

October 16, 2019

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Jacking and Receiving Pits for Mill River Crossing National Grid 345 kV Electrical Duct Bank Project

Wakefield, Massachusetts

Dear Sir/Madam:

On behalf of United Civil, Inc. (United Civil), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI is for the management of groundwater that will be generated during dewatering activities associated with the excavation of the jacking and receiving (bore) pits located at the intersection of Nablus Road and Salem Street in Wakefield, Massachusetts (the Site). These pits will be used to horizontally bore and install a 345 kV electrical transmission line below the culverted portion of Mill River. The work will take place over approximately 100 feet and will be completed late Fall 2019 or Spring 2020. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The project includes the installation of jacking and receiving pits adjacent to the intersection of Nablus Road and Salem Street. To maintain dry conditions during the excavations and horizontal boring, dewatering is required to lower the groundwater table. A wellpoint dewatering system will be used at the jacking and receiving pit excavations and the generated groundwater (Source water) will be pumped to a treatment system prior to discharge into Mill River. To characterize groundwater from the proposed excavation area, LRT collected representative groundwater samples on October 4, 2019 from two monitoring wells (designated MW-1 and MW-2) located in the vicinity of the jacking and the receiving

pits. A sample of the receiving water (Mill River) was also collected on October 4, 2019. Sampling locations are depicted on **Figure 2**. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of total suspended solids (TSS), total residual chlorine, polycyclic aromatic hydrocarbons (PAHs) and certain metals were detected in groundwater at concentrations above the respective NPDES RGP effluent limitations. To meet these standards, Source water will undergo treatment that includes bag filtration and carbon filtration and possibly ion exchange (if necessary) prior to discharge. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to a treatment system at flow rates up to 150 gallons per minute (gpm). The average effluent flow of the system is estimated to be 100 gpm and the maximum flow will not exceed 150 gpm. Source water will enter one 18,000-gallon weir tank at the head of the system. From the weir tank, the water will be pumped to a triple-bag filter skid (with three single bag filters), followed by two carbon vessels plumbed in series. Each carbon vessel will contain 2,000 pounds of reactivated liquid-phase carbon. Discharge from the carbon vessels will pass through a flow/totalizer meter prior to direct discharge into Mill River. The discharge will be at the location depicted on **Figure 2**. Effluent sampling will correspond with this discharge location.

Two contingent ion exchange vessels will be installed in series following the carbon vessels if metals are not removed by settling and bag filtration. One vessel will be filled with 60 cubic feet of cation resin media and the other will be filled with 60 cubic feet of anion resin media.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of United Civil, we are requesting coverage under the NPDES RGP for the discharge of treated groundwater to the Mill River in support of construction dewatering activities associated with the 345 kV electrical duct bank installation below the Mill River.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, United Civil is the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications, if necessary.

Public Notification

A notification of this NOI filing has been provided to Wakefield's Town Administrator, Mr. Stephen P. Maio. A copy of the notification is included in **Appendix E.**

Please feel free to contact us at 774-450-7177 if you have any questions or require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

James Bennett

James Bennett

Project Manager/Estimator

John Henry

John Henry, PE

Senior Project Manager

Enclosures:

Figure 1 - Locus Plan

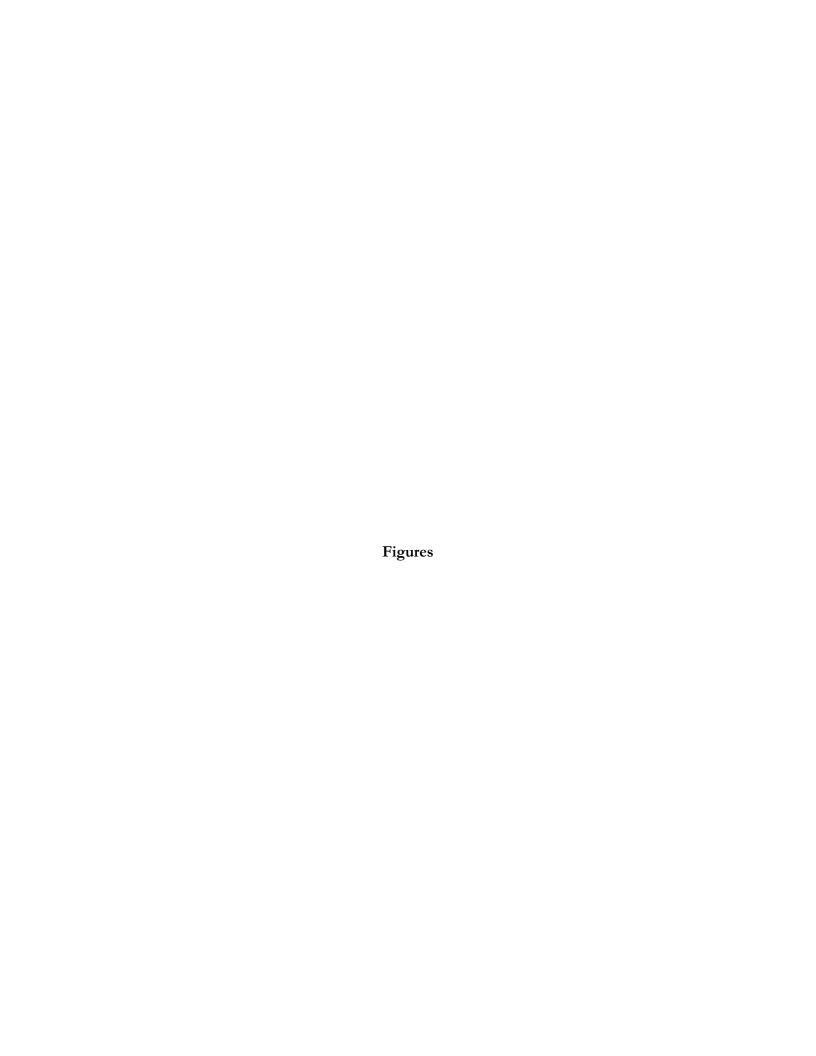
Figure 2 - Site Plan

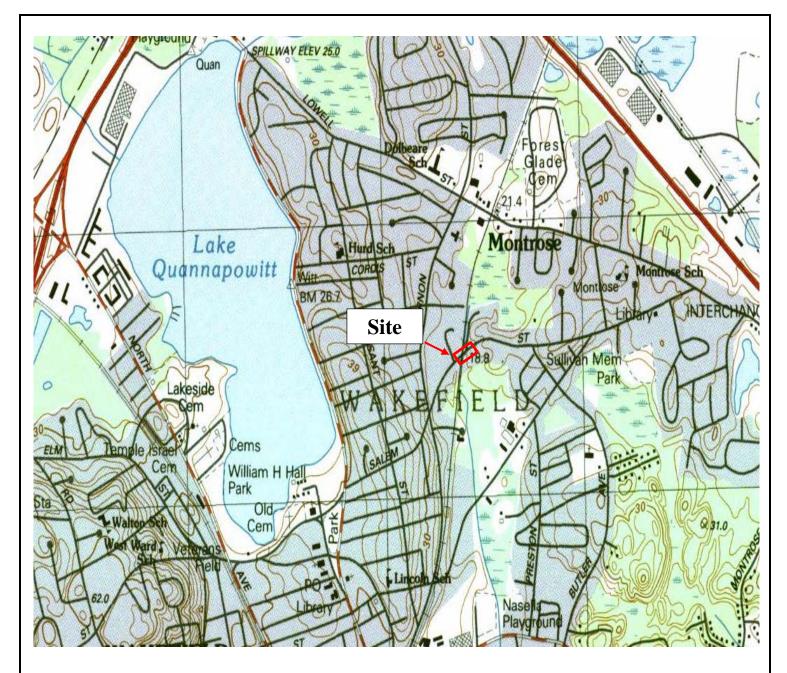
Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form

Appendix B - Laboratory Data

Appendix C - Water Treatment System Cutsheets


Appendix D - Supplemental Information


Appendix E – Public Notification Letter

cc: Dylan Smith – United Civil

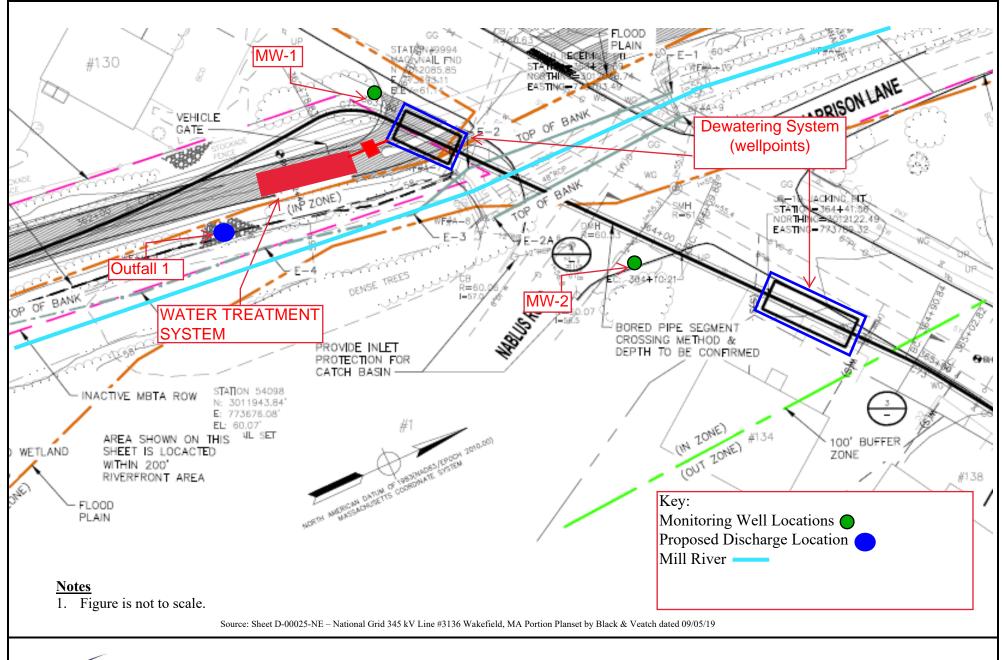
Cathy Vakalopoulos - DEP

Binoy Koodhathinkal - National Grid

Source: ArcGIS Map Viewer

<u>Notes</u>

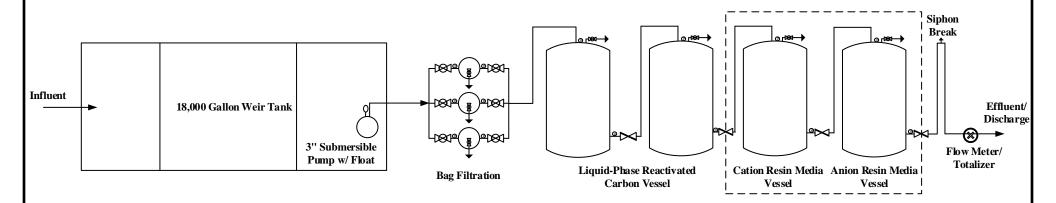
1. Figure is not to scale.



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Figure 1 – Locus Plan


Mill River Crossing National Grid 345 kV Line #3136 Project Wakefield, MA

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2 - Site Plan Mill River Crossing National Grid 345 kV Line #3136 Project Wakefield, MA

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 150 GPM

Key:	
Piping/Hose	\longrightarrow
Butterfly valve	\bowtie
Pressure gauge	G
Ball valve	1881
Contingent	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453 Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: JHJ

CHECKED BY: DATE:

Water Treatment System Schematic - RGP

Mill River Crossing National Grid 345kV. Line #3136 Project Wakefield, MA

2-1922 FIGHE No Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Intersection of Nablus Road and Salem Street				
Jacking and Receiving Pits - Mill River Crossing	Street:				
	City: Wakefield		State: MA	Zip: 01880	
2. Site owner	Contact Person: Binoy Koodhathinkal				
National Grid	Telephone: 781-999-2334	Email: bin	oy.koodhatl	hinkal@nationalgrid	
	Mailing address: 40 Sylvan Road	I			
	Street:				
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: Utility on Public Right of Way	City: Waltham		State: MA	Zip: 02541	
3. Site operator, if different than owner	Contact Person: Dylan Smith				
United Civil, Inc.	Telephone: 978-304-1597	Email: dsr	smith@united-civil.com		
	Mailing address:				
	Street: 30 Log Bridge Road, Building 10	00			
	City: Middleton		State: MA	Zip: 01949	
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ		
NDDES request is (shoots all that analys DCD DCD CCD		☐ UIC Program			
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment			
individual NPDES perinit in Other; it so, specify:	Ground water Refease Detection I citilit.	☐ CWA Section 404			

B. Receiving water information: 1. Name of receiving water(s): Waterbody identification of receiving water(s): Classification of receiving water(s): Mill River (Saugus River) B MA93-31 Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River 2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No Are sensitive receptors present near the site? (check one): ☐ Yes ■ No If yes, specify: 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. E Coli, Pathogens, Fecal Coliform(50120), Dissolved Oxygen, Total Suspended Solids, Turbidity 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in 0.0118 Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in 1.035 accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): 🗏 Yes 🗆 No If yes, indicate date confirmation received: 10/16/2019 7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): ■ Yes □ No C. Source water information: 1. Source water(s) is (check any that apply): ■ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water □ Potable water; if so, indicate municipality or origin: Has the operator attached a summary of influent Has the operator attached a summary of influent ☐ A surface water other sampling results as required in Part 4.2 of the RGP sampling results as required in Part 4.2 of the than the receiving water; if in accordance with the instruction in Appendix RGP in accordance with the instruction in \square Other; if so, specify: so, indicate waterbody: Appendix VIII? (check one): VIII? (check one): ■ Yes □ No \square Yes \square No

2. Source water contaminants: Fuels Parameters, Non-Halogenated SVOC	Cs and Inorganics
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ■ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
1	42.512399 , -71.063945
Discharges enter the receiving water(s) via (check any that apply): ■ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	war systam.
Has notification been provided to the owner of this system? (check one): \Box Yo	•
obtaining permission:	or discharges? (check one): □ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year): 11/1/20	019 through 10/15/2020
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Co □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organic □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation ■ III – Contaminated Site Dewatering 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
☐ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination			
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)				
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known or or believed absent present	# of samples	TD 4	D	In	fluent	Effluent Li	mitations
Parameter	believed			Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	2	SM19-22	75	1830	982.5	Report mg/L	
Chloride		✓	2	EPA 300	10000	240000	195000	Report μg/l	
Total Residual Chlorine		✓	2	SM21-22		34	17	0.2 mg/L	11
Total Suspended Solids		✓	2	SM21-22	2000	82000	73500	30 mg/L	
Antimony	✓		2	200.8	1.0	<1.0	<1.0	206 μg/L	
Arsenic		✓	2	200.8	0.80	21	11.1	104 μg/L	10
Cadmium	✓		2	200.8	0.20	< 0.20	< 0.20	10.2 μg/L	
Chromium III		✓	2	200.8	1.0	5.6	5	323 μg/L	
Chromium VI	✓		2	SM21-22	4.0	<4.0	<4.0	323 μg/L	
Copper		✓	2	200.8	1.0	7.8	6.4	242 μg/L	
Iron		✓	2	200.7	50	15000	8050	5,000 μg/L	1000
Lead		✓	2	200.8	0.50	5.3	5.1	160 μg/L	
Mercury	✓		2	245.1	0.1	< 0.1	<0.1	0.739 μg/L	
Nickel		✓	2	200.8	5.0	6.3	3.15	1,450 μg/L	
Selenium	✓		2	200.8	5.0	< 5.0	<5.0	235.8 μg/L	
Silver	✓		2	200.8	0.20	< 0.20	< 0.20	35.1 μg/L	
Zinc		✓	2	200.8	10	15	7.5	420 μg/L	
Cyanide		✓	2	SM21-22 +	1	2	1	178 mg/L	
B. Non-Halogenated VOC	s				•	•	•		
Total BTEX	✓		2	624.1	2	<2.0	<2.0	100 μg/L	
Benzene	✓		2	624.1	1.0	<1.0	<1.0	5.0 μg/L	
1,4 Dioxane	✓		2	624.1	50	<50	<50	200 μg/L	
Acetone	✓		2	624.1	50	<50	<50	7.97 mg/L	
Phenol	✓		2	625.1	9.62	<9.62	<9.62	1,080 μg/L	

