

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

25 September 2019 File No. 129485-010

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: Shauna Little, EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI) Temporary Construction Dewatering Proposed Hamilton Canal District Parking Garage Parcel 14 Lowell, Massachusetts

Dear Ms. Little:

On behalf of our client, City of Lowell, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the Proposed Hamilton Canal District Parking Garage Project, located at Parcel 14, off Dutton Street in Lowell, Massachusetts.

Site Location and Historical Site Usage

The site is located in Lowell, Massachusetts and is bounded to the south by the Lower Pawtucket Canal and to the east by a canal referred to as the 'Wasteway.' The location of the site is shown on Figure 1, Project Locus. North of the site is a parking lot and west of the site is a vacant lot. The site is located in a mixed commercial and residential area in the highly urbanized downtown neighborhood of Lowell. The area has been developed with factories and industrial buildings since the 1800s.

Historically, the site was part of the Lowell Machine Shop campus from early 1800s to the 1930s. The site was then occupied by a textile manufacturing corporation until 2006 when the building on site was demolished. The site has been occupied by a municipal parking lot since then.

Proposed Activities

The proposed Hamilton Canal District Parking Garage is planned to be a seven-story parking structure with slab on grade foundations, utility installations, landscape improvements, and public green space and walkways.

The ground level floor slab designed at El. 82 to match grades at the canal level and current site grades range from about El. 91 at the northern portion of the site to El. 80 at the southern area of the site, adjacent to the canal. Excavation depths of approximately 5 to 8 ft below current site grades are anticipated. Temporary construction dewatering is necessary to construction below grade spaces and utilities of the proposed garage.

Dewatering System and Off-site Discharge

During the construction activities, it will be necessary to perform temporary dewatering to control surface water runoff from precipitation, groundwater seepage and construction-generated water to enable remedial excavations in-the-dry. Dewatering activities are anticipated to start in September 2019 and is anticipated to be required through May 2021. On average, we estimate effluent discharge rates of about 50 gallons per minute (gpm), with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located in excavations or from dewatering wells installed at the site.

Construction dewatering includes piping and discharging directly to the Wasteway Canal located on the east of the site. An effluent treatment system will be designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary treatment components, to remove suspended solids and chemical constituents, as shown on Figure 3.

Groundwater Quality Data

One groundwater sample was obtained from observation well HA17-110(OW) on 19 July 2018. The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semivolatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, polychlorinated biphenyls, total suspended solids, ammonia, phenolics, chloride, total cyanide, total phenolics, and total residual chlorine.

Haley & Aldrich collected an additional groundwater sample from the same observation well HA17-110(OW) on 06 August 2019. The collected sample was submitted to Alpha for chemical analysis of a subset of 2019 NPDES Remediation General Permit parameters including total metals, pH, ammonia, chloride, and total suspended solids.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses did not detect concentrations of chemical constituents above the 2017 NPDES RGP Project-Specific Effluent Limits or the applicable Massachusetts Contingency Plan RCGW-2 reportable concentrations. The construction dewatering effluent at the Site will be managed under an RGP. The location of the observation well HA17-110(OW) is shown on Figure 2.

Receiving Water Quality Information and Dilution Factor

On 19 July 2018 and 1 August 2018, Haley & Aldrich collected a receiving water sample from the Wasteway Canal area using a disposable polyethylene bailer. The surface water sample was collected and submitted to Alpha for chemical analysis of pH, ammonia, hardness, and total metals. Field parameters, including

temperature, were collected from surface water sample at the time of sampling. The results of water quality testing are summarized in Table I.

Haley & Aldrich collected an additional receiving water sample from the Wasteway Canal area on 06 August 2019. The surface water sample was collected and submitted to Alpha for chemical analysis of hardness, pH, and Ammonia.

The results from analysis were used to calculate the site Water Quality Based Effluent Limitations (WQBELs). U.S. Geological Survey (USGS) StreamStats program did not have data for the seven-day-ten-year flow (7Q10) of the receiving water. No dilution factor or 7Q10 value was used in the WQBEL Calculation spreadsheet.

Ethanol Discussion

Ethanol sampling was not conducted on the groundwater samples collected in July 2018 and August 2019 as site history does not suggest that ethanol was stored at the property, and a petroleum product containing ethanol is not known to have been released at the site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to site history, the site has been used a textile manufacturing and parking lot since the 1960's, with no known fuel-related storage or handling activities conducted onsite.

Effluent Criteria Determination

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the site using groundwater and receiving water data. The resulting criteria was tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

Historic Property Review

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), the site is part of the Lowell National Historic Park and Lowell Locks and Canal District the which are both listed as historic properties. Proposed discharges and discharge-related activities are not considered to have the potential to cause effects on the historic properties. The discharge is considered to meet Criterion B. Documentation is included in Appendix B.

Owner and Operator Information

Owner:

City of Lowell 375 Merrimack Street Lowell, MA 01852 Contact: Eileen Donoghue City Manager

Operator:

Shawmut Design and Construction 560 Harrison Avenue Boston, MA 02118 Contact: Joseph Pollock Project Manager

Appendices

The completed "Suggested Notice of Intent" form as provided in the RGP is enclosed in Appendix A. Haley & Aldrich plans to monitor the Contractor's dewatering activities on behalf of the City of Lowell in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and ESA Documentation, respectively. Copies of the groundwater testing laboratory data reports are provided in Appendix D. Since the Site Contractor's dewatering submittal is not yet available, Appendix E provides details of typical the dewatering system components used to remove suspended solids and undissolved chemical constituents. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the site and is not being submitted with this NOI as requested by EPA.

Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC

Lindsey R. Howard, P.E. (NH) Staff Environmental Engineer

Kenneth N. Alepidis, P.G. (NH) Senior Technical Specialist - Geology

Attachments:

- Table I Summary of Groundwater Quality Data
- Figure 1 Site Locus
- Figure 2 Site and Subsurface Location Plan
- Figure 3 Proposed Treatment System Schematic

Appendix A – NOI for RGP

Appendix B – National Register of Historic Places and Massachusetts Historical Commission Documentation

- Appendix C Endangered Species Act Documentation
- Appendix D Laboratory Data Reports

Appendix E – Typical Dewatering Treatment System Information

c: City of Lowell, Eileen Donoghue Walker Parking Consultants, Christopher Gradziel Shawmut Design and Construction, Joseph Pollock

\\haleyaldrich.com\share\bos_common\129485 - Lowell Parking Garage\010 - NPDES RGP\NOI application\Text\2019-0925-Lowell Garage NPDES RGP Text_F.docx

TABLE I SUMMARY OF ANALYTICAL RESULTS WALKER CONSULTANTS LOWELL GARAGE LOWELL, MA

Precharacterization Grid	Action	n Level					
Location Name	MCP 2014		HA17-110(OW)	HA17-110(OW)	LOWELL REC WATER	LOWELL REC WATER	LOWELL REC WATER
Sample Name	RCGW-2	NPDES Project	HA17-110(OW)-20180719	HA17-110(OW)-2019-08	LOWELL REC WATER-20180719	LOWELL REC WATER-20180801	LOWELL REC WATER-2019-08
Sample Date	Reportable	Specific Effluent	07/19/2018	08/06/2019	07/19/2018	08/01/2018	08/06/2019
Sample Type	Concentrations	Criteria	Primary	Primary	Primary	Primary	Primary
Lab Sample ID	concentrations		L1827825-01	L1934969-01	L1827825-02	L1829832-01	L1934969-02
Volatilo Organic Compounds (ug/L)							
1 1 1 Trichloroothano	4000	200	ND (2)				
1,1,2 Trichlereethane	4000	200		-	-	-	-
1,1,2-Trichloroethane	900	5	ND (1.5)	-	-	-	-
1,1-Dichloroethane	2000	70	ND (1.5)	-	-	-	-
1,1-Dichloroethene	80	3.2	ND (1)	-	-	-	-
1,2-Dibromoethane (Ethylene Dibromide)	2	0.05	ND (0.01)	-	-	-	-
1,2-Dichlorobenzene	2000	600	ND (5)	-	-	-	-
1,2-Dichloroethane	5	5	ND (1.5)	-	-	-	-
1.3-Dichlorobenzene	6000	320	ND (5)	-	-	-	-
1 4-Dichlorobenzene	60	5	ND (5)	-	-	_	_
Acotono	50000	7970	ND (10)				
Acetone	30000	7570	ND (10)	-	-	-	-
Benzene	1000	5	ND (1)	-	-	-	-
Carbon tetrachloride	2	4.4	ND (1)	-	-	-	-
cis-1,2-Dichloroethene	20	70	ND (1)	-	-	-	-
Ethylbenzene	5000	*	ND (1)	-	-	-	-
m,p-Xylenes	NA	*	ND (2)	-	-	-	-
Methyl Tert Butyl Ether	5000	70	ND (10)	-	-	-	-
Methylene chloride	2000	4.6	ND (1)	-	-	-	-
o-Xvlene	NA	*	ND (1)	_	-	_	_
Tort Amy Mothyl Ethor (TAME)	NA	90	ND (20)				
Tort Butyl Alcohol /tort Butonol)	N/A	120		-	-	-	-
Tetreshlere ethere	INA 50	120	ND (100)	-	-	-	-
	50	5	ND (1.5)	-	-	-	-
loluene	40000	*	ND (1)	-	-	-	-
Trichloroethene	5	5	ND (1)	-	-	-	-
Vinyl chloride	2	2	ND (1)	-	-	-	-
Xylene (total)	3000	*	ND (1)	-	-	-	-
volatile Organic Compounds SIM (ug/L)							
1,4-Dioxane	6000	200	ND (50)	-	-	-	-
Total VOCs	NA	NA	ND	-	_	_	_
	NA	100	ND				
	INA	100	ND	-	-	-	-
Semi-Volatile Organic Compounds (ug/L)							
bis(2-Ethylhexyl)phthalate	50000	101	ND (2.2)	-	-	-	-
Butyl benzylphthalate	10000	+	ND (5)	-	-	_	_
Diethyl phthalate	9000	1	ND (5)	_	_	_	_
Dimethyl phthalate	5000		ND (5)				
Dimetryi prinalate	50000	+	ND (5)	-	-	-	-
Di-n-butyiphthalate	5000	+	ND (5)	-	-	-	-
Di-n-octyl phthalate	100000	+	ND (5)	-	-	-	-
Semi-Volatile Organic Compounds (SIM) (ug/L)							
	6000	**	ND (0.1)	_	_	_	_
Aconaphthylono	40	**	ND (0.1)	_	_	_	_
Actional and a second se	40		ND (0.1)	-	-	-	-
Anthracene	30	**	ND (0.1)	-	-	-	-
Benzo(a)anthracene	1000	1	ND (0.1)	-	-	-	-
Benzo(a)pyrene	500	1	ND (0.1)	-	-	-	-
Benzo(b)fluoranthene	400	1	ND (0.1)	-	-	-	-
Benzo(g,h,i)perylene	20	**	ND (0.1)	-	-	-	-
Benzo(k)fluoranthene	100	1	ND (0.1)	-	-	-	-
Chrysene	70	1	ND (0.1)	-	-	-	-
Dibenz(a b)anthracene	40	1	ND (0.1)	_	_	_	_
Elugranthang	40	**	ND (0.1)	-	-	-	-
Fluoranthene	200		ND (0.1)	-	-	-	-
riuorene	40		ND (0.1)	-	-	-	-
Indeno(1,2,3-cd)pyrene	100	1	ND (0.1)	-	-	-	-
Naphthalene	700	20	ND (0.1)	-	-	-	-
Pentachlorophenol	200	1	ND (1)	-	-	-	-
Phenanthrene	10000	**	ND (0.1)	-	-	-	-
Pyrene	20	**	ND (0.1)	-	-	-	-
Total SVOCs	NA	NA	ND	-	-	-	-
Total Phthalates	NA	190	ND	-	-	-	-
Group I PAHs	NA	1	ND	-	-	-	-
Group II PAHs	NA	100	ND	_	_	-	-
sisapini / mis	1974	100	עא	-	-	-	-
Total Petroleum Hydrocarbons (ug/L)							
Petroleum hydrocarbons	5000	5000	ND (4000)	-	-	-	-
	1	1	. ,				
ivietals (ug/L)							
Cnromium VI (Hexavalent), Dissolved	300	323	ND (10)	ND (10)	-	ND (10)	-
Antimony, Total	8000	206	ND (4)	ND (4)	-	ND (4)	-
Arsenic, Total	900	104	ND (1)	ND (1)	-	1.57	-
Cadmium, Total	4	10.2	ND (0.2)	ND (0.2)	-	ND (0.2)	-
Chromium, Total	300	323	ND (1)	ND (1)	-	2.36	-
Copper. Total	100000	242	ND (1)	ND (1)	-	14.63	-
Cvanide Total	30	178000	5	ND (5)	_		_
Hardness Total	50	1/0000	360000	146000	-	-	
	INA NA	INA F000	209000	140000	-	22000	21200
	NA	5000	ND (50)	ND (50)	-	1630	-
Lead, Total	10	160	ND (1)	ND (1)	-	9.21	-
Mercury, Total	20	0.739	ND (0.2)	ND (0.2)	-	ND (0.2)	-
Nickel, Total	200	1450	ND (2)	ND (2)	-	2.73	-
Selenium, Total	100	235.8	ND (5)	ND (5)	-	ND (5)	-
Silver, Total	7	35.1	ND (0.4)	ND (0.4)	-	ND (0.4)	-
Zinc, Total	900	420	ND (10)	ND (10)	-	63.19	-
						00.15	
Pesticides and PCBs (ug/L)							
Aroclor-1016 (PCB-1016)	5	1	ND (0.25)	-	-	-	-
Aroclor-1221 (PCB-1221)	5	1	ND (0.25)	-	-	-	-
Aroclor-1232 (PCB-1232)	5	1	ND (0.25)	-	-	-	-

Aroclor-1242 (PCB-1242)	5	1	ND (0.25)	-	-	-	-
Aroclor-1248 (PCB-1248)	5	1	ND (0.25)	-	-	-	-
Aroclor-1254 (PCB-1254)	5	1	ND (0.25)	-	-	-	-
Aroclor-1260 (PCB-1260)	5	1	ND (0.2)	-	-	-	-
Other							
pH (lab), Total (pH units)	NA	6.5 - 8.3	-	6.4	6.7	6.7	7.2
Salinity, Total (SU)	NA	NA	ND (2)	-	ND (2)	-	-
Ammonia, Total (ug/L)	NA	Report	ND (75)	79	119	-	ND (75)
Chloride, Total (ug/L)	NA	Report	779000	419000	-	-	-
Chlorine, residual, Total (ug/L)	NA	11	ND (20)	-	-	-	-
Chromium III (Trivalent), Total (ug/L)	600	323	ND (10)	ND (10)	-	ND (10)	-
Total phenols (ug/L)	NA	1080	ND (30)	-	-	-	-
Total Suspended Solids (TSS) (ug/L)	NA	30000	9700	6400	-	-	-

ABBREVIATIONS

Not analyzed
 mg/L: milligram per liter

NA: Not Applicable

ND (2.5): Result not detected above reporting limit (shown in parentheses)

NOTES:

Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.
 Bold values indicate an exceedance of applicable 2017 NPDES RGP Project Limit Concentrations.

3. *: Indicates effluent limit is limited as total BTEX of 100 ug/l.

4. **: Indicates effluent limit is limited as total Group II PAHs of 100 ug/l.

5. +: Indicates effluent limit is limited as total Phthalates of 190 ug/l.

6. pH and Temperature were collected in the field.

129485-002_1_LOCUS.PDF

ERVIN, DAYNA Printed: 8/8/2018 4:11 PM Layout: J\GRAPHICS\129485\129485-012-B023_DWG

B023

LEGEND	
HA18-A1A	DESIGNATION AND APPROXIMATE LOCATION OF GEOPROBE BORING DRILLED BY CRAWFORD DRILLING SERVICES ON 23 TO 25 JULY 2018
HA18-A1	DESIGNATION AND APPROXIMATE LOCATION OF GEOPROBE BORING DRILLED BY G&M SUBSURFACE FROM 2 THROUGH 5 APRIL 2018
HA17-101	DESIGNATION AND APPROXIMATE LOCATION OF TEST BORING DRILLED BY NORTHERN DRILL SERVICE FROM 19 THROUGH 23 JUNE 2017
TP17-1	DESIGNATION AND APPROXIMATE LOCATION OF TEST PIT EXCAVATED BY MARCHESE CONSTRUCTION ON 6 AND 7 JULY 2017
4U	DESIGNATION AND REPORTED LOCATION OF TEST BORING ADVANCED BY OTHERS IN AUGUST 2008
4E	DESIGNATION AND REPORTED LOCATION OF TEST BORING ADVANCED BY OTHERS IN AUGUST 2005
MW-4	DESIGNATION AND REPORTED LOCATION OF TEST BORING ADVANCED BY OTHERS IN AUGUST 2004
(OW)	INDICATES OBSERVATION WELL INSTALLED IN COMPLETED BOREHOLE
	REPORTED LIMITS OF REMEDIAL EXCAVATION CONDUCTED IN APRIL 2009
NOTES	
1. BASE I "EXIST PREP# DATED	PLAN TAKEN FROM A DRAWING TITLED 'ING CONDITIONS PLAN OF LAND, SV-1", 'RED BY VANASSE HANGEN BRUSTLIN INC.,) 7 JUNE 2017.
2. ELEVA AMERI	TIONS ARE IN FEET AND REFERENCE NORTH ICAN VERTICAL DATUM OF 1988 (NAVD 88).
3. LOCAT LIMITS 4, FRC ACTIO LIMITA CORPO	TIONS OF TEST BORINGS BY OTHERS AND OF REMEDIAL EXCAVATION BASED ON FIGURE OM A REPORT TITLED "CLASS A-3 RESPONSE N OUTCOME REPORT AND ACTIVITY & USE TION", PREPARED BY TRC ENVIRONMENTAL ORATION AND DATED JULY 2010.
0	50 100 SCALE IN FEET

HAMILTON CANAL DISTRICT PARKING GARAGE PARCEL 14 LOWELL, MASSACHUSETTS SITE AND SUBSURFACE EXPLORATION LOCATION PLAN

SCALE: AS SHOWN SEPTEMBER 2019

FIGURE 2

G:\38625\NPDES\FIGURES\COPY-A142.DWG

APPENDIX A

NOI for RGP

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site: Hamilton Canal District	Site address: Parcel 14 (350 Dutton Street)					
Parcel 14 Parking Garage	Street:					
	City: Lowell		State: MA	^{Zip:} 01854		
2. Site owner	Contact Person: Eileen Donoghue, City Ma	anager				
City of Lowell	Telephone: 978-674-4400	Email: ec	donoghue@lowellma.gov			
	Mailing address:					
	Street: 375 Merrimack Street					
Owner is (check one): □ Federal □ State/Tribal □ Private X Other; if so, specify: Municipality	City: Lowell		State:MA	Zip: 01852		
3. Site operator, if different than owner	Contact Person: Joseph Pollock					
Shawmut Design and Construction	Telephone: 603-540-2394	Email:				
	Mailing address: 560 Harrison Avenue Street:					
	City: Boston		State: MA	Zip: 02118		
4. NPDES permit number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site	(check all the	at apply):			
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 MA Chapter 21e; list RTN(s): 3-25687 NH Groundwater Management Permit or Groundwater Release Detection Permit: 	□ CERCL □ UIC Pro □ POTW	A ogram Pretreatment	:		
			ection 404			

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classificat	tion of receiving water(s):					
Wasteway Canal/Lower Pawtucket Canal	MA84A-29		Class B					
		C	Category 5					
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary territorial sea Wild and Scenic River								
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): X Yes \Box	No						
Are sensitive receptors present near the site? (check one): If yes, specify:	Are sensitive receptors present near the site? (check one): \Box Yes X No If yes, specify:							
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avai 4.6 of the RGP. Yes - MA84A-29 is on the 303(d) list - Impa	Integrated List of Waters (i.e., CWA Section 303(d)). Incl lable for any of the indicated pollutants. For more inform airments include DDT in fish tissue, lead, mercury in fish ti	ude which designate ation, contact the ap ssue, PCBs in fish ti	ed uses are impaired, and any propriate State as noted in Part ssue, No final EPA TMDL					
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append	receiving water determined in accordance with the instructure dix VI for sites located in New Hampshire.	tions in N	IA - no low flow data for canals					
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): Yes X No If yes, indicate date confirmation received:								
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII?								
(check one): X Yes □ No								

C. Source water information:

1. Source water(s) is (check any that apply):			
Contaminated groundwater	□ Contaminated surface water	□ The receiving water	□ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	X Other; if so, specify:
\mathbf{X} Yes \Box No	\square Yes \square No		Although "Contaminated
			Groundwater" is listed, see
			table for compounds actually
			detected

2. Source water contaminants: None above RGP effluent limits						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): \Box Yes 🖄 No If yes, indicate the contaminant(s) and	with the instructions in Appendix VIII? (check one): \Box Yes \Box No					
the maximum concentration present in accordance with the instructions in						
Appendix VIII.						
3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one): Ves 🛛 Yes						

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge X New discharge \Box New source							
Outfall(s): Outfall location(s): (Latitude, Longitude)							
Wasteway Canal	42.643381, -71.312655						
Discharges enter the receiving water(s) via (check any that apply): Direct discharge	ge to the receiving water 🛛 Indirect discharge, if so, specify:						
Flows through treatment system directly to Wastewa	ay Canal						
□ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:							
Has notification been provided to the owner of this system? (check one): \Box Yes 🕅	NA Contraction of the second						
Has the operator has received permission from the owner to use such system for discharges? (check one): \Box Yes X NA if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of the	is system has specified? (check one): \Box Yes 🛛 NA						
Provide the expected start and end dates of discharge(s) (month/year):							
September 2019 - May 2021							
Indicate if the discharge is expected to occur over a duration of: \Box less than 12 mor	μ 12 months or more \square 1s an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): 🛛 Yes 🗆 No							

