

NOTICE OF INTENT FOR DISCHARGE UNDER MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG910000

KENMORE SQUARE NORTH COMMONWEALTH BUILDING

BOSTON, MASSACHUSETTS

APRIL 11, 2019

Prepared For:

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
5 POST OFFICE SQUARE, SUITE 100
MAIL CODE OEP06-4
BOSTON, MA 02109-3912

On Behalf Of:

Related Beal Construction, LLC 117 Milk Street Boston, MA 02109

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6216

April 11, 2019

United States Environmental Protection Agency 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912

Attention: RGP-NOI Processing

Reference: Kenmore Square North – Commonwealth Building, Boston, Massachusetts

Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

The purpose of this letter report is to provide a summary of the site and groundwater quality information in support of an application for approval from the U.S. Environmental Protection Agency (EPA) for the temporary discharge of groundwater into the Charles River via a storm drain system during construction at the above referenced site. Refer to **Figure 1** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared with the authorization of Related Beal. These services are subject to the limitations contained in **Attachment A**.

The required Notice of Intent Form contained in the RGP permit and Boston Water & Sewer Dewatering Discharge Permit Application is included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Remediation General Permit is:

Related Beal Construction, LLC 177 Milk Street Boston, MA 02109

Attention: Mr. Max Cassidy

Tel: 617-501-4732

Existing Conditions

The subject site consists of three (3) adjoining parcels of land that are occupied by multistory commercial buildings located at 541 Commonwealth Avenue (Building 2), 537-539 Commonwealth Avenue (Building 3), and 533 Commonwealth Avenue (Building 4). The existing buildings front onto Commonwealth Avenue to the south, Deerfield Street to the west,

a private alleyway to the east, and a private alleyway to the north. Each existing building contains a basement with slab at approximate Elevation +8.4.

The existing ground surface across the subject site varies from Elevation +18 to Elevation +20 along Commonwealth Avenue and generally slopes downward to the north, toward the private alleyway. The existing ground surface in the private alley located to the north of the building generally slopes from Elevation +19 to Elevation +12.5 from west to east. Elevations referenced herein are in feet and refer to the Boston City Base (BCB) Datum

The limits of the subject site are shown on **Figure 2**, which is based on a plan entitled Subsurface Exploration Plan.

Proposed Scope of Site Development

We understand that the proposed redevelopment of the subject site will include the demolition of the existing buildings followed by construction of an 8 to 9-story steel-framed structure overlying two (2) levels of below-grade parking. The proposed building footprint is understood to occupy an approximate 16,800 square foot irregular plan area.

Construction of the below-grade level will require an excavation approximately 25-35 feet deep. The lateral earth support system consisting of a continuous slurry wall which will extend as much as 15 feet into the relatively impervious marine clay deposit, will remain in-place and be used as the perimeter foundation wall. The continuous concrete structural mat together with the slurry wall will effectively create a dam around the perimeter of the basement.

Site Environmental Setting and Surrounding Historical Places

Based on the current Massachusetts Geographic Information Systems (GIS) DEP Priority Resources Map of Boston, the subject site is not located within the boundaries of a Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. There are no known public or private drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. There are no surface water bodies or wetland areas located at the subject site. The nearest surface water body is the Charles River, classified by the DEP as a Class B Surface Water Body, that is located approximately 625 feet to the north of the subject site. No areas designated as solid waste facilities (landfills) are located within 0.5 miles of the subject site. A copy of the DEP Priority Resources Map depicting the location of the subject site is included in **Appendix C**.

A review of the most recent federal listing of threatened and endangered species published by the U.S. Fish and Wildlife Service identified no threatened and/or endangered species at or in the vicinity of the proposed discharge location and/or discharge outfall. In addition, a

review of the Massachusetts Division of Fisheries and Wildlife on-line database identified no threatened or endangered species at the point of discharge and/or the discharge outfall. Based upon the above, the site is considered Criterion A pursuant to Appendix IV of the RGP. A document of indicating threatened and endangered species from the U.S. Fish and Wildlife Services and Massachusetts Division of Fisheries on-line databases is included in **Appendix C**.

The subject site's four (4) addresses are not individually listed on the State and National Register of Historical Places (BOS.7563) and thus construction dewatering that is proposed at the subject site meets the Permit Eligibility Criterion A under the Remediation General Permit. A copy of the database search for the subject site's addresses are included in **Appendix C**.

Site History

According to historical records, the existing buildings at the subject site were constructed between 1916 and 1950. Since their initial construction, notable uses of the existing buildings include an oil burning equipment company, the New England School of Photography as well as retail shops, offices, restaurants, and nightclubs.

During 2000, the basement of the 539 Commonwealth Avenue building was flooded due to a malfunctioning sprinkler system. On-site personnel reported a spill of an oil/water mixture on the basement floor slab that was subsequently vacuumed and cleaned by Clean Harbors Environmental Services. The laboratory analysis of the oil and water mixture indicated the presence of PCBs at a maximum concentration of 520 parts per million (ppm). According to the Post-Cleanup Assessment Report prepared by others in May 2002, the cleanup activities referenced above, were conducted in accordance with EPA's Toxic Substances Control Act (TSCA) guidelines. It is understood that several rounds of wipe sampling that were subsequently conducted in the affected area indicated that PCB clean-up activities were successful within the basement of 539 Commonwealth Avenue, but the source of the PCBs was not identified.

Construction Site Dewatering

It is anticipated that excavation within the proposed footprint of the common foundation will extend approximately 25 feet below the observed groundwater level. In order to facilitate construction of the below grade levels, to provide support of the excavation, and to provide an effective groundwater cut-off during construction, a continuous slurry wall will be installed as the perimeter wall of the common foundation. Hence, construction dewatering will be necessary within the footprint of the common foundation to facilitate construction of the proposed below grade levels and additional foundation elements.

Given that the excavation will be performed within a slurry wall that will act as a groundwater cut-off, the volume of groundwater that will require construction dewatering will generally be limited to within the area of the common foundation. The rate of

construction dewatering discharge will vary as the excavation progresses from the relatively pervious fill material into the relatively impermeable underlying organic and clay deposits. It is anticipated that the rate of construction dewatering to facilitate excavation of the fill material will be on the order of 75 to 100 gallons per minute (gpm). However, as the excavation extends into the underlying clay deposits, it is anticipated that rate of construction dewatering will decrease to approximately 25 to 50 gallons per minute. These estimates do not include surface run-off which will be removed from the excavation during periods of precipitation.

Given that the area of the common foundation occupies a majority of the subject site, temporary on-site collection and recharge of groundwater is not feasible. As a result, construction dewatering will require the discharge of collected groundwater into the storm drain system under the requested Remediation General Permit.

A review of available subgrade utility plans provided by the Boston Water and Sewer Commission indicates that stormwater is collected within catch basins along Commonwealth Avenue and Deerfield Street and flows northeast. Stormwater drains beneath Deerfield Street and Commonwealth Avenue run under Storrow Drive and eventually discharge into the Charles River at SDO 042. The locations of the relevant stormwater drains in relation to the subject site are indicated on **Figure 2**. The flow path of the discharge is shown in plans provided by the Boston Water and Sewer Commission which are included in **Figures 3**.

Summary of Groundwater Analysis

On January 31, 2019, McPhail Associates, LLC obtained a sample of groundwater from monitoring well B-1A (OW) which is located within the proposed footprint of the common building foundation at the northern portion of the subject site. The groundwater samples were submitted to a certified laboratory for analysis for the presence of compounds required under the EPA's Remediation General Permit (RGP) application, including total suspended solids (TSS), total residual chlorine, total petroleum hydrocarbons (TPH), volatile organic compounds (VOCs) including total benzene, toluene, ethylbenzene and xylenes (BTEX), poly-aromatic hydrocarbons (PAHs), total phenols, pesticides and PCBs, and total recoverable metals. The results of the laboratory analysis are summarized in **Table 1**, and laboratory data is included in **Appendix D**.

With the exception of arsenic and iron, the results of the laboratory testing did not detect concentrations which triggered Water Quality-Based Effluent Limitations (WQBELs). It is noted that the concentrations of chloride, copper, and iron did not exceed applicable MCP reporting thresholds. established in Appendix VI of the RGP. Although TPH, lead, and arsenic were not detected in the groundwater samples at concentrations which exceed the applicable EPA effluent limits for off-site discharge, these compounds have been identified as contaminants of concern in soil. As a result, these compounds are considered to be potentially present in the construction dewatering effluent during excavation of fill material at the subject site. It is anticipated that the construction dewatering treatment system that

is discussed below, which include sedimentation components, will reduce potential concentrations of the above referenced contaminants of concern in the effluent to below the applicable RGP discharge limits.

Pursuant to Section 4.2.2 of the EPA 2017 RGP, a surface water body sample of the Charles River was obtained for this application and the results of the laboratory analysis are summarized in **Table 2**, as well as the laboratory data is included in **Appendix E**.

Additionally, previous groundwater testing completed at the subject site did not indicate detectable levels of Extractable Petroleum Hydrocarbons (EPH) in two observation wells in August 2016. The results of the laboratory analysis are summarized in **Table 3**, and laboratory data is included in **Appendix F**.

A Dilution Factor (DF) was calculated for the detected levels of metals pursuant to the procedure contained in RGP MAG910000, Appendix V. The purpose of the DF calculation is to establish Total Recoverable Limits for metals, taking into consideration the anticipated dilution of the detected analyte upon discharge into the Charles River. The calculated DF was then used to find the appropriate Dilution Range Concentrations (DRCs) contained in MAG910000, Appendix IV. The Minimum Flow Rate calculated by the USGS Streamstats GIS database at the location of discharge into the Charles River for 7 consecutive days with a recurrence interval of 10 years (7Q10 flow) is 24.7 thus resulting in a DF of 111.86 assuming a design flow rate of 100 GPM.

Groundwater Treatment

Based on the results of the above referenced groundwater analyses, it is our opinion that a 20,000-gallon capacity settling tank and bag filters will be required to settle out particulate matter which may contain elevated levels of inorganics in groundwater to meet the applicable effluent limits established by the US EPA prior to discharge. It is noted that the size of the settling tank may be reduced once an effective groundwater cut-off has been achieved. A schematic of the treatment system is shown on **Figure 4**.

A Best Management Practices Plan (BMPP) has been prepared as **Appendix G** to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

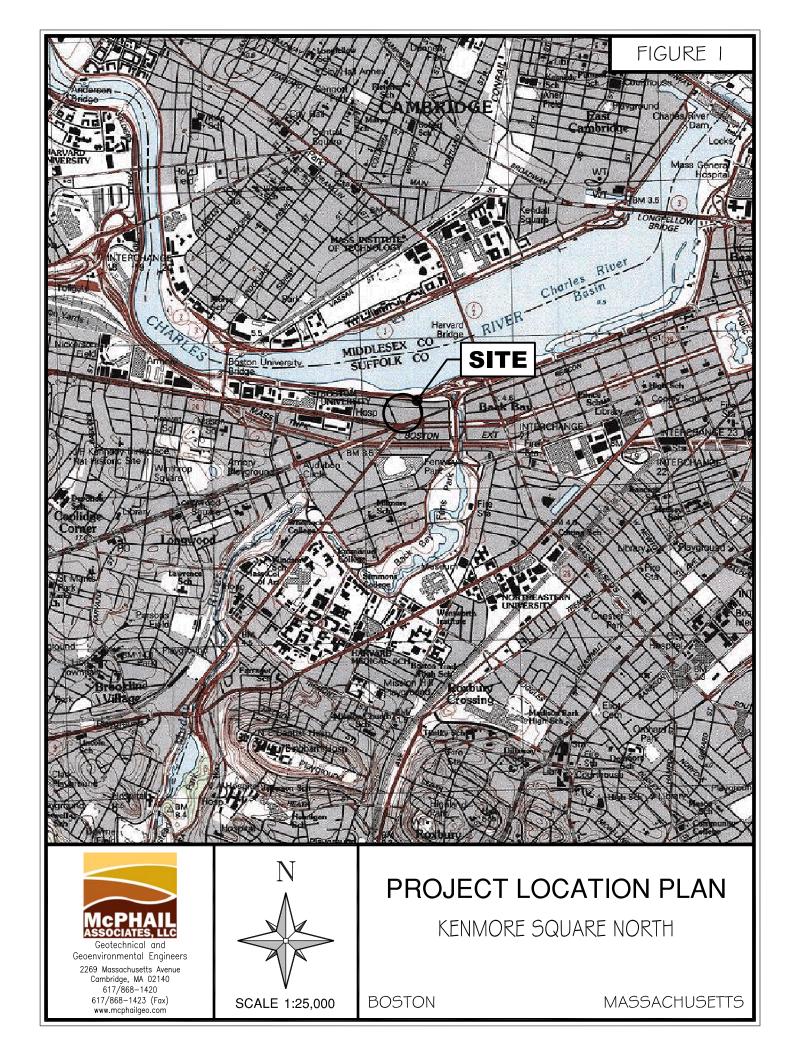
Summary and Conclusions

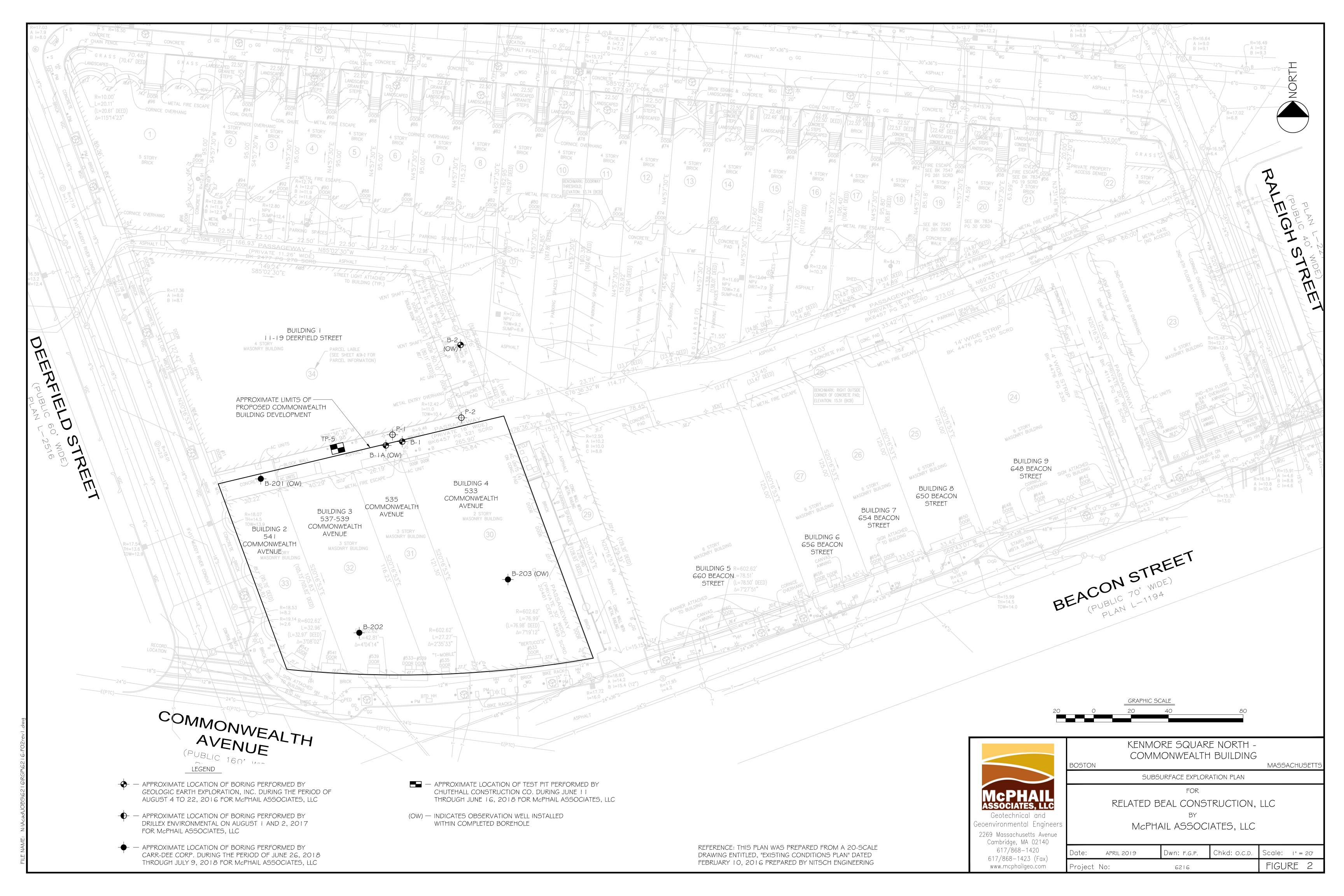
The purpose of this report is to assess site environmental conditions and groundwater data to support a NOI for the off-site discharge of temporary construction dewatering application under the Massachusetts Remediation General Permit during the redevelopment of the Commonwealth Building at the proposed Kenmore Square North project located at 533-541 Commonwealth Avenue in Boston. The groundwater testing results reported in this application have been provided to the site owner.

Based on the results of the above referenced groundwater analyses, groundwater treatment is necessary to meet allowable effluent limits established by the US EPA prior to discharge. The proposed construction dewatering effluent treatment system will consist of one settling tank 20,000-gallons in capacity and bag filters in series in order to meet the applicable discharge limits established by the EPA. However, should the effluent monitoring results indicate levels of total iron or other contaminates in excess of the limits established in the Massachusetts Remediation General Permit, additional mitigative measures will be implemented to meet the allowable discharge limits. Additionally, it is noted that the size of the settling tank may be reduced once an effective groundwater cut-off has been achieved and TSS concentrations in the effluent are managed accordingly.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,


McPHAIL ASSOCIATES, LLC


Kirk W. Seaman

William J. Burns, L.S.P.