	Known Known Influent		fluent	ent Effluent Limitations					
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		2	624.1	2.00	<2.00	<2.00	4.4 μg/L	
1,2 Dichlorobenzene	✓		2	624.1	2.00	<2.00	<2.00	600 μg/L	
1,3 Dichlorobenzene	✓		2	624.1	2.00	<2.00	<2.00	320 μg/L	
1,4 Dichlorobenzene	✓		2	624.1	2.00	<2.00	<2.00	5.0 μg/L	
Total dichlorobenzene	✓		2	624.1	N/A	<2.00	<2.00	763 μg/L in NH	
1,1 Dichloroethane	✓		2	624.1	2.00	<2.00	<2.00	70 μg/L	
1,2 Dichloroethane	✓		2	624.1	2.00	<2.00	<2.00	5.0 μg/L	
1,1 Dichloroethylene	✓		2	624.1	2.00	<2.00	<2.00	3.2 μg/L	
Ethylene Dibromide	✓		2	624.1	2.00	<2.00	<2.00	0.05 μg/L	
Methylene Chloride	✓		2	624.1	5.00	< 5.00	< 5.00	4.6 μg/L	
1,1,1 Trichloroethane	✓		2	624.1	2.00	<2.00	<2.00	200 μg/L	
1,1,2 Trichloroethane	✓		2	624.1	2.00	<2.00	<2.00	5.0 μg/L	
Trichloroethylene	✓		2	624.1	2.00	<2.00	<2.00	5.0 μg/L	
Tetrachloroethylene	✓		2	624.1	2.00	<2.00	<2.00	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		2	624.1	2.00	<2.00	<2.00	70 μg/L	
Vinyl Chloride	✓		2	624.1	2.00	<2.00	<2.00	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	✓		2	625.1	0.96	< 0.96	<0.96	190 μg/L	
Diethylhexyl phthalate	✓		2	625.1	0.96	< 0.96	< 0.96	101 μg/L	
Total Group I PAHs		✓	2	625.1	N/A	0.156	0.078	1.0 μg/L	
Benzo(a)anthracene		✓	2	625.1	0.048	0.023	0.0115		0.0038
Benzo(a)pyrene		✓	2	625.1	0.096	0.030	0.015	7	0.0038
Benzo(b)fluoranthene		✓	2	625.1	0.048	0.038	0.019		0.0038
Benzo(k)fluoranthene		✓	2	625.1	0.19	0.013	0.0065	As Total PAHs	0.0038
Chrysene		✓	2	625.1	0.19	0.027	0.0135	7	0.0038
Dibenzo(a,h)anthracene	✓		2	625.1	0.096	< 0.096	< 0.096		
Indeno(1,2,3-cd)pyrene		✓	2	625.1	0.096	0.025	0.0125	7	0.0038

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	✓		2	625.1	100	<100	<100	100 μg/L	
Naphthalene	✓		2	625.1	4.81	<4.81	<4.81	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		2	608.3	0.0976	<0.0976	< 0.0976	0.000064 μg/L	
Pentachlorophenol	✓		2	625.1	0.96	< 0.96	< 0.96	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	✓		2	624.1	5.0	<5.0	<5.0	5.0 mg/L	
Ethanol	✓		2	624.1	50.0	<50.0	<50.0	Report mg/L	
Methyl-tert-Butyl Ether		✓	2	624.1	2.00	0.260	0.13	70 μg/L	
tert-Butyl Alcohol	✓		2	624.1	20.0	<20.0	<20.0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		2	624.1	0.500	< 0.500	<0.500	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	e, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan 207.1	ts present);	if so, specify:	88500		
рН		✓	2	Field	0-14	6.4	6.4		
Receiving water									
Hardness		✓	1	207.1	0	100000	100000		
ammonia		✓	1	SM19-22		65	65		
рН		✓	1	Field	0-14	6.1	6.1		
TSS		✓	1	SM21-22	2000	5200	5200		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)				
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:				
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Source water will enter one 18,000-gallon weir tank at the head of the system. From the weir tank, the water will be pumped to a triple-bag filter skid (with three single ba followed by two carbon vessels plumbed in series. Each carbon vessel will contain 2,000 pounds of reactivated liquid-phase carbon. Discharge from the carbon vessels wi flow/totalizer meter prior to direct discharge to the Mill River. Two ion exchange vessels plumed in series will be installed after the carbon vessels if settling and bag filtra reduce metal concentrations below RGP standards. One vessel will contain 60 CF of cation exchange resin and the other will contain 60 CF of anion exchange resin. Identify each major treatment component (check any that apply): ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter □ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify: Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	ll pass through a			
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Granular activated carbon vessels and ion exchange vessels Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	150			
Provide the proposed maximum effluent flow in gpm.	150			
Provide the average effluent flow in gpm.	100			
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:				
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No				

F. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I Complemental information
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

MAG910000 NHG910000 Appendix IV – Part 1 – NOI Page 24 of 24

T	A	
J.	Certification	requirement

o. Certification requirement	
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge of no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that the information, including the possibility of fine and imprisonment for knowing violations.	on or persons who manage the system, or those and belief, true, accurate, and complete. I have
A BMPP will be developed and maintained to meet the requirement BMPP certification statement: implemented on-site prior to the initiation of discharge	ents of this permit. The BMPP will be
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested	l. Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA ■
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit is (check one): □ Other; if so, specify:	mit Check one: Yes □ No □ NA ■
Signature:	Date: 10 17 2019
Print Name and Title: Dylan Smith, Project Manager for United	d Civil, Inc.

From: Ruan, Xiaodan (DEP)
To: Jake Jennings

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: NPDES RGP Application - 7Q10 and Dilution Factor Confirmation Nablus Road Wakefield, MA

Date: Wednesday, October 16, 2019 4:47:39 PM

Thanks Jake for the clarification.

I can confirm that the 7Q10 value of 0.0118 cfs and a dilution factor of 1.035 for the proposed discharge from 132 Salem Street, Wakefield, MA to the Mill River are correct.

To assist you with filling out the NOI for coverage under the RGP, this segment of the Mill River, within North Coastal Watershed is identified as MA93-31 (as you have already included the segment ID in your original email), classified as Class B, and is not listed as an Outstanding Resource Water. There is one approved TMDL for pathogens (https://www.mass.gov/files/documents/2016/08/vx/ncoastl1.pdf). To see the causes of impairments, go to: https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf and search for "MA93-31".

Note that if this is not a *current* MCP site, you must apply to MassDEP alongside submittal of the NOI by following the instructions at: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent. There is a \$500 fee unless the applicant is fee-exempt (e.g. a municipality).

Please let me know if you have any questions.

Thanks, Xiaodan

Xiaodan Ruan
Environmental Engineer
Massachusetts Department of Environmentla Protection
One Winter Street, Boston, MA 02108
(617) 654-6517
xiaodan.ruan@mass.gov

From: Vakalopoulos, Catherine (DEP) **Sent:** Tuesday, October 15, 2019 9:57 AM

To: Ruan, Xiaodan (DEP) **Cc:** 'Jake Jennings'

Subject: FW: NPDES RGP Application - 7Q10 and Dilution Factor Confirmation Nablus Road Wakefield, MA

Hi Xiaodan,

Do you have time to look at this today?

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

 $\begin{tabular}{ll} \clubsuit \end{array}$ Please consider the environment before printing this e-mail

From: Jake Jennings [mailto:JJennings@Irt-Ilc.net]
Sent: Monday, October 14, 2019 11:02 AM

To: Vakalopoulos, Catherine (DEP) **Cc:** John Henry; Jamie Bennett

Subject: NPDES RGP Application - 7Q10 and Dilution Factor Confirmation Nablus Road Wakefield, MA

Good Morning Cathy,

As required in appendix V, please see attached StreamStats Report along with our dilution calcs for your review and conformation.

The project location:

The intersection of Salem Street and Nablus Road (132 Salem Street on Google maps) Wakefield, MA

We plan on discharging to the Mill River (MA93-31) which is a tributary of the Saugus River.

The 7 Day 10 Year Low Flow value from the StreamStats report is 0.0118 cfs and the calculated dilution factor is 1.035.

Can you please confirm that these values are appropriate.

Thank you,

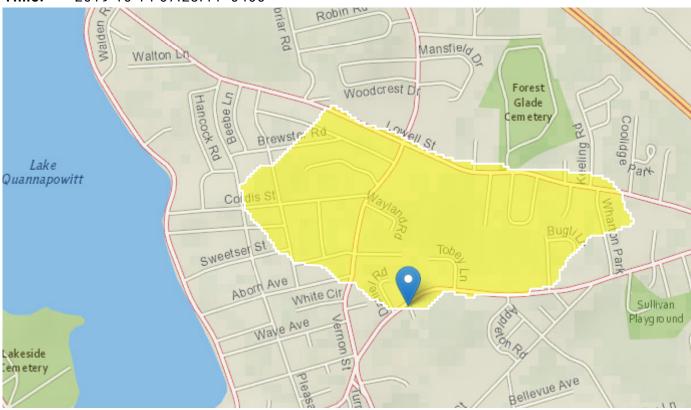
Jake Jennings

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774.450.7177 F: 888.835.0617

F: 888.835.0617 M: 508.930.9812 jjennings@lrt-llc.net

10/14/2019 StreamStats


StreamStats Report

Region ID: MA

Workspace ID: MA20191014112825216000

Clicked Point (Latitude, Longitude): 42.51236, -71.06393

Time: 2019-10-14 07:28:44 -0400

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	0.22	square miles		
BSLDEM250	Mean basin slope computed from 1:250K DEM	0.66	percent		
DRFTPERSTR	Area of stratified drift per unit of stream length	0.96	square mile per mile		
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless		

10/14/2019 StreamStats

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.22	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	0.66	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.96	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0294	ft^3/s
7 Day 10 Year Low Flow	0.0118	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

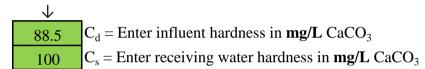
USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

10/14/2019 StreamStats

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0.0076	$Q_R = Enter upstream flow in MGD$
0.216	$Q_P = Enter discharge flow in MGD$
0.0076	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
6.1	pH in Standard Units
18	Temperature in °C
0.065	Ammonia in mg/L
100	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
1.6	Arsenic in μg/L
0	Cadmium in µg/L
1.7	Chromium III in µg/L
0	Chromium VI in µg/L
2.2	Copper in µg/L
1000	Iron in μg/L
0.91	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L

Enter **influent** concentrations in the units specified

\downarrow	_
0.034	TRC in µg/L
0.98	Ammonia in mg/L
0	Antimony in μg/L
11.1	Arsenic in μg/L
0	Cadmium in µg/L
5	Chromium III in µg/L
0	Chromium VI in µg/L
6.4	Copper in µg/L
8050	Iron in μg/L
5.1	Lead in µg/L
0	Mercury in µg/L
6.3	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
15	Zinc in µg/L
2	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0.023	Benzo(a)anthracene in µg/L
0.03	Benzo(a)pyrene in µg/L
0.038	Benzo(b)fluoranthene in µg/L
0.013	Benzo(k)fluoranthene in µg/L
0.027	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0.025	Indeno(1,2,3-cd)pyrene in μ g/L
0.26	Methyl-tert butyl ether in μg/L

A. Inorganics	TBEL applies if bolded WQBEL appli		WQBEL applies i	f bolded
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	11	μg/L
Total Suspended Solids	30	mg/L		MS/L
Antimony	206	μg/L	640	ug/I
Arsenic	104		10	μg/L
Cadmium		μg/L	3.0381	μg/L
	10.2	μg/L		μg/L
Chromium III	323	μg/L	1248.4	μg/L
Chromium VI	323	μg/L	11.4	μg/L
Copper	242	μg/L	151.7	μg/L
Iron	5000	$\mu g/L$	1000	$\mu g/L$
Lead	160	$\mu g/L$	202.83	$\mu g/L$
Mercury	0.739	$\mu g/L$	0.91	μg/L
Nickel	1450	μg/L	825.2	μg/L
Selenium	235.8	μg/L	5.0	μg/L
Silver	35.1	μg/L	1037.8	μg/L
Zinc	420	μg/L	1903.6	μg/L
Cyanide	178	mg/L	5.2	μg/L
B. Non-Halogenated VOCs	170	ing/L	3.2	μg/L
Total BTEX	100	μg/L		
Benzene	5.0	μg/L		
1,4 Dioxane	200	μg/L		
Acetone	7970	μg/L		
Phenol	1,080	$\mu g/L$	300	$\mu g/L$
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	$\mu g/L$	1.6	$\mu g/L$
1,2 Dichlorobenzene	600	$\mu g/L$		
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene		μg/L		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride	4.6	$\mu g/L$		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	$\mu g/L$		
Trichloroethylene	5.0	$\mu g/L$		
Tetrachloroethylene	5.0	$\mu g/L$	3.3	$\mu g/L$
cis-1,2 Dichloroethylene	70	μg/L		

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	$\mu g/L$		μg/L
Diethylhexyl phthalate	101	μg/L	2.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0038	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	$\mu g/L$		

Appendix B

Laboratory Data

October 11, 2019

James Bennett Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Wakefield, MA

Client Job Number: Project Number: 2-1922

Laboratory Work Order Number: 19J0332

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 4, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
19J0332-01	8
19J0332-02	16
Sample Preparation Information	24
QC Data	26
Volatile Organic Compounds by GC/MS	26
B242540	26
Semivolatile Organic Compounds by GC/MS	28
B242558	28
Semivolatile Organic Compounds by - GC/MS	29
B242457	29
Polychlorinated Biphenyls By GC/ECD	33
B242458	33
Metals Analyses (Total)	34
B242472	34
B242570	34
B242571	35
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	36
B242355	36
B242358	36
B242521	36
B242524	37
B242527	37

Table of Contents (continued)

Dual Column RPD Report	38
Flag/Qualifier Summary	40
Certifications	41
Chain of Custody/Sample Receipt	45

REPORT DATE: 10/11/2019

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

 $Lockwood\ Remediation\ Technologies,\ LLC$

89 Crawford Street Leominster, MA 01453

PURCHASE ORDER NUMBER: 2-1922

ATTN: James Bennett

FURCHASE ORDER NUMBER. 2-1722

PROJECT NUMBER: 2-1922

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19J0332

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wakefield, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Jacking Pit	19J0332-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Pit	19J0332-02	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

1,4-Dioxane

B242540-BS1

625.1

Qualifications:

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

B242457-BS1

2,4,6-Tribromophenol (SIM)

B242558-BS1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

Bis(2-ethylhexyl)phthalate (SIM)

19J0332-01[Jacking Pit], 19J0332-02[Receiving Pit], B242558-BLK1, B242558-BS1, B242558-BSD1, S041220-CCV1, S041260-CCV1

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

19J0332-01[Jacking Pit], 19J0332-02[Receiving Pit], B242457-BLK1, B242457-BS1, B242457-BSD1, S041175-CCV1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is

estimated.
Analyte & Samples(s) Qualified:

19J0332-01[Jacking Pit], 19J0332-02[Receiving Pit], B242457-BLK1, B242457-BS1, B242457-BSD1, S041175-CCV1

EPA 1664B

Qualifications:

PR-01

Sample preservative does not satisfy the method specifications.