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 A. Inorganics B. Non-Halogenated Volatile Organi C. Halogenated Volatile Organic Cor D. Non-Halogenated Semi-Volatile Organic E. Halogenated Semi-Volatile Organic F. Fuels Parameters 	ic Compounds ompounds Organic Compounds ic Compounds				
□ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 ✗ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks 	☑ G. Sites with Known Contamination	□ H. Sites with Unknown Contamination				
 V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
□ VIII – Dredge-Related Dewatering	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		-		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		Х	2 4	500NH3-B	н 75	79	79	Report mg/L	
Chloride		Х	2	300.0	25000	779000	599000	Report µg/l	
Total Residual Chlorine	Х		1	4500CL	20	ND	ND	0.2 mg/L	11 ug/L
Total Suspended Solids		Х	2	2540D	5000	9700	8050	30 mg/L	
Antimony Total		Х	2	6020A	4	ND	ND	206 µg/L	640
Arsenic Total		Х	2	6020A	1	ND	ND	104 µg/L	10
Cadmium Total		Х	2	6020A	0.2	ND	ND	10.2 µg/L	0.4648
Chromium III		Х	2	6020A	10	ND	ND	323 µg/L	156.7
Chromium VI	Х		2	3500CR	10	ND	ND	323 µg/L	11.4
Copper Total	Х		2	6020A	1	ND	ND	242 µg/L	17.4
Iron Total		Х	2	200.7	50	ND	ND	5,000 μg/L	1000
Lead Total		Х	2	6020A	1	ND	ND	160 µg/L	8.06
Mercury Total		Х	2	245.1	0.2	ND	ND	0.739 μg/L	0.91
Nickel Total		Х	2	6020A	2	ND	ND	1,450 µg/L	96.7
Selenium Total		Х	2	6020A	5	ND	ND	235.8 µg/L	5.0
Silver Total	Х		2	6020A	0.4	ND	ND	35.1 µg/L	13.3
Zinc Total	Х		2	6020A	10	ND	ND	420 µg/L	222.4
Cyanide Total		Х	2	4500CN	5	5	5	178 mg/L	5.2
B. Non-Halogenated VOCs									
Total BTEX		Х	1	8260C	NA	ND	ND	100 µg/L	
Benzene		Х	1	8260C	1	ND	ND	5.0 µg/L	
1,4 Dioxane	Х		1	8260C-S	IM 50	ND	ND	200 µg/L	
Acetone		Х	1	8260C	10	ND	ND	7.97 mg/L	
Phenol		Х	1	8270D	30	ND	ND	1,080 µg/L	300

	Known	Known		-		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs	C. Halogenated VOCs								
Carbon Tetrachloride	Х		1	8260C	1	ND	ND	4.4 µg/L	1.6
1,2 Dichlorobenzene	Х		1	8260C	5	ND	ND	600 µg/L	
1,3 Dichlorobenzene	Х		1	8260C	5	ND	ND	320 µg/L	
1,4 Dichlorobenzene	Х		1	8260C	5	ND	ND	5.0 µg/L	
Total dichlorobenzene	Х		1	8260C	NA	NA	NA	763 µg/L in NH	
1,1 Dichloroethane	Х		1	8260C	1.5	ND	ND	70 µg/L	
1,2 Dichloroethane	Х		1	8260C	1.5	ND	ND	5.0 µg/L	
1,1 Dichloroethylene	Х		1	8260C	1	ND	ND	3.2 µg/L	
Ethylene Dibromide	Х		1	8260C	0.01	ND	ND	0.05 µg/L	
Methylene Chloride	Х		1	8260C	1	ND	ND	4.6 µg/L	
1,1,1 Trichloroethane	Х		1	8260C	2	ND	ND	200 µg/L	
1,1,2 Trichloroethane	Х		1	8260C	1.5	ND	ND	5.0 µg/L	
Trichloroethylene		Х	1	8260C	1	ND	ND	5.0 µg/L	
Tetrachloroethylene		Х	1	8260C	1.5	ND	ND	5.0 µg/L	3.3
cis-1,2 Dichloroethylene	Х		1	8260C	1	ND	ND	70 µg/L	
Vinyl Chloride	Х		1	8260C	1	ND	ND	2.0 µg/L	
D. Non-Halogenated SVOC	s								
Total Phthalates	Х		1	8270D	NA	ND	ND	190 µg/L	
Diethylhexyl phthalate	Х		1	8270D	2.2	ND	ND	101 µg/L	2.2
Total Group I PAHs		Х	1	8270D	NA	ND	ND	1.0 µg/L	
Benzo(a)anthracene		Х	1	8270D	0.1	ND	ND		0.0038
Benzo(a)pyrene		Х	1	8270D	0.1	ND	ND		0.0038
Benzo(b)fluoranthene		Х	1	8270D	0.1	ND	ND		0.0038
Benzo(k)fluoranthene		Х	1	8270D	0.1	ND	ND	As Total PAHs	0.0038
Chrysene		Х	1	8270D	0.1	ND	ND		0.0038
Dibenzo(a,h)anthracene		Х	1	8270D	0.1	ND	ND		0.0038
Indeno(1,2,3-cd)pyrene		Х	1	8270D	0.1	ND	ND		0.0038

Known		Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		Х	1	8270D	NA	ND	ND	100 µg/L	
Naphthalene		Х	1	8260C	0.1	ND	ND	20 µg/L	
E. Halogenated SVOCs									
Total PCBs		Х	1	608	0.2 -0.25	ND	ND	0.000064 µg/L	
Pentachlorophenol	Х		1	8270D	1.0	ND	ND	1.0 µg/L	
F. Fuels Parameters	ſ		Γ	Γ	Ι				
Total Petroleum Hydrocarbons		х	1	1664A	4000	ND	ND	5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether	Х		1	8260C	10	ND	ND	70 µg/L	20
tert-Butyl Alcohol	Х		1	8260C	100	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	Х		1	8260C	20	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	, hardness,	salinity, LC	50, additior	al pollutar	ts present); i	if so, specify:			
Hardness		Х	2	200.7	660	269,000	207,500		
Salinity		Х	1	2520B	2	ND	ND		
рН		Х	2			6.42	6.41		
2-Butanone (Methyl Ethyl Ke	etone)	Х	0	8260C		NA	NA		
2-Phenylbutane (sec-Butylb	enzene)	Х	0	8260C		NA	NA		
Isopropylbenzene (Cumene		Х	0	8260C		NA	NA		
n-Butylbenzene		Х	0	8260C		NA	NA		
n-Propylbenzene		Х	0	8260C		NA	NA		
2-Methylnaphthalene		Х	0	8270D	\$IM	NA	NA		
bis(2-Ethylhexyl)phthalate		Х	0	8270D		NA	NA		
C11-C22 Aromatic Hydroca	bons	X	0			NA	NA		
C19-C36 Aliphatic Hydrocar	oons	X	0			NA	NA		
C9-C18 Aliphatic Hydrocarb	ons	X	0			NA	NA		
Sulfur			0			NA	NA		
Conductivity (umhos/cm)		X	0			NA	NA		

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)

🗆 Adsorption/Absorption 🗆 Advanced Oxidation Processes 🗆 Air Stripping 🔀 Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption

X Ion Exchange X Precipitation/Coagulation/Flocculation X Separation/Filtration \Box Other; if so, specify:

Following will be applied IF REQUIRED per effluent monitoring sampling

2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.

Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary treatment components (potentially: Ion exchange, GAC, oil/water seperator), to remove suspended solids and undissolved chemical constituents, as shown on Figure 3 of the NPDES permit application.

Identify each major treatment component (check any that apply):

 \boxtimes Fractionation tanks \square Equalization tank \square Oil/water separator \square Mechanical filter \square Media filter

 \Box Chemical feed tank \Box Air stripping unit [X] Bag filter \Box Other; if so, specify:

Indicate if either of the following will occur (check any that apply):

 \Box Chlorination \Box De-chlorination

3. Provide the **design flow capacity** in gallons per minute (gpm) of the most limiting component.

Indicate the most limiting component: 150 gpm

Is use of a flow meter feasible? (check one): X Yes \Box No, if so, provide justification:

 Provide the proposed maximum effluent flow in gpm.
 150 gpm

 Provide the average effluent flow in gpm.
 50 gpm

 If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:
 NA

 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): X Yes □ No

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply) 🗆 Algaecides/biocides 🗆 Antifoams 🗆 Coagulants 🗆 Corrosion/scale inhibitors 🗆 Disinfectants 🕅 Flocculants 🗆 Neutralizing agents 🗆 Oxidants 🗆 Oxygen 🗆 scavengers 🕅 pH conditioners 🗆 Bioremedial agents, including microbes 🗆 Chlorine or chemicals containing chlorine 🗆 Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary: See attached manufacturers cut sheets and SDSs for equipment which may be utilized if necessary. This information is only included as a contingency and is not currently needed based on groundwater data. Exact specifications on frequency a. Product name, chemical formula, and manufacturer of the chemical/additive; duration, quantity, and method of application are not known at this time. If the b. Purpose or use of the chemical/additive or remedial agent; system eventually requires chemical additives, these details will be provided to EPA. c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): \Box Yes \Box No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

See above

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- Key Scriterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- \Box FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): \Box Yes \Box No; if no, is consultation underway? (check one): \Box

 $Yes \ \square \ No$

□ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the EWS. This determination was made by (check one) □ the operator □ EPA □ Other if so, appeifing.

FWS. This determination was made by: (check one) \Box the operator \Box EPA \Box Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🛛 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🛛 Yes 🗆 No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

□ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.

Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.

Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🕅 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes X M/A

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Refer to attached Haley & Aldrich, Inc. letter

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): X Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): X Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

BMPP certification statement:	A BMPP meeting the requirements of this general permit will be implemented upon initiation of discharge.
-------------------------------	--

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🕅	No □ N/A
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No 🕅
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes \Box	No 🗆 NA 🕅
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes \Box	No 🗆 NA 🕅
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit	Check one: Yes \Box	No 🗆 NA 🕅
\Box Other; if so, specify:		
Signature: Dat	e: 9/25/2019	
Print Name and Title: Joseph Pollock, Project Manager		

APPENDIX B

National Register of Historic Places and Massachusetts Historical Commission Documentation

National Register of Historic Places

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...

National Park Service U.S. Department of the Interior

Home (https://www.nps.gov) Frequently Asked Questions (https://www.nps.gov/faqs.htm) Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE

NATIONAL REGISTER OF HISTORIC PLACES INVENTORY -- NOMINATION FORM

FOR NPS USE ONLY		
RECEIVED SEP 3 1985		× 1
	en en	

FOR FEDERAL PROPERTIES

SEE INSTRUCTIONS IN HOW TO COMPLETE NATIONAL REGISTER FORMS TYPE ALL ENTRIES -- COMPLETE APPLICABLE SECTIONS

1 NAME

HISTORIC

AND/OR COMMON

Lowell National Historical Park

2 LOCATION

STREET & NUMBER Multiple

Mailing Address: 169 Me	rrimack Street	NOT FOR PUBLICATIO	N	
CITY, TOWN		CONGRESSIONAL DIS	TRICT	
Lowell, Massachusetts	VICINITY OF	5		
STATE	CODE	COUNTY	CODE	
Massachusetts	025	Middlesex	017	

3 CLASSIFICATION

CATEGORY	OWNERSHIP	STATUS	PRESENT USE	
_XDISTRICT	PUBLIC	<u>_X</u> OCCUPIED	AGRICULTURE	X.museum
BUILDING(S)	PRIVATE	UNOCCUPIED	X_COMMERCIAL	X.PARK
STRUCTURE	Х_вотн		X.EDUCATIONAL	X PRIVATE RESIDENCE
SITE	PUBLIC ACQUISITION	ACCESSIBLE	ENTERTAINMENT	X_RELIGIOUS
OBJECT	X_IN PROCESS	XYES: RESTRICTED	X.GOVERNMENT	SCIENTIFIC
	BEING CONSIDERED	YES: UNRESTRICTED	X_INDUSTRIAL	X_TRANSPORTATION
		NO	MILITARY	OTHER:

4 AGENCY

REGIONAL HEADQUARTER National Park Se	S:(If applicable) Prvice	
STREET & NUMBER		
15 State Street		
CITY, TOWN		STATE
Boston,	VICINITY OF	Massachusetts
5 LOCATION O	F LEGAL DESCRIPTION	
COURTHOUSE. REGISTRY OF DEEDS, ETC.	Northern Middlesex County Regist	ry of Deeds
STREET & NUMBER		
	Gorham Street	
CITY TOM/N	,	
CITY, TOWN		STATE
	Lowell.	Massachusetts
6 REPRESENTA	Lowell. TION IN EXISTING SURVEYS	Massachusetts
6 REPRESENTA	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and	Massachusetts
6 REPRESENTA TITLE Report: Lo Cultural Re	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and esource Inventory by Shepley Bulf	Massachusetts Massachusetts l Preservation District Inch Richardson & Abbott
6 REPRESENTA TITLE Report: Lo Cultural Re	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and esource Inventory by Shepley Bulf	Massachusetts Massachusetts I Preservation District Inch Richardson & Abbott
6 REPRESENTA TITLE Report: Lo Cultural Re DATE 1980	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and esource Inventory by Shepley Bulfi -XFEDERAL	Massachusetts Massachusetts I Preservation District Inch Richardson & Abbott
6 REPRESENTA TITLE Report: Lo Cultural Re DATE 1980 DEPOSITORY FOR SURVEY RECORDS Nat	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and esource Inventory by Shepley Bulfi 	Massachusetts Massachusetts I Preservation District Inch Richardson & Abbott STATECOUNTYLOCAL
6 REPRESENTA TITLE Report: Lo Cultural Re DATE 1980 DEPOSITORY FOR SURVEY RECORDS Nat CITY. TOWN	Lowell. TION IN EXISTING SURVEYS owell National Historical Park and esource Inventory by Shepley Bulfi XFEDERAL Lional Park Service, 15 State Stree	Massachusetts I Preservation District Inch Richardson & Abbott

CONDITION		CHECK ONE	CHECK ONE		
EXCELLENT GOOD YAIR	DETERIORATED RUINS UNEXPOSED	UNALTERED		DATE	

DESCRIBE THE PRESENT AND ORIGINAL (IF KNOWN) PHYSICAL APPEARANCE

Lowell National Historical Park, authorized by Congress on June 5, 1978, represents an innovative concept in the National Park System. The concept minimizes federal property ownership and provides for the preservation of historically significant structures through other public agencies and the private sector. The Park's enabling legislation also empowers the Secretary of the Interior to provide funding and technical assistance through the Lowell Historic Preservation Commission to cooperating owners of historic properties in order to develop and/or preserve significant resources according to Department standards and in ways which complement Park development. The Lowell Historic Preservation District surrounds the Park as a buffer zone and enables federal assistance in the preservation and revitalization of Lowell, while the Park consists of the areas intended for intensive visitor use in the interpretation of Lowell and its canal system.

The Park includes within its boundaries the 5.6 mile power canal system, a portion of the central business district, and three major mill complexes. The area within the Park boundaries totals 134 acres, but present plans envision direct National Park Service ownership of only a handful of buildings, with other property remaining in private hands. The District includes the mills or mill sites of most of the rest of the major textile corporations, the remainder of the historic central business district, and areas along the Concord River where smaller factories flourished outside the main waterpower system.

There are 895 properties within the Park and Preservation Districts. They are classified as follows:

. 1

308 residential buildings

147 single family

62 duplexes

99 multiple family

210 commercial buildings

130 buildings within textile mill complexes

27 other industrial structures

16 schools

9 churches

- 24 government buildings
- 92 vacant lots
- 33 components of the canal system
- 11 bridges

37 miscellaneous structures (theaters, parking garages, playgrounds, etc.) In terms of condition, the properties (excluding the canals) are classified according to 1979 data as follows:

56 excellent

- 412 good
- 244 need minor repair
- 70 need major repair

8 derelict

In terms of period, the properties (excluding the canals) are classified as follows: 3 pre-1820 93 1870s

3 pre-1820	93 1870s
20 1820s	78 1880s

NPS Form 10-900-s (3-82)

United States Department of the Interior National Park Service

27 1860s

National Register of Historic Places Inventory—Nomination Form

67 post-1950

The Park and the District's most important historical resources are the canal system, the remaining major mill complexes, and the central business district's nineteenth century commercial buildings. The District also includes elements of other historic industrial enterprises, particularly along the Concord River. Residential properties within the District represent most of the range of styles, forms, and periods of Lowell's architectural history, but these houses generally fall short of Lowell's historic houses outside the District in quantity, quality, and concentration.

All properties owned or leased by the National Park Service (except one) are included in at least one of three existing historic districts on the National Register of Historic Places: City Hall Historic District, Locks and Canals Historic District, and Merrimack-Middle Street Historic District. Park-owned and leased properties are listed below:

<u>Old City Hall</u> (City Hall H.D.): The most important early municipal building in Lowell, this structure has served combined government/commercial functions. Constructed in 1830 by the town of Lowell, the building served as the town's (and later the city's) principal meeting hall. However, alterations to the building in 1854 resulted in its conversion to a municipal office building. A private party acquired the building in 1896 and made major changes to the interior and exterior of the structure to facilitate its commercial use, and it has continued to serve a commercial function. There are stores on the first floor; the second and the third floors are vacant; and the cellar is used for storage. The building bears little resemblance to its original Greek Revival appearance. In 1854, a third floor was added, and the first floor level was lowered to the present sidewalk elevation. A one-story brick addition was built on the south side in 1886. Ten years later the owner rebuilt the second and third floor partitions, modernized the first floor partitions to include the one-story western addition, and drastically altered the facades to their present Colonial Revival appearance.

Presently, the storefronts have large display windows, enframed with enameled metal panels. A few elements of late nineteenth century cast iron storefronts are still visible beneath the current treatment. Tall openings spanning both floors still accomodate the main windows of the upper floors, but the openings have been changed from the original ones. In addition, the main facade has gained narrow windows at each end and flanking the central window, and a pediment like central facade gable, set with an ornate fanlight. The narrow windows on the second floor display broken-scroll pediments, while the third floor windows either have triangular pediments or are round arch-headed, with keystones. On the central panel between the second and third floor windows is the inscription: "Old City Hall Building 1830-1896." The other panels have swags in relief. Above the central window, just below the fanlight,

OMB No. 1024-0018 Exp. 10-31-84 NPS Form 10-900-a (3-42)

United States Department of the Interior National Park Service

National Register of Historic Places Inventory—Nomination Form

Continuation sheet

Item number

is an entablature with relief swags. The panels, pediments, and other trim are painted white. At the corners of the building are brick pilasters with white-painted Doric capitals. Such pilasters were an early feature of the building, topped with a plain, projecting brick frieze. The frieze is now broken by the tops of the third floor windows. The west side of the building is also formally finished. A double central window on the second floor is flanked by projecting bay windows. On the third floor are three small square windows. A cornice enclosing the gable as a pediment, at the center of which is a fanlight window. Visible atop the roof are the lower portions of paired chimneys. The rear wall features a range of double windows on the floors above the projecting first floor addition. On top of the rear addition in the center of the main block is a small, square, second story addition. Fire escapes span the rear wall. The eastern wall features what is apparently original fenestration. Three bricked-up rectangular windows appear on the ground floor, and three longer windows span floors two and three. The lower three quarters of the central window have been bricked over. The flanking windows feature wooden aprons which divide the long narrow openings into two windows. The eastern gable has two small, square windows in its center.

Kirk Street Agents' House (Linus Child House) (City Hall H.D.): Constructed between 1845 and 1847, this $2\frac{1}{2}$ -story brick duplex, with basement, is a significant example of early corporate housing in Lowell. The structure was built by mill workers under the supervision of James H. Rand. The structure was a residence for corporate agents of the Massachusetts and Boott Cotton Mills until 1901. Since that time it has served as a roominghouse, YWCA, school offices, medical clinic, and classrooms. A number of changes have been made to the original bearing brick walls and granite foundations. Brick and frame additions were built and later removed, except for the frame addition on the south unit. The addition on the south unit was repeatedly renovated during the 20th century. Partitions on the inside of the building have been added and some have been removed; some mantles have been taken out and replaced; and all finish material in the third floor of the north unit was removed following a fire. A boiler plant and stack were built behind the north unit, and a tunnel was dug under Kirk Street to connect the plant to the high school. The high school and boiler plant have severely altered the setting.

The Linus Child House was built as an agents' house for the Boott and Massachusetts Companies. Greek Revival in style, it is a double house of brick with brownstone trim, set on a high granite basement. The parapet-linked double chimneys at the end walls and at the center of the roof, along with its basic form relate it to the contemporary boarding houses. However, the use of brownstone for its sills, lintels and trabeated doorways distinguishes it. The cornice with its unornamented, projecting frieze and brick dentils adds a decorative touch to an otherwise severe building.

7

Exp. 10-31-84

NPS Form 10-900-a (3-82)

United States Department of the Interior National Park Service

National Register of Historic Places Inventory—Nomination Form

For NPS use only received

date entered

OMB No. 1024-0018

Exp. 10-31-84

Continuation sheet	Item number	7	Page	4
			30	-

<u>Moody Street Feeder Gatehouse (Merrimack Gatehouse)</u> (City Hall H.D. and Locks and Canals H.D.) One of the finest canal structures in Lowell, the Merrimack Gatehouse was built in 1848 as part of an improvement to the Lowell canal system. The gatehouse contains three sluice gates that controlled the flow of water from the Western Canal through the new Moody Street Feeder to the Merrimack Canal, increasing the water supply to the Merrimack Mills and regulating the flow to the Boott Mills. For a short time in 1972, the structure housed the Dandylion Flowershop. Since 1976 it has been the site of Lowell's Bicentennial headquarters/visitor center, the Lowell tourist center, the NPS visitor information and interpretive center.