KWS/wjb

N:\Working Documents\Reports\6216_Building C RGP_020419.docx

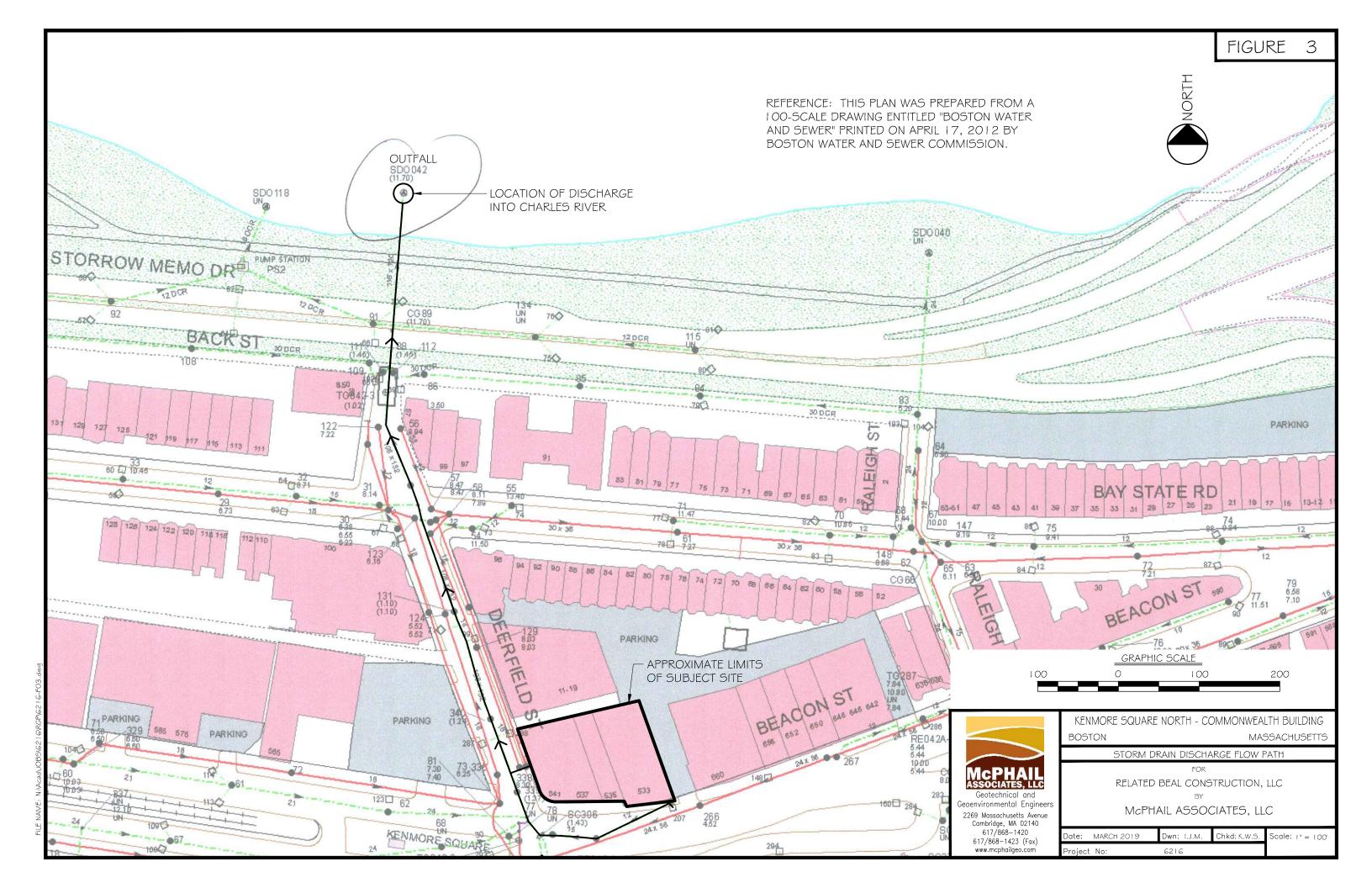
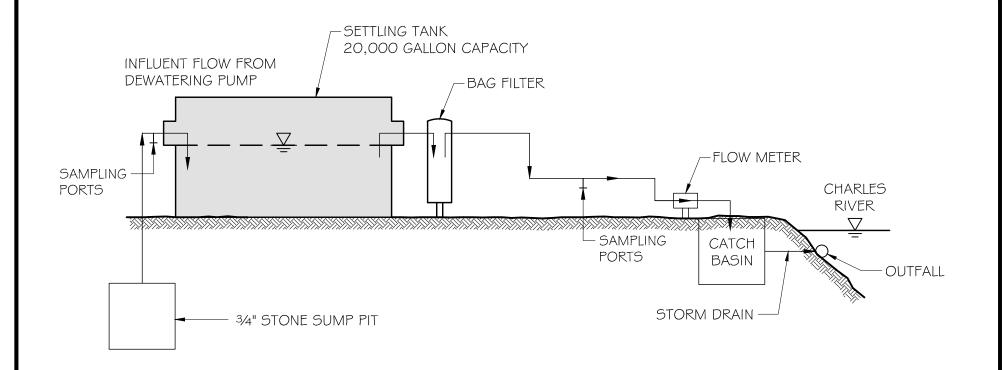



FIGURE 4

KENMORE SQUARE NORTH - COMMONWEALTH BUILDING
BOSTON MASSACHUSETTS

SCHEMATIC OF TREATMENT SYSTEM

FOR

RELATED BEAL CONSTRUCTION, LLC

BY

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

6216

Date: MARCH 2019 Dwn: I.J.M. C

Chkd: K.W.S. Scale: N.T.S.

Table 1 Labratory Analytical Results - Groundwater B-1A (OW)

Kenmore Square North Commonwealth Building Boston, MA Project No.6216

	ED4	n nu		
LOCATION	EPA - Freshwater	Building C RGP Sample B-1A (OW)		
	Aquatic Life	` ,		
SAMPLING DATE	Chronic	1/31/2019		
LAB SAMPLE ID	Criteria	L1904083-01		
SAMPLE TYPE	Ontona	WATER		
General Chemistry (ug/l)				
Chlorine, Total Residual		ND(20)		
Chromium, Hexavalent	11	ND(10)		
Chromium, Trivalent	74	ND(10)		
Cyanide, Total	5.2	ND(5)		
Nitrogen, Ammonia		2170		
pH (SU)		-		
Phenolics, Total		ND(30)		
Solids, Total Suspended		11000		
TPH, SGT-HEM		ND(4000)		
Chloride	230000	608000		
Total Metals (ug/l)				
Antimony, Total		ND(4)		
Arsenic, Total	150	3.34		
Cadmium, Total	0.25	ND(0.2)		
Chromium, Total		ND(1)		
Copper, Total		ND(1)		
Iron, Total	1000	6460		
Lead, Total	2.5	ND(1)		
Mercury, Total	0.77	ND(0.2)		
Nickel, Total	52	ND(2)		
Selenium, Total	5	ND(5)		
Silver, Total		ND(0.4)		
Zinc, Total	120	ND(10)		
Microextractables (ug/l)				
SUM		ND		
Polychlorinated Biphenyls (ug/l)				
SUM		ND		
Semivolatile Organics (ug/l)				
SUM		ND		
Semivolatile Organics (ug/l)				
SUM		ND		
Volatile Organics (ug/l)		115		
SUM		ND		
	<u> </u>	112		

Table 2 Labratory Analytical Results - Surface Water Charles River

Kenmore Square North Commonwealth Building Boston, MA Project No.6216

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE	EPA - Freshwater Aquatic Life Chronic Criteria	SURFACE WATER CHARLES RIVER SAMPLE 1/23/2019 L1902926-01 WATER
General Chemistry (ug/l)		
Cyanide, Total	5.2	ND(5)
Nitrogen, Ammonia		121
pH (SU)		7
Hardness		76900
Total Metals (ug/l)		
Antimony, Total		ND(4)
Arsenic, Total	150	ND(1)
Cadmium, Total	0.25	ND(0.2)
Chromium, Total		ND(1)
Copper, Total		1.77
Iron, Total	1000	410
Lead, Total	2.5	ND(1)
Mercury, Total	0.77	0.2
Nickel, Total	52	ND(2)
Selenium, Total	5	ND(5)
Silver, Total		ND(0.4)
Zinc, Total	120	ND(10)

TABLE 3 ANALYTICAL RESULTS - Historical Groundwater

Kenmore Square North Boston, MA Project No. 6216

LOCATION SAMPLING DATE LAB SAMPLE ID	RCGW-2	B-1A (OW) 8/18/2016 L1625933-01	B-2 (OW) 8/22/2016 L1626224-01
Extractable Petroleum Hydrocarbons (ug/l)			
C9-C18 Aliphatics	5000	ND(100)	ND(100)
C19-C36 Aliphatics	50000	ND(100)	ND(100)
C11-C22 Aromatics, Adjusted	5000	ND(100)	ND(100)
Naphthalene	700	ND(10)	-
2-Methylnaphthalene	2000	ND(10)	-
Acenaphthylene	40	ND(10)	-
Acenaphthene	10000	ND(10)	-
Fluorene	40	ND(10)	-
Phenanthrene	10000	ND(10)	-
Anthracene	30	ND(10)	-
Fluoranthene	200	ND(10)	-
Pyrene	20	ND(10)	-
Benzo(a)anthracene	1000	ND(10)	-
Chrysene	70	ND(10)	-
Benzo(b)fluoranthene	400	ND(10)	-
Benzo(k)fluoranthene	100	ND(10)	-
Benzo(a)pyrene	500	ND(10)	-
Indeno(1,2,3-cd)Pyrene	100	ND(10)	-
Dibenzo(a,h)anthracene	40	ND(10)	-
Benzo(ghi)perylene	20	ND(10)	-

ND-not detected in excess of the laboratory method detection limits in ()

Bold-exceeds RCGW-2 reporting threshold.

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from monitoring wells located at the Landmark Center property listed with the addresses of 533-541 Commonwealth Avenue in Boston, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Related Beal Construction, LLC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORM BOSTON WATER & SEWER DEWATERING DISCHARGE PERMIT APPLICATION

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 541-533 Commonwealth Ave						
Kenmore Square North - Commonwealth Building	Street:						
	City: Boston		State: MA	^{Zip:} 02215			
2. Site owner RREF II Kenmore Lessor II, LLC	Contact Person: Max Cassidy						
	Telephone: 617.501.4732	Email: mc	assidy@rel	atedbeal.com			
	Mailing address: 117 Milk Street						
Owner is (check one): □ Federal □ State/Tribal ■ Private	Street:						
Other; if so, specify:	City: Boston		State: MA	Zip: 02109			
3. Site operator, if different than owner	Contact Person: Max Cassidy						
Related Beal Construction, LLC	Telephone: 617 501 4732	Email: mc	cassidy@relatedbeal.com				
	Mailing address:						
	Street: 177 Milk Street						
	City: Boston		State: MA	Zip: 02109			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	₋ A				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	Groundwater Release Detection Permit:		-				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:			□ POTW Pretreatment				
		□ CWA S	ection 404				

B. Receiving water information: 1. Name of receiving water(s): Waterbody identification of receiving water(s): Classification of receiving water(s): **Charles River** MA72-38 B Receiving water is (check any that apply):

Outstanding Resource Water

Ocean Sanctuary

territorial sea

Wild and Scenic River 2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No Are sensitive receptors present near the site? (check one): ☐ Yes ■ No If yes, specify: 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Water Code: 7239050 Class: B Category: 5 TMDL Count: 1 TMDL - 301.0 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in 24.7 Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in 111.86 accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■ Yes □ No If yes, indicate date confirmation received: 2/28/2019 7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): ■ Yes □ No C. Source water information: 1. Source water(s) is (check any that apply): ■ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, indicate municipality or origin: Has the operator attached a summary of influent Has the operator attached a summary of influent ☐ A surface water other sampling results as required in Part 4.2 of the RGP sampling results as required in Part 4.2 of the than the receiving water; if in accordance with the instruction in Appendix RGP in accordance with the instruction in □ Other; if so, specify: so, indicate waterbody: VIII? (check one): Appendix VIII? (check one): ■ Yes □ No ☐ Yes ■ No

2. Source water contaminants: Chloride, Ammonia, Arsenic TSS, Iron						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes ■ No					
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): □ Yes ■ No					
D. Discharge information						
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source					
Outfall(s): SDO042	Outfall location(s): (Latitude, Longitude) 42.351184, -71.097680					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:					
Boston Stormwater drain ☐ A private storm sewer system ■ A municipal storm sewer system						
If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): ☐ Yes ■ No						
Has the operator has received permission from the owner to use such system for obtaining permission: Upon approval of NPDES	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for					
Has the operator attached a summary of any additional requirements the owner						
Provide the expected start and end dates of discharge(s) (month/year): 06/201	9 - 05/20					
Indicate if the discharge is expected to occur over a duration of: ■ less than 12 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
☐ I - Petroleum-Related Site Remediation ☐ II - Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing	G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination				
 □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

	4.	Influent	and	Effluent	Characteristics
--	----	----------	-----	----------	-----------------

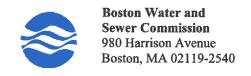
	Known	Known		TD.		In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	1 1	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		1	1 #	121,4500 +	75	2170	2170	Report mg/L	
Chloride		1	1 +					Report μg/l	
Total Residual Chlorine	1		1 +					0.2 mg/L	
Total Suspended Solids		1	1 +	121,2540				30 mg/L	
Antimony	1		1 +					206 μg/L	
Arsenic		1	1 #				3.34	104 μg/L	
Cadmium	1		1 +		.2			10.2 μg/L	
Chromium III	1		1 #					323 μg/L	
Chromium VI	1		1 +	1,7196A 🛨				323 μg/L	
Copper	1		1 *+					242 μg/L	
Iron		1	1 +	19,200.7	50	6460		5,000 μg/L	
Lead	1		1 +	3,200.8	1 #			160 μg/L	
Mercury	1		1 +	3,245.1	.2			0.739 μg/L	
Nickel	1		1 +	3,200.8	2	<di.< td=""><td></td><td>1,450 μg/L</td><td></td></di.<>		1,450 μg/L	
Selenium	1		1 +.	3,200.8	5	<dl< td=""><td></td><td>235.8 μg/L</td><td></td></dl<>		235.8 μg/L	
Silver	1		1 +	3,200.8				35.1 μg/L	
Zinc	1		1 +	3.200.8		<dl< td=""><td></td><td>420 μg/L</td><td></td></dl<>		420 μg/L	
Cyanide	1			121,4500計			<di.< td=""><td>178 mg/L</td><td>_</td></di.<>	178 mg/L	_
B. Non-Halogenated VOC	s								
Total BTEX	1		1 +	128624.1	1	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Benzene	1		1 +	128624.1				5.0 μg/L	
1,4 Dioxane	1		1 +				<dl #<="" td=""><td>200 μg/L</td><td></td></dl>	200 μg/L	
Acetone	1		1 :	128624.1		<dl< td=""><td></td><td>7.97 mg/L</td><td></td></dl<>		7.97 mg/L	
Phenol	1			128624.1			<di.< td=""><td>1,080 μg/L</td><td></td></di.<>	1,080 μg/L	

	Known	Known	ı	TD 4	77	Influent		Effluent Lin	nitations
Parameter	or believed absent	believed believed	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs							-		
Carbon Tetrachloride	1		1 #	128,624.	1.0	<dl +<="" td=""><td><dl td="" ±<=""><td>4.4 μg/L</td><td></td></dl></td></dl>	<dl td="" ±<=""><td>4.4 μg/L</td><td></td></dl>	4.4 μg/L	
1,2 Dichlorobenzene	1			128.624.1+		<di. +<="" td=""><td><dl #<="" td=""><td>600 μg/L</td><td></td></dl></td></di.>	<dl #<="" td=""><td>600 μg/L</td><td></td></dl>	600 μg/L	
1,3 Dichlorobenzene	1		1 +	128,624.1				320 μg/L	
1,4 Dichlorobenzene	1		1 1	128,624.			<dl.< td=""><td>5.0 μg/L</td><td></td></dl.<>	5.0 μg/L	
Total dichlorobenzene	1			128.624.1		<dl +<="" td=""><td><dl +<="" td=""><td>763 μg/L in NH</td><td></td></dl></td></dl>	<dl +<="" td=""><td>763 μg/L in NH</td><td></td></dl>	763 μg/L in NH	
1,1 Dichloroethane	1			128.624.1+		<dl 4<="" td=""><td></td><td>70 μg/L</td><td></td></dl>		70 μg/L	
1,2 Dichloroethane	1			128.624.1+				5.0 μg/L	
1,1 Dichloroethylene	1			128,624.1			<di.< td=""><td>3.2 μg/L</td><td></td></di.<>	3.2 μg/L	
Ethylene Dibromide	-			220102117		C1717	N1917 MAGE	0.05 μg/L	
Methylene Chloride	1		1 3	128,624.1+	1 4	<dl d<="" td=""><td><dl.< td=""><td>4.6 μg/L</td><td></td></dl.<></td></dl>	<dl.< td=""><td>4.6 μg/L</td><td></td></dl.<>	4.6 μg/L	
1,1,1 Trichloroethane	1		1 4	128,624.1+		<dl #<="" td=""><td><di.< td=""><td>200 μg/L</td><td></td></di.<></td></dl>	<di.< td=""><td>200 μg/L</td><td></td></di.<>	200 μg/L	
1,1,2 Trichloroethane	1					<di.< td=""><td><dl< td=""><td>5.0 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>5.0 μg/L</td><td></td></dl<>	5.0 μg/L	
Trichloroethylene	1			128.624.1+				5.0 μg/L	
Tetrachloroethylene	1			128.624.1 ⁺		<di. b<="" td=""><td></td><td>5.0 μg/L 5.0 μg/L</td><td></td></di.>		5.0 μg/L 5.0 μg/L	
cis-1,2 Dichloroethylene	1			128,624. 1	1 6	<di.< td=""><td></td><td>70 μg/L</td><td></td></di.<>		70 μg/L	
Vinyl Chloride	1			128,624.14				2.0 μg/L	
D. Non-Halogenated SVO									
Total Phthalates	· ·		1 1	129,625.1				190 μg/L	
Diethylhexyl phthalate	-		1 +	129,625.1		<dl #<="" td=""><td></td><td>101 μg/L</td><td></td></dl>		101 μg/L	
Total Group I PAHs			1 ta	129,625.1		<di.< td=""><td></td><td>1.0 μg/L</td><td></td></di.<>		1.0 μg/L	
Benzo(a)anthracene	· ·		1 +	129,625.		<di. +<="" td=""><td></td><td></td><td></td></di.>			
Benzo(a)pyrene	1		1 +	129,625.1	0.1	<di.< td=""><td></td><td></td><td></td></di.<>			
Benzo(b)fluoranthene	/		1 +	129,625.	0.1	<di.< td=""><td></td><td></td><td></td></di.<>			
Benzo(k)fluoranthene	-		1 +	129.625.		<dl #<="" td=""><td></td><td>As Total PAHs</td><td></td></dl>		As Total PAHs	
Chrysene	1			129,625.1		<dl< td=""><td></td><td></td><td></td></dl<>			
Dibenzo(a,h)anthracene	1			129,625.1			-3777	ľ	
Indeno(1,2,3-cd)pyrene	1			129,625,			<dl #<="" td=""><td>ŀ</td><td></td></dl>	ŀ	

	Known	Known		TD 4		I	ıfluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	1		1 +	1,8270D #	0.1	<dl< th=""><th>F <di.< th=""><th>100 μg/L</th><th></th></di.<></th></dl<>	F <di.< th=""><th>100 μg/L</th><th></th></di.<>	100 μg/L	
Naphthalene	/			1,8270D ±	1		t <dl t<="" td=""><td></td><td></td></dl>		
E. Halogenated SVOCs									
Total PCBs	1		1 2	127.608	0.25	<dl< td=""><td>t <dl< td=""><td>0.000064 μg/L</td><td></td></dl<></td></dl<>	t <dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	1			127.608	0.25	<dl< td=""><td>F <di.< td=""><td></td><td></td></di.<></td></dl<>	F <di.< td=""><td></td><td></td></di.<>		
F. Fuels Parameters Total Petroleum Hydrocarbons	-		1 #3	74.1664A	400	<di.< th=""><th>■ <di.< th=""><th>5.0 mg/L</th><th></th></di.<></th></di.<>	■ <di.< th=""><th>5.0 mg/L</th><th></th></di.<>	5.0 mg/L	
Ethanol	-		1	74,10047	400	(1)1.	(1)1,		
Methyl-tert-Butyl Ether	/	-					TO See	Report mg/L	
			1 +	1,8260C #	10 5	<di.< td=""><td>+ <di.< td=""><td></td><td></td></di.<></td></di.<>	+ <di.< td=""><td></td><td></td></di.<>		
tert-Butyl Alcohol	/		1	1.8260C 🛨	100	<di.< td=""><td>CDI.</td><td>120 μg/L in MA 40 μg/L in NH</td><td></td></di.<>	CDI.	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	1		1	1.8260C +	20		<di.< td=""><td>00 /7 3 3 6 4</td><td></td></di.<>	00 /7 3 3 6 4	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C ₅₀ , addition	al pollutan	ts present);	if so, specify			
Hα			1 =====================================	Horiba 🖁	6.66				
	-			Нотіba 🖈					
	12			Horiba 🗜	75500				
	t.		1 1	12145001#	7				
Hardness - Surface Water -	F		1	EPA 300 +	76900				
	-	-							
				_				-	
	 								
		ļ <u>.</u>							

E.	Treatment	system	information
----	------------------	--------	-------------

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
□ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:					
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Frac Tank, Bag Filters					
Identify each major treatment component (check any that apply):					
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter					
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:					
Indicate if either of the following will occur (check any that apply):					
☐ Chlorination ☐ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.					
Indicate the most limiting component: Frac Tank(s)	100				
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100				
Provide the proposed maximum effluent flow in gpm.	100				
Provide the average effluent flow in gpm.	 25				
If Activity Category IV applies indicate the estimated total and the continue of the continue	 n/a				
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No					


