendix D includes the analytical data collected by Sanborn, Head & Associates, Inc. Appendix E includes municipal correspondence Appendix G includes correspondence from the National Oceanic and Atmospheric Administration and the US Fish and Wildlife Service

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in at that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge.	loped and implemented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □
discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	See Appendix E
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □ No □ NA ■
☐ Other; if so, specify:	
Signature: James Ganiatios Dat	e: 10/4/19
Print Name and Title: James Ganiatsos, Project Manager	

APPENDIX B

MASSACHUSETTS CATEGORY 5 WATERS "WATERS REQUIRING A TMDL"

Massachusetts Category 5 Waters "Waters requiring a TMDL"

EPA TMDL NO.	IMPAIRMENT CAUSE	UNITS	SIZE	DESCRIPTION	SEGMENT ID	NAME
1			-	1		Blackstone
T	(Non-Native Aquatic Plants*)	ACRES	2	Sutton	MA51002	Aldrich Pond
	Aquatic Plants (Macrophytes)					
	(Non-Native Aquatic Plants*)	ACRES	20	Northbridge	MA51003	Arcade Pond
	Excess Algal Growth					
	Escherichia coli	MILES	1.7	Perennial portion only, from outlet of unnamed pond at Whitehall Way, Bellingham to confluence with Peters River, Bellingham.	MA51-32	Arnolds Brook
	(Debris/Floatables/Trash*)	MILES	2.9	Outlet of small unnamed impoundment north of	MA51-07	Beaver Brook
	(Fish Kills*)			Beth Israel School and Flag Street School,		
	(Physical substrate habitat alterations*)			Worcester to confluence with Middle River, Worcester. (Includes underground portion)		
	Bottom Deposits			Wordston (morados andongrouna portion)		
	Escherichia coli					
	Taste and Odor					
	(Debris/Floatables/Trash*)	MILES	10.4	Confluence of Middle River and Mill Brook	MA51-03	Blackstone River
	(Other flow regime alterations*)			(downstream of the railroad spur bridge west of		
	(Physical substrate habitat alterations*)			Tobias Boland Boulevard), Worcester to Fisherville Dam, Grafton. (through a portion of		
	Ambient Bioassays Chronic Aquatic Toxicity			Fisherville Pond formerly segment MA51048)		
	Aquatic Macroinvertebrate Bioassessments					
	Escherichia coli					
	Excess Algal Growth					
	Fishes Bioassessments					
	Foam/Flocs/Scum/Oil Slicks					
	Lead					
	Nutrient/Eutrophication Biological Indicators					
	Other					
	Oxygen, Dissolved					
	Phosphorus (Total)					
	Sedimentation/Siltation					
	Taste and Odor					
	Turbidity					
_	Sedimentation/Siltation (Taste and Odor)					

Massachusetts Category 5 Waters "Waters requiring a TMDL"

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL NO.
Poor Farm Brook	MA51-17	Headwaters, West Boylston to the inlet of Shirley	3.6	MILES	(Low flow alterations*)	1
		Street Pond, Shrewsbury (through City Farm			Aquatic Plants (Macrophytes)	
		Pond formerly segment MA51020).			Sedimentation/Siltation	
Riley Pond	MA51134	Northbridge	7	ACRES	Turbidity	1
Singletary Brook	MA51-31	Headwaters, outlet Singletary Pond, Millbury to	1.5	MILES	(Non-Native Aquatic Plants*)	
		confluence with the Blackstone River, Millbury (excluding the approximately 0.4 miles through Brierly Pond segment MA51010).			Aquatic Plants (Macrophytes)	
Sutton Falls	MA51163	Sutton	10	ACRES	Turbidity	
Tatnuck Brook	MA51-15	Outlet Holden Reservoir #2, Holden to inlet of	3.3	MILES	(Debris/Floatables/Trash*)	
		Coes Reservoir, Worcester (through Cook Pond formerly segment MA51027 and Patch Reservoir			(Non-Native Aquatic Plants*)	
		formerly segment MA51027 and Patch Reservoir			(Other flow regime alterations*)	
		is many segment in terms,			Aquatic Macroinvertebrate Bioassessments	
					Sedimentation/Siltation	
					Turbidity	
Unnamed Tributary	MA51-08	(Also known as "Mill Brook") Outlet Indian Lake,	5.6	MILES	(Debris/Floatables/Trash*)	
		Worcester to confluence with Middle River (downstream of the railroad spur bridge west of			(Physical substrate habitat alterations*)	
		Tobias Boland Boulevard), Worcester (through			Ammonia (Un-ionized)	
		Salisbury Pond formerly segment MA51142).			Aquatic Plants (Macrophytes)	2319
					Fecal Coliform	
					Foam/Flocs/Scum/Oil Slicks	
					Nutrient/Eutrophication Biological Indicators	
					Other	
					Sedimentation/Siltation	
			Taste and Odor			
					Turbidity	2319
Unnamed Tributary	MA51-20	From the outlet of Leesville Pond, Worcester to	1.4	MILES	(Debris/Floatables/Trash*)	
		the confluence with the Middle River, Worcester			(Low flow alterations*)	
		(through Curtis ponds formerly reported as segments MA51033 and MA51032).			(Non-Native Aquatic Plants*)	
					Aquatic Plants (Macrophytes)	360
					Aquatic Plants (Macrophytes)	361
					Fecal Coliform	
					Nutrient/Eutrophication Biological Indicators	
					Sedimentation/Siltation	

APPENDIX C MIDDLE RIVER DILUTION CALCULATIONS

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): MA MA20190806202847788000 42.23465, -71.79388 2019-08-06 16:29:03 -0400

Basin Characteristics			
Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	63	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	4.39	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.0828	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Parameter Code	Parameter Name		Value	Units		Min Limit	Max Limit
RNAREA	Drainage Area		63	square miles		1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	Л	4.39	percent		0.32	24.6
ORFTPERSTR	Stratified Drift per Stream Length	1	0.0828	square mile per m	nile	0	1.29
MAREGION	Massachusetts Region		0	dimensionless		0	1
_ow-Flow Statistics Flow F	Report[Statewide Low Flow WRIR00 4135] Ower, Plu: Prediction Interval-Upper, SEp: S	Standard Erro	r of Prediction, SE	E: Standard Error (oth	er see repo	irt)	
.ow-Flow Statistics Flow F	Report(Statewide Low Flow WRIR00 4135) wer, Plu: Prediction Interval-Upper, SEp: S	Standard Erro Value	r of Prediction, SE Unit	E: Standard Error (oth PII	er see repo Plu	ort) SE	SEp
.ow-Flow Statistics Flow F II: Prediction Interval-Lo Statistic	Report[Statewide Low Flow WRIR00 4135] ower, Plu: Prediction Interval-Upper, SEp: S			,		,	SEp 49.5
_ow-Flow Statistics Flow F	Report[Statewide Low Flow WRIR00 4135] wer, Plu: Prediction Interval-Upper, SEp: S W	Value	Unit	PII	Plu	SE	•

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

File No. <u>4325.03</u>	Page 1 of 1
Project Polar Park	
Location Worcester, Massachusetts	
Subject <u>Dilution Factor Calculations</u>	
Calculated By D. DeWolfe	Date <u>10/04/2019</u>
Checked By	Date

P:\4300s\4325.03\Source Files\RGP - Polar Park\App C - Stream Calcs\20191004 Dilution Factor.docx

PURPOSE:

To calculate the dilution factor (DF) for metal concentrations in a potential discharge from on-site construction dewatering activities.

METHOD:

$$DF = (Qd + Qs)/Qd$$

Where: DF = Dilution Factor

Qd = Design flow rate of the discharge in million gallons per day (MGD)

 $Qs = Receiving \ water \ 7Q10 \ flow \ (MGD) \ where \ 7Q10 \ is \ the \ minimum \ flow \ for \ 7 \ consecutive \ days$

with a recurrence interval of 10 years

GIVEN:

1.0 gpm = 0.00144 MGD 1.0 cfs = 0.64632 MGD Qd = 200 gpm = 0.288 MGD

Qs = 2.94 cfs = 1.90 MGD of flow into the Blackstone River [Reference 1]

CALCULATION:

DF =
$$(0.288 \text{ MGD} + 1.90 \text{ MGD}) / 0.288 \text{ MGD}$$

DF = 7.60

RESULTS:

The resulting dilution factor to be used when discharging to the Blackstone River is 7.60.

REFERENCES:

[1] StreamStats Report. Accessed online: http://streamstatsags.cr.usgs.gov/streamstats/ (Refer to Attachment A)

www.sanbornhead.com Sanborn, Head & Associates, Inc.

From: Ruan, Xiaodan (DEP)

To: Vakalopoulos, Catherine (DEP)

Cc:Danielle M. DeWolfeSubject:RE: Worcester, MA RGP

Date: Tuesday, October 8, 2019 3:27:51 PM

Good afternoon Danielle,

I can confirm that your new dilution factor 7.60 for the changed design flow 200 gpm at the same discharge location is correct.

Please let us know if you have any questions.

Thanks, Xiaodan

Xiaodan Ruan
Environmental Engineer
Massachusetts Department of Environmentla Protection
One Winter Street, Boston, MA 02108
(617) 654-6517
xiaodan.ruan@mass.gov

From: Vakalopoulos, Catherine (DEP) Sent: Monday, October 07, 2019 11:12 AM

To: Ruan, Xiaodan (DEP)

Cc: DDewolfe@sanbornhead.com **Subject:** Fw: Worcester, MA RGP

Hi Xiaodan,

Can you please look at this when you have the chance?

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Danielle M. DeWolfe <DDewolfe@sanbornhead.com>

Sent: Monday, October 7, 2019 8:41 AM **To:** Vakalopoulos, Catherine (DEP) **Subject:** Worcester, MA RGP

Good morning Catherine,

I would like to confirm the following 7Q10 value for a RGP project located in Worcester, MA. We previously received approval from you for a DF of 27.39 for this project – see attached.

However, since that time the design flow rate has been changed from 50 GPM to 200 GPM. We used StreamStats to delineate a nearby point upstream of our outlet on the Middle River.

Site Address: 37-40 Gold Street, Worcester, MA

Type of Discharge: Via drain to the underground Mill Brook Culvert, discharging to daylight in

the Middle River at the approximate latitude/longitude indicated below.

Approximate Discharge Lat/Long:

Lat: 42.23402 Long: -71.79342

Approximate Basin Delineation Point Selected:

Lat: 42.23465 Long: -71.79388

Upstream StreamStats generated 7Q10: 2.94 cfs = 1.90 MGD

Design flow: 200 gpm or 0.288 MGD

Dilution Factor: DF = 7.60

Please let me know if there is any other information that you need.

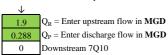
Thanks, Danielle

--

Danielle DeWolfe

Senior Project Engineer

SANBORN, HEAD & ASSOCIATES, INC.


1 Technology Park Drive, Westford, MA 01886 T 978.392.0900 D 978.577.1016 **C** 508.333.8695 www.sanbornhead.com

Click here to follow us on <u>LinkedIn</u> / <u>Twitter</u> / <u>Facebook</u>

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
406.5	C_d = Enter influent hardness in mg/L CaCO ₃
56.6	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	
7.5	pH in Standard Units
25	Temperature in °C
0.125	Ammonia in mg/L
56.6	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
17.16	Arsenic in µg/L
0.66	Cadmium in µg/L
5.63	Chromium III in µg/L
0	Chromium VI in µg/L
17.31	Copper in µg/L
4970	Iron in μg/L
25.32	Lead in µg/L
0	Mercury in µg/L
4.38	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
57.55	Zinc in µg/L

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
0.188	Ammonia in mg/L
0	Antimony in µg/L
141.6	Arsenic in µg/L
2.1	Cadmium in µg/L
731.9	Chromium III in µg/L
0	Chromium VI in μg/L
403.2	Copper in µg/L
145000	Iron in μg/L
510	Lead in μg/L
0.2	Mercury in μg/L
498.4	Nickel in µg/L
54.44	Selenium in µg/L
1.4	Silver in µg/L
790.2	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0.35	Benzo(a)anthracene in µg/L
0.34	Benzo(a)pyrene in µg/L
0.74	Benzo(b)fluoranthene in μg/L
0.21	Benzo(k)fluoranthene in μg/L
0.38	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0.48	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

 $if > 1 \ sample, \ enter \ maximum$

if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = Q_R + Q_P$$

 $Q_R = 7Q10$ in MGD

Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 $C_r = Downstream hardness in mg/L$

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 $Q_s = Upstream flow (7Q10) in MGD$

C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

 C_r = Water quality criterion in $\mu g/L$

Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Ustream (receiving water) concentration in μ g/L

Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

Q

 C_r = Downstream concentration in $\mu g/L$

 Q_d = Discharge flow in MGD

 $C_d = Influent \ concentration \ in \ \mu g/L$

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

 C_s = Upstream (receiving water) concentration in μ g/L

Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

7.0					
TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Report	mg/L				
Report	$\mu g/L$				
0.2	mg/L	84	μg/L		μg/L
30	mg/L				
206	_	4862	μg/L		
104		10			
		0.2759			
			μg/L		
35.1	μg/L		μg/L		
420	$\mu g/L$	551.0	$\mu g/L$		
178	mg/L	39.5	$\mu g/L$		$\mu g/L$
			цg/L		
2,000	r8-2	,	F8 2		
4.4	μg/L	12.2	μg/L		
600	$\mu g/L$				
320	μ g/L				
5.0					
200					
5.0	μg/L				
5.0	μg/L				
5.0	$\mu g/L$	25.1	$\mu g/L$		
70	μg/L				
2.0	μg/L				
	Report Report 0.2 30 206 104 10.2 323 323 242 5000 160 0.739 1450 235.8 35.1 420 178 100 5.0 200 7970 1,080 4.4 600 320 5.0 70 5.0 3.2 0.05 4.6 200 5.0 5.0 5.0	Report mg/L Report μg/L 0.2 mg/L 30 mg/L 206 μg/L 104 μg/L 10.2 μg/L 323 μg/L 242 μg/L 5000 μg/L 160 μg/L 235.8 μg/L 235.8 μg/L 35.1 μg/L 420 μg/L 420 μg/L 5.0 μg/L 200 μg/L 1,080 μg/L 4.4 μg/L 4.0 μg/L 5.0 μg/	Report mg/L Report μg/L 0.2 mg/L 84 30 mg/L 206 μg/L 4862 104 μg/L 10 10.2 μg/L 0.2759 323 μg/L 631.8 323 μg/L 86.9 242 μg/L 9.5 5000 μg/L 1000 160 μg/L 3.29 0.739 μg/L 376.3 235.8 μg/L 376.3 235.8 μg/L 30.1 420 μg/L 30.1 420 μg/L 551.0 178 mg/L 39.5 100 μg/L 200 μg/L 200 μg/L 320 μg/L 5.0 μg/L 5.0 μg/L 5	Report mg/L Report μg/L 0.2 mg/L 84 μg/L 30 mg/L 206 μg/L 4862 μg/L 104 μg/L 10 μg/L 10.2 μg/L 0.2759 μg/L 323 μg/L 631.8 μg/L 323 μg/L 86.9 μg/L 5000 μg/L 9.5 μg/L 5000 μg/L 3.29 μg/L 160 μg/L 3.29 μg/L 0.739 μg/L 376.3 μg/L 235.8 μg/L 38.0 μg/L 235.8 μg/L 30.1 μg/L 420 μg/L 551.0 μg/L 178 mg/L 39.5 μg/L 100 μg/L 200 μg/L 200 μg/L 2279 μg/L 4.4	Report mg/L

D. Non-Halogenated SVOCs

Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	16.7	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0289	μg/L	0.1	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0289	μg/L	0.1	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0289	μg/L	0.1	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0289	μg/L	0.1	$\mu g/L$
Chrysene	1.0	$\mu g/L$	0.0289	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0289	μg/L		$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0289	μg/L	0.1	$\mu g/L$
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	$\mu g/L$				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	ma/I				
Ethanol		mg/L				
	Report	mg/L	150	/T		
Methyl-tert-Butyl Ether	70	μg/L	152	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

APPENDIX D ANALYTICAL DATA REPORTS

ANALYTICAL REPORT

Lab Number: L1932442

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Kent Walker
Phone: (978) 577-1003
Project Name: POLAR PARK

Project Number: 4325.03 Report Date: 07/31/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442 **Report Date:** 07/31/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1932442-01	GZ-8	WATER	WORCESTER, MA	07/23/19 08:25	07/23/19
L1932442-02	MW-1	WATER	WORCESTER, MA	07/23/19 08:45	07/23/19
L1932442-03	HA19-6 (OW)	WATER	WORCESTER, MA	07/23/19 11:00	07/23/19

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

Case Narrative (continued)

Nitrogen, Ammonia

L1932442-02 and -03: The sample has an elevated detection limit due to the dilution required by the sample matrix.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/31/19

600, Sharow Kelly Stenstrom

ORGANICS

VOLATILES

L1932442

07/23/19 08:25

Refer to COC

07/23/19

Project Name: POLAR PARK

Project Number: 4325.03

SAMPLE RESULTS

1 0.70.7.10

Report Date: 07/31/19

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1932442-01

Client ID: GZ-8

Sample Location: WORCESTER, MA

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 07/25/19 11:21

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	104		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	103		60-140	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 07/25/19 11:21

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SI	M - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate		·	% Recovery	Qualifier		otance

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene	88		60-140	
4-Bromofluorobenzene	101		60-140	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 8011
Analytical Method: 14.504.1 Extraction Date: 07/30/19 11:10

Analytical Method: 14,504.1 Extraction Date: 07/30/19 11:10

Analytical Date: 07/30/19 18:33

Analyst: BM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab)						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

Project Name: POLAR PARK

L1932442-02

WORCESTER, MA

MW-1

Project Number: 4325.03

SAMPLE RESULTS

Lab Number: L1932442

Report Date: 07/31/19

Date Collected: 07/23/19 08:45

Date Received: Field Prep:

07/23/19 Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/25/19 11:59

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: MW-1 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	99		60-140	

Project Name: Lab Number: POLAR PARK L1932442

Project Number: Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: Date Received: MW-1

07/23/19 Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 07/25/19 11:59

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - West	borough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier	Accep Crit	otance teria	
Fluorobenzene			87		60)-140	
4-Bromofluorobenzene			102		60)-140	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: MW-1 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 8011
Analytical Method: 14.504.1 Extraction Date: 07/30/19 11:10

Analytical Method: 14,504.1 Extraction Date: 07/30/19 11:10

Analytical Date: 07/30/19 18:49

Analyst: BM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column		
Microextractables by GC - Westborough Lab									
1,2-Dibromoethane	ND		ug/l	0.010		1	Α		
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α		

L1932442

Project Name: Lab Number: POLAR PARK

Project Number: Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: Date Received: 07/23/19 HA19-6 (OW) Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/25/19 12:36

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: HA19-6 (OW) Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		60-140	
Fluorobenzene	101		60-140	
4-Bromofluorobenzene	99		60-140	

Project Name: Lab Number: POLAR PARK L1932442

Project Number: Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: Date Received: 07/23/19 HA19-6 (OW) Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 07/25/19 12:36

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbord	ough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		ptance iteria

., . 5.0.0.0.0	 ug/i			<u>·</u>
Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene	88		60-140	
4-Bromofluorobenzene	103		60-140	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: HA19-6 (OW) Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 8011
Analytical Method: 14.504.1 Extraction Date: 07/30/19 11:10

Analytical Method: 14,504.1 Extraction Date: 07/30/19 11:10
Analytical Date: 07/30/19 19:05

Analyst: BM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab)						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/25/19 10:37

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-0	3 Batch:	WG1264431-8	
Methylene chloride	ND	ug/l	1.0		
1,1-Dichloroethane	ND	ug/l	1.5		
Carbon tetrachloride	ND	ug/l	1.0		
1,1,2-Trichloroethane	ND	ug/l	1.5		
Tetrachloroethene	ND	ug/l	1.0		
1,2-Dichloroethane	ND	ug/l	1.5		
1,1,1-Trichloroethane	ND	ug/l	2.0		
Benzene	ND	ug/l	1.0		
Toluene	ND	ug/l	1.0		
Ethylbenzene	ND	ug/l	1.0		
Vinyl chloride	ND	ug/l	1.0		
1,1-Dichloroethene	ND	ug/l	1.0		
cis-1,2-Dichloroethene	ND	ug/l	1.0		
Trichloroethene	ND	ug/l	1.0		
1,2-Dichlorobenzene	ND	ug/l	5.0		
1,3-Dichlorobenzene	ND	ug/l	5.0		
1,4-Dichlorobenzene	ND	ug/l	5.0		
p/m-Xylene	ND	ug/l	2.0		
o-xylene	ND	ug/l	1.0		
Xylenes, Total	ND	ug/l	1.0		
Acetone	ND	ug/l	10		
Methyl tert butyl ether	ND	ug/l	10		
Tert-Butyl Alcohol	ND	ug/l	100		
Tertiary-Amyl Methyl Ether	ND	ug/l	20		

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/25/19 10:37

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01-03Batch:WG1264431-8

Surrogate%RecoveryQualifierAcceptance CriteriaPentafluorobenzene9360-140Fluorobenzene10160-1404-Bromofluorobenzene9860-140

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 07/25/19 10:37

Analyst: GT

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01-03	Batch:	WG1265079-4	
1,4-Dioxane	ND		ug/l	50			

		Acceptance			
Surrogate	%Recovery Qualifier	Criteria			
			_		
Fluorobenzene	88	60-140			
4-Bromofluorobenzene	104	60-140			

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 8011

Analytical Date: 07/30/19 18:00 Extraction Date: 07/30/19 11:10

Analyst: BM

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	orough Lab fo	or sample(s)): 01-03	Batch: WG	G1266249-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01-	-03 Batch: V	/G1264431-	7				
Methylene chloride	90		-		60-140	-		28	
1,1-Dichloroethane	80		-		50-150	-		49	
Carbon tetrachloride	120		-		70-130	-		41	
1,1,2-Trichloroethane	100		-		70-130	-		45	
Tetrachloroethene	110		-		70-130	-		39	
1,2-Dichloroethane	110		-		70-130	-		49	
1,1,1-Trichloroethane	120		-		70-130	-		36	
Benzene	105		-		65-135	-		61	
Toluene	110		-		70-130	-		41	
Ethylbenzene	105		-		60-140	-		63	
Vinyl chloride	95		-		5-195	-		66	
1,1-Dichloroethene	105		-		50-150	-		32	
cis-1,2-Dichloroethene	105		-		60-140	-		30	
Trichloroethene	105		-		65-135	-		48	
1,2-Dichlorobenzene	100		-		65-135	-		57	
1,3-Dichlorobenzene	100		-		70-130	-		43	
1,4-Dichlorobenzene	100		-		65-135	-		57	
p/m-Xylene	102		-		60-140	-		30	
o-xylene	100		-		60-140	-		30	
Acetone	92		-		40-160	-		30	
Methyl tert butyl ether	85		-		60-140	-		30	
Tert-Butyl Alcohol	78		-		60-140	-		30	
Tertiary-Amyl Methyl Ether	90		-		60-140	-		30	

Lab Number: L1932442

Report Date:

07/31/19

Project Name: POLAR PARK

Project Number: 4325.03

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1264431-7

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	104			60-140
Fluorobenzene	101			60-140
4-Bromofluorobenzene	102			60-140

Project Name: POLAR PARK

Lab Number:

L1932442

Project Number: 4325.03

Report Date:

07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01-03 Batch:	WG12650	79-3				
1,4-Dioxane	120		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	89 103				60-140 60-140

Project Name: POLAR PARK

Lab Number:

L1932442

Project Number: 4325.03

Report Date: 07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough I	Lab Associated sam	ple(s): 01-0	3 Batch: WG1	266249-2					
1,2-Dibromoethane	106		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	114		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

	Native	MS	MS	MS		MSD	MSD	F	Recovery	,	RPL	
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Limi	ts Column
Microextractables by GC	- Westborough Lab	Associat	ed sample(s): 0	01-03 QC Ba	tch ID: W	/G1266249-3	3 QC Samp	le: L1932	2788-02	Client ID:	MS Sample	
1,2-Dibromoethane	ND	0.248	0.180	72	Q	-	-		80-120	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.248	0.224	90		-	-		80-120	-	20	А
1,2,3-Trichloropropane	ND	0.248	0.193	78	Q	-	-		80-120	-	20	Α

SEMIVOLATILES

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129.625.1 Extraction Date: 07/25/19 17:26

Analytical Method: 129,625.1 Extraction Date: 07/25/19 17:26

Analytical Date: 07/28/19 03:58

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbor	ough Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	67	42-122	
2-Fluorobiphenyl	74	46-121	
4-Terphenyl-d14	100	47-138	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 07/25/19 17:28

Analyst: CB

07/27/19 19:29

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.72		ug/l	0.10		1	
Naphthalene	0.20		ug/l	0.10		1	
Benzo(a)anthracene	0.35		ug/l	0.10		1	
Benzo(a)pyrene	0.34		ug/l	0.10		1	
Benzo(b)fluoranthene	0.74		ug/l	0.10		1	
Benzo(k)fluoranthene	0.21		ug/l	0.10		1	
Chrysene	0.38		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	0.45		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	0.20		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.48		ug/l	0.10		1	
Pyrene	0.56		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	26	25-87	
Phenol-d6	26	16-65	
Nitrobenzene-d5	71	42-122	
2-Fluorobiphenyl	76	46-121	
2,4,6-Tribromophenol	59	45-128	
4-Terphenyl-d14	82	47-138	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: MW-1 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Total rep. Total to o.