The building extends approximately sixty feet along Dutton Street and the Merrimack Canal. Its southern facade gable faces Merrimack Street. The waters of the Moody Street Feeder flow through the three granite arches on which this structure rests. Incised into a granite block between the southern and central arches is the date "1848." The Merrimack facade has an entrance bay and a single window bay. The Dutton Street facade features a central entrance bay flanked by three window bays. The northern facade is two window bays wide, and the eastern facade has seven window bays. The cornice features brick dentils. Chimneys are situated at the ridge near the end walls. The gate house's three sluice gates are manually operated with counterweighted, rack and pinion equipment, which is original except for the weights. Those were added in 1853. Despite its rather diminutive scale, the Merrimack Gatehouse occupies a commanding position in the downtown streetscape. The effects of its canal-side site is maximized through considerable length compared to width and its crisp detailing (including locally unusual use of Flemish bond brickwork).

Boott Mill (Locks and Canals H.D.): This millyard was constructed and then adapted over a 100-year period by the Boott Corporation, the eighth of ten original major textile corporations in Lowell. Of these original millyards, the Boott Mill complex is the most intact surviving example of the first phase of Lowell's mill construction. All four of the original 1835 mills in the Boott millyard survive as part of an interconnected series of mill buildings. The 1835 company office and counting rooms also survive in their original exterior form. The balance of the complex which is composed of later additions, is also significant because it demonstrates the evolution of the earliest Lowell mills to meet the needs of expanding an increasingly restrictive site, bound by a canal and the river. The Boott Mill complex is one of the few corporations that managed to expand on its site while retaining and enhancing the architectural quality of the mill's principal courtyard. The clock tower and belfry, completed circa 1865, are part of this later phase of construction and survive today as one of the most memorable architectural monuments in Lowell and as a symbol of the park. The Park Service owns two buildings in the complex which (will) house a variety of exhibits. They are Mill #6 and the Countinghouse.

The No. 6 Mill is an "L" plan structure consisting of two sections which are labeled on insurance surveys as No. 6 East (74 feet on the Eastern Canal X 113 feet on Bridge NPS Form 10-900-a (3-82)

United States Department of the Interior National Park Service

National Register of Historic Places Inventory-Nomination Form

Street) and No. 6 West (238 feet on the Eastern Canal X 48 feet). Italianate in design, the building contains equal-size bays, each of which contains a single window with an arched brick hood at each story. Octagonal stair towers rise at the northwest corners of No. 6 East and No. 6 West, providing important focal points within the main millyard. Each tower's walls are framed by brick piers and divided horizontally by corbelling at the top of the second and fourth stories; narrow windows with arched hoods are set in the center of the tower's wider faces. Both towers were originally six stories high and had entries with hoods on wooden brackets; only that of No. 6 West remains, that of No. 6 East having been partially blocked by brick. The sixth story and (cast iron) cresting of each tower was removed after 1932 (Insurance Survey). Other alterations to the No. 6 Mill include the rebuilding of the cornice on the west elevation of No. 6 West and the restoration of the mill's windows (12/12 sash). On the mill's millyard (interior) elevation the inner corner of the "L" plan is occupied by a five story brick addition built after 1921. Along the Bridge Street side of No. 6 East is an enclosed railroad bed which enters the building by means of a bridge across the Eastern Canal. Originally the opening for the tracks (which extend to a coal pocket) was one-bay wide, with an arched head resembling window hoods. In 1927, the entry was enlarged into a rectangular opening, one-and-one-half stories high, occupying the eastern three bays of the building's canal elevation. At the same time, the present steel bridge was installed.

Straddling part of the millyard entry, the brick Counting House (100' on Eastern Canal X 30') is the only building to remain substantially unchanged from the millyard's initial development. Fenestration of the structure is irregular, consisting of closely spaced windows at the building's east end and more widely spaced windows at the west end. The building's north elevation also contains irregular fenestration, including some apparent blocking of early doorways and the creation of new entries. Many of the windows may have been added or enlarged. The building's original appearance is unknown. The earliest known view of the Counting House dates to ca. 1875, and shows the south elevation's west end much as it is today. Removed since this photo was taken are an entry hood on brackets, louvered shutters, and an apparent interior chimney which rose north of the roof's ridge.

Boott Mill Boardinghouse (H & H Paper Company) (Locks and Canals H.D.): This building was constructed between 1835 and 1838 as one of a series of boardinghouses for operatives of the Boott Mills and represents the physical relationship between mill operative housing and work locations. The boardinghouses were originally three-story traditional brick buildings with gable roofs. Most of them have been demolished, and the H & H Paper Company had been radically altered. Among other changes, the gable roof and part of the third floor had been removed and replaced by a flat roof; the frame outbuildings had been removed; windows had been bricked in; the interior had been gutted and modified; and a new building had been appended to the rear of the building.

OMB No. 1024-0018 Exp. 10-31-84

For NPS use only

United States Department of the Interior National Park Service

National Register of Historic Places Inventory—Nomination Form

For NPS use only received date entered

OMB No. 1024-0018

Exp. 10-31-84

Continuation sheet	Item number	7	Page	6	
		والمكال محكرا بمساعدة ومسيعا سيناهما النككان الشكاف والمكام ومعروبا والمتعاد	CONTRACTOR OF A	and the second se	-

The National Park Service and the Lowell Historic Preservation Commission restored the building to its original appearance in 1984–85 in order to house a series of historical and community exhibits.

Lowell Manufacturing Company (Locks and Canals H.D.): This textile mill was chartered on February 8, 1828, to produce carpets and coarse cotton cloth. In common with the other Lowell textile mills, the Lowell Manufacturing Company complex has a complicated reconstruction history, with current buildings dating from the 1880s to the early 20th century. Part of the complex is currently owned by Market Mills Associates. It is used for housing and lease space. The Park Service leases a portion of the space in Bigelow-Lowell Building #2 for the park's information/orientation center.

Forming the north wall of the millyard, Bigelow-Lowell Building #2 was built on the site of the company's Superintendent's House and on the site of an eight-unit boarding house. Building #2 was constructed in 1902 to enlarge the plant's capacity for weaving Brussels carpets. The structure's plan is irregular, built to conform to the company's property line on Market and Gardner Streets. The building design is uniform on all of its 5-story elevations, consisting of one wide undecorated window surrounded with an arched head, paired sash and paired transoms, in each bay at each story.

<u>Suffolk Manufacturing Company (Wannalancit Mill)</u> (Locks and Canals H.D.): Although the complex was one of the earliest textile manufacturing companies in Lowell, the building that now existsdate to a later period of construction, beginning in 1848 and ending in the 1880s. The existing structural system of the three mill buildings is the same. They have masonry load-bearing exterior walls with wood beams supported by wood columns (cast-iron columns are on the first and second floors of building 6 and 8). The Park Service leases space in the complex's turbine room in Mill #6 from the Wannalancit Office and Technology Center for use as a hydropower exhibit. Mill #6 measures 282 feet by 58 feet.

MANAGEMENT EXCLUSIONS

Listed below are the Park-owned properties which are not historic and do not meet National Register criteria. Management of these properties will require treatments sensitive to surrounding historic resources in keeping with National Park Service standards.

Jade Pagoda and Solomon's Yard Goods (Merrimack-Middle Street H.D.): These one-story structures occupy adjacent lots on Merrimack Street next to Old City Hall. The Solomon Building is a modern commercial structure that incorporates the foundation of an earlier 4-story building into its construction. The earlier building was destroyed by fire in 1962. The present building is constructed of tan brick and NPS Form 10-900-a (3-82)

United States Department of the Interior National Park Service

National Register of Historic Places Inventory—Nomination Form

OMB No. 1024-0018 Exp. 10-31-84

For NPS use only received date entered

Continuation sheet

Item number

7

Page 7

is of a rectangular plan. The main facade features a wide display window. A plaque bearing the incription "Solomon Building 1962" appears in the upper central portion of the Merrimack Street facade. The scale and surface treatments of the structure, along with Jade Pagoda to the west, detract from the character of the nearby Old City Hall, St. Anne's Church, and the Welles Block. The Jade Pagoda Restaurant is a one-story brick commercial structure directly adjacent to the Old City Hall. This structure is of a rectangular plan and has a flat roof. Portions of this building and its foundation are remnants of the 1859 Carlton (Weir) Block. Its main facade features modern display windows and a veneer of concrete slabs.

Dutton Street Parking Lot: This site was excluded from the Locks and Canals Historic District, even though the lot occupies a portion of the former Lowell Machine Shop yard. This company and its corporate ancestors were responsible for equipping Lowell's original textile mills with machinery; the company later became the country's leading manufacturer of textile equipment for a time during the mid- to late-nineteenth century. After several corporate reorganizations, however, machine shop buildings on this site were removed in 1931-33. Following archeological investigations, the existing modern parking lot for National Park Service visitors was constructed in 1982-83.

8 SIGNIFICANCE

PERIOD	AF	REAS OF SIGNIFICANCE CH	IECK AND JUSTIFY BELOW	
PREHISTORIC 1400-1499 1500-1599 1600-1699 1700-1799 X800-1899 X900-	ARCHEOLOGY-PREHISTORIC ARCHEOLOGY-HISTORIC AGRICULTURE XARCHITECTURE ART XCOMMERCE COMMUNICATIONS	X community planning conservation Xconomics education .Xengineering exploration/settlement Xndustry Xinvention	X LANDSCAPE ARCHITECTURE LAW LITERATURE MILITARY MUSIC PHILOSOPHY POLITICS/GOVERNMENT	 ∴RELIGION XSCIENCE SCULPTURE XSOCIAL/HUMANITARIAN THEATER XTRANSPORTATION OTHER (SPECIEY)
SPECIFIC DAT	ES 1800 - Present	BUILDER/ARCH	HITECT various	

STATEMENT OF SIGNIFICANCE

Lowell, Massachusetts was America's model industrial city during the first half of the 19th century. Lowell offered the hope that the country would profit socially as well as economically by adopting industrialism as a way of life. The early Lowell system was distinguished by its state-of-the-art technology, the engineers and inventors who worked on its canal system, its mill architecture, enormous production capabilities, rational city planning, and most of all, by its much-heralded work force of Yankee "mill girls." But as industry grew in New England, Lowell's factories aged and became less competitive with newer industrial cities. Profits fell, working conditions deteriorated, and wages were cut. The "mill girls" became disillusioned with the system and were replaced by a succession of immigrant groups eager to find work at any price. The city changed, too, as crowded tenements took the place of Lowell's well regulated system of boardinghouses and as Lowell became a city similar to other New England mill towns. Competition within the textile industry increased continually throughout the 19th century. Eventually, the combination of a cheaper, less unionized work force; newer, more efficient factories and machinery; cheaper real estate; and lower taxes persuaded the textile industry to move south. Eight of Lowell's original ten textile firms closed their doors for good during the 1920s, and the city fell into a depression that lasted through the 1960s. Businesses shut down, real estate prices fell, and unemployment rose. Today, however, Lowell is once again a model for urban development. The city's revitalization has capitalized on its working class, immigrant culture and the pride of its citizens, as well as extensive cooperation among local, state, and federal agencies and the private sector.

Lowell is not, as is sometimes claimed, the birthplace of the industrial revolution in America. Most of the developments associated with this phenomenon in the nation's history had their origins elsewhere. But it was in Lowell that these developments converged in a way that made them revolutionary. Lowell National Historical Park commemorates America's most significant planned industrial city, where new forms of technology, power generation, finance, labor, and industrial organization were combined on a scale that portended today's industrialized and urbanized society.

The importance of Lowell extends well beyond the story of its early years as pioneer and symbol of a new era. The Lowell experience offers unique opportunities to interpret the full socioeconomic, technological, and environmental implications of the industrial revolution, from Lowell's bright beginnings through decades of decline to the present revitalization. Lowell's physical resources include the original 5.6-mile power canal system, major cotton textile mill complexes, and evolutionary streetscapes of commercial and residential structures. Lowell's rich cultural heritage, reflected in the ethnic diversity of its citizens, is equally important.

9 MAJOR BIBLIOGRAPHICAL REFERENCES

Shepley Bulfinch Richardson & Abbott <u>Report:</u> Lowell National Historical Park and Preservation District Cultural Resources Inventory (National Park Service, NARO: Boston) 1980

Coolidge, John <u>Mill and Mansion: A Study of Architecture & Society in Lowell</u>, <u>MA, 1820-1865</u> (Russell & Russell: New York) reissue 1967

10GEOGRAPHICAL DATA

ACREAGE OF NOMINATED PROPERTY ______ 134 _____ UTM REFERENCES

A 1,9	3 0, 9 9, 6,0	472149010	в 1.9	3 1 1 2 9 0	417 213 81410
ZONE	EASTING	NORTHING	ZONE	EASTING	NORTHING
c119	3 0 9 3 6 0	4172261810	D 1.9	30185140	41721411610
VEDDALE	OUNDARY DECCOU	DTION			

VERBAL BOUNDARY DESCRIPTION

The Park includes within its boundaries Lowell's 5.6 mile power canal system, a portion of the central business district, and three major mill complexes. See attached boundary map; area marked in green constitutes the Lowell National Historical Park boundary.

STATE	CODE	COUNTY	CODE
STATE	CODE	COUNTY	CODE
FORM PREPAR	ED BY	, 47 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 	
NAME / TITLE			
Robert Weible, Hi	storian	June 1985	
ORGANIZATION	<u>, , , , , , , , , , , , , , , , , , , </u>	DATE	
Lowell National H	istorical Park		
STREET & NUMBER		TELEPHONE	
169 Merrimack Str	eet	(617) 459-1027	
		STATE No. 1	
Lowell		Массас	hugatta
Lowell, CERTIFICATIO	IN OF NOMINAT STATE HISTORIC PRESERVA	Massac ION TION OFFICER RECOMMENDATI	ON
Lowell, CERTIFICATIO	ON OF NOMINAT	Massac ION TION OFFICER RECOMMENDATI 0 NONE	<u>husetts</u> ON
Lowell, CERTIFICATIO	IN OF NOMINAT STATE HISTORIC PRESERVA YESN	Massac ION TION OFFICER RECOMMENDATI 0 NONE STATE HISTOR	ON
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi	Massac ION TION OFFICER RECOMMENDATI 0	NON ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in	Massac ION TION OFFICER RECOMMENDATI O	NON NIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE	Massac ION TION OFFICER RECOMMENDATI O	ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t Local.
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE	Massac ION TION OFFICER RECOMMENDATI O	ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t Local.
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE	Massac ION TION OFFICER RECOMMENDATI O	ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t Local.
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE	Massac ION TION OFFICER RECOMMENDATI O	N ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t Local.
Lowell, CERTIFICATIO	PN OF NOMINAT STATE HISTORIC PRESERVA YES N e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE SIGNATURE THIS PROPERTY IS INCLUDE	Massac ION TION OFFICER RECOMMENDATI O	N N N Register, certifying that the Stat to the State Review Board and t Local. DATE DATE SIGNATURE SIGNATURE DATE SIGNATURE SIGNAT
Lowell, CERTIFICATIO S compliance with Executive listoric Preservation Officer valuate its significance. The EDERAL REPRESENTATIV TITLE NPS USE ONLY I HEREBY CERTIFY THAT MAMMA	PN OF NOMINAT STATE HISTORIC PRESERVA YESN e Order 11593, I hereby nomi has been allowed 90 days in evaluated level of significance E SIGNATURE	Massac ION TION OFFICER RECOMMENDATI O	N ON IIC PRESERVATION OFFICER SIGNATU Register, certifying that the Stat to the State Review Board and t Local. DATE 10/18/85

HISTORIC DISTRICTS **HIE** LOWIELL NHP

THE INTERIOR

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

Massachusetts Cultural Resource Information System

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.

Home | Search | Index | Feedback | Contact

Massachusetts Cultural Resource Information System

MHC Home | MACRIS Home

For more information about this page and how to use it, <u>click here.</u>

Inventory No:	LOW.C		
Historic Name:	Locks and Canals District	and the second se	
Common Name:		Digital Photo	
Address:		Available	
City/Town:	Lowell		
Village/Neighborhood:	Downtown		
Local No:		-	
Year Constructed:			
Architect(s):			
Architectural Style(s):			
Use(s):	Abandoned or Vacant; Industrial Complex or District; Other Transportation; Utilities Other		
Significance:	Archaeology, Historic; Architecture; Commerce; Engineering; Industry; Transportation		
Area(s):			
Designation(s):	Nat'l Register District (08/13/1976); Nat'l Historic Landmark (12/22/1977); Nat'l Register District (06/05/1978); Local Historic District (12/13/1983)		
Building Material(s):			

APPENDIX C

ESA Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104 http://www.fws.gov/newengland

In Reply Refer To: Consultation Code: 05E1NE00-2018-SLI-2562 Event Code: 05E1NE00-2018-E-06004 Project Name: Lowell Garage July 30, 2018

Subject: List of threatened and endangered species that may occur in your proposed project location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/ eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http:// www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http:// www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/ comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office

70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-2562

Event Code: 05E1NE00-2018-E-06004

Project Name: Lowell Garage

Project Type: DEVELOPMENT

Project Description: Temporary construction dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: <u>https://</u> www.google.com/maps/place/42.64327983706718N71.3129798844956W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

 <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5087 http://www.fws.gov/newengland

January 20, 2017

To Whom It May Concern:

This project was reviewed for the presence of federally listed or proposed, threatened or endangered species or critical habitat per instructions provided on the U.S. Fish and Wildlife Service's New England Field Office website:

http://www.fws.gov/newengland/EndangeredSpec-Consultation.htm (accessed January 2017)

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area(s). Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

Thank you for your cooperation. Please contact Maria Tur of this office at 603-223-2541 if we can be of further assistance.

Sincerely yours.

Thomas R. Chapman Supervisor New England Field Office

IPaC

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

;ONSUL

Project information

NAME

Lowell Garage

```
LOCATION
```

Middlesex County, Massachusetts

DESCRIPTION

Temporary construction dewatering

Local office

New England Ecological Services Field Office

(603) 223-2541
(603) 223-0104

OTFORCONSULTATION

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and projectspecific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Log in to IPaC.
- 2. Go to your My Projects list.
- 3. Click PROJECT HOME for this project.
- 4. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The <u>Migratory Birds Treaty Act</u> of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of</u> <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS ELSEWHERE" INDICATES THAT THE

	YOUR PROJECT AREA.)
Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. <u>https://ecos.fws.gov/ecp/species/1626</u>	Breeds Oct 15 to Aug 31
Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10
Bobolink Dolichonyx oryzivorus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Jul 31
Canada Warbler Cardellina canadensis This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Aug 10
Eastern Whip-poor-will Antrostomus vociferus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Aug 20
Prairie Warbler Dendroica discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Jul 31
Red-headed Woodpecker Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Sep 10
Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Wood Thrush Hylocichla mustelina This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper

Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

				🔳 prob	ability o	f presen	ce	breeding s	eason	survey	effort	— no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	+111	1++1	++1+	++++	+++	++++	+-+	++++	+++	+++ <mark>+</mark>	11+1	+ +
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	+ <mark>∎</mark> ++	+ + + +	-+++	++++	++++	++++	++++	·
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	+#++	++++	-+++	++++	++++ (++++	\bigcirc	++
Canada Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	+++++	++++ C		++++	3	↓ + 1 +	I +++	++++	++++	++
Eastern Whip-poor- will BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+++++	+++0	++++	++++	+++ 1	++++	- + + +	++++	++++	++++	++++	++
Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++∎	111+	+ 1 ++	+-	++++	++++	++++	++++	++
Red-headed Woodpecker BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)		++++	++++	++++	++++	++++	- • • •	++++	++++	++++	I I + +	++

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC</u>) and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian</u> <u>Knowledge Network (AKN</u>). This data is derived from a growing collection of <u>survey, banding, and citizen science</u> <u>datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or yearround), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds guide</u>. If a bird

on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory birds resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> <u>District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

RIVERINE R2UBHx R5UBH

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres Approximate acreage and designation date follow ACEC names below.

Bourne Back River (1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp (1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley (12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed (1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor (600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog (8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills (500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed (4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed (14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp (16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay (2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin (1,350 acres, 1995) Lee and Stockbridge Karner Brook Watershed (7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds (8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary (1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag (25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay (9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River (160 acres, 1980) Bourne

Rumney Marshes (2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System (9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin (13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River (12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay (2,580 acres, 1979) Falmouth and Mashpee

Weir River (950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor (12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River (800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

•

November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
_	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	D "	Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
D · · ·	Herring River Watershed	Dama	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	PITTSTIEID	Upper Housatonic River
Duidersuchen	Inner Cape Cod Bay	Plymouth	Filiavilla Larbar
Bridgewater	Hockomock Swamp	Outineur	Ellisville Harbor
Canton	Fowi Meadow and Ponkapoag Bog	Quincy	Neponsel River Estuary
Chainam	Pleasant Bay	Randolpri	Fow Meadow and Ponkapoag bog
Conasset	Weir River	Rayman	Rumpov Marabaa
Dailon	Hinsdale Flats Watershed	Revele	Great March
Dednam	Fow Meadow and Ponkapoag Bog	Rondwich	Sondy Nook Parrier Papah System
Dignion	Petenewag	Sanuwion	Sanuy Neck Damer Deach System
Duristable	Pelapawag	Saugus	Coldon Hills
Eastnam	Maliflast Harbor	Sharon	Canoe River Aquifer
Factor	Conce River Aquifer	Sharon	Fowl Meadow and Ponkanoag Bog
Easton	Hockemock Swamp	Shoffield	Schench Brook
Earomont	Karpar Brook Watershed	Shirlov	Sauannassit
Egremon	Great March	Stockbridge	Kampoosa Bog Drainage Basin
Essex	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Capoo River Aquifer	raunion	Cance River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Citation	Watersheds	Townsend	Squannassit
Groton	Petanawag	Tynasborough	Petapawag
Cititi	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	J	Upper Housatonic River
	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
•	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
lpswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Plymouth	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
Worcester	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

-Eastern cougar and gray wolf are considered extirpated in Massachusetts.

-Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.

-Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

The Natural Heritage & Endangered Species Program maintains a list of all documented MESA-listed species observations in the Commonwealth. Please select a town if you would like to see a table showing which listed species have been observed in that town. The selected town will also be highlighted on the map. Alternatively you can specify either the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in. Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer will be updated at regular intervals as new data is accepted and entered into the NHESP database.

Google

Map deportamaperrore

Showing 1 to 8 of 8 entries Search:						
			First	Previous 1	Next Last	
Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs	
LOWELL	Butterfly/Moth	Cicinnus melsheimeri	Melsheimer's Sack Bearer	T	Historic	
LOWELL	Vascular Plant	Deschampsia cespitosa ssp. glauca	Tufted Hairgrass	Е	1882	
LOWELL	Vascular Plant	Elymus villosus	Hairy Wild Rye	E	1882	
LOWELL	Reptile	Emydoidea blandingii	Blanding's Turtle	Т	2007	
LOWELL	Bird	Falco peregrinus	Peregrine Falcon	Т	2017	
LOWELL	Dragonfly/Damselfly	Gomphus vastus	Cobra Clubtail	SC	2004	

NHESP Town Species Viewer

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs			
LOWELL	Vascular Plant	Liatris scariosa var. novae- angliae	New England Blazing Star	SC	1882			
LOWELL	Dragonfly/Damselfly	Neurocordulia obsoleta	Umber Shadowdragon	SC	2004			
Show 100 ▼ entries								

Show Additional Info

APPENDIX D

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number:	L1827825
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone: Project Name: Project Number:	Mike Cronan (617) 886-7477 LOWELL GARAGE NPDES RGP 129485-010
Report Date:	07/26/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:07261817:04

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1827825-01	HA17-110 (OW)	WATER	ALABANY STREET, BOSTON, MA	07/19/18 10:00	07/19/18
L1827825-02	LOWELL REC WATER	WATER	ALABANY STREET, BOSTON, MA	07/19/18 10:40	07/19/18

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: LOWELL GARAGE NPDES RGP Project Number: 129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Case Narrative (continued)

Report Revision

July 26, 2018: The project number has been amended.

Sample Receipt

The analyses performed were specified by the client.

Microextractables

The WG1138442-3 MS recovery, performed on L1827825-01 (HA17-110 (OW)), is outside the acceptance criteria for 1,2-dibromoethane (124%).

Semivolatile Organics by SIM

WG1138228: A Matrix Spike and Matrix Spike Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the Matrix Spike and Matrix Spike Duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Maria Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 07/26/18

ORGANICS

VOLATILES

	Serial_No	:07261817:04
LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
129485-010	Report Date:	07/26/18
SAMPLE RESULTS		
L1827825-01	Date Collected:	07/19/18 10:00
HA17-110 (OW)	Date Received:	07/19/18
ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC
Water		
128,624.1		
07/22/18 23:02		
GT		
	LOWELL GARAGE NPDES RGP 129485-010 SAMPLE RESULTS L1827825-01 HA17-110 (OW) ALABANY STREET, BOSTON, MA Water 128,624.1 07/22/18 23:02 GT	LOWELL GARAGE NPDES RGP Lab Number: 129485-010 Report Date: L1827825-01 Date Collected: HA17-110 (OW) ALABANY STREET, BOSTON, MA Field Prep: Water 128,624.1 07/22/18 23:02 GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	1.0		1		
1,1-Dichloroethane	ND		ug/l	1.5		1		
Carbon tetrachloride	ND		ug/l	1.0		1		
1,1,2-Trichloroethane	ND		ug/l	1.5		1		
Tetrachloroethene	ND		ug/l	1.5		1		
1,2-Dichloroethane	ND		ug/l	1.5		1		
1,1,1-Trichloroethane	ND		ug/l	2.0		1		
Benzene	ND		ug/l	1.0		1		
Toluene	ND		ug/l	1.0		1		
Ethylbenzene	ND		ug/l	1.0		1		
Vinyl chloride	ND		ug/l	1.0		1		
1,1-Dichloroethene	ND		ug/l	1.0		1		
cis-1,2-Dichloroethene	ND		ug/l	1.0		1		
Trichloroethene	ND		ug/l	1.0		1		
1,2-Dichlorobenzene	ND		ug/l	5.0		1		
1,3-Dichlorobenzene	ND		ug/l	5.0		1		
1,4-Dichlorobenzene	ND		ug/l	5.0		1		
p/m-Xylene	ND		ug/l	2.0		1		
o-xylene	ND		ug/l	1.0		1		
Xylenes, Total	ND		ug/l	1.0		1		
Acetone ¹	ND		ug/l	10		1		
Methyl tert butyl ether	ND		ug/l	10		1		
Tert-Butyl Alcohol	ND		ug/l	100		1		
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1		

						٨٥	contanco	
Volatile Organics by GC/MS - Westborough Lab								
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
Sample Depth:								
Sample Location:	ALABANY STREET, BOSTON, MA			Field Pr	ep:	Refer to COC		
Client ID:	HA17-110 (OW)			Date Re	eceived:	07/19/18		
Lab ID:	L1827825-01				Date Co	llected:	07/19/18 10:00	
		SAMP	LE RESULT	S				
Project Number:	129485-010				Report Date:		07/26/18	
Project Name:	LOWELL GARAGE N	IPDES RGP			Lab N	umber:	L1827825	
						Serial_No:07261817:04		

Surrogate	% Recovery	Qualifier	Criteria	
Pentafluorobenzene	111		60-140	
Fluorobenzene	113		60-140	
4-Bromofluorobenzene	99		60-140	

		Serial_No:07261817:04		
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825	
Project Number:	Dject Number: 129485-010		07/26/18	
	SAMPLE RESULTS			
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00	
Client ID:	HA17-110 (OW)	Date Received:	07/19/18	
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC	
Sample Depth:				
Matrix:	Water			
Analytical Method:	128,624.1-SIM			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westb	orough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier	Accep Cri	otance teria
Fluorobenzene			122		60	0-140
4-Bromofluorobenzene			100		60	0-140

Analytical Date: 07/22/18 23:02

GT

Analyst:
		Serial_No:	07261817:04
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010	Report Date:	07/26/18
	SAMPLE RESULTS		
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00
Client ID:	HA17-110 (OW)	Date Received:	07/19/18
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC
Sample Depth:			
Matrix:	Water	Extraction Method:	EPA 504.1
Analytical Method:	14,504.1	Extraction Date:	07/23/18 16:35
Analytical Date:	07/23/18 17:51		
Analyst:	AWS		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	A

Project Name:	LOWELL GARAGE	NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010		Report Date:	07/26/18
		Method Blank Analysis Batch Quality Control		
Analytical Method: Analytical Date: Analyst:	14,504.1 07/23/18 17:03 AWS		Extraction Method: Extraction Date:	EPA 504.1 07/23/18 16:35

Parameter	Result	Qualifier	Units	F	RL	MDL	
Microextractables by GC - Westboro	ugh Lab for	sample(s):	01	Batch:	WG113844	12-1	
1,2-Dibromoethane	ND		ug/l	0.	010		А

Project Name:	LOWELL GARAGE NPDES RGP	Lab I
Project Number:	129485-010	Repo

 Number:
 L1827825

 ort Date:
 07/26/18

Analytical Method:	128,624.1
Analytical Date:	07/22/18 18:47
Analyst:	AD

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS - We	stborough La	b for sampl	e(s): 01	Batch:	WG1138516-8
Methylene chloride	ND		ug/l	1.0	-
1,1-Dichloroethane	ND		ug/l	1.5	
Carbon tetrachloride	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.5	
Tetrachloroethene	ND		ug/l	1.5	
1,2-Dichloroethane	ND		ug/l	1.5	
1,1,1-Trichloroethane	ND		ug/l	2.0	
Benzene	ND		ug/l	1.0	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	
p/m-Xylene	ND		ug/l	2.0	
o-xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
Acetone ¹	ND		ug/l	10	
Methyl tert butyl ether	ND		ug/l	10	
Tert-Butyl Alcohol	ND		ug/l	100	
Tertiary-Amyl Methyl Ether	ND		ug/l	20	

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010	Report Date:	07/26/18
	Method Blank Analysis		

Analytical Method:	128,624.1
Analytical Date:	07/22/18 18:47
Analyst:	AD

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough La	b for sampl	e(s): 0	1 Batch:	WG1138516-8	

		A	cceptance
Surrogate	%Recovery	Qualifier	Criteria
Pentafluorobenzene	110		60-140
Fluorobenzene	111		60-140
4-Bromofluorobenzene	97		60-140

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010	Report Date:	07/26/18
	Method Blank Analysis		

Analytical Method:	128,624.1-SIM
Analytical Date:	07/22/18 18:47
Analyst:	AD

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM	- Westborough	h Lab for s	ample(s):	01	Batch:	WG1138564-4	
1,4-Dioxane	ND		ug/l		50		

		A	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Fluorobenzene	121		60-140
4-Bromofluorobenzene	98		60-140

Project Name:	LOWELL GARAGE	WELL GARAGE NPDES RGP Batch Quality Control					Lab I	Number:	L1827825	
Project Number:	129485-010					Report Date:			07/26/18	
Parameter		LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column

Microextractables by GC - Westborough Lab Associated sample(s): 01 Batch: WG1138442-2

1,2-Dibromoethane	117	-	80-120	-	А

Batch Quality Control

Project Number: 129485-010

Lab Number: L1827825 Report Date: 07/26/18

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1138516-7 Methylene chloride 100 60-140 28 _ -1,1-Dichloroethane 90 50-150 49 --Carbon tetrachloride 100 70-130 41 --90 70-130 45 1,1,2-Trichloroethane --95 70-130 39 Tetrachloroethene --1.2-Dichloroethane 100 70-130 49 --105 70-130 36 1.1.1-Trichloroethane --Benzene 105 65-135 61 --Toluene 100 70-130 41 --63 Ethylbenzene 100 60-140 --66 Vinyl chloride 100 5-195 --32 1,1-Dichloroethene 95 50-150 -cis-1,2-Dichloroethene 100 60-140 30 --65-135 48 Trichloroethene 95 --1,2-Dichlorobenzene 90 65-135 57 --1,3-Dichlorobenzene 90 70-130 43 --57 1,4-Dichlorobenzene 95 65-135 -p/m-Xylene 60-140 30 100 --60-140 30 o-xylene 95 --Acetone¹ 90 40-160 30 --Methyl tert butyl ether 90 60-140 30 --Tert-Butyl Alcohol 30 78 60-140 --Tertiary-Amyl Methyl Ether 95 60-140 30 --

Project Name:	LOWELL GARAGE NPDES RGP	Batch Quality Control	Lab Number:	L1827825
Project Number:	129485-010		Report Date:	07/26/18

	LCS			LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	9	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS - Westborough La	b Associated sa	ample(s):	01	Batch: WG113	88516-7				

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	103			60-140
Fluorobenzene	106			60-140
4-Bromofluorobenzene	97			60-140

Project Name:	LOWELL GARAGE NPDES RGP	Batch Quality Control	Lab Number:	L1827825
Project Number:	129485-010		Report Date:	07/26/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Volatile Organics by GC/MS-SIM - Westborou	gh Lab Associate	ed sample(s):	01 Batch:	WG1138564-3	3			
1,4-Dioxane	120		-		60-140	-		20

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	115 96				60-140 60-140

Matrix Spike Analysis

Project Name: Project Number:	ne: LOWELL GARAGE NPDES RGP nber: 129485-010				Batch Q	uality Cor	ntrol		Lab Nun Report D	nber: Date:	L1 07	827825 7/26/18	
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits	<u>Column</u>

Microextractables by GC - Westborough Lab		Associated sample(s): 01		QC Batch ID: WG1138442-3		QC Sample: L1	827825-01 Clier	Client ID: HA17-110 (OW)			
1,2-Dibromoethane	ND	0.25	0.309	124	Q	-	-	80-120	-	20	А

SEMIVOLATILES

	Serial_No:07261817:0			
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825	
Project Number:	129485-010	Report Date:	07/26/18	
	SAMPLE RESULTS			
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00	
Client ID:	HA17-110 (OW)	Date Received:	07/19/18	
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC	
Sample Depth:				
Matrix:	Water	Extraction Method:	: EPA 625.1	
Analytical Method:	129.625.1	Extraction Date:	07/23/18 09:01	
Analytical Date:	07/24/18 15:33			
Analyst:	ALS			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1			
Butyl benzyl phthalate	ND		ug/l	5.0		1			
Di-n-butylphthalate	ND		ug/l	5.0		1			
Di-n-octylphthalate	ND		ug/l	5.0		1			
Diethyl phthalate	ND		ug/l	5.0		1			
Dimethyl phthalate	ND		ug/l	5.0		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	64	15-314	
2-Fluorobiphenyl	69	55-108	
4-Terphenyl-d14	77	52-109	

		Serial_No:07261817:04		
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825	
Project Number:	129485-010	Report Date:	07/26/18	
	SAMPLE RESULTS			
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00	
Client ID:	HA17-110 (OW)	Date Received:	07/19/18	
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC	
Sample Depth:				
Matrix:	Water	Extraction Method	l: EPA 625.1	
Analytical Method:	129,625.1-SIM	Extraction Date:	07/23/18 08:54	
Analytical Date:	07/24/18 11:35			
Analyst:	DV			

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10		1		
Fluoranthene	ND		ug/l	0.10		1		
Naphthalene	ND		ug/l	0.10		1		
Benzo(a)anthracene	ND		ug/l	0.10		1		
Benzo(a)pyrene	ND		ug/l	0.10		1		
Benzo(b)fluoranthene	ND		ug/l	0.10		1		
Benzo(k)fluoranthene	ND		ug/l	0.10		1		
Chrysene	ND		ug/l	0.10		1		
Acenaphthylene	ND		ug/l	0.10		1		
Anthracene	ND		ug/l	0.10		1		
Benzo(ghi)perylene	ND		ug/l	0.10		1		
Fluorene	ND		ug/l	0.10		1		
Phenanthrene	ND		ug/l	0.10		1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1		
Pyrene	ND		ug/l	0.10		1		
Pentachlorophenol	ND		ug/l	1.0		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	43	35-77	
Phenol-d6	34	24-61	
Nitrobenzene-d5	76	15-314	
2-Fluorobiphenyl	63	55-108	
2,4,6-Tribromophenol	88	52-123	
4-Terphenyl-d14	70	52-109	

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825			
Project Number:	129485-010	Report Date:	07/26/18			
Method Blank Analysis						

Batch Quality Control

Analytical Method:	129,625.1	Extraction Method:	EPA 625.1
Analytical Date:	07/23/18 23:19	Extraction Date:	07/22/18 11:35
Analyst:	SZ		

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/M	S - Westboroug	h Lab for sa	ample(s):	01 Batch	n: WG1138227-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		

		Acceptance		
Surrogate	%Recovery	Qualifier	Criteria	
Nitrobenzene-d5	91		15-314	
2-Fluorobiphenyl	81		55-108	
4-Terphenyl-d14	98		52-109	

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825			
Project Number:	129485-010	Report Date:	07/26/18			
Method Blank Analysis						

Batch Quality Control

Analytical Method:	129,625.1-SIM	Extraction Method:	EPA 625.1
Analytical Date:	07/23/18 16:45	Extraction Date:	07/22/18 11:50
Analyst:	DV		

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/MS	S-SIM - Westbo	orough Lab	for sample	(s): 01	Batch: WG1138228-1
Acenaphthene	ND		ug/l	0.10	
Fluoranthene	ND		ug/l	0.10	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
Pentachlorophenol	ND		ug/l	1.0	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
2-Fluorophenol	50		35-77	
Phenol-d6	38		24-61	
Nitrobenzene-d5	91		15-314	
2-Fluorobiphenyl	70		55-108	
2,4,6-Tribromophenol	95		52-123	
4-Terphenyl-d14	82		52-109	

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Associa	ated sample(s)	: 01 Batch:	WG1138227-	-2				
Bis(2-ethylhexyl)phthalate	85		-		29-137	-		30	
Butyl benzyl phthalate	87		-		1-140	-		30	
Di-n-butylphthalate	90		-		8-120	-		30	
Di-n-octylphthalate	91		-		19-132	-		30	
Diethyl phthalate	85		-		1-120	-		30	
Dimethyl phthalate	83		-		1-120	-		30	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Q	Acceptance ual Criteria
Nitrobenzene-d5	97		15-314
2-Fluorobiphenyl	81		55-108
4-Terphenyl-d14	99		52-109

Batch Quality Control

Project Name: LOWELL GARAGE NPDE

Project Number: 129485-010

Lab Number: L1827825 Report Date: 07/26/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Qual Qual Parameter Qual Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1138228-2 Acenaphthene 88 60-132 30 --Fluoranthene 99 43-121 30 --Naphthalene 85 36-120 30 --Benzo(a)anthracene 90 42-133 30 --Benzo(a)pyrene 94 32-148 30 --Benzo(b)fluoranthene 42-140 30 94 --Benzo(k)fluoranthene 95 25-146 30 --30 Chrysene 92 44-140 --Acenaphthylene 91 54-126 30 --94 43-120 30 Anthracene --81 30 Benzo(ghi)perylene 1-195 --Fluorene 30 92 70-120 --30 Phenanthrene 90 65-120 --Dibenzo(a,h)anthracene 1-200 30 83 --30 Indeno(1,2,3-cd)pyrene 85 1-151 --30 Pyrene 98 70-120 --Pentachlorophenol 30 68 38-152 --

Lab Control Sample Analysis Batch Quality Control

Proiect Name:	LOWELL GARAGE NPDES RGP
r rojeot name.	

Project Number: 129485-010

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s); 01 Batch: WG1138228-2									

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	55		35-77
Phenol-d6	42		24-61
Nitrobenzene-d5	96		15-314
2-Fluorobiphenyl	74		55-108
2,4,6-Tribromophenol	95		52-123
4-Terphenyl-d14	88		52-109

PCBS

	Serial_No:07261817:04			
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825	
Project Number:	129485-010	Report Date:	07/26/18	
	SAMPLE RESULTS			
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00	
Client ID:	HA17-110 (OW)	Date Received:	07/19/18	
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC	
Sample Depth:				
Matrix:	Water	Extraction Method:	EPA 608.3	
Analytical Method:	127,608.3	Extraction Date:	07/23/18 00:20	
Analytical Date:	07/24/18 03:50	Cleanup Method:	EPA 3665A	
Analyst:	JW	Cleanup Date:	07/23/18	
-		Cleanup Method:	EPA 3660B	
		Cleanup Date:	07/23/18	

Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
ough Lab						
ND		ug/l	0.250		1	A
ND		ug/l	0.250		1	А
ND		ug/l	0.250		1	А
ND		ug/l	0.250		1	А
ND		ug/l	0.250		1	А
ND		ug/l	0.250		1	А
ND		ug/l	0.200		1	А
	Result ough Lab ND ND ND ND ND ND ND ND	ResultQualifierough Lab	ResultQualifierUnitsough Labug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/lNDug/l	Result Qualifier Units RL ough Lab ug/l 0.250 ND ug/l 0.250	Result Qualifier Units RL MDL rough Lab ug/l 0.250 ND ug/l 0.250	ResultQualifierUnitsRLMDLDilution Factorough LabNDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501NDug/l0.2501

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		37-123	А
Decachlorobiphenyl	48		38-114	А
2,4,5,6-Tetrachloro-m-xylene	90		37-123	В
Decachlorobiphenyl	65		38-114	В

Method Blank Analysis						
Project Number:	129485-010	Report Date:	07/26/18			
Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825			

Batch Quality Control

Analytical Method:	
Analytical Date:	
Analyst:	

127,608.3 07/24/18 02:23 JW Extraction Method:EPA 608.3Extraction Date:07/22/18 14:09Cleanup Method:EPA 3665ACleanup Date:07/23/18Cleanup Method:EPA 3660BCleanup Date:07/23/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	h Lab for sa	ample(s):	01 Batch:	WG1138251-	-1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		А
Aroclor 1242	ND		ug/l	0.250		A
Aroclor 1248	ND		ug/l	0.250		A
Aroclor 1254	ND		ug/l	0.250		A
Aroclor 1260	ND		ug/l	0.200		A

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	58		37-123	А			
Decachlorobiphenyl	44		38-114	А			
2,4,5,6-Tetrachloro-m-xylene	58		37-123	В			
Decachlorobiphenyl	53		38-114	В			

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

LCS			LCSD %Recovery				RPD				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column		
Polychlorinated Biphenyls by GC - Westborou	gh Lab Associat	ed sample(s):	01 Batch:	WG1138251-2	2						
Aroclor 1016	77		-		50-140	-		36	A		
Aroclor 1260	48		-		8-140	-		38	А		

	LCS		LCSD		Acceptance		
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	59				37-123	А	
Decachlorobiphenyl	41				38-114	А	
2,4,5,6-Tetrachloro-m-xylene	58				37-123	В	
Decachlorobiphenyl	49				38-114	В	

METALS

Serial_No:07261817:04

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825							
Project Number:	129485-010	Report Date:	07/26/18							
SAMPLE RESULTS										
Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00							
Client ID:	HA17-110 (OW)	Date Received:	07/19/18							
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC							

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Iron, Total	ND		mg/l	0.050		1	07/20/18 12:00	07/21/18 09:04	EPA 3005A	19,200.7	PE
Lead, Total	ND		mg/l	0.00100		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/20/18 15:31	07/24/18 14:19	EPA 245.1	3,245.1	MG
Nickel, Total	ND		mg/l	0.00200		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	07/20/18 12:00	07/23/18 19:02	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	269		mg/l	0.660	NA	1	07/20/18 12:00	07/21/18 09:04	EPA 3005A	19,200.7	PE