F	Chemical	and	additive	inform	ation

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of chemical of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s): (check all that apply)
☐ Algaecides/biocides ☐ Antifoams ☐ Coagulants ☐ Corrosion/scale inhibitors ☐ Disinfectants ☐ Flocculants ☐ Neutralizing agents ☐ Oxidants ☐ Oxygen ☐
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): 🗆 Yes 🗏 No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ■ Yes □ No
G. Endangered Species Act eligibility determination
G. Endangered Species Act engionity determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
"action area".
FWS Critarian P: Formal or informal consultation with the FWC and a costion 7 of the FSA and the Line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the line is the cost of the FSA and the line is the cost of the FSA and the line is the cost of the line is the cost of the cost of the line is the line is the cost of the line is the line
□ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
☐ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
L 1 11.5. This determination was made by: (check one) in the operator in EPA in Other; it so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of					
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No					
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No					
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.					
H. National Historic Preservation Act eligibility determination					
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:					
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.					
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.					
☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.					
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No					
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or					
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No					
I. Supplemental information					
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.					
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):					
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No					
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the perso persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge a no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that the information, including the possibility of fine and imprisonment for knowing violations.	on or persons who manage the system, or those				
A BMPP Statement has been prepared in accordance with good of BMPP certification statement: 2.5 of the RGP and shall be implemented upon initiation of discharge.	engineering practices following Part arge.				
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested	l. Check one: Yes ■ No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one: Yes ■ No □ NA □ Submission of documentation to and approval from BWSC in tandem with this NOI Check one: Yes □ No ■ NA □				
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES perm □ Other; if so, specify:	mit Check one: Yes □ No □ NA ■				
Signature: My Crum	Date: 4/12/19				
Print Name and Title: Max Cassidy - Senior Project Manager					

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE I	INFORMATION HERE:		
Company Name: Related Beal Construction, LI	LC Address: 117 Milk Street Boston MA 02109		
	Fax number:		
Contact person name: Max Cassidy	Senior Project Manager		
Cell number: 617 265 0815	Email address: mcassidy@relatedbeal.com		
Permit Request (check one): New Application	□ Permit Extension □ Other (Specify):		
Owner's Information (if different from above):			
Owner of property being dewatered: RREF II Ke	enmore Lessor II, LLC		
Owner's mailing address:117 Milk Street, Bost	ton, MA 02109 Phone number: 617 265 0815		
Location of Discharge & Proposed Treatment Sys	stem(s):		
Street number and name: 533-541 Common	nwealth Ave Neighborhood Kenmore/Fenway		
Discharge is to a: ☐ Sanitary Sewer ☐ Combined	d Sewer ■ Storm Drain □ Other (specify):		
Describe Proposed Pre-Treatment System(s): Frac	c Tank and Bag Filters		
	ving Waters Charles River		
Temporary Discharges (Provide Anticipated Dates of	Discharge): From 6/2019 To 5/2020		
Groundwater Remediation	□ Tank Removal/Installation ▼ Foundation Excavation		
☐ Utility/Manhole Pumping M Accumulated Surface Water	□ Test Pipe □ Trench Excavation □ Hydrogeologic Testing □ Other		
Permanent Discharges			
□ Foundation Drainage	□ Crawl Space/Footing Drain		
□ Accumulated Surface Water □ Non-contact/Uncontaminated Process	□ Non-contact/Uncontaminated Cooling □ Other;		
number, size, make and start reading. Note. All discharges to a sanitary or combined sewer, attach a copy of EPA as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if app Submit Completed Application to: Boston Water and See Engineering Custome 980 Harrison Avenue Attn: Matthew Tuttle, E-mail: tuttlemp@bw Phone: 617-989-720	A's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well plicant fails to obtain the necessary permits from MWRA or EPA. ewer Commission ner Services te, Boston, MA 02119 the Engineering Customer Service wsc. org 4 Fax: 617-989-7716		
Signature of Authorized Representative for Property Owner: _	Date: 4/16/19		

APPENDIX C:

DEP PRIORITY RESOURCES MAP

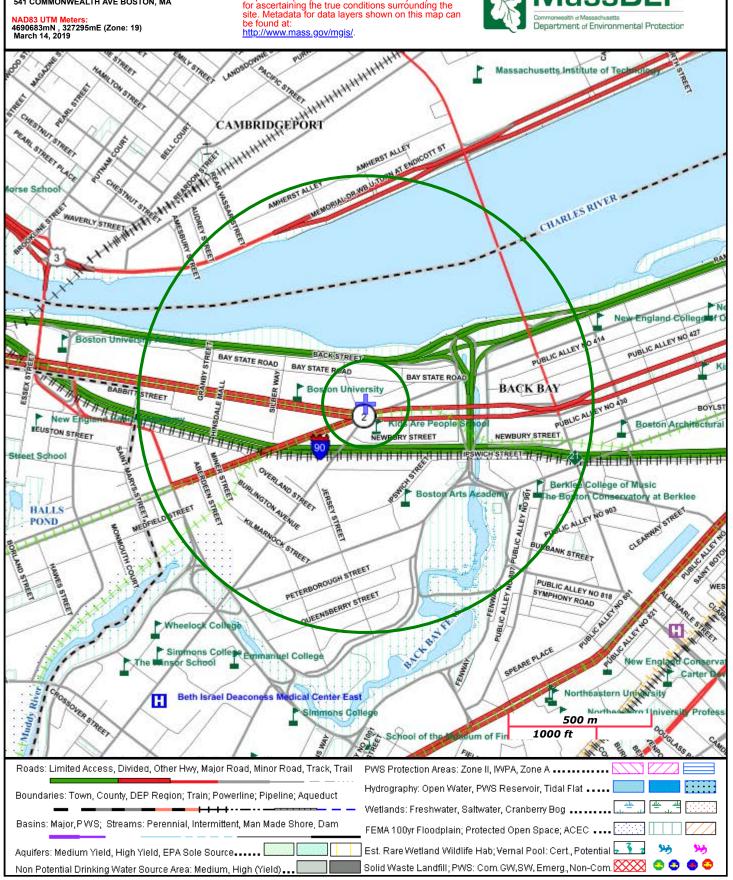
U.S. FISH AND WILDLIFE SERVICES - LIST OF THREATENED AND ENDANGERED SPECIES

MASSACHUSETTS DIVISION OF FISHERIES - LIST OF THREATENED AND ENDANGERED SPECIES

OTHER SUPPLIMENTAL INFORMATION

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

541 COMMONWEALTH AVE BOSTON, MA

NAD83 UTM Meters: 4690683mN , 327295mE (Zone: 19) March 14, 2019

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: March 14, 2019

Consultation Code: 05E1NE00-2019-SLI-1133

Event Code: 05E1NE00-2019-E-02601

Project Name: Kenmore Square North - Commonwealth

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1133

Event Code: 05E1NE00-2019-E-02601

Project Name: Kenmore Square North - Commonwealth

Project Type: DEVELOPMENT

Project Description: <1 acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34925458922436N71.0968074530758W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway - Kenmore; Street No: 533; Street Name: Commonwealth Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway - Kenmore; Street No: 535; Street Name: Commonwealth Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 537; Street Name: Commonwealth Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway - Kenmore; Street No: 541; Street Name: Commonwealth Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Kirk W. Seaman

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Tuesday, March 19, 2019 3:16 PM

To: Kirk W. Seaman

Subject: RE: Dilution Factor Confirmation - Kenmore Square North Boston, MA

Hi Kirk.

Thanks and hope you had a nice St. Patrick's Day weekend too. Your dilution factor calculation of 111.86 for this proposed discharge (design flow: 100 gpm) through BWSC storm drain SDO 042 to the Charles River upstream of the Esplanade and the Mass. Ave. bridge is correct.

And thanks for confirming that you will apply for WM15 (unless the site needs to go under the MCP).

Take care,

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Kirk W. Seaman [mailto:KSeaman@mcphailgeo.com]

Sent: Tuesday, March 19, 2019 2:37 PM **To:** Vakalopoulos, Catherine (DEP)

Subject: Dilution Factor Confirmation - Kenmore Square North Boston, MA

Hi Cathy,

I did double check my records and this may be our first permit not completed at an MCP so thank you for providing that information. When we apply for that RGP, I will be sure to complete the requirements and procure a check for the WM 15.

On a parallel note, another potential non-MCP site needs an RGP and accesses the same storm drain line. The site with the addresses 533-541 Commonwealth Ave is proposing discharge into the Charles River with the same outfall SDO 042 and with the Lat/long ($42^{\circ}21'04.8"N 71^{\circ}05'51.8"W$). I got the same Streamstats info (7Q10-24.7) and last time and our design flow rate is proposed at 100 gpm. Using the same math, I got 111.86 again for a dilution factor.

Barring any soil data that requires notification to the DEP, I will also complete the requirements for the WM 15 for this site as well.

Let me know if I can clarify anything above.

Thanks again for your help and hope you had a great St. Patrick's Day weekend.

Kirk W. Seaman

McPHAIL ASSOCIATES, LLC

APPENDIX D: LABORATORY ANALYTICAL DATA – GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1904083

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Report Date: 02/12/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date: 02/12/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1904083-01	BUILDING B RGP SAMPLE B- 1A (OW)	WATER	BOSTON, MA	01/31/19 14:00	01/31/19
L1904083-02	BUILDING C RGP SAMPLE B-6 (OW)	WATER	BOSTON, MA	01/31/19 11:00	01/31/19

Project Name:KENMORE SQUARE NORTHLab Number:L1904083Project Number:6216.9.00Report Date:02/12/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:KENMORE SQUARE NORTHLab Number:L1904083Project Number:6216.9.00Report Date:02/12/19

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Chlorine, Total Residual

The WG1202901-4 MS recovery (72%), performed on L1904083-02, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/12/19

(600) Skulow Kelly Stenstrom

ORGANICS

VOLATILES

L1904083

02/12/19

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

SAMPLE RESULTS

Date Collected: 01/31/19 14:00

Lab Number:

Report Date:

Lab ID: L1904083-01 Date Collected:

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/01/19 15:15

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: Lab Number: KENMORE SQUARE NORTH L1904083

Project Number: Report Date: 6216.9.00 02/12/19

SAMPLE RESULTS

Lab ID: Date Collected: 01/31/19 14:00 L1904083-01

Date Received: Client ID: BUILDING B RGP SAMPLE B-1A (OW) 01/31/19 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Pentafluorobenzene	99	60-140
Fluorobenzene	104	60-140
4-Bromofluorobenzene	97	60-140

60-140

Project Name: Lab Number: KENMORE SQUARE NORTH L1904083

Project Number: Report Date: 6216.9.00 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

BUILDING B RGP SAMPLE B-1A (OW) Date Received: Client ID: 01/31/19 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/01/19 15:15

Analyst: NLK

4-Bromofluorobenzene

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	И - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance Criteria
Fluorobenzene			112			60-140

77

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/07/19 11:16

Analytical Date: 02/07/19 12:29

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1904083

02/12/19

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

SAMPLE RESULTS

Date Collected: 01/31/19 11:00

Lab Number:

Report Date:

Lab ID: L1904083-02

Client ID: BUILDING C RGP SAMPLE B-6 (OW)

Sample Location: BOSTON, MA

Date Received: 01/31/19
Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 02/01/19 15:52

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-02 Date Collected: 01/31/19 11:00

Client ID: BUILDING C RGP SAMPLE B-6 (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	95		60-140	
Fluorobenzene	92		60-140	
4-Bromofluorobenzene	96		60-140	

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

SAMPLE RESULTS

Date Collected:

L1904083

Report Date: 02/12/19

Client ID:

BUILDING C RGP SAMPLE B-6 (OW)

Sample Location:

Date Received:

Lab Number:

01/31/19 11:00

BOSTON, MA

L1904083-02

Field Prep:

01/31/19 Not Specified

Sample Depth:

Matrix:

Lab ID:

Water

Analytical Method: Analytical Date:

128,624.1-SIM 02/01/19 15:52

Analyst:

NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Wes	tborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria

1,4-Dioxane	ND	ug/I	50		1
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene		98		60-140	
4-Bromofluorobenzene		76		60-140	

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

02/07/19 12:57

Lab ID: L1904083-02 Date Collected: 01/31/19 11:00

Client ID: BUILDING C RGP SAMPLE B-6 (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 02/07/19 11:16

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1904083

Project Name: KENMORE SQUARE NORTH Lab Number:

Project Number: 6216.9.00 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/01/19 14:38

Analyst: GT

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1203299-4	
1,4-Dioxane	ND		ug/l	50			

	Acceptance						
Surrogate	%Recovery Qualific	er Criteria					
Fluorobenzene	113	60-140					
4-Bromofluorobenzene	77	60-140					

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083

Report Date: 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/01/19 14:38

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - V	Vestborough Lab	for sample(s): 01-02	Batch:	WG1203300-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/01/19 14:38

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample	e(s): 01-02	Batch:	WG1203300-4

		Acceptance			
Surrogate	%Recovery 0	Qualifier Criter	ia		
Pentafluorobenzene	98	60-140)		
Fluorobenzene	105	60-140)		
4-Bromofluorobenzene	94	60-140)		

Project Name: KENMORE SQUARE NORTH **Lab Number:** L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 02/07/19 12:00 Extraction Date: 02/07/19 11:16

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbor	ough Lab fo	or sample(s):	01-02	Batch: \	WG1204559-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: KENMORE SQUARE NORTH Lab Number:

L1904083

Project Number: 6216.9.00

Report Date:

02/12/19

Parameter	LCS %Recovery	Qual	LCSD ual %Recovery Q		%Recovery Qual Limits		Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ted sample(s)	: 01-02 Batch:	WG120	3299-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	113 77				60-140 60-140

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083

Report Date: 02/12/19

ırameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: V	VG1203300-	3			
Methylene chloride	90		-		60-140	-	28	
1,1-Dichloroethane	90		-		50-150	-	49	
Carbon tetrachloride	100		-		70-130	-	41	
1,1,2-Trichloroethane	90		-		70-130	-	45	
Tetrachloroethene	85		-		70-130	-	39	
1,2-Dichloroethane	100		-		70-130	-	49	
1,1,1-Trichloroethane	100		-		70-130	-	36	
Benzene	100		-		65-135	-	61	
Toluene	90		-		70-130	-	41	
Ethylbenzene	90		-		60-140	-	63	
Vinyl chloride	95		-		5-195	-	66	
1,1-Dichloroethene	90		-		50-150	-	32	
cis-1,2-Dichloroethene	85		-		60-140	-	30	
Trichloroethene	90		-		65-135	-	48	
1,2-Dichlorobenzene	85		-		65-135	-	57	
1,3-Dichlorobenzene	80		-		70-130	-	43	
1,4-Dichlorobenzene	85		-		65-135	-	57	
p/m-Xylene	85		-		60-140	-	30	
o-xylene	80		-		60-140	-	30	
Acetone	112		-		40-160	-	30	
Methyl tert butyl ether	100		-		60-140	-	30	
Tert-Butyl Alcohol	110		-		60-140	-	30	
Tertiary-Amyl Methyl Ether	95		-		60-140	-	30	

KENMORE SQUARE NORTH

Lab Number:

L1904083 02/12/19

Project Number: 6216.9.00

Project Name:

Dament D

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1203300-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery 0	Acceptance Qual Criteria
Pentafluorobenzene	98		60-140
Fluorobenzene	104		60-140
4-Bromofluorobenzene	93		60-140

Project Name: KENMORE SQUARE NORTH Lab Number:

L1904083

Project Number: 6216.9.00

Report Date: 02/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sample	ole(s): 01-02	Batch: WG12	204559-2					
1,2-Dibromoethane	100		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

02/12/19

Parameter	Native Sample	MS Added	MS Found		//S covery	Qual	MSD Found	MSD %Recovery		Recovery Limits	, RPD	Qual	RPD Limits	<u>Colum</u> n
Microextractables by GC - SAMPLE B-1A (OW)	Westborough Lab	Associate	ed sample(s):	01-02	QC Bat	ch ID: W	G1204559-:	3 QC Samp	le: L190	04083-01	Client ID	: BUILI	DING B R	RGP
1,2-Dibromoethane	ND	0.249	0.242		97		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: Lab Number: KENMORE SQUARE NORTH L1904083

Project Number: Report Date: 6216.9.00 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

BUILDING B RGP SAMPLE B-1A (OW) Date Received: Client ID: 01/31/19 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 02/01/19 08:41 Analytical Method: 129,625.1

Analytical Date: 02/03/19 00:35

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Nitrobenzene-d5	59		42-122
2-Fluorobiphenyl	69		46-121
4-Terphenyl-d14	84		47-138

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/01/19 08:41
Analytical Date: 02/02/19 10:30

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	-SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	39	25-87
Phenol-d6	29	16-65
Nitrobenzene-d5	71	42-122
2-Fluorobiphenyl	61	46-121
2,4,6-Tribromophenol	93	45-128
4-Terphenyl-d14	66	47-138

Lab Number: **Project Name:** KENMORE SQUARE NORTH L1904083

Project Number: Report Date: 6216.9.00 02/12/19

SAMPLE RESULTS

02/03/19 01:03

Lab ID: L1904083-02 Date Collected: 01/31/19 11:00

BUILDING C RGP SAMPLE B-6 (OW) Date Received: Client ID: 01/31/19 Sample Location: Field Prep: BOSTON, MA Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 02/01/19 08:41 Analytical Method: 129,625.1

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ua/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	72	42-122	
2-Fluorobiphenyl	79	46-121	
4-Terphenyl-d14	90	47-138	

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-02 Date Collected: 01/31/19 11:00

Client ID: BUILDING C RGP SAMPLE B-6 (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/01/19 08:41
Analytical Date: 02/02/19 10:56

Analyst: CB

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/M	S-SIM - Westborough Lal	b				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	95	42-122	
2-Fluorobiphenyl	68	46-121	
2,4,6-Tribromophenol	92	45-128	
4-Terphenyl-d14	70	47-138	

Extraction Method: EPA 625.1

L1904083

Lab Number:

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00 Report Date: 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1

Analytical Date:	02/02/19 19:55	Extraction Date:	02/01/19 07:51
Analyst:	ALS		

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01-02	Batch:	WG1202976-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2			
Butyl benzyl phthalate	ND		ug/l	5.0			
Di-n-butylphthalate	ND		ug/l	5.0			
Di-n-octylphthalate	ND		ug/l	5.0			
Diethyl phthalate	ND		ug/l	5.0			
Dimethyl phthalate	ND		ug/l	5.0			

	Acceptance					
Surrogate	%Recovery Qualifier Criteria					
		_				
Nitrobenzene-d5	46 42-122					
2-Fluorobiphenyl	59 46-121					
4-Terphenyl-d14	83 47-138					

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 02/03/19 12:05

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 02/01/19 17:07

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample(s):	01-02	Batch:	WG1203179-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	46	25-87
Phenol-d6	32	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	67	46-121
2,4,6-Tribromophenol	84	45-128
4-Terphenyl-d14	76	47-138

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01-02 Batch:	WG1202	976-2				
Bis(2-ethylhexyl)phthalate	100		-		29-137	-		30	
Butyl benzyl phthalate	106		-		1-140	-		30	
Di-n-butylphthalate	99		-		8-120	-		30	
Di-n-octylphthalate	111		-		19-132	-		30	
Diethyl phthalate	95		-		1-120	-		30	
Dimethyl phthalate	91		-		1-120	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	75		42-122	
2-Fluorobiphenyl	82		46-121	
4-Terphenyl-d14	85		47-138	

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083

Report Date: 02/12/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Quai	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	ssociated sar	nple(s): 01-02	Batch:	WG1203179-2				
Acenaphthene	78		-		60-132	-		30	
Fluoranthene	86		-		43-121	-		30	
Naphthalene	68		-		36-120	-		30	
Benzo(a)anthracene	87		-		42-133	-		30	
Benzo(a)pyrene	96		-		32-148	-		30	
Benzo(b)fluoranthene	92		-		42-140	-		30	
Benzo(k)fluoranthene	95		-		25-146	-		30	
Chrysene	86		-		44-140	-		30	
Acenaphthylene	80		-		54-126	-		30	
Anthracene	86		-		43-120	-		30	
Benzo(ghi)perylene	95		-		1-195	-		30	
Fluorene	83		-		70-120	-		30	
Phenanthrene	82		-		65-120	-		30	
Dibenzo(a,h)anthracene	97		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	99		-		1-151	-		30	
Pyrene	89		-		70-120	-		30	
Pentachlorophenol	66		-		38-152	-		30	

Project Name: KENMORE SQUARE NORTH

Lab Number:

L1904083

Project Number: 6216.9.00

Report Date:

02/12/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recoverv	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1203179-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	47		25-87
Phenol-d6	34		16-65
Nitrobenzene-d5	78		42-122
2-Fluorobiphenyl	70		46-121
2,4,6-Tribromophenol	101		45-128
4-Terphenyl-d14	76		47-138

PCBS

02/01/19

Cleanup Date:

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 02/01/19 15:30
Extraction Date: 02/01/19 06:45
Cleanup Method: EPA 3665A