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 07/25/19 17:26

Analytical Date: 07/28/19 04:23

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5	100	42-122
2-Fluorobiphenyl	88	46-121
4-Terphenyl-d14	106	47-138

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: MW-1 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 07/25/19 17:28

Analyst: CB

07/27/19 19:45

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.14		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	0.19		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	0.25		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.20		ug/l	0.10		1	
Pyrene	0.12		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	97	42-122
2-Fluorobiphenyl	83	46-121
2,4,6-Tribromophenol	81	45-128
4-Terphenyl-d14	82	47-138

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: HA19-6 (OW) Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 07/25/19 17:26

Analyst: ALS

07/28/19 05:39

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Nitrobenzene-d5	86		42-122	
2-Fluorobiphenyl	79		46-121	
4-Terphenyl-d14	80		47-138	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Date Collected: 07/23/19 11:00

Client ID: HA19-6 (OW) Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 07/25/19 17:28
Analytical Date: 07/27/19 20:02

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	54	25-87	
Phenol-d6	42	16-65	
Nitrobenzene-d5	89	42-122	
2-Fluorobiphenyl	81	46-121	
2,4,6-Tribromophenol	89	45-128	
4-Terphenyl-d14	69	47-138	

Project Name: Lab Number: **POLAR PARK** L1932442

Project Number: Report Date: 4325.03 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1 Analytical Date: 07/26/19 18:59 07/25/19 17:26 Extraction Date:

Analyst:

SZ

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborougl	n Lab for s	ample(s):	01-03	Batch:	WG1264628-1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		

		P	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Nitrobenzene-d5	87		42-122	
2-Fluorobiphenyl	77		46-121	
4-Terphenyl-d14	99		47-138	

L1932442

Lab Number:

Project Name: POLAR PARK

Project Number: 4325.03 **Report Date:** 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 07/27/19 11:40

Analyst: CB

Extraction Method: EPA 625.1
Extraction Date: 07/25/19 17:28

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westbo	orough Lab	for sample	e(s): 01-03	Batch:	WG1264630-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	35	16-65
Nitrobenzene-d5	92	42-122
2-Fluorobiphenyl	79	46-121
2,4,6-Tribromophenol	73	45-128
4-Terphenyl-d14	79	47-138

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

Report Date:

07/31/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01-03 Batch:	WG1264	628-3				
Bis(2-ethylhexyl)phthalate	109		-		29-137	-		82	
Butyl benzyl phthalate	112		-		1-140	-		60	
Di-n-butylphthalate	107		-		8-120	-		47	
Di-n-octylphthalate	109		-		19-132	-		69	
Diethyl phthalate	97		-		1-120	-		100	
Dimethyl phthalate	92		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	92		42-122
2-Fluorobiphenyl	83		46-121
4-Terphenyl-d14	107		47-138

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS-SIM - Wes	stborough Lab As	sociated sam	ple(s): 01-03	Batch: V	VG1264630-2				
Acenaphthene	68		-		60-132	-		30	
Fluoranthene	83		-		43-121	-		30	
Naphthalene	59		-		36-120	-		30	
Benzo(a)anthracene	90		-		42-133	-		30	
Benzo(a)pyrene	82		-		32-148	-		30	
Benzo(b)fluoranthene	88		-		42-140	-		30	
Benzo(k)fluoranthene	77		-		25-146	-		30	
Chrysene	79		-		44-140	-		30	
Acenaphthylene	73		-		54-126	-		30	
Anthracene	84		-		43-120	-		30	
Benzo(ghi)perylene	83		-		1-195	-		30	
Fluorene	74		-		70-120	-		30	
Phenanthrene	83		-		65-120	-		30	
Dibenzo(a,h)anthracene	84		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	88		-		1-151	-		30	
Pyrene	83		-		70-120	-		30	
Pentachlorophenol	80		-		38-152	-		30	

Project Name: POLAR PARK Lab Number:

L1932442

Project Number: 4325.03

Report Date:

Qual

07/31/19

Parameter

LCS %Recovery

LCSD %Recovery

Qual

%Recovery Limits

RPD

RPD

Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1264630-2

Qual

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	38		25-87
Phenol-d6	30		16-65
Nitrobenzene-d5	73		42-122
2-Fluorobiphenyl	69		46-121
2,4,6-Tribromophenol	74		45-128
4-Terphenyl-d14	80		47-138

PCBS

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/26/19 12:18

Analystical Date: 07/29/19 11:34 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 07/27/19

Cleanup Method: EPA 3660B Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	77		37-123	В		
Decachlorobiphenyl	79		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	76		37-123	Α		
Decachlorobiphenyl	77		38-114	Α		

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02 Date Collected: 07/23/19 08:45

Client ID: MW-1 Date Received: 07/23/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/26/19 12:18

Analytical Date: 07/29/19 11:47 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 07/27/19

Cleanup Method: EPA 3660B Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	74		37-123	В	
Decachlorobiphenyl	79		38-114	В	
2,4,5,6-Tetrachloro-m-xylene	75		37-123	Α	
Decachlorobiphenyl	78		38-114	Α	

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 **Report Date:** 07/31/19

SAMPLE RESULTS

 Lab ID:
 L1932442-03
 Date Collected:
 07/23/19 11:00

 Client ID:
 HA19-6 (OW)
 Date Received:
 07/23/19

Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 07/26/19 12:18
Analytical Date: 07/29/19 12:00 Cleanup Method: EPA 3665A

Analyst: WR Cleanup Date: 07/27/19

Cleanup Method: EPA 3660B Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.272		1	Α
Aroclor 1221	ND		ug/l	0.272		1	Α
Aroclor 1232	ND		ug/l	0.272		1	Α
Aroclor 1242	ND		ug/l	0.272		1	Α
Aroclor 1248	ND		ug/l	0.272		1	Α
Aroclor 1254	ND		ug/l	0.272		1	Α
Aroclor 1260	ND		ug/l	0.217		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		37-123	В
Decachlorobiphenyl	57		38-114	В
2,4,5,6-Tetrachloro-m-xylene	76		37-123	Α
Decachlorobiphenyl	55		38-114	Α

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 07/29/19 10:19

Analyst: WR

Extraction Method: EPA 608.3
Extraction Date: 07/26/19 12:18
Cleanup Method: EPA 3665A
Cleanup Date: 07/27/19
Cleanup Method: EPA 3660B
Cleanup Date: 07/27/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestboroug	h Lab for s	ample(s):	01-03 Ba	tch: WG126	34996-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance			
Surrogate	%Recovery Qua	lifier Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	74	37-123	В		
•					
Decachlorobiphenyl	84	38-114	В		
2,4,5,6-Tetrachloro-m-xylene	75	37-123	Α		
Decachlorobiphenyl	81	38-114	Α		

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Parameter	LCS %Recovery	LCSD %Recovery	Qual	%Recovery Limits	Qual	RPD Limits	Column		
Polychlorinated Biphenyls by GC - Wes	tborough Lab Associa	ted sample(s): 01-03 Batch:	WG1264	996-2				
Aroclor 1016	79		-		50-140	-		36	Α
Aroclor 1260	76		-		8-140	-		38	А

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	80		37-123 B
Decachlorobiphenyl	88		38-114 B
2,4,5,6-Tetrachloro-m-xylene	81		37-123 A
Decachlorobiphenyl	86		38-114 A

METALS

07/23/19 08:25

Date Collected:

Project Name: Lab Number: POLAR PARK L1932442 **Project Number:** Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01

Client ID: GZ-8

Date Received: 07/23/19 Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Total Metals - Mansfield Lab Antimony, Total ND mg/l 0.00400 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Arsenic, Total 0.00278 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Cadmium, Total ND mg/l 0.00020 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Chromium, Total 0.00221 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Copper, Total 0.00894 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Iron, Total 1.09 mg/l 0.050 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00200 1 07/	AM AM AM AM
Arsenic, Total 0.00278 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Cadmium, Total ND mg/l 0.00020 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Chromium, Total 0.00221 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Copper, Total 0.00894 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Iron, Total 1.09 mg/l 0.050 1 07/24/19 21:20 07/26/19 18:21 EPA 3005A 19,200.7 Lead, Total 0.00686 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00020 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AM AM
Cadmium, Total ND mg/l 0.00020 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Chromium, Total 0.00221 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Copper, Total 0.00894 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Iron, Total 1.09 mg/l 0.050 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Lead, Total 0.00686 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00020 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200	AM AM
Chromium, Total 0.00221 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Copper, Total 0.00894 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Iron, Total 1.09 mg/l 0.050 1 07/24/19 21:20 07/26/19 18:21 EPA 3005A 19,200.7 Lead, Total 0.00686 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00020 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AM
Copper, Total 0.00894 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Iron, Total 1.09 mg/l 0.050 1 07/24/19 21:20 07/26/19 18:21 EPA 3005A 19,200.7 Lead, Total 0.00686 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00200 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 </td <td></td>	
Iron, Total	AM
Lead, Total 0.00686 mg/l 0.00100 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Mercury, Total ND mg/l 0.00020 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	
Mercury, Total ND mg/l 0.00020 1 07/26/19 13:05 07/26/19 19:37 EPA 245.1 3,245.1 Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AB
Nickel, Total 0.00213 mg/l 0.00200 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AM
Selenium, Total ND mg/l 0.00500 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	GD
Silver, Total ND mg/l 0.00040 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AM
Zinc, Total 0.02196 mg/l 0.01000 1 07/24/19 21:20 07/25/19 20:55 EPA 3005A 3,200.8 Total Hardness by SM 2340B - Mansfield Lab	AM
Total Hardness by SM 2340B - Mansfield Lab	AM
	AM
Hardness 156 mg/l 0.660 NA 1 07/24/19 21:20 07/26/19 18:21 EPA 3005A 19,200.7	
	AB
General Chemistry - Mansfield Lab	
Chromium, Trivalent ND mg/l 0.010 1 07/25/19 20:55 NA 107,-	
Dissolved Metals - Mansfield Lab	
Antimony, Dissolved ND mg/l 0.0040 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Arsenic, Dissolved ND mg/l 0.0010 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Cadmium, Dissolved ND mg/l 0.0002 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Chromium, Dissolved ND mg/l 0.0010 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Copper, Dissolved 0.0044 mg/l 0.0010 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Iron, Dissolved 0.059 mg/l 0.050 1 07/25/19 08:00 07/25/19 18:42 EPA 3005A 19,200.7	LC
Lead, Dissolved ND mg/l 0.0010 1 07/25/19 08:49 07/25/19 17:54 EPA 3005A 3,200.8	AM
Mercury, Dissolved ND mg/l 0.00020 1 07/26/19 14:14 07/26/19 19:44 EPA 245.1 3,245.1	

Project Name: Lab Number: POLAR PARK L1932442 **Project Number:** Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01

Date Collected: 07/23/19 08:25 Client ID: GZ-8 Date Received: 07/23/19 Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	ND		mg/l	0.0020		1	07/25/19 08:4	9 07/25/19 17:54	EPA 3005A	3,200.8	AM
Selenium, Dissolved	0.0055		mg/l	0.0050		1	07/25/19 08:4	9 07/25/19 17:54	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	07/25/19 08:4	9 07/25/19 17:54	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0141		mg/l	0.0100		1	07/25/19 08:4	9 07/25/19 17:54	EPA 3005A	3,200.8	AM

07/23/19 08:45

Refer to COC

07/23/19

Date Collected:

Date Received:

Field Prep:

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02

Client ID: MW-1

Sample Location: WORCESTER, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01155		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Chromium, Total	0.05106		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Copper, Total	0.02125		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Iron, Total	17.1		mg/l	0.050		1	07/24/19 21:20	07/26/19 18:26	EPA 3005A	19,200.7	AB
Lead, Total	0.00924		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/26/19 13:05	07/26/19 19:39	EPA 245.1	3,245.1	GD
Nickel, Total	0.06888		mg/l	0.00200		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Zinc, Total	0.2290		mg/l	0.01000		1	07/24/19 21:20	07/25/19 21:00	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	3 - Mansfiel	d Lab								
Hardness	388		mg/l	0.660	NA	1	07/24/19 21:20	07/26/19 18:26	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	0.051		mg/l	0.010		1		07/25/19 21:00	NA	107,-	
Dissolved Metals - I	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0011		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0020		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0022		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Iron, Dissolved	0.434		mg/l	0.050		1	07/25/19 08:00	07/25/19 18:47	EPA 3005A	19,200.7	LC
Lead, Dissolved	ND		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:08	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	07/26/19 14:14	07/26/19 19:50	EPA 245.1	3,245.1	GD

Project Name: Lab Number: POLAR PARK L1932442 **Project Number:** Report Date: 4325.03 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02

Date Collected: 07/23/19 08:45 Client ID: MW-1 Date Received: 07/23/19 Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	0.0053		mg/l	0.0020		1	07/25/19 08:4	9 07/25/19 19:08	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	07/25/19 08:4	9 07/25/19 19:08	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	07/25/19 08:4	9 07/25/19 19:08	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0321		mg/l	0.0100		1	07/25/19 08:4	9 07/25/19 19:08	EPA 3005A	3,200.8	AM

07/23/19 11:00

Refer to COC

07/23/19

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

SAMPLE RESULTS

Lab ID:L1932442-03Date Collected:Client ID:HA19-6 (OW)Date Received:Sample Location:WORCESTER, MAField Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Arsenic, Total	0.1416		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00210		mg/l	0.00020		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Chromium, Total	0.7319		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Copper, Total	0.4032		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Iron, Total	145		mg/l	0.050		1	07/24/19 21:20	07/26/19 18:30	EPA 3005A	19,200.7	AB
Lead, Total	0.5100		mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Mercury, Total	0.00020		mg/l	0.00020		1	07/26/19 13:05	07/26/19 19:40	EPA 245.1	3,245.1	GD
Nickel, Total	0.4984		mg/l	0.00200		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Selenium, Total	0.05444		mg/l	0.00500		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Silver, Total	0.00140		mg/l	0.00040		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Zinc, Total	0.7902		mg/l	0.01000		1	07/24/19 21:20	07/25/19 21:04	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	s - Mansfiel	d Lab								
Hardness	681		mg/l	0.660	NA	1	07/24/19 21:20	07/26/19 18:30	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	0.732		mg/l	0.010		1		07/25/19 21:04	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.1048		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	0.0016		mg/l	0.0002		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.1904		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.2252		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Iron, Dissolved	33.0		mg/l	0.050		1	07/25/19 08:00	07/25/19 18:51	EPA 3005A	19,200.7	LC
Lead, Dissolved	0.1221		mg/l	0.0010		1	07/25/19 08:49	07/25/19 19:13	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	07/26/19 14:14	07/26/19 19:51	EPA 245.1	3,245.1	GD

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

SAMPLE RESULTS

Lab ID:L1932442-03Date Collected:07/23/19 11:00Client ID:HA19-6 (OW)Date Received:07/23/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	0.1430		mg/l	0.0020		1	07/25/19 08:4	9 07/25/19 19:13	EPA 3005A	3,200.8	AM
Selenium, Dissolved	0.0395		mg/l	0.0050		1	07/25/19 08:4	9 07/25/19 19:13	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	07/25/19 08:4	9 07/25/19 19:13	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.2595		mg/l	0.0100		1	07/25/19 08:4	9 07/25/19 19:13	EPA 3005A	3,200.8	AM

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-03	Batch: W	VG12640	95-1				
Iron, Total	ND	mg/l	0.050		1	07/24/19 21:20	07/26/19 14:08	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	nple(s): (01-03 E	Batch: WG1	1264095-1			
Hardness	ND	mg/l	0.660	NA	1	07/24/19 21:20	07/26/19 17:55	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s)): 01-03 E	Batch: Wo	G12640	97-1				
Antimony, Total	ND	mg/l	0.00400		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	07/24/19 21:20	07/25/19 21:44	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Dissolved Metals - Mar	nsfield Lab	for sample	(s): 01-03	Batch	: WG1	264249-1				
Iron, Dissolved	ND		mg/l	0.050		1	07/25/19 08:00	07/25/19 17:38	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab for sam	ple(s): 01-0	3 Batch	: WG1	264298-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	07/25/19 08:49	07/25/19 17:37	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	· Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s)	: 01-03	Batch: W	'G12650)30-1				
Mercury, Total	ND	mg/l	0.0002		1	07/26/19 13:05	07/26/19 19:03	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Dissolved Metals - M	lansfield Lab	for sample	e(s): 01-03	Batch	: WG1	265058-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	07/26/19 14:14	07/26/19 19:4	1 3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

07/31/19

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

Report Date:

	LCS	LCSD	%Recovery			
Parameter	%Recovery Q	ual %Recovery	Qual Limits	RPD	Qual R	PD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 Batch: \	WG1264095-2				
Iron, Total	105	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample(s)	: 01-03 Batch: WG1264	095-2			
Hardness	104	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 Batch: \	NG1264097-2				
Total Metale Manerica Lab / 16000 lates cample	(o). 01 00 Batom					
Antimony, Total	88	-	85-115	-		
Arsenic, Total	99	-	85-115	-		
Cadmium, Total	115	-	85-115	-		
Chromium, Total	110	-	85-115	-		
Copper, Total	105	-	85-115	-		
Lead, Total	108	-	85-115	-		
Nickel, Total	111	-	85-115	-		
Selenium, Total	112	-	85-115	-		
Silver, Total	107	-	85-115	-		
Zinc, Total	114	-	85-115	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01-03 Ba	tch: WG1264249-2				
Iron, Dissolved	108	-	85-115	-		

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01-03 Ba	atch: WG1264298-2			
Antimony, Dissolved	86	-	85-115	-	
Arsenic, Dissolved	103	-	85-115	-	
Cadmium, Dissolved	109	-	85-115	-	
Chromium, Dissolved	104	-	85-115	-	
Copper, Dissolved	104	-	85-115	-	
Lead, Dissolved	104	-	85-115	-	
Nickel, Dissolved	106	-	85-115	-	
Selenium, Dissolved	107	-	85-115	-	
Silver, Dissolved	103	-	85-115	-	
Zinc, Dissolved	110	-	85-115	-	
Total Metals - Mansfield Lab Associated sample	e(s): 01-03 Batch:	WG1265030-2			
Mercury, Total	98	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01-03 Ba	atch: WG1265058-2			
Mercury, Dissolved	92	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery ual Limits	RPD Qual	RPD Limits
otal Metals - Mansfield	Lab Associated san	nple(s): 01-03	QC Bat	ch ID: WG126	4095-3	QC Sam	ple: L1932202-01	Client ID: MS	Sample	
Iron, Total	ND	1	1.07	107		-	-	75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associated	sample(s)	: 01-03 QC	Batch ID	: WG12640	095-3 QC Sam	ole: L1932202-01	Client ID:	MS Samp
Hardness	134	66.2	194	91		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01-03	QC Bat	ch ID: WG126	4095-7	QC Sam	ple: L1931556-01	Client ID: MS	Sample	
Iron, Total	ND	1	0.967	97		-	-	75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associated	sample(s)	: 01-03 QC	Batch ID	: WG12640	095-7 QC Sam	ole: L1931556-01	Client ID:	MS Samp
Hardness	198	66.2	238	60	Q	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01-03	QC Bat	ch ID: WG126	4097-3	QC Sam	ple: L1931556-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4258	85		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1203	100		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05525	108		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2117	106		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2479	99		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5409	106		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5284	106		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1291	108		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05163	103		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5459	109		-	-	70-130	-	20
Dissolved Metals - Mans	field Lab Associated	d sample(s): 0	1-03 QC	Batch ID: W	G126424	9-3 QC	Sample: L190000	7-163 Client ID): MS Sample	е
Iron, Dissolved	0.992	1	2.08	109		-	-	75-125	-	_ 20

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Fou		MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfiel	ld Lab Associated	l sample(s): 0	1-03 QC	Batch ID: WG	61264298-3	QC	Sample: L1932442-01	1 Client ID:	GZ-8	
Antimony, Dissolved	ND	0.5	0.4286	86		-	-	70-130	-	20
Arsenic, Dissolved	ND	0.12	0.1341	112		-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0563	110		-	-	70-130	-	20
Chromium, Dissolved	ND	0.2	0.2140	107		-	-	70-130	-	20
Copper, Dissolved	0.0044	0.25	0.2585	102		-	-	70-130	-	20
Lead, Dissolved	ND	0.51	0.5377	105		-	-	70-130	-	20
Nickel, Dissolved	ND	0.5	0.5276	106		-	-	70-130	-	20
Selenium, Dissolved	0.0055	0.12	0.1313	105		-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0522	104		-	-	70-130	-	20
Zinc, Dissolved	0.0141	0.5	0.5651	110		-	-	70-130	-	20
otal Metals - Mansfield Lal	b Associated sam	nple(s): 01-03	QC Bate	ch ID: WG1265	5030-3 QC	Sar	nple: L1931353-01 C	lient ID: MS	Sample	
Mercury, Total	ND	0.005	0.0044	89		-	-	70-130	-	20
otal Metals - Mansfield Lal	b Associated sam	nple(s): 01-03	QC Bate	ch ID: WG1265	5030-5 QC	Sar	nple: L1931361-01 C	lient ID: MS	Sample	
Mercury, Total	ND	0.005	0.0045	90		-	-	70-130	-	20
Dissolved Metals - Mansfiel	ld Lab Associated	l sample(s): 0	1-03 QC	Batch ID: WG	61265058-3	QC	Sample: L1932442-0	1 Client ID:	GZ-8	
Mercury, Dissolved	ND	0.005	0.00443	89		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID: WC	G1264095-4 QC Sample:	L1932202-01	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20
Total Hardness by SM 2340B - Mansfield Lab Associat Sample	ed sample(s): 01-03	QC Batch ID: WG1264095	-4 QC Samp	le: L1932	202-01 Client ID:	DUP
Hardness	134	132	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID: W0	G1264095-8 QC Sample:	L1931556-01	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	-03 QC Batch ID: W0	G1264097-4 QC Sample:	L1931556-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Dissolved Metals - Mansfield Lab Associated sample(s): 01-03 QC Batch ID	: WG1264249-4 QC San	nple: L190000	7-163 Clie	ent ID: DUP Sam	ple
Iron, Dissolved	0.992	1.02	mg/l	3		20