Analyte & Samples(s) Qualified:

Silica Gel Treated HEM (SGT-HEN

19J0332-01[Jacking Pit], 19J0332-02[Receiving Pit]

EPA 300.0

Qualifications:

MS-19

Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated. Analyte & Samples(s) Qualified:

19J0332-02[Receiving Pit], B242527-MS1

SM21-22 4500 CL G

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

Chlorine, Residual

19J0332-02[Receiving Pit], B242358-MS1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Technical Representative

Lua Warrlengton

Project Location: Wakefield, MA Sample Description: Work Order: 19J0332

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

102

70-130

Sample ID: 19J0332-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volatile C)rganic	Compounds	bv	GC/MS
------------	---------	-----------	----	-------

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<50.0	50.0	3.79	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
Bromodichloromethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Bromomethane	< 5.00	5.00	0.780	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	$\mu g/L$	1		624.1	10/8/19	10/9/19 2:25	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,2-Dichlorobenzene	< 2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,3-Dichlorobenzene	< 2.00	2.00	0.120	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,4-Dichlorobenzene	< 2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,2-Dichloroethane	< 2.00	2.00	0.410	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,1-Dichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,1-Dichloroethylene	< 2.00	2.00	0.320	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
trans-1,2-Dichloroethylene	< 2.00	2.00	0.310	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,2-Dichloropropane	< 2.00	2.00	0.200	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
cis-1,3-Dichloropropene	< 2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,4-Dioxane	<50.0	50.0	22.5	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Ethanol	<50.0	50.0	10.5	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Ethylbenzene	< 2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Methyl tert-Butyl Ether (MTBE)	0.260	2.00	0.250	μg/L	1	J	624.1	10/8/19	10/9/19 2:25	LBD
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,1,1-Trichloroethane	< 2.00	2.00	0.200	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
1,1,2-Trichloroethane	<2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Trichlorofluoromethane (Freon 11)	< 2.00	2.00	0.330	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Vinyl Chloride	<2.00	2.00	0.450	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
m+p Xylene	<2.00	2.00	0.300	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	10/8/19	10/9/19 2:25	LBD
Surrogates		% Reco		Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		98.3		70-130					10/9/19 2:25	
Toluene-d8		106		70-130					10/9/19 2:25	

10/9/19 2:25

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by GC/MS	

			Scilive	name Organic Co	inpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	0.023	0.048	0.015	μg/L	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Benzo(a)pyrene (SIM)	0.030	0.096	0.012	$\mu g/L$	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Benzo(b)fluoranthene (SIM)	0.038	0.048	0.014	$\mu g/L$	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Benzo(k)fluoranthene (SIM)	0.013	0.19	0.012	$\mu g/L$	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Bis(2-ethylhexyl)phthalate (SIM)	< 0.96	0.96	0.41	$\mu g/L$	1	V-04	625.1	10/7/19	10/8/19 16:13	IMR
Chrysene (SIM)	0.027	0.19	0.014	$\mu g/L$	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Dibenz(a,h)anthracene (SIM)	< 0.096	0.096	0.016	$\mu g/L$	1		625.1	10/7/19	10/8/19 16:13	IMR
Indeno(1,2,3-cd)pyrene (SIM)	0.025	0.096	0.017	$\mu g/L$	1	J	625.1	10/7/19	10/8/19 16:13	IMR
Pentachlorophenol (SIM)	< 0.96	0.96	0.32	$\mu g/L$	1		625.1	10/7/19	10/8/19 16:13	IMR
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
2-Fluorophenol (SIM)		36.8		15-110					10/8/19 16:13	
Phenol-d6 (SIM)		29.0		15-110					10/8/19 16:13	
Nitrobenzene-d5		71.0		30-130					10/8/19 16:13	
2-Fluorobiphenyl		49.9		30-130					10/8/19 16:13	
2,4,6-Tribromophenol (SIM)		92.9		15-110					10/8/19 16:13	
p-Terphenyl-d14		76.0		30-130					10/8/19 16:13	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wakefield, MA
Date Received: 10/4/2019
Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

		Sem	ivolatile Organic C	ompounds by	- GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	<4.81	4.81	μg/L	1	g	625.1	10/7/19	10/8/19 12:30	BGL
Acenaphthylene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Anthracene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Benzidine	<19.2	19.2	μg/L	1	V-05, V-35	625.1	10/7/19	10/8/19 12:30	BGL
Benzo(g,h,i)perylene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
4-Bromophenylphenylether	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Butylbenzylphthalate	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
4-Chloro-3-methylphenol	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Bis(2-chloroethyl)ether	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Bis(2-chloroisopropyl)ether	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
2-Chloronaphthalene	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
2-Chlorophenol	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
4-Chlorophenylphenylether	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
Di-n-butylphthalate	<9.62	9.62	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
1,3-Dichlorobenzene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
1,4-Dichlorobenzene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
1,2-Dichlorobenzene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
3,3-Dichlorobenzidine	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2,4-Dichlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Diethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2,4-Dimethylphenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Dimethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
4,6-Dinitro-2-methylphenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2,4-Dinitrophenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2,4-Dinitrotoluene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2,6-Dinitrotoluene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Di-n-octylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
1,2-Diphenylhydrazine/Azobenzene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Bis(2-Ethylhexyl)phthalate	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Fluoranthene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Fluorene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Hexachlorobenzene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Hexachlorobutadiene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Hexachlorocyclopentadiene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Hexachloroethane	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Isophorone	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Naphthalene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Nitrobenzene	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2-Nitrophenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
4-Nitrophenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
N-Nitrosodimethylamine	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
N-Nitrosodiphenylamine	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
N-Nitrosodi-n-propylamine	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
2-Methylnaphthalene	<4.81	4.81	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL

Page 10 of 46

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019
Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
2-Methylphenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Phenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
3/4-Methylphenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Pyrene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
1,2,4-Trichlorobenzene	<4.81	4.81	μg/L	1		625.1	10/7/19	10/8/19 12:30	BGL
2,4,6-Trichlorophenol	<9.62	9.62	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:30	BGL
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		42.2	15-110					10/8/19 12:30	
Phenol-d6		32.9	15-110					10/8/19 12:30	
Nitrobenzene-d5		64.5	30-130					10/8/19 12:30	
2-Fluorobiphenyl		70.4	30-130					10/8/19 12:30	
2,4,6-Tribromophenol		96.7	15-110					10/8/19 12:30	
p-Terphenyl-d14		100	30-130					10/8/19 12:30	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0980	0.0980	0.0902	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1221 [1]	< 0.0980	0.0980	0.0789	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1232 [1]	< 0.0980	0.0980	0.0975	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1242 [1]	< 0.0980	0.0980	0.0848	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1248 [1]	< 0.0980	0.0980	0.0931	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1254 [1]	< 0.0980	0.0980	0.0515	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:09	TG
Aroclor-1260 [1]	< 0.0980	0.0980	0.0961	μg/L	1		608.3	10/7/19	10/9/19 20:09	TG

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	57.3	30-150		10/9/19 20:09
Decachlorobiphenyl [2]	59.4	30-150		10/9/19 20:09
Tetrachloro-m-xylene [1]	68.1	30-150		10/9/19 20:09
Tetrachloro-m-xylene [2]	69.9	30-150		10/9/19 20:09

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
·						1 mg/ 2 mm			•	
Antimony	ND	1.0		μg/L	I		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Arsenic	21	0.80		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Chromium	5.6	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Chromium, Trivalent	0.0056			mg/L	1		Tri Chrome Calc.	10/8/19	10/9/19 14:01	QNW
Copper	5.0	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Iron	15	0.050		mg/L	1		EPA 200.7	10/8/19	10/9/19 15:21	MJH
Lead	4.9	0.50		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	10/7/19	10/8/19 9:30	CJV
Nickel	6.3	5.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Zinc	ND	10		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:01	QNW
Hardness	67			mg/L	1		EPA 200.7	10/8/19	10/9/19 15:21	MJH

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	150	10		mg/L	10		EPA 300.0	10/7/19	10/7/19 15:27	IS
Chlorine, Residual	0.034	0.020		mg/L	1		SM21-22 4500 CL G	10/4/19	10/4/19 22:26	KMV/IS
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	10/4/19	10/4/19 19:15	MJG
Total Suspended Solids	82	2.0		mg/L	1		SM21-22 2540D	10/8/19	10/8/19 13:15	LL
Silica Gel Treated HEM (SGT-HEM)	ND	2.8		mg/L	1	PR-01	EPA 1664B	10/8/19	10/8/19 13:15	LL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Jacking Pit

Sampled: 10/4/2019 10:30

Sample ID: 19J0332-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		1.83	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		10/8/19 18:46	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		10/8/19 11:17	AAL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Project Location: Wakefield, MA

Sampled: 10/4/2019 12:30

100

70-130

Sample ID: 19J0332-02
Sample Matrix: Ground Water

4-Bromofluorobenzene

Volotilo	Organia	Compound	le by	CC/MS
voiatile	Organic	Compound	IS DV	CTC./IVIS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	< 50.0	50.0	3.79	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Bromodichloromethane	<2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Bromoform	<2.00	2.00	0.460	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Chlorobenzene	< 2.00	2.00	0.150	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Chloroethane	< 2.00	2.00	0.350	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Chloroform	< 2.00	2.00	0.170	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Chloromethane	< 2.00	2.00	0.450	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,2-Dichlorobenzene	<2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,3-Dichlorobenzene	<2.00	2.00	0.120	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,4-Dichlorobenzene	<2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,2-Dichloroethane	<2.00	2.00	0.410	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,1-Dichloroethane	<2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,1-Dichloroethylene	<2.00	2.00	0.320	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
trans-1,2-Dichloroethylene	<2.00	2.00	0.310	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,2-Dichloropropane	<2.00	2.00	0.200	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
cis-1,3-Dichloropropene	<2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,4-Dioxane	< 50.0	50.0	22.5	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
trans-1,3-Dichloropropene	< 2.00	2.00	0.230	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Ethanol	< 50.0	50.0	10.5	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Ethylbenzene	< 2.00	2.00	0.130	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,1,2,2-Tetrachloroethane	< 2.00	2.00	0.220	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Tetrachloroethylene	< 2.00	2.00	0.180	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,1,1-Trichloroethane	<2.00	2.00	0.200	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
1,1,2-Trichloroethane	<2.00	2.00	0.160	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Trichloroethylene	<2.00	2.00	0.240	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Trichlorofluoromethane (Freon 11)	<2.00	2.00	0.330	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Vinyl Chloride	<2.00	2.00	0.450	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
m+p Xylene	<2.00	2.00	0.300	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
o-Xylene	<2.00	2.00	0.170	μg/L	1		624.1	10/8/19	10/9/19 2:56	LBD
Surrogates		% Reco		Recovery Limits		Flag/Qual	·			
1,2-Dichloroethane-d4		99.4	- 0	70-130					10/9/19 2:56	
Toluene-d8		104		70-130					10/9/19 2:56	

10/9/19 2:56

Sample Description:

Work Order: 19J0332

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Project Location: Wakefield, MA

Sampled: 10/4/2019 12:30

Sample ID: 19J0332-02
Sample Matrix: Ground Water

			Semivo	latile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.050	0.050	0.016	μg/L	1		625.1	10/7/19	10/9/19 9:57	CLA
Benzo(a)pyrene (SIM)	< 0.10	0.10	0.012	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Benzo(b)fluoranthene (SIM)	< 0.050	0.050	0.015	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Benzo(k)fluoranthene (SIM)	< 0.20	0.20	0.012	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Bis(2-ethylhexyl)phthalate (SIM)	<1.0	1.0	0.43	$\mu g/L$	1	V-04	625.1	10/7/19	10/9/19 9:57	CLA
Chrysene (SIM)	< 0.20	0.20	0.015	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Dibenz(a,h)anthracene (SIM)	< 0.10	0.10	0.017	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.10	0.10	0.018	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Pentachlorophenol (SIM)	<1.0	1.0	0.33	$\mu g/L$	1		625.1	10/7/19	10/9/19 9:57	CLA
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
2-Fluorophenol (SIM)		51.9		15-110					10/9/19 9:57	
Phenol-d6 (SIM)		40.1		15-110					10/9/19 9:57	
Nitrobenzene-d5		99.9		30-130					10/9/19 9:57	
2-Fluorobiphenyl		69.8		30-130					10/9/19 9:57	
2,4,6-Tribromophenol (SIM)		109		15-110					10/9/19 9:57	
p-Terphenyl-d14		85.9		30-130					10/9/19 9:57	

Sample Description:

Work Order: 19J0332

Project Location: Wakefield, MA Date Received: 10/4/2019 Field Sample #: Receiving Pit

Sampled: 10/4/2019 12:30

Sample ID: 19J0332-02 Sample Matrix: Ground Water

Semivolatile	Organic	Compounds	by -	GC/MS
--------------	---------	-----------	------	-------

Semivolatile Organic Compounds by - GC/MS										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Acenaphthene	<5.00	5.00	μg/L	1	g - (625.1	10/7/19	10/8/19 12:54	BGL	
Acenaphthylene	<5.00	5.00	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Anthracene	< 5.00	5.00	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Benzidine	<20.0	20.0	μg/L	1	V-05, V-35	625.1	10/7/19	10/8/19 12:54	BGL	
Benzo(g,h,i)perylene	< 5.00	5.00	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
4-Bromophenylphenylether	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Butylbenzylphthalate	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
4-Chloro-3-methylphenol	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Bis(2-chloroethyl)ether	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Bis(2-chloroisopropyl)ether	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
2-Chloronaphthalene	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
2-Chlorophenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
4-Chlorophenylphenylether	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Di-n-butylphthalate	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
1,3-Dichlorobenzene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
1,4-Dichlorobenzene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
1,2-Dichlorobenzene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
3,3-Dichlorobenzidine	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
2,4-Dichlorophenol	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
Diethylphthalate	<10.0	10.0	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL	
2,4-Dimethylphenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Dimethylphthalate	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
4,6-Dinitro-2-methylphenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
2,4-Dinitrophenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
2,4-Dinitrotoluene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
2,6-Dinitrotoluene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Di-n-octylphthalate	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
1,2-Diphenylhydrazine/Azobenzene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Bis(2-Ethylhexyl)phthalate	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Fluoranthene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Fluorene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Hexachlorobenzene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Hexachlorobutadiene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Hexachlorocyclopentadiene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Hexachloroethane	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Isophorone	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Naphthalene	<5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
Nitrobenzene	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
2-Nitrophenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
4-Nitrophenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
N-Nitrosodimethylamine	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
N-Nitrosodiphenylamine	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
N-Nitrosodi-n-propylamine	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	
2-Methylnaphthalene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL	

Page 18 of 46

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Sample ID: 19J0332-02

Sample Matrix: Ground Water

Project Location: Wakefield, MA

Sampled: 10/4/2019 12:30

Semivolatile	Organic	Compounds	by -	GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	< 5.00	5.00	μg/L	1		625.1	10/7/19	10/8/19 12:54	BGL
2-Methylphenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
Phenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
3/4-Methylphenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
Pyrene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
1,2,4-Trichlorobenzene	< 5.00	5.00	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
2,4,6-Trichlorophenol	<10.0	10.0	$\mu g/L$	1		625.1	10/7/19	10/8/19 12:54	BGL
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
2-Fluorophenol		53.5	15-110					10/8/19 12:54	
Phenol-d6		38.3	15-110					10/8/19 12:54	
Nitrobenzene-d5		84.8	30-130					10/8/19 12:54	
2-Fluorobiphenyl		87.2	30-130					10/8/19 12:54	
2,4,6-Tribromophenol		105	15-110					10/8/19 12:54	
p-Terphenyl-d14		105	30-130					10/8/19 12:54	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Wakefield, MA

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Sampled: 10/4/2019 12:30

Sample ID: 19J0332-02
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	< 0.0976	0.0976	0.0898	μg/L	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1221 [1]	< 0.0976	0.0976	0.0785	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1232 [1]	< 0.0976	0.0976	0.0971	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1242 [1]	< 0.0976	0.0976	0.0844	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1248 [1]	< 0.0976	0.0976	0.0927	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1254 [1]	< 0.0976	0.0976	0.0512	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG
Aroclor-1260 [1]	< 0.0976	0.0976	0.0956	$\mu g/L$	1		608.3	10/7/19	10/9/19 20:22	TG

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	61.4	30-150		10/9/19 20:22
Decachlorobiphenyl [2]	63.4	30-150		10/9/19 20:22
Tetrachloro-m-xylene [1]	67.1	30-150		10/9/19 20:22
Tetrachloro-m-xylene [2]	69.0	30-150		10/9/19 20:22

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019
Field Sample #: Receiving Pit
Sample ID: 19J0332-02

Sample Matrix: Ground Water

Sampled: 10/4/2019 12:30

Metals Analyses (Total)

				Metals Anai	yses (10tai)					
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Arsenic	1.2	0.80		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Chromium	4.4	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Chromium, Trivalent	0.0044			mg/L	1		Tri Chrome Calc.	10/8/19	10/9/19 14:04	QNW
Copper	7.8	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Iron	1.1	0.050		mg/L	1		EPA 200.7	10/8/19	10/9/19 15:28	MJH
Lead	5.3	0.50		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	10/7/19	10/8/19 9:12	CJV
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Zinc	15	10		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 14:04	QNW
Hardness	110			mg/L	1		EPA 200.7	10/8/19	10/9/19 15:28	MJH

Sample Description:

Work Order: 19J0332

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Project Location: Wakefield, MA

Sampled: 10/4/2019 12:30

Sample ID: 19J0332-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	240	10		mg/L	10	MS-19	EPA 300.0	10/7/19	10/7/19 15:46	IS
Chlorine, Residual	ND	0.020		mg/L	1	MS-07	SM21-22 4500 CL G	10/4/19	10/4/19 19:00	KMV/IS
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	10/4/19	10/4/19 19:15	MJG
Total Suspended Solids	65	2.0		mg/L	1		SM21-22 2540D	10/8/19	10/8/19 13:15	LL
Silica Gel Treated HEM (SGT-HEM)	ND	2.8		mg/L	1	PR-01	EPA 1664B	10/8/19	10/8/19 13:15	LL

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Receiving Pit

Sampled: 10/4/2019 12:30

Sample ID: 19J0332-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.135	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		10/8/19 18:47	AAL
Cyanide	0.002	0.005	0.001	mg/L	1		SM21-22 4500 CN E		10/8/19 11:18	AAL

Sample Extraction Data

Prep Method: SW-846 3510C-608.3

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242458	1020	5.00	10/07/19
19J0332-02 [Receiving Pit]	B242458	1020	5.00	10/07/19

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242540	5	5.00	10/08/19
19J0332-02 [Receiving Pit]	B242540	5	5.00	10/08/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242457	1040	1.00	10/07/19
19J0332-02 [Receiving Pit]	B242457	1000	1.00	10/07/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242558	1040	1.00	10/07/19
19J0332-02 [Receiving Pit]	B242558	1000	1.00	10/07/19

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J0332-01 [Jacking Pit]	B242521	500	10/08/19
19J0332-02 [Receiving Pit]	B242521	500	10/08/19

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J0332-01 [Jacking Pit]	B242571	50.0	50.0	10/08/19	
19J0332-01 [Jacking Pit]	B242571	50.0		10/08/19	
19J0332-02 [Receiving Pit]	B242571	50.0	50.0	10/08/19	
19J0332-02 [Receiving Pit]	B242571	50.0		10/08/19	

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242570	50.0	50.0	10/08/19
19J0332-02 [Receiving Pit]	B242570	50.0	50.0	10/08/19

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242472	6.00	6.00	10/07/19
19J0332-02 [Receiving Pit]	B242472	6.00	6.00	10/07/19

Sample Extraction Data

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242527	10.0	10.0	10/07/19
19J0332-02 [Receiving Pit]	B242527	10.0	10.0	10/07/19

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J0332-01 [Jacking Pit]	B242524	250	10/08/19
19J0332-02 [Receiving Pit]	B242524	250	10/08/19

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242355	50.0	50.0	10/04/19
19J0332-02 [Receiving Pit]	B242355	50.0	50.0	10/04/19

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0332-01 [Jacking Pit]	B242358	100	100	10/04/19
19J0332-02 [Receiving Pit]	B242358	100	100	10/04/19

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J0332-01 [Jacking Pit]	B242570	50.0	10/08/19
19J0332-02 [Receiving Pit]	B242570	50.0	10/08/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B242540 - SW-846 5030B										
Blank (B242540-BLK1)				Prepared: 10	/08/19 Analy	yzed: 10/09/1	9			
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
Benzene	ND	1.00	$\mu g/L$							
Bromodichloromethane	ND	2.00	$\mu g/L$							
Bromoform	ND	2.00	$\mu g/L$							
Bromomethane	ND	2.00	μg/L							
ert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
arbon Tetrachloride	ND	2.00	μg/L							
hlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	μg/L							
Chloroform	ND	2.00	μg/L μg/L							
Chloromethane	ND ND	2.00	μg/L μg/L							
,2-Dichlorobenzene	ND ND	2.00	μg/L μg/L							
,3-Dichlorobenzene	ND ND	2.00	μg/L μg/L							
,4-Dichlorobenzene		2.00								
,2-Dichloroethane	ND		μg/L μg/I							
	ND	2.00	μg/L							
1-Dichloroethane	ND	2.00	μg/L							
,1-Dichloroethylene	ND	2.00	μg/L							
rans-1,2-Dichloroethylene	ND	2.00	μg/L							
,2-Dichloropropane	ND	2.00	μg/L							
is-1,3-Dichloropropene	ND	2.00	μg/L							
,4-Dioxane	ND	50.0	μg/L							
ans-1,3-Dichloropropene	ND	2.00	μg/L							
thanol	ND	50.0	μg/L							
thylbenzene	ND	2.00	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	$\mu g/L$							
Methylene Chloride	ND	5.00	$\mu g/L$							
,1,2,2-Tetrachloroethane	ND	2.00	$\mu g/L$							
etrachloroethylene	ND	2.00	$\mu g/L$							
foluene	ND	1.00	$\mu g/L$							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
richlorofluoromethane (Freon 11)	ND	2.00	μg/L							
7inyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND ND	2.00	μg/L μg/L							
-Xylene	ND ND	2.00	μg/L							
		2.00				0	=0 :-			
urrogate: 1,2-Dichloroethane-d4	24.2		μg/L	25.0		96.9	70-130			
surrogate: Toluene-d8	26.3		μg/L	25.0		105	70-130			
urrogate: 4-Bromofluorobenzene	24.8		μg/L	25.0		99.2	70-130			
CS (B242540-BS1)				Prepared: 10	/08/19 Analy	yzed: 10/09/1	9			
cetone	200	50.0	μg/L	200		98.2	70-160			
ert-Amyl Methyl Ether (TAME)	19	0.500	$\mu g/L$	20.0		92.7	70-130			
Senzene	18	1.00	μg/L	20.0		87.8	65-135			
romodichloromethane	19	2.00	μg/L	20.0		94.8	65-135			
romoform	18	2.00	μg/L	20.0		90.4	70-130			
Bromomethane	10	2.00	μg/L	20.0		52.0	15-185			
ert-Butyl Alcohol (TBA)	250	20.0	μg/L	200		124	40-160			
Carbon Tetrachloride	17	2.00	μg/L	20.0		87.3	70-130			
Chlorobenzene	17	2.00	μg/L μg/L	20.0		95.6	65-135			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B242540 - SW-846 5030B											
LCS (B242540-BS1)				Prepared: 10	0/08/19 Anal	yzed: 10/09/	19				
Chlorodibromomethane	20	2.00	μg/L	20.0		100	70-135				
Chloroethane	16	2.00	$\mu g/L$	20.0		80.7	40-160				
Chloroform	18	2.00	μg/L	20.0		87.5	70-135				
Chloromethane	8.7	2.00	μg/L	20.0		43.6	20-205				
1,2-Dichlorobenzene	19	2.00	μg/L	20.0		95.9	65-135				
1,3-Dichlorobenzene	19	2.00	μg/L	20.0		94.2	70-130				
1,4-Dichlorobenzene	19	2.00	$\mu g/L$	20.0		93.4	65-135				
1,2-Dichloroethane	21	2.00	$\mu g/L$	20.0		104	70-130				
1,1-Dichloroethane	18	2.00	$\mu g/L$	20.0		91.5	70-130				
1,1-Dichloroethylene	18	2.00	μg/L	20.0		88.0	50-150				
trans-1,2-Dichloroethylene	19	2.00	μg/L	20.0		94.2	70-130				
1,2-Dichloropropane	20	2.00	μg/L	20.0		101	35-165				
cis-1,3-Dichloropropene	18	2.00	μg/L	20.0		90.8	25-175				
1,4-Dioxane	320	50.0	μg/L	200		161 *	40-130			L-01	
trans-1,3-Dichloropropene	18	2.00	μg/L	20.0		90.4	50-150				
Ethanol	270	50.0	μg/L	200		137	40-160				
Ethylbenzene	18	2.00	μg/L	20.0		89.4	60-140				
Methyl tert-Butyl Ether (MTBE)	19	2.00	μg/L	20.0		95.9	70-130				
Methylene Chloride	17	5.00	μg/L	20.0		83.4	60-140				
1,1,2,2-Tetrachloroethane	22	2.00	μg/L	20.0		112	60-140				
Tetrachloroethylene	21	2.00	μg/L	20.0		104	70-130				
Toluene	19	1.00	μg/L	20.0		95.3	70-130				
1,1,1-Trichloroethane	18	2.00	μg/L	20.0		88.2	70-130				
1,1,2-Trichloroethane	21	2.00	μg/L	20.0		106	70-130				
Trichloroethylene	19	2.00	$\mu g/L$	20.0		97.2	65-135				
Trichlorofluoromethane (Freon 11)	15	2.00	$\mu g/L$	20.0		75.0	50-150				
Vinyl Chloride	14	2.00	$\mu g/L$	20.0		68.2	5-195				
m+p Xylene	35	2.00	$\mu g/L$	40.0		87.8	70-130				
o-Xylene	18	2.00	μg/L	20.0		88.7	70-130				
Surrogate: 1,2-Dichloroethane-d4	23.8		μg/L	25.0	<u> </u>	95.4	70-130		<u> </u>		
Surrogate: Toluene-d8	26.9		$\mu g/L$	25.0		107	70-130				
Surrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.0		98.4	70-130				