General Chemistry - Mansfield Lab

Chromium, Trivalent	ND	ma/l	0.010	 1	07/23/18 19:02	NA	107,-	

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG11	37803-	1				
Antimony, Total	ND	mg/l	0.00400		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	07/20/18 12:00	07/23/18 15:28	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - N	Mansfield Lab for sample(s):	01 Batch	: WG1	137804-	1				
Iron, Total	ND	mg/l	0.050		1	07/20/18 12:00	07/24/18 15:17	19,200.7	LC

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for samp	ole(s): 01	Bato	h: WG113	7804-1			
Hardness	ND	mg/l	0.660	NA	1	07/20/18 12:00	07/24/18 15:17	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Method Blank Analysis Batch Quality Control

Qualifier Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
mple(s): 01 Bat	tch: WG11	37878-′	1				
mg/l	0.00020		1	07/20/18 15:31	07/24/18 13:33	3,245.1	MG
	Iualifier Units Imple(s): 01 Ba	tualifier Units RL Imple(s): 01 Batch: WG11 mg/l 0.00020	mple(s): 01 Batch: WG1137878- mg/l 0.00020	Itualifier Units RL MDL Factor Imple(s): 01 Batch: WG1137878-1 mg/l 0.00020 1	Itualifier Units RL MDL Factor Prepared Imple(s): 01 Batch: WG1137878-1	Itualifier Units RL MDL Factor Prepared Analyzed Imple(s): 01 Batch: WG1137878-1 mg/l 0.00020 1 07/20/18 15:31 07/24/18 13:33	Itualifier Units RL MDL Factor Prepared Analyzed Method Imple(s): 01 Batch: WG1137878-1

Prep Information

Digestion Method: EPA 245.1

Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

LCSD %Recovery LCS **RPD** Limits %Recovery Qual %Recovery Limits RPD Parameter Qual Qual Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1137803-2 Antimony, Total 105 85-115 -Arsenic, Total 106 85-115 --Cadmium, Total 112 85-115 --Chromium, Total 85-115 98 --Copper, Total 106 85-115 --Lead. Total 110 85-115 --Nickel, Total 98 85-115 --Selenium, Total 85-115 108 --Silver, Total 85-115 110 --Zinc, Total 109 85-115 --Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1137804-2 106 85-115 Iron. Total --Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01 Batch: WG1137804-2 85-115 Hardness 97 -Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1137878-2 85-115 Mercury, Total 109

Matrix Spike Analysis Batch Quality Control

Project Name:	LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD al Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield I	_ab Associated sar	mple(s): 01	QC Batch I	D: WG113780	3-3	QC Sample:	L1827677-01	Client	t ID: MS Sa	mple		
Antimony, Total	ND	0.5	0.4554	91		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.1240	103		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.05986	117		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.2091	104		-	-		70-130	-		20
Copper, Total	ND	0.25	0.2802	112		-	-		70-130	-		20
Lead, Total	ND	0.51	0.6117	120		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.5180	104		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1250	104		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05833	117		-	-		70-130	-		20
Zinc, Total	ND	0.5	0.5555	111		-	-		70-130	-		20
Total Metals - Mansfield I	_ab Associated sar	mple(s): 01	QC Batch I	D: WG113780	3-5	QC Sample:	L1827677-02	Client	t ID: MS Sa	mple		
Antimony, Total	ND	0.5	0.5056	101		-	-		70-130	-		20
Arsenic, Total	0.0011	0.12	0.08557	70		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.06001	118		-	-		70-130	-		20
Chromium, Total	1.608	0.2	1.849	120		-	-		70-130	-		20
Copper, Total	0.4133	0.25	0.6847	108		-	-		70-130	-		20
Lead, Total	0.0028	0.51	0.5984	117		-	-		70-130	-		20
Nickel, Total	0.0194	0.5	0.5198	100		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.06899	57	Q	-	-		70-130	-		20
Silver, Total	ND	0.05	0.05749	115		-	-		70-130	-		20
Zinc, Total	0.0104	0.5	0.5585	110		-	-		70-130	-		20

L1827825 07/26/18

Matrix Spike Analysis

Project Name:	LOWELL GARAGE NPDES RGP	Batch Quality Control	Lab Number:
Project Number:	129485-010		Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch I	D: WG1137804-3	QC Sample:	L1827677-01	Client ID: MS S	ample	
Iron, Total	ND	1	1.10	110	-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	ed sample(s):	01 QC Batch II	D: WG1137804-	3 QC Sampl	e: L1827677-01	Client ID:	MS Sample
Hardness	15.2	66.2	79.8	98	-	-	75-125	-	20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch I	D: WG1137804-7	QC Sample:	L1827677-02	Client ID: MS S	ample	
Iron, Total	105	1	104	0	Q -	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	ed sample(s):	01 QC Batch II	D: WG1137804-	7 QC Sampl	e: L1827677-02	Client ID:	MS Sample
Hardness	19.5	66.2	84.0	98	-	-	75-125	-	20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch I	D: WG1137878-3	QC Sample:	L1827615-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00494	99	-	-	70-130	-	20
Total Metals - Mansfield Lab A	ssociated sam	ple(s): 01	QC Batch I	D: WG1137878-5	QC Sample:	L1827615-02	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00500	100	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

Parameter	Native Sample Dup	licate Sample Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1137804-4	QC Sample: L1827677-	01 Client ID: D	UP Sample	
Iron, Total	ND	ND mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1137804-8	QC Sample: L1827677-	02 Client ID: D	UP Sample	
Iron, Total	105	101 mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1137878-4	QC Sample: L1827615-	01 Client ID: D	UP Sample	
Mercury, Total	ND	ND mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1137878-6	QC Sample: L1827615-	02 Client ID: D	UP Sample	
Mercury, Total	ND	ND mg/l	NC		20

INORGANICS & MISCELLANEOUS

Serial_No:07261817:04

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010	Report Date:	07/26/18

SAMPLE RESULTS

Lab ID:	L1827825-01	Date Collected:	07/19/18 10:00
Client ID:	HA17-110 (OW)	Date Received:	07/19/18
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Refer to COC

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
SALINITY	ND		SU	2.0		1	-	07/21/18 02:57	121,2520B	MA
Solids, Total Suspended	9.7		mg/l	5.0	NA	1	-	07/20/18 23:59	121,2540D	CW
Cyanide, Total	0.005		mg/l	0.005		1	07/23/18 12:00	07/23/18 14:25	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/20/18 07:00	121,4500CL-D	MA
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/20/18 12:14	07/20/18 22:56	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.00		1	07/20/18 23:55	07/21/18 01:30	74,1664A	MM
Phenolics, Total	ND		mg/l	0.030		1	07/20/18 07:46	07/21/18 05:57	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	07/20/18 06:00	07/20/18 06:38	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	779.		mg/l	12.5		25	-	07/23/18 02:33	44,300.0	JR

	Serial	No:07261817:04
--	--------	----------------

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1827825
Project Number:	129485-010	Report Date:	07/26/18
	SAMPLE RESULTS		

Lab ID:	L1827825-02	Date Collected:	07/19/18 10:40
Client ID:	LOWELL REC WATER	Date Received:	07/19/18
Sample Location:	ALABANY STREET, BOSTON, MA	Field Prep:	Not Specified
Sample Depth:			

Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
SALINITY	ND		SU	2.0		1	-	07/21/18 02:57	121,2520B	MA
pH (H)	6.7		SU	-	NA	1	-	07/20/18 07:27	121,4500H+-B	MA
Nitrogen, Ammonia	0.119		mg/l	0.075		1	07/20/18 12:14	07/20/18 22:58	121,4500NH3-BH	I AT

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	137646-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	07/20/18 06:00	07/20/18 06:36	1,7196A	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	137685-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/20/18 07:00	121,4500CL-D	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: W	G1137708-1	ſ			
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/20/18 12:14	07/20/18 22:52	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	137713-1				
Phenolics, Total	ND		mg/l	0.030		1	07/20/18 07:46	07/21/18 05:53	4,420.1	GD
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	137900-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	07/20/18 23:55	07/21/18 01:30	74,1664A	MM
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	137984-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/20/18 23:59	121,2540D	CW
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG1 ²	138445-1				
Cyanide, Total	ND		mg/l	0.005		1	07/23/18 12:00	07/23/18 14:09	121,4500CN-CE	E LH
Anions by Ion Chron	natography - Westb	orough	Lab for sa	mple(s):	01 E	Batch: WG1	138629-1			
Chloride	ND		mg/l	0.500		1	-	07/22/18 18:09	44,300.0	JR

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ciated sample(s):	01 E	Batch: WG1137646	-2					
Chromium, Hexavalent	92		-		85-115	-		20	
General Chemistry - Westborough Lab Asso	ciated sample(s):	02 E	Batch: WG1137679	-1					
рН	100		-		99-101	-		5	
General Chemistry - Westborough Lab Asso	ciated sample(s):	01 E	Batch: WG1137685	-2					
Chlorine, Total Residual	93		-		90-110	-			
General Chemistry - Westborough Lab Asso	ciated sample(s):	01-02	Batch: WG1137	708-2					
Nitrogen, Ammonia	96		-		80-120	-		20	
General Chemistry - Westborough Lab Asso	ciated sample(s):	01 E	Batch: WG1137713	-2					
Phenolics, Total	86		-		70-130	-			
General Chemistry - Westborough Lab Asso	ciated sample(s):	01 E	Batch: WG1137900	-2					
ТРН	72		-		64-132	-		34	
General Chemistry - Westborough Lab Asso	ciated sample(s)	01-02	Batch: WG1138	040-1					
SALINITY	99		-			-			

Project Name	LOWELL GARAGE NPDES RGP	Batch Quality Control	Lab Number:	1 1827825
Project Number:	129485-010		Report Date:	07/26/18
	LCS	LCSD %Recove	ry	

Parameter	%Recovery	%Recovery	Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1138445-2			
Cyanide, Total	98		90-110	-	
Anions by Ion Chromatography - Westbo	rough Lab Associated s	ample(s): 01 Batch: WG11386	29-2		
Chloride	104	-	90-110	-	

Matrix Spike Analysis

Project Name:	LOWELL GARAGE NPDES RGP	Batch Quality Control
Project Number:	129485-010	

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits RF	RPD PD Qual Limits
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	NG1137646-4	QC Sample: L18278	25-01 Client ID:	HA17-110 (OW)
Chromium, Hexavalent	ND	0.1	0.096	96		-	85-115 ·	- 20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	NG1137685-4	QC Sample: L18278	25-01 Client ID:	HA17-110 (OW)
Chlorine, Total Residual	ND	0.248	0.24	97	-	-	80-120	- 20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01-0	2 QC Batch I	D: WG1137708-	4 QC Sample: L182	27825-01 Client I	D: HA17-110 (OW)
Nitrogen, Ammonia	ND	4	3.88	97	-	-	80-120	- 20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	NG1137713-4	QC Sample: L18278	25-01 Client ID:	HA17-110 (OW)
Phenolics, Total	ND	0.4	0.34	84	-	-	70-130	- 20
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1137900-4	QC Sample: L18276	15-02 Client ID:	MS Sample
TPH	ND	20.2	11.4	56	Q -	-	64-132	- 34
General Chemistry - Westboroug	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	NG1138445-4	QC Sample: L18276	64-02 Client ID:	MS Sample
Cyanide, Total	ND	0.2	0.203	102	-	-	90-110	- 30
Anions by Ion Chromatography - Sample	- Westborou	gh Lab Asso	ciated san	nple(s): 01 Q(C Batch ID: WG1	138629-3 QC Sam	nple: L1827677-06	Client ID: MS
Chloride	24.4	4	27.3	73	Q -	-	90-110	- 18

Lab Duplicate Analysis Batch Quality Control

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1827825

 Report Date:
 07/26/18

Parameter	Nativ	ve Sample	Duplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1137646-3	QC Sample: L'	1827825-01 C	lient ID: H	A17-110 (OW)
Chromium, Hexavalent		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab A WATER	Associated sample(s):	02 QC Batch ID:	WG1137679-2	QC Sample: L'	1827825-02 C	lient ID: L	OWELL REC
рН (Н)		6.7	6.7	SU	0		5
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1137685-3	QC Sample: L	1827825-01 C	lient ID: H	A17-110 (OW)
Chlorine, Total Residual		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab A	Associated sample(s):	01-02 QC Batch	ID: WG1137708-3	3 QC Sample:	: L1827825-01	1 Client ID	: HA17-110 (OW)
Nitrogen, Ammonia		ND	ND	mg/l	NC	_	20
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1137713-3	QC Sample: L	1827825-01 C	lient ID: H	A17-110 (OW)
Phenolics, Total		ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1137900-3	QC Sample: L'	1827615-01 C	lient ID: D	UP Sample
ТРН		ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1137984-2	QC Sample: L'	1828047-01 C	lient ID: D	UP Sample
Solids, Total Suspended		80	68	mg/l	16		29
General Chemistry - Westborough Lab A	Associated sample(s):	01-02 QC Batch	ID: WG1138040-2	2 QC Sample:	: L1827825-01	1 Client ID	: HA17-110 (OW)
SALINITY		ND	ND	SU	NC		
General Chemistry - Westborough Lab A	Associated sample(s):	01 QC Batch ID:	WG1138445-3	QC Sample: L	1827664-01 C	lient ID: D	UP Sample
Cyanide, Total		ND	ND	mg/l	NC		30

Project Name: Project Number:	LOWELL GARAGE NPDES 129485-010	S RGP	ab Duplicate Analys Batch Quality Control	sis	Lab Rep	Number: port Date:	L1827825 07/26/18
Parameter		Native Sample	Duplicate Sample	Units	RPD	RPD) Limits
Anions by Ion Chromato Sample	graphy - Westborough Lab A	Associated sample(s): 01	QC Batch ID: WG1138629	9-4 QC San	nple: L1827	677-06 Client I	D: DUP
Chloride		24.4	24.4	mg/l	0		18

Serial_No:07261817:04 *Lab Number:* L1827825 *Report Date:* 07/26/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1827825-01A	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01A1	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01B	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01B1	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01C	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01C1	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
	L1827825-01D	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		504(14)
	L1827825-01E	Vial Na2S2O3 preserved	А	NA		3.8	Y	Absent		504(14)
	L1827825-01F	Plastic 250ml HNO3 preserved	А	<2	<2	3.8	Y	Absent		HOLD-METAL-DISSOLVED(180)
	L1827825-01G	Plastic 250ml HNO3 preserved	A	<2	<2	3.8	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
	L1827825-01H	Plastic 950ml unpreserved	А	7	7	3.8	Y	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
	L1827825-01I	Amber 120ml unpreserved	А	7	7	3.8	Y	Absent		SALINITY(28)
	L1827825-01J	Plastic 250ml NaOH preserved	А	7	7	3.8	Y	Absent		TCN-4500(14)
	L1827825-01K	Amber 950ml H2SO4 preserved	А	<2	<2	3.8	Y	Absent		TPHENOL-420(28)
	L1827825-01L	Plastic 950ml unpreserved	А	7	7	3.8	Y	Absent		TSS-2540(7)
	L1827825-01M	Amber 1000ml HCI preserved	А	NA		3.8	Y	Absent		TPH-1664(28)
	L1827825-01N	Amber 1000ml HCI preserved	А	NA		3.8	Y	Absent		TPH-1664(28)
	L1827825-01O	Amber 1000ml Na2S2O3	А	7	7	3.8	Y	Absent		625.1-SIM-RGP(7)
	L1827825-01P	Amber 1000ml Na2S2O3	А	7	7	3.8	Y	Absent		625.1-SIM-RGP(7)
	L1827825-01Q	Amber 1000ml Na2S2O3	А	7	7	3.8	Y	Absent		625.1-RGP(7)
	L1827825-01R	Amber 1000ml Na2S2O3	А	7	7	3.8	Y	Absent		625.1-RGP(7)

Container Info	ormation	Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1827825-01S	Amber 1000ml Na2S2O3	А	7	7	3.8	Y	Absent		PCB-608.3(7)	
L1827825-01T	Amber 1000ml Na2S2O3	A	7	7	3.8	Y	Absent		PCB-608.3(7)	
L1827825-01U	Plastic 500ml H2SO4 preserved	А	<2	<2	3.8	Y	Absent		NH3-4500(28)	
L1827825-02A	Plastic 60ml unpreserved	А	7	7	3.8	Y	Absent		PH-4500(.01)	
L1827825-02B	Amber 120ml unpreserved	А	7	7	3.8	Y	Absent		SALINITY(28)	
L1827825-02C	Plastic 500ml H2SO4 preserved	А	<2	<2	3.8	Y	Absent		NH3-4500(28)	

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number: L1827825

Report Date: 07/26/18

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- 1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Usability Report Report Format:

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number: L1827825 Report Date: 07/26/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1827825

 Report Date:
 07/26/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 74 Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- 129 Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene, 1,4-Diphenylhydrazine. EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate EPA 9010: <u>NPW</u> and SCM: Amenable Cyanide Distillation SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3. **Mansfield Facility**

SM 2540D: TSS EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: AI, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

ALPHA	CHAIN OF	Brewer, NE 04412 P 07430 Albany, NY 12	ortsmouth, NH 0	3801 Mahwah, NJ	Pag	e 1 d 1		Date	e Rec	b'd	- T	7/	a ,	1/-	1							AL PHA Job # A		
A # 4 0.00 1	CUSTODY	Tonawande, NY 14150	Tonawanda, NY 14150 Holmes, PA 19043			-	in Lab //////								1107825									
Westborough, MA 01581	Manafield, MA 02048	Project Information					Deli	verable	es				111	- 17			-				-	Billing Information		
8 Walkup Dr. TEL. 508-898-5220	320 Ferbes Blvd TEL 508-822-9300	Project Name:	Lowell Garac	NPDES RG	P		Email Fax											Same as Client Info						
FAX: \$08-898-9193	FAX 108-822-3288	Project Location:	Albany Stree	t. Boston, MA			16] EQu	IS (1 F	File)		EQu	S (4 File)								PO #		
H&A Information		Project #	129485-010				16	Other:																
H&A Client: Walker C	Consultants	(Use Project name a	as Projec				Regulatory Requirements (Program/Cnteria)										Disposal Site Information							
H&A Address 465 Med	ford St	Project Manager:	M. Cronan/D	Bell			MA NPDES RGP									Please identify being location of applicable	le denne							
Boston.	MA 02129-1400	ALPHAQuote #:			100		1															Inclines.	e orijose	
H&A Phone: 617-686-	7400	Turn-Around Time	1.7																			Disposal Facility:		
H&A Fax:	COTT.	Standard	2	Due Date																				
H&A Email: Kaleoidis	. Lhoward	(only if pre approved)		# of Davs	5 Day		Note	Note: Select State from menu & identify onteria.									Б Other:							
These samples have b	een oreviously analyzer	i by Alpha		- Je seuja			ANA	ALYSIS	1													Sample Filtration	10	
Other project specific	requirements/comme	nts:					1	T	4	1	1	1	1.					- 1		-	1		1	
"Field Filtered PLEASE RUN FOR FULL 2017 RGP SUITE, MINUS ETHANOL Analyze using the EPA 2017 RGP Approved Testing Methods Please specify Metals or TAL.					0. TRC-4500	4500, 504	-SIM for Dioxa	3500, Trivalent vomium	(also including exylphihalste),	DTCL-SIM	s: Ag, As, Cd, (, Sb, Se, Zn, Fi	01-300	mmonia	y, hardness	64. PCB-608, ENOL-420	DISSOLVED	pre			Lab to do Preservation Lab to do				
							254	S	380	1 to 1	DE	3270	Pth 1		A	lint	우리	2 제	1º	<u>ا</u>		(Please Specify below)	, Č	
ALPHA Lab ID			Colk	action	Sample	Sampler's	SS	E.	8	EXC	Loza Haik	Ĩ	N.N.			ŝ	표비	¥						
(Lab Use Only)	Samp	e iD	Date	Time	Matrix	Initials	1		826	T	80		CU					°				Sample Specific Comments		
774250	HA17-110(OW)		71918	1000	AQ	SR	x	x	x	x	x	x	x	x	x	x	x	x	-	-	+-		24	
	Lowell Rec Water		V	1010	AQ	V									x			>	x				3	
				-							1												-	
				-			1														-		-	
							-	-	-			-						-	-		-		-	
							-	-	-	-	1	-						-	-	-	+		-	
							1	-	1	1	-				-	-		-	-	-	+		-	
								-	+	-	-	-				-	-	-	-	-	1		-	
							1	+		-	-	-			-	-	-	-	-	-	1		-	
							-	\mathbf{t}	-	-	-	-			-	-	-	-	-	+	+		-	
reservative Code: L = None 3 = HCI	Container Code P = Plastic A = Amber Glass	Westboro: Certificati Mansfield: Certificati	Vestboro: Certification No: MA935 Ansfield: Certification No: MA015			P	P	A	P	A	A	P	7	7	A	A	7 7	> /	t		Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are			
$= HNO_3$ $= H_3SO_4$	G = Glass					Preservative																resolved. Alpha Analytical's services under Chain of Custody shall be performed in ac-	er this cordance	
= NaOH	B = Bacteria Cup	College (star	10		T.e.		Dent	1	_	-	-	L		_	_		_		_	_	_	with terms and conditions within Blanket Service		
= MoOH 3 = NaHSO4	0 = Other	Heinquishe	i ely:	Date	(ime	Al a bec	Hecen	ved By	6	_	01	101	= // c	15	D	ate/Tir	me	_	_			between Haley & Aldrich, Inc., its subsidiar	ies and	
i = Na ₂ S ₃ D ₃	E = Encore D = BOD Bottin	11 alto		nem's	- 100	Minus	-	-	1		14	1410	6 40	10	0	10		-				alfiliates and Alpha Analytical.		
ve « Zh Ao/NaOH) = Other	e - erer enne	Mach		211010	16/10	M	2	A	n	~	ARC 5/19/18 1111							-						
	we have a second se	MAN		2/15/18	1905	~	_	-			1	1/19	118	190	5					_	_	-		
doument ID: 20455 Rev 1	(1/28/2016)																							