Analyst: WR Cleanup Date: 02/01/19
Cleanup Method: EPA 3660B

Qualifier Units RL MDL Result **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND ug/l 0.250 --1 Α Aroclor 1221 ND ug/l 0.250 Α 1 Aroclor 1232 ND ug/l 0.250 --Α ND 1 Aroclor 1242 ug/l 0.250 Α Aroclor 1248 ND ug/l 0.250 1 Α Aroclor 1254 ND 0.250 ug/l --1 Α Aroclor 1260 ND 0.200 1 Α ug/l --

	Acceptance							
Surrogate	% Recovery	Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	86		37-123	В				
Decachlorobiphenyl	80		38-114	В				
2,4,5,6-Tetrachloro-m-xylene	89		37-123	Α				
Decachlorobiphenyl	73		38-114	Α				

L1904083

Lab Number:

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00 **Report Date:** 02/12/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 01/31/19 21:31

Analyst: WR

Extraction Method: EPA 608.3
Extraction Date: 01/31/19 07:03
Cleanup Method: EPA 3665A
Cleanup Date: 01/31/19
Cleanup Method: EPA 3660B
Cleanup Date: 01/31/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01 Batch:	WG1202623	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		1	Acceptano	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	85		37-123	В
Decachlorobiphenyl	79		38-114	В
2,4,5,6-Tetrachloro-m-xylene	87		37-123	Α
Decachlorobiphenyl	77		38-114	Α

Project Name: KENMORE SQUARE NORTH Lab Number:

L1904083

Project Number: 6216.9.00

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbe	orough Lab Associa	ted sample(s):	01 Batch:	WG1202623-	2				
Aroclor 1016	76		-		50-140	-		36	Α
Aroclor 1260	63		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	87		37-123 B
Decachlorobiphenyl	81		38-114 B
2,4,5,6-Tetrachloro-m-xylene	92		37-123 A
Decachlorobiphenyl	78		38-114 A

METALS

01/31/19 14:00

Date Collected:

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00334		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Iron, Total	6.46		mg/l	0.050		1	02/01/19 12:45	02/01/19 20:18	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/01/19 11:14	02/01/19 17:14	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	02/01/19 12:45	02/04/19 12:44	EPA 3005A	3,200.8	AM
General Chemistry -	Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/04/19 12:44	NA	107,-	

01/31/19 11:00

Date Collected:

Project Name: Lab Number: KENMORE SQUARE NORTH L1904083 02/12/19

Project Number: Report Date: 6216.9.00

SAMPLE RESULTS

Lab ID: L1904083-02

BUILDING C RGP SAMPLE B-6 (OW) Client ID: Date Received: 01/31/19 BOSTON, MA Field Prep: Not Specified Sample Location:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/01/19 12:45	02/04/19 12:48	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:48	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/01/19 12:45	02/04/19 12:48	EPA 3005A	3,200.8	AM
Chromium, Total	0.00120		mg/l	0.00100		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	AM
Copper, Total	0.00226		mg/l	0.00100		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	AM
Iron, Total	0.619		mg/l	0.050		1	02/01/19 12:45	5 02/01/19 21:16	EPA 3005A	19,200.7	AB
Lead, Total	0.00131		mg/l	0.00100		1	02/01/19 12:45	02/04/19 12:48	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/01/19 11:14	102/01/19 17:15	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	АМ
Selenium, Total	ND		mg/l	0.00500		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	02/01/19 12:45	5 02/04/19 12:48	EPA 3005A	3,200.8	АМ
General Chemistry -	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/04/19 12:48	NA	107,-	

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date: 02/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: Wo	G12030	061-1				
Mercury, Total	ND	mg/l	0.00020		1	02/01/19 11:14	02/01/19 16:55	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s)	: 01-02 E	Batch: Wo	G12030	73-1				
Antimony, Total	ND	mg/l	0.00400		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	02/01/19 12:45	02/04/19 11:33	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01-02 E	Batch: W	G12030	76-1				
Iron, Total	ND	mg/l	0.050		1	02/01/19 12:45	02/01/19 20:09	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bat	ch: WG120	3061-2					
Mercury, Total	98		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bat	ch: WG120	3073-2					
Antimony, Total	96		-		85-115	-		
Arsenic, Total	104		-		85-115	-		
Cadmium, Total	108		-		85-115	-		
Chromium, Total	97		-		85-115	-		
Copper, Total	97		-		85-115	-		
Lead, Total	104		-		85-115	-		
Nickel, Total	100		-		85-115	-		
Selenium, Total	112		-		85-115	-		
Silver, Total	103		-		85-115	-		
Zinc, Total	109		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bat	ch: WG120	3076-2					
Iron, Total	104		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083

Report Date: 02/12/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery lal Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated sam	nple(s): 01-02	QC Batc	h ID: WG120	3061-3	QC Sam	nple: L1903905-01	Client ID: MS	S Sample	
Mercury, Total	ND	0.005	0.00500	100		-	-	70-130	-	20
Total Metals - Mansfield Lab A B-1A (OW)	Associated sam	nple(s): 01-02	QC Batc	h ID: WG120	3073-3	QC Sam	nple: L1904083-01	Client ID: BU	JILDING B RG	P SAMPLE
Antimony, Total	ND	0.5	0.5815	116		-	-	70-130	-	20
Arsenic, Total	0.00334	0.12	0.1327	108		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05628	110		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2013	101		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2421	97		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5280	104		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4922	98		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1395	116		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05129	102		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5513	110		-	-	70-130	-	20
Total Metals - Mansfield Lab A B-1A (OW)	Associated sam	nple(s): 01-02	QC Batc	h ID: WG120	3076-3	QC Sam	nple: L1904083-01	Client ID: BU	JILDING B RG	P SAMPLE
Iron, Total	6.46	1	7.50	104		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 0	01-02 QC Batch ID:	WG1203061-4 QC Sample:	L1903905-01	Client ID:	DUP Sample
Mercury, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): (B-1A (OW)	01-02 QC Batch ID:	WG1203073-4 QC Sample:	L1904083-01	Client ID:	BUILDING B RGP SAMPLE
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.00334	0.00359	mg/l	7	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	ND	ND	mg/l	NC	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): (B-1A (OW)	01-02 QC Batch ID:	WG1203076-4 QC Sample:	L1904083-01	Client ID:	BUILDING B RGP SAMPLE
Iron, Total	6.46	6.61	mg/l	2	20

INORGANICS & MISCELLANEOUS

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-01 Date Collected: 01/31/19 14:00

Client ID: BUILDING B RGP SAMPLE B-1A (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	11.		mg/l	5.0	NA	1	-	02/01/19 10:45	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	02/01/19 11:35	02/01/19 14:59	121,4500CN-CE	AG
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/31/19 22:04	121,4500CL-D	AS
Nitrogen, Ammonia	2.17		mg/l	0.075		1	02/01/19 03:30	02/04/19 20:44	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/01/19 16:30	02/01/19 21:15	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	02/04/19 07:42	02/05/19 05:45	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/19 00:45	02/01/19 01:12	1,7196A	MA
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	608.		mg/l	12.5		25	-	02/02/19 18:27	44,300.0	JR

Project Name: KENMORE SQUARE NORTH Lab Number: L1904083

Project Number: 6216.9.00 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904083-02 Date Collected: 01/31/19 11:00

Client ID: BUILDING C RGP SAMPLE B-6 (OW) Date Received: 01/31/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/01/19 10:45	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	02/01/19 11:35	02/01/19 15:03	121,4500CN-CE	AG
Chlorine, Total Residual	ND		mg/l	0.02		1	-	01/31/19 22:04	121,4500CL-D	AS
Nitrogen, Ammonia	0.155		mg/l	0.075		1	02/01/19 03:30	02/04/19 20:40	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/01/19 16:30	02/01/19 21:15	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	02/04/19 07:42	02/05/19 05:47	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/19 00:45	02/01/19 01:13	1,7196A	MA
Anions by Ion Chromatog	raphy - Wes	tborough	Lab							
Chloride	159.		mg/l	12.5		25	-	02/02/19 18:39	44,300.0	JR

L1904083

Lab Number:

Project Name: KENMORE SQUARE NORTH

Report Date: Project Number: 6216.9.00 02/12/19

Λ

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qual	ifier Units	RL	. MD	Dilution L Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: '	WG1202901-	-1			
Chlorine, Total Residual	ND	mg/l	0.0)2	1	-	01/31/19 22:04	121,4500CL-D	AS
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: `	WG1202925-	-1			
Chromium, Hexavalent	ND	mg/l	0.0	10	1	02/01/19 00:45	02/01/19 01:11	1,7196A	MA
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: '	WG1202937-	-1			
Nitrogen, Ammonia	ND	mg/l	0.0	75	1	02/01/19 03:30	02/04/19 20:33	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: '	WG1202982-	-1			
Solids, Total Suspended	ND	mg/l	5.	0 N	A 1	-	02/01/19 10:45	121,2540D	DR
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: '	WG1203034-	-1			
Cyanide, Total	ND	mg/l	0.0	05	1	02/01/19 11:35	02/01/19 14:52	121,4500CN-CE	AG
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch: '	WG1203167-	-1			
TPH, SGT-HEM	ND	mg/l	4.0	00	1	02/01/19 16:30	02/01/19 21:15	74,1664A	ML
Anions by Ion Chrom	natography - Westbord	ough Lab for	sample	e(s): 01-	02 Batch: V	NG1203484-1			
Chloride	ND	mg/l	0.5	00	1	-	02/02/19 15:27	44,300.0	JR
General Chemistry -	Westborough Lab for	r sample(s):	01-02	Batch:	WG1203529-	-1			
Phenolics, Total	ND	mg/l	0.0	30	1	02/04/19 07:42	02/05/19 05:43	4,420.1	GD

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	LCS %Recovery Qu	ual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02	Batch: WG12029	901-2				
Chlorine, Total Residual	104		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	-02	Batch: WG12029	925-2				
Chromium, Hexavalent	98		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	-02	Batch: WG12029	937-2				
Nitrogen, Ammonia	85		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02	Batch: WG12030	034-2				
Cyanide, Total	110		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	-02	Batch: WG12031	167-2				
ТРН	91		-		64-132	-		34
Anions by Ion Chromatography - Westb	oorough Lab Associated sa	ample	e(s): 01-02 Bato	ch: WG120)3484-2			
Chloride	100		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-	-02	Batch: WG12038	529-2				
Phenolics, Total	88		-		70-130	-		

Matrix Spike Analysis Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083

Report Date: 02/12/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits RPD	RPD Qual Limits
General Chemistry - Westboroug SAMPLE B-6 (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1202901-4	QC Sample: L1904	1083-02 Client ID:	BUILDING C RGP
Chlorine, Total Residual	ND	0.25	0.18	72	Q -	-	80-120 -	20
General Chemistry - Westboroug SAMPLE B-6 (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1202925-4	QC Sample: L1904	1083-02 Client ID:	BUILDING C RGP
Chromium, Hexavalent	ND	0.1	0.092	92	-	-	85-115 -	20
General Chemistry - Westboroug SAMPLE B-1A (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1202937-4	QC Sample: L1904	1083-01 Client ID:	BUILDING B RGP
Nitrogen, Ammonia	2.17	4	5.84	92	-	-	80-120 -	20
General Chemistry - Westboroug SAMPLE B-6 (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1203034-4	QC Sample: L1904	1083-02 Client ID:	BUILDING C RGP
Cyanide, Total	ND	0.2	0.208	104	-	-	90-110 -	30
General Chemistry - Westboroug SAMPLE B-6 (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1203167-4	QC Sample: L1904	1083-02 Client ID:	BUILDING C RGP
ТРН	ND	20	17.9	90	-	-	64-132 -	34
Anions by Ion Chromatography - Sample	Westboroug	h Lab Asso	ciated samp	le(s): 01-02	QC Batch ID: WG	1203484-3 QC Sa	ample: L1904055-01	Client ID: MS
Chloride	69.2	40	108	97	-	-	90-110 -	18
General Chemistry - Westboroug SAMPLE B-1A (OW)	h Lab Assoc	ciated sampl	e(s): 01-02	QC Batch II	D: WG1203529-4	QC Sample: L1904	1083-01 Client ID:	BUILDING B RGP
Phenolics, Total	ND	0.4	0.38	96	-	-	70-130 -	20

Lab Duplicate Analysis Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	Native San	nple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab SAMPLE B-1A (OW)	Associated sample(s): 01-02	QC Batch ID:	WG1202901-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
Chlorine, Total Residual	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab SAMPLE B-1A (OW)	Associated sample(s): 01-02	QC Batch ID:	WG1202925-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab SAMPLE B-1A (OW)	Associated sample(s): 01-02	QC Batch ID:	WG1202937-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
Nitrogen, Ammonia	2.17		2.22	mg/l	2		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1202982-2	QC Sample:	L1904048-01	Client ID:	DUP Sample
Solids, Total Suspended	220		230	mg/l	4		29
General Chemistry - Westborough Lab SAMPLE B-1A (OW)	Associated sample(s): 01-02	QC Batch ID:	WG1203034-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
Cyanide, Total	ND		ND	mg/l	NC		30
General Chemistry - Westborough Lab SAMPLE B-1A (OW)	Associated sample(s): 01-02	QC Batch ID:	WG1203167-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
TPH, SGT-HEM	ND		ND	mg/l	NC		34
Anions by Ion Chromatography - Westb Sample	orough Lab Associated sample	e(s): 01-02 C	QC Batch ID: WG	1203484-4	QC Sample: L	1904055-0	1 Client ID: DUP
Chloride	69.2		69.8	mg/l	1		18

Lab Duplicate Analysis

Batch Quality Control

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number:

L1904083

Report Date:

Parameter	Native Samp	ole Dup	olicate Sample	Units	RPD		RPD Limits
General Chemistry - Westborough Lab Ass SAMPLE B-1A (OW)	sociated sample(s): 01-02	QC Batch ID: W	/G1203529-3	QC Sample:	L1904083-01	Client ID:	BUILDING B RGP
Phenolics, Total	ND		ND	mg/l	NC		20

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Lab Number: L1904083 **Report Date:** 02/12/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1904083-01A	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-01B	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-01C	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-01D	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-01E	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-01F	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-01H	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1904083-01I	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1904083-01J	Vial HCI preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-01K	Vial HCI preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-01L	Vial HCI preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-01M	Plastic 250ml HNO3 preserved	Α	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1904083-01N	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L1904083-01O	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L1904083-01P	Amber 950ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		TPHENOL-420(28)
L1904083-01Q	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1904083-01R	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
L1904083-01S	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1904083-01T	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1904083-01U	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		PCB-608.3(7)
L1904083-01V	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		PCB-608.3(7)

Lab Number: L1904083

Report Date: 02/12/19

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1904083-01W	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-RGP(7)
L1904083-01X	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-RGP(7)
L1904083-01Y	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-SIM-RGP(7)
L1904083-01Z	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-SIM-RGP(7)
L1904083-02A	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-02B	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-02C	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-SIM-RGP(7)
L1904083-02D	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-02E	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-02F	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7)
L1904083-02H	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1904083-02I	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1904083-02J	Vial HCl preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-02K	Vial HCl preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-02L	Vial HCl preserved	Α	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1904083-02M	Plastic 250ml HNO3 preserved	Α	<2	<2	3.0	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1904083-02N	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L1904083-02O	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L1904083-02P	Amber 950ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		TPHENOL-420(28)
L1904083-02Q	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1904083-02R	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
L1904083-02S	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1904083-02T	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1904083-02U	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		HOLD-8082()
L1904083-02V	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		HOLD-8082()
L1904083-02W	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-RGP(7)

Lab Number: L1904083

Report Date: 02/12/19

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.00

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1904083-02X	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-RGP(7)
L1904083-02Y	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-SIM-RGP(7)
L1904083-02Z	Amber 1000ml Na2S2O3	Α	7	7	3.0	Υ	Absent		625.1-SIM-RGP(7)

Project Name: Lab Number: KENMORE SQUARE NORTH L1904083 **Project Number:** 6216.9.00 **Report Date:** 02/12/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

MS which an independent estimate of target analyte concentration is available.

- Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

MSD

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:KENMORE SQUARE NORTHLab Number:L1904083Project Number:6216.9.00Report Date:02/12/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:KENMORE SQUARE NORTHLab Number:L1904083Project Number:6216.9.00Report Date:02/12/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance Title: Certificate/Approval Program Summary

Page 1 of 1

ID No.:17873

Revision 12

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN	OF CU	STO	DY	PAGE 1 O	F 1	Date	Rec'd	in Lab:	LI	90	40	83		ALP	HA J	ob #:	1-	31-19	
ALPH	A	Pro	ect Inform	nation	State of the last	REAL PROPERTY.			nform						Billir	ng In	forma	tion		
ANALYTICA								FAX			□ E	MAIL			⊠ s	ame a	s Client	info	PO #:	
Westborough, MA M	Aansfield, MA				1		⊠	ADEx				dd'l De	liverab	es						
TEL: 508-898-9220	TEL: 506-822-9300 FAX: 508-822-3288	Proj	ect Name: K	(enmore So	quare North		-		ory Re		ment	s/Rep	ort L	imits	Criteri			AL.	Value of	
Client Information		Proje	ect Location	: Boston M	1A		100000	NPDE:	rogram S RGP							a	_			
Client: McPhial Ass	Parks.		ect#: 6216.				MC	P PR	ESUN	MPTIVE CERTAINTY-CT REAS					ASO	ASONABLE CONFIDENCE PROTOCOLS				s
Address: 2269 Mas			ect Manage					U.S. Commercial Commer	_	□ No ⊠ No				2.723-14.122	Methods Required? onable Confidence Protocols			e) Required?	-	
Cambridge, MA 021	140	Tocomis	ALPHA Quote #:			-	ALYS		ZI 140		Nie) NG	(Neas	soriable confidence Protocol.			POLOCOL		Ţ	
Phone: 617-868-14	20		n-Around	192 - 1	THE R	STATE OF													SAMPLE HANDLING Filtration	O T A
Fax: 617-868-1423		⊠s	tandard	□R	ush (ONLY IF P	RE-APPROVED;	=												☐ Done	Å L
Email: kseaman@n	ncphailgeo.com								0.							RG.			☐ Not Needed ☐ Lab to do	# B
☐ These samples have	been Previously analyzed by Alpha	Due	Date:	Time	c				-RG							624.1SIM-RGP			Preservation Lab to do	O T
Other Project Spe	ecific Requirements/Cor	mments/Dete	ction Limit	s:					625.1 SIM-RGP	귱						124.1			(Please specify below)	BOTTLES
									325.1	HexCr, TRC-4500,		Total RGP Metals							Delow)	S
							7			P.	0	Ø.			loue	504 624.1-RGP,	6.3			
							TPH-1664	enol	625.1-RGP,	5	TSS-2540	RG	122	_	Sub-Ethanol	624	8 608.3			
ALPHA Lab ID (Lab Use Only)	Sample ID			ection	Sample Matrix	Sampler's Initials	표	Tphenol	625	Hex	TSS	Tota	NH3	10 10 10	Sub	504	PCB	i i	Sample Specific Comments	
		0 14/ 1	Date	Time 1400			_													_
04083-61	Building B RGP Sample Building C RGP Sample	RE(1/3/119	1100	6W	The	X											님		25
02	-Building C RGP Sample	D-es Con	1131117	11-	6W	TWC			H	H		H			H		H	H		
					1		H	H	H	H	H	H	H	H	H	H	H	H		_
							H	H	Ħ	H	Ħ	H	H	H	H	H	H	H		
					1			Ħ	in	Ħ	Ħ	Ħ	T	Ħ	Ħ	ī	ī	ī		_
THE SALE OF																				-
																			3	
THE COURT																				
PLEASE ANSWER O	QUESTIONS ABOVE!				C	Container Type	Α	Α	Α	Р	Р	Р	Р	Р	٧	٧	Α			
						Preservative	В	D	н	Α	Α	С	D	E	В	н	Н	*	Please print clearly, legibly and completely. Samples c	
IS YOUR	PROJECT			Reli	nquished By:		, D	ate/Tim	ie			Receiv	ed By:			-	Date/Tir	1775	not be logged in and turnaround time clock will no start until any ambiguities a	
	or CT RCP?	,	-10	~ (_	1 1 1 1	1/31	119	120)	Ap	my	111	2	P	1	1/3/	19 10	350	resolved. All samples submitted are subject to	
FORM NO: 01-01(I) (rev. 5-JAN-12)			ton	- L 6 8	WHY?	1441-14	8/1/Q	18.	Lu	1/2	ber		131	1/4 /1	100	1			Alpha's Payment Terms.	