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242558 - SW-846 3510C										
Blank (B242558-BLK1)				Prepared: 10	/07/19 Anal	yzed: 10/08/1	19			
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							V-04
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.10	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.10	μg/L							
Pentachlorophenol (SIM)	ND	1.0	μg/L							
urrogate: 2-Fluorophenol (SIM)	102		μg/L	200		51.1	15-110			
Surrogate: Phenol-d6 (SIM)	78.3		μg/L	200		39.2	15-110			
Surrogate: Nitrobenzene-d5	86.2		$\mu g/L$	100		86.2	30-130			
Surrogate: 2-Fluorobiphenyl	59.2		$\mu g/L$	100		59.2	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	185		$\mu g/L$	200		92.3	15-110			
urrogate: p-Terphenyl-d14	80.4		$\mu g/L$	100		80.4	30-130			
CS (B242558-BS1)				Prepared: 10	/07/19 Anal	yzed: 10/08/1	19			
Benzo(a)anthracene (SIM)	47.9	1.0	μg/L	50.0		95.8	33-143			
Benzo(a)pyrene (SIM)	48.1	2.0	μg/L	50.0		96.3	17-163			
Benzo(b)fluoranthene (SIM)	52.1	1.0	μg/L	50.0		104	24-159			
Benzo(k)fluoranthene (SIM)	52.0	4.0	μg/L	50.0		104	11-162			
sis(2-ethylhexyl)phthalate (SIM)	50.5	20	μg/L	50.0		101	8-158			V-04
Chrysene (SIM)	47.1	4.0	μg/L	50.0		94.2	17-168			
Dibenz(a,h)anthracene (SIM)	53.6	2.0	μg/L	50.0		107	10-227			
ndeno(1,2,3-cd)pyrene (SIM)	53.9	2.0	μg/L	50.0		108	10-171			
entachlorophenol (SIM)	36.3	20	$\mu g/L$	50.0		72.6	14-176			
Surrogate: 2-Fluorophenol (SIM)	114		μg/L	200		57.0	15-110			
Surrogate: Phenol-d6 (SIM)	89.9		μg/L	200		44.9	15-110			
urrogate: Nitrobenzene-d5	94.1		μg/L	100		94.1	30-130			
urrogate: 2-Fluorobiphenyl	76.6		μg/L	100		76.6	30-130			
urrogate: 2,4,6-Tribromophenol (SIM)	230		μg/L	200		115 *	15-110			S-07
urrogate: p-Terphenyl-d14	78.8		μg/L	100		78.8	30-130			
.CS Dup (B242558-BSD1)				Prepared: 10	/07/19 Anal	yzed: 10/08/1	19			
Benzo(a)anthracene (SIM)	44.4	1.0	μg/L	50.0		88.8	33-143	7.67	53	
enzo(a)pyrene (SIM)	44.9	2.0	$\mu g/L$	50.0		89.8	17-163	6.96	72	
Benzo(b)fluoranthene (SIM)	48.6	1.0	$\mu g/L$	50.0		97.3	24-159	6.83	71	
Benzo(k)fluoranthene (SIM)	48.4	4.0	$\mu g/L$	50.0		96.8	11-162	7.21	63	
sis(2-ethylhexyl)phthalate (SIM)	47.3	20	$\mu g/L$	50.0		94.6	8-158	6.46	82	V-04
Chrysene (SIM)	43.6	4.0	$\mu g/L$	50.0		87.2	17-168	7.67	87	
Dibenz(a,h)anthracene (SIM)	49.9	2.0	$\mu g/L$	50.0		99.9	10-227	7.03	126	
ndeno(1,2,3-cd)pyrene (SIM)	49.9	2.0	$\mu g/L$	50.0		99.9	10-171	7.59	99	
entachlorophenol (SIM)	32.4	20	$\mu g/L$	50.0		64.9	14-176	11.2	86	
urrogate: 2-Fluorophenol (SIM)	106		μg/L	200		53.0	15-110			
Surrogate: Phenol-d6 (SIM)	81.4		$\mu g/L$	200		40.7	15-110			
urrogate: Nitrobenzene-d5	89.5		$\mu g/L$	100		89.5	30-130			
Surrogate: 2-Fluorobiphenyl	69.0		$\mu g/L$	100		69.0	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	216		$\mu g/L$	200		108	15-110			
Surrogate: p-Terphenyl-d14	75.4		μg/L	100		75.4	30-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242457 - SW-846 3510C										
Blank (B242457-BLK1)				Prepared: 10	0/07/19 Analy	yzed: 10/08/1	9			
Acenaphthene	ND	5.00	$\mu \text{g/L}$							
Acenaphthylene	ND	5.00	$\mu \text{g/L}$							
Anthracene	ND	5.00	μg/L							
Benzidine	ND	20.0	μg/L							V-05, V-35
Benzo(g,h,i)perylene	ND	5.00	μg/L							
4-Bromophenylphenylether	ND	10.0	$\mu \text{g/L}$							
Butylbenzylphthalate	ND	10.0	μg/L							
4-Chloro-3-methylphenol	ND	10.0	μg/L							
Bis(2-chloroethyl)ether	ND	10.0	μg/L							
Bis(2-chloroisopropyl)ether	ND	10.0	μg/L							
2-Chloronaphthalene	ND	10.0	μg/L							
2-Chlorophenol	ND	10.0	$\mu g/L$							
4-Chlorophenylphenylether	ND	10.0	$\mu \text{g/L}$							
Di-n-butylphthalate	ND	10.0	$\mu \text{g/L}$							
1,3-Dichlorobenzene	ND	5.00	$\mu \text{g/L}$							
1,4-Dichlorobenzene	ND	5.00	$\mu g/L$							
1,2-Dichlorobenzene	ND	5.00	μg/L							
3,3-Dichlorobenzidine	ND	10.0	$\mu g/L$							
2,4-Dichlorophenol	ND	10.0	μg/L							
Diethylphthalate	ND	10.0	μg/L							
2,4-Dimethylphenol	ND	10.0	μg/L							
Dimethylphthalate	ND	10.0	μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L							
2,4-Dinitrophenol	ND	10.0	μg/L							
2,4-Dinitrotoluene	ND	10.0	μg/L							
2,6-Dinitrotoluene	ND	10.0	μg/L							
Di-n-octylphthalate		10.0	μg/L μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	μg/L μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10.0	μg/L μg/L							
Fluoranthene	ND	5.00								
Fluorene	ND		μg/L							
	ND	5.00	μg/L							
Hexachlorobenzene	ND	10.0	μg/L							
Hexachlorobutadiene	ND	10.0	μg/L							
Hexachlorocyclopentadiene	ND	10.0	μg/L							
Hexachloroethane	ND	10.0	μg/L							
Isophorone	ND	10.0	μg/L							
Naphthalene	ND	5.00	$\mu \text{g/L}$							
Nitrobenzene	ND	10.0	$\mu g\!/\!L$							
2-Nitrophenol	ND	10.0	$\mu \text{g/L}$							
4-Nitrophenol	ND	10.0	$\mu \text{g/L}$							
N-Nitrosodimethylamine	ND	10.0	$\mu \text{g/L}$							
N-Nitrosodiphenylamine	ND	10.0	$\mu g/L$							
N-Nitrosodi-n-propylamine	ND	10.0	$\mu g/L$							
2-Methylnaphthalene	ND	5.00	$\mu \text{g}/L$							
Phenanthrene	ND	5.00	$\mu \text{g}/L$							
2-Methylphenol	ND	10.0	$\mu g/L$							
Phenol	ND	10.0	$\mu g/L$							
3/4-Methylphenol	ND	10.0	μg/L							
Pyrene	ND	5.00	μg/L							
1,2,4-Trichlorobenzene	ND	5.00	μg/L							
2,4,6-Trichlorophenol	ND	10.0	μg/L							
Surrogate: 2-Fluorophenol	113		μg/L	200		56.7	15-110			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242457 - SW-846 3510C										
Blank (B242457-BLK1)				Prepared: 10)/07/19 Anal	yzed: 10/08/1	9			
Surrogate: Phenol-d6	83.6		μg/L	200		41.8	15-110			
Surrogate: Nitrobenzene-d5	79.5		μg/L	100		79.5	30-130			
Surrogate: 2-Fluorobiphenyl	84.6		μg/L	100		84.6	30-130			
Surrogate: 2,4,6-Tribromophenol	196		μg/L	200		98.2	15-110			
Surrogate: p-Terphenyl-d14	99.5		μg/L	100		99.5	30-130			
LCS (B242457-BS1)				Prepared: 10	0/07/19 Analy					
Acenaphthene	46.1	5.00	μg/L	50.0		92.3	47-145			
Acenaphthylene	46.7	5.00	μg/L	50.0		93.4	33-145			
Anthracene	46.6	5.00	μg/L	50.0		93.2	27-133			
Benzidine	60.1	20.0	μg/L	50.0		120	40-140			V-05, V-35
Benzo(g,h,i)perylene	47.7	5.00	μg/L	50.0		95.4	10-219			
4-Bromophenylphenylether	42.2	10.0	μg/L	50.0		84.5	53-127			
Butylbenzylphthalate	49.1	10.0	μg/L	50.0		98.2	10-152			
4-Chloro-3-methylphenol	47.1	10.0	μg/L	50.0		94.2	22-147			
Bis(2-chloroethyl)ether	48.3	10.0	μg/L	50.0		96.7	12-158			
Bis(2-chloroisopropyl)ether	56.5	10.0	μg/L	50.0		113	36-166			
2-Chloronaphthalene	40.8	10.0	μg/L	50.0		81.5	60-120			
2-Chlorophenol	45.7	10.0	μg/L	50.0		91.4	23-134			
4-Chlorophenylphenylether	46.5	10.0	μg/L	50.0		93.0	25-158			
Di-n-butylphthalate	45.8	10.0	μg/L	50.0		91.7	10-120			
1,3-Dichlorobenzene	39.6	5.00	μg/L	50.0		79.3	10-172			
1,4-Dichlorobenzene	40.2	5.00	μg/L	50.0		80.3	20-124			
1,2-Dichlorobenzene	42.6	5.00	μg/L	50.0		85.2	32-129			
3,3-Dichlorobenzidine	54.7	10.0	μg/L α/I	50.0		109	10-262			
2,4-Dichlorophenol	47.0	10.0	μg/L	50.0		94.0	39-135			
Diethylphthalate 2,4-Dimethylphenol	47.1	10.0 10.0	μg/L μg/L	50.0		94.3	10-120			
Dimethylphthalate	42.1	10.0	μg/L μg/L	50.0 50.0		84.2 95.4	32-120 10-120			
4,6-Dinitro-2-methylphenol	47.7	10.0	μg/L μg/L	50.0		86.2	10-120			
2,4-Dinitrophenol	43.1	10.0	μg/L μg/L	50.0		97.1	10-181			
2,4-Dinitrotoluene	48.6 49.4	10.0	μg/L μg/L	50.0		98.8	39-139			
2,6-Dinitrotoluene		10.0	μg/L μg/L	50.0		104	50-158			
Di-n-octylphthalate	52.0 52.3	10.0	μg/L μg/L	50.0		104	4-146			
1,2-Diphenylhydrazine/Azobenzene	32.3 42.9	10.0	μg/L μg/L	50.0		85.8	40-140			
Bis(2-Ethylhexyl)phthalate	50.7	10.0	μg/L	50.0		101	8-158			
Fluoranthene	48.3	5.00	μg/L	50.0		96.5	26-137			
Fluorene	47.5	5.00	μg/L	50.0		95.1	59-121			
Hexachlorobenzene	43.3	10.0	μg/L μg/L	50.0		86.5	10-152			
Hexachlorobutadiene	38.0	10.0	μg/L	50.0		76.0	24-120			
Hexachlorocyclopentadiene	36.2	10.0	μg/L	50.0		72.3	40-140			
Hexachloroethane	38.8	10.0	μg/L	50.0		77.5	40-120			
Isophorone	49.4	10.0	μg/L	50.0		98.7	21-196			
Naphthalene	44.8	5.00	μg/L	50.0		89.6	21-133			
Nitrobenzene	42.8	10.0	μg/L	50.0		85.7	35-180			
2-Nitrophenol	46.4	10.0	μg/L	50.0		92.8	29-182			
4-Nitrophenol	24.6	10.0	μg/L	50.0		49.3	10-132			
N-Nitrosodimethylamine	28.0	10.0	μg/L	50.0		56.0	40-140			
N-Nitrosodiphenylamine	ND	10.0	μg/L	50.0		*	40-140			
N-Nitrosodi-n-propylamine	48.3	10.0	μg/L	50.0		96.6	10-230			
2-Methylnaphthalene	49.4	5.00	μg/L	50.0		98.8	40-140			
Phenanthrene	45.6	5.00	μg/L	50.0		91.3	54-120			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242457 - SW-846 3510C										
LCS (B242457-BS1)				Prepared: 10	0/07/19 Anal	yzed: 10/08/	19			
2-Methylphenol	45.5	10.0	$\mu g/L$	50.0		91.1	40-140			
Phenol	23.6	10.0	$\mu \text{g/L}$	50.0		47.2	5-120			
3/4-Methylphenol	40.7	10.0	$\mu \text{g/L}$	50.0		81.4	40-140			
Pyrene	48.6	5.00	μg/L	50.0		97.1	52-120			
1,2,4-Trichlorobenzene	42.3	5.00	μg/L	50.0		84.6	44-142			
2,4,6-Trichlorophenol	47.6	10.0	μg/L	50.0		95.2	37-144			
Surrogate: 2-Fluorophenol	135		μg/L	200		67.3	15-110			
Surrogate: Phenol-d6	101		$\mu g/L$	200		50.6	15-110			
Surrogate: Nitrobenzene-d5	90.1		$\mu g/L$	100		90.1	30-130			
Surrogate: 2-Fluorobiphenyl	97.1		$\mu g/L$	100		97.1	30-130			
Surrogate: 2,4,6-Tribromophenol	229		μg/L	200		114 *	15-110			S-07
Surrogate: p-Terphenyl-d14	111		μg/L	100		111	30-130			
LCS Dup (B242457-BSD1)				Prepared: 10)/07/19 Analy	yzed: 10/08/	19			
Acenaphthene	43.7	5.00	$\mu g/L$	50.0		87.4	47-145	5.41	48	
Acenaphthylene	44.7	5.00	$\mu g/L$	50.0		89.3	33-145	4.46	74	
Anthracene	44.3	5.00	$\mu g/L$	50.0		88.5	27-133	5.11	66	
Benzidine	52.6	20.0	$\mu \text{g/L}$	50.0		105	40-140	13.3	30	V-05, V-35
Benzo(g,h,i)perylene	46.4	5.00	μg/L	50.0		92.7	10-219	2.87	97	
4-Bromophenylphenylether	40.7	10.0	$\mu g\!/\!L$	50.0		81.5	53-127	3.64	43	
Butylbenzylphthalate	46.8	10.0	μg/L	50.0		93.6	10-152	4.84	60	
4-Chloro-3-methylphenol	45.7	10.0	μg/L	50.0		91.4	22-147	2.93	73	
Bis(2-chloroethyl)ether	45.8	10.0	μg/L	50.0		91.6	12-158	5.40	108	
Bis(2-chloroisopropyl)ether	54.4	10.0	μg/L	50.0		109	36-166	3.91	76	
2-Chloronaphthalene	38.8	10.0	μg/L	50.0		77.5	60-120	5.03	24	
2-Chlorophenol	43.3	10.0	μg/L	50.0		86.5	23-134	5.42	61	
4-Chlorophenylphenylether	44.0	10.0	μg/L	50.0		88.1	25-158	5.45	61	
Di-n-butylphthalate	43.8	10.0	μg/L	50.0		87.7	10-120	4.46	47	
1,3-Dichlorobenzene	38.6	5.00	μg/L	50.0		77.2	10-172	2.74	30	
1,4-Dichlorobenzene	38.9	5.00	μg/L	50.0		77.8	20-124	3.11	30	
1,2-Dichlorobenzene	40.7	5.00	μg/L	50.0		81.3	32-129	4.61	30	
3,3-Dichlorobenzidine	52.4	10.0	μg/L	50.0		105	10-262	4.24	108	
2,4-Dichlorophenol	45.2	10.0	μg/L	50.0		90.5	39-135	3.82	50	
Diethylphthalate	44.3	10.0 10.0	μg/L	50.0		88.6	10-120	6.23	100	
2,4-Dimethylphenol Dimethylphthalate	41.1	10.0	μg/L μg/I	50.0		82.3	32-120	2.28	58	
4,6-Dinitro-2-methylphenol	45.4	10.0	μg/L μg/L	50.0		90.9	10-120	4.83	183	
2,4-Dinitrophenol	41.9	10.0	μg/L μg/L	50.0 50.0		83.9 93.2	10-181 10-191	2.68 4.10	203 132	
2,4-Dinitrophenoi	46.6	10.0	μg/L μg/L	50.0		93.2 96.0	39-139	2.81	42	
2,6-Dinitrotoluene	48.0	10.0	μg/L μg/L	50.0		96.0	50-158	4.94	42	
Di-n-octylphthalate	49.5 49.6	10.0	μg/L μg/L	50.0		99.1	4-146	5.36	48 69	
1,2-Diphenylhydrazine/Azobenzene	49.6 41.4	10.0	μg/L μg/L	50.0		82.8	40-140	3.51	30	
Bis(2-Ethylhexyl)phthalate	48.3	10.0	μg/L μg/L	50.0		96.7	8-158	4.75	82	
Fluoranthene	45.7	5.00	μg/L	50.0		91.4	26-137	5.51	66	
Fluorene	44.9	5.00	μg/L	50.0		89.8	59-121	5.67	38	
Hexachlorobenzene	41.6	10.0	μg/L	50.0		83.3	10-152	3.86	55	
Hexachlorobutadiene	38.3	10.0	μg/L	50.0		76.5	24-120	0.735	62	
Hexachlorocyclopentadiene	34.9	10.0	μg/L	50.0		69.8	40-140	3.60	30	
Hexachloroethane	38.4	10.0	μg/L	50.0		76.7	40-120	0.985	52	
Isophorone	47.9	10.0	μg/L	50.0		95.8	21-196	2.96	93	
Naphthalene	43.8	5.00	μg/L	50.0		87.6	21-133	2.28	65	
Nitrobenzene	42.1	10.0	μg/L μg/L	50.0		84.3	35-180	1.62	62	