Lab Duplicate Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Parameter		Native S	ample	Duplica	te Sa	ımple	Units	RPD	R	PD Limits
Dissolved Metals - Mansfield L	ab Associated sample	e(s): 01-03 Q	C Batch	ID: WG126429	8-4	QC Sam	nple: L193244	2-01 Clier	nt ID: GZ-8	
Antimony, Dissolved		ND		0.	0045		mg/l	NC		20
Arsenic, Dissolved		ND		0	.001		mg/l	NC		20
Cadmium, Dissolved		ND			ND		mg/l	NC		20
Chromium, Dissolved		ND			ND		mg/l	NC		20
Copper, Dissolved		0.004	14	0.	0043		mg/l	4		20
Lead, Dissolved		ND			ND		mg/l	NC		20
Nickel, Dissolved		ND			ND		mg/l	NC		20
Selenium, Dissolved		0.005	55	0.	0055		mg/l	1		20
Silver, Dissolved		ND			ND		mg/l	NC		20
Zinc, Dissolved		0.014	11	0.	0142		mg/l	1		20
otal Metals - Mansfield Lab	Associated sample(s):	01-03 QC Ba	atch ID: V	VG1265030-4	QC	Sample:	L1931353-01	Client ID:	DUP Sample	
Mercury, Total		ND			ND		mg/l	NC		20
otal Metals - Mansfield Lab	Associated sample(s):	01-03 QC Ba	atch ID: V	VG1265030-6	QC	Sample:	L1931361-01	Client ID:	DUP Sample	
Mercury, Total		ND			ND		mg/l	NC		20
Dissolved Metals - Mansfield L	ab Associated sample	e(s): 01-03 Q	C Batch	ID: WG126505	8-4	QC Sam	nple: L193244	2-01 Clier	nt ID: GZ-8	
Mercury, Dissolved		ND			ND		mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: POLAR PARK Lab Number: L1932442

Project Number: 4325.03 **Report Date:** 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-01 Date Collected: 07/23/19 08:25

Client ID: GZ-8 Date Received: 07/23/19

Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Solids, Total Suspended	34.		mg/l	5.0	NA	1	-	07/24/19 14:30	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	07/24/19 11:55	07/24/19 15:03	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/24/19 00:18	121,4500CL-D	AS
pH (H)	6.6		SU	-	NA	1	-	07/23/19 23:18	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/24/19 05:05	07/26/19 22:37	121,4500NH3-BH	l AT
Sulfate	32.		mg/l	10		1	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.00		1	07/25/19 16:30	07/25/19 21:55	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/26/19 06:30	07/26/19 09:48	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	07/24/19 04:00	07/24/19 04:59	1,7196A	JW
Anions by Ion Chromatog	graphy - West	borough	Lab							
Chloride	11.6		mg/l	0.500		1	-	07/25/19 02:10	44,300.0	AT

Project Name: POLAR PARK

Project Number: 4325.03 Lab Number:

Date Collected:

L1932442

Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-02

Client ID: MW-1

Sample Location: WORCESTER, MA

07/23/19 08:45 Date Received: 07/23/19

Refer to COC Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lat)								
Solids, Total Suspended	430		mg/l	16	NA	3.3	-	07/24/19 14:30	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	07/24/19 11:55	07/24/19 15:07	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/24/19 00:18	121,4500CL-D	AS
pH (H)	7.1		SU	-	NA	1	-	07/23/19 23:18	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.150		2	07/24/19 05:05	07/26/19 22:40	121,4500NH3-BH	H AT
Sulfate	36.		mg/l	20		2	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.00		1	07/25/19 16:30	07/25/19 21:55	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/26/19 06:30	07/26/19 09:51	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	07/24/19 04:00	07/24/19 05:00	1,7196A	JW
Anions by Ion Chromatog	graphy - Wes	borough	Lab							
Chloride	136.		mg/l	25.0		50	-	07/24/19 21:00	44,300.0	AT

Project Name: POLAR PARK

Project Number: 4325.03 Lab Number:

L1932442

Report Date: 07/31/19

SAMPLE RESULTS

Lab ID: L1932442-03 Client ID: HA19-6 (OW) Date Collected: 07/23/19 11:00 Date Received:

07/23/19

Sample Location: WORCESTER, MA

Refer to COC Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	47000		mg/l	500	NA	100	-	07/24/19 14:30	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	07/24/19 11:55	07/24/19 15:09	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/24/19 00:18	121,4500CL-D	AS
pH (H)	6.9		SU	-	NA	1	-	07/23/19 23:18	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.375		5	07/24/19 05:05	07/26/19 22:41	121,4500NH3-BH	H AT
Sulfate	79.		mg/l	25		2.5	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.40		1.1	07/25/19 16:30	07/25/19 21:55	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/26/19 06:30	07/26/19 09:52	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	07/24/19 04:00	07/24/19 05:01	1,7196A	JW
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	343.		mg/l	25.0		50	-	07/24/19 21:10	44,300.0	AT

L1932442

Lab Number:

Project Name: POLAR PARK

Project Number: 4325.03 Report Date: 07/31/19

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical **Parameter Result Qualifier** Units RL MDL **Factor Prepared Analyzed** Method **Analyst** General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1263589-1 ND Chlorine, Total Residual mg/l 0.02 07/24/19 00:18 121,4500CL-D AS General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1263598-1 ND 0.075 121,4500NH3-BH ΑT Nitrogen, Ammonia mg/l 07/24/19 05:05 07/26/19 22:34 General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1263634-1 0.010 Chromium, Hexavalent mg/l 07/24/19 04:00 07/24/19 04:37 1,7196A JW General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1263800-1 ND 0.005 Cyanide, Total 121,4500CN-CE LH 07/24/19 11:55 07/24/19 15:16 General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1263856-1 5.0 Solids, Total Suspended ND NA DR mg/l 1 07/24/19 14:30 121,2540D General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1264596-1 TPH, SGT-HEM ND 4.00 mg/l 07/25/19 16:30 07/25/19 21:55 74,1664A MLAnions by Ion Chromatography - Westborough Lab for sample(s): 01-03 Batch: WG1264625-1 Chloride 0.500 07/24/19 17:42 44,300.0 ΑT General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1264838-1 Phenolics, Total 0.030 07/26/19 06:30 07/26/19 09:46 4,420.1 BR General Chemistry - Westborough Lab for sample(s): 01-03 Batch: WG1265722-1 Sulfate 10 BR mg/l 07/29/19 12:01 07/29/19 12:01 121,4500SO4-E

L1932442

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

	1.00		1.000		0/ 🗖			
Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1263	570-1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1263	589-2				
Chlorine, Total Residual	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1263	598-2				
Nitrogen, Ammonia	98		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1263	634-2				
Chromium, Hexavalent	103		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1263	800-2				
Cyanide, Total	97		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1264	596-2				
ТРН	82		-		64-132	-		34
Anions by Ion Chromatography - Westb	oorough Lab Associate	d samp	le(s): 01-03 Bate	ch: WG126	64625-2			
Chloride	102		-		90-110	-		

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1264838-2			
Phenolics, Total	100	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1265722-2			
Sulfate	90	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1932442

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recover Limits		Qual	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ciated sampl	e(s): 01-03	QC Batch II	D: WG1:	263589-4	QC Sample:	L19324	42-02 C	Client ID:	MW-1	
Chlorine, Total Residual	ND	0.25	0.28	112		-	-		80-120	-		20
General Chemistry - Westborou	gh Lab Asso	ciated sampl	le(s): 01-03	QC Batch II	D: WG1:	263598-4	QC Sample:	L19324	42-01 C	Client ID:	GZ-8	
Nitrogen, Ammonia	ND	4	3.72	93		-	-		80-120	-		20
General Chemistry - Westborou	gh Lab Asso	ciated sampl	le(s): 01-03	QC Batch II	D: WG1:	263634-4	QC Sample:	L19324	42-02 C	Client ID:	MW-1	
Chromium, Hexavalent	ND	0.1	0.097	97		-	-		85-115	-		20
General Chemistry - Westborou	gh Lab Asso	ociated sampl	le(s): 01-03	QC Batch II	D: WG1:	263800-4	QC Sample:	L19324	42-02 C	Client ID:	MW-1	
Cyanide, Total	ND	0.2	0.193	96		-	-		90-110	-		30
General Chemistry - Westborou	gh Lab Asso	ciated sampl	le(s): 01-03	QC Batch II	D: WG1:	264596-4	QC Sample:	L19324	57-02 C	Client ID:	MS Sa	mple
TPH	ND	20	16.0	80		-	-		64-132	-		34
Anions by Ion Chromatography Sample	- Westborou	igh Lab Asso	ciated samp	ole(s): 01-03	QC Ba	tch ID: WG	1264625-3	QC San	nple: L193	31756-01	Clier	t ID: MS
Chloride	32.2	4	34.8	65	Q	-	-		90-110	-		18
General Chemistry - Westborou	gh Lab Asso	ciated sampl	le(s): 01-03	QC Batch II	D: WG1:	264838-4	QC Sample:	L19324	42-01 C	Client ID:	GZ-8	
Phenolics, Total	ND	0.4	0.37	92		-	-		70-130	-		20
General Chemistry - Westborou	gh Lab Asso	ociated sampl	le(s): 01-03	QC Batch II	D: WG1:	265722-4	QC Sample:	L19324	42-01 C	Client ID:	GZ-8	
Sulfate	32	50	81	98		-	-		55-147	-		14

Lab Duplicate Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1932442

Report Date:

07/31/19

Parameter	Nati	ve Sam	ple D	ouplicate Sample	units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263570-2	QC Sample:	L1930973-01	Client ID:	DUP Sample
рН		2.2		2.2	SU	0		5
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263589-3	QC Sample:	L1932442-01	Client ID:	GZ-8
Chlorine, Total Residual		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263598-3	QC Sample:	L1932442-01	Client ID:	GZ-8
Nitrogen, Ammonia		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263634-3	QC Sample:	L1932442-01	Client ID:	GZ-8
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263800-3	QC Sample:	L1932442-01	Client ID:	GZ-8
Cyanide, Total		ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1263856-2	QC Sample:	L1932601-01	Client ID:	DUP Sample
Solids, Total Suspended		130		150	mg/l	14		29
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1264596-3	QC Sample:	L1932457-02	Client ID:	DUP Sample
TPH		ND		ND	mg/l	NC		34
Anions by Ion Chromatography - Westbo Sample	prough Lab Associated	d sample	e(s): 01-03 C	C Batch ID: WG	1264625-4	QC Sample: L	1931756-0	1 Client ID: DUP
Chloride		32.2		32.2	mg/l	0		18
General Chemistry - Westborough Lab	Associated sample(s):	01-03	QC Batch ID:	WG1264838-3	QC Sample:	L1932442-01	Client ID:	GZ-8
Phenolics, Total		ND		ND	mg/l	NC		20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1932442

Report Date:

07/31/19

Parameter	Native Sample	le D	uplicate Sample	Units	RPD	RPD Limits	i
General Chemistry - Westborough Lab Associated s	sample(s): 01-03 Q	QC Batch ID:	WG1265722-3	QC Sample:	L1932442-01	Client ID: GZ-8	
Sulfate	32		31	mg/l	3	14	

Project Name:

Project Number: 4325.03

POLAR PARK

Project Name: **POLAR PARK Lab Number:** L1932442 Project Number: 4325.03

Report Date: 07/31/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler Α Absent В Absent С Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1932442-01A	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		504(14)
L1932442-01B	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		504(14)
L1932442-01C	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		504(14)
L1932442-01D	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		504(14)
L1932442-01E	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-01F	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-01G	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-01H	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-01I	Vial HCl preserved	Α	NA		3.6	Υ	Absent		HOLD-SUB()
L1932442-01J	Vial HCl preserved	Α	NA		3.6	Υ	Absent		HOLD-SUB()
L1932442-01K	Vial HCl preserved	Α	NA		3.6	Υ	Absent		HOLD-SUB()
L1932442-01L	Plastic 250ml NaOH preserved	Α	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L1932442-01M	Plastic 250ml HNO3 preserved	А	<2	<2	3.6	Y	Absent		AG-2008S(180),CR-2008S(180),FE-RI(180),AS-2008S(180),PB-2008S(180),ZN-2008S(180),NI-2008S(180),SE-2008S(180),CD-2008S(180),CU-2008S(180),SB-2008S(180),HG-R(28)
L1932442-01N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1932442-01O	Plastic 500ml H2SO4 preserved	Α	NA		3.6	Υ	Absent		NH3-4500(28)
L1932442-01P	Plastic 950ml unpreserved	Α	7	7	3.6	Υ	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1932442-01Q	Plastic 950ml unpreserved	Α	7	7	3.6	Υ	Absent		TSS-2540(7)

Lab Number: L1932442

Report Date: 07/31/19

Project Name: POLAR PARK

Project Number: 4325.03

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1932442-01R	Amber 950ml H2SO4 preserved	Α	<2	<2	3.6	Υ	Absent		TPHENOL-420(28)
L1932442-01S	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		TPH-1664(28)
L1932442-01T	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		TPH-1664(28)
L1932442-01U	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-01V	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-01W	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-01X	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-01Y	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-01Z	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02A	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		504(14)
L1932442-02B	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		504(14)
L1932442-02C	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		504(14)
L1932442-02D	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		504(14)
L1932442-02E	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-02F	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-02G	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-02H	Vial Na2S2O3 preserved	В	NA		4.2	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-02I	Vial HCl preserved	В	NA		4.2	Υ	Absent		HOLD-SUB()
L1932442-02J	Vial HCl preserved	В	NA		4.2	Υ	Absent		HOLD-SUB()
L1932442-02K	Vial HCl preserved	В	NA		4.2	Υ	Absent		HOLD-SUB()
L1932442-02L	Plastic 250ml NaOH preserved	В	>12	>12	4.2	Υ	Absent		TCN-4500(14)
L1932442-02M	Plastic 250ml HNO3 preserved	В	<2	<2	4.2	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1932442-02N	Plastic 250ml HNO3 preserved	В	<2	<2	4.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1932442-02O	Plastic 500ml H2SO4 preserved	В	<2	<2	4.2	Υ	Absent		NH3-4500(28)

Lab Number: L1932442

Report Date: 07/31/19

Project Name: POLAR PARK

Project Number: 4325.03

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рH		Pres	Seal	Date/Time	Analysis(*)
L1932442-02P	Plastic 950ml unpreserved	В	7	7	4.2	Υ	Absent		SO4-4500(28),CL-300(28),HEXCR- 7196(1),TRC-4500(1),PH-4500(.01)
L1932442-02Q	Plastic 950ml unpreserved	В	7	7	4.2	Υ	Absent		TSS-2540(7)
L1932442-02R	Amber 950ml H2SO4 preserved	В	<2	<2	4.2	Υ	Absent		TPHENOL-420(28)
L1932442-02S	Amber 1000ml HCl preserved	В	NA		4.2	Υ	Absent		TPH-1664(28)
L1932442-02T	Amber 1000ml HCl preserved	В	NA		4.2	Υ	Absent		TPH-1664(28)
L1932442-02U	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02V	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02W	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02X	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02Y	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-02Z	Amber 1000ml Na2S2O3	В	7	7	4.2	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03A	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		504(14)
L1932442-03B	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		504(14)
L1932442-03C	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		504(14)
L1932442-03D	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		504(14)
L1932442-03E	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-03F	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-03G	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-03H	Vial Na2S2O3 preserved	С	NA		4.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1932442-03I	Vial HCl preserved	С	NA		4.0	Υ	Absent		HOLD-SUB()
L1932442-03J	Vial HCl preserved	С	NA		4.0	Υ	Absent		HOLD-SUB()
L1932442-03K	Vial HCl preserved	С	NA		4.0	Υ	Absent		HOLD-SUB()
L1932442-03L	Plastic 250ml NaOH preserved	С	>12	>12	4.0	Υ	Absent		TCN-4500(14)
L1932442-03M	Plastic 250ml HNO3 preserved	С	<2	<2	4.0	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)

Lab Number: L1932442

Report Date: 07/31/19

Project Name: POLAR PARK

Project Number: 4325.03

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1932442-03N	Plastic 250ml HNO3 preserved	С	<2	<2	4.0	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1932442-03O	Plastic 500ml H2SO4 preserved	С	<2	<2	4.0	Υ	Absent		NH3-4500(28)
L1932442-03P	Plastic 950ml unpreserved	С	7	7	4.0	Y	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1932442-03Q	Plastic 950ml unpreserved	С	7	7	4.0	Υ	Absent		TSS-2540(7)
L1932442-03R	Amber 950ml H2SO4 preserved	С	NA		4.0	Υ	Absent		TPHENOL-420(28)
L1932442-03S	Amber 1000ml HCl preserved	С	NA		4.0	Υ	Absent		TPH-1664(28)
L1932442-03T	Amber 1000ml HCl preserved	С	NA		4.0	Υ	Absent		TPH-1664(28)
L1932442-03U	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03V	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03W	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03X	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03Y	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)
L1932442-03Z	Amber 1000ml Na2S2O3	С	7	7	4.0	Υ	Absent		625.1-RGP(7),PCB-608.3(7),625.1-SIM-RGP(7)

Project Name: Lab Number: POLAR PARK L1932442

Report Date: Project Number: 4325.03 07/31/19

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1932442Project Number:4325.03Report Date:07/31/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 13

Published Date: 7/30/2019 3:17:52 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN O	F CUS	TOI	DY PA	GE_	OF	Date Re	d in Lal	: 712	3/19			ALPH	IA Job#	#: L193	2442
8 Walkup Drive	220 Earland Plant	Project I	nformat	ion			Report	Informa	ition - Da	ta Deliv	erable	s	Billin	g Inform	ation	
Westboro, MA (Tel: 508-898-8		Project Nar	ne: Dol	ar Pau	rk		MADE:	(E EMAI	L			Sam	e as Client	t info PO	#:
Client Information	n		110	loncest		A	Regula	tory Re	quiremer	nts &	Proje	ct In	format	ion Requ	uirements	
Client: Sanjoor	n Head	Project #: _							MCP Analy			DG?	(Requir	es M No	CT RCP A	nalytical Method
	nnology Drive	Project Mar	nager: [/	Malk	OK .		☐,Yes ☑	No GW	1 Standard					EPH with T		,
Westford.	MA 01886	ALPHA Q		0					ES RGP d Progran	1	Щ			Criteria_		
Phone: 978-3	92-0900	Turn-Arc	ound Tir	ne	ALVE.	i de		/ /	2	2/2/		7	11	*/./	//	/
	C Sanburnhadd car	Standar	rd 🗆	RUSH (only a	onlimed if pre-ap	proved)	SIS	~/	DRCP	Nges On	luo sae	int	2000	hardness	57 / /	/
Additional P	roject Information:	Date Du	e:				ANALYSIS	AH AH	CRAS	0 8	//	Berpr	99	77	1 /	SAMPLE INFO
110,000	s'include AgiAsicai ir. P Minimum levels mu			b,Se.Z	n, Fe, H	19.	10	METALS: DMCP 1.	EPH. DRanges & T. DRCRAS DRCRAS DRCP 15	VPH: DRanges & Targets D Ranges Only D PCB D PCC D D PCC	A.D. Couant Only DE:	S Rep D.	PH Jule Ined Met.	Tokal men pH. 1	mano/	Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	-	Colle	ection	Sample Matrix	Sampler Initials	SVOC:	METAL	EPH: D	D PCB	THE VERY	104.	H.	The state of the s	Sam	ole Comments
32442-01	G1Z-8		7/23/19	8:25	GW	DWD					X	X	X	Ü		
~02	MW-1		1	8:45	1	cwm					X	X	\times	(H		
-03	HA19-6(OW)		1	1(:00)	V	Dmp					X	X	X	H		
											+					
Container Type P≈ Ptastic	Preservative A= None				Conta	ainer Type					P/P	P	P			
					200	ainer Type					7 A O	PO	P			

ANALYTICAL REPORT

Lab Number: L1933226

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Kent Walker
Phone: (978) 577-1003
Project Name: POLAR PARK

Project Number: 4325.03 Report Date: 08/06/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: POLAR PARK

Project Number: 4325.03

 Lab Number:
 L1933226

 Report Date:
 08/06/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1933226-01	HA19-2(OW)	WATER	WORCESTER, MA	07/26/19 10:00	07/26/19
L1933226-02	MIDDLE RIVER	WATER	WORCESTER, MA	07/26/19 11:20	07/26/19

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

Case Narrative (continued)

Report Submission

August 06, 2019: This final report includes the results of all requested analyses.