Subcontract Chain of Custody

ANALY I		Te 29 Na	st America (N 60 Foster Cre shville, TN 37	Alpha Job Number L1904083				
C	lient Information	E SEL TOP	Project In	formation		Regulatory	Requirements/Report L	imits
Client: Alpha A ddress: Eight W Westbo Phone: 603,319 Email: mgulli@	nalytical Labs /alkup Drive rough, MA 01581-1019 9.5010 /alphalab.com	Project Location Project Manage Turnard Due Date Deliverables	ound & Deliv	lli verables Info	rmation	State/Federal Progr Regulatory Criteria:		
		Project Specif		ents and/or	Renort Requi	rements		
ACTIVACES NO.	Reference following Alpha Job Nu			e - THE STREET, SECTION ASSESSED.		port to include Method	Blank LCS/LCSD:	
	ments: Send all results/reports to			, L1304003	Re	port to include Method	Blank, EGS/EGSD.	
503003515543550 530 530000								
							V REMAINS ON THE REAL PROPERTY.	
Lab ID	Client ID	Collection Date/Time	Sample Matrix		Analysis			Batch QC
	BUILDING B RGP SAMPLE B- 1A (OW) BUILDING C RGP SAMPLE B- 6A (OW)	01-31-19 14:00	WATER		1671 Revision A			
	Relinquished	l By:		Date/Time:		Received By:	Date/Time:	:
				2/4/19	14:10		7.5.7	2 11 11 1
Ventage of the second		2000						

Form No: AL_subcoc

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-167913-1

Client Project/Site: L1904083

Revision: 1

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Reports Dept.

Authorized for release by: 2/8/2019 6:34:40 PM

Kuntll Hage

Ken Hayes, Project Manager II

(615)301-5035

ken.hayes@testamericainc.com

·····LINKS ·······

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 62 of 75

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

__

Ę

6

0

10

11

12

TestAmerica Job ID: 490-167913-1

Client: Alpha Analytical Inc Project/Site: L1904083

Table of Contents

Cover Page	
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	9
Chronicle	10
Method Summary	11
Certification Summary	12
Chain of Custody	

3

4

9

10

11

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1904083

TestAmerica Job ID: 490-167913-1

- 4
J

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-167913-1	BUILDING B RGP SAMPLE B-1A (OW)	Water	01/31/19 14:00	02/05/19 09:00
490-167913-2	BUILDING C RGP SAMPLE B-6 (OW)	Water	01/31/19 11:00	02/05/19 09:00

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Job ID: 490-167913-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-167913-1

REVISED REPORT: Revised to correct the sample ID in 490-167913-2 at the client's request. This report replaces the one generated on 02/08/19 @ 1536.

Comments

No additional comments.

Receipt

The samples were received on 2/5/2019 9:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

GC Semi VOA

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-573728.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

2

J

4

5

6

7

8

9

IU

11

12

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Glossary

RER

RPD TEF

TEQ

RL

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control

2

3

4

5

6

1

8

9

10

11

12

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Lab Sample ID: 490-167913-1

Client Sample ID: BUILDING B RGP SAMPLE B-1A (OW) Date Collected: 01/31/19 14:00

Matrix: Water

Date Received: 02/05/19 09:00

Method: 1671A - Ethanol (G	C/FID)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			02/05/19 15:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	82		70 - 130			-		02/05/19 15:36	1

5

5

6

9

4 4

4.0

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Client Sample ID: BUILDING C RGP SAMPLE B-6 (OW) Date Collected: 01/31/19 11:00

Lab Sample ID: 490-167913-2 Matrix: Water

Date Received: 02/05/19 09:00

Method: 1671A - Ethanol (GC/	FID)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			02/05/19 15:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	82		70 - 130			_		02/05/19 15:43	1

__

6

7

_

10

11

12

QC Sample Results

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

6

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-573728/4

Matrix: Water

Analysis Batch: 573728

Client Sample ID: Method Blank Prep Type: Total/NA

 Analyte
 Result
 Qualifier
 RL
 MDL vnit
 D vnit
 Prepared
 Analyzed
 Dil Fac

 Ethanol
 ND
 2000
 500
 ug/L
 02/05/19 15:12
 1

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Isopropyl acetate (Surr)
 89
 70 - 130
 02/05/19 15:12
 1

Lab Sample ID: LCS 490-573728/5

Matrix: Water

Analysis Batch: 573728

 Analyte
 Added Ethanol
 Result Spike
 LCS LCS
 %Rec.

 50200
 53870
 Unit ug/L
 D %Rec Limits

 107
 70 - 130

LCS LCS

Surrogate%RecoveryQualifierLimitsIsopropyl acetate (Surr)8470 - 130

Lab Sample ID: LCSD 490-573728/6

Matrix: Water

Analysis Batch: 573728

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Ethanol 50200 51040 102 ug/L 70 - 130 5

LCSD LCSD

Surrogate%RecoveryQualifierLimitsIsopropyl acetate (Surr)8170 - 130

TestAmerica Nashville

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

GC VOA

Analysis Batch: 573728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-167913-1	BUILDING B RGP SAMPLE B-1A (OW)	Total/NA	Water	1671A	
490-167913-2	BUILDING C RGP SAMPLE B-6 (OW)	Total/NA	Water	1671A	
MB 490-573728/4	Method Blank	Total/NA	Water	1671A	
LCS 490-573728/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-573728/6	Lab Control Sample Dup	Total/NA	Water	1671A	

1

5

0

8

9

10

11

46

2/8/2019 (Rev. 1)

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1904083

TestAmerica Job ID: 490-167913-1

Lab Sample ID: 490-167913-1

Matrix: Water

Date Collected: 01/31/19 14:00 Date Received: 02/05/19 09:00

Batch Batch Dil Initial Final Batch Prepared Method **Amount Amount Prep Type** Type Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 1671A 573728 02/05/19 15:36 ZXS TAL NSH

Client Sample ID: BUILDING C RGP SAMPLE B-6 (OW) Lab Sample ID: 490-167913-2

Date Collected: 01/31/19 11:00 **Matrix: Water**

Date Received: 02/05/19 09:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			573728	02/05/19 15:43	ZXS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Client Sample ID: BUILDING B RGP SAMPLE B-1A (OW)

Method Summary

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

MethodMethod DescriptionProtocolLaboratory1671AEthanol (GC/FID)EPATAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

9

4

F

6

9

10

44

10

Accreditation/Certification Summary

Client: Alpha Analytical Inc Project/Site: L1904083 TestAmerica Job ID: 490-167913-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Program		EPA Region	Identification Number	Expiration Date
State Program		9	2938	06-30-19 *
included in this report, but certification.	the laboratory is r	not certified by th	e governing authority. This	list may include analytes for which
Prep Method	Matrix	Analy	te	
	Water	Ethan	ol	
State Program		1	TN00032	11-03-19
certification. Prep Method	Matrix	Analy	te	
	Water	Ethan	ol	
State Program		1	M-TN032	06-30-19
included in this report, but certification.	the laboratory is r	not certified by th	e governing authority. This	list may include analytes for which
Prep Method	Matrix	Analy	te	
	Water	Ethan	ol	
	State Program included in this report, but certification. Prep Method State Program included in this report, but certification. Prep Method State Program included in this report, but certification.	State Program included in this report, but the laboratory is retrification. Prep Method State Program included in this report, but the laboratory is retrification. Prep Method Matrix Water State Program included in this report, but the laboratory is retrification. Prep Method Matrix Water State Program included in this report, but the laboratory is retrification. Prep Method Matrix	State Program 9 included in this report, but the laboratory is not certified by the pertification. Prep Method Matrix Water State Program 1 included in this report, but the laboratory is not certified by the pertification. Prep Method Matrix Analy included in this report, but the laboratory is not certified by the pertification. Prep Method Matrix Analy State Program 1 included in this report, but the laboratory is not certified by the pertification. Prep Method Matrix Analy Analy Analy Metrification. Prep Method Matrix Analy Analy	State Program 9 2938 included in this report, but the laboratory is not certified by the governing authority. This certification. Prep Method Matrix Water State Program 1 TN00032 included in this report, but the laboratory is not certified by the governing authority. This certification. Prep Method Matrix Analyte Ethanol State Program 1 M-TN032 included in this report, but the laboratory is not certified by the governing authority. This certification. Prep Method Matrix Analyte Ethanol State Program 1 M-TN032 included in this report, but the laboratory is not certified by the governing authority. This certification. Prep Method Matrix Analyte

TestAmerica Nashville

2

4

5

7

8

9

10

11

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM

Nashville, TN	COOLER RECEIPT FORM 4	90-167913 Chain of Cu
	Time Samples Placed In Storage (2.5) L 444 ast 4 digits, FedEx) Courier: UB Additional Courier Chlorine Strip Lot	
	ank when opened: /r / Degrees Celsius	ves no Gh
3. If Item #2 temperature is 0°C or less, was	s the representative sample or temp blank frozen?	YES NO(NA)
4. Were custody seals on outside of cooler	r?	YES. NO NA
If yes, how many and where:		
5. Were the seals intact, signed, and dated	correctly?	YESNO
6. Were custody papers inside cooler?		FESNONA
i certify that I opened the cooler and answe	ered guestions 1-6 (intial)	
7. Were custody seals on containers:	YES NO and Intact	YESNO(NA
Were these signed and dated correctly?		YESNONA
8. Packing mat'l used? Bubblewrap	Plastic bag Peanuts Vermiculite Foam Insert Pa	iper Other None
9. Cooling process:	Ice Ice-pack Ice (direct contact) Dry ice	e Other None
10. Did all containers arrive in good condit	tion (unbroken)?	YES NO NA
11. Were all container labels complete (#, c	date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree	with custody papers?	YESNONA
13a. Were VOA vials received?		YESNONA
b. Was there any observable headspace	present in any VOA vial?	YES. NONA
Larger than this.		

If multiple coolers, sequence # 14. Was there a Trip Blank in this cooler? I certify that I unloaded the cooler and answered questions 7-14 (intial)

15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?

b. Did the bottle labels indicate that the correct preservatives were used

16. Was residual chlorine present?

I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)

17. Were custody papers properly filled out (ink, signed, etc)?

18. Did you sign the custody papers in the appropriate place?

19. Were correct containers used for the analysis requested?

20. Was sufficient amount of sample sent in each container?

I certify that I entered this project into LIMS and answered questions 17-20 (intial)

I certify that I attached a label with the unique LIMS number to each container (intial)

21. Were there Non-Conformance issues at login? YES. (NO) Was a NCM generated? YES. (NO)

.NO. (NA

..NO...NA

..NO...NA

.NO...NA

(ES)...NO...NA

2

3

4

4

6

8

10

11

12

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1902926

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Brendan O'Neil Phone: (617) 868-1420

Project Name: LANDMARK CENTER

Project Number: 5512 Report Date: 01/28/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1902926-01	SURFACE WATER CHARLES RIVER SAMPLE	WATER	BOSTON, MA	01/23/19 13:00	01/23/19

Project Name:LANDMARK CENTERLab Number:L1902926Project Number:5512Report Date:01/28/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

ricase somast i rojest Management at 600 024 02	220 With drift questions.	

Please contact Project Management at 800-624-9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 01/28/19

Custen Walker Cristin Walker

ALPHA

METALS

Not Specified

Field Prep:

Project Name: Lab Number: LANDMARK CENTER L1902926

Project Number: Report Date: 5512 01/28/19

SAMPLE RESULTS

Lab ID: L1902926-01

Date Collected: 01/23/19 13:00 Client ID: SURFACE WATER CHARLES RIVER Date Received: 01/23/19

Sample Location: SAMPLE

BOSTON, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Copper, Total	0.00177		mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Iron, Total	0.410		mg/l	0.050		1	01/24/19 07:50	01/24/19 14:09	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Mercury, Total	0.00020		mg/l	0.00020		1	01/24/19 11:13	01/24/19 17:20	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	01/24/19 07:50	01/24/19 12:25	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	76.9		mg/l	0.660	NA	1	01/24/19 07:50	01/24/19 14:09	EPA 3005A	1,6010D	LC

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG12	200436-	1				
Iron, Total	ND	mg/l	0.050		1	01/24/19 07:50	01/24/19 13:40	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s)	: 01 Batc	h: WG12	200438-	·1				
Antimony, Total	ND	mg/l	0.00400		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	01/24/19 07:50	01/24/19 12:08	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Batch	h: WG12	200545-	1				
Mercury, Total	ND	mg/l	0.00020		1	01/24/19 11:13	01/24/19 16:53	3,245.1	MG

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number: L1902926

Report Date: 01/28/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1200436-2				
Iron, Total	110	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1200438-2				
Antimony, Total	88	-	85-115	-		
Arsenic, Total	106	-	85-115	-		
Cadmium, Total	105	-	85-115	-		
Chromium, Total	94	-	85-115	-		
Copper, Total	95	-	85-115	-		
Lead, Total	101	-	85-115	-		
Nickel, Total	96	-	85-115	-		
Selenium, Total	110	-	85-115	-		
Silver, Total	97	-	85-115	-		
Zinc, Total	105	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG1200545-2				
Mercury, Total	100	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lal	b Associated sam	nple(s): 01	QC Batch II	D: WG120043	6-3	QC Sample:	L1902857-02	Client	ID: MS Sa	mple		
Iron, Total	ND	1	1.12	112		-	-		75-125	-		20
Total Metals - Mansfield Lal RIVER SAMPLE	b Associated sam	nple(s): 01	QC Batch II	D: WG120043	6-7	QC Sample	L1902926-01	Client	ID: SURF	ACE W	/ATER	CHARLE
Iron, Total	0.410	1	1.50	109		-	-		75-125	-		20
Total Metals - Mansfield Lal RIVER SAMPLE	b Associated sam	nple(s): 01	QC Batch II	D: WG120043	8-3	QC Sample	L1902926-01	Client	ID: SURF	ACE W	/ATER	CHARLE
Antimony, Total	ND	0.5	0.5252	105		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1287	107		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05418	106		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.1967	98		-	-		70-130	-		20
Copper, Total	0.00177	0.25	0.2460	98		-	-		70-130	-		20
Lead, Total	ND	0.51	0.5210	102		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.4910	98		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1285	107		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05069	101		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.5398	108		-	-		70-130	-		20
Total Metals - Mansfield Lal	b Associated sam	nple(s): 01	QC Batch II	D: WG120054	5-3	QC Sample:	L1902841-01	Client	ID: MS Sa	mple		
Mercury, Total	ND	0.005	0.00494	99		-	-		70-130	-		20
Total Metals - Mansfield Lal	b Associated sam	nple(s): 01	QC Batch II	D: WG120054	5-5	QC Sample:	L1902841-02	Client	ID: MS Sa	mple		
Mercury, Total	0.00029	0.005	0.00492	92		-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID: WG1200436-	4 QC Sample:	L1902857-02	Client ID:	DUP Sample
Iron, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID: WG1200436-	8 QC Sample:	L1902926-01	Client ID:	SURFACE WATER CHARLES
Iron, Total	0.410	0.402	mg/l	2	20
Total Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID: WG1200438-	4 QC Sample:	L1902926-01	Client ID:	SURFACE WATER CHARLES
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	ND	ND	mg/l	NC	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00177	0.00171	mg/l	3	20
Lead, Total	ND	ND	mg/l	NC	20
Nickel, Total	ND	ND	mg/l	NC	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	ND	ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 0	1 QC Batch ID: WG1200545-	4 QC Sample:	L1902841-01	Client ID:	DUP Sample
Mercury, Total	ND	0.00033	mg/l	NC	20

L1902926

Lab Number:

Lab Duplicate Analysis

Batch Quality Control

Project Name: LANDMARK CENTER Batch G

Project Number: 5512 Report Date: 01/28/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG12005	45-6 QC Sample: L	1902841-02	Client ID: DUP San	nple
Mercury, Total	0.00029	0.00024	mg/l	19	20

INORGANICS & MISCELLANEOUS

Project Name: LANDMARK CENTER Lab Number: L1902926

Project Number: 5512 Report Date: 01/28/19

SAMPLE RESULTS

Lab ID: L1902926-01 Date Collected: 01/23/19 13:00

Client ID: SURFACE WATER CHARLES RIVER SAMPLE Date Received: 01/23/19
Sample Location: BOSTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lal)								
Cyanide, Total	ND		mg/l	0.005		1	01/24/19 03:35	01/24/19 13:04	121,4500CN-CE	LH
pH (H)	7.0		SU	-	NA	1	-	01/24/19 07:17	121,4500H+-B	MA
Nitrogen, Ammonia	0.121		mg/l	0.075		1	01/24/19 02:00	01/24/19 20:58	121,4500NH3-BH	TA F

L1902926

Lab Number:

Project Name: LANDMARK CENTER

Project Number: 5512 Report Date: 01/28/19

S

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG12	00399-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	01/24/19 02:00	01/24/19 20:39	121,4500NH3-E	BH AT
General Chemistry	- Westborough Lab	for sam	ple(s): 01	Batch:	WG12	00410-1				
Cyanide, Total	ND		mg/l	0.005		1	01/24/19 03:35	01/24/19 12:56	121,4500CN-C	E LH

Lab Control Sample Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1200399-2	2				
Nitrogen, Ammonia	94	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1200410-2	2				
Cyanide, Total	94	•		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1200452-	1				
рН	100	-		99-101	-		5

Matrix Spike Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number: L1902926

Report Date: 01/28/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD _{Jal} Limits
General Chemistry - Wes	stborough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1200399-4	QC Sample: L19	902835-03 Client	ID: MS Sa	ample
Nitrogen, Ammonia	0.750	4	4.11	84	-	-	80-120	-	20
General Chemistry - Wes	stborough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1200410-4	QC Sample: L19	902875-02 Client	ID: MS Sa	ample
Cyanide, Total	ND	0.2	0.179	90	-	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: LANDMARK CENTER

Project Number: 5512

Lab Number:

L1902926

Report Date:

01/28/19

Parameter	Native Sample	Duplicate Sample	Units	RPD Qua	al RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Batch II	D: WG1200399-3 QC \$	Sample: L190283	5-03 Client ID	: DUP Sample
Nitrogen, Ammonia	0.750	0.712	mg/l	5	20
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Batch II	D: WG1200410-3 QC \$	Sample: L190287	5-01 Client ID	: DUP Sample
Cyanide, Total	ND	ND	mg/l	NC	30
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC Batch II	D: WG1200452-2 QC \$	Sample: L190288	7-01 Client ID	: DUP Sample
рН	6.9	6.9	SU	0	5

Project Name: LANDMARK CENTER **Lab Number:** L1902926

Report Date: 01/28/19

Project Number: 5512

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1902926-01A	Plastic 250ml HNO3 preserved	A	<2	<2	5.2	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),HARDT(180),PB-2008T(180),SB-2008T(180)
L1902926-01B	Plastic 250ml H2SO4 preserved	Α	<2	<2	5.2	Υ	Absent		NH3-4500(28)
L1902926-01C	Plastic 950ml unpreserved	Α	7	7	5.2	Υ	Absent		PH-4500(.01)
L1902926-01D	Plastic 250ml NaOH preserved	Α	>12	>12	5.2	Υ	Absent		TCN-4500(14)

Project Name: Lab Number: LANDMARK CENTER L1902926

Project Number: Report Date: 5512 01/28/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

MS

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:LANDMARK CENTERLab Number:L1902926Project Number:5512Report Date:01/28/19