QUALITY CONTROL

	D. I.	Reporting	TT :	Spike	Source	0/DEC	%REC	DDD	RPD	NI 4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B242457 - SW-846 3510C										
LCS Dup (B242457-BSD1)				Prepared: 10	0/07/19 Anal	yzed: 10/08/	19			
2-Nitrophenol	44.9	10.0	μg/L	50.0		89.9	29-182	3.24	55	
4-Nitrophenol	23.2	10.0	$\mu g/L$	50.0		46.5	10-132	5.89	131	
N-Nitrosodimethylamine	25.9	10.0	$\mu g/L$	50.0		51.9	40-140	7.71	30	
N-Nitrosodiphenylamine	ND	10.0	$\mu g/L$	50.0		*	40-140	NC	30	
N-Nitrosodi-n-propylamine	46.2	10.0	$\mu g/L$	50.0		92.5	10-230	4.40	87	
2-Methylnaphthalene	47.7	5.00	$\mu g/L$	50.0		95.4	40-140	3.44	30	
Phenanthrene	44.0	5.00	$\mu g/L$	50.0		87.9	54-120	3.75	39	
2-Methylphenol	41.6	10.0	$\mu g/L$	50.0		83.2	40-140	9.02	30	
Phenol	22.9	10.0	$\mu g/L$	50.0		45.8	5-120	2.92	64	
3/4-Methylphenol	38.3	10.0	$\mu \text{g/L}$	50.0		76.6	40-140	6.10	30	
Pyrene	46.8	5.00	$\mu g/L$	50.0		93.5	52-120	3.80	49	
1,2,4-Trichlorobenzene	41.5	5.00	$\mu \text{g/L}$	50.0		82.9	44-142	1.93	50	
2,4,6-Trichlorophenol	46.1	10.0	$\mu g/L$	50.0		92.2	37-144	3.16	58	
Surrogate: 2-Fluorophenol	127		μg/L	200		63.7	15-110			
Surrogate: Phenol-d6	93.7		μg/L	200		46.8	15-110			
Surrogate: Nitrobenzene-d5	86.5		$\mu g/L$	100		86.5	30-130			
Surrogate: 2-Fluorobiphenyl	91.7		$\mu g/L$	100		91.7	30-130			
Surrogate: 2,4,6-Tribromophenol	215		$\mu g/L$	200		108	15-110			
Surrogate: p-Terphenyl-d14	108		μg/L	100		108	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242458 - SW-846 3510C										
Blank (B242458-BLK1)				Prepared: 10	0/07/19 Anal	yzed: 10/08/	19			
Aroclor-1016	ND	0.0400	μg/L							
Aroclor-1016 [2C]	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1221	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1221 [2C]	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1232	ND	0.0400	μg/L							
Aroclor-1232 [2C]	ND	0.0400	μg/L							
Aroclor-1242	ND	0.0400	μg/L							
Aroclor-1242 [2C]	ND	0.0400	μg/L							
Aroclor-1248	ND	0.0400	μg/L							
Aroclor-1248 [2C]	ND	0.0400	μg/L							
Aroclor-1254	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1254 [2C]	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1260	ND	0.0400	$\mu g\!/\!L$							
Aroclor-1260 [2C]	ND	0.0400	μg/L							
Surrogate: Decachlorobiphenyl	0.393		μg/L	0.400		98.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.394		$\mu g/L$	0.400		98.6	30-150			
Surrogate: Tetrachloro-m-xylene	0.347		$\mu g/L$	0.400		86.7	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.347		$\mu g/L$	0.400		86.8	30-150			
LCS (B242458-BS1)				Prepared: 10	0/07/19 Anal	yzed: 10/08/	19			
Aroclor-1016	0.460	0.200	μg/L	0.500		92.0	50-140			
Aroclor-1016 [2C]	0.490	0.200	μg/L	0.500		97.9	50-140			
Aroclor-1260	0.436	0.200	μg/L	0.500		87.2	8-140			
Aroclor-1260 [2C]	0.469	0.200	$\mu g/L$	0.500		93.8	8-140			
Surrogate: Decachlorobiphenyl	1.82		μg/L	2.00		90.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.83		$\mu g/L$	2.00		91.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.74		$\mu g/L$	2.00		86.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.75		$\mu g/L$	2.00		87.5	30-150			
LCS Dup (B242458-BSD1)				Prepared: 10	0/07/19 Analy	yzed: 10/08/	19			
Aroclor-1016	0.471	0.200	μg/L	0.500		94.1	50-140	2.32		
Aroclor-1016 [2C]	0.507	0.200	μg/L	0.500		101	50-140	3.50		
Aroclor-1260	0.455	0.200	μg/L	0.500		90.9	8-140	4.22		
Aroclor-1260 [2C]	0.492	0.200	μg/L	0.500		98.4	8-140	4.79		
Surrogate: Decachlorobiphenyl	1.88		μg/L	2.00		94.0	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.90		μg/L	2.00		95.0	30-150			
Surrogate: Tetrachloro-m-xylene	1.72		μg/L	2.00		86.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.75		μg/L	2.00		87.3	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242472 - EPA 245.1						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Blank (B242472-BLK1)				Propagad: 10	0/07/19 Analy	wzed: 10/08/	10			
Mercury	ND	0.00010	mg/L	Frepared. 10	//0//19 Allai	yzeu. 10/06/	19			
	NB		Ü	D 1.10	V07/10 + 1	1 10/00/	10			
LCS (B242472-BS1)	0.0000	0.00010	/T		0/07/19 Analy					
Mercury	0.00383	0.00010	mg/L	0.00400		95.8	85-115			
LCS Dup (B242472-BSD1)				Prepared: 10	0/07/19 Analy	yzed: 10/08/	19			
Mercury	0.00389	0.00010	mg/L	0.00400		97.2	85-115	1.45	20	
Ouplicate (B242472-DUP1)	Sou	rce: 19J0332-()2	Prepared: 10	0/07/19 Analy	yzed: 10/08/	19			
Mercury	ND	0.00010	mg/L		ND	١		NC	30	
Matrix Spike (B242472-MS1)	Sou	rce: 19J0332-(12	Prepared: 10	0/07/19 Analy	wzed: 10/08/	10			
Mercury	0.00368	0.00010	mg/L	0.00400	ND		75-125			
	0.00300		0	0.00100	ND	, , , , , ,	75 125			
Batch B242570 - EPA 200.8										
Blank (B242570-BLK1)				Prepared: 10	0/08/19 Anal	yzed: 10/09/	19			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel Selenium	ND	5.0	μg/L							
Silver	ND	5.0 0.20	μg/L μg/L							
Zinc	ND ND	10	μg/L μg/L							
	ND		1.0		./00/40	1.40/00/				
LCS (B242570-BS1)		10	/T		0/08/19 Analy					
Antimony	514	10	μg/L	500		103	85-115			
Arsenic Cadmium	504	8.0 2.0	μg/L	500		101	85-115			
Chromium	501	10	μg/L μg/I	500		100	85-115 85-115			
Copper	502 989	10	μg/L μg/L	500 1000		100 98.9	85-115 85-115			
Lead	512	5.0	μg/L μg/L	500		102	85-115			
Nickel	497	50	μg/L	500		99.3	85-115			
Selenium	508	50	μg/L	500		102	85-115			
Silver	501	2.0	μg/L	500		100	85-115			
Zinc	1020	100	$\mu g/L$	1000		102	85-115			
.CS Dup (B242570-BSD1)				Prepared: 10	0/08/19 Analy	vzed: 10/09/	19			
Antimony	518	10	μg/L	500	<u> </u>	104	85-115	0.838	20	
Arsenic	501	8.0	μg/L	500		100	85-115	0.571	20	
Cadmium	508	2.0	μg/L	500		102	85-115	1.38	20	
Chromium	520	10	μg/L	500		104	85-115	3.52	20	
Copper	1010	10	$\mu \text{g}/L$	1000		101	85-115	2.06	20	
Lead	521	5.0	$\mu g \! / \! L$	500		104	85-115	1.85	20	
Nickel	514	50	$\mu \text{g/L}$	500		103	85-115	3.45	20	
Selenium	509	50	$\mu \text{g}/L$	500		102	85-115	0.255	20	
Silver	503	2.0	$\mu \text{g/L}$	500		101	85-115	0.458	20	
Zinc	1010	100	μg/L	1000		101	85-115	1.57	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242571 - EPA 200.7										
Blank (B242571-BLK1)				Prepared: 10	0/08/19 Anal	yzed: 10/09/1	9			
Iron	ND	0.050	mg/L							
LCS (B242571-BS1)				Prepared: 10	0/08/19 Anal	yzed: 10/09/1	9			
Iron	4.18	0.050	mg/L	4.00		105	85-115			
LCS Dup (B242571-BSD1)				Prepared: 10)/08/19 Anal	yzed: 10/09/1	9			
Iron	4.14	0.050	mg/L	4.00		103	85-115	1.02	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analisa	D. 1	Reporting	II	Spike	Source	0/BEC	%REC	DDD	RPD	N.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B242355 - SM21-22 3500 Cr B										
Blank (B242355-BLK1)				Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B242355-BS1)				Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		109	83.9-121			
LCS Dup (B242355-BSD1)				Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	83.9-121	5.09	10	
Duplicate (B242355-DUP1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	ND	0.0040	mg/L		NE)		NC	45.7	
Matrix Spike (B242355-MS1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	0.037	0.0040	mg/L	0.100	NE	37.4	25.5-193			
Batch B242358 - SM21-22 4500 CL G										
Blank (B242358-BLK1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B242358-BS1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	1.6	0.020	mg/L	1.34		117	66.3-134			
LCS Dup (B242358-BSD1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	1.6	0.020	mg/L	1.34		120	66.3-134	2.74	9.96	
Duplicate (B242358-DUP1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	ND	0.020	mg/L		NE)		NC	32.5	
Matrix Spike (B242358-MS1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	0.12	0.020	mg/L	100	NE	0.116	* 10-167			MS-07
Batch B242521 - EPA 1664B										
Blank (B242521-BLK1)				Prepared &	Analyzed: 10	/08/19				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
Blank (B242521-BLK2)				Prepared &	Analyzed: 10	/08/19				
Silica Gel Treated HEM (SGT-HEM)	ND	7.0	mg/L		-					
LCS (B242521-BS1)				Prepared &	Analyzed: 10	/08/19				
Silica Gel Treated HEM (SGT-HEM)	10		mg/L	10.0	-	103	64-132			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242521 - EPA 1664B						,,,,,,				
LCS (B242521-BS2)				Prepared &	Analyzed: 10	/08/19				
Silica Gel Treated HEM (SGT-HEM)	52		mg/L	50.0		105	64-132			
Batch B242524 - SM21-22 2540D										
Blank (B242524-BLK1)				Prepared &	Analyzed: 10	/08/19				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B242524-BS1)				Prepared &	Analyzed: 10	/08/19				
Total Suspended Solids	158	10	mg/L	200		79.0	57.6-118			
MRL Check (B242524-MRL1)				Prepared &	Analyzed: 10	/08/19				
Total Suspended Solids	5.00	5.0	mg/L	5.00		100	0-200			
Batch B242527 - EPA 300.0										
Blank (B242527-BLK1)				Prepared &	Analyzed: 10	/07/19				
Chloride	ND	1.0	mg/L							
LCS (B242527-BS1)				Prepared &	Analyzed: 10	/07/19				
Chloride	10		mg/L	10.0		103	90-110			
LCS Dup (B242527-BSD1)				Prepared &	Analyzed: 10	/07/19				
Chloride	10		mg/L	10.0		103	90-110	0.0590	20	
Duplicate (B242527-DUP1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/07/19				
Chloride	240	10	mg/L		240			0.0111	20	
Matrix Spike (B242527-MS1)	Sou	rce: 19J0332-0	02	Prepared &	Analyzed: 10	/07/19				
Chloride	320		mg/L	100	240	78.8 *	80-120			MS-19

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	

608.3

Lab Sample ID:	B242458-BS1		Date(s) Analyzed:	10/08/2019	10/08/2019	_
Instrument ID (1):	ECD1	_	Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (n	nm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10/12112	OOL	111	FROM	TO	OONOLIVITUUTOIV	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.460	
	2	0.000	0.000	0.000	0.490	6.3
Aroclor-1260	1	0.000	0.000	0.000	0.436	
	2	0.000	0.000	0.000	0.469	6.4

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

608.3

Lab Sample ID:	B242458-BSD1		Date(s) Analyzed:	10/08/2019	10/08/2019	_
Instrument ID (1):	ECD1		Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (ı	mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.00.2112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.471	
	2	0.000	0.000	0.000	0.507	7.6
Aroclor-1260	1	0.000	0.000	0.000	0.455	
	2	0.000	0.000	0.000	0.492	6.7

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
MS-19	Sample to spike ratio is greater than or equal to 4:1. Spiked amount is not representative of the native amount in the sample. Appropriate or meaningful recoveries cannot be calculated.
PR-01	Sample preservative does not satisfy the method specifications.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are $> 10\%$.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Arcolor 1016	CT MA NIL NIV DI NC ME VA
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA,NH
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
Naphthalene	NY,MA,NC
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report	
Analyte	Certifications
624.1 in Water	
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,2,4-Trichlorobenzene	MA,NC
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene	CT,NY,MA,NH,RI,NC
625.1 in Water	
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
625.1 in Water	
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	. , , , , , , , , , , , , , , , , , , ,
	CT MA NILI NIV DI NIC ME VA
Total Suspended Solids SM21 22 2500 Cn P in Water	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

http://www.contestlabs.com

CHAIN OF CUSTODY RECORD

Doc # 381 Rev 1_03242017

39 Spruce Street

Dissolved herals samples ² Preservation Code 3 Container Code ö # of Containers z ۵. Δ East Longmeadow, MA 01028 ⋖ ⋖ ANALYSIS REQUESTED ⋖ > ø I م z ۵ S Requested Turnifosine Vine 3-Day 4-Day Due Date: 7-Day 1-Day 2-Day Email: info@contestlabs.com Phone: 413-525-2332 Fax: 413-525-6405 なたら COD-FGSF ANALYTICAL LABORATORY

² Preservation Codes: = Sodium Hydroxide ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water = Sulfuric Acid = Sodium Bisulfate 0 = Other (please 0 = Other (please O Field Filtered O Field Filtered N = Nitric Acid O Lab to Filter O Lab to Filter M = Methanol A = Air S = Soil SL = Sludge SOL = Solid = Sodium Phiosulfate 물품 define) = <u>|</u>Ced define) Please use the following codes to indicate possible sample concentration within the IV muimond2 × × × Hardness SST × × × Hdl × PCBs × × × × × yanide ob, Hg, Ni, Se, Ag, Zn) Metals (Sb, Ar, Cd, Cr, Cu, Fe, × FRC × ×) 8 8 ⊃ _ bennett@irt-lic.net jennings@irt-llc.net Matrix Code 8 ₹ Data Delivery EXCEL
 ■
 Company
 The company
 The company
 Company
 Company
 The company
 Grab CLP Like Data Pkg Required: × Composite Ending Date/Time <u>8:3</u> Email To: oc:01 | h1/h/01 -ormat: Other: Run Cr III per James B. 10/1/18 Beginning Date/Time -KKM 10/7/19 Client Sample ID / Description Receiving Pit Jacking Pit Project Manager: John Henry / Jamey Bennett 4ddress: 89 Crawford Street Leominster MA Comments: Samples for an NPDES RGP. Project Name, NGRID Wakefield Project Location: Wakefield MA Con-Test Quote Name/Number: P.9 - H4 C-MA-H9 Project Number: 2-1922 Sampled By: 3AR Company Name: LRT Work Order# Phone: 774-450-7177 Con-Test Invoice Recipient:

H - High; M - Medium; L - Low; C - Clean; U - Unknown www.contestiabs.com Conc Code column above:

MA MCP Required

Special Requirements

Detection Limit Requirements

Date/Time:

felinquished by: (signature)

MCP Certification Form Required

CT RCP Required

RCP Certification Form Required

b) 17/01

Date/Time:

(19 21)

Date /Time:

5

(elinquished by: (signature)

ano

ed by: (signature)

reived by: (signatore)

MA State DW Required

GISMd

Other

Date/Time: 12/2

lished by: (signature)

Page 45 of 46

10/1/16

Container Codes:

A = Amber Glass

S = Summa Canister

ST = Sterile

V = Vial

P = Plastic

G = Glass

0 = Other (please

= Tedlar Bag

Project Ent	ect Entity				
	Government	Municipality	ality	П	MWR/
	Federal	L 12	ليا	П	Schoo
	City	☐ Brownfield			MBTA

Date/Time:

C ...

19 4.8 V

by: (signature)

Table of Contents

PCB ONLY Soxhlet Non Soxhlet

Chromatogram

AlHA-LAP,LLC Chromatogram

Other

☐ WRTA

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any Fals	9
Statement will be brought to the attention of the Client - State True or False	

Stater Client LRT	ment will be brou	ght to the a	ttention of t	:he Client	- State True	e or False		
Received By	SA		Date	10/4/19	1	Time	1132	
How were the samples	In Cooler	-1	No Cooler	1 /	On Ice		No Ice	
received?	Direct from Samp	\	.,		Ambient		Melted Ice	
	Direct from Saint		9			- 11 7	_ Welled ICE _ 니, 언	
Were samples within		By Gun #			Actual Tem		, 4. V	•
Temperature? 2-6°C		By Blank #			Actual Tem			-
Was Custody S		<u>MA</u>	-	-	s Tampered		_N77	_
Was COC Relin		7	-	-	ree With Sa	mples?		-
	leaking/loose caps	on any sam	-	<u> </u>				
Is COC in ink/ Legible?				iples receiv		olding time?	<u></u>	_
Did COC include all	Client		. Analysis _			er Name		*
pertinent Information?	Project		ID's		Collection	Dates/Time	es)	-
Are Sample labels fille	•	<u>T</u>	•					
Are there Lab to Filters'	?	<u> </u>			s notified?			-
Are there Rushes?		<u> </u>	:		s notified?			-
Are there Short Holds?	•	7		Who was	s notified?	Irma		-
Is there enough Volume		_J	•					
Is there Headspace who		<u> </u>	•	MS/MSD?		- , ,,	g-vices*	
Proper Media/Containe			•		samples red	quired?	2110	-
Were trip blanks receive		<u> </u>	•	On COC?	<u> </u>		M	
Do all samples have the	e proper pH?		Acid _	PHC2		Base	PH >12	•
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.	12	1 Liter I		2.		oz Amb.	
HCL-	500 mL Amb.	-'Φ	500 mL)	mb/Clear	
Meoh-	250 mL Amb.		250 mL		14		mb/Clear	
Bisulfate-	Flashpoint		Col./Ba		«	<u> </u>	mb/Clear	
DI- Thiosulfate-	Other Glass SOC Kit		Other F Plastic			Frozen:	ncore	<u> </u>
Sulfuric-	Perchlorate		Ziplo			FIOZEII.		
Sulturic-	1 erchlorate							
			Unused N	ledia				
Vials #	Containers:	#	4111	51 44	#	4.0		#
Unp-	1 Liter Amb.		1 Liter F				oz Amb.	
HCL- Meoh-	500 mL Amb.		500 mL				mb/Clear	
Bisulfate-	250 mL Amb. Col./Bacteria		250 mL Flash				mb/Clear mb/Clear	
DI-	Other Plastic		Other (ncore	
Thiosulfate-	SOC Kit		Plastic			Frozen:	ilcore	
Sulfuric-	Perchlorate		Ziplo			1 1020111		
Comments:			2.010	<u> </u>		1		

October 11, 2019

James Bennett Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Wakefield, MA

Client Job Number: Project Number: 2-1922

Laboratory Work Order Number: 19J0329

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 4, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
19J0329-01	5
Sample Preparation Information	8
QC Data	9
Metals Analyses (Total)	9
B242472	9
B242570	9
B242571	10
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	11
B242355	11
B242358	11
B242401	11
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	14

Lockwood Remediation Technologies, LLC

89 Crawford Street

REPORT DATE: 10/11/2019
PURCHASE ORDER NUMBER: 2-1922

Leominster, MA 01453 ATTN: James Bennett

PROJECT NUMBER: 2-1922

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19J0329

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Wakefield, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Receiving Water	19J0329-01	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Receiving Water

Sample ID: 19J0329-01 Sample Matrix: Ground Water

Work Order: 19J0329

Sampled: 10/4/2019 12:30

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Arsenic	1.6	0.80		μg/L	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Chromium	1.7	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Chromium, Trivalent	0.0017			mg/L	1		Tri Chrome Calc.	10/8/19	10/9/19 13:58	QNW
Copper	2.2	1.0		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Iron	1.0	0.050		mg/L	1		EPA 200.7	10/8/19	10/9/19 15:06	MJH
Lead	0.91	0.50		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Mercury	ND	0.00010		mg/L	1		EPA 245.1	10/7/19	10/8/19 9:28	CJV
Nickel	ND	5.0		μg/L	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Zinc	ND	10		$\mu g/L$	1		EPA 200.8	10/8/19	10/9/19 13:58	QNW
Hardness	100			mg/L	1		EPA 200.7	10/8/19	10/9/19 15:06	MJH

Project Location: Wakefield, MA Sample Description:

Date Received: 10/4/2019

Field Sample #: Receiving Water

Sample ID: 19J0329-01 Sample Matrix: Ground Water

Work Order: 19J0329

Sampled: 10/4/2019 12:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	ND	0.040		mg/L	2		SM21-22 4500 CL G	10/4/19	10/4/19 22:26	KMV/IS
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	10/4/19	10/4/19 19:15	MJG
Total Suspended Solids	5.2	2.0		mg/L	1		SM21-22 2540D	10/6/19	10/6/19 13:40	LL

Sample Description:

Work Order: 19J0329

Project Location: Wakefield, MA Date Received: 10/4/2019

Field Sample #: Receiving Water

Sample ID: 19J0329-01
Sample Matrix: Ground Water

Sampled: 10/4/2019 12:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.065	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		10/8/19 18:45	AAL

Sample Extraction Data

Prep Method	: EPA	200.7	-EPA	200.7
-------------	-------	-------	------	-------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0329-01 [Receiving Water]	B242571	50.0	50.0	10/08/19
19J0329-01 [Receiving Water]	B242571	50.0		10/08/19

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0329-01 [Receiving Water]	B242570	50.0	50.0	10/08/19

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0329-01 [Receiving Water]	B242472	6.00	6.00	10/07/19

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J0329-01 [Receiving Water]	B242401	250	10/06/19

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0329-01 [Receiving Water]	B242355	50.0	50.0	10/04/19

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J0329-01 [Receiving Water]	B242358	100	100	10/04/19

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J0329-01 [Receiving Water]	B242570	50.0	10/08/19

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

	D 1.	Reporting		Spike	Source	0/PEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B242472 - EPA 245.1										
Blank (B242472-BLK1)				Prepared: 10	/07/19 Analy	zed: 10/08/	19			
Mercury	ND	0.00010	mg/L							
LCS (B242472-BS1)				Prepared: 10	/07/19 Analy	yzed: 10/08/	19			
Mercury	0.00383	0.00010	mg/L	0.00400		95.8	85-115			
LCS Dup (B242472-BSD1)				Prepared: 10	/07/19 Analy	zed: 10/08/	19			
Mercury	0.00389	0.00010	mg/L	0.00400		97.2	85-115	1.45	20	
D-4-1- D242570 FD4 200 0										
Batch B242570 - EPA 200.8										
Blank (B242570-BLK1)				Prepared: 10	/08/19 Analy	/zed: 10/09/	19			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	$\mu g/L$							
Selenium	ND	5.0	$\mu g \! / \! L$							
Silver	ND	0.20	$\mu g\!/\!L$							
Zinc	ND	10	$\mu g/L$							
LCS (B242570-BS1)				Prepared: 10	/08/19 Analy	yzed: 10/09/	19			
Antimony	514	10	μg/L	500		103	85-115			
Arsenic	504	8.0	$\mu \text{g/L}$	500		101	85-115			
Cadmium	501	2.0	$\mu g/L$	500		100	85-115			
Chromium	502	10	$\mu g/L$	500		100	85-115			
Copper	989	10	$\mu g/L$	1000		98.9	85-115			
Lead	512	5.0	$\mu g\!/\!L$	500		102	85-115			
Nickel	497	50	μg/L	500		99.3	85-115			
Selenium	508	50	$\mu \text{g/L}$	500		102	85-115			
Silver	501	2.0	$\mu g/L$	500		100	85-115			
Zinc	1020	100	$\mu g/L$	1000		102	85-115			
LCS Dup (B242570-BSD1)				Prepared: 10	/08/19 Analy	zed: 10/09/	19			
Antimony	518	10	μg/L	500		104	85-115	0.838	20	
Arsenic	501	8.0	$\mu g/L$	500		100	85-115	0.571	20	
Cadmium	508	2.0	$\mu g/L$	500		102	85-115	1.38	20	
Chromium	520	10	μg/L	500		104	85-115	3.52	20	
Copper	1010	10	μg/L	1000		101	85-115	2.06	20	
Lead	521	5.0	μg/L	500		104	85-115	1.85	20	
Nickel	514	50	μg/L	500		103	85-115	3.45	20	
		50	μg/L	500		102	85-115	0.255	20	
Selenium	509	50								
	509 503	2.0	μg/L	500		101	85-115	0.458	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B242571 - EPA 200.7										
Blank (B242571-BLK1)				Prepared: 10	/08/19 Anal	yzed: 10/09/1	9			
Iron	ND	0.050	mg/L							
LCS (B242571-BS1)				Prepared: 10	/08/19 Anal	yzed: 10/09/1	9			
Iron	4.18	0.050	mg/L	4.00		105	85-115			
LCS Dup (B242571-BSD1)				Prepared: 10	/08/19 Analy	yzed: 10/09/1	9			
Iron	4.14	0.050	mg/L	4.00		103	85-115	1.02	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B242355 - SM21-22 3500 Cr B										
Blank (B242355-BLK1)				Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B242355-BS1)				Prepared &	Analyzed: 10	/04/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		109	83.9-121			
LCS Dup (B242355-BSD1)				Prepared & Analyzed: 10/04/19						
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		104	83.9-121	5.09	10	
Batch B242358 - SM21-22 4500 CL G										
Blank (B242358-BLK1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B242358-BS1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	1.6	0.020	mg/L	1.34		117	66.3-134			
LCS Dup (B242358-BSD1)				Prepared &	Analyzed: 10	/04/19				
Chlorine, Residual	1.6	0.020	mg/L	1.34		120	66.3-134	2.74	9.96	
Batch B242401 - SM21-22 2540D										
Blank (B242401-BLK1)				Prepared &	Analyzed: 10	/06/19				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B242401-BS1)				Prepared &	Analyzed: 10	/06/19				
Total Suspended Solids	170	10	mg/L	200		85.0	57.6-118			

FLAG/QUALIFIER SUMMARY

	*	QC result is ou	itside of esta	blished limi
--	---	-----------------	----------------	--------------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	

Chlorine, Residual CT,MA,RI,ME

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

² Preservation Codes: X = Sodium Hydroxide 1 Matrix Codes: GW = Ground Water WW = Waste Water S = Sulfuric Acid B = Sodium Bisulfate DW = Drinking Water S = Summa Canister T = Tedlar Bag O = Other (please 3 Container Codes: Page 1 of 1 Thiosulfate O = Other (please 0 = Other (please Non Soxhlet A = Amber Glass G = Glass PCB ONLY Soxhlet N = Nitric Acid Preservation Code O Field Filtered O Field Filtered Lab to Filter O Lab to Filter M = Methanol P = Plastic ST = Sterile Container Code A = Air S = Soil SL = Sludge SOL = Solid T = Sodium # of Containers V = Vial define) H=HCL ii Ced define) Please use the following codes to indicate possible sample concentration within the NELAC and Alka-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC H - High; M - Medium; L - Low; C - Clean; U - Unknown www.contestlabs.com 39 Spruce Street East Longmeadow, MA 01028 ANALYSIS REQUESTED Conc Code column above: Other SSJ Doc # 381 Rev 1_03242017 Fe, Pb, Hg, Ni, Se, Ag, Zn) WRTA z ۵ TRC Metals (5b, Ar, Cd, Cr, Cu, IV muimond2 S MCP Certification Form Required CT RCP Required MA MCP Required ۵. RCP Certification Form Required MWRA School MA State DW Required MBTA Special Requirements 8002₽M2x sinommA ğğ D jjennings@lrt-IIc.net ibennett@irt-lic.net Matry Gee http://www.contestlabs.com S Day CHAIN OF CUSTODY RECORD 8 Municipality Brownfield PWSID # 3-Day 4-Day PDF [2] EXCEL Grab Patest Dielityen × CLP Like Data Pkg Required: Run Cr III per James B. Composite Receiving Int. Requirements Ending Date/Time 12:30 PM Government -KKM 10/7/19 Due Date: Email To: Federal Format: Other: 192032 7-Day 1-Day 2-Day City City Project Entity Beginning Date/Time 10/4/2019 Street 1 8

Table of Contents

11 /11/19 5.33 Date/Time:

SOL Date/Time:

> 7 3

. T

by; (signature)

quished by: (signature)

Page

ived by: (signature)

14 of 15

Date/Time:

Date/Time: 7:23

Refinquished by: (signature)

Wed by: (signature)

Date/Time: 10/4/15 7:33

Date/Time

ejinguished by: (signature)

Comments: Samples for NPDES RGP Parameters (Receiving Water)

Receivated Water 1811= 6.1

COS-TAST

Phone: 413-525-2332

Fax: 413-525-6405

Email: info@contestlabs.com Project Manager: John Henry / Jamey Bennett 4ddress: 89 Crawford Street Leominster MA K23 Project Location: Wakefield MA Con-Test Quote Name/Number: Project Number: 2-1922 ompany Mame, LRT Phone: 774-450-7177 invoice Recipient:

Client Sample ID / Description

Receiving Water

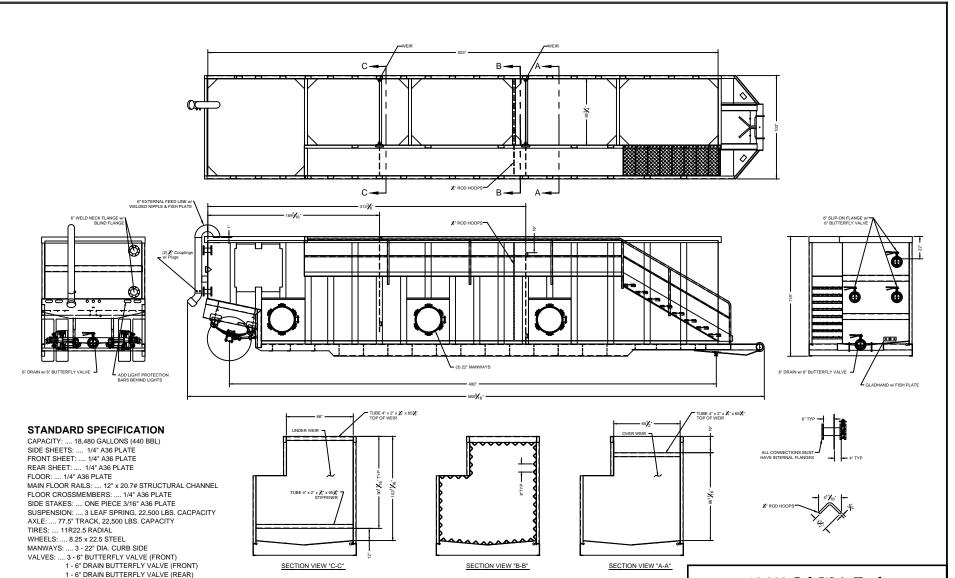
JAB

Sampled By: Sampled By:

I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples

Client

Doc# 277 Rev 5 2017


Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False IRT

Received By	SA		Date	10/4/	19	Time	1133	
How were the samples	In Cooler	T	No Cooler	' /	On Ice	T.	No Ice	
received?	Direct from Samp	oling			- Ambient		Melted Ice	
Were samples within		By Gun #	 5		Actual Tem	p- 4.1	•	
Temperature? 2-6°C	T	By Blank #			Actual Tem	p -		
Was Custody Se	eal Intact?	. MA	We	re Sample	s Tampered		NA	
Was COC Relin		-1			ree With Sa			
Are there broken/le	eaking/loose caps	on any sam		F		·		
Is COC in ink/ Legible?	T	-	Were san	nples_recei	ved within h	olding time?	T	
Did COC include all	Client		Analysis	T	Sample	er Name		
pertinent Information?	Project	F	ID's	1	Collection	Dates/Times		
Are Sample labels filled	out and legible?	-7						
Are there Lab to Filters?	•	F	•	Who was	s notified?			
Are there Rushes?		-	•	Who was	s notified?			
Are there Short Holds?		T R	•	Who was	s notified?	Inna		
Is there enough Volume	?	ーナ	•					
Is there Headspace whe	ere applicable?	TH	•	MS/MSD?	F			
Proper Media/Container		Is splitting	samples rec	uired?	Ŧ			
Were trip blanks received?				On COC?	F			
Do all samples have the	proper pH?		Acid	PHCZ		Base	<u> 144 </u>	
	Containers:	#			#			#
Unp-	1 Liter Amb.		1 Liter	Plastic	1	16 oz	: Amb.	
HCL-	500 mL Amb.		500 mL				nb/Clear	
Meoh-	250 mL Amb.		250 mL		.3		nb/Clear	
Bisulfate-	Flashpoint		Col./Ba				ıb/Clear	
DI-	Other Glass		Other I				core	
Thiosulfate-	SOC Kit		Plasti			Frozen:		
Sulfuric-	Perchlorate		Zipl	ock				
			Unused I	Viedia				
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.		1 Liter				Amb.	
HCL-	500 mL Amb.		500 mL				ıb/Clear	
Meoh-	250 mL Amb.		250 mL				b/Clear	
Bisulfate-	Col./Bacteria		Flash				ıb/Clear	
DI-	Other Plastic		Other				core	
Thiosulfate-	SOC Kit		Plastic			Frozen:		
Sulfuric-	Perchlorate		Zipl	ock				
Comments:								

* missing project name on coc

Appendix C

Cutsheets

2 - 6" BLIND FLANGE CONNECTION (REAR)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)
PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.
(EXTERIOR) FINISH COAT POLURETHANE 4.0 TO 5.0 D.F.T.

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

Centrifugal - Single Phase

Motor Protection

All models provide built-in thermal overload protection that shuts down the pump when operating temperature becomes too high, and automatically restarts once the motor cools and a proper temperature is met.

YELLSUB 1 1/4" Discharge 33 GPM - 15' HEAD

The Yellow Submarine is MQ's most lightweight, compact submersible pump. A great choice for common household moving water applications. One piece polymer pump casing body resists corrosion and heat. Includes internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

Quality and Safety

ST Series Single Phase Pumps are in accordance with ISO9001 Quality Management System standard. Also, all Single Phase models carry the Underwriters Laboratories (UL) Listing for compliance with both U.S. or Canadian electrical safety codes.

SS233 2" Discharge 60 GPM - 20' HEAD

This lightweight, compact submersible pump is the first choice for many applications: flooded rooms, flat roofs, fill tanks, basins, fountains and waterfalls. Hardy thermoplastic pump casing body resists corrosion and heat. Further, the SS233 incorporates internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

MO Sidirissi PUMP Mark same

ST2038P 2" Discharge 60 GPM - 38' HEAD

This lightweight, compact submersible pump is ideal for moving water in multiple confined and open area applications. The unique casing design permits it to draw water to a level of 1/16" without having to place the pump in any kind of sump. The ST2038P incorporates a rugged cast aluminum housing, internal thermal overload protection, and sealed dual shaft seals and bearings .

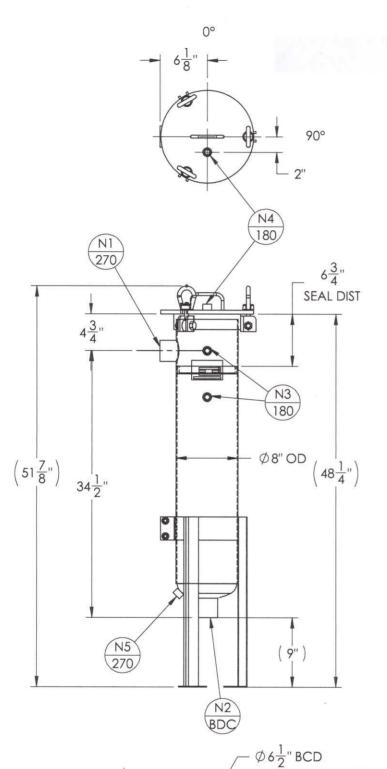
2" Discharge 73 GPM - 37' HEAD

The ST2037 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 25' Power Cable with strain relief. This is a powerful, versatile, low maintenance pump that is perfect for a wide range of operations supporting Contractors Service Utilities, Municipalities, and Homeowners.

ST2047 2" Discharge 87 GPM - 47' HEAD

A compact, powerful pump that tackles tough dewatering jobs. Perfect for Contractors, Service Utilities, Municipalities, and Homeowners. The ST2047 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 50' Power Cable with strain relief.

ST3020BCUL 3" Discharge 170 GPM - 72' HEAD


This is a rugged 2HP 230V pump with a heat conducting cast iron/steel motor casing. Pumps liquid up to 120° and de-waters surfaces up to 1/2. The ST3020BCUL incorporates reliable double mechanical oil-filled seals, internal thermal overload protection, sealed ball bearings, Ductile Iron impeller, carrying handle, and molded 50' Power Cable with strain relief. The 6.7" diameter design permits the pump to fit into tight spaces & conduits.