 $\in X$

=

ANALYTICAL REPORT

Lab Number:	L1829832
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone:	Mike Cronan (617) 886-7477
Project Name:	LOWELL GARAGE NPDES RGP
Project Number:	129485-010
Report Date:	08/07/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial N	No:0807	1821:29
----------	---------	---------

Project Name:	LOWELL GARAGE NPDES RGP
Project Number:	129485-010

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1829832-01	LOWELL REC WATER	WATER	ALBANY STREET, BOSTON, MA	08/01/18 10:15	08/01/18

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Curlen Walker Cristin Walker

Title: Technical Director/Representative

Date: 08/07/18

METALS

Serial_No:08071821:29

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1829832
Project Number:	129485-010	Report Date:	08/07/18
	SAMPLE RESULTS		
Lab ID:	L1829832-01	Date Collected:	08/01/18 10:15
Client ID:	LOWELL REC WATER	Date Received:	08/01/18
Sample Location:	ALBANY STREET, BOSTON, MA	Field Prep:	Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansf	ield Lab										
Antimony, Total	ND		mg/l	0.00400		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Arsenic, Total	0.00157		mg/l	0.00100		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Cadmium, Total	ND		mg/l	0.00020		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Chromium, Total	0.00236		mg/l	0.00100		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Copper, Total	0.01463		mg/l	0.00100		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Iron, Total	1.63		mg/l	0.050		1	08/04/18 10:15	5 08/06/18 14:39	EPA 3005A	19,200.7	LC
Lead, Total	0.00921		mg/l	0.00100		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Mercury, Total	ND		mg/l	0.00020		1	08/03/18 11:52	2 08/04/18 14:16	EPA 245.1	3,245.1	KA
Nickel, Total	0.00273		mg/l	0.00200		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Selenium, Total	ND		mg/l	0.00500		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Silver, Total	ND		mg/l	0.00040		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Zinc, Total	0.06319		mg/l	0.01000		1	08/04/18 10:15	5 08/06/18 19:00	EPA 3005A	3,200.8	MG
Total Hardness by S	M 2340B	- Mansfield	Lab								
Hardness	22.6		mg/l	0.660	NA	1	08/04/18 10:15	5 08/06/18 14:39	EPA 3005A	19,200.7	LC

General Chemistry - Mansfield Lab

Chromium, Trivalent	ND	ma/l	0.010	 1	08/06/18 19:00	NA	107,-	

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	1 Batch	: WG11	42701-	1				
Mercury, Total	ND	mg/l	0.00020		1	08/03/18 11:52	08/04/18 12:43	3,245.1	KA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield I	Lab for sample(s): (01 Batch	n: WG11	42937-	1				
Antimony, Total	ND	mg/l	0.00400		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Arsenic, Total	ND	mg/l	0.00100		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Cadmium, Total	ND	mg/l	0.00020		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Chromium, Total	ND	mg/l	0.00100		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Copper, Total	ND	mg/l	0.00100		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Lead, Total	ND	mg/l	0.00100		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Nickel, Total	ND	mg/l	0.00200		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Selenium, Total	ND	mg/l	0.00500		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Silver, Total	ND	mg/l	0.00040		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG
Zinc, Total	ND	mg/l	0.01000		1	08/04/18 10:15	08/06/18 17:41	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	1 Batch	: WG11	42939-	1				
Iron, Total	ND	mg/l	0.050		1	08/04/18 10:15	08/06/18 10:10	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield Lab	for samp	ole(s): 0'	1 Bato	h: WG114	2939-1			
Hardness	ND	mg/l	0.660	NA	1	08/04/18 10:15	08/06/18 15:25	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010 Lab Number: L1829832 Report Date: 08/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated samp	ble(s): 01 Batch:	WG114270 ⁻	1-2						
Mercury, Total	105		-		85-115	-			
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Batch:	WG114293	7-2						
Antimony, Total	96		-		85-115	-			
Arsenic, Total	101		-		85-115	-			
Cadmium, Total	101		-		85-115	-			
Chromium, Total	97		-		85-115	-			
Copper, Total	101		-		85-115	-			
Lead, Total	102		-		85-115	-			
Nickel, Total	99		-		85-115	-			
Selenium, Total	104		-		85-115	-			
Silver, Total	99		-		85-115	-			
Zinc, Total	104		-		85-115	-			
Total Metals - Mansfield Lab Associated samp	ole(s): 01 Batch:	WG1142939	9-2						
Iron, Total	107		-		85-115	-			
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	le(s): 01 B	atch: WG114293	39-2					
Hardness	102				85-115	-			

Matrix Spike Analysis

Project Name:	LOWELL GARAGE NPDES RGP	Batch Quality Control	Lab Num
Project Number:	129485-010		Report Da

 ab Number:
 L1829832

 eport Date:
 08/07/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1142701	-3 QC Sam	ple: L1829015-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00403	81	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1142701	-5 QC Sam	ple: L1829016-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00382	76	-	-	70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch II	D: WG1142937	-3 QC Sam	ple: L1829833-01	Client ID: MS S	Sample	
Antimony, Total	ND	0.5	0.6227	124	-	-	70-130	-	20
Arsenic, Total	0.00154	0.12	0.1215	100	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.04939	97	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1950	98	-	-	70-130	-	20
Copper, Total	0.00117	0.25	0.2430	97	-	-	70-130	-	20
Lead, Total	0.00146	0.51	0.5129	100	-	-	70-130	-	20
Nickel, Total	0.00308	0.5	0.4900	97	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1133	94	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04751	95	-	-	70-130	-	20
Zinc, Total	0.01686	0.5	0.5183	100	-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010 Lab Number: L1829832

Report Date:

08/07/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	N Fo	ISD ound	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	D: WG1142937	-5 QC	Sample	: L1829833-02	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.5809	116		-	-	70-130	-	20
Arsenic, Total	0.00155	0.12	0.1286	106		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05312	104		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1998	100		-	-	70-130	-	20
Copper, Total	0.00254	0.25	0.2561	101		-	-	70-130	-	20
Lead, Total	0.00389	0.51	0.5486	107		-	-	70-130	-	20
Nickel, Total	0.00395	0.5	0.5054	100		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1331	111		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05024	100		-	-	70-130	-	20
Zinc, Total	0.04489	0.5	0.5623	103		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG1142939	-3 QC	Sample	: L1829833-01	Client ID: MS S	ample	
Iron, Total	7.13	1	7.88	75		-	-	75-125	-	20
Total Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batch	ID: WG1	142939	9-3 QC Sampl	e: L1829833-01	Client ID:	MS Sample
Hardness	394	66.2	439	68	Q	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	ID: WG1142939	-7 QC	Sample	: L1829833-02	Client ID: MS S	ample	
Iron, Total	2.21	1	3.20	99		-	-	75-125	-	20
Total Hardness by SM 2	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Batch	ID: WG1	142939	9-7 QC Sampl	e: L1829833-02	Client ID:	MS Sample
Hardness	370	66.2	430	91		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP **Project Number:** 129485-010

Lab Number: Report Date:

L1829832 08/07/18

Parameter	Native Sample Dup	licate Sample Units	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142701-4	QC Sample: L1829015-01	Client ID: DUP Sampl	e
Mercury, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142701-6	QC Sample: L1829016-01	Client ID: DUP Sampl	e
Mercury, Total	ND	ND mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142937-4	QC Sample: L1829833-01	Client ID: DUP Sampl	е
Antimony, Total	ND	ND mg/l	NC	20
Arsenic, Total	0.00154	0.00140 mg/l	10	20
Cadmium, Total	ND	ND mg/l	NC	20
Chromium, Total	ND	ND mg/l	NC	20
Copper, Total	0.00117	0.00127 mg/l	8	20
Lead, Total	0.00146	0.00147 mg/l	0	20
Nickel, Total	0.00308	0.00310 mg/l	1	20
Selenium, Total	ND	ND mg/l	NC	20
Silver, Total	ND	ND mg/l	NC	20
Zinc, Total	0.01686	0.01540 mg/l	9	20

Lab Duplicate Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP **Project Number:** 129485-010

Lab Number:

L1829832 Report Date: 08/07/18

Parameter	Native Sample D	uplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142937	-6 QC Sample:	L1829833-02 C	lient ID: DUP Sample	
Antimony, Total	ND	ND	mg/l	NC	20
Arsenic, Total	0.00155	0.00147	mg/l	5	20
Cadmium, Total	ND	ND	mg/l	NC	20
Chromium, Total	ND	ND	mg/l	NC	20
Copper, Total	0.00254	0.00267	mg/l	5	20
Lead, Total	0.00389	0.00378	mg/l	3	20
Nickel, Total	0.00395	0.00396	mg/l	0	20
Selenium, Total	ND	ND	mg/l	NC	20
Silver, Total	ND	ND	mg/l	NC	20
Zinc, Total	0.04489	0.04253	mg/l	5	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142939	-4 QC Sample:	L1829833-01 C	lient ID: DUP Sample	
Iron, Total	7.13	6.57	mg/l	8	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1142939	-8 QC Sample:	L1829833-02 C	lient ID: DUP Sample	
Iron, Total	2.21	2.22	mg/l	0	20

INORGANICS & MISCELLANEOUS

Project Name:	LOWELL G	ARAGE N	IPDES F	RGP			Lab No	umber: L	1829832	
Project Number:	129485-010						Repor	t Date: 0	8/07/18	
				SAMPLE	RESUL	rs				
Lab ID:	L1829832-0	1					Date C	ollected: 0	8/01/18 10:15	
Client ID:	LOWELL REC WATER						Date R	Date Received: 08/01/18		
Sample Location:	ALBANY ST	REET, B	OSTON	, MA			Field P	rep: N	lot Specified	
Sample Depth:										
Matrix:	Water									
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
рН (Н)	6.7		SU	-	NA	1	-	08/02/18 01:40	121,4500H+-B	MA
Chromium, Hexavalent	ND		mg/l	0.010		1	08/02/18 01:29	08/02/18 01:53	1,7196A	UN

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG11	142005-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	08/02/18 01:29	08/02/18 01:48	1,7196A	UN

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

 Lab Number:
 L1829832

 Report Date:
 08/07/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ciated sample(s):	01 Ba	atch: WG1141994-	1					
рН	100		-		99-101	-		5	
General Chemistry - Westborough Lab Asso	ociated sample(s):	01 Ba	atch: WG1142005-	2					
Chromium, Hexavalent	94		-		85-115	-		20	

		Matrix Spike Analysis Batch Quality Control		
Project Name:	LOWELL GARAGE NPDES RGP	Baton Quanty Control	Lab Number:	L1829832
Project Number:	129485-010		Report Date:	08/07/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	R Qual	ecovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborou WATER	igh Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	WG1142	2005-4	QC Sample: L18	829832-01	1 Client	ID: LO	WELL	REC
Chromium, Hexavalent	ND	0.1	0.097	97		-	-		85-115	-		20

Project Name: Project Number:	LOWELL GA 129485-010	RAGE NPDES RGP		Lab	Duplicate A Batch Quality Co	nalysis ontrol		Lab Numb Report Da	er: te:	L1829832 08/07/18
Parameter		Nat	tive S	Sample	Duplicate Sam	ple Unit	s RPD	Qual	RPD	Limits
General Chemistry - We	stborough Lab	Associated sample(s)	01	QC Batch ID:	WG1141994-2	QC Sample:	L1829833-01	Client ID: I	DUP Sam	nple
рН			6.8	8	6.8	SU	0			5
General Chemistry - Wes WATER	stborough Lab	Associated sample(s)	: 01	QC Batch ID:	WG1142005-3	QC Sample:	L1829832-01	Client ID: I	OWELL	REC
Chromium, Hexavalent			N	ט	ND	mg/l	NC			20

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
А	Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН рН		deg C Pres		Seal	Date/Time	Analysis(*)
L1829832-01A	Plastic 250ml HNO3 preserved	A	<2	<2	4.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AC-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),TRICR- CALC(1),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1829832-01B	Plastic 950ml unpreserved	А	7	7	4.0	Y	Absent		HEXCR-7196(1),PH-4500(.01)

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number: L1829832

Report Date: 08/07/18

GLOSSARY

Acronyms

EDL	 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

- rootnotes
- 1 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number: L1829832 Report Date: 08/07/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

 Lab Number:
 L1829832

 Report Date:
 08/07/18

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene
EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.
EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.
EPA 300: <u>DW</u>: Bromide
EPA 6860: <u>SCM</u>: Perchlorate
EPA 9010: <u>NPW</u>: Amenable Cyanide Distillation
SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

SM 2540D: TSS

EPA 8082A: <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

12.00	CHAIN OF CUSTODY	Service Centers Drawer, BE 04412 Partistissuith, NH 03901 Mahweh, N- 67439 Albany, NY 12205 Tonawanda, NY 14150 Holmes, PA 19043		NJ Page 1 of 1			Data David					1	1		and the state of t			
ОТЪКА						in Lab		08		86	61/18			ALPHA JOD # 118298				
Westborough, MA 0154 8 Walkup Dr.	Manafikid, MA 02048 320 Forbes Bivd TEL: 508-812-9300 FAX: 508-822-3258	Project Information	n.		-		Deli	verabl	es:		-	-			0		Billion Information	
TEL: 508-898-9220 FAX: 508-898-9193		Project Name:	Lowell Garag	e NPDES R	GP		1	Ema	1			Fax					Same as Client Info	
		Project Location:	Albany Stree	t, Boston, MA	4] EQu	IS (1 I	File)	1	EQuIS (4 FI	ie)				For	
H&A Information		Project #	129485-010] Othe	er:									
H&A Client: Walker	Consultants	(Use Project name	r as Projec)				Reg	ulatory	Hequ	iremer	ts (Progra	ans/Criteria)					Disposal Site Information	
H&A Address 465 Me	dford St	Project Manager:	M. Cronan/D	Bell			MA	NPDE	ES RGR	2							Disage identify the local sectors of the local	
Boston	, MA 02129-1400	ALPHAQuote #:					1										facilities.	le disp
H&A Phone: 617-886	8-7400	Turn-Around Time															Disposal Facility	-
48A Fax:		Standard	1 I	Due Date	80						1							
H&A Email: Kalepid	is, Lhoward	(only if pre approved	•	# of Days	s: 5 Day		Note:	Select	State f	tom me	nu & identif	y criteria.					П Other	
These samples have t	been previously analyzed	i by Alpha					ANA	LYSIS	3								Sample Filtration	
Other project specifi	c requirements/comme	nts:						5 .	1	T	TT		TT	T	TT			- 31
analyze using the EPA 2017 RGP Approved Testing Methods. Metals are full RGP list.						g, As, Cd, , Se, Zn, F	O, Trivalen	655							Lab to do			
rease opening metal	T		1					Aetals: A	Chron	hardr	£.						(Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Lowell Re	c Water	Date	ction Time	Sample Matrix	Sampler's Initials		Total N Cu, N	P								Sample Specific Comments	
2992-01	Lowell Rec Water		8/1/18	05	AQ	AF		x	x	x	x							0
			117.															1
																		-
the second second							-						-					
Sector States																		-
and a start of				<u></u>														-
																		-
																		-
the same in																		-
																		-
Preservative Code: A = None 3 = HCl C = HNO	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative												Please print clearly, legibly and complete Samples can not be logged in and turnar time clock will not start until any ambigu	ely. round aities r
= H ₂ SO ₄	G = Glass													resolved. Alpha Analytica's services under this Chain of Custody shall be performed in				
= MeOH	C = Cube	Helinquished By: Date			/Time a		lacabu	leceived By:			Date/Time					with terms and conditions within Blanket Service		
= NaHSO	O = Other E = Encore					IOC BIVE	Agreement# 2015-18-Alphe Analytical by and between Haley & Aldrich, Inc., its autobiliaries and											
/E = Zn Ac/NaOH D = BOD Bottle		VIII 21/10			46131	bis maan		- 10		AAC 18/1 18 1640				affiliates and Alpha Analytical.				
= Other		10 000		1612		- man												
- Counter		pralle 1		SI. 1100	10104	1.4.4.4.4	1 1 1	11	Z		-	110	10	4.0				

•

ANALYTICAL REPORT

Lab Number:	L1934969
Client:	Haley & Aldrich, Inc. 465 Medford Street, Suite 2200 Charlestown, MA 02129-1400
ATTN: Phone:	Denis Bell (617) 886-7300
Project Name:	LOWELL GARAGE NPDES RGP
Project Number: Report Date:	129485-010 08/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1934969-01	HA17-110(OW)-2019-08	WATER	LOWELL, MA	08/06/19 10:15	08/06/19
L1934969-02	LOWELL REC WATER-2019- 08	WATER	LOWELL, MA	08/06/19 11:10	08/06/19

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: LOWELL GARAGE NPDES RGP Project Number: 129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

L1934969-02: Containers for the Total Suspended Solids and Total Cyanide analyses were received for the "LOWELL REC WATER-2019-08" sample, but were not listed on the chain of custody. The analyses were not performed at the client's request.

Total Metals

The WG1270212-2 LCS recoveries, associated with L1934969-01 (HA17-110(OW)-2019-08), are above the acceptance criteria for selenium (124%) and zinc (136%); however, the associated sample is non-detect to the RL for these target analytes. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Sturgis Melissa Sturgis

Authorized Signature:

Title: Technical Director/Representative

Date: 08/15/19

METALS

Serial_No:08151913:41

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1934969					
Project Number:	129485-010	Report Date:	08/15/19					
SAMPLE RESULTS								
Lab ID:	L1934969-01	Date Collected:	08/06/19 10:15					
Client ID:	HA17-110(OW)-2019-08	Date Received:	08/06/19					
Sample Location:	LOWELL, MA	Field Prep:	Not Specified					

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00100		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Iron, Total	ND		mg/l	0.050		1	08/07/19 13:32	08/08/19 02:49	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.00100		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	08/09/19 11:51	08/12/19 13:22	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	08/07/19 13:32	08/12/19 20:06	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	146		mg/l	0.660	NA	1	08/07/19 13:32	08/08/19 02:49	EPA 3005A	19,200.7	AB

General Chemistry - Mansfield Lab

Chromium, Trivalent	ND	ma/l	0.010	 1	08/12/19 20:06	NA	107	

Serial_No:08151913:41

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Matrix:	Water											
Sample Depth:												
Sample Location:	LOWE	LL, MA					Field Pr	ep:	Not Spe	ecified		
Client ID:	LOWE	LL REC W	ATER-20	019-08			Date Re	eceived:	08/06/1	9		
Lab ID:	L1934	969-02					Date Co	ollected:	08/06/1	9 11:10		
				SAMP	LE RES	ULTS						
Project Number:	12948	129485-010					Report	Date:	08/15/	08/15/19		
Project Name:	LOWE	LL GARA	GE NPDE	S RGP	•		Lab Nu	mber:	L1934	969		

Total Hardness	by SM 2340B - M	lansfield Lab						
Hardness	21.2	mg/l	0.660	NA	1	08/07/19 13:32 08/08/19 02:53 EPA 3005A	19,200.7	AB

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-02 B	atch: WG	612695	62-1				
Iron, Total	ND	mg/l	0.050		1	08/07/19 13:32	08/08/19 00:54	19,200.7	AB
			Prep Info	ormatic	'n				

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilutio Facto	n Date r Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SN	/ 2340B - Mansfield Lat	o for sam	nple(s):	01-02	Batch: V	VG1269562-1			
Hardness	ND	mg/l	0.660	NA	1	08/07/19 13:32	08/08/19 00:54	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG12	70212-	1				
Antimony, Total	ND	mg/l	0.00400		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	08/07/19 13:32	08/12/19 19:40	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): 0	01 Batch	n: WG12	70646-	1				
Mercury, Total	ND	mg/l	0.00020		1	08/09/19 11:51	08/12/19 13:08	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG126	9562-2						
Iron, Total	109		-		85-115	-			
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-02	Batch: WG126	9562-2					
Hardness	96		-		85-115	-			
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch:	WG12702 ²	12-2						
Antimony, Total	92		-		85-115	-			
Arsenic, Total	112		-		85-115	-			
Cadmium, Total	114		-		85-115	-			
Chromium, Total	110		-		85-115	-			
Copper, Total	103		-		85-115	-			
Lead, Total	114		-		85-115	-			
Nickel, Total	103		-		85-115	-			
Selenium, Total	124	Q	-		85-115	-			
Silver, Total	108		-		85-115	-			
Zinc, Total	136	Q	-		85-115	-			

Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1270646-2

Mercury, Total	91	-	85-115	-	

Matrix Spike Analysis

	Native	MS	MS	MS	MSD	MSD	Recovery	RPD
Project Number:	129485-010						Report Date:	08/15/19
Project Name:	LOWELL GARAG	E NPDES R	GP	Bato	ch Quality Contro	ol	Lab Number:	L1934969

Parameter	Sample	Added	Found	%Recovery	Qual Found	%Recovery	Qual Limits	RPD Qu	al Limits
Total Metals - Mansfield La	ab Associated san	nple(s): 01-02	2 QC Bat	ch ID: WG12695	62-3 QC San	nple: L1933777-(01 Client ID: MS	Sample	
Iron, Total	ND	1	1.12	112	-	-	75-125	-	20
Total Hardness by SM 234	I0B - Mansfield La	b Associated	d sample(s)): 01-02 QC Ba	tch ID: WG1269	9562-3 QC Sar	mple: L1933777-0	1 Client I	D: MS Samj
Hardness	37.5	66.2	100	94	-	-	75-125	-	20
Total Metals - Mansfield La	ab Associated san	nple(s): 01	QC Batch	ID: WG1270212-	-3 QC Sample	e: L1900008-75	Client ID: MS Sa	mple	
Antimony, Total	ND	0.5	0.4300	86	-	-	70-130	-	20
Arsenic, Total	0.01046	0.12	0.1248	95	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05879	115	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2066	103	-	-	70-130	-	20
Copper, Total	ND	0.25	0.2441	98	-	-	70-130	-	20
Lead, Total	ND	0.51	0.5659	111	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5038	101	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1512	126	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05249	105	-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5481	110	-	-	70-130	-	20
Fotal Metals - Mansfield La	ab Associated san	nple(s): 01	QC Batch	ID: WG1270646-	3 QC Sample	e: L1933455-01	Client ID: MS Sa	imple	
Mercury, Total	ND	0.005	0.00497	99	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP **Project Number:** 129485-010