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:LANDMARK CENTERLab Number:L1902926Project Number:5512Report Date:01/28/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF C	JSTO	DY	PAGE C	OF	Date	e Rec'd	in Lab		1/	23	119		ALF	PHA J	lob#:	1	1902926
ALPH	YTIGAL	oject Infor	mation	118		1000000		nforn	natior	Data		veral	oles			form	ation	
Westborough, MA TEL: 508-898-9220	Mansfield, MA TEL: 508-822-9300	oject Name:	Landark Cer	nter		7550	FAX ADEx				MAIL	eliverat	oles	⊠ :	Same a	s Clien	t info	PO#:
Client Informat	FAX: 508-822-3288	oject Location	n: Boston M	IA.				727		emen	s/Re	port l	_imits		unit	90	No.	
Client: McPhail A		oject #: 5512				1000	e/Fed F		n					Crite	1112			
STATE OF THE STATE		ject Manage		3			-		MPTIV	E CE	RTAI	NTY-	CT RE	NAME OF TAXABLE PARTY.		LE CC	ONFIL	ENCE PROTOCOLS
Cambridge, MA (OHDS COMP.	PHA Quote #		3			Yes		⊠ No		Are	MCP A	nalytica	al Meth	ods Re	quired?		
Phone: 61786814		rn-Around	-	W 1				_	⊠ No		Are	CT RC	P (Rea	sonable	e Confi	dence F	rotoco	ls) Required?
Fax: 6178681423	MA.	Standard			20.10.20.20.20.20	_AN	ALYS	ilS	_	Т				_	_	1	1	SAMPLE HANDLING
	an@mcphailgeo.com	Standard	ЦК	ISN (ONLY IF P	RE-APPROVED)				1									Filtration
	THE STATE OF THE PROPERTY AND ADDRESS OF THE PARTY OF THE	e Date:	Time:				lorine											□ Done □ Not Needed □ Lab to do
Other Project S	pecific Requirements/Comments/Det	ection Limit	ts:				le, Residual Chlorine			pH, Hardness Temperture	ŏ							Preservation Lab to do (Please specify below)
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	NH3	TSS, Chloride,	RGP Metals	TCN	4, Hardnes	HexCr, Tri C							Sample Specific
			2			0.000				1	I		_		_	_		Comments
02926-61	e 60 - 11 in al 110 -	· · ·		#"1 T		-8	8	_	X	M	M		닏					
2000	Sulface Water Charles River Song	1/23/19	(306	SW	JSW	X	님	×	X	X		닏	닏	닏	닏	닏	닏	4
					-		H	片	H	님	무	片	님	片	님	님	님	
							믐	片	片	님	무	片	님	님	님	님	님	
		_			_	H	片	H	H	H	Η	片	片	片	H	H	H	
		_		-	+	1	믐	님	H	H	౼	H	금	H	H	片	믐	
						H	H	H	H	H	+	H	片	片	H	H	H	
100000000000000000000000000000000000000					-	H	H	H	H	H	౼	片	片	片	片	H	片	
					1	Ħ	H	H	H	H	H	H	H	H	H	H	H	
PLEASE ANSWER	QUESTIONS ABOVE!			C	ontainer Type	P	-	5	9	P	-	-	-	-	-	-	-	
					Preservative	·E	22	C	-D	A	-		8		*	•		Please print clearly, legibly and completely. Samples car
IS YOUR	PROJECT			quished By:		Di	ate/Tim	e			Receiv	red By:				ate/Tin	ne	not be logged in and turnaround time clock will not
FORM NO: 01-0103	or CT RCP?	coal	MUW	Je!		1/23/	-	3:00	5	00	or	AR	1/23, -6-2)		1	30)	start until any ambiguities are resolved. All samples submitted are subject to
(res. 30-JJJ,-07)		TX	<u>c</u>	1-21-1	9	171		4.	11	20		المستنا	1-41	"	7/2	3/19	A32	Alpha's Payment Terms.

APPENDIX F:

LABORATORY ANALYTICAL DATA – HISTORICAL GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1625933

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Report Date: 08/22/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933 **Report Date:** 08/22/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1625933-01	B-1A (OW)	WATER	BOSTON, MA	08/18/16 14:00	08/18/16
L1625933-02	B-8 (OW)	WATER	BOSTON, MA	08/18/16 15:00	08/18/16

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status					
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO			
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO			
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO			

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Lab Number:

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01 **Report Date:** 08/22/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800)-624-9220	with any	questions.	

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1625933-02, did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0018), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1625933-02, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

VPH

L1625933-02: The sample has elevated detection limits due to the dilution required by the sample matrix. In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 08/22/16

ORGANICS

VOLATILES

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

SAMPLE RESULTS

Lab Number: L1625933

Report Date: 08/22/16

Lab ID: L1625933-02

Client ID: B-8 (OW) Sample Location: BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 08/20/16 00:48

Analyst: BD Date Collected: 08/18/16 15:00

Date Received: 08/18/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough L	ab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	1.0		1	

L1625933

Project Name: KENMORE SQ. NORTH

L1625933-02

BOSTON, MA

B-8 (OW)

Project Number: 6216.9.01

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Report Date: 08/22/16

Date Collected: 08/18/16 15:00

Lab Number:

Date Received: 08/18/16
Field Prep: Not Specified

bample Location. Dooron, MA			i iciu i ic	Not Specified		
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	Lab					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	7.3		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/18/16 15:00

Client ID: B-8 (OW) Date Received: 08/18/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	jh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	94		70-130	
Toluene-d8	102		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	98		70-130	

Project Name: KENMORE SQ. NORTH Lab Number:

Project Number: 6216.9.01 **Report Date:** 08/22/16

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 08/19/16 20:19

Analyst: PK

Parameter	Result	Qualifier	Units	.	RL	MDL
MCP Volatile Organics - Westbook	rough Lab for	sample(s):	02	Batch:	WG	924600-5
Methylene chloride	ND		ug/l		2.0	
1,1-Dichloroethane	ND		ug/l		1.0	
Chloroform	ND		ug/l		1.0	
Carbon tetrachloride	ND		ug/l		1.0	
1,2-Dichloropropane	ND		ug/l		1.0	
Dibromochloromethane	ND		ug/l		1.0	
1,1,2-Trichloroethane	ND		ug/l		1.0	
Tetrachloroethene	ND		ug/l		1.0	
Chlorobenzene	ND		ug/l		1.0	
Trichlorofluoromethane	ND		ug/l		2.0	
1,2-Dichloroethane	ND		ug/l		1.0	
1,1,1-Trichloroethane	ND		ug/l		1.0	
Bromodichloromethane	ND		ug/l		1.0	
trans-1,3-Dichloropropene	ND		ug/l		0.50	
cis-1,3-Dichloropropene	ND		ug/l		0.50	
1,3-Dichloropropene, Total	ND		ug/l		0.50	
1,1-Dichloropropene	ND		ug/l		2.0	
Bromoform	ND		ug/l		2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l		1.0	
Benzene	ND		ug/l		0.50	
Toluene	ND		ug/l		1.0	
Ethylbenzene	ND		ug/l		1.0	
Chloromethane	ND		ug/l		2.0	
Bromomethane	ND		ug/l		2.0	
Vinyl chloride	ND		ug/l		1.0	
Chloroethane	ND		ug/l		2.0	
1,1-Dichloroethene	ND		ug/l		1.0	
trans-1,2-Dichloroethene	ND		ug/l		1.0	
Trichloroethene	ND		ug/l		1.0	

Lab Number:

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01 **Report Date:** 08/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 08/19/16 20:19

Analyst: PK

arameter	Result	Qualifier Un	ts	RL	MDL	
ICP Volatile Organics -	- Westborough Lab for	sample(s): 02	Batch	: WG9246	00-5	
1,2-Dichlorobenzene	ND	uį	g/l	1.0		
1,3-Dichlorobenzene	ND	uģ	g/l	1.0		
1,4-Dichlorobenzene	ND	uį	g/l	1.0		
Methyl tert butyl ether	ND	uį	g/l	2.0		
p/m-Xylene	ND	uį	g/l	2.0		
o-Xylene	ND	uį	g/l	1.0		
Xylene (Total)	ND	uį	g/l	1.0		
cis-1,2-Dichloroethene	ND	uį	g/l	1.0		
1,2-Dichloroethene (total)	ND	uį	g/l	1.0		
Dibromomethane	ND	uį	g/l	2.0		
1,2,3-Trichloropropane	ND	u	g/l	2.0		
Styrene	ND	u	g/l	1.0		
Dichlorodifluoromethane	ND	u	g/l	2.0		
Acetone	ND	uç	g/l	5.0		
Carbon disulfide	ND	u	g/l	2.0		
2-Butanone	ND	u	g/l	5.0		
4-Methyl-2-pentanone	ND	u	g/l	5.0		
2-Hexanone	ND	uç	g/l	5.0		
Bromochloromethane	ND	uç	g/l	2.0		
Tetrahydrofuran	ND	uç	g/l	2.0		
2,2-Dichloropropane	ND	uç	g/l	2.0		
1,2-Dibromoethane	ND	uç	g/l	2.0		
1,3-Dichloropropane	ND	uç	g/l	2.0		
1,1,1,2-Tetrachloroethane	ND		g/l	1.0		
Bromobenzene	ND		g/l	2.0		
n-Butylbenzene	ND		g/l	2.0		
sec-Butylbenzene	ND		g/l	2.0		
tert-Butylbenzene	ND		g/l	2.0		
o-Chlorotoluene	ND		g/l	2.0		

Project Name: KENMORE SQ. NORTH Lab Number:

Project Number: 6216.9.01 **Report Date:** 08/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 08/19/16 20:19

Analyst: PK

Parameter	Result	Qualifier	Units	<u> </u>	RL	MDL
MCP Volatile Organics - Westborouç	gh Lab for	sample(s):	02	Batch:	WG9	24600-5
p-Chlorotoluene	ND		ug/l	I	2.0	
1,2-Dibromo-3-chloropropane	ND		ug/l	l	2.0	
Hexachlorobutadiene	ND		ug/l		0.60	
Isopropylbenzene	ND		ug/l		2.0	
p-Isopropyltoluene	ND		ug/l		2.0	
Naphthalene	ND		ug/l	l	2.0	
n-Propylbenzene	ND		ug/l	l	2.0	
1,2,3-Trichlorobenzene	ND		ug/l	1	2.0	
1,2,4-Trichlorobenzene	ND		ug/l	1	2.0	
1,3,5-Trimethylbenzene	ND		ug/l	1	2.0	
1,2,4-Trimethylbenzene	ND		ug/l	I	2.0	
Ethyl ether	ND		ug/l	1	2.0	
Isopropyl Ether	ND		ug/l		2.0	
Ethyl-Tert-Butyl-Ether	ND		ug/l	1	2.0	
Tertiary-Amyl Methyl Ether	ND		ug/l	1	2.0	
1,4-Dioxane	ND		ug/l		250	
Ethyl Acetate	ND		ug/l	1	10	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	1	2.0	
lodomethane	ND		ug/l	l	10	
tert-Butyl Alcohol	ND		ug/l	l	10	
Vinyl acetate	ND		ug/l		2.5	
Acrolein	ND		ug/l	l	10	
2-Chloroethylvinyl ether	ND		ug/l	l	10	
Ethyl methacrylate	ND		ug/l	l	5.0	
Methyl cyclohexane	ND		ug/l		10	
Cyclohexane	ND		ug/l		10	
trans-1,4-Dichloro-2-butene	ND		ug/l		2.5	
1,4-Diethylbenzene	ND		ug/l		2.0	
4-Ethyltoluene	ND		ug/l		2.0	

Lab Number:

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01 **Report Date:** 08/22/16

Method Blank Analysis Batch Quality Control

Batch Quality Control

97,8260C

08/19/16 20:19

Analyst: PK

Analytical Method:

Analytical Date:

Parameter	Result	Qualifier	Unit	s	RL	MDL
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	02	Batch:	WG92460	0-5
1,2,4,5-Tetramethylbenzene	ND		ug,	/I	2.0	
1,4-Dichlorobutane	ND		ug	/I	5.0	
Acrylonitrile	ND		ug	/I	5.0	
Halothane	ND		ug,	/I	2.0	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
1,2-Dichloroethane-d4	95		70-130	
Toluene-d8	100		70-130	
4-Bromofluorobenzene	94		70-130	
Dibromofluoromethane	105		70-130	

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab A	Associated samp	ole(s): 02	Batch: WG924600	-3 WG924	600-4			
Methylene chloride	98		94		70-130	4	20	
1,1-Dichloroethane	100		92		70-130	8	20	
Chloroform	110		96		70-130	14	20	
Carbon tetrachloride	97		89		70-130	9	20	
1,2-Dichloropropane	100		87		70-130	14	20	
Dibromochloromethane	90		82		70-130	9	20	
1,1,2-Trichloroethane	100		90		70-130	11	20	
Tetrachloroethene	100		88		70-130	13	20	
Chlorobenzene	98		87		70-130	12	20	
Trichlorofluoromethane	100		93		70-130	7	20	
1,2-Dichloroethane	100		95		70-130	5	20	
1,1,1-Trichloroethane	98		89		70-130	10	20	
Bromodichloromethane	98		87		70-130	12	20	
trans-1,3-Dichloropropene	99		84		70-130	16	20	
cis-1,3-Dichloropropene	94		86		70-130	9	20	
1,1-Dichloropropene	98		87		70-130	12	20	
Bromoform	88		75		70-130	16	20	
1,1,2,2-Tetrachloroethane	100		87		70-130	14	20	
Benzene	97		88		70-130	10	20	
Toluene	100		88		70-130	13	20	
Ethylbenzene	96		82		70-130	16	20	

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 02	Batch: WG92460	0-3 WG9246	00-4			
Chloromethane	85		80		70-130	6		20
Bromomethane	110		92		70-130	18		20
Vinyl chloride	99		88		70-130	12		20
Chloroethane	100		95		70-130	5		20
1,1-Dichloroethene	100		96		70-130	4		20
trans-1,2-Dichloroethene	100		93		70-130	7		20
Trichloroethene	98		87		70-130	12		20
1,2-Dichlorobenzene	98		86		70-130	13		20
1,3-Dichlorobenzene	99		87		70-130	13		20
1,4-Dichlorobenzene	98		86		70-130	13		20
Methyl tert butyl ether	100		91		70-130	9		20
p/m-Xylene	100		85		70-130	16		20
o-Xylene	100		85		70-130	16		20
cis-1,2-Dichloroethene	100		97		70-130	3		20
Dibromomethane	97		86		70-130	12		20
1,2,3-Trichloropropane	91		81		70-130	12		20
Styrene	100		90		70-130	11		20
Dichlorodifluoromethane	81		74		70-130	9		20
Acetone	91		83		70-130	9		20
Carbon disulfide	90		82		70-130	9		20
2-Butanone	100		93		70-130	7		20

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 02	Batch: WG924600	-3 WG92	4600-4				
4-Methyl-2-pentanone	100		81		70-130	21	Q	20	
2-Hexanone	99		81		70-130	20		20	
Bromochloromethane	110		98		70-130	12		20	
Tetrahydrofuran	100		94		70-130	6		20	
2,2-Dichloropropane	110		94		70-130	16		20	
1,2-Dibromoethane	100		88		70-130	13		20	
1,3-Dichloropropane	99		87		70-130	13		20	
1,1,1,2-Tetrachloroethane	95		81		70-130	16		20	
Bromobenzene	96		84		70-130	13		20	
n-Butylbenzene	120		82		70-130	38	Q	20	
sec-Butylbenzene	98		85		70-130	14		20	
tert-Butylbenzene	95		83		70-130	13		20	
o-Chlorotoluene	96		85		70-130	12		20	
p-Chlorotoluene	93		82		70-130	13		20	
1,2-Dibromo-3-chloropropane	88		78		70-130	12		20	
Hexachlorobutadiene	110		95		70-130	15		20	
Isopropylbenzene	93		79		70-130	16		20	
p-Isopropyltoluene	100		86		70-130	15		20	
Naphthalene	100		89		70-130	12		20	
n-Propylbenzene	95		82		70-130	15		20	
1,2,3-Trichlorobenzene	100		88		70-130	13		20	

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 02	Batch: WG92460	0-3 WG92	4600-4				
1,2,4-Trichlorobenzene	100		89		70-130	12		20	
1,3,5-Trimethylbenzene	96		84		70-130	13		20	
1,2,4-Trimethylbenzene	98		82		70-130	18		20	
Ethyl ether	98		94		70-130	4		20	
Isopropyl Ether	99		89		70-130	11		20	
Ethyl-Tert-Butyl-Ether	100		92		70-130	8		20	
Tertiary-Amyl Methyl Ether	100		93		70-130	7		20	
1,4-Dioxane	102		86		70-130	17		20	
Ethyl Acetate	100		90		70-130	11		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		96		70-130	14		20	
Iodomethane	71		69	Q	70-130	3		20	
tert-Butyl Alcohol	92		86		70-130	7		20	
Vinyl acetate	110		94		70-130	16		20	
Acrolein	100		82		70-130	20		20	
2-Chloroethylvinyl ether	97		84		70-130	14		20	
Ethyl methacrylate	96		86		70-130	11		20	
Methyl cyclohexane	97		91		70-130	6		20	
Cyclohexane	100		90		70-130	11		20	
trans-1,4-Dichloro-2-butene	60	Q	77		70-130	25	Q	20	
1,4-Diethylbenzene	99		87		70-130	13		20	
4-Ethyltoluene	96		84		70-130	13		20	

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number:

L1625933

Report Date:

08/22/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 02 l	Batch: WG924600)-3 WG92	4600-4				
1,2,4,5-Tetramethylbenzene	100		92		70-130	8		20	
1,4-Dichlorobutane	89		77		70-130	14		20	
Acrylonitrile	100		88		70-130	13		20	
Halothane	100		90		70-130	11		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	94		95		70-130	
Toluene-d8	103		99		70-130	
4-Bromofluorobenzene	95		96		70-130	
Dibromofluoromethane	103		104		70-130	

PETROLEUM HYDROCARBONS

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: L1625933-01 Date Collected: 08/18/16 14:00

Client ID: B-1A (OW) Date Received: 08/18/16

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 08/19/16 03:29
Analytical Date: 08/19/16 16:52 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 08/19/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative:

Laboratory Provided Preserved
Container

Sample Temperature upon receipt: Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbon	s - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: L1625933-01 Date Collected: 08/18/16 14:00

Client ID: B-1A (OW) Date Received: 08/18/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	71		40-140	
o-Terphenyl	71		40-140	
2-Fluorobiphenyl	68		40-140	
2-Bromonaphthalene	67		40-140	

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: L1625933-02 Date Collected: 08/18/16 15:00

Client ID: B-8 (OW) Date Received: 08/18/16

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

 Analytical Method:
 98,EPH-04-1.1
 Extraction Date:
 08/19/16 03:29

 Analytical Date:
 08/19/16 17:25
 Cleanup Method1:
 EPH-04-1

Analyst: SR Cleanup Date1: 08/19/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarb	ons - Westborough La	b				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: L1625933-02 Date Collected: 08/18/16 15:00

Client ID: B-8 (OW) Date Received: 08/18/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	74		40-140			
o-Terphenyl	52		40-140			
2-Fluorobiphenyl	47		40-140			
2-Bromonaphthalene	47		40-140			

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

SAMPLE RESULTS

Lab ID: L1625933-02 D

Client ID: B-8 (OW)
Sample Location: BOSTON, MA

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 08/19/16 15:33

Analyst: JM

Date Collected: 08/18/16 15:00

Date Received: 08/18/16
Field Prep: Not Specified

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	250		5
C9-C12 Aliphatics	ND		ug/l	250		5
C9-C10 Aromatics	ND		ug/l	250		5
C5-C8 Aliphatics, Adjusted	ND		ug/l	250		5
C9-C12 Aliphatics, Adjusted	ND		ug/l	250		5

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	100		70-130			
2,5-Dibromotoluene-FID	113		70-130			

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number:

L1625933

Report Date: 08/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 08/19/16 16:21

Analyst: SR

Extraction Method: EPA 3510C Extraction Date: 08/19/16 03:29 Cleanup Method: EPH-04-1

Cleanup Date: 08/19/16

Parameter	Result	Qualifier	Units	RL	MD	L
Extractable Petroleum Hydrocarbon	s - Westbor	ough Lab	for sample(s):	01-02	Batch:	WG924096-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Naphthalene	ND		ug/l	10.0		
2-Methylnaphthalene	ND		ug/l	10.0		
Acenaphthylene	ND		ug/l	10.0		
Acenaphthene	ND		ug/l	10.0		
Fluorene	ND		ug/l	10.0		
Phenanthrene	ND		ug/l	10.0		
Anthracene	ND		ug/l	10.0		
Fluoranthene	ND		ug/l	10.0		
Pyrene	ND		ug/l	10.0		
Benzo(a)anthracene	ND		ug/l	10.0		
Chrysene	ND		ug/l	10.0		
Benzo(b)fluoranthene	ND		ug/l	10.0		
Benzo(k)fluoranthene	ND		ug/l	10.0		
Benzo(a)pyrene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene	ND		ug/l	10.0		
Benzo(ghi)perylene	ND		ug/l	10.0		