* All Multiquip single phase submersible pumps do not require a Control Box for safe, efficient operations. However, a Control Box may be desired if operations call for a manual ON/OFF Switch option.

Pump Performance Curves

		NOZZLE	SCHEDULE					
MARK	QTY	SIZE	/ RATING	DESCI	DESCRIPTION			
N1	1	2" 150	# NPT	IN	LET			
N2	1	2" 150)# NPT	OUTLET				
N3	2	1/2" 30	00# NPT	PRES	PRESS GA			
N4	1	1/2" 30	00# NPT	# NPT VENT				
N5	1	1/2" 30	00# NPT	CLEAN DRAIN				
N6	-		-	DIRT	DIRTY DRAIN			
	VESS	SEL DESIG	N CONDITION	S				
CODE:	BES	т сомме	RCIAL PRACT	ICE				
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.: -20° F @ 150					
M.A.E.P.:	15 PSI @	250°F						
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI			
STAMP:	'NC'		SERVICE:	NON I	ETHAL			
PWHT:	N/A		RADIOGRAP	HY:	N/A			
MATERIAL:	SS 304/	GASKET: BUNA-N						

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $otin \frac{1}{2}$ " TYP.

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

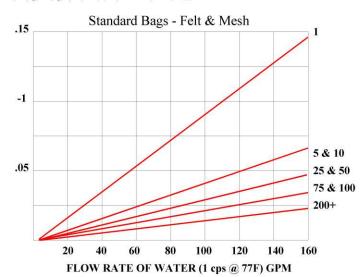
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

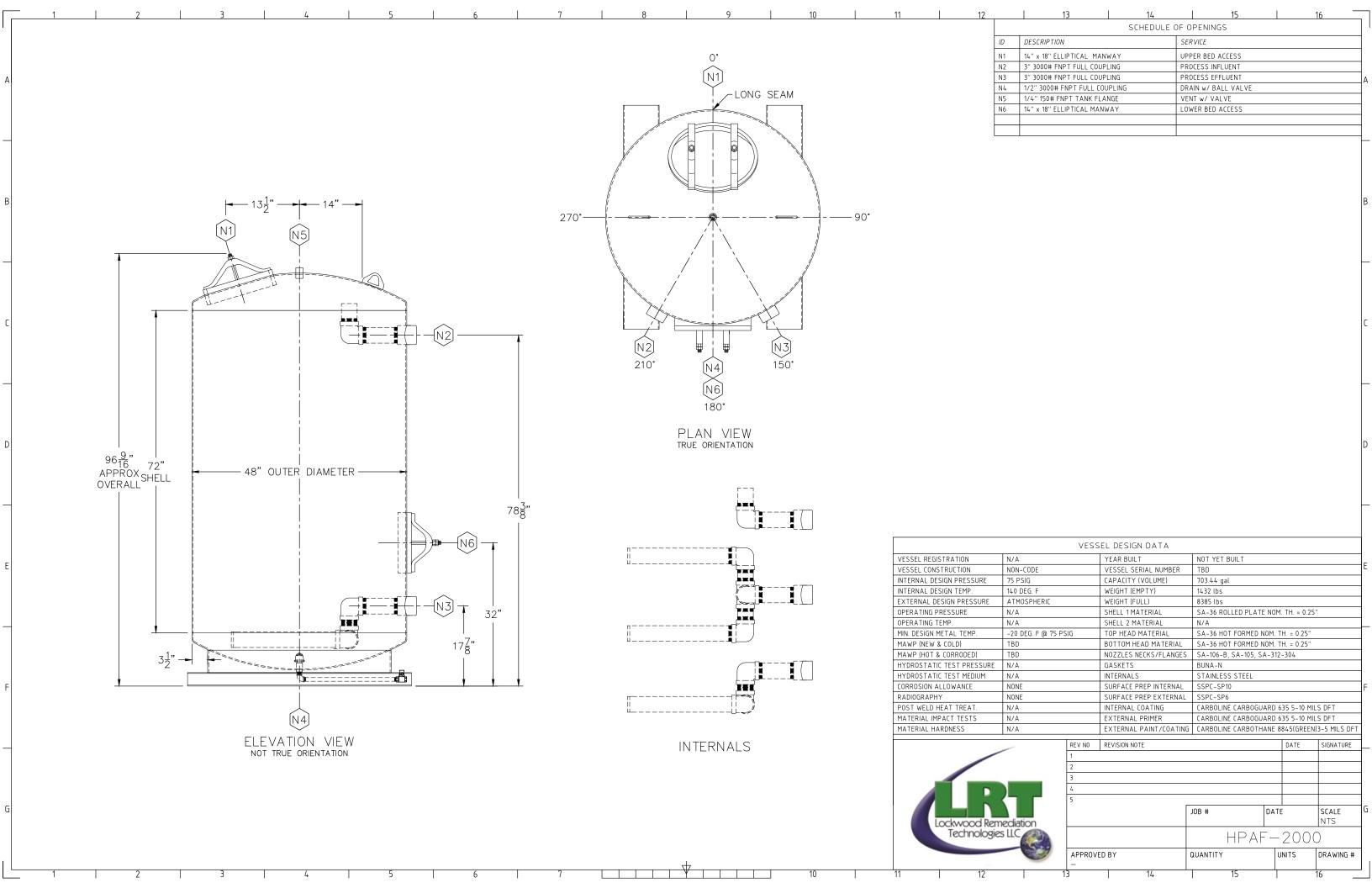
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value		
Iodine Number	ASTM D-4607	800 Minimum		
Moisture Content	ASTM D-2867	5% Maximum (as packed)		
Particle Size	ASTM D-2862	8x30 US Mesh		
Ash		10% Maximum		
Total Surface Area (N2BET)		1050 Minimum		
Pore Volume (cc/g)		0.75		

4*10 (Vapor Phase) Standard Specifications:	Standard	Value		
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum		
Moisture Content	ASTM D-2867	5% Maximum (as packed)		
Particle Size	ASTM D-2862	4x10 US Mesh		
Ash		10% Maximum		
Total Surface Area (N2BET)		1050 Minimum		
Pore Volume (cc/g)		0.75		

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. CGS is optimized for residential applications that require good regeneration efficiency and high capacity. RESINTECH CGS is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. CGS is supplied in the sodium form.

FEATURES & BENEFITS

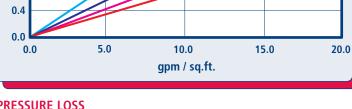
RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY

93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop


COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.


HYDRAULIC PROPERTIES

PRESSURE LOSS

The graph above shows the expected pressure loss of *ResinTech* CGS per foot of bed depth as a function of flow rate at various temperatures.

The graph above shows the expansion characteristics of ResinTech CGS as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

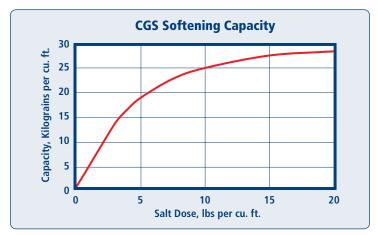
Same as service flow

Rinse volume

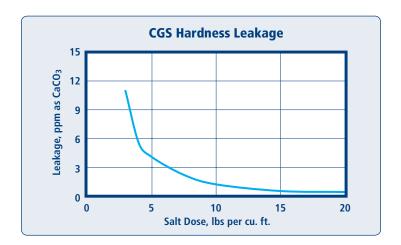
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

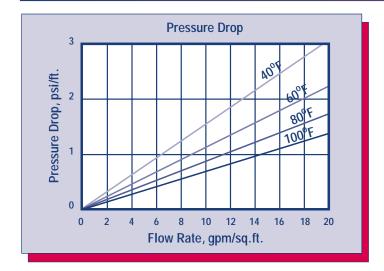
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

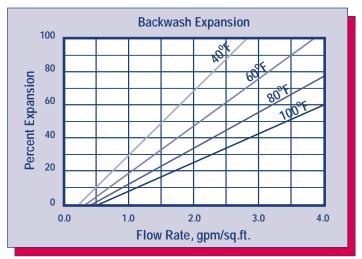
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group $R-N-(CH_3)_3+CT$ Ionic Form, as shipped Chloride or Hydroxide Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent
Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F alt Form 170°F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of $RESINTECH\ SBG1$ for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot								
NaOH/ft ³	HCI	H_2SiO_3	H_2CO_3						
4	11.3	14.0	14.7	18.6					
6	12.8	16.3	17.3	19.8					
8	14.3	13.3	19.5	21.6					
10	15.5	20.0	22.2	22.2					

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below)
HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

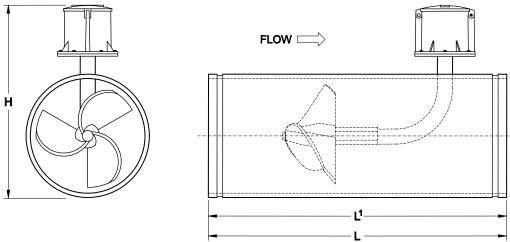
160°F constant

PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.
Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.

MG100 / MS100	DIMENSIONS												
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100	Note		13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube		3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00	

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

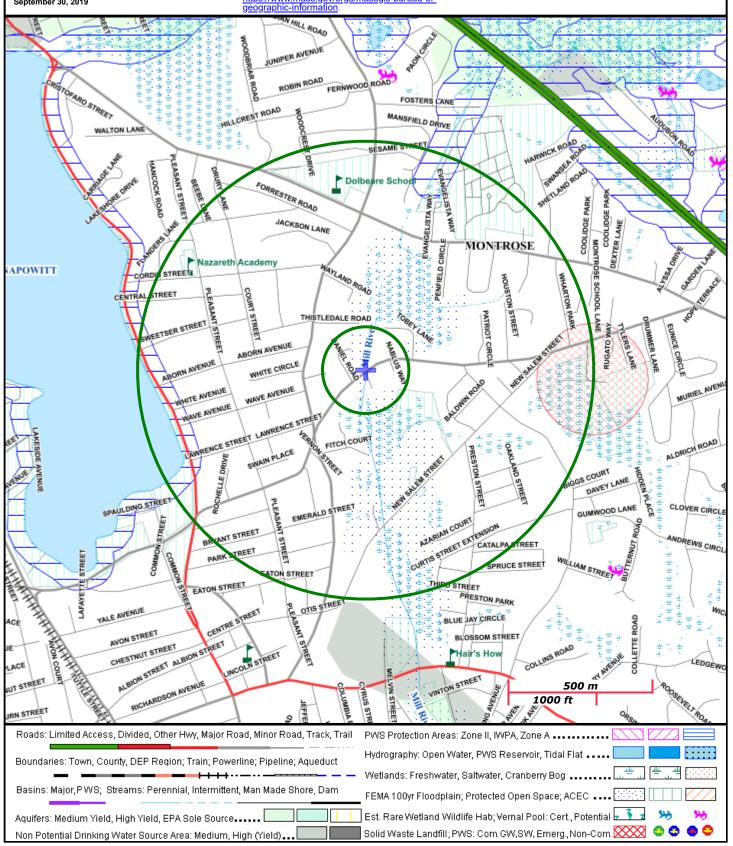
Appendix D

Supplemental Information

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:


NABLUS WAKEFIELD, MA

NAD83 UTM Meters: 4708757mN , 330444mE (Zone: 19) September 30, 2019

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found to the state. be found at:

https://www.mass.gov/orgs/massgis-bureau-of-

Documentation of the Results of the ESA Eligibility Determination:

Using information in Appendix II of the NPDES RGP, the project located at Nablus Road Wakefield, MA is eligible for coverage under this general permit under FWS Criterion C. This project is located in Middlesex County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

• The Northern long-eared bat was listed as "Threatened" wherever it is found;

Temporary dewatering activities at the site are not expected to impact the Northern Long-eared Bat.

Northern long-eared bats spend winter hibernating in caves and mines. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). There are no caves and mines located at the site. There are trees in the immediate vicinity of the site; however, tree removal is not part of the scope of work related to this Notice of Intent. Therefore, temporary dewatering activities will have "no impact" to the Northern Long-eared Bat.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: September 30, 2019

Consultation Code: 05E1NE00-2019-SLI-3012 Event Code: 05E1NE00-2019-E-07901

Project Name: Nat'l Grid Wakefield Nablus Road

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-3012

Event Code: 05E1NE00-2019-E-07901

Project Name: Nat'l Grid Wakefield Nablus Road

Project Type: Water Withdrawal / Depletion

Project Description: Construction dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.512606658335784N71.06384934758738W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

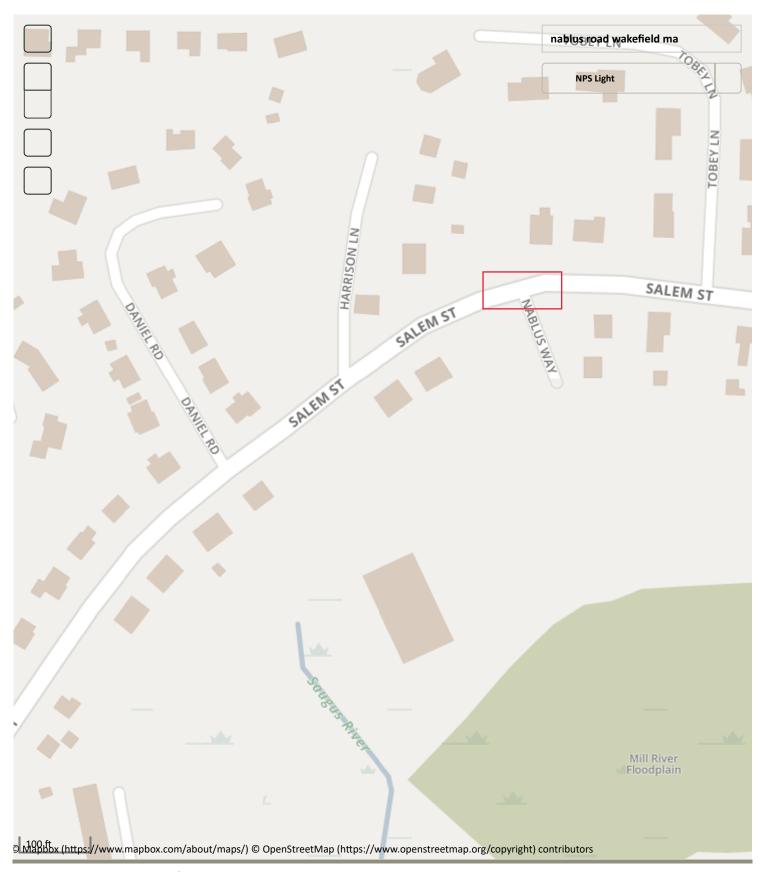
<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Wakefield; Street Name: Nablus Rd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;


Inv. No. Property Name Street Town Year

Monday, September 30, 2019 Page 1 of 1

National Register of Histori...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data proce...

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm)

Appendix E

Public Notification Letter

October 16, 2019

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

89 Crawford Street

Leominster, Massachusetts 01453

Mr. Stephen P. Maio Town Administrator Town Hall 1 Lafayette Street Wakefield, Massachusetts 01880

Reference: Notification of Filing of Notice of Intent - Remediation General Permit

Jacking and Receiving Pits for Mill River Crossing National Grid 345 kV Electrical Duct Bank Project

Wakefield, Massachusetts

Dear Mr. Maio:

On behalf of United Civil, Inc. (United Civil), Lockwood Remediation Technologies, LLC (LRT) is providing notification that a Notice of Intent (NOI) has been filed with the United States Environmental Protection Agency (EPA) requesting coverage under the EPA's Remediation General Permit (RGP) for the above-referenced project. Specifically, the project is located at the intersection of Nablus Road and Salem Street and the RGP will allow the treatment and discharge of groundwater that is generated during dewatering of the jacking and receiving bore pit excavations. Treated water will be discharged to Mill River and the work is anticipated to begin in late Fall 2019 or Spring 2020. A copy of the NOI can be provided upon request.

Please contact me at 774-450-7177 with any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

John Henry

John J. Henry, PE Senior Project Manager

cc: Shauna Little – EPA

Dylan Smith and Jeff Schena - United Civil