Lab Number: Report Date:

L1934969 08/15/19

Parameter		Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab	Associated sample(s): 01	-02 QC Batch ID: W	/G1269562-4 QC Sampl	e: L1933777-0	01 Client ID:	DUP Sample	
Iron, Total		ND	ND	mg/l	NC		20
Total Hardness by SM 2340E Sample	3 - Mansfield Lab Associat	ed sample(s): 01-02	QC Batch ID: WG12695	62-4 QC Sar	nple: L1933	777-01 Client ID:	DUP
Hardness		37.5	35.6	mg/l	5		20
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1	270212-4 QC Sample:	L1900008-75	Client ID: D	UP Sample	
Antimony, Total		ND	ND	mg/l	NC		20
Arsenic, Total		0.01046	0.01129	mg/l	8		20
Cadmium, Total		ND	ND	mg/l	NC		20
Chromium, Total		ND	ND	mg/l	NC		20
Copper, Total		ND	ND	mg/l	NC		20
Lead, Total		ND	ND	mg/l	NC		20
Nickel, Total		ND	ND	mg/l	NC		20
Selenium, Total		ND	ND	mg/l	NC		20
Silver, Total		ND	ND	mg/l	NC		20
Zinc, Total		ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1	270646-4 QC Sample:	L1933455-01	Client ID: D	UP Sample	
Mercury, Total		ND	0.00087	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name:	LOWELL GARAGE NPDES RGP	Lab Number:	L1934969
Project Number:	129485-010	Report Date:	08/15/19
	SAMPLE RESULTS		

Lab ID:	L1934969-01	Date Collected:	08/06/19 10:15
Client ID:	HA17-110(OW)-2019-08	Date Received:	08/06/19
Sample Location:	LOWELL, MA	Field Prep:	Not Specified

Sample Depth: Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough Lab)								
Solids, Total Suspended	6.4		mg/l	5.0	NA	1	-	08/07/19 14:25	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	08/07/19 13:55	08/07/19 16:24	121,4500CN-CE	LH
рН (Н)	6.4		SU	-	NA	1	-	08/07/19 00:45	121,4500H+-B	DS
Nitrogen, Ammonia	0.079		mg/l	0.075		1	08/07/19 06:21	08/07/19 21:49	121,4500NH3-BH	AT
Chromium, Hexavalent	ND		mg/l	0.010		1	08/07/19 01:00	08/07/19 03:14	1,7196A	MA
Anions by Ion Chromatograp	ohy - West	borough	Lab							
Chloride	419.		mg/l	25.0		50	-	08/08/19 18:55	44,300.0	AT

Project Name: Project Number:	LOWELL GA 129485-010	ARAGE N	PDES R	GP			Lab No Repor	umber: L t Date: 0	.1934969 8/15/19	
			S	SAMPLE	RESULI	rs				
Lab ID: Client ID: Sample Location:	L1934969-02 LOWELL RE LOWELL, M	2 EC WATE A	R-2019-0	08			Date C Date R Field P	Collected: 0 Received: 0 Prep: N	98/06/19 11:10 98/06/19 Not Specified	
Sample Depth: Matrix:	Water					Dilution	Date	Date	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Wes	stborough Lab)								
рН (Н)	7.2		SU	-	NA	1	-	08/07/19 00:45	121,4500H+-B	DS
Nitrogen, Ammonia	ND		mg/l	0.075		1	08/07/19 06:21	08/07/19 21:50	121,4500NH3-BH	AT

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for samp	ole(s): 0 ²	I-02 Bat	ch: W	G1269411-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	08/07/19 06:21	08/07/19 21:33	121,4500NH3-BH	H AT
General Chemistry	- Westborough Lab	for samp	ole(s): 0'	Batch:	WG12	269414-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	08/07/19 01:00	08/07/19 03:02	1,7196A	MA
General Chemistry	- Westborough Lab	for samp	ole(s): 0'	Batch:	WG12	269508-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	08/07/19 14:25	121,2540D	DR
General Chemistry	- Westborough Lab	for samp	ole(s): 0 ²	Batch:	WG12	269574-1				
Cyanide, Total	ND		mg/l	0.005		1	08/07/19 13:55	08/07/19 16:08	121,4500CN-CE	E LH
Anions by Ion Chro	matography - Westb	orough L	ab for s	ample(s):	01 E	Batch: WG12	270491-1			
Chloride	ND		mg/l	0.500		1	-	08/08/19 18:17	44,300.0	AT

Lab Control Sample Analysis Batch Quality Control

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Parameter	LCS %Recovery	LC Qual %Rec	SD overy Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01-02 Batch: V	VG1269374-1					-
рН	100		-	99-101	-		5	
General Chemistry - Westborough Lab	Associated sample(s):	01-02 Batch: V	VG1269411-2					
Nitrogen, Ammonia	96			80-120	-		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG	1269414-2					
Chromium, Hexavalent	99		-	85-115	-		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG	1269574-2					
Cyanide, Total	93		-	90-110	-			
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sample(s): 01	Batch: WG12704	491-2				
Chloride	100		-	90-110	-			

Matrix Spike Analysis

Project Name: Project Number:	LOWELL GARAG 129485-010	E NPDES R	GP	Ba	tch Qua	ality Conti	rol		Lab Numbei Report Date	r: :	L193 08/1{	4969 5/19
ameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recoverv	Qual	Recovery Limits	RPD	Qual	RPD Limits

Parameter	Sample	Added	Found	%Recovery	Qual F	ound	%Recovery	Qual	Limits	RPD	Qual L	imits
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 01-02	QC Batch IE	D: WG1269	9411-4	QC Sample:	: L193491	8-01 Cli	ent ID:	MS Sam	ple
Nitrogen, Ammonia	2.46	4	6.12	92		-	-		80-120	-		20
General Chemistry - Westboroug 2019-08	jh Lab Ass	ociated samp	le(s): 01 (QC Batch ID: V	VG126941	4-4 G	C Sample: L1	934969-0	1 Client	ID: HA	.17-110(C)-(W
Chromium, Hexavalent	ND	0.1	0.099	99		-	-		85-115	-		20
General Chemistry - Westboroug	gh Lab Ass	ociated samp	le(s): 01 (QC Batch ID: V	VG126957	4-4 G	C Sample: L1	934937-0	2 Client	ID: MS	Sample	
Cyanide, Total	ND	0.2	0.190	95		-	-		90-110	-		30
Anions by Ion Chromatography - Sample	Westboro	ugh Lab Asso	ciated sam	ple(s): 01 QC	C Batch ID:	: WG127	70491-3 QC	Sample:	L1935116	6-02 C	Client ID:	MS
Chloride	9.68	4	13.6	98		-	-		90-110	-		18

Lab Duplicate Analysis Batch Quality Control

Project Name:LOWELL GARAGE NPDES RGPProject Number:129485-010

 Lab Number:
 L1934969

 Report Date:
 08/15/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated sampl	e(s): 01-02 QC Batch	ID: WG1269374-2	QC Sample: L1	933671-01	Client ID: DUP Sample
рН	3.3	3.3	SU	0	5
General Chemistry - Westborough Lab Associated sampl	e(s): 01-02 QC Batch	ID: WG1269411-3	QC Sample: L1	934918-01	Client ID: DUP Sample
Nitrogen, Ammonia	2.46	2.52	mg/l	2	20
General Chemistry - Westborough Lab Associated sampl 2019-08	e(s): 01 QC Batch ID:	WG1269414-3 QC	C Sample: L1934	1969-01 Cli	ient ID: HA17-110(OW)-
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated sampl	e(s): 01 QC Batch ID:	WG1269508-2 QC	C Sample: L1934	1963-05 Cli	ient ID: DUP Sample
Solids, Total Suspended	130	120	mg/l	8	29
General Chemistry - Westborough Lab Associated sampl	e(s): 01 QC Batch ID:	WG1269574-3 QC	C Sample: L1934	1937-01 Cli	ient ID: DUP Sample
Cyanide, Total	0.007	0.011	mg/l	37	Q 30
Anions by Ion Chromatography - Westborough Lab Assoc Sample	ciated sample(s): 01 C	C Batch ID: WG127	0491-4 QC Sa	mple: L193	35116-02 Client ID: DUP
Chloride	9.68	9.70	mg/l	0	18

Project Name: LOWELL GARAGE NPDES RGP Project Number: 129485-010

Serial_No:08151913:41 *Lab Number:* L1934969 *Report Date:* 08/15/19

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
A	Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1934969-01A	Plastic 120ml H2SO4 preserved	А	<2	<2	4.2	Y	Absent		NH3-4500(28)
L1934969-01B	Plastic 250ml unpreserved	А	7	7	4.2	Υ	Absent		CL-300(28),HEXCR-7196(1),PH-4500(.01)
L1934969-01C	Plastic 250ml NaOH preserved	А	>12	>12	4.2	Υ	Absent		TCN-4500(14)
L1934969-01D	Plastic 950ml HNO3 preserved	A	<2	<2	4.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1934969-01E	Plastic 950ml unpreserved	А	7	7	4.2	Y	Absent		TSS-2540(7)
L1934969-02A	Plastic 120ml H2SO4 preserved	А	<2	<2	4.2	Y	Absent		NH3-4500(28)
L1934969-02B	Plastic 250ml unpreserved	А	7	7	4.2	Υ	Absent		PH-4500(.01)
L1934969-02C	Plastic 950ml HNO3 preserved	А	<2	<2	4.2	Υ	Absent		HARDU(180),HOLD-METAL-TOTAL(180)
L1934969-02D	Plastic 250ml NaOH preserved	А	>12	>12	4.2	Υ	Absent		ARCHIVE()
L1934969-02E	Plastic 950ml unpreserved	А	7	7	4.2	Y	Absent		ARCHIVE()

Serial_No:08151913:41

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number: L1934969

Report Date: 08/15/19

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.
Footnotes	

Project Name: LOWELL GARAGE NPDES RGP

Project Number: 129485-010

Lab Number:	L1934969
Report Date:	08/15/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

 Lab Number:
 L1934969

 Report Date:
 08/15/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Inden, 1,2,4,5-Tetramethylbenzene, Benzothiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B**

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

		Condes Contain			1		-	_	_	_		_							_	_				
	CHAIN OF	Brewer, ME 04412 P	ortsmouth, NH 0	3801 Mahwah, NJ	Pag	e 1	-	Dat	e Rec	c'd	-													
ШРНА	CUSTODY	67430 Albany, NY 12 Tonawanda, NY 14150	205 Holmes, PA 1904	13	0	f 1	-	ir	n Lab	5 8	161	9											ALPHA Job	
Westborough, MA 0158	1 Manufield, MA 02048	Project Information					Del	verable	es	-	1011	1	-	-	-	10.55				100	_		Billing Information	and the second
6 Walkup Dr. TEL: 508-898-9220	320 Forbes Blvd TEL: 508-822-9300	Project Name:	Lowell Garad	10			I D	Ema	a			Eav	_										Same as Client	alo
FAX: 508-895-9193	FAX: 508-822-3286	Project Location:	Lowell MA	le.	_		12	100	10 /11	Filel		EOut		à.									Jane as crient i	nio
HZA Information		Project Location:	LOWER, MA				1 2		10 (11	rue)		EQUS	5 (4 File	9									101	
WAA Cleanty Malker	Consultante	Project #	129465-010			_			1.	III STATE			104151					-						
Han Clem: Walker	dout Ct	(Use Project name a	is Project				HOD	ulation	y Hequ	uiremen	s (Prog	ram/Cr	iteria)			-	<u>k-</u> .						Disposal Site Information	
Pl&A Address: 465 Me	dlord St	Project Manager:	D Bell			_	MA	NPD	ES AG	sp												1	Please identify below location of an	plicable disposal
Boston	, MA 02129-1400	ALPHAQuote #:			_						1											Ľ	laceoes.	
H&A Phone: 617-886	5-7400	Turn-Around Time			-																	1	Disposal Facility:	
H&A Fax:		Standard	2	Due Date	ŧ																	Ç	с и С	NY
H&A Email: MCrona	an, Lhoward	t (only if pre approved)		# of Days	5 Day		Note	: Selec	t State	e from me	nu & ide	ntily crit	oria.									Ç	Other:	
These samples have b	been previously analyzed	by Alpha [AN/	ALYSIS	s	14													Sample Filtration	100
Other project specific **Field Filtered Analyze using the EP Please specify Metals	c requirements/commen A 2017 RGP Approved 1 s or TAL.	ts: Festing Methods					TSS	yanide	-SiM for Dioxane	3500, Trivalent stomium	(also including exylphihalate).	0TCL-SIM	s: Ag. As, Cd. Cr. 3b, Se, Zn, Fe, Hg	hloride	mmonia	ardness	64, PCB-608, ENOL-420	DISSOLVED	Ħ	Salinity			Done Lab to do Emservation Lab to do	- 0 - 4 - B 0 -
							1	0	280	é ő	리	270	b, S	0	An	Ŧ	191-1	MCD		ω		1	(Please Specify below)	- E.
ALPHA Lab ID			Coll	lection	Sample	Sampler's	1	1	0.8	EXC	TO Hay	1	ALM.				Hal	Ŧ			~ L	- 1		1.1
(Lab Use Only)	Samp	le ID	Date	Time	Matrix	Initials	L .	1	826	I	80		Du. P.				~	·			1	- 1	Sample Specific Comments	
34969-01	HA17-110(OW)-2019-0	8	8-1-15	10.1	AQ	0.0	X.	x	+	+	+	-	v .	×	v	×	-			-	-+-	-	Second Second Second Second	10
-02	Lowell Rec Water-2019	-08	8-6-19	1110	AQ	ar	1	1					x	Î	x	x			x			-	TOTAL METALS HOLD**	3
				1990 - S. 1	1	P.																		
A ser la ser					100																		4	
A State of the second									1															
Star Para and														2										
							-		-				-	-								_		_
10.5112/1011				-			1	1	+	+	-	-	+	-		-		\vdash	-	-	-	-		
Preservative Code: A = None B = HCI C = HNO,	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification Mansfield: Certification	on No: MA935 on No: MA015	5		Container Type	P	P					P	P	P	P			P				Please print clearly, legibly and o Samples can not be logged in an time clock will not start until any	ompletely. d turnaround ambiguities are
$D = H_2 SO_4$	G = Glass B = Bacteria Cup					Preservative	A	E					C	A	D	1			A				Chain of Custody shall be perform	es under this id in accordance
F = MeOH	C = Cube	Relinquishe	d By:	Date	Time		Rece	ved By	vi.			1			1	Date/T	ime	_					with terms and conditions within BI Agreement# 2015-18-Aloha Analy	anket Service cal by and
$G = NaHSO_{2}$ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other	O = Other E = Encore D = BOD Bottle	Caren 1	-	3-6-19	1235	Cod	R	au	A	Ħ	8	ωĮ	9	_	1	23	55		_	_	_		between Haley & Aldrich, Inc., its s affiliates and Alpha Analytical.	ubsidiaries and
Document ID: 20455 Rev	1 (1/28/2016)		_				-				-								-			-		

ŝ

APPENDIX E

Typical Dewatering Treatment System Information

Lockwood Remediation Technologies, LLC

700 Series Floc Logs

Polyacrylamide Sediment and Turbidity Control Applicator Logs

700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

Features and Benefits

- Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

<u>Packaging</u>

700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays

Office: 774-450-7177 • Fax: 888-835-0617

89 Crawford Street • Leominster, MA 01453

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

Precautions / Limitations

- 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- Floc Log will remain viable for up to 5 years when stored out of UV rays.
- 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.

Office: 774-450-7177 • Fax: 888-835-0617

89 Crawford Street • Leominster, MA 01453

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d #3 Floc Log®

Supplied:

Applied Polymer Systems, Inc. 519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMAION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

4. FIRST AID ME.	ASURES
Inhalation:	None
Skin contact:	Contact with wet skin could cause dryness and chapping. Wash with water and soap. Use of gloves recommended.
Eye contact:	Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent irritation.
Ingestion:	Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:	Water, water spray, foam, carbon dioxide, dry powder.	
Special fire-fighting precautions:	Floc Logs that become wet render surfaces extremely slippery.	
Protective equipment for firefighters:	No special equipment required.	

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:	No special precautions required.	
Methods for cleaning up:	<u>Dry wipe as well as possible.</u> Keep in suitable and closed containers for disposal. <u>After cleaning</u> , flush away traces with water.	
_		

Avoid contact with skin and eyes. Wash hands after handling.

7. HANDLING AND STORAGE

Handling:

Keep in a cool, dry place.

Storage:

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:	None
Hand protection:	Dry cloth, leather or rubber gloves.
Eye Protection:	Safety glasses with side shields. Do not wear contact lenses.
Skin protection:	No special protective clothing required.
Hygiene measures:	Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:	Granular semi-solid gel
Color:	Blue
Odor:	None
pH:	7.73
Melting point:	N/A
Flash point:	N/A
Vapor density:	N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA-821-R-02-012)

LC 50 (Survival) / Ceriodaphnia dubia / 48h / 673 ppm NOAEC (Survival) / Ceriodaphnia dubia / 48h / 420 ppm LC 50 / Oncorhynchus mykiss / 96h / 2928 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity (EPA-821-R-02-013)

IC 25 (Survival) / P. promelas / 7 day / 77.8 ppm NOEC (Survival) / P. promelas / 7 day / 52.5 ppm

IC 25 (Growth) / P. promelas / 7 day / 50.1 ppm NOEC (Growth) / P. promelas / 7 day / 52.5 ppm IC 25 (Survival) / C. dubia / 7 day / 78.7 ppm NOEC (Survival) / C. dubia / 7 day / 52.7 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 66.8 ppm NOEC (Reproduction) / C. dubia / 7 day / 52.5 ppm

 Bioaccumulation:
 The product is not expected to bioaccumulate.

 Persistence / degradability:
 Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT, RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

RCRA	Status:		Not RCRA hazardous				
16 . 01	THER INFO	ORMATION					
NFPA	and HMIS	ratings:					
NFPA	Health:	1	Flammability:	0	Reactivity:	0	
IMIS	Health	1	Flammability	0	Reactivity	0	
DATE	E EDITE	D: Nov 4 th 20	15				
					÷		
			itan an Alaysia shi a				

HERE AND A DESCRIPTION OF A DESCRIPTIONO

1. Problem research and the second s second seco

Updated 1-11-16

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATIO	N OF THE PRODUCT AND THE COMPANY	
Product Name:	APS 712 Silt Stop	
Supplied:	Applied Polymer Systems Inc. Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com	
2. HAZARD IDENT	IFICATION	
Aqueous solutions and	powders that become wet render surfaces extremely sl	ippery.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble co-polymer blend

4. FIRST AID M	EASURES
Inhalation:	Move to fresh air. Wear dust mask while handling.
Skin contact:	Contact with wet skin could cause chapping and dryness. Wash with water and soap. In case of persistent skin irritation, consult a physician.
Eye contact:	Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent irritation.
Ingestion:	Consult a physician
5. FIRE-FIGHTI	ING MEASURES

Suitable extinguishing media:Water, water spray, foam, carbon dioxide, dry powder.Special fire-fighting precautions:Aqueous solutions or powders that become wet render surfaces extremely slippery.Protective equipment for firefighters:No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

<u>Do Not flush with water.</u> Clean up promptly by sweeping or vacuum. Keep in suitable and closed containers for disposal. <u>After cleaning</u>, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Avoid dust formation. Do not breath dust. Use dust mask during handling. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls: Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.

Personal protection equipment

ct lenses.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:	Granular solid			
Color:	White / Brown			
Odor:	None			
pH:	7.02			
Melting point:	N/A			
Flash point:	N/A			
Vapor density:	N/A			
-				

10. STABILITY AND REACTIVITY

Stability:	Prod
Materials to avoid:	
Hazardous decomposition	products:

duct is stable, no hazardous polymerization will occur. Oxidizing agents may cause exothermic reactions. :: Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL/

Oral:	LD 50 / Rattus norvegicus / oral / > 5000 mg / kg	
Inhalation:	The product is not expected to be toxic by inhalation.	Use dust mask while handling.
Bioaccumulation:	The product is not expected to bioaccumulate.	
Persistence / degradability:	Not readily biodegradable: (~40% after 28 days)	

Acute toxicity

LC 50 / Ceriodaphnia dubia / 48h / 1,617 ppm LC 50 / Pimephales promelas / 48 h / >6,720 ppm LC 50 / Pimephales promelas / 96 h / >6,720 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity

IC 25 (Survival) / Ceriodaphnia dubia / 7day / 122.5 ppm NOEC (Survival) / Ceriodaphnia dubia / 7day / 52.5 ppm

IC 25 (Reproduction) / *Ceriodaphnia dubia* / 7day / 59.3 ppm NOEC (Reproduction) / *Ceriodaphnia dubia* / 7day / 52.5 ppm

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT AND REGULATORY INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

Updated 1-11-16

15. TRANSPORT AND REGULATORY INFORMATION

TSCA Chemical Substances Inventory: SARA Section 311 / 312 Hazard Class: RCRA Status:		All components of this pro exempt from listing. Not concerned Not RCRA hazardous	oduct are either listed on the inventory or are	
16. OTHER INF	ORMATION			11 1
NFPA and HMI	S ratings:			
NFPA Health:	1	Flammability: 1	Reactivity:	0
HMIS Health	1	Flammability 1	Reactivity	0

DATE EDITED: Jan 11th 2016

Updated November 4, 2015

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATIO	ON OF THE PRODUCT AND THE COMPANY	
Product Name:	APS 706b Floc Log o	
	ing dimeters, research	
Supplied:	519 Industrial Drive	
	Woodstock, GA 30189	
	Tel. 678-494-5998	
	Fax. 678-494-5298	
	www.siltstop.com	
		- and the second second
2. HAZARD IDENT	TIFICATION	
Identification of the pr	eparation: Anionic water-soluble Co-polymer gel mix	
3. COMPOSITION	INFORMATION ON INGREDIENTS	aley shirts
Placement of these mat	terials on wet walking surface will create extreme slipping hazard.	
4. FIRST AID MEA	SURES	

Inhalation:	None
Skin contact:	Contact with wet skin can cause dryness and chapping. Wash with water and soap.
Eye contact:	Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent irritation.
Ingestion:	Consult a physician

5. FIRE-FIGHTING MEASURES

Floc Logs that become wet render surfaces extremely suppery.	
Floc Logs that become wet render surfaces extremely slippery.	
	Water, water spray, foam, carbon dioxide, dry powder. Floc Logs that become wet render surfaces extremely slippery.