August 02, 2019: This is a preliminary report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/06/19

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L1933226

08/06/19

Project Name: Lab Number: POLAR PARK

Project Number: 4325.03

SAMPLE RESULTS

Report Date:

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00 Client ID: Date Received: 07/26/19 HA19-2(OW)

Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 07/29/19 20:24

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	100		60-140	

Project Name: Lab Number: POLAR PARK L1933226

Project Number: Report Date: 4325.03 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: Date Received: 07/26/19 HA19-2(OW) Sample Location: Field Prep: WORCESTER, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 07/29/19 20:24

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westborou	igh Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance iteria

1,4-Dioxane	ND	ug/l	50		1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene		98		60-140	
4-Bromofluorobenzene		95		60-140	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 08/05/19 11:50

Analytical Date: 08/05/19 23:03
Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ua/l	0.010		1	А

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/29/19 17:29

Analyst: AD

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - Westh	orough Lab	for sample(s): 01	Batch:	WG1266317-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 07/29/19 17:29

Analyst: AD

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):01Batch:WG1266317-4

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
Pentafluorobenzene	87	60-140
Fluorobenzene	91	60-140
4-Bromofluorobenzene	99	60-140

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 07/29/19 17:29

Analyst: AD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborougl	n Lab for s	ample(s):	01	Batch:	WG1266333-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
		_
Fluorobenzene	95	60-140
4-Bromofluorobenzene	96	60-140

Project Name: Lab Number: **POLAR PARK** L1933226

Project Number: Report Date: 4325.03 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 08/05/19 22:47 08/05/19 11:50 **Extraction Date:**

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westl	oorough Lab fo	r sample(s)	: 01	Batch: WG126	8692-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

Parameter	LCS %Recovery	LCS Qual %Reco		%Recovery Limits	RPD	RPD Qual Limit	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01 Batch	: WG1266317-3				
Methylene chloride	100	-		60-140	-	28	
1,1-Dichloroethane	85	-		50-150	-	49	
Carbon tetrachloride	85	-		70-130	-	41	
1,1,2-Trichloroethane	95	-		70-130	-	45	
Tetrachloroethene	95	-		70-130	-	39	
1,2-Dichloroethane	80	-		70-130	-	49	
1,1,1-Trichloroethane	105	-		70-130	-	36	
Benzene	80	-		65-135	-	61	
Toluene	105	-		70-130	-	41	
Ethylbenzene	105	-		60-140	-	63	
Vinyl chloride	90	-		5-195	-	66	
1,1-Dichloroethene	105	-		50-150	-	32	
cis-1,2-Dichloroethene	100	-		60-140	-	30	
Trichloroethene	85	-		65-135	-	48	
1,2-Dichlorobenzene	105	-		65-135	-	57	
1,3-Dichlorobenzene	100	-		70-130	-	43	
1,4-Dichlorobenzene	100	-		65-135	-	57	
p/m-Xylene	102	-		60-140	-	30	
o-xylene	95	-		60-140	-	30	
Acetone	92	-		40-160	-	30	
Methyl tert butyl ether	95	-		60-140	-	30	
Tert-Butyl Alcohol	100	-		60-140	-	30	
Tertiary-Amyl Methyl Ether	65	-		60-140	-	30	

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1933226

Project Number: 4325.03 Report Date:

08/06/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1266317-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Q	Acceptance Qual Criteria
Pentafluorobenzene	98		60-140
Fluorobenzene	84		60-140
4-Bromofluorobenzene	99		60-140

Project Name:

POLAR PARK

20

Lab Control Sample Analysis

Batch Quality Control

Lab Number: L1933226

Report Date: 08/06/19

Project Name: POLAR PARK

Project Number: 4325.03

1,4-Dioxane

LCS LCSD %Recovery RPD %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1266333-3

110

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	87 93			60-140 60-140

60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK Lab Number:

L1933226

Project Number: 4325.03

Report Date:

08/06/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1268692-2									
1,2-Dibromoethane	114		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC -	- Westborough Lab	Associat	ed sample(s): 01	QC Batch	ID: WG12	268692-3	QC Sample: I	_193258	38-02 Clie	nt ID: N	//S Sam	ple	
1,2-Dibromoethane	ND	0.252	0.202	80		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.252	0.288	114		-	-		80-120	-		20	Α
1,2,3-Trichloropropane	ND	0.252	0.250	99		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Client ID: HA19-2(OW) Date Received: 07/26/19
Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 08/01/19 07:41

Analyst: ALS

08/02/19 13:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbord	ugh Lab					
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	4.9		1
Di-n-butylphthalate	ND		ug/l	4.9		1
Di-n-octylphthalate	ND		ug/l	4.9		1
Diethyl phthalate	ND		ug/l	4.9		1
Dimethyl phthalate	ND		ug/l	4.9		1

Surrogate	% Recovery	eptance riteria
Nitrobenzene-d5	92	42-122
2-Fluorobiphenyl	75	46-121
4-Terphenyl-d14	96	47-138

Project Name: Lab Number: POLAR PARK L1933226

Project Number: Report Date: 4325.03 08/06/19

SAMPLE RESULTS

Lab ID: L1933226-01 Date Collected: 07/26/19 10:00

Date Received: Client ID: HA19-2(OW) 07/26/19 Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 08/01/19 07:43 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: DV

08/01/19 23:47

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.98		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	47	25-87	
Phenol-d6	32	16-65	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	87	46-121	
2,4,6-Tribromophenol	83	45-128	
4-Terphenyl-d14	84	47-138	

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 08/02/19 12:14

Analyst: CB

Extraction Method: EPA 625.1 Extraction Date: 07/31/19 15:40

Parameter	Result	Qualifier	Units	RL	-	MDL	
Semivolatile Organics by GC/MS - \	Nestborough	n Lab for s	ample(s):	01 E	Batch:	WG1266979-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2	2		
Butyl benzyl phthalate	ND		ug/l	5.0)		
Di-n-butylphthalate	ND		ug/l	5.0)		
Di-n-octylphthalate	ND		ug/l	5.0)		
Diethyl phthalate	ND		ug/l	5.0)		
Dimethyl phthalate	ND		ug/l	5.0)		

		Acceptance	
Surrogate	%Recovery G	Qualifier Criteria	_
Nitrobenzene-d5	97	42-122	
2-Fluorobiphenyl	81	46-121	
4-Terphenyl-d14	97	47-138	

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 08/01/19 22:24

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 08/01/19 05:33

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/N	//S-SIM - Westbo	rough Lab	for sample	(s): 01	Batch: WG1267211-	-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	59	25-87
Phenol-d6	45	16-65
Nitrobenzene-d5	89	42-122
2-Fluorobiphenyl	82	46-121
2,4,6-Tribromophenol	78	45-128
4-Terphenyl-d14	89	47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01 Batch:	WG1266979)-3				
Bis(2-ethylhexyl)phthalate	106		-		29-137	-		82	
Butyl benzyl phthalate	96		-		1-140	-		60	
Di-n-butylphthalate	99		-		8-120	-		47	
Di-n-octylphthalate	104		-		19-132	-		69	
Diethyl phthalate	90		-		1-120	-		100	
Dimethyl phthalate	81		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	92		42-122	
2-Fluorobiphenyl	76		46-121	
4-Terphenyl-d14	92		47-138	

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

arameter	LCS %Recovery Qu	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab Associa	ted sample(s): 01 Batc	h: WG1267211-2		
Acenaphthene	81	-	60-132	-	30
Fluoranthene	94	-	43-121	-	30
Naphthalene	82	-	36-120	-	30
Benzo(a)anthracene	98	-	42-133	-	30
Benzo(a)pyrene	94	-	32-148	-	30
Benzo(b)fluoranthene	89	-	42-140	-	30
Benzo(k)fluoranthene	88	-	25-146	-	30
Chrysene	90	-	44-140	-	30
Acenaphthylene	86	-	54-126	-	30
Anthracene	99	-	43-120	-	30
Benzo(ghi)perylene	94	-	1-195	-	30
Fluorene	84	-	70-120	-	30
Phenanthrene	92	-	65-120	-	30
Dibenzo(a,h)anthracene	96	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	93	-	1-151	-	30
Pyrene	93	-	70-120	-	30
Pentachlorophenol	75	-	38-152	-	30

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Lab Number:

Qual

RPD

L1933226 08/06/19

Limits

Project Number: 4325.03

Parameter

Report Date:

Limits

LCS LCSD %Recovery RPD

%Recovery

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1267211-2

Qual

%Recovery

Surrogate	LCS LCS %Recovery Qual %Recov	Acceptance Criteria
2-Fluorophenol	63	25-87
Phenol-d6	50	16-65
Nitrobenzene-d5	95	42-122
2-Fluorobiphenyl	86	46-121
2,4,6-Tribromophenol	82	45-128
4-Terphenyl-d14	86	47-138

Qual

PCBS

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 **Report Date:** 08/06/19

SAMPLE RESULTS

 Lab ID:
 L1933226-01
 Date Collected:
 07/26/19 10:00

 Client ID:
 HA19-2(OW)
 Date Received:
 07/26/19

Sample Location: WORCESTER, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 08/01/19 08:07

Analytical Date: 08/04/19 15:57 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 08/01/19

Cleanup Method: EPA 3660B Cleanup Date: 08/01/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	42		37-123	В
Decachlorobiphenyl	41		38-114	В
2,4,5,6-Tetrachloro-m-xylene	43		37-123	Α
Decachlorobiphenyl	40		38-114	Α

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 08/04/19 14:55

Analyst: WR

Extraction Method: EPA 608.3
Extraction Date: 08/01/19 02:56
Cleanup Method: EPA 3665A
Cleanup Date: 08/01/19
Cleanup Method: EPA 3660B
Cleanup Date: 08/01/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - '	Westboroug	h Lab for s	ample(s):	01 Batch:	WG1267157	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	ce
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61	37-123	В
Decachlorobiphenyl	83	38-114	В
2,4,5,6-Tetrachloro-m-xylene	63	37-123	Α
Decachlorobiphenyl	75	38-114	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Lab Number:

L1933226

08/06/19

Project Number: 4325.03

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - We	estborough Lab Associa	ted sample(s):	01 Batch:	WG1267157	7-2				
Aroclor 1016	78		-		50-140	-		36	А
Aroclor 1260	83		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Columi	n
2,4,5,6-Tetrachloro-m-xylene	75		37-123 B	_
Decachlorobiphenyl	89		38-114 B	
2,4,5,6-Tetrachloro-m-xylene	77		37-123 A	
Decachlorobiphenyl	84		38-114 A	

METALS

07/26/19 10:00

Refer to COC

07/26/19

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

SAMPLE RESULTS

Lab ID:L1933226-01Date Collected:Client ID:HA19-2(OW)Date Received:Sample Location:WORCESTER, MAField Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Arsenic, Total	0.05242		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Chromium, Total	0.00378		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Copper, Total	0.00347		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Iron, Total	2.40		mg/l	0.050		1	07/29/19 20:55	07/30/19 13:16	EPA 3005A	19,200.7	AB
Lead, Total	0.00109		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/30/19 15:22	07/30/19 20:03	EPA 245.1	3,245.1	EA
Nickel, Total	0.00237		mg/l	0.00200		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Zinc, Total	0.01266		mg/l	0.01000		1	07/29/19 20:55	07/30/19 20:47	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfie	ld Lab								
Hardness	401		mg/l	0.660	NA	1	07/29/19 20:55	07/30/19 13:16	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		07/30/19 20:47	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0494		mg/l	0.0010		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Iron, Dissolved	0.162		mg/l	0.050		1	07/30/19 15:30	07/30/19 22:05	EPA 3005A	19,200.7	AB
Lead, Dissolved	ND		mg/l	0.0010		1	07/30/19 15:30	07/31/19 01:52	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	07/31/19 11:07	07/31/19 19:59	EPA 245.1	3,245.1	EA

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

SAMPLE RESULTS

Lab ID:L1933226-01Date Collected:07/26/19 10:00Client ID:HA19-2(OW)Date Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	ND		mg/l	0.0020		1	07/30/19 15:3	0 07/31/19 01:52	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	07/30/19 15:3	0 07/31/19 01:52	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	07/30/19 15:3	0 07/31/19 01:52	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	07/30/19 15:3	0 07/31/19 01:52	EPA 3005A	3,200.8	AM

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

SAMPLE RESULTS

Lab ID:L1933226-02Date Collected:07/26/19 11:20Client ID:MIDDLE RIVERDate Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01716		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00066		mg/l	0.00020		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Chromium, Total	0.00563		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Copper, Total	0.01731		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Iron, Total	4.97		mg/l	0.050		1	07/29/19 20:55	07/30/19 13:20	EPA 3005A	19,200.7	AB
Lead, Total	0.02532		mg/l	0.00100		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/30/19 15:22	07/30/19 20:05	EPA 245.1	3,245.1	EA
Nickel, Total	0.00438		mg/l	0.00200		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Zinc, Total	0.05755		mg/l	0.01000		1	07/29/19 20:55	07/30/19 20:51	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	56.6		mg/l	0.660	NA	1	07/29/19 20:55	07/30/19 13:20	EPA 3005A	19,200.7	АВ

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Dilution Analytical Date **Date Result Qualifier Factor Prepared Analyzed** Method Analyst **Parameter Units** RL **MDL** Total Metals - Mansfield Lab for sample(s): 01-02 Batch: WG1265972-1 Iron, Total ND 0.050 AΒ mg/l 1 07/29/19 20:55 07/30/19 10:58 19,200.7

Prep Information

Digestion Method: EPA 3005A

Dilution Analytical Date **Date** Method Analyst **Result Qualifier** Units RL**Factor Prepared** Analyzed **Parameter** MDL Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1265972-1 Hardness ND mg/l 0.660 NA 07/30/19 10:58 19,200.7 AΒ 07/29/19 20:55

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01-02 E	Batch: WO	312659	75-1				
Antimony, Total	ND	mg/l	0.00400		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	07/29/19 20:55	07/30/19 19:03	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Dissolved Metals - Mar	sfield Lab	for sample	e(s): 01	Batch:	WG1266	359-1				
Iron, Dissolved	ND		mg/l	0.050		1	07/30/19 15:30	07/30/19 20:49	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	insfield Lab for sample	e(s): 01	Batch: V	VG1266	6361-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	07/30/19 15:30	07/31/19 02:13	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-02 I	Batch: W	G12663	882-1				
Mercury, Total	ND	mg/l	0.00020		1	07/30/19 15:22	07/30/19 19:30	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Project Name: POLAR PARK

1225.02

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Dissolved Metals -	Mansfield Lab	for sample	e(s): 01	Batch: V	VG1266	6803-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	07/31/19 11:07	07/31/19 19:38	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG126	5972-2					
Iron, Total	104		-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	le(s): 01-02	Batch: WG126	5972-2				
Hardness	100		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bat	ch: WG126	5975-2					
Antimony, Total	92		-		85-115	-		
Arsenic, Total	102		-		85-115	-		
Cadmium, Total	106		-		85-115	-		
Chromium, Total	99		-		85-115	-		
Copper, Total	96		-		85-115	-		
Lead, Total	103		-		85-115	-		
Nickel, Total	103		-		85-115	-		
Selenium, Total	103		-		85-115	-		
Silver, Total	102		-		85-115	-		
Zinc, Total	101		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Ba	atch: WG12	66359-2					
Iron, Dissolved	105		-		85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Batch:	WG1266361-2			
Antimony, Dissolved	91	-	85-115	-	
Arsenic, Dissolved	98	-	85-115	-	
Cadmium, Dissolved	101	-	85-115	-	
Chromium, Dissolved	99	-	85-115	-	
Copper, Dissolved	95	-	85-115	-	
Lead, Dissolved	102	-	85-115	-	
Nickel, Dissolved	103	-	85-115	-	
Selenium, Dissolved	107	-	85-115	-	
Silver, Dissolved	98	-	85-115	-	
Zinc, Dissolved	102	-	85-115	-	
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Batch: W	/G1266382-2			
Mercury, Total	99	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Batch:	WG1266803-2			
Mercury, Dissolved	112	-	85-115	-	

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found %	MSD %Recovery Qu	Recovery ual Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01-02	QC Bato	h ID: WG126	5972-3	QC Sample	: L1933079-01	Client ID: MS	Sample	
Iron, Total	1.59	1	2.48	89		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s):	01-02 QC	Batch ID	: WG1265972	2-3 QC Samp	ole: L1933079-01	Client ID:	MS Sample
Hardness	271	66.2	318	71	Q	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bato	h ID: WG126	5972-7	QC Sample	e: L1932366-01	Client ID: MS	Sample	
Iron, Total	41.8	1	39.1	0	Q	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s):	01-02 QC	Batch ID	: WG1265972	2-7 QC Samp	ole: L1932366-01	Client ID:	MS Sample
Hardness	198	66.2	254	85		-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	QC Bato	h ID: WG126	5975-3	QC Sample	e: L1933079-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.4657	93		-	-	70-130	-	20
Arsenic, Total	0.01481	0.12	0.1272	94		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05102	100		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1915	96		-	-	70-130	-	20
Copper, Total	0.3476	0.25	0.5670	88		-	-	70-130	-	20
Lead, Total	0.02179	0.51	0.5344	100		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4697	94		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1118	93		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04714	94		-	-	70-130	-	20
Zinc, Total	0.6190	0.5	1.093	95		-	-	70-130	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield La	ab Associated sam	ple(s): 01-02	QC Bato	h ID: WG126597	75-5	QC Sam	ple: L1932366-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.3547	71		-	-	70-130	-	20
Arsenic, Total	0.01943	0.12	0.1217	85		-	-	70-130	-	20
Cadmium, Total	0.00036	0.051	0.05106	99		-	-	70-130	-	20
Chromium, Total	0.03955	0.2	0.2198	90		-	-	70-130	-	20
Copper, Total	0.03196	0.25	0.2541	89		-	-	70-130	-	20
Lead, Total	0.04701	0.51	0.5381	96		-	-	70-130	-	20
Nickel, Total	0.0348	0.5	0.5006	93		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.09829	82		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04687	94		-	-	70-130	-	20
Zinc, Total	0.1324	0.5	0.5916	92		-	-	70-130	-	20
Dissolved Metals - Mansfie	eld Lab Associated	sample(s): 0	1 QC Ba	tch ID: WG12663	359-3	QC Sa	mple: L1932366-01	Client ID: M	1S Sample	
Iron, Dissolved	1.25	1	2.40	115		-	-	75-125	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield	d Lab Associated	sample(s): 0	1 QC Ba	tch ID: WG126	6361-3	QC San	nple: L1932366-01	Client ID: N	1S Sample	
Antimony, Dissolved	ND	0.5	0.6026	120		-	-	70-130	-	20
Arsenic, Dissolved	0.0033	0.12	0.1351	110		-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0564	110		-	-	70-130	-	20
Chromium, Dissolved	ND	0.2	0.2132	107		-	-	70-130	-	20
Copper, Dissolved	ND	0.25	0.2603	104		-	-	70-130	-	20
Lead, Dissolved	ND	0.51	0.5630	110		-	-	70-130	-	20
Nickel, Dissolved	0.0033	0.5	0.5399	107		-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1413	118		-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0519	104		-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5618	112		-	-	70-130	-	20
otal Metals - Mansfield Lab	o Associated sam	ple(s): 01-02	QC Bate	ch ID: WG12660	382-3	QC Samp	ole: L1933582-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00457	91		-	-	70-130	-	20
otal Metals - Mansfield Lab	o Associated sam	ple(s): 01-02	QC Bate	ch ID: WG12663	382-5	QC Samp	ole: L1933582-02	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00472	94		-	-	70-130	-	20
Dissolved Metals - Mansfield	d Lab Associated	sample(s): 0	1 QC Ba	tch ID: WG126	6803-3	QC San	nple: L1932366-02	Client ID: N	1S Sample	
Mercury, Dissolved	ND	0.005	0.00344	69	Q	-	-	75-125	-	20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1265972-4 QC Sample:	L1933079-01	Client ID:	DUP Sample	
Iron, Total	1.59	1.55	mg/l	3		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1265972-8 QC Sample:	L1932366-01	Client ID:	DUP Sample	
Iron, Total	41.8	39.1	mg/l	7		20
Total Hardness by SM 2340B - Mansfield Lab Associated Sample	sample(s): 01-02	2 QC Batch ID: WG1265972	-8 QC Samp	le: L1932	366-01 Client ID	DUP
Hardness	198	194	mg/l	2		20
Total Metals - Mansfield Lab Associated sample(s): 01-02	2 QC Batch ID:	WG1265975-4 QC Sample:	L1933079-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01481	0.01555	mg/l	5		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.3476	0.3461	mg/l	0		20
Lead, Total	0.02179	0.02179	mg/l	0		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.6190	0.6297	mg/l	2		20

Project Name: POLAR PARK

Lab Number:

L1933226

Project Number: Report Date: 08/06/19 4325.03

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD	Limits
otal Metals - Mansfield Lab Associated sample(s): 01-02	QC Batch ID: \	WG1265975-6 QC Sample:	L1932366-01	Client ID:	DUP Sample	
Arsenic, Total	0.01943	0.01782	mg/l	9		20
Cadmium, Total	0.00036	0.00028	mg/l	26	Q	20
Chromium, Total	0.03955	0.03498	mg/l	12		20
Copper, Total	0.03196	0.02986	mg/l	7		20
Lead, Total	0.04701	0.04452	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1324	0.1225	mg/l	8		20
issolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1266359-4 QC Sample	e: L1932366-0	1 Client ID	: DUP Sample	
Iron, Dissolved	1.25	1.27	mg/l	2		20
issolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1266361-4 QC Sample	e: L1932366-0	1 Client ID	: DUP Sample	
Arsenic, Dissolved	0.0033	0.0029	mg/l	11		20
Cadmium, Dissolved	ND	ND	mg/l	NC		20
Chromium, Dissolved	ND	ND	mg/l	NC		20
Copper, Dissolved	ND	ND	mg/l	NC		20
Lead, Dissolved	ND	ND	mg/l	NC		20
Selenium, Dissolved	ND	ND	mg/l	NC		20
Silver, Dissolved	ND	ND	mg/l	NC		20
Zinc, Dissolved	ND	ND	mg/l	NC		20

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID:	WG1266382-4 QC Sample:	L1933582-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID:	WG1266382-6 QC Sample:	L1933582-02	Client ID:	DUP Sample
Mercury, Total	ND	0.00020	mg/l	NC	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1266803-4 QC Sample	e: L1932366-0	2 Client ID): DUP Sample
Mercury, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID:L1933226-01Date Collected:07/26/19 10:00Client ID:HA19-2(OW)Date Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total Suspended	140		mg/l	10	NA	2	-	07/29/19 13:50	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	07/29/19 16:45	07/30/19 11:43	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/26/19 23:38	121,4500CL-D	AS
pH (H)	7.5		SU	-	NA	1	-	07/26/19 22:58	121,4500H+-B	AS
Nitrogen, Ammonia	0.089		mg/l	0.075		1	07/27/19 14:42	07/29/19 20:30	121,4500NH3-BH	H ML
Sulfate	100		mg/l	50		5	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
TPH, SGT-HEM	ND		mg/l	4.00		1	07/30/19 16:00	07/30/19 21:25	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	07/30/19 05:52	07/30/19 10:45	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	07/27/19 05:00	07/27/19 05:54	1,7196A	JW
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	191.		mg/l	5.00		10	-	07/30/19 05:23	44,300.0	AT

Project Name: POLAR PARK Lab Number: L1933226

Project Number: 4325.03 Report Date: 08/06/19

SAMPLE RESULTS

Lab ID:L1933226-02Date Collected:07/26/19 11:20Client ID:MIDDLE RIVERDate Received:07/26/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
pH (H)	7.5		SU	-	NA	1	-	07/26/19 22:58	121,4500H+-B	AS
Nitrogen, Ammonia	0.125		mg/l	0.075		1	07/27/19 14:42	07/29/19 20:31	121,4500NH3-BH	l ML

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1933226

Report Date: 08/06/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	borough Lab fo	r sample(s): 01	Batch:	WG12	65241-1				
Chlorine, Total Residual	ND	mg/l	0.02		1	-	07/26/19 23:38	121,4500CL-D	AS
General Chemistry - West	borough Lab fo	r sample(s): 01	Batch:	WG12	65285-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	07/27/19 05:00	07/27/19 05:49	1,7196A	JW
General Chemistry - West	borough Lab fo	r sample(s): 01-	02 Bat	ch: W0	G1265399-	1			
Nitrogen, Ammonia	ND	mg/l	0.075		1	07/27/19 14:42	07/29/19 19:56	121,4500NH3-BH	H ML
General Chemistry - Wes	borough Lab fo	r sample(s): 01	Batch:	WG12	65722-1				
Sulfate	ND	mg/l	10		1	07/29/19 12:01	07/29/19 12:01	121,4500SO4-E	BR
General Chemistry - West	borough Lab fo	r sample(s): 01	Batch:	WG12	65749-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	07/29/19 13:50	121,2540D	DR
General Chemistry - West	borough Lab fo	r sample(s): 01	Batch:	WG12	65787-1				
Cyanide, Total	ND	mg/l	0.005		1	07/29/19 16:45	07/30/19 11:18	121,4500CN-CE	LH
Anions by Ion Chromatog	raphy - Westbor	ough Lab for sai	mple(s):	01 B	atch: WG1	266101-1			
Chloride	ND	mg/l	0.500		1	-	07/30/19 02:46	44,300.0	AT
General Chemistry - West	borough Lab fo	r sample(s): 01	Batch:	WG12	66135-1				
Phenolics, Total	ND	mg/l	0.030		1	07/30/19 05:52	07/30/19 10:42	4,420.1	BR
General Chemistry - West	borough Lab fo	r sample(s): 01	Batch:	WG12	66423-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	07/30/19 16:00	07/30/19 21:25	74,1664A	ML

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG12652	236-1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG1265241	-2				
Chlorine, Total Residual	92		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG1265285	-2				
Chromium, Hexavalent	102		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG1265	399-2				
Nitrogen, Ammonia	92		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG1265722	-2				
Sulfate	90		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Ba	atch: WG1265787	-2				
Cyanide, Total	98		-		90-110	-		
Anions by Ion Chromatography - Westb	orough Lab Associate	d sampl	le(s): 01 Batch: '	WG126610	01-2			
Chloride	104		-		90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1266135-2			
Phenolics, Total	86	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1266423-2			
TPH	93	-	64-132	-	34