Surrogate	%Recovery	Qualifier	Acceptance Criteria
- Carrogate	7011CCOVC1 y	Qualifici	- Critoria
Chloro-Octadecane	69		40-140
o-Terphenyl	54		40-140
2-Fluorobiphenyl	50		40-140
2-Bromonaphthalene	53		40-140

Project Name: KENMORE SQ. NORTH Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 08/19/16 09:21

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbon	s - Westboroug	h Lab for	sample(s):	02 Batch:	WG924251-3	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	101		70-130	
2,5-Dibromotoluene-FID	113		70-130	

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - West	borough Lab As	sociated sample(s): 01-02	Batch: WG924096-2 WG92	4096-3	
C9-C18 Aliphatics	76	78	40-140	3	25
C19-C36 Aliphatics	93	91	40-140	2	25
C11-C22 Aromatics	80	84	40-140	5	25
Naphthalene	69	70	40-140	1	25
2-Methylnaphthalene	70	71	40-140	1	25
Acenaphthylene	74	74	40-140	0	25
Acenaphthene	75	75	40-140	0	25
Fluorene	74	73	40-140	1	25
Phenanthrene	78	77	40-140	1	25
Anthracene	78	76	40-140	3	25
Fluoranthene	83	80	40-140	4	25
Pyrene	87	85	40-140	2	25
Benzo(a)anthracene	80	77	40-140	4	25
Chrysene	85	81	40-140	5	25
Benzo(b)fluoranthene	86	80	40-140	7	25
Benzo(k)fluoranthene	86	81	40-140	6	25
Benzo(a)pyrene	78	75	40-140	4	25
Indeno(1,2,3-cd)Pyrene	81	76	40-140	6	25
Dibenzo(a,h)anthracene	83	78	40-140	6	25
Benzo(ghi)perylene	78	73	40-140	7	25
Nonane (C9)	56	59	30-140	5	25

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recove	ry RPD	Qual	RPD Limits
ktractable Petroleum Hydrocarbons - Westb	orough Lab Ass	sociated sample	(s): 01-02	Batch: V	NG924096-2 W	/G924096-3		
Decane (C10)	66		67		40-140	2	1	25
Dodecane (C12)	72		72		40-140	0		25
Tetradecane (C14)	76		74		40-140	3		25
Hexadecane (C16)	80		78		40-140	3		25
Octadecane (C18)	86		84		40-140	2		25
Nonadecane (C19)	87		84		40-140	4		25
Eicosane (C20)	88		85		40-140	3		25
Docosane (C22)	88		86		40-140	2		25
Tetracosane (C24)	88		86		40-140	2		25
Hexacosane (C26)	88		86		40-140	2		25
Octacosane (C28)	88		85		40-140	3		25
Triacontane (C30)	87		84		40-140	4		25
Hexatriacontane (C36)	86		83		40-140	4		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	87		93		40-140	
o-Terphenyl	81		81		40-140	
2-Fluorobiphenyl	75		78		40-140	
2-Bromonaphthalene	79		81		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: KENMORE SQ. NORTH

Project Number: 6216.9.01

Lab Number: L1625933

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westborou	ıgh Lab Assoc	ated sample(s)	: 02 Batch: V	VG924251-1	WG924251-2			
C5-C8 Aliphatics	87		84		70-130	3		25
C9-C12 Aliphatics	88		84		70-130	5		25
C9-C10 Aromatics	91		90		70-130	1		25
Benzene	87		85		70-130	2		25
Toluene	89		88		70-130	2		25
Ethylbenzene	90		88		70-130	1		25
p/m-Xylene	91		89		70-130	2		25
o-Xylene	89		88		70-130	1		25
Methyl tert butyl ether	85		85		70-130	0		25
Naphthalene	88		90		70-130	2		25
1,2,4-Trimethylbenzene	91		90		70-130	1		25
Pentane	82		80		70-130	2		25
2-Methylpentane	87		85		70-130	3		25
2,2,4-Trimethylpentane	90		88		70-130	3		25
n-Nonane	92		88		30-130	5		25
n-Decane	90		86		70-130	4		25
n-Butylcyclohexane	93		89		70-130	4		25

Project Name: KENMORE SQ. NORTH

Lab Number: L1625933

Project Number: 6216.9.01 Report Date:

08/22/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 02 Batch: WG924251-1 WG924251-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	91		91		70-130	
2,5-Dibromotoluene-FID	100		100		70-130	

Project Name: KENMORE SQ. NORTH

Lab Number: L1625933

Project Number: 6216.9.01 **Report Date:** 08/22/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1625933-01A	Amber 1000ml HCl preserved	Α	<2	3.5	Υ	Absent	EPH-DELUX-10(14)
L1625933-01B	Amber 1000ml HCl preserved	Α	<2	3.5	Υ	Absent	EPH-DELUX-10(14)
L1625933-02A	Vial HCl preserved	Α	N/A	3.5	Υ	Absent	MCP-8260-10(14)
L1625933-02B	Vial HCl preserved	Α	N/A	3.5	Υ	Absent	MCP-8260-10(14)
L1625933-02C	Vial HCl preserved	Α	N/A	3.5	Υ	Absent	VPH-10(14)
L1625933-02D	Vial HCl preserved	Α	N/A	3.5	Υ	Absent	VPH-10(14)
L1625933-02E	Amber 1000ml HCl preserved	Α	<2	3.5	Υ	Absent	EPH-DELUX-10(14)
L1625933-02F	Amber 1000ml HCl preserved	Α	<2	3.5	Υ	Absent	EPH-DELUX-10(14)

Project Name:KENMORE SQ. NORTHLab Number:L1625933Project Number:6216.9.01Report Date:08/22/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or maisture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:KENMORE SQ. NORTHLab Number:L1625933Project Number:6216.9.01Report Date:08/22/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:KENMORE SQ. NORTHLab Number:L1625933Project Number:6216.9.01Report Date:08/22/16

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08221613:21

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	CHA	IN OF CU	STO	OY P	AGE	OF	Da	te Rec	d in L	ab:	119	1/	16		A	LPHA	Job#	1/6	2593	33
WO DESCOR	200 Fast as Blad	Projec	Informat	ion			Re	port	Inforn	nation	- Dat	a Del	livera	bles	100		Informa			
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 01581 Mansfield, MA 020 220 Tel: 508-822-9300	Project I	Name: 62	76.	7,01	~		ADEx			EMAIL					Same a	as Client	info P	O #:	
Client Information	on	Project I	ocation:	en hon	MA	١.)							Contract of the last		Infor	matio	n Requi	irement	ts	
Client: McPh	wil assoc.	Project		~ Sa.	Mer +	hat				MCP /								CT RCP Inorgan	Analytical Met	thods
Address: 226	9 Mass Ave	Project I	/Janager:	UNR	>			es 🗷	No GV	V1 Star	dards	(Info	Requi	red for	Metal	ls & EP	H with Ta	argets)	33)	
Cambr	ides Ma.	ALPHA	Quote #:	- 17						DES R						c	riteria			
Phone: (6/7)	968-1420	Turn-/	Around Tir	ne					/ /		2 / 5	12	/_	/ /	7		/ /	17		
Email:		□Stan	dard M	DIIQU	confirmed if pre-ap		1	6		DRCP	DPP	es on	luo si					/ /		
		Data I		(NOSH (only	confirmed if pre-ap	pproved!)	ANAIL	18/3/8	54.2	DMCP 14	48	Rang	Range	D Fingerprint	/ /	/ /			/	TO
Additional P	roject Informatio	on:	Jue.				र्डे		D PAH	DIMC	RCR S	is		Finge	/ /		/ /		SAMPLE IN	IFO T
							4	D 624		2 2	Targe	⁷ arge	/_/	20/			/ /	/ /	Filtration ☐ Field	#
								090	S. D.MCS	ACR.	Ses &	Jes &	PES	5	/ /	/ / .	//	/ /	☐ Lab to do	В
	×						/ 8	8260	3 3	is	Ran	Range	700 L	//	/ /				Preservation ☐ Lab to do	The second second
ALPHA Lab ID (Lab Use Only)	Samp	le ID	Colle Date	ection Time	Sample Matrix	Sampler Initials	نې	SVOC.	METALS: DINCE	METALS: DRCRAS	VPH. C. PPP13	D PC	TPH; DQuans	/ /		/ /	/ /	Sar	nple Commer	
25937.01	B-1A (00	12	8/18/16	2:00	mw	ma				X										2
7	- B-8 Cous	7	8/18/18	3:00	mw	100	X			X	X									1
300	0. 8 (00		1 014			, .0-	1				//				1					6
																				-
	•	<u> </u>							+	+					+					-
					1			-	-			-	-				-			-
							110			_			-		-				-	
										-			-		-					_
									_	-			-		-					_
		2 T N 2 T T T T T T T T T T T T T T T T				9													-	
													_							
Container Type P= Plastic A= Amber glass	Preservative A= None				Conta	iner Type	V			A	V									
V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	eservative	B			BA	B									
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinqu	uished By:			Time	100	, (Rece	eived B			2/2		e/Time		All samp	oles subn	nitted are sub	ject to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Âcid J = NH₄Cl	John Sol	ON AL	2 8/18		16 31 a	Jei	My	2	0	24	AL!	8	116	16:	34	Alpha's		nd Conditions.	
Page 37 of 41	K= Zn Acetate O= Other		21		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,)		3116					12-Mar-2012)	

Method Blank Summary Form 4

Client : McPhail Associates Lab Number : L1625933
Project Name : KENMORE SQ. NORTH Project Number : 6216.9.01
Lab Sample ID : WG924600-5 Lab File ID : VJ160819A13

Instrument ID : JACK

Matrix : WATER Analysis Date : 08/19/16 20:19

Client Sample No.	Lab Sample ID	Analysis Date	
WG924600-3LCS	WG924600-3	08/19/16 18:39	
WG924600-4LCSD	WG924600-4	08/19/16 19:12	
B-8 (OW)	L1625933-02	08/20/16 00:48	

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1625933

Project Name : KENMORE SQ. NORTH Project Number : 6216.9.01

Instrument ID : JACK Calibration Date : 08/19/16 18:39

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(ı
Fluorobenzene	1	1	-	0	20	94	0
Dichlorodifluoromethane	0.243	0.198	-	18.5	20	71	.02
Chloromethane	0.419	0.355	-	15.3	20	76	03
Vinyl chloride	0.389	0.386	-	0.8	20	92	0
Bromomethane	10	11.363	-	-13.6	20	100	0
Chloroethane	0.207	0.22	-	-6.3	20	91	.02
Trichlorofluoromethane	0.338	0.354	-	-4.7	20	87	.02
Ethyl ether	0.125	0.123	-	1.6	20	89	0
1,1-Dichloroethene	0.251	0.255	-	-1.6	20	93	0
Carbon disulfide	0.913	0.82	-	10.2	20	85	.02
Freon-113	0.22	0.235	-	-6.8	20	90	.01
lodomethane	10	7.072	-	29.3*	20	66	0
Acrolein	0.024	0.026*	-	-8.3	20	91	0
Methylene chloride	0.294	0.289	-	1.7	20	99	.01
Acetone	10	9.091	-	9.1	20	97	.02
trans-1,2-Dichloroethene	0.278	0.285	-	-2.5	20	91	.02
Methyl acetate	10	11.081	-	-10.8	20	95	0
Methyl tert-butyl ether	0.524	0.554	-	-5.7	20	94	.01
tert-Butyl alcohol	50	45.625	-	8.8	20	93	.01
Diisopropyl ether	0.883	0.875	-	0.9	20	89	0
1,1-Dichloroethane	0.529	0.554	-	-4.7	20	93	0
Halothane	0.181	0.191	-	-5.5	20	91	.01
Acrylonitrile	0.064	0.065	•	-1.6	20	94	.02
Ethyl tert-butyl ether	0.702	0.732	-	-4.3	20	94	.02
Vinyl acetate	0.422	0.449	-	-6.4	20	94	.01
cis-1,2-Dichloroethene	0.301	0.319	-	-6	20	93	.02
2,2-Dichloropropane	0.372	0.406	-	-9.1	20	91	0
Bromochloromethane	0.117	0.124	-	-6	20	94	.01
Cyclohexane	0.556	0.555	-	0.2	20	89	.01
Chloroform	0.456	0.488	-	-7	20	95	.01
Ethyl acetate	0.148	0.154	-	-4.1	20	94	.01
Carbon tetrachloride	0.311	0.302	-	2.9	20	88	0
Tetrahydrofuran	0.052	0.054		-3.8	20	98	.01
Dibromofluoromethane	0.167	0.172	<u> </u>	-3.0	20	96	.01
1,1,1-Trichloroethane	0.396	0.172	<u> </u>	2.3	20	87	.02
2-Butanone	10	10.204	<u> </u>	-2	20	97	.02
1,1-Dichloropropene	0.393	0.384	-	2.3	20	88	0
<u> </u>			-				0
Benzene	1.303	1.261	•	3.2	20	90	
tert-Amyl methyl ether	0.597	0.614	-	-2.8	20	94	.01
1,2-Dichloroethane-d4	0.172	0.162	-	5.8	20	91	.01
1,2-Dichloroethane	0.273	0.28	-	-2.6	20	92	0
Methyl cyclohexane	0.52	0.503	-	3.3	20	87	0
Trichloroethene	0.302	0.297	-	1.7	20	90	0
Dibromomethane	10	9.703	-	3	20	93	0
1,2-Dichloropropane	0.302	0.307	-	-1.7	20	94	.01

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1625933 **Project Name** : KENMORE SQ. NORTH Project Number : 6216.9.01 Calibration Date : 08/19/16 18:39

Instrument ID : JACK

Lab File ID : VJ160819A07 Init. Calib. Date(s) : 08/09/16 08/09/16 Sample No : WG924600-2 Init. Calib. Times : 07:56 14:04

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(m
2-Chloroethyl vinyl ether	0.135	0.131	-	3	20	96	0
Bromodichloromethane	0.327	0.322	-	1.5	20	94	0
1,4-Dioxane	0.0022	0.00226*	-	-2.7	20	105	0
cis-1,3-Dichloropropene	0.448	0.422	-	5.8	20	92	0
Chlorobenzene-d5	1	1	-	0	20	97	0
Toluene-d8	0.934	0.959	-	-2.7	20	96	0
Toluene	0.925	0.944	-	-2.1	20	90	0
4-Methyl-2-pentanone	10	9.963	-	0.4	20	96	0
Tetrachloroethene	0.406	0.413	-	-1.7	20	92	0
trans-1,3-Dichloropropene	0.387	0.382	-	1.3	20	92	0
Ethyl methacrylate	0.297	0.286	-	3.7	20	92	0
1,1,2-Trichloroethane	0.191	0.198	-	-3.7	20	94	.01
Chlorodibromomethane	10	9.012	-	9.9	20	90	0
1,3-Dichloropropane	0.417	0.413	-	1	20	93	0
1,2-Dibromoethane	0.22	0.227	-	-3.2	20	95	0
2-Hexanone	0.122	0.122	-	0	20	98	0
Chlorobenzene	1.086	1.068	-	1.7	20	92	0
Ethylbenzene	2.047	1.955	-	4.5	20	92	0
1,1,1,2-Tetrachloroethane	0.34	0.322	-	5.3	20	94	0
p/m Xylene	0.806	0.801	-	0.6	20	94	0
o Xylene	0.812	0.798	-	1.7	20	92	0
Styrene	1.378	1.385	-	-0.5	20	93	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	103	0
Bromoform	0.268	0.236	-	11.9	20	91	0
Isopropylbenzene	3.287	3.06	-	6.9	20	95	0
4-Bromofluorobenzene	0.669	0.637	-	4.8	20	99	0
Bromobenzene	0.754	0.722	-	4.2	20	98	0
n-Propylbenzene	4.054	3.84	•	5.3	20	95	0
1,4-Dichlorobutane	0.788	0.704	-	10.7	20	93	0
1,1,2,2-Tetrachloroethane	0.482	0.486	-	-0.8	20	95	0
4-Ethyltoluene	3.423	3.298	-	3.7	20	95	0
2-Chlorotoluene	2.633	2.526	-	4.1	20	96	0
1,3,5-Trimethylbenzene	2.844	2.722	-	4.3	20	97	0
1,2,3-Trichloropropane	0.394	0.36	-	8.6	20	90	0
trans-1,4-Dichloro-2-buten	0.211	0.126	-	40.3*	20	63	0
4-Chlorotoluene	2.45	2.29	-	6.5	20	96	0
tert-Butylbenzene	2.459	2.339	-	4.9	20	99	01
1,2,4-Trimethylbenzene	2.833	2.781	-	1.8	20	100	0
sec-Butylbenzene	3.604	3.531	-	2	20	100	01
p-Isopropyltoluene	2.943	2.929	-	0.5	20	100	0
1,3-Dichlorobenzene	1.584	1.563	<u> </u>	1.3	20	100	0
1,4-Dichlorobenzene	1.553	1.524	-	1.9	20	100	01
p-Diethylbenzene	1.742	1.731		0.6	20	100	01
n-Butylbenzene	2.557	2.962	<u> </u>	-15.8	20	125	0
1,2-Dichlorobenzene	1.421	2.302	•	1.9	20	101	U

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : McPhail Associates Lab Number : L1625933 **Project Name** : KENMORE SQ. NORTH Project Number : 6216.9.01 Calibration Date : 08/19/16 18:39

Instrument ID : JACK

: VJ160819A07 Init. Calib. Date(s) : 08/09/16 Lab File ID 08/09/16 Sample No : WG924600-2 Init. Calib. Times : 07:56 14:04

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,2,4,5-Tetramethylbenzene	2.359	2.491	-	-5.6	20	99	0
1,2-Dibromo-3-chloropropan	0.073	0.065	-	11	20	97	0
1,3,5-Trichlorobenzene	1.015	1.06	-	-4.4	20	98	01
Hexachlorobutadiene	0.348	0.37	-	-6.3	20	102	0
1,2,4-Trichlorobenzene	0.821	0.837	-	-1.9	20	97	0
Naphthalene	1.571	1.599	-	-1.8	20	96	0
1,2,3-Trichlorobenzene	0.677	0.693	-	-2.4	20	97	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1626224

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9 Report Date: 08/23/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9 Lab Number: L1626224

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1626224-01	B-2 (OW)	WATER	BOSTON, MA	08/22/16 08:30	08/22/16
L1626224-02	B-3 (OW)	WATER	BOSTON, MA	08/22/16 10:00	08/22/16
L1626224-03	B-6 (OW)	WATER	BOSTON, MA	08/22/16 12:00	08/22/16

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO					
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES					
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:KENMORE SQUARE NORTHLab Number:L1626224Project Number:6216.9.9Report Date:08/23/16

Case Narrative (continued)

MCP Related Narratives

EPH

In reference to question G:

L1626224-02 and -03: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question I:

L1626224-01 was analyzed for a subset of MCP analytes per the Chain of Custody.

Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Senstrom Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 08/23/16

Дерна

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 Report Date: 08/23/16

SAMPLE RESULTS

Lab ID: L1626224-01 Date Collected: 08/22/16 08:30

Client ID: B-2 (OW) Date Received: 08/22/16
Sample Location: BOSTON, MA Field Prep: Not Spec

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 08/22/16 19:42
Analytical Date: 08/23/16 15:00 Cleanup Method1: EPH-04-1

Analyst: DV Cleanup Date1: 08/23/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics. Adjusted	ND		ua/l	100		1		

			Acceptance		
Surrogate	% Recovery	Qualifier	Criteria		
Chloro-Octadecane	97		40-140		
o-Terphenyl	89		40-140		
2-Fluorobiphenyl	75		40-140		
2-Bromonaphthalene	69		40-140		

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 Report Date: 08/23/16

SAMPLE RESULTS

Lab ID: L1626224-02 Date Collected: 08/22/16 10:00

Client ID: B-3 (OW) Date Received: 08/22/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 08/23/16 11:03

Analyst: JM

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	76.8		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	76.8		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	6.02		ug/l	4.00		1

	Acceptance						
Surrogate	% Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	103		70-130				
2,5-Dibromotoluene-FID	112		70-130				

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 Report Date: 08/23/16

SAMPLE RESULTS

Lab ID: Date Collected: 08/22/16 10:00

Client ID: B-3 (OW) Date Received: 08/22/16

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 08/22/16 19:38

Analytical Date: 08/23/16 15:32 Cleanup Method1: EPH-04-1
Analyst: DV Cleanup Date1: 08/23/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier Unit	s RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough Lab)			
C9-C18 Aliphatics	ND	ug/l	100		1
C19-C36 Aliphatics	ND	ug/l	100		1
C11-C22 Aromatics	ND	ug/l	100		1
C11-C22 Aromatics, Adjusted	ND	ug/l	100		1
Naphthalene	ND	ug/l	10.0		1
2-Methylnaphthalene	ND	ug/l	10.0		1
Acenaphthylene	ND	ug/l	10.0		1
Acenaphthene	ND	ug/l	10.0		1
Fluorene	ND	ug/l	10.0		1
Phenanthrene	ND	ug/l	10.0		1
Anthracene	ND	ug/l	10.0		1
Fluoranthene	ND	ug/l	10.0		1
Pyrene	ND	ug/l	10.0		1
Benzo(a)anthracene	ND	ug/l	10.0		1
Chrysene	ND	ug/l	10.0		1
Benzo(b)fluoranthene	ND	ug/l	10.0		1
Benzo(k)fluoranthene	ND	ug/l	10.0		1
Benzo(a)pyrene	ND	ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND	ug/l	10.0		1
Dibenzo(a,h)anthracene	ND	ug/l	10.0		1
Benzo(ghi)perylene	ND	ug/l	10.0		1

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

SAMPLE RESULTS

Lab ID: L1626224-02 Date Collected: 08/22/16 10:00

Client ID: B-3 (OW) Date Received: 08/22/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	90		40-140			
o-Terphenyl	61		40-140			
2-Fluorobiphenyl	52		40-140			
2-Bromonaphthalene	53		40-140			

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 Report Date: 08/23/16

SAMPLE RESULTS

Lab ID: L1626224-03 Date Collected: 08/22/16 12:00

Client ID: B-6 (OW) Date Received: 08/22/16

Sample Location: BOSTON, MA Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 08/22/16 19:38
Analytical Date: 08/23/16 16:04 Cleanup Method1: EPH-04-1

Analyst: DV Cleanup Date1: 08/23/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ıb				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

SAMPLE RESULTS

Lab ID: L1626224-03 Date Collected: 08/22/16 12:00

Client ID: B-6 (OW) Date Received: 08/22/16
Sample Location: BOSTON, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	75		40-140	
o-Terphenyl	71		40-140	
2-Fluorobiphenyl	57		40-140	
2-Bromonaphthalene	59		40-140	

L1626224

08/23/16

Lab Number:

Report Date:

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

98,EPH-04-1.1 08/23/16 13:25

Analyst:

DV

Extraction Method: EPA 3510C Extraction Date: 08/22/16 19:38 Cleanup Method: EPH-04-1

Cleanup Date: 08/23/16

C9-C18 Aliphatics ND ug/l 100	Parameter	Result	Qualifier	Units	RL	MDL	-
C19-C36 Aliphatics ND ug/l 100 C11-C22 Aromatics ND ug/l 100 C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 <t< td=""><td>Extractable Petroleum Hydrocarbon</td><td>ıs - Westboı</td><td>ough Lab</td><td>for sample(s):</td><td>02-03</td><td>Batch:</td><td>WG924901-1</td></t<>	Extractable Petroleum Hydrocarbon	ıs - Westboı	ough Lab	for sample(s):	02-03	Batch:	WG924901-1
C11-C22 Aromatics ND ug/l 100 C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0	C9-C18 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 <t< td=""><td>C19-C36 Aliphatics</td><td>ND</td><td></td><td>ug/l</td><td>100</td><td></td><td></td></t<>	C19-C36 Aliphatics	ND		ug/l	100		
Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Di	C11-C22 Aromatics	ND		ug/l	100		
2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Naphthalene	ND		ug/l	10.0		
Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	2-Methylnaphthalene	ND		ug/l	10.0		
Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Acenaphthylene	ND		ug/l	10.0		
Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Acenaphthene	ND		ug/l	10.0		
Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Fluorene	ND		ug/l	10.0		
Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Phenanthrene	ND		ug/l	10.0		
Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Anthracene	ND		ug/l	10.0		
Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Fluoranthene	ND		ug/l	10.0		
Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Pyrene	ND		ug/l	10.0		
Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(a)anthracene	ND		ug/l	10.0		
Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Chrysene	ND		ug/l	10.0		
Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(b)fluoranthene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(k)fluoranthene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(a)pyrene	ND		ug/l	10.0		
	Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Benzo(ghi)perylene ND ug/l 10.0	Dibenzo(a,h)anthracene	ND		ug/l	10.0		
	Benzo(ghi)perylene	ND		ug/l	10.0		

		1	Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
				_
Chloro-Octadecane	95		40-140	
o-Terphenyl	69		40-140	
2-Fluorobiphenyl	52		40-140	
2-Bromonaphthalene	55		40-140	

L1626224

Lab Number:

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9 **Report Date:** 08/23/16

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 08/23/16 13:25

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 08/22/16 19:42 Cleanup Method: EPH-04-1

Cleanup Method: EPH-04-1 Cleanup Date: 08/23/16

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocar	bons - Westbo	rough Lab	for sample(s):	01	Batch: WG924902-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

	Acceptance					
Surrogate	%Recovery	Qualifier	Criteria			
Chloro-Octadecane	95		40-140			
o-Terphenyl	69		40-140			
2-Fluorobiphenyl	52		40-140			
2-Bromonaphthalene	55		40-140			

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 08/23/16 09:10

Analyst: JM

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	ample(s):	02	Batch:	WG925157-3	
C5-C8 Aliphatics	ND		ug/l	5	50.0		
C9-C12 Aliphatics	ND		ug/l	5	50.0		
C9-C10 Aromatics	ND		ug/l	5	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	5	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	5	0.0		
Benzene	ND		ug/l	2	2.00		
Toluene	ND		ug/l	2	2.00		
Ethylbenzene	ND		ug/l	2	2.00		
p/m-Xylene	ND		ug/l	2	2.00		
o-Xylene	ND		ug/l	2	2.00		
Methyl tert butyl ether	ND		ug/l	3	3.00		
Naphthalene	ND		ug/l	4	.00		

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
2,5-Dibromotoluene-PID	97		70-130				
2,5-Dibromotoluene-FID	102		70-130				

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Lab Number: L1626224

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - West	borough Lab As	sociated sample(s): 02-03 Ba	ntch: WG924901-2 WG924	1901-3	
C9-C18 Aliphatics	85	82	40-140	4	25
C19-C36 Aliphatics	95	94	40-140	1	25
C11-C22 Aromatics	70	80	40-140	13	25
Naphthalene	60	68	40-140	13	25
2-Methylnaphthalene	59	67	40-140	13	25
Acenaphthylene	60	69	40-140	14	25
Acenaphthene	63	72	40-140	13	25
Fluorene	64	73	40-140	13	25
Phenanthrene	66	75	40-140	13	25
Anthracene	66	74	40-140	11	25
Fluoranthene	70	80	40-140	13	25
Pyrene	72	82	40-140	13	25
Benzo(a)anthracene	67	77	40-140	14	25
Chrysene	73	83	40-140	13	25
Benzo(b)fluoranthene	71	81	40-140	13	25
Benzo(k)fluoranthene	73	81	40-140	10	25
Benzo(a)pyrene	64	74	40-140	14	25
Indeno(1,2,3-cd)Pyrene	66	78	40-140	17	25
Dibenzo(a,h)anthracene	69	80	40-140	15	25
Benzo(ghi)perylene	65	77	40-140	17	25
Nonane (C9)	67	65	30-140	3	25

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Lab Number: L1626224

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
ktractable Petroleum Hydrocarbons - Westh	oorough Lab Ass	sociated sample	(s): 02-03	Batch: WG	924901-2 WG924	4901-3			
Decane (C10)	76		74		40-140	3		25	
Dodecane (C12)	82		79		40-140	4		25	
Tetradecane (C14)	86		82		40-140	5		25	
Hexadecane (C16)	88		84		40-140	5		25	
Octadecane (C18)	91		88		40-140	3		25	
Nonadecane (C19)	92		89		40-140	3		25	
Eicosane (C20)	92		90		40-140	2		25	
Docosane (C22)	93		91		40-140	2		25	
Tetracosane (C24)	92		91		40-140	1		25	
Hexacosane (C26)	92		91		40-140	1		25	
Octacosane (C28)	92		91		40-140	1		25	
Triacontane (C30)	91		89		40-140	2		25	
Hexatriacontane (C36)	87		89		40-140	2		25	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Chloro-Octadecane	101		97		40-140	
o-Terphenyl	74		83		40-140	
2-Fluorobiphenyl	66		74		40-140	
2-Bromonaphthalene	66		75		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Lab Number: L1626224

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sample(s): 01 Batch	: WG924902-2 WG924902-	3	
C9-C18 Aliphatics	85	82	40-140	4	25
C19-C36 Aliphatics	95	94	40-140	1	25
C11-C22 Aromatics	70	80	40-140	13	25
Naphthalene	60	68	40-140	13	25
2-Methylnaphthalene	59	67	40-140	13	25
Acenaphthylene	60	69	40-140	14	25
Acenaphthene	63	72	40-140	13	25
Fluorene	64	73	40-140	13	25
Phenanthrene	66	75	40-140	13	25
Anthracene	66	74	40-140	11	25
Fluoranthene	70	80	40-140	13	25
Pyrene	72	82	40-140	13	25
Benzo(a)anthracene	67	77	40-140	14	25
Chrysene	73	83	40-140	13	25
Benzo(b)fluoranthene	71	81	40-140	13	25
Benzo(k)fluoranthene	73	81	40-140	10	25
Benzo(a)pyrene	64	74	40-140	14	25
Indeno(1,2,3-cd)Pyrene	66	78	40-140	17	25
Dibenzo(a,h)anthracene	69	80	40-140	15	25
Benzo(ghi)perylene	65	77	40-140	17	25
Nonane (C9)	67	65	30-140	3	25

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Lab Number: L1626224

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons -	Westborough Lab Associa	ted sample(s): 01 Batc	h: WG924902-2 WG924902	2-3	
Decane (C10)	76	74	40-140	3	25
Dodecane (C12)	82	79	40-140	4	25
Tetradecane (C14)	86	82	40-140	5	25
Hexadecane (C16)	88	84	40-140	5	25
Octadecane (C18)	91	88	40-140	3	25
Nonadecane (C19)	92	89	40-140	3	25
Eicosane (C20)	92	90	40-140	2	25
Docosane (C22)	93	91	40-140	2	25
Tetracosane (C24)	92	91	40-140	1	25
Hexacosane (C26)	92	91	40-140	1	25
Octacosane (C28)	92	91	40-140	1	25
Triacontane (C30)	91	89	40-140	2	25
Hexatriacontane (C36)	87	89	40-140	2	25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	101		97		40-140	
o-Terphenyl	74		83		40-140	
2-Fluorobiphenyl	66		74		40-140	
2-Bromonaphthalene	66		75		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9

Lab Number: L1626224

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Petroleum Hydrocarbons - Westborou	ugh Lab Assoc	iated sample(s):	: 02 Batch:	WG925157-1	WG925157-2			
C5-C8 Aliphatics	83		84		70-130	1		25
C9-C12 Aliphatics	90		88		70-130	2		25
C9-C10 Aromatics	88		89		70-130	1		25
Benzene	84		85		70-130	1		25
Toluene	87		87		70-130	0		25
Ethylbenzene	87		87		70-130	1		25
p/m-Xylene	88		89		70-130	1		25
o-Xylene	87		87		70-130	0		25
Methyl tert butyl ether	76		76		70-130	1		25
Naphthalene	79		81		70-130	2		25
1,2,4-Trimethylbenzene	88		89		70-130	1		25
Pentane	80		81		70-130	1		25
2-Methylpentane	85		85		70-130	1		25
2,2,4-Trimethylpentane	86		87		70-130	0		25
n-Nonane	93		91		30-130	2		25
n-Decane	92		90		70-130	2		25
n-Butylcyclohexane	94		92		70-130	2		25

Project Name: KENMORE SQUARE NORTH

Lab Number:

L1626224

Project Number: 6216.9.9

Report Date:

08/23/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 02 Batch: WG925157-1 WG925157-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
2,5-Dibromotoluene-PID	85		84		70-130	
2,5-Dibromotoluene-FID	90		89		70-130	

METALS

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224

Project Number: 6216.9.9 **Report Date:** 08/23/16

SAMPLE RESULTS

 Lab ID:
 L1626224-02
 Date Collected:
 08/22/16 10:00

 Client ID:
 B-3 (OW)
 Date Received:
 08/22/16

Sample Location: BOSTON, MA Field Prep: Not Specified

Matrix: Water

Analytical Method Dilution Date Date Prep **Factor** Prepared Analyzed Method **Parameter** Result Qualifier Units RL MDL Analyst MCP Dissolved Metals - Mansfield Lab ND 0.010 1 97,6010C Lead, Dissolved mg/l 08/23/16 07:50 08/23/16 12:16 EPA 3005A JΗ

Project Name: KENMORE SQUARE NORTH

Lab Number: L1626224 Project Number: 6216.9.9

Report Date: 08/23/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
MCP Dissolved Metals	- Mansfield Lab for s	ample(s):	02 Ba	tch: Wo	G925002-1				
Lead, Dissolved	ND	mg/l	0.010		1	08/23/16 07:50	08/23/16 11:34	97,6010C	JH

Prep Information

Digestion Method: EPA 3005A

Project Name: KENMORE SQUARE NORTH

Lab Number:

L1626224

Project Number: 6216.9.9

Report Date:

08/23/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
MCP Dissolved Metals - Mansfield Lab As	sociated sample(s): 02	Batch: W	VG925002-2 W	/G925002-3				
Lead, Dissolved	106		104		80-120	2	20	

Lab Number: L1626224

Project Name: KENMORE SQUARE NORTH

Project Number: 6216.9.9 Report Date: 08/23/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1626224-01A	Amber 1000ml HCl preserved	Α	<2	3.8	Υ	Absent	EPH-10(14)
L1626224-01B	Amber 1000ml HCI preserved	Α	<2	3.8	Υ	Absent	EPH-10(14)
L1626224-02A	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	VPH-DELUX-10(14)
L1626224-02B	Vial HCl preserved	Α	N/A	3.8	Υ	Absent	VPH-DELUX-10(14)
L1626224-02D	Amber 1000ml HCI preserved	Α	<2	3.8	Υ	Absent	EPH-DELUX-10(14)
L1626224-02E	Amber 1000ml HCI preserved	Α	<2	3.8	Υ	Absent	EPH-DELUX-10(14)
L1626224-02F	Plastic 950ml unpreserved	Α	7	3.8	Υ	Absent	-
L1626224-02G	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	HOLD-8270(7)
L1626224-02H	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	HOLD-8270(7)
L1626224-02X	Plastic 120ml HNO3 preserved Fil	Α	<2	3.8	Υ	Absent	MCP-PB-6010S-10(180)
L1626224-03A	Amber 1000ml HCI preserved	Α	<2	3.8	Υ	Absent	EPH-DELUX-10(14)
L1626224-03B	Amber 1000ml HCI preserved	Α	<2	3.8	Υ	Absent	EPH-DELUX-10(14)
L1626224-03C	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	HOLD-8270(7)
L1626224-03D	Amber 1000ml unpreserved	Α	7	3.8	Υ	Absent	HOLD-8270(7)

Project Name: KENMORE SQUARE NORTH Lab Number: L1626224
Project Number: 6216.9.9 Report Date: 08/23/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:KENMORE SQUARE NORTHLab Number:L1626224Project Number:6216.9.9Report Date:08/23/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:KENMORE SQUARE NORTHLab Number:L1626224Project Number:6216.9.9Report Date:08/23/16

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 7

Page 1 of 1

Published Date: 8/5/2016 11:25:56 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHAIN O	F CUSTO	Y PAGE_	OF_	Date Rec	d in Lab:	3/22/	16	ALPHA.	Job #:[_] {	526224
AN AL FIGAL		Project Informati	on		Report I	nformation	- Data Del	iverables	THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	nformation	
8 Walkup Drive Westboro, MA 01 Tel: 508-898-922		Project Names	216.9.	9	□ ADEx	O E	MAIL		☐ Same as	Client info	PO #:
Client Information		Project Location:	Beston, M		Regulat	ory Require	ments &	Project I	nformation	Requiremen	nts
Client: AAAD	of 1 Accor	Project #:\ Kenm	50 N		XYes 🗆	No MA MCP A	Analytical Me	ethods	☐ Yes /	No CT RCI or MCP Inorga	P Analytical Methods
Address: 22 (Mart Assoc.	Project Manager:	NI B	RUN	☐ Yes	No GW1 Stan	dards (Info F	Required for N	letals & EPH	with Targets)	11103)
6 1 00	MA MA	ALPHA Quote #:	N D D			No NPDES R tate /Fed Pro		O.B. E. ST. S	Cri	teria	
Phone: (al 7 -	hail Assoc. 9 Mass Ava 967-1420 mephalgeo.com	Turn-Around Tin	ne			7//,	5 / m / 3	1.//	7///	/ / / /	
Email: 14700	no she loss o		,		1 /	/ / /	VPH: Kanges & Targets CPP13 OPCRA8	s Only	1.//		
	The ges. com	Date Due:	RUSH (only confirmed if pr	e-approved!)	\$\sigma_{\sigma_{\sigma}}\right\{}	7 / Z	Range	ange	3		To
Additional Pr	roject Information:	Date Due: 05	-23-16	5	ANALYSIS	PAH DMCP 14	RCR.	inger ₁	ر / ال	/ / /	SAMPLE INFO TA
		L		-	D 624	D PAH	arget,		3 / /	////	Filtration □ Field #
						MCP 1	1887	FST Conly	4 / /	1,4/	☐ Lab to do
(56.7)					D 8260		Range	Douant Only Dri	Rense	on M.	Preservation ☐ T
ALPHA Lab ID		Colle	ection Sampl	e Sampler	1,00°.	METALS: DINCP 13 METALS: DRCPAS EPH.	S H B	TRH. Couant only Chingeprint	-Shid		Preservation Lab to do Lab to do L
(Lab Use Only)	Sample ID	Date	Time Matrix		3/8	M M H	\$ 0	5	///	S	ample Comments S
26224.01	B-2 (ow)			Time	-	X					2
(O)	B-3 (0w)		1000			X	X	X			7
\$	R-6 (m)		1200								4
	8-176					\$					4
	D. (1007)					12					,
									-		
47											
							+				
						-					
Container Type P= Plastic	Preservative A= None		Cor	ntainer Type		A	V	P			
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄			Preservative		PA	B	A			
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinquished By:	D/22	ate/Time	ie .	Received B	/		/Time	All samples sul	bmitted are subject to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₂ I= Ascorbic Acid J = NH ₄ Cl	mille	- 8/23	16 x 20	-1-1	No 1	AAA	41 9/23/16	3-11	Alpha's Terms	and Conditions. de
Page 32 of 32	K= Zn Acetate		5/30	1000	1-1-4	1	1101	- U	1101	FORM NO: 01-01 (n	

APPENDIX G:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of the Commonwealth Building at the proposed Kenmore Square North project located at 533-541 Commonwealth Avenue in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed common foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. The effluent will then flow through any necessary treatment systems and discharge through hoses or piping connected into the storm water drains located beneath Fullerton Street and the southern portion of the subject site. Based upon a review of the City of Boston stormwater drainage plan, the above referenced stormwater drain ultimately discharges into the Charles River. Dewatering effluent treatment will consist of bag filters and a sedimentation tank to remove suspended soil particulates prior to off-site discharge.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. This includes laboratory testing required within days 1 and 3 of initial discharge, weekly for the first month, and the monthly testing to be conducted through the end of the scheduled discharge.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance of the treatment system will be conducted to verify proper operation. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, ion exchange filter

system, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues or unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The nearest surface water body is the Charles River which is located approximately 625 feet to the southeast of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters fin series prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly to the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters will be disposed of as necessary.