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		ISD ound	MSD %Recovery Qua	Recovery I Limits	RPD Qu	RPD _{Ial} Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126524 ⁻	1-4	QC Sample: L193322	6-01 Client	ID: HA19-	2(OW)
Chlorine, Total Residual	ND	0.25	0.26	104		-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126528	5-4	QC Sample: L193322	6-01 Client	ID: HA19-	2(OW)
Chromium, Hexavalent	ND	0.1	0.099	99		-	-	85-115	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01-0	2 QC Batch II	D: WG1265	399-4	QC Sample: L193.	2925-02 Clie	ent ID: MS	Sample
Nitrogen, Ammonia	ND	4	3.56	89		-	-	80-120	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1265722	2-4	QC Sample: L193244	2-01 Client	ID: MS Sa	ımple
Sulfate	32	50	81	98		-	-	55-147	-	14
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1265787	7-4	QC Sample: L193295	5-04 Client	ID: MS Sa	ımple
Cyanide, Total	ND	0.2	0.179	90		-	-	90-110	-	30
Anions by Ion Chromatograph Sample	y - Westborou	gh Lab Asso	ciated san	nple(s): 01 Q(C Batch ID:	WG1	266101-3 QC Samı	ole: L1933582	-01 Clier	nt ID: MS
Chloride	1060	200	1210	74	Q	-	-	90-110	-	18
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG126613	5-4	QC Sample: L193322	6-01 Client	ID: HA19-	2(OW)
Phenolics, Total	ND	0.4	0.34	84		-	-	70-130	-	20
General Chemistry - Westbord	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1266423	3-4	QC Sample: L193279	6-06 Client	ID: MS Sa	ımple
TPH	ND	20	15.6	78		-	-	64-132	-	34

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1933226

Report Date:

08/06/19

Parameter	Nat	ive Sample	Duplicate Samp	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1265236-2	QC Sample: L1	931592-03	Client ID:	DUP Sample
рН		2.9	3.0	SU	3		5
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265241-3 (QC Sample: L1933	3226-01 C	lient ID: H	A19-2(OW)
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265285-3 (QC Sample: L1933	3226-01 C	lient ID: H	A19-2(OW)
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1265399-3	QC Sample: L1	932925-02	Client ID:	DUP Sample
Nitrogen, Ammonia		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265722-3 (QC Sample: L1932	2442-01 C	lient ID: DI	JP Sample
Sulfate		32	31	mg/l	3		14
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265749-2 (QC Sample: L1933	3201-01 C	lient ID: DI	JP Sample
Solids, Total Suspended		56	55	mg/l	2		29
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1265787-3 (QC Sample: L1932	955-02 C	lient ID: DI	JP Sample
Cyanide, Total		ND	ND	mg/l	NC		30
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sample(s): 01 C	C Batch ID: WG12	266101-4 QC Sar	mple: L193	33582-01	Client ID: DUP
Chloride		1060	1070	mg/l	1		18
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1266135-3 (QC Sample: L1933	3226-01 C	lient ID: H	A19-2(OW)
Phenolics, Total		ND	ND	mg/l	NC		20

Lab Number:

Lab Duplicate Analysis Batch Quality Control

POLAR PARK

L1933226

Project Number: 4325.03 Report Date: 08/06/19

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 01 QC Batch ID:	WG1266423-3	QC Sample: L193	3582-02 Client	t ID: DUP Sample
ТРН	ND	ND	mg/l	NC	34

Project Name:

Project Name: POLAR PARK

Lab Number: L1933226

YES

Project Number: 4325.03 **Report Date:** 08/06/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН		Pres	Seal	Date/Time	Analysis(*)
L1933226-01A	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01B	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01C	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01D	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		504(14)
L1933226-01E	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01F	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01G	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01H	Vial Na2S2O3 preserved	Α	NA		2.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1933226-01I	Vial HCl preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01J	Vial HCl preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01K	Vial HCl preserved	Α	NA		2.6	Υ	Absent		HOLD-SUB()
L1933226-01L	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		TCN-4500(14)
L1933226-01M	Plastic 250ml HNO3 preserved	В	<2	<2	2.9	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1933226-01N	Plastic 250ml HNO3 preserved	В	<2	<2	2.9	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-01O	Plastic 500ml H2SO4 preserved	В	<2	<2	2.9	Υ	Absent		NH3-4500(28)
L1933226-01P	Plastic 950ml unpreserved	В	7	7	2.9	Υ	Absent		SO4-4500(28),CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1933226-01Q	Plastic 950ml unpreserved	В	7	7	2.9	Υ	Absent		TSS-2540(7)
L1933226-01R	Amber 950ml H2SO4 preserved	В	<2	<2	2.9	Υ	Absent		TPHENOL-420(28)

Lab Number: L1933226

Report Date: 08/06/19

Project Name: POLAR PARK

Project Number: 4325.03

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1933226-01S	Amber 1000ml HCl preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
L1933226-01T	Amber 1000ml HCl preserved	Α	NA		2.6	Υ	Absent		TPH-1664(28)
L1933226-01U	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01V	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01W	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1933226-01X	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-01Y	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-01Z	Amber 1000ml Na2S2O3	Α	7	7	2.6	Υ	Absent		PCB-608.3(7)
L1933226-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-02A1	Plastic 250ml HNO3 preserved	A	<2	<2	2.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1933226-02B	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NH3-4500(28)
L1933226-02B1	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.6	Υ	Absent		NH3-4500(28)
L1933226-02C	Plastic 60ml unpreserved	Α	7	7	2.6	Υ	Absent		PH-4500(.01)
L1933226-02C1	Plastic 60ml unpreserved	Α	7	7	2.6	Υ	Absent		PH-4500(.01)

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

GLOSSARY

Acronyms

EDL

EMPC

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an
analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case
estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1933226Project Number:4325.03Report Date:08/06/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 13

Published Date: 7/30/2019 3:17:52 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHA	AIN OF CU	STO	OY PA	GE	of	Date R	tec'd in	Lab:	7/8	16/1	9	86		ALP	НА	Job #	#: L	19	3322	6
8 Walkup Drive Westboro, MA		d	Informati				Repo	4-11-1-1		ion - D		liver	ables			Section 2	Mark Control	nation	ill and		
Client Information Client: Sanbour Address: I Tech Westford, Phone: 978 - 5 Email: Kwalke Additional F ** RGP Metain Hexcr, Trick	on Mead Mology Park MA 01886 77-1003 er CSanbornhe Project Information include As,	Project I Project I ALPHA Turn-	Ni, Pb,	PORCES TE 1,03 PENY WAR TRUSH HONLY	Or, MA	opravedi)	Regularies Yes. Yes. Yes. Yes. Othe	No No No No No Proper State	MA Mo Matrix GW1 S NPDE	CP Analy Spike R Standard S RGP Program	nts & ytical M equired ds (Info	ethod i on th Requ	ds his SE uired f	OG?	Required tals	Yes, uired to & EPH	Require Months iteria	uirem CT R P Inor	SACP Anarganics)	alytical Meth	
ALPHA Lab ID (Lab Use Only)		mple ID	+	ection Time	Sample Matrix	Sampler Initials	Voc.	METAL D	METAL C	EPH: CIRa	VPH: ORan	TPH: DO	NOT V	104.0	P.	Ammin	10/2	L the	0	Lab to do	lg.
33226-01 - 02	HA19-2(OW) Middle R		7/26/19	10:00 11:20		CMW							X		X	×	×	D			
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Q= 62 of 62	Preservative A= None B= HCI C= HNO ₂ D= H ₂ SO ₄ E= NsOH F= MeOH G= NsHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Reling	uished By:	F	Pr	eservative	E			ed By:	AM	2	7/A O 7/2	Date/	Cime	0	Alpha See	a's Terr reverse	ms and e side.	tted are sub Conditions. 2-Mar-2012)	ect

ANALYTICAL REPORT

Lab Number: L1935655

Client: Sanborn, Head & Associates, Inc.

1 Technology Park Drive Westford, MA 01886

ATTN: Kent Walker
Phone: (978) 577-1003
Project Name: POLAR PARK

Project Number: 4325.03 Report Date: 08/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1935655

Report Date:

08/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1935655-01	HA19-6 (OW)	WATER	WORCESTER, MA	08/08/19 15:00	08/08/19

Project Name:POLAR PARKLab Number:L1935655Project Number:4325.03Report Date:08/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:08151918:09

Project Name:POLAR PARKLab Number:L1935655Project Number:4325.03Report Date:08/15/19

Case Narrative (continued)

Dissolved Metals

The WG1270623-2 LCS recovery, associated with L1935655-01, is above the acceptance criteria for selenium (124%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1270623-4 Laboratory Duplicate RPDs for chromium (51%) and copper (21%), performed on L1935655-01, are above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPDs are valid.

The WG1270616-4 Laboratory Duplicate RPD for iron (56%), performed on L1935655-01, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/15/19

600, Sew on Kelly Stenstrom

METALS

Serial_No:08151918:09

Project Name:POLAR PARKLab Number:L1935655Project Number:4325.03Report Date:08/15/19

SAMPLE RESULTS

Lab ID:L1935655-01Date Collected:08/08/19 15:00Client ID:HA19-6 (OW)Date Received:08/08/19Sample Location:WORCESTER, MAField Prep:Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
D'and alMatala B	A C - L - L	1 - 1									
Dissolved Metals - N	vianstiela	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0022		mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0014		mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0018		mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Iron, Dissolved	0.599		mg/l	0.050		1	08/09/19 12:16	08/13/19 15:17	EPA 3005A	19,200.7	LC
Lead, Dissolved	0.0013		mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Mercury, Dissolved	ND		mg/l	0.00020		1	08/13/19 15:50	08/13/19 21:28	EPA 245.1	3,245.1	MG
Nickel, Dissolved	0.0056		mg/l	0.0020		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	08/09/19 12:16	08/12/19 16:57	EPA 3005A	3,200.8	AM

Serial_No:08151918:09

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1935655

Report Date:

08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Dissolved Metals - N	Mansfield Lab	for sample	e(s): 01	Batch: \	WG1270	0616-1				
Iron, Dissolved	ND		mg/l	0.050		1	08/09/19 12:16	08/13/19 15:08	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab for samp	le(s): 01	Batch: V	VG1270	0623-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	08/09/19 12:16	08/12/19 16:23	3,200.8	АМ
Zinc, Dissolved	ND	mg/l	0.0100		1	08/09/19 12:16	08/12/19 16:23	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - M	ansfield Lab	for sample	e(s): 01	Batch: V	VG127	1862-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	08/13/19 15:50	08/13/19 21:25	5 3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number: L1935655

Report Date: 08/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 B	atch: WG1	270616-2					
Iron, Dissolved	110		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 B	atch: WG1	270623-2					
Antimony, Dissolved	101		-		85-115	-		
Arsenic, Dissolved	109		-		85-115	-		
Cadmium, Dissolved	105		-		85-115	-		
Chromium, Dissolved	107		-		85-115	-		
Copper, Dissolved	106		-		85-115	-		
Lead, Dissolved	103		-		85-115	-		
Nickel, Dissolved	104		-		85-115	-		
Selenium, Dissolved	124	Q	-		85-115	-		
Silver, Dissolved	110		-		85-115	-		
Zinc, Dissolved	112		-		85-115	-		
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 B	atch: WG1	271862-2					
Mercury, Dissolved	94		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

Lab Number:

L1935655

08/15/19

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qua	Recovery Limits	RPD Qual	RPD Limits
Dissolved Metals - Mans	field Lab Associated	sample(s): 0)1 QC Bat	tch ID: WG12	70616-3	QC Sa	mple: L1935655-01	Client ID:	HA19-6 (OW)	
Iron, Dissolved	0.599	1	1.67	107		-	-	75-125	-	20
Dissolved Metals - Mans	field Lab Associated	sample(s): 0)1 QC Bat	tch ID: WG12	70623-3	QC Sa	mple: L1935655-01	Client ID:	HA19-6 (OW)	
Antimony, Dissolved	ND	0.5	0.5095	102		-	-	70-130	-	20
Arsenic, Dissolved	0.0022	0.12	0.1396	114		-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0587	115		-	-	70-130	-	20
Chromium, Dissolved	0.0014	0.2	0.2078	103		-	-	70-130	-	20
Copper, Dissolved	0.0018	0.25	0.2449	97		-	-	70-130	-	20
Lead, Dissolved	0.0013	0.51	0.6027	118		-	-	70-130	-	20
Nickel, Dissolved	0.0056	0.5	0.4989	99		-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1412	118		-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0546	109		-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5424	108		-	-	70-130	-	20
Dissolved Metals - Mans	field Lab Associated	sample(s): 0	1 QC Bat	tch ID: WG12	71862-3	QC Sa	mple: L1935655-01	Client ID:	HA19-6 (OW)	
Mercury, Dissolved	ND	0.005	0.00426	85		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: POLAR PARK

Project Number: 4325.03

 Lab Number:
 L1935655

 Report Date:
 08/15/19

Parameter	Nativ	ve Sample		Duplicate	e Sample	Units	RPD	Qual	RPD	Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	01 (QC Batch ID:	WG1	270616-4	QC Sample:	L1935655-01	Client ID	: HA19-6	(OW)	
Iron, Dissolved		0.599		1.	06	mg/l	56	Q		20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 (QC Batch ID:	WG1	270623-4	QC Sample:	L1935655-01	Client ID	: HA19-6	(OW)	
Antimony, Dissolved		ND		N	D	mg/l	NC			20
Arsenic, Dissolved		0.0022		0.0	026	mg/l	19			20
Cadmium, Dissolved		ND		N	D	mg/l	NC			20
Chromium, Dissolved	(0.0014		0.0	023	mg/l	51	Q		20
Copper, Dissolved	(0.0018		0.0	022	mg/l	21	Q		20
Lead, Dissolved	(0.0013		0.0	014	mg/l	12			20
Nickel, Dissolved	(0.0056		0.0	057	mg/l	2			20
Selenium, Dissolved		ND		N	D	mg/l	NC			20
Silver, Dissolved		ND		N	D	mg/l	NC			20
Zinc, Dissolved		ND		N	D	mg/l	NC			20
Dissolved Metals - Mansfield Lab Associated sample(s):	01 (QC Batch ID:	WG1	271862-4	QC Sample:	L1935655-01	Client ID	: HA19-6	(OW)	
Mercury, Dissolved		ND		N	D	mg/l	NC			20

Serial_No:08151918:09

Lab Number: L1935655

Report Date: 08/15/19

Sample Receipt and Container Information

YES

Cooler Information

Project Name:

Project Number: 4325.03

Custody Seal Cooler

Were project specific reporting limits specified?

POLAR PARK

Α Absent

Container Info	ormation	Initial Final Temp Frozen				Frozen					
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1935655-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	2.6	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)		

Project Name: Lab Number: POLAR PARK L1935655

Report Date: Project Number: 4325.03 08/15/19

GLOSSARY

Acronyms

EDL

LOQ

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:POLAR PARKLab Number:L1935655Project Number:4325.03Report Date:08/15/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:08151918:09

Project Name:POLAR PARKLab Number:L1935655Project Number:4325.03Report Date:08/15/19

REFERENCES

Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08151918:09

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 15

Page 1 of 1

Published Date: 8/15/2019 9:53:42 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-

Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

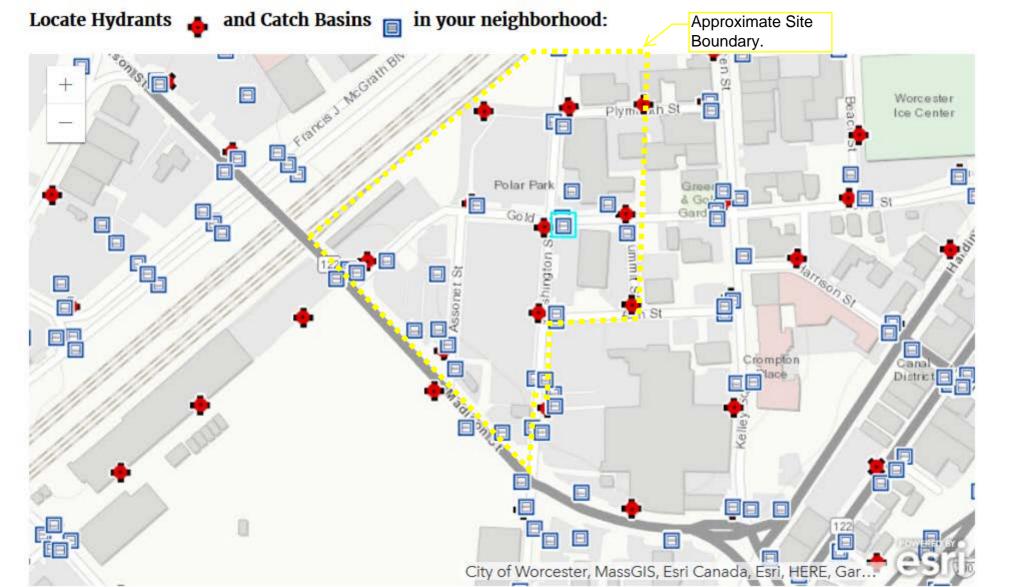
ALPHA	СНА	IN OF CU	STO	DY P	GE	of_1_	Date	Rec'd i	n Lab	: 8/6	18/1	9			ALP	на ј	ob #:	11	93565	5
8 Walkup Drive	320 Forbes Blvd	20	Informat		NESS.			4	orma	tion - E		Delive	rable	- 10			forma			
Westboro, MA (Tel: 508-898-9;		048 Project N	lame: Po	lar Pa	rk		DADEX DEMAIL Same								me as Client info PO #:					
Client Information	n			vorces		rn-		_	_				_	ct Inf				remen		
Client: Saesbo	m Head		: 437				☐ Yes	DE No	MA M Matrix	CP Ana	ilytica Requi	Methor	ds this SI	DG?	Regu	Yes & ired fo	No (CT RCP Inorgan	Analytical Met ics)	thods
		ParCor Project N	lanager: k	. Wale	er		□ Yes	E No	GW1	Standa	rds (Ir								8	
Westford	nnology t	ALPHA	Quote #:							ES RGP						_ Crit	eria			
Phone: 978-	392 - 09	OO Turn-A	round Ti	me				1	1	1 25	2/	3/	$\sqrt{}$	7	15	1	7	11		100
Additional P	roject Information	on: Date D	Oue:	arush ponty	antimed if pre-as	proved)	Dazen ANALYSIS	D ABN D S24.2	DMCP 13 C	EPH: Change CRCRAS CRCRAS	Canon Targets D Range	D PCB DPEST Ranges Only	DICC.	TOTOLOGO MADE	Simetals	//	//		SAMPLE IN Filtration Field Lab to do) B
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	Coll	ection	Sample Matrix	Sampler Initials	1,00°	SVOC.	METALS	EPH: CI	VPH: DI	D PCB	Dice E	3/	/ /	//		Sa	Lab to do	, I
	HA19-6 (C	ow)	8/8/19	15:00		SPS							X							1
	2019	W .													+					+
	* -																			
Container Type P= Plastic A= Amber glass V= Vial	Preservative A= None B= HCl C= HNO ₃			F	198.7	ainer Type														
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relingu	ished By:	-	_	e/Time			Receiv	red-Ru-		_		Date/	Time			-		9.
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Garmel Ser	· · ·		8/8/15	re-center.	6		>	2		•	8/8			2	Alpha's See rev	Terms a	omitted are su and Conditions de.	

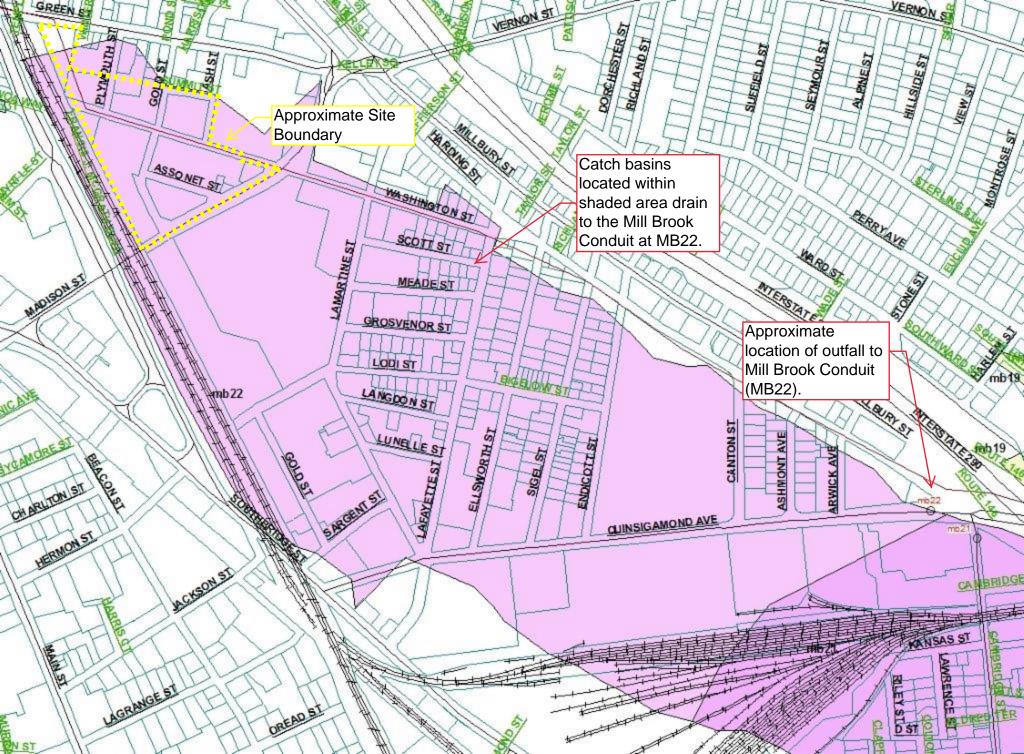
APPENDIX E MUNICIPAL CORRESPONDENCE

MEMORANDUM

From: C. Disenhof & D. DeWolfe

File: 4325.02 and 4325.03

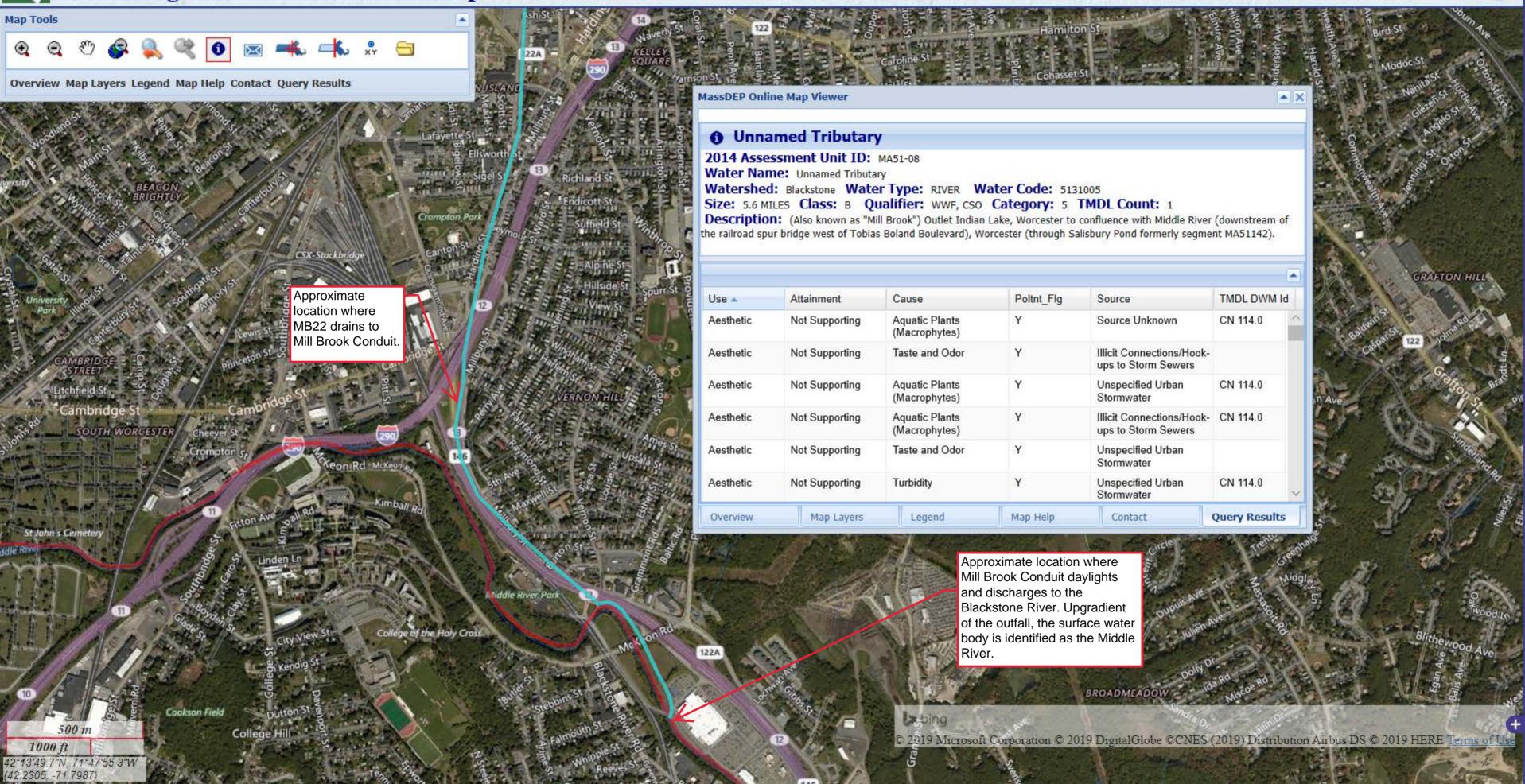

Date: August 27, 2019


Re: Communication with the City of Worcester

At approximately 10:00AM on August 27, 2019, I spoke to Deb Davis with the City of Worcester Department of Public Works & Parks (DPW) regarding requirements for notification to the City or permitting of construction dewatering projects that discharge to a stormwater system. This phone call and memorandum serve as our notification to the owner of the stormwater system to which treated groundwater from the Site may be discharged to under the National Pollution Discharge Elimination System (NPDES) Remediation General Permit (RGP).

Deb requested a copy of the NPDES permit approval once completed, including the flow rate, treatment system and duration of the project. A copy of the RGP approval letter will be provided to the City upon US Environmental Protection Agency (EPA) approval.

CRD: dmd



MassDEP Online Map Viewer 2014 Integrated List of Waters Map

Helpful Links:

- · The Clean Water Act
- · MassDEP Total Maximum Daily Loads

APPENDIX F PH CONDITIONER MATERIAL SAFETY DATA SHEET

Appendix F Additional Information for pH Adjustment

Although pH concentrations measured at the Site have ranged from 6.6 to 7.1 S.U in the baseline RGP groundwater samples, the groundwater may require treatment for elevated pH. In addition, elevated pH may occur from planned site/construction activities (concrete work). The addition of sulfuric acid may be necessary to lower pH concentrations to meet the permit requirements.

A pH adjustment system that is capable of reducing an elevated pH will be implemented if necessary, to meet the permit requirements. The pH adjustment system is designed to reduce an elevated pH with sulfuric acid and includes an automatic metered acid feed system with a mix tank, acid feed pumps and setpoint controls that maintain the pH approved by the permit, usually set between 6.5 and 8.0. The pH is continuously monitored, and the sulfuric acid will only be added if the setpoints are exceeded. The SDS for sulfuric acid is provided in this Appendix. The sulfuric acid will be stored in 55-gallon drums with secondary containment systems in place (overpack drum).

The addition of sulfuric acid as a pH conditioner will not add pollutants in concentrations which exceed permit effluent limitations. The use of sulfuric acid as a pH conditioner will not result in the exceedance of applicable water quality standards. The addition of sulfuric acid as a pH conditioner will not add pollutants that would justify the application of permit conditions that are different from or absent in this permit. The addition of sulfuric acid to control and adjust pH is a standard treatment technique for temporary construction dewatering; it is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

CHEMTRADE

Sulfuric Acid, 70-100%

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's

Hazardous Products Regulation, February 11, 2015.

Date of Issue: 05/31/2016 Revision Date: 05/07/2018 Version: 4.0

SECTION 1: IDENTIFICATION

Product Identifier

Product Form: Mixture

Product Name: Sulfuric Acid, 70-100%

Formula: H2-O4-S

Intended Use of the Product

Use Of The Substance/Mixture: Industrial use.

Name, Address, and Telephone of the Responsible Party

Manufacturer

CHEMTRADE LOGISTICS INC. 155 Gordon Baker Road Suite 300

Toronto, Ontario M2H 3N5 For SDS Info: (416) 496-5856 www.chemtradelogistics.com

Emergency Telephone Number

Emergency Number : Canada: CANUTEC +1-613-996-6666 / US: CHEMTREC +1-800-424-9300

> INTERNATIONAL: +1-703-741-5970 Chemtrade Emergency Contact: (866) 416-4404

For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call CHEMTREC - Day or Night

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

GHS Classification

Met. Corr. 1 H290 Skin Corr. 1A H314 Eye Dam. 1 H318 H350 Carc. 1A Aquatic Acute 3 H402

Full text of hazard classes and H-statements: see section 16

Label Elements GHS Labeling

Hazard Pictograms

Signal Word : Danger

Hazard Statements : H290 - May be corrosive to metals.

H314 - Causes severe skin burns and eye damage.

H318 - Causes serious eye damage. H350 - May cause cancer (Inhalation).

H402 - Harmful to aquatic life.

Precautionary Statements : P201 - Obtain special instructions before use.

P202 - Do not handle until all safety precautions have been read and understood.

P234 - Keep only in original container.

P260 - Do not breathe vapors, mist, or spray.

P264 - Wash hands, forearms, and other exposed areas thoroughly after handling.

P273 - Avoid release to the environment.

P280 - Wear protective gloves, protective clothing, and eye protection. P301+P330+P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

05/07/2018 SDS#: CHE-1010S 1/9 EN (English US)

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

P303+P361+P353 - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water.

P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing.

P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P308+P313 - If exposed or concerned: Get medical advice/attention.

P310 - Immediately call a POISON CENTER or doctor.

P321 - Specific treatment (see section 4 on this SDS).

P363 - Wash contaminated clothing before reuse.

P390 - Absorb spillage to prevent material damage.

P405 - Store locked up.

P406 - Store in corrosive resistant container with a resistant inner liner.

P501 - Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Other Hazards

Exposure may aggravate pre-existing eye, skin, or respiratory conditions.

Unknown acute toxicity

No data available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

Mixture

Name	Product Identifier	%*	GHS Ingredient Classification
Sulfuric acid**	(CAS-No.) 7664-93-9	70 - 100	Met. Corr. 1, H290
			Skin Corr. 1A, H314
			Eye Dam. 1, H318
			Carc. 1A, H350
			Aquatic Acute 3, H402
Water	(CAS-No.) 7732-18-5	0.1 - 30	Not classified

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First-aid Measures

General: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible).

Inhalation: When symptoms occur: go into open air and ventilate suspected area. Obtain medical attention if breathing difficulty persists.

Skin Contact: Remove contaminated clothing. Immediately flush skin with plenty of water for at least 30 minutes. Get immediate medical advice/attention. Wash contaminated clothing before reuse.

Eye Contact: Rinse cautiously with water for at least 30 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical advice/attention.

Ingestion: Rinse mouth. Do NOT induce vomiting. Obtain medical attention.

Most Important Symptoms and Effects Both Acute and Delayed

General: Corrosive to eyes, respiratory system and skin. May cause cancer.

Inhalation: May be corrosive to the respiratory tract.

Skin Contact: Causes severe irritation which will progress to chemical burns. **Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

05/07/2018 EN (English US) SDS#: CHE-1010S 2/9

^{*}Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients. Gas ingredients are listed in volume by volume percentage (v/v%).

^{**}Strong inorganic acid aerosols/mists containing this substance are carcinogenic to humans via inhalation. Under normal conditions of use this route of exposure is not expected.

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

<u>Indication of Any Immediate Medical Attention and Special Treatment Needed</u>

If exposed or concerned, get medical advice and attention. If medical advice is needed, have product container or label at hand.

SECTION 5: FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Foam, carbon dioxide, dry chemical.

Unsuitable Extinguishing Media: Do not use water. Do not get water inside containers. Do not apply water stream directly at source of leak

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Not flammable.

Explosion Hazard: Product is not explosive.

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire.

Firefighting Instructions: Use water spray or fog for cooling exposed containers.

Protection During Firefighting: Do not enter fire area without proper protective equipment, including respiratory protection.

Hazardous Combustion Products: Toxic fumes are released.

Other Information: Do not allow run-off from fire fighting to enter drains or water courses.

Reference to Other Sections

Refer to Section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Do not get in eyes, on skin, or on clothing. Do not breathe vapor, mist or spray. Do not handle until all safety precautions have been read and understood.

For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protective equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel.

For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Upon arrival at the scene, a first responder is expected to recognize the presence of dangerous goods, protect oneself and the public, secure the area, and call for the assistance of trained personnel as soon as conditions permit. Ventilate area.

Environmental Precautions

Prevent entry to sewers and public waters. Avoid release to the environment.

Methods and Materials for Containment and Cleaning Up

For Containment: Contain any spills with dikes or absorbents to prevent migration and entry into sewers or streams. As an immediate precautionary measure, isolate spill or leak area in all directions.

Methods for Cleaning Up: Clean up spills immediately and dispose of waste safely. Absorb spillage to prevent material damage. Cautiously neutralize spilled liquid. Transfer spilled material to a suitable container for disposal. Contact competent authorities after a spill.

Reference to Other Sections

See Section 8 for exposure controls and personal protection and Section 13 for disposal considerations.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Wash hands and other exposed areas with mild soap and water before eating, drinking or smoking and when leaving work. Handle empty containers with care because they may still present a hazard. Do not get in eyes, on skin, or on clothing. Do not breathe vapors, mist, spray. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.

Additional Hazards When Processed: May be corrosive to metals. May release corrosive vapors. NEVER pour water into this substance; when dissolving or diluting always add it slowly to the water.

05/07/2018 EN (English US) SDS#: CHE-1010S 3/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures.

Conditions for Safe Storage, Including Any Incompatibilities

Technical Measures: Comply with applicable regulations.

Storage Conditions: Keep container closed when not in use. Store in a dry, cool place. Keep/Store away from extremely high or low

temperatures and incompatible materials. Store in original container or corrosive resistant and/or lined container.

Incompatible Materials: Combustible materials. Reducing agents. Strong oxidizers. Strong bases. Metals. Water.

Specific End Use(s)

Industrial use.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

For substances listed in section 3 that are not listed here, there are no established Exposure limits from the manufacturer, supplier, importer, or the appropriate advisory agency including: ACGIH (TLV), AIHA (WEEL), NIOSH (REL), OSHA (PEL), Canadian provincial governments, or the Mexican government.

Sulfuric acid (7664-93-9)	-				
Mexico	OEL TWA (mg/m³)	1 mg/m³			
USA ACGIH	ACGIH TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
USA ACGIH ACGIH chemical category		Suspected Human Carcinogen contained in strong inorganic acid mists			
USA OSHA	OSHA PEL (TWA) (mg/m³)	1 mg/m ³			
USA NIOSH	NIOSH REL (TWA) (mg/m³)	1 mg/m ³			
USA IDLH	US IDLH (mg/m³)	15 mg/m³			
Alberta	OEL STEL (mg/m³)	3 mg/m ³			
Alberta	OEL TWA (mg/m³)	1 mg/m³			
British Columbia	OEL TWA (mg/m³)	0.2 mg/m³ (Thoracic, contained in strong inorganic acid mists)			
Manitoba	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
		3 mg/m³			
New Brunswick OEL TWA (mg/m³)		1 mg/m³			
Newfoundland & Labrador OEL TWA (mg/m³)		0.2 mg/m³ (thoracic particulate matter)			
Nova Scotia	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
Nunavut	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)			
Nunavut	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)			
Northwest Territories	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction, strong acid mists only)			
Northwest Territories	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction, strong acid mists only)			
Ontario	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic)			
Prince Edward Island	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
Québec	VECD (mg/m³)	3 mg/m ³			
Québec	VEMP (mg/m³)	1 mg/m³			
Saskatchewan	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)			
Saskatchewan	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)			
Yukon	OEL STEL (mg/m³)	1 mg/m³			
Yukon	OEL TWA (mg/m³)	1 mg/m³			

Exposure Controls

Appropriate Engineering Controls: Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Ensure adequate ventilation, especially in confined areas. Ensure all national/local regulations are observed.

Personal Protective Equipment: Gloves. Protective clothing. Protective goggles. Face shield. Insufficient ventilation: wear respiratory protection.

05/07/2018 EN (English US) SDS#: CHE-1010S 4/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Materials for Protective Clothing: Acid-resistant clothing.

Hand Protection: Wear protective gloves.

Eye Protection: Chemical safety goggles and face shield. **Skin and Body Protection:** Wear suitable protective clothing.

Respiratory Protection: If exposure limits are exceeded or irritation is experienced, approved respiratory protection should be worn. In case of inadequate ventilation, oxygen deficient atmosphere, or where exposure levels are not known wear approved respiratory protection.

Other Information: When using, do not eat, drink or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State : Liquid

Appearance : Clear, Colorless to Amber, Oily

Odor Threshold : Pungent : Not available

pH : 0.3

Evaporation Rate Not available **Melting Point** 10.56 °C (51.01 °F) **Freezing Point** Not available **Boiling Point** 290 °C (554 °F) **Flash Point** Not applicable **Auto-ignition Temperature** Not applicable Not available **Decomposition Temperature** Flammability (solid, gas) Not applicable **Lower Flammable Limit** Not applicable **Upper Flammable Limit** Not applicable

Vapor Pressure : 0.00027 - 0.16 kPa at 25 °C (77 °F)

Relative Vapor Density at 20°C: 3.4 (air = 1)Relative Density: Not availableSpecific Gravity: 1.84 g/l

Solubility : Water: Miscible
Partition Coefficient: N-Octanol/Water : Not available
Viscosity : Not available

SECTION 10: STABILITY AND REACTIVITY

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Chemical Stability: Stable under recommended handling and storage conditions (see section 7).

<u>Possibility of Hazardous Reactions</u>: Hazardous polymerization will not occur.

Conditions to Avoid: Extremely high or low temperatures and incompatible materials.

<u>Incompatible Materials</u>: Combustible materials. Reducing agents. Strong bases. Strong oxidizers. Metals. Water.

Hazardous Decomposition Products: Thermal decomposition generates: Corrosive vapors.

SECTION 11: TOXICOLOGICAL INFORMATION

<u>Information on Toxicological Effects - Product</u>

Acute Toxicity (Oral): Not classified
Acute Toxicity (Dermal): Not classified
Acute Toxicity (Inhalation): Not classified

LD50 and LC50 Data: Not available

Skin Corrosion/Irritation: Causes severe skin burns and eye damage.

pH: 0.3

Eye Damage/Irritation: Causes serious eye damage.

05/07/2018 EN (English US) SDS#: CHE-1010S 5/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

pH: 0.3

Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

Carcinogenicity: May cause cancer (Inhalation).

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): Not classified

Aspiration Hazard: Not classified

Symptoms/Effects After Inhalation: May be corrosive to the respiratory tract.

Symptoms/Effects After Skin Contact: Causes severe irritation which will progress to chemical burns. **Symptoms/Effects After Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Symptoms/Effects After Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

Information on Toxicological Effects - Ingredient(s)

LD50 and LC50 Data:

1550 and 1650 bata.				
Water (7732-18-5)				
LD50 Oral Rat > 90000 mg/kg				
Sulfuric acid (7664-93-9)				
LD50 Oral Rat	2140 mg/kg			
LC50 Inhalation Rat	510 mg/m³ (Exposure time: 2 h)			
Sulfuric acid (7664-93-9)				
IARC Group	1			
OSHA Hazard Communication Carcinogen List	In OSHA Hazard Communication Carcinogen list.			
Strong inorganic acid mists containing sulfuric acid				
National Toxicology Program (NTP) Status Known Human Carcinogens.				

SECTION 12: ECOLOGICAL INFORMATION

Toxicity

Ecology - General: Harmful to aquatic life.

Sulfuric acid (7664-93-9)	
LC50 Fish 1	500 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [static])
LC50 Fish 2	42 mg/l (Exposure time: 96 h - Species: Gambusia affinis [static])

Persistence and Degradability

Sulfuric Acid, 70-100%	
Persistence and Degradability	Not established.

Bioaccumulative Potential

Sulfuric Acid, 70-100%	
Bioaccumulative Potential	Not established.
Sulfuric acid (7664-93-9)	
BCF Fish 1	(no bioaccumulation)

Mobility in Soil Not available

Other Adverse Effects

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Recommendations: Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Additional Information: Container may remain hazardous when empty. Continue to observe all precautions.

Ecology - Waste Materials: Avoid release to the environment. This material is hazardous to the aquatic environment. Keep out of sewers and waterways.

05/07/2018 EN (English US) SDS#: CHE-1010S 6/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

SECTION 14: TRANSPORT INFORMATION

The shipping description(s) stated herein were prepared in accordance with certain assumptions at the time the SDS was authored, and can vary based on a number of variables that may or may not have been known at the time the SDS was issued.

TRANSPORTATION	DOT	TDG	IMDG	IATA
CLASSIFICATION				
Identification Number	UN1830	UN1830	UN1830	UN1830
Proper Shipping Name	SULFURIC ACID	SULFURIC ACID	SULPHURIC ACID	SULPHURIC ACID
Transport Hazard	8	8	8	8
Class(es)				
	CORROSIVE		8	8
Packing Group	II	II	II	II
Environmental Hazards	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant:
				N/A
Emergency Response	ERG Number: 137	ERAP Index: 3 000	EMS: F-A, S-B	ERG code (IATA):
				8L
Additional Information	Not applicable	Not applicable	Not applicable	Not applicable

SECTION 15: REGULATORY INFORMATION

US Federal Regulations

Chemical Name (CAS No.)	CERCLA RQ	EPCRA 304 RQ	SARA 302 TPQ	SARA 313
Sulfuric acid (7664-93-9)	1000 lb	1000 lb	1000 lb	Yes

SARA 311/312

Sulfuric Acid, 70-100%

Immediate (acute) health hazard. Delayed (chronic) health hazard. Reactive hazard

US TSCA Flags Not present

US State Regulations

California Proposition 65

Chemical Name (CAS No.)	Carcinogenicity	Developmental Toxicity	Female Reproductive Toxicity	Male Reproductive Toxicity
Sulfuric acid (7664-93-9)	Yes	No	No	No
Strong inorganic acid mists containing sulfuric acid	Yes	No	No	No

State Right-To-Know Lists

Sulfuric acid (7664-93-9)

- U.S. Massachusetts Right To Know List Yes
- U.S. New Jersey Right to Know Hazardous Substance List Yes
- U.S. Pennsylvania RTK (Right to Know) Environmental Hazard List Yes
- U.S. Pennsylvania RTK (Right to Know) Special Hazardous Substances No
- U.S. Pennsylvania RTK (Right to Know) List Yes

Canadian Regulations

Sulfuric acid (7664-93-9)

Listed on the Canadian DSL (Domestic Substances List)

Not listed on the Canadian NDSL (Non-Domestic Substances List)

International Inventories/Lists

Chemical Name (CAS No.)	Australia	Turkey	Korea	EU	EU	EU	EU	Mexico
	AICS	CICR	ECL	EINECS	ELINCS	SVHC	NLP	INSQ
Sulfuric acid (7664-93-9)	Yes	No	Yes	Yes	No	No	No	No

05/07/2018 EN (English US) SDS#: CHE-1010S 7/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chemical Name (CAS No.)	China IECSC	Japan ENCS	Japan ISHL	Japan PDSCL	Japan PRTR	Philippines PICCS	New Zealand NZIOC	US TSCA
Sulfuric acid (7664-93-9)	Yes	Yes	No	Yes	No	Yes	Yes	Yes

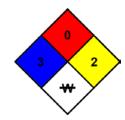
SECTION 16: OTHER INFORMATION, INCLUDING DATE OF PREPARATION OR LAST REVISION

Date of Preparation or Latest Revision : 05/07/2018

Revision Summary

Section	Change	Date Changed
16	Data modified	05/07/2018

Other Information


: This document has been prepared in accordance with the SDS requirements of the OSHA Hazard Communication Standard 29 CFR 1910.1200 and Canada's Hazardous Products Regulations (HPR).

GHS Full Text Phrases:

Aquatic Acute 3	Hazardous to the aquatic environment - Acute Hazard Category 3
Carc. 1A	Carcinogenicity Category 1A
Eye Dam. 1	Serious eye damage/eye irritation Category 1
Met. Corr. 1	Corrosive to metals Category 1
Skin Corr. 1A	Skin corrosion/irritation Category 1A
H290	May be corrosive to metals
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H350	May cause cancer
H402	Harmful to aquatic life

NFPA 704

NFPA Health Hazard : 3
NFPA Fire Hazard : 0
NFPA Reactivity Hazard : 2
NFPA Specific Hazards : W

HMIS Rating

Health : 3
Flammability : 0
Physical : 2

PPE See Section 8

Abbreviations and Acronyms

AICS – Australian Inventory of Chemical Substances LC50 - Median Lethal Concentration

ACGIH – American Conference of Governmental Industrial Hygienists LD50 - Median Lethal Dose

AIHA – American Industrial Hygiene Association

LOAEL - Lowest Observed Adverse Effect Level

ATE - Acute Toxicity Estimate

LOEC - Lowest-observed-effect Concentration

ATE - Acute Toxicity Estimate

BCF - Bioconcentration factor

BEI - Biological Exposure Indices (BEI)

LOEC - Lowest-observed-effect Concentration

Log Pow - Octanol/water Partition Coefficient

NFPA 704 – National Fire Protection Association - Standard System for the

CAS No. - Chemical Abstracts Service number

Identification of the Hazards of Materials for Emergency Response

CERCIA DO. Comprehensive Environmental Response Composertion and MOCIA. National legitives for Occupational Softward Health

CERCLA RQ - Comprehensive Environmental Response, Compensation, and
Liability Act - Reportable Quantity

NIOSH - National Institute for Occupational Safety and Health
NLP - Europe No Longer Polymers List

CICR - Turkish Inventory and Control of Chemicals

DOT – 49 CFR – US Department of Transportation – Code of Federal

Regulations Title 49 – Transportation.

NZIOC - New Zealand Inventory of Chemicals

EC50 - Median effective concentration

OEL - Occupational Exposure Limits

ECL - Korea Existing Chemicals List

OSHA – Occupational Safety and Health Administration

EINECS - European Inventory of Existing Commercial Chemical Substances

PEL - Permissible Exposure Limits

ELINCS - European List of Notified Chemical Substances

EmS - IMDG Emergency Schedule Fire & Spillage

PICCS - Philippine Inventory of Chemicals and Chemical Substances

PDSCL - Japan Poisonous and Deleterious Substances Control Law

ENCS - Japanese Existing and New Chemical Substances Inventory PPE - Personal Protective Equipment

05/07/2018 EN (English US) SDS#: CHE-1010S 8/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

EPA - Environmental Protection Agency

EPCRA 304 RQ – EPCRA 304 Extremely Hazardous Substance Emergency Planning and Community Right-to-Know-Act – Reportable Quantity ERAP Index – Emergency Response Assistance Plan Quantity Limit

ErC50 - EC50 in Terms of Reduction Growth Rate

 ${\sf ERG\ code\ (IATA)-Emergency\ Response\ Drill\ Code\ as\ found\ in\ the\ International}$

Civil Aviation Organization (ICAO)

ERG No. - Emergency Response Guide Number HCCL - Hazard Communication Carcinogen List HMIS – Hazardous Materials Information System IARC - International Agency for Research on Cancer

IATA - International Air Transport Association – Dangerous Goods Regulations

IDLH - Immediately Dangerous to Life or Health

IECSC - Inventory of Existing Chemical Substances Produced or Imported in

China

IMDG - International Maritime Dangerous Goods Code INSQ - Mexican National Inventory of Chemical Substances

ISHL - Japan Industrial Safety and Health Law

PRTR - Japan Pollutant Release and Transfer Register

REL - Recommended Exposure Limit

SADT - Self Accelerating Decomposition Temperature SARA - Superfund Amendments and Reauthorization Act

SARA 302 - Section 302, 40 CFR Part 355

SARA 311/312 - Sections 311 and 312, 40 CFR Part 370 Hazard Categories

SARA 313 - Section 313, 40 CFR Part 372 SRCL - Specifically Regulated Carcinogen List

STEL - Short Term Exposure Limit

SVHC – European Candidate List of Substance of Very High Concern TDG – Transport Canada Transport of Dangerous Goods Regulations

TLM - Median Tolerance Limit TLV - Threshold Limit Value TPQ - Threshold Planning Quantity

TSCA - United StatesToxic Substances Control Act

TWA - Time Weighted Average

WEEL - Workplace Environmental Exposure Levels

Handle product with due care and avoid unnecessary contact. This information is supplied under U.S. OSHA'S "Right to Know" (29 CFR 1910.1200) and Canada's WHMIS regulations. Although certain hazards are described herein, we cannot guarantee these are the only hazards that exist. The information contained herein is based on data available to us and is believed to be true and accurate but it is not offered as a product specification. No warranty, expressed or implied, regarding the accuracy of this data, the hazards connected with the use of the product, or the results to be obtained from the use thereof, is made and Chemtrade and its affiliates assume no responsibility. Chemtrade is a member of the CIAC (Chemistry Industry Association of Canada) and adheres to the codes and principles of Responsible Care™.

Chemtrade NA GHS SDS 2015

05/07/2018 EN (English US) SDS#: CHE-1010S 9/9

Applied Polymer Systems, Inc.

Updated November 4, 2015 APS

1

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name: APS 703d #3 Floc Log®

Supplied: Applied Polymer Systems, Inc.

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMAION ON INGREDIENTS

Identification of the preparation: Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation: None

Skin contact: Contact with wet skin could cause dryness and chapping. Wash with water and soap. Use of

gloves recommended.

Eye contact: Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of

persistent irritation.

Ingestion: Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media: Water, water spray, foam, carbon dioxide, dry powder.

Special fire-fighting precautions: Floc Logs that become wet render surfaces extremely slippery.

Protective equipment for firefighters: No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions: No special precautions required.

Methods for cleaning up: <u>Dry wipe as well as possible</u>, Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls: Use dry handling areas only.

Personal protection equipment

Respiratory Protection: Non-

Hand protection: Dry cloth, leather or rubber gloves.

Eye Protection: Safety glasses with side shields. Do not wear contact lenses.

Skin protection: No special protective clothing required.

Hygiene measures: Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form: Granular semi-solid gel

Color: Blue
Odor: None
pH: 7.73
Melting point: N/A
Flash point: N/A
Vapor density: N/A

10. STABILITY AND REACTIVITY

Stability: Product is stable, no hazardous polymerization will occur.

Materials to avoid: Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products: Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA-821-R-02-012)

LC 50 (Survival) / Ceriodaphnia dubia / 48h / 673 ppm NOAEC (Survival) / Ceriodaphnia dubia / 48h / 420 ppm LC 50 / Oncorhynchus mykiss / 96h / 2928 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity (EPA-821-R-02-013)

IC 25 (Survival) / *P. promelas* / 7 day / 77.8 ppm NOEC (Survival) / *P. promelas* / 7 day / 52.5 ppm
IC 25 (Survival) / *C. dubia* / 7 day / 78.7 ppm
NOEC (Survival) / *C. dubia* / 7 day / 52.7 ppm

IC 25 (Growth) / P. promelas / 7 day / 50.1 ppm NOEC (Growth) / P. promelas / 7 day / 52.5 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 66.8 ppm NOEC (Reproduction) / C. dubia / 7 day / 52.5 ppm

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT, RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class: RCRA Status:

Not concerned Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health: Flammability: 0 Reactivity: 0

HMIS Health Flammability 0 Reactivity 0

DATE EDITED: Nov 4th 2015

APPENDIX G FEDERAL CORRESPONDENCE

MEMORANDUM

From: C. Disenhof

File: 4325.03

Date: August 12, 2019

Re: Northern Long-Eared Bat Endangered Species Determination

We determine that the Polar Park dewatering project in the vicinity of 37-40 Gold Street in Worcester, Massachusetts will have No Effect on the Northern Long-Eared Bat (NLEB) because:

- The Site has no suitable habitat for the NLEB, and therefore the NLEB is not present
- There are no maternity roost trees or hibernacula within ¼-mile of the Site (see attached Natural Heritage & Endangered Species Program (NHESP) map)
- Very few trees (<0.2 acres) will be removed from the Site, and no trees are known maternity roost trees, within 150 of a known maternity roost tree, or within 0.25 miles of a known hibernaculum

CRD: crd

Enclosures: NHESP No. Long-Eared Bat Locations

PHONE MEMORANDUM

From: C. Disenhof

File: 4325.03

Date: August 12, 2019

Re: Phone Call Regarding Endangered Species Determination

At approximately 8:25 AM on August 12, 2019, I received a call from Maria Tur with the United States Fish and Wildlife Service (US FWS), following up on my inquiry about endangered species determinations for a Notice of Intent (NOI) for a Remediation General Permit (RGP). I explained that we had used the Information for Planning and Consultation (IPaC) tool at the FWS website to determine potential effects on the Northern Long-Eared Bat, which had come to a "may affect" determination. I asked about the next step for reaching a "no affect" or "not likely to adversely affect" determination for the Polar Park project, as the project is composed of parking lots and several buildings.

Ms. Tur stated that the EPA has left this determination to the contractor, and that if there is no suitable habitat on the Site and no trees are being removed, no communication with FWS is needed. A statement of "no affect" because of "no suitable habitat" should be documented in the NOI, and no further information needs to be sent to or received from the FWS.

CRD: crd

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 08, 2019

Consultation Code: 05E1NE00-2019-SLI-2520

Event Code: 05E1NE00-2019-E-06518

Project Name: Polar Park

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-2520

Event Code: 05E1NE00-2019-E-06518

Project Name: Polar Park

Project Type: Water Withdrawal / Depletion

Project Description: Vicinity of 37-40 Gold Street, Worcester, MA

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.257553327176495N71.79997703625224W

Counties: Worcester, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

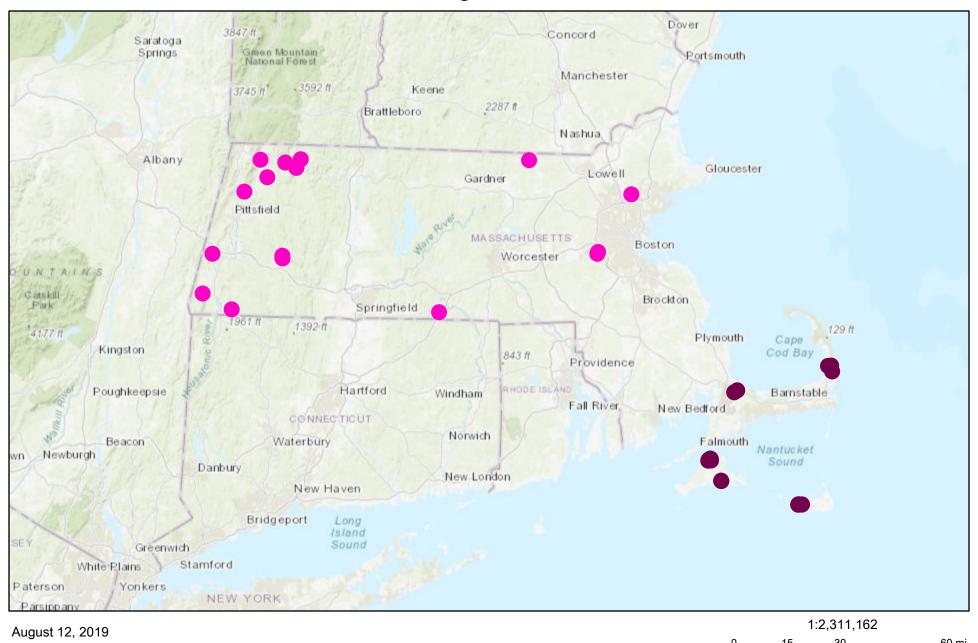
See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis


Threatened


No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

NHESP No. Long-eared Bat Locations

From: Zachary Jylkka - NOAA Federal

To: <u>Corinne Disenhof</u>
Subject: Re: Worcester, MA RGP

Date: Thursday, August 8, 2019 5:00:43 PM

Hi Corinne,

Thanks for the inquiry.

Please consult our ESA Section 7 Mapper to learn more about where we expect to find ESA-listed species or critical habitat under our office's jurisdiction: https://noaa.maps.arcgis.com/apps/webappviewer/index.html? id=1bc332edc5204e03b250ac11f9914a27

We do not have any listed species or critical habitat in the immediate vicinity of Worcester.

Thanks, Zach

On Thu, Aug 8, 2019 at 4:57 PM NMFS.GAR ESA.Section7 - NOAA Service Account nmfs.gar.esa.section7@noaa.gov wrote:

----- Forwarded message -----

From: **Corinne Disenhof** < <u>cdisenhof@sanbornhead.com</u>>

Date: Thu, Aug 8, 2019 at 3:57 PM Subject: Worcester, MA RGP

To: Nmfs.gar.esa.section7@noaa.gov < Nmfs.gar.esa.section7@noaa.gov >

Good afternoon,

I am requesting information to be included as part of a Notice of Intent (NOI) for a Remediation General Permit (RGP). The NOI is for construction dewatering during excavation activities in the vicinity of 37-40 Gold Street in Worcester, Massachusetts. Effluent will be discharged to the Middle River via a drainage to an underground culvert ("Mill Brook") which confluences with the Middle River.

As part of the application to the USEPA for the RGP, we need to investigate whether this proposed temporary discharge has the potential to adversely affect any federally listed species in the reach of the Middle River located downstream of the discharge point.

The approximate discharge location is:

Latitude: 42.23402 Longitude: -71.79342

Thank you in advance for your assistance, and please let me know if you require further information.

Corinne Disenhof

--

Corinne Disenhof

Geotechnical Project Engineer

SANBORN | HEAD & ASSOCIATES, INC.

1 Technology Park Drive, Westford, MA 01886 T 978.392.0900 D 978.577.1037 C 603.498.2075 www.sanbornhead.com

Click here to follow us on <u>LinkedIn</u> / <u>Twitter</u> / <u>Facebook</u>

This message and any attachments are intended for the individual or entity named above and may contain privileged or confidential information. If you are not the intended recipient, please do not forward, copy, print, use or disclose this communication to others; please notify the sender by replying to this message and then delete the message and any attachments.

--

Zach Jylkka
Fisheries Biologist
Protected Resources Division
Greater Atlantic Regional Fisheries Office
NOAA Fisheries
Gloucester, MA 01930
zachary.jylkka@noaa.gov

office: (978) 282-8467 Pronouns: (he/him/his)

For additional ESA Section 7 information and Critical Habitat guidance, please see: www.greateratlantic.fisheries.noaa.gov/protected/section7

APPENDIX H

NATIONAL REGISTER OF HISTORICAL PLACES, WORCESTER, MASSACHUSETTS

		Name of Multiple Property	Listed			
Ref#	Property Name	Listing	Date	Street & Number	City	State
80000595	Abbott Street School	Worcester MRA	3/5/1980	36 Abbott St.	Worcester	MASSACHUSETTS
80000584	Adams, Elwood, Store	Worcester MRA	3/5/1980	156 Main St.		MASSACHUSETTS
	Adriatic Mills	Worcester MRA	3/5/1980	3-35 Armory St.		MASSACHUSETTS
89002392	Ahern, Catherine, Three-Decker	Worcester Three-Deckers TR		215 Cambridge St.	Worcester	MASSACHUSETTS
80000544	Alexander, Arad, House	Worcester MRA		53 Waverly St.	Worcester	MASSACHUSETTS
	Allen, Charles, House	Worcester MRA	3/5/1980			MASSACHUSETTS
	American Antiquarian Society			185 Salisbury St.		MASSACHUSETTS
	Anderson, Ludwig, Three-Decker	Worcester Three-Deckers TR		4 Fairbanks St.		MASSACHUSETTS
	Armsby Block	Worcester MRA	_ , ,	144-148 Main St.		MASSACHUSETTS
80000542	Ash Street School	Worcester MRA	3/5/1980	Ash St.	Worcester	MASSACHUSETTS
80000489	Ashworth and Jones Factory	Worcester MRA	_ , ,	1511 Main St.		MASSACHUSETTS
	Aurora Hotel	Worcester MRA		652660 Main St.		MASSACHUSETTS
	Babcock Block	Worcester MRA	, ,	600 Main St.		MASSACHUSETTS
	Baker, Peter, Three-Decker	Worcester Three-Deckers TR	_ , ,	90 Vernon St.		MASSACHUSETTS
	Bancroft Hotel	Worcester MRA	, ,	50 Franklin St.		MASSACHUSETTS
	Bancroft Tower	Worcester MRA	_ , ,	Bancroft Tower Rd.		MASSACHUSETTS
	Bannister, Emory, House	Worcester MRA	, ,	3 Harvard St.		MASSACHUSETTS
	Barker, Richard, Octagon House	Worcester MRA	, ,	312 Plantation St.		MASSACHUSETTS
	Battelle, Marion, Three-Decker	Worcester Three-Deckers TR		13 Preston St.		MASSACHUSETTS
	Beacon Street Firehouse	Worcester MRA		108 Beacon St.		MASSACHUSETTS
	Beaver Street Historic District	Worcester Three-Deckers TR		3139 Beaver St.		MASSACHUSETTS
	Bentley, George, House	Worcester MRA	3/5/1980			MASSACHUSETTS
	Bliss Building	Worcester MRA	, ,	26 Old Lincoln St.		MASSACHUSETTS
	Blodgett, Lydia, Three-Decker	Worcester Three-Deckers TR	_ , ,	167 Eastern Ave.		MASSACHUSETTS
	Bloomingdale Firehouse	Worcester MRA		676 Franklin St.		MASSACHUSETTS
	Bloomingdale School	Worcester MRA		327 Plantation St.		MASSACHUSETTS
	Borden-Pond House	Worcester MRA		40 Laurel St.		MASSACHUSETTS
	Bostrom, Eric, Three-Decker	Worcester Three-Deckers TR	, ,	152 Eastern Ave.		MASSACHUSETTS
	Boulevard Diner	Diners of Massachusetts MPS	, ,	155 Shrewsbury St.		MASSACHUSETTS
	Bousquet, Henry, Three-Decker	Worcester Three-Deckers TR		8/10 Fairmont Ave.		MASSACHUSETTS
	Boynton and Windsor	Worcester MRA		718 and 720 Main St.		MASSACHUSETTS
	Brightside Apartments	Worcester MRA	3/5/1980			MASSACHUSETTS
	Brooks, John, House	Worcester MRA		12 Nelson Pl.		MASSACHUSETTS
	Cambridge Street Firehouse	Worcester MRA		534 Cambridge St.		MASSACHUSETTS
	Cambridge Street School	Worcester MRA		510 Cambridge St.		MASSACHUSETTS
	Carlson, Eric, Three-Decker	Worcester Three-Deckers TR	, ,	154 Eastern Ave.		MASSACHUSETTS
	Castle Street Row	Worcester MRA		4-18 Castle St.		MASSACHUSETTS
	Castle Street RowBoundary Increase	Worcester MRA		20-24 Castle St.		MASSACHUSETTS
	Cathedral of St. Paul	Worcester MRA		38 Chatham St.		MASSACHUSETTS
	Chadwick Square Diner	Diners of Massachusetts MPS	, ,	95 rear Prescott St.		MASSACHUSETTS
	Chadwick-Brittan House	Worcester MRA		309 Lincoln St.		MASSACHUSETTS
	Chamberlain, Charles, House	Worcester MRA		373 Pleasant St.		MASSACHUSETTS
	Chamberlain-Flagg House	Worcester MRA		2 Brookshire Dr.		MASSACHUSETTS
	Clark University	Worcester MRA		Clark University Campus		MASSACHUSETTS
	Cobb, George, House	Worcester MRA		24 William St.		MASSACHUSETTS
	Colton's Block	Worcester MRA		588 Main St.		MASSACHUSETTS
	Copeland, Samuel, House	Worcester MRA		31 Harvard St.		MASSACHUSETTS
	Corner Lunch	Diners of Massachusetts MPS	, ,	133 Lamartine St.		MASSACHUSETTS

Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	State
89002383	Crabtree, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990	22 Haynes St.	Worcester	MASSACHUSETTS
80000552	Crawford, Elias, House	Worcester MRA	3/5/1980	3 Norwood St.	Worcester	MASSACHUSETTS
80000541	Crompton Loom Works	Worcester MRA	3/5/1980	132-142 Green St.	Worcester	MASSACHUSETTS
89002379	Crystal Street Historic District	Worcester Three-Deckers TR	2/9/1990	3034 Crystal St.	Worcester	MASSACHUSETTS
80000526	Daniels, Frederick, House	Worcester MRA	3/5/1980	148 Lincoln St.	Worcester	MASSACHUSETTS
80000546	Dartmouth Street School	Worcester MRA	3/5/1980	13 Dartmouth St.	Worcester	MASSACHUSETTS
80000578	Davis, Isaac, House	Worcester MRA	3/5/1980	1 Oak St.	Worcester	MASSACHUSETTS
80000574	Davis, Joseph, House	Worcester MRA	3/5/1980	41 Elm St.	Worcester	MASSACHUSETTS
89002398	Davis, Rodney, Three-Decker	Worcester Three-Deckers TR	2/9/1990	62 Catharine St.	Worcester	MASSACHUSETTS
89002386	Davis, Wesley, Three-Decker	Worcester Three-Deckers TR	2/9/1990	7 Albert St.	Worcester	MASSACHUSETTS
09000618	Day Building		9/13/1978	300-310 Main St.	Worcester	MASSACHUSETTS
02001471	Dean, Frank L. and Mabel H., House			10 Cedar St.	Worcester	MASSACHUSETTS
89002390	Dean, Mary, Three-Decker	Worcester Three-Deckers TR	2/9/1990	130 Belmont St.	Worcester	MASSACHUSETTS
89002396	Delsignore, Louis, Three-Decker	Worcester Three-Deckers TR	2/9/1990	12 Imperial Rd.	Worcester	MASSACHUSETTS
80000580	Dewey Francis, House	Worcester MRA	3/5/1980	71 Elm St.	Worcester	MASSACHUSETTS
	Dodge Block and Sawyer Building, Bancroft Trust					
	Building	Worcester MRA	3/15/2002	60 Franklin St.	Worcester	MASSACHUSETTS
89002427	Dodge, Helen, Three-Decker	Worcester Three-Deckers TR	2/9/1990	570 Pleasant St.	Worcester	MASSACHUSETTS
89002406	Doran, Thomas F., Three-Decker	Worcester Three-Deckers TR		27 John St.	Worcester	MASSACHUSETTS
80000627	Dowley-Taylor House	Worcester MRA	3/5/1980	770 Main St.	Worcester	MASSACHUSETTS
80000621	Downing Street School	Worcester MRA	3/5/1980	92 Downing St.	Worcester	MASSACHUSETTS
89002384	Drew, Elvira, Three-Decker	Worcester Three-Deckers TR	2/9/1990	42 Abbott St.	Worcester	MASSACHUSETTS
	Duke, Philip, Three-Decker	Worcester Three-Deckers TR		7 Maxwell St.		MASSACHUSETTS
89002430	Dworman, David, Three-Decker	Worcester Three-Deckers TR	2/9/1990	159 Providence St.	Worcester	MASSACHUSETTS
80000618	East Worcester School-Norcross Factory	Worcester MRA	3/5/1980	10 E. Worcester St.	Worcester	MASSACHUSETTS
	Elizabeth Street School	Worcester MRA	_ , ,	31 Elizabeth St.		MASSACHUSETTS
70000096	Elm Park	Worcester MRA	7/1/1970		Worcester	MASSACHUSETTS
89002374	Elm Street Historic District	Worcester Three-Deckers TR		132148 Elm St.	Worcester	MASSACHUSETTS
80000536	Emmanuel Baptist	Worcester MRA		717 Main St.	Worcester	MASSACHUSETTS
80000601	English High School	Worcester MRA	3/5/1980	20 Irving St.	Worcester	MASSACHUSETTS
80000608	Enterprise Building	Worcester MRA		540 Main St.	Worcester	MASSACHUSETTS
89002438	Erikson, Knut, Three-Decker	Worcester Three-Deckers TR	2/9/1990	19 Stanton St.		MASSACHUSETTS
	Euclid AvenueMontrose Street Historic District	Worcester Three-Deckers TR		Along Euclid Ave. and Montrose St., between Vernon St. and Perry Ave.		MASSACHUSETTS
80000594	Fairlawn	Worcester MRA		189 May St.		MASSACHUSETTS
	Fay Street Historic District	Worcester Three-Deckers TR		46 Fay St.		MASSACHUSETTS
80000631	Fitch, C.H., House	Worcester MRA		15 Oread St.		MASSACHUSETTS
	Flagg, Amos, House	Worcester MRA		246 Burncoat St.		MASSACHUSETTS
	Flagg, Benjamin, House	Worcester MRA	_ , ,	136 Plantation St.		MASSACHUSETTS
	Flagg, Levi, Three-Decker	Worcester Three-Deckers TR		79 Florence St.		MASSACHUSETTS
89002447	Fontaine, George, Three-Decker	Worcester Three-Deckers TR	, ,	141 Vernon St.		MASSACHUSETTS
	Forbes, William Trowbridge, House	Worcester MRA		23 Trowbridge Rd.		MASSACHUSETTS
	Forest Hill Cottage	Worcester MRA	, ,	22 Windsor St.		MASSACHUSETTS
	Freeland Street School	Worcester MRA	, ,	12 Freeland St.		MASSACHUSETTS
	Friberg, Andrew, Three-Decker	Worcester Three-Deckers TR	_ , ,	26 Ames St.		MASSACHUSETTS
	G.A.R. Hall			55 Pearl St.		MASSACHUSETTS
	Gabriel, George, House	Worcester MRA		31 Lenox St.		MASSACHUSETTS
	Gale, George, House	Worcester MRA		15 Elizabeth St.		MASSACHUSETTS
89002356	Giguere, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990	18 Fairhaven Rd.	Worcester	MASSACHUSETTS

Wordester, Massachusetts							
Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	State	
00001342	Gilman Block		11/20/2000	207-219 Main St.	Worcester	MASSACHUSETTS	
80000555	Goddard House	Worcester MRA	3/5/1980	12 Catherine St.	Worcester	MASSACHUSETTS	
80000525	Goddard, Harry, House	Worcester MRA	3/5/1980	190 Salisbury St.	Worcester	MASSACHUSETTS	
07001202	Goldberg Building	Worcester MRA	11/19/2007	97-103 Water St.	Worcester	MASSACHUSETTS	
80000564	Goulding, Henry, House	Worcester MRA	3/5/1980	26 Harvard St.	Worcester	MASSACHUSETTS	
80000566	Goulding, W.H., House	Worcester MRA	3/5/1980	4 Dix St.	Worcester	MASSACHUSETTS	
80000545	Grafton Street School	Worcester MRA	3/5/1980	311 Grafton St.	Worcester	MASSACHUSETTS	
80000522	Green Hill Park Shelter	Worcester MRA	3/5/1980	Green Hill Parkway	Worcester	MASSACHUSETTS	
80000511	Greendale Branch Library	Worcester MRA	3/5/1980	470 W. Boylston St.	Worcester	MASSACHUSETTS	
76000949	Greendale Village Improvement Society Building	Worcester MRA	11/7/1976	480 W. Boylston St.	Worcester	MASSACHUSETTS	
89002388	Gullberg, Evert, Three-Decker	Worcester Three-Deckers TR	2/9/1990	18 Ashton St.	Worcester	MASSACHUSETTS	
11000068	Hadley Furniture Company Building		3/1/2011	651-659 Main St	Worcester	MASSACHUSETTS	
89002433	Hadley, Gilbert, Three-Decker	Worcester Three-Deckers TR	2/9/1990	31 Russell St.	Worcester	MASSACHUSETTS	
89002423	Hall, Charles A., Three-Decker	Worcester Three-Deckers TR	2/9/1990	68 Mason St.	Worcester	MASSACHUSETTS	
80000531	Hammond Heights	Worcester MRA	3/5/1980	Properties along Germain, Haviland, Highland, and Westland Sts. and Institute Rd.	Worcester	MASSACHUSETTS	
80000632	Hammond Organ Factory	Worcester MRA	3/5/1980	9 May St.	Worcester	MASSACHUSETTS	
80000543	Harding-Winter Street Manufacturing District	Worcester MRA	3/5/1980	28-88 Winter St.	Worcester	MASSACHUSETTS	
80000602	Harris-Merrick House	Worcester MRA	3/5/1980	41 Fruit St.	Worcester	MASSACHUSETTS	
80000572	Hastins, John, Cottage	Worcester MRA	3/5/1980	31 William St.	Worcester	MASSACHUSETTS	
80000514	Higgins Armory Museum	Worcester MRA	3/5/1980	100 Barber Ave.	Worcester	MASSACHUSETTS	
80000496	Higgins, Aldus Chapin, House	Worcester MRA	3/5/1980	1 John Wing Rd.	Worcester	MASSACHUSETTS	
89002420	Hirst, Samuel, Three-Decker	Worcester Three-Deckers TR	2/9/1990	90 Lovell St.	Worcester	MASSACHUSETTS	
80000582	Hobbs, Marcus, House	Worcester MRA	3/5/1980	16 William St.	Worcester	MASSACHUSETTS	
80000576	Hogg, William, House	Worcester MRA	3/5/1980	54 Elm St.	Worcester	MASSACHUSETTS	
80000491	Holy Cross College	Worcester MRA	3/5/1980	Holy Cross College Campus	Worcester	MASSACHUSETTS	
88000721	Holy Name of Jesus Complex	Worcester MRA	6/9/1988	Illinois St.	Worcester	MASSACHUSETTS	
97001560	Hope Cemetery		12/22/1997	119 Webster St.	Worcester	MASSACHUSETTS	
89002371	Houghton Street Historic District	Worcester Three-Deckers TR	2/9/1990	Houghton St. between Palm and Dorchester Sts.	Worcester	MASSACHUSETTS	
89002451	Hunt, Daniel, Three-Decker	Worcester Three-Deckers TR	2/9/1990	9 Wyman St.	Worcester	MASSACHUSETTS	
89002412	Hunt, David, Three-Decker	Worcester Three-Deckers TR	2/9/1990	26 Louise St.	Worcester	MASSACHUSETTS	
80000535	IOOF Building	Worcester MRA		674 Main St.	Worcester	MASSACHUSETTS	
	Indian Hill-North Village	Worcester MRA		properties along Ararat St. and Delaval, Heroult, Marconi, Watt, and Westinghouse Rds.		MASSACHUSETTS	
89002369	Ingleside Avenue Historic District	Worcester Three-Deckers TR	2/9/1990	218220 and 226228 Ingleside Ave.		MASSACHUSETTS	
89002363	Ingraham, Harry B., Three-Decker	Worcester Three-Deckers TR	2/9/1990	19 Freeland St.	Worcester	MASSACHUSETTS	
80000554	Institutional District	Worcester MRA	3/5/1980	Properties on Lincoln and Wheaton Squares and on Salisbury and Tuckerman Sts.	Worcester	MASSACHUSETTS	
89002389	Johnson, Edwin, Three-Decker	Worcester Three-Deckers TR	2/9/1990	183 Austin St.	Worcester	MASSACHUSETTS	
89002416	Johnson, John and Edward, Three-Decker	Worcester Three-Deckers TR	, ,	31 Louise St.		MASSACHUSETTS	
89002408	Johnson, John, Three-Decker	Worcester Three-Deckers TR	2/9/1990	140 Eastern Ave.	Worcester	MASSACHUSETTS	
89002437	Johnson, Paul, Three-Decker	Worcester Three-Deckers TR	2/9/1990	7 Stanton St.	Worcester	MASSACHUSETTS	
	Junction Shop and Herman Street District	Worcester MRA	, ,	Properties on Jackson, Herman, and Beacon Sts.		MASSACHUSETTS	
	Kaller, Erick, Three-Decker	Worcester Three-Deckers TR		146 Eastern Ave.		MASSACHUSETTS	
	Kaller, Erick, Three-Decker	Worcester Three-Deckers TR		148 Eastern Ave.		MASSACHUSETTS	
	Katz and Leavitt Apartment House	Worcester MRA	3/5/1980			MASSACHUSETTS	
	Knollwood	Worcester MRA		425 Salisbury St.		MASSACHUSETTS	
	Knowles, Lucius, House	Worcester MRA		838 Main St.		MASSACHUSETTS	
	Larchmont	Worcester MRA		36 Butler St.		MASSACHUSETTS	
	Larson, Swan, Three-Decker	Worcester Three-Deckers TR		12 Summerhill Ave.		MASSACHUSETTS	
80000623	Legg, John, House	Worcester MRA	3/5/1980	5 Claremont St.	Worcester	MASSACHUSETTS	

	Wolcestel, Massachusetts							
Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	State		
89002446	Levenson, Morris, Three-Decker	Worcester Three-Deckers TR	2/9/1990	38 Plantation St.	Worcester	MASSACHUSETTS		
74002046	Liberty Farm	Worcester MRA	9/13/1974	116 Mower St.	Worcester	MASSACHUSETTS		
80000570	Lincoln Estate-Elm Park Historic District	Worcester MRA	3/5/1980	Properties along Cedar, Fruit, Oak, Sever, West, and William Sts.	Worcester	MASSACHUSETTS		
80000573	Lincoln, Gov. Levi, House	Worcester MRA	3/5/1980	4 Avalon Pl.	Worcester	MASSACHUSETTS		
80000613	Lower Pleasant Street District	Worcester MRA	3/5/1980	418-426 Main St. and 9-49 Pleasant St.	Worcester	MASSACHUSETTS		
89002403	Lumb, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990	80 Dewey St.	Worcester	MASSACHUSETTS		
89002448	Lumb, Thomas, Three-Decker	Worcester Three-Deckers TR	2/9/1990	44 Winfield St.	Worcester	MASSACHUSETTS		
89002399	Lundberg, Charles, Three-Decker	Worcester Three-Deckers TR	2/9/1990	67 Catharine St.	Worcester	MASSACHUSETTS		
89002434	Magnuson, Charles, Three-Decker	Worcester Three-Deckers TR	2/9/1990	56/58 Olga Ave.	Worcester	MASSACHUSETTS		
84000096	Malvern Road School	Worcester MRA	10/4/1984	Malvern Rd. and Southbridge St.	Worcester	MASSACHUSETTS		
80000567	Marble, Jerome, House	Worcester MRA		23 Harvard St.	Worcester	MASSACHUSETTS		
	Mark, John, Three-Decker	Worcester Three-Deckers TR	2/9/1990		Worcester	MASSACHUSETTS		
80000583	Marsh, Alexander, House	Worcester MRA	3/5/1980	57 Elm St.	Worcester	MASSACHUSETTS		
80000537	Masonic Temple	Worcester MRA	3/5/1980	Ionic Ave.	Worcester	MASSACHUSETTS		
71000356	Massachusetts Avenue Historic District	Worcester MRA	12/16/1971	Between Salisbury St. and Drury Lane	Worcester	MASSACHUSETTS		
	Massad, Anthony, Three-Decker	Worcester Three-Deckers TR	2/9/1990	14 Harlow St.		MASSACHUSETTS		
	May Street Historic District	Worcester MRA	_ , ,	Properties from 29 to 46 May St.	Worcester	MASSACHUSETTS		
	McCafferty, Elizabeth, Three-Decker	Worcester Three-Deckers TR		45 Canterbury St.	Worcester	MASSACHUSETTS		
	McCarron, Andrew, Three-Decker	Worcester Three-Deckers TR	2/9/1990	,		MASSACHUSETTS		
	McDermott, John B., Three-Decker	Worcester Three-Deckers TR	, ,	21 Freeland St.	Worcester			
	McFarland, William, House	Worcester MRA		525 Salisbury St.	Worcester			
	McGrath, Patrick, Three-Decker	Worcester Three-Deckers TR		50 Dorchester St.	Worcester	MASSACHUSETTS		
	McGuinness, Patrick, Three-Decker	Worcester Three-Deckers TR	, ,	25 Suffield St.	Worcester	MASSACHUSETTS		
	McPartland, Frank, Three-Decker	Worcester Three-Deckers TR	2/9/1990			MASSACHUSETTS		
	McPartland, James, Three-Decker	Worcester Three-Deckers TR	2/9/1990			MASSACHUSETTS		
	Mechanics Hall		11/9/1972		Worcester			
	Mechanics' Hall District	Worcester MRA	_ , ,	Properties between 282 and 343 Main St.	Worcester			
	Merrill Double House	Worcester MRA	, ,	18-20 West St.				
	Miles, Charles, House	Worcester MRA		131 Lincoln St.				
	Miss Worcester Diner	Diners of Massachusetts MPS		302 Southbridge St.	Worcester	MASSACHUSETTS		
80000616	Mission Chapel	Worcester MRA	3/5/1980	205 Summer St.	Worcester	MASSACHUSETTS		
80000521	Montvale	Worcester MRA	3/5/1980	Properties along Monadnock, Sagamore, Waconah, and Whitman Rds., and Salisbury St.	Worcester	MASSACHUSETTS		
80000557	Moore, Jesse, House	Worcester MRA	3/5/1980	25 Catherine St.	Worcester	MASSACHUSETTS		
	Munroe, Sarah, Three-Decker	Worcester Three-Deckers TR		11 Rodney St.		MASSACHUSETTS		
89002404	Murphy, Patrick, Three-Decker		2/9/1990	31 Jefferson St.	Worcester	MASSACHUSETTS		
89002391	Nelson, Christina, Three-Decker	Worcester Three-Deckers TR		45 Butler St.	Worcester	MASSACHUSETTS		
	Newton, Charles, House	Worcester MRA		24 Brattle St.		MASSACHUSETTS		
	Newton, S.D., House	Worcester MRA		8 Sycamore St.		MASSACHUSETTS		
	Norcross Brothers Houses	Worcester MRA		16, 18 Claremont St.		MASSACHUSETTS		
80000512	North Worcester Aid Society	Worcester MRA		58 Holden St.	Worcester	MASSACHUSETTS		
	O'Brien, Richard, Three-Decker	Worcester Three-Deckers TR	2/9/1990	43 Suffolk St.		MASSACHUSETTS		
	O'Connor, James, Three-Decker	Worcester Three-Deckers TR		23 Endicott St.		MASSACHUSETTS		
89002393	O'Connor, JamesJohn Trybowski Three-Decker	Worcester Three-Deckers TR		21 Canton St.	Worcester	MASSACHUSETTS		
	Odd Fellows' Home	Worcester MRA		40 Randolph Rd.	Worcester	MASSACHUSETTS		
80000585	Old State Mutual Building	Worcester MRA		240 Main St.	Worcester	MASSACHUSETTS		
	Osgood Bradley Building			18 Grafton St.		MASSACHUSETTS		
	Oxford-Crown Extension District	Worcester MRA	_ , ,	Properties along Ashland, Austin, Chatham, Congress, Crown, and Pleasant Sts.		MASSACHUSETTS		
76000954	Oxford-Crown Historic District	Worcester MRA		Roughly bounded by Chatham, Congress, Crown, Pleasant, Oxford Sts. and Oxford Pl.		MASSACHUSETTS		

		Name of Multiple Property	Listed	ester, Massachusetts		
Ref#	Property Name	Listing	Date	Street & Number	City	State
76000948	Paine, Timothy, House	Worcester MRA	4/30/1976	140 Lincoln St.	Worcester	MASSACHUSETTS
80000607	Park Building	Worcester MRA		507 Main St.	Worcester	MASSACHUSETTS
89002367	Perry Avenue Historic District	Worcester Three-Deckers TR	2/9/1990	4955 Perry Ave.	Worcester	MASSACHUSETTS
89002358	Petterson, LarsAdolph Carlson Three-Decker	Worcester Three-Deckers TR	2/9/1990	76 Fairhaven Rd.	Worcester	MASSACHUSETTS
89002368	Petterson, LarsFred Gurney Three-Decker	Worcester Three-Deckers TR	2/9/1990	2 Harlow St.	Worcester	MASSACHUSETTS
89002359	Petterson, LarsSilas Archer Three-Decker	Worcester Three-Deckers TR	2/9/1990	80 Fairhaven Rd.	Worcester	MASSACHUSETTS
89002376	Petterson,LarsJames Reidy Three-Decker	Worcester Three-Deckers TR	2/9/1990	4 Harlow St.	Worcester	MASSACHUSETTS
80000551	Pilgrim Congregational Church	Worcester MRA	3/5/1980	909 Main St.	Worcester	MASSACHUSETTS
	Pleasant Street Firehouse	Worcester MRA	3/5/1980	408 Pleasant St.	Worcester	MASSACHUSETTS
10001122	Poli's Palace Theater		1/10/2011	2 Southbridge St	Worcester	MASSACHUSETTS
80000558	Prentiss, Addison, House	Worcester MRA	3/5/1980	3 Channing Way	Worcester	MASSACHUSETTS
80000553	Providence Street Firehouse	Worcester MRA		98 Providence St.	Worcester	MASSACHUSETTS
89002381	Providence Street Historic District	Worcester Three-Deckers TR	2/9/1990	127145 Providence St.	Worcester	MASSACHUSETTS
89002444	Provost, Arthur, Three-Decker	Worcester Three-Deckers TR	2/9/1990	30 Thorne St.	Worcester	MASSACHUSETTS
80000565	Putnam, Otis, House	Worcester MRA	3/5/1980	25 Harvard St.	Worcester	MASSACHUSETTS
80000494	Quinsigamond Branch Library	Worcester MRA		812 Millbury St.	Worcester	MASSACHUSETTS
	Quinsigamond Firehouse	Worcester MRA		837 Millbury St.		MASSACHUSETTS
	Raymond, Tilley, House	Worcester MRA		12 George St.		MASSACHUSETTS
	Reed, Frank, Three-Decker	Worcester Three-Deckers TR		913/915 Main St.		MASSACHUSETTS
	Rice, Ezra, House	Worcester MRA		1133 W. Boylston St.		MASSACHUSETTS
	Richmond, Willard, Apartment Block	Worcester MRA		43 Austin St.		MASSACHUSETTS
	Ridyard, Albert, Three-Decker	Worcester Three-Deckers TR	_ , ,	5 Mount Pleasant St.		MASSACHUSETTS
	Ridyard, B. E., Three-Decker	Worcester Three-Deckers TR	, ,	29 Dewey St.		MASSACHUSETTS
	Riordan, John, Three-Decker	Worcester Three-Deckers TR	2/9/1990			MASSACHUSETTS
	Roynane, Catharine, Three-Decker	Worcester Three-Deckers TR	_ , ,	18 Ingalls St.		MASSACHUSETTS
	Ruggles, Draper, House	Worcester MRA		21 Catherine St.		MASSACHUSETTS
	Russell, The	Worcester MRA		49 Austin St.		MASSACHUSETTS
	Salisbury Factory Building	Worcester MRA		25 Union St.		MASSACHUSETTS
	Salisbury Factory Building	Worcester MRA		49-51 Union St.		MASSACHUSETTS
	Salisbury House	Worcester MRA		61 Harvard St.		MASSACHUSETTS
	Salisbury Mansion and Store	Worcester MRA		30, 40 Highland St.		MASSACHUSETTS
	Schofield, James, House	Worcester MRA		3 Mt. Pleasant St.		MASSACHUSETTS
	Shaarai Torah Synagogue	Worcester MRA		32 Providence St.		MASSACHUSETTS
	Shattuck, Moody, House	Worcester MRA		768 Main St.		MASSACHUSETTS
	Shea, Bridget, Three-Decker	Worcester Three-Deckers TR		21 Jefferson St.		MASSACHUSETTS
	Simpson, Clara, Three-Decker	Worcester Three-Deckers TR	, ,	69 Piedmont St.		MASSACHUSETTS
	Slater Building	Worcester MRA		390 Main St.		MASSACHUSETTS
	Smith, Ellen M., Three-Decker	Worcester Three-Deckers TR	, ,	22 Kilby St.		MASSACHUSETTS
	Smith, Elliot, House	Worcester MRA		839 Main St.		MASSACHUSETTS
	Smith-Thaxter-Merrifield House	Worcester MRA		158 Holden St.		MASSACHUSETTS
	Soho Cottage	Worcester MRA		21 Windsor St.		MASSACHUSETTS
	South Unitarian	Worcester MRA	_ , ,	888 Main St.		MASSACHUSETTS
	South Worcester Branch Library	Worcester MRA		705 Southbridge St.		MASSACHUSETTS
	Southbridge-Sargent Manufacturing District	Worcester MRA		Southbridge, Sargent, and Gold Sts.		MASSACHUSETTS
	St. John's Catholic Church	Worcester MRA		40 Temple St.		MASSACHUSETTS
	St. Marks	Worcester MRA		Freeland St.		MASSACHUSETTS
	St. Matthews	Worcester MRA	_ , ,	693 Southbridge St.		MASSACHUSETTS
	St. Peters Catholic Church	Worcester MRA		935 Main St.		MASSACHUSETTS

		Name of Multiple Dress outer	Tinka d			T
Ref#	Property Name	Name of Multiple Property Listing	Listed Date	Street & Number	City	State
80000633	Stark, Edward, House	Worcester MRA		21 Oread St.	Worcester	MASSACHUSETTS
	Stearns Tavern	Worcester MRA	_ , ,	651 Park Ave.		
	Stevens' Building	Worcester MRA		24-44 Southbridge St.	Worcester	
	Stevens, Daniel, House	Worcester MRA		7 Sycamore St.	Worcester	
	Stoliker, Edna, Three-Decker	Worcester Three-Deckers TR		41 Plantation St.	Worcester	MASSACHUSETTS
	Stone, Edward, Three-Decker	Worcester Three-Deckers TR	, ,	8 Wyman St.		MASSACHUSETTS
	Sturtevant, Leonard, House	Worcester MRA		84 Mulberry St.		MASSACHUSETTS
	Swift, D. Wheeler, House	Worcester MRA		22 Oak Ave.		MASSACHUSETTS
11000019	ThulePlummer Buildings	Worcester Midi		180 and 184 Main St	Worcester	
80000600	Tower, Horatio, House	Worcester MRA	, ,	71 Pleasant St.	Worcester	MASSACHUSETTS
89002394	Troupes, John, Three-Decker	Worcester Three-Deckers TR		25 Canton St.		MASSACHUSETTS
	U.S. Post Office and Courthouse	Wordester Three-Deckers IX	_ , ,	595 Main St	Worcester	
	Union Congregational Church	Worcester MRA		5 Chestnut St.	Worcester	
	Union Station	Worcester MRA		Washington Sq.	Worcester	MASSACHUSETTS
	Upsala Street School	Worcester MRA		36 Upsala St.	Worcester	
	Vendome, The, and the St. Ives	Worcester MRA		1719 and 2123 Chandler St.		MASSACHUSETTS
	View Street Historic District	Worcester Three-Deckers TR		717 and 816 View Street		MASSACHUSETTS
	Waldo Street Police Station	Worcester MRA	3/5/1980			MASSACHUSETTS
	Ward Street School-Millbury Street	Worcester MRA		389 Millbury St.	Worcester	
	Washburn and Moen North Works District	Worcester MRA		Properties on Grove St.	Worcester	
	WCIS Bank	Worcester MRA		365 Main St.		MASSACHUSETTS
	Webster Street Firehouse	Worcester MRA		40 Webster St.	Worcester	
	Wellington Street Apartment House District	Worcester MRA	_ , ,	Properties along Jacques Ave., and Wellington and Irving Sts.		
	Wescott, John, Three-Decker	Worcester Three-Deckers TR		454 Pleasant St.	Worcester	MASSACHUSETTS
	Wesson, Franklin, House	Worcester MRA	, ,	8 Claremont St.	Worcester	
	Whitcomb House		_ , ,	51 Harvard St.		MASSACHUSETTS
	Whitcomb Mansion	Worcester MRA	_ , ,	51 Harvard St.		MASSACHUSETTS
	Whittall Mills	Worcester MRA	_ , ,	properties off Brussels St.		MASSACHUSETTS
	Woodford Street Historic District			3539 and 3840 Woodford St.	Worcester	
	Woodland Street Firehouse	Worcester MRA		36 Woodland St.	Worcester	
80000549	Woodland Street Historic District	Worcester MRA		Properties along Hawthorne, Loudon, Norwood, and Woodland Sts.		MASSACHUSETTS
	Worcester Academy	Worcester MRA		Worcester Academy Campus		MASSACHUSETTS
	Worcester Asylum and related buildings	Worcester MRA		305 Belmont St.		MASSACHUSETTS
	Worcester Bleach and Dye Works			60 Fremont St.		MASSACHUSETTS
	Worcester City Hall and Common	Worcester MRA	_ , ,	455 Main St.		MASSACHUSETTS
	Worcester Corset Company Factory	Worcester MRA		30 Wyman St.		MASSACHUSETTS
	Worcester Five Cents Savings Bank			316 Main St.		MASSACHUSETTS
	Worcester Market Building	Worcester MRA		831 Main St.		MASSACHUSETTS
	Worcester State Hospital Farmhouse			361 Plantation St.		MASSACHUSETTS
	Zemaitis, Anthony, Three-Decker	Worcester Three-Deckers TR	, ,	35 Dartmouth St.		MASSACHUSETTS

Notes:

Sanborn, Head & Associates, Inc. (Sanborn Head) conducted a review of the National Register of Historic Places within Worcester, Massachusetts. The search returned 279 results within Worcester. The Site is not listed on the National Register of Historic Places. The Ash Street School is adjacent to the Site to the east, however, due to the depth of groundwater and discharge to a municipal sewer system, Site activities are not anticipated to impact the historical property.