6. ACCIDENTAL RELEASE MEASURES		
Personal precautions:	No special precautions required.	
Methods for cleaning up:	Dry wipe as well as possible. Keep in suitable and closed containers for disposal. After cleaning, flush away traces with water.	

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:	None
Hand protection:	Dry cloth, leather or rubber gloves.
Eye Protection:	Safety glasses with side shields. Do not wear contact lenses.
Skin protection:	No special protective clothing required.
Hygiene measures:	Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:	Granular semi-solid gel
Color:	Blue
Odor:	None
pH:	7.66
Melting point:	N/A
Flash point:	N/A
Vapor density:	N/A
Melting point: Flash point: Vapor density:	N/A N/A N/A

10. STABILITY AND REACTIVITY

C14 -	a 1			
STO	D	t 1 1	TV	•
DH	LU 1		ъ¥.	•

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity

LC 50 / Daphnia magna / 48h / >420mg/L LC 50 / Oncorhynchus mykiss / 96h / 637 ppm

12. ECOLOGICAL INFORMATION

Chronic toxicity

IC 25 (Survival) / P. promelas / 7 day / >1680 ppm NOEC (Survival) / P. promelas / 7 day / 1680 ppm

IC 25 (Growth) / P. promelas / 7 day / >1680 ppm NOEC (Survival) / P. promelas / 7 day / 1680 ppm IC 25 (Survival) / C. dubia / 7 day / 257.3 ppm NOEC (Survival) / C. dubia / 7 day / 210 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 91.6 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily biodegradable: (85% after 180 days).

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class: RCRA Status:	Not concerned Not RCRA hazardous				
16. OTHER INFORMATION					
NFPA and HMIS ratings:		, I.,			
NFPA Health: 1	Flammability:	0	Reactivity:	0	
HMIS Health 1	Flammability	0	Reactivity	0	
DATE EDITED: Nov 4th 2015					

4

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY				
Product Name:	APS 705 Silt Stop			
Supplied:	Applied Polymer Systems, Inc.		678-494-5998	
	519 Industrial Drive	Fai	. 678-494-5298	
	woodstock, GA 301	<u>ww</u>	w.sutstop.com	
2. HAZARD IDE	INTIFICATION			
Aqueous solutions or powders that become wet render surfaces extremely slippery.				
3. COMPOSITIO	DN/INFORMATION	ON INGREDIENTS		
Identification of the preparation: Anionic water-soluble Co-polymer				
4. FIRST AID MEASURES				
Inhalation: Move to fresh air. Use dust mask when handling.				
Skin contact:	Contact with wet skin could cause chapping and dryness. Wash with water and soap. In case of persistent skin irritation, consult a physician.			
Eye contact: irritation.	Rinse thoroughly with plenty of water, also under the eyelids; seek medical attention in case of persistent			
Ingestion:	Consult a physician			
5. FIRE-FIGHTING MEASURES				
Suitable extinguishing media: Water, water spray,		Water, water spray, foa	n, carbon dioxide, dry powder.	
Special fire-fighting precautions: Aqueous solutions or powders that become wet render surface		wders that become wet render surfaces extremely slippery.		
Protective equipme	Protective equipment for firefighters: No special equipment required.			
6. ACCIDENTAL RELEASE MEASURES				
Personal precautions: No special precautions required.				

 Methods for cleaning up:
 Do Not flush with water. Clean up promptly by sweeping or vacuum. Keep in suitable and closed containers for disposal. After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Avoid dust formation. Do not breath dust. Use dust mask during handling. Wash hands after handling.

Storage: Keep in a cool, dry place. (0-30° C)
8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:	Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.
Personal protection equipment	
Respiratory Protection:	Dust safety masks are recommended where dusting may occur.
Hand protection:	Dry cloth, leather or rubber gloves.
Eye Protection:	Safety glasses with side shields or face masks. Do not wear contact lenses.
Skin protection:	No special protective clothing required.
Hygiene measures:	Wash hands before breaks and at end of work day.

9. PHYSICAL AND CHEMICAL PROPERTIES

Form:	Granular solid
Color:	White
Odor:	None
pH:	7-8
Melting point:	N/A
Flash point:	N/A
Vapor density:	N/A

10. STABILITY AND REACTIVITY

Stability: Produc	t is stable, no hazardous polymerization will occur.
Materials to avoid:	Oxidizing agents may cause exothermic reactions.
Hazardous decomposition products:	Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity: (EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Oncorhynchus mykiss / 96h / 530 mg/L LC 50 / Daphnia magna / 48h / >420mg/L EC 50 / Selenastrum capricornutum / 96h / >500mg/L

LINFORMATION	
(EPA/600/R-98/182)	
IC ₂₅ (Survival) / P. promelas / 7 day / 358 ppm NOEC (Survival) / P. promelas / 7 day / 840 ppm NOEC (Survival) / C. dubia / 7 day / 157.5 p	pm ppm
IC ₂₅ (Growth) / P. promelas / 7 day / 94 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm NOEC (Reproduction) / C. dubia / 7 day / 2 NOEC (Reproduction) / C. dubia / 7 day / 2	7.7 ррт / 26.25 ррт
The product is not expected to be toxic by inhalation.	
The results of testing on rabbits showed no toxicity even at high dose levels.	
The product is not expected to bioaccumulate.	
ability: Not readily biodegradable: (~40% after 28 days).	
A 2 yr feeding study on rats did not reveal adverse health effects.	
	L INFORMATION (EPA/600/R-98/182) IC ₂₅ (Survival) / P. promelas / 7 day / 358 ppm IC ₂₅ (Survival) / C. dubia / 7 day / 157.5 p NOEC (Survival) / P. promelas / 7 day / 840 ppm NOEC (Survival) / C. dubia / 7 day / 105 IC ₂₅ (Growth) / P. promelas / 7 day / 94 ppm IC ₂₅ (Reproduction) / C. dubia / 7 day / 22 NOEC (Growth) / P. promelas / 7 day / 105 ppm NOEC (Reproduction) / C. dubia / 7 day / 22 The product is not expected to be toxic by inhalation. The results of testing on rabbits showed no toxicity even at high dose levels. The product is not expected to bioaccumulate. lability: Not readily biodegradable: (~40% after 28 days). A 2 yr feeding study on rats did not reveal adverse health effects.

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

Specializing in the Optimization of Water Treatment Systems, Flocculents, and Drill Fluids. Polymer Characterization and Application for: Erosion Control, Acid Rock Drainage Mitigation, Solubilized Metal Control, and Dredging.

15. REGULATORY INFORMATION TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing. SARA Section 311/312 Hazard Class: Not concerned RCRA Status: Not RCRA hazardous

1

1

Reactivity:

Reactivity

0

0

16. TRANSPORT AND REGULATORY INFORMATION

Flammability:

Flammability

NFPA and HMIS ratings:

Health:

HMIS Health

1

1

DATE EDITED: Oct. 29th 2015

NFPA

Specializing in the Optimization of Water Treatment Systems, Flocculents, and Drill Fluids. Polymer Characterization and Application for: Erosion Control, Acid Rock Drainage Mitigation, Solubilized Metal Control, and Dredging.

Updated November 4, 2015

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d Floc Log®

Supplied:

Applied Polymer Systems, Inc. 519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation: Anionic water-soluble Co-polymer gel

4. FIRST AID ME.	ASURES
Inhalation:	None
Skin contact:	Contact with wet skin could cause dryness and chapping. Wash with water and soap.
Eye contact:	Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent irritation.
Ingestion:	Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:	Water, water spray, foam, carbon dioxide, dry powder.	
Special fire-fighting precautions:	Floc Logs that become wet render surfaces extremely slippery.	
Protective equipment for firefighters:	No special equipment required.	

6. ACCIDENTAL RELEASE MEASURES

 Methods for cleaning up:
 Dry wipe as well as possible, Keep in suitable and closed containers for disposal.

 After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling: Avoid contact with skin and eyes. Wash hands after handling.

Storage: Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls: Use dry handling areas only.

Personal protection equipment

Specializing in the Optimization of Water Treatment Systems, Flocculents, and Drill Fluids. Polymer Characterization and Application for: Erosion Control, Acid Rock Drainage Mitigation, Solubilized Metal Control, and Dredging. **Respiratory Protection:** None Dry cloth, leather or rubber gloves. Hand protection: **Eye Protection:** Safety glasses with side shields. Do not wear contact lenses. Skin protection: No special protective clothing required. Hygiene measures: Wash hands before breaks and at end of work day.

0 PHYSICAL AND CHEMICAL PROPERTIES

Form:	Granular semi-solid gel
Color:	Blue
Odor:	None
pH:	7.37
Melting point:	N/A
Flash point:	N/A
Vapor density:	N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Daphnia magna / 48h / >383mg/L LC 50 / Oncorhynchus mykiss / 96h / 1900 mg/L

Chronic toxicity (EPA/600/4-91/002)

IC 25 (Survival) / P. promelas / 7 day / 110 ppm NOEC (Survival) / P. promelas / 7 day/ 105 ppm IC 25 (Survival) / C. dubia / 7 day / 99.8 ppm NOEC (Survival) / C. dubia / 7 day/ 52.5 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 58.2 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

IC 25 (Growth) / P. promelas / 7 day / 130 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm

12. ECOLOGICAL INFORMATION

Fish: LC 50 / Pimephales promelas / 96h / >1000 mg/l Water Flea: LC 50 / Daphnia magna / 48h / 383mg/l Algae: EC 50 / Selenastrum capricornutum / 96h / >500mg/l

Bioaccumulation: The product is not expected to bioaccumulate. Persistence / degradability: Not readily biodegradable: (~85% after 180 days).

13. DISPOSAL INFORMATION

Waste from residues/unused products. Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT, **RCRA status-Not a hazardous waste**

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

> Specializing in the Optimization of Water Treatment Systems, Flocculents, and Drill Fluids. Polymer Characterization and Application for: Erosion Control, Acid Rock Drainage Mitigation, Solubilized Metal Control, and Dredging,

NFPA and HMIS ratings.	9	κ'			_		
NEDA Hashin 1	171	•					
NFPA Health: 1	Flammability:	0	Reactivity:	0			
HMIS Health 1	Flammability	0	Reactivity	0			
DATE EDITED: Nov 4th 2015							
	and sheeth						
	÷.						
						A STREET, STRE	
						NOTION AND	

Technical Guidance for the Use of Polyacrylamides (PAM) and PAM Blends for Soil Erosion Control and Storm Water clarification

(Courtesy of Applied Polymer Systems, Inc.)

Practice Description

PAM is a water-soluble anionic polyacrylamide product used to minimize soil erosion caused by water and wind to decrease soil sealing by binding soil particles, especially clays, to hold them on site. In addition, these types of materials may also be used as a water treatment additive to remove suspended particles from runoff. When PAM is used on construction sites in the Southeast it is typically applied with temporary seeding and or mulching on areas where the timely establishment of temporary erosion control is so critical that seedings and mulching need additional reinforcement. It may be used alone on sites where no disturbances will occur until site work is continued and channel erosion is not a significant potential problem. Permanent grassing applications can be better established using PAM as a tackifier and soil conditioner.

PAMs are manufactured in various forms to be used on specific soil types, and are generally applied at a rate of up to 25 pounds/acre for dry products and 2 ½ gallons/acre of emulsion-liquid products. Using the wrong form of a PAM on a soil will result in some degree of performance failure, and increase the potential for this material to enter surface waters. PAM used alone may not reduce NTU values resulting in non-compliance water quality discharges or poor soil binding conditions. Site-specific soil-PAM testing must be performed. Exceeding the maximum application rates for this product does not increase the effectiveness of the product.

Block or Log forms of PAM and PAM blends are manufactured for specific use in drainage waterways to remove suspended particulates from runoff.

General Components of the Practice

Prior to the start of construction, a qualified professional should design the application of PAM and plans and specifications should be available to field personnel.

The application should conform to the design and specifications provided in the plans. Typical applications include the following components.

- Site Preparation
- Equipment Preparation
- PAM Application

Application

Site Preparation

Prepare site following design and specifications.

Equipment Preparation

If using a liquid application system, pump a surfactant through the injection system before and after injecting concentrated liquid PAM into sprinkler irrigation systems to help prevent valves and tubing from clogging.

PAM used in hydroseeding applications should be added as the last additive to the mix.

After their use, rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues. Rinse residue should be applied to soil areas to create binding to the soil structure and increase erosion reduction.

PAM Application- Criteria for Land applied PAM Specifications

PAM shall be mixed and/or applied in accordance with all Occupational Safety and Health Administration (OSHA) Material Safety Data Sheet (MSDS) requirements and the manufacturer's recommendations for the specified use conforming to all federal, state and local laws, rules and regulations.

1.) Toxicity

All venders and suppliers of PAM, PAM mix or blends shall present or supply a written toxicity report which verifies that the PAM, PAM mix or blend exhibits acceptable toxicity parameters which meet or exceed the EPA requirements for the state and federal water quality standards. Whole effluent testing does not meet this requirement as primary reactions have occurred and toxic potentials have been reduced. Cationic forms of PAM, polymers and chitosan are not allowed for use under this guideline due to their high levels of toxicity to aquatic organisms. Emulsions shall never be applied directly to stormwater runoff or riparian waters due to surfactant toxicity.

2.) Performance

All venders and suppliers of PAM, PAM mix or blends shall supply written "site specific" testing results demonstrating that a performance of 95% or greater reduction of NTU or TSS from stormwater discharges.

Emulsion batches shall be mixed following recommendations of a testing laboratory that determines the proper product and rate to meet site requirements. Application method shall insure uniform coverage to the target area. (Emulsions shall never be applied directly to stormwater runoff or riparian waters)

Dry form (powder) may be applied by hand spreader or a mechanical spreader. Mixing with dry silica sand will aid in spreading. Pre-mixing of dry form PAM into fertilizer, seed or other soil amendments is allowed when specified in the design plan. Application method shall insure uniform coverage to the target area.

Block or Log forms shall be applied following site testing results to assure proper placement and performance and shall meet or exceed state and federal water quality requirements.

Common Problems

Consult with a registered design professional for assistance if any of the following occur:

- Problems with application equipment clogging.
- PAM alone may not meet testing requirements for NTU reduction and soil stabilization. Site specific "blends" may be needed to meet these requirements.
- Application specifications for PAM cannot be met; alternatives may be required. Unapproved application techniques could lead to failure.
- Visible erosion occurs after application.

Maintenance

An operation and maintenance plan must be prepared for use by the operator responsible for PAM application. Plan items should include the following items.

- Reapply PAM to disturbed or tilled areas that require continued erosion control.
- Maintain equipment to provide uniform application rates.
- Rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM
- residues and discharge rinse water to soil areas where PAM stabilization may be helpful.
- Downstream deposition from the use of PAM may require periodic sediment removal to maintain normal functions.

(Silt Stop Application of Temporary and Permanent Grassing)

PM (Dry Silt Stop Form)

Notes:

- 1) Dry Silt Stop shall be applied using a seed or fertilizer spreader or may be mixed with other dry spread additives.
- 2) Dry Silt Stop shall be covered with straw, mulch, matting or jute.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.
- 4) For use on all slope conditions.

(All Silt Stop shall be site specific, soil tested achieving 95% NTU reduction or better and must have acute and chronic toxicity testing reports.)

(Floc Log placement for pipes, ditch and storm drains)

- 1) Place Floc Logs far enough upstream in turbid flows to allow adequate mixing time. (Mixing time and Floc Log type are determined from the sample analysis.)
- 2) Floc Logs should be placed 10 to 15 feet apart in a row or at points of highest water velocity; whichever is most convenient.
- 3) The number of Floc Logs placed on the site is based on results from the sample analysis. Floc Logs shall be placed in <u>all</u> catch basins and after <u>all</u> downsides of rock checks.

(All Floc Logs shall be site specific, soil tested achieving 95% NTU reduction or better and must have acute and chronic toxicity testing reports.)

Notes:

1) One layer of jute matting shall be applied to the surface of all rock checks.

2) Dry Silt Stop shall be applied to the jute cover using a seed or fertilizer spreader.

3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

(All Silt Stop shall be site specific, soil tested achieving 95% NTU reduction or better and must have acute and chronic toxicity testing reports.)

(SRB) Sediment Retention Barrier

Use for fine sediment retention between silt fences. Install at low areas during grading.

pH System Components

MADDEN

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

pulsafeeder.com

The Pulsatron Series E Plus offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Twenty distinct models are available, having pressure capabilities to 300 PSIG (21 BAR) @ 3 GPD (0.5 lph), and flow capacities to 600 GPD (94.6 lph) @ 30 PSIG (2 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within $\pm 2\%$ of maximum capacity. Please refer to the reverse side for Series E PLUS specifications.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).

Controls

(III) (III) (III)

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mADC Direct or External Pacing with Stop

Automatic Control

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
 - Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers
- (PULSAblue, MicroVision)

PULSAtron[®] Series E Plus Electronic Metering Pumps

PULSATION[®] Series E Plus Specifications and Model Selection

MODEL		LPK2	LPB2	LPA2	LPD3	LPB3	LPA3	LPK3	LPF4	LPD4	LPB4	LPH4	LPG4	LPE4	LPK5	LPH5	LPH6	LPK7	LPH7	LPJ7	LPH8
Capacity	GPH	0.13	0.21	0.25	0.5	0.50	0.50	0.60	0.85	0.90	1.00	1.70	1.75	1.85	2.50	3.15	5.00	8.00	10.00	10.00	25.00
nominal	GPD	3	5	6	12	12	12	14	20	22	24	41	42	44	60	76	120	192	240	240	600
(max.)	LPH	0.5	0.8	0.9	1.9	1.9	1.9	2.3	3.2	3.4	3.8	6.4	6.6	7	9.5	11.9	18.9	30.3	37.9	37.9	94.6
Pressure	PSIG	300	250	150	250	150	100	100	250	150	100	250	150	100	150	150	100	50	35	80	30
(max.)	BAR	21	17	10	17	10	7	7	17	10	7	17	10	7	10	10	7	3.3	2.4	5.5	2
Connections	Tubing		1/4" ID X 3/8" OD										3/8" ID X 1/2" OD								
			3/8" ID X 1/2" OD										1/2"	ID X 3/	4" OD (l	PH8 O	NLY)				
	Piping		1/4" FNPT											1	/4" FNF	rΤ					
																	1	/2" ENE	т		

Engineering Data

Pump Head Materials Available:

	PVDF
	316 SS
Diaphragm:	PTFE-faced CSPE-backed
Check Valves Materials Available:	
Seats/O-Rings:	PTFE
	CSPE
	Viton
Balls:	Ceramic
	PTFE
	316 SS
	Alloy C
Fittings Materials Available:	GFPPL
	PVC
	PVDF
Bleed Valve:	Same as fitting and check valve
	selected, except 316SS
Injection Valve & Foot Valve Assy:	Same as fitting and check valve
	selected
Tubing:	Clear PVC
	White PE

GFPPL

PVC

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data Reproducibility:

Viscosity Max CPS :

+/- 2% at maximum capacity

For viscosity up to 3000 CPS, select connection size 3, 4, B or C with 316SS ball material. Flow rate will determine connection/ball size. Greater than 3000 CPS require spring loaded ball checks. See Selection Guide for proper connection. Stroke Frequency Max SPM: 125

Stroke Frequency Max SPM:	125
Stroke Frequency Turn-Down Ratio:	10:1
Stroke Length Turn-Down Ratio:	10:1
Power Input:	115 VAC/50-60 HZ/1 ph
	230 VAC/50-60 HZ/1 ph
Average Current Draw:	
@ 115 VAC; Amps:	1.0 Amps
@ 230 VAC; Amps:	0.5 Amps
Peak Input Power:	300 Watts
Average Input Power @ Max SPM:	130 Watts

Custom Engineered Designs – Pre-Engineered Systems

Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UVstabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

							Seri	es E Plus D	imensions	(inch	es)						
Model No.	A	в	B1	с	C1	D	Е	Shpg Wt	Model No.	A	в	B1	с	C1	D	Е	Shpg Wt
LPA2	5.4	10.3	-	10.8	-	7.5	8.9	13	LPH4	6.2	10.9	-	11.2		8.2	9.5	21
LPA3	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH5	6.2	11.3	•	11.2	-	8.2	9.9	21
LPB2	5.4	10.3	-	10.8	-	7.5	8.9	13	LPH6	6.2	11.3	-	11.9	-	8.2	9.9	21
LPB3	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH7	6.1	11.7	•	11.9	-	8.2	10.3	21
LPB4	5.4	10.6	-	10.7	-	7.5	9.2	13	LPH8*	6.1	-	10.9		11.3	8.2	-	26
LPD3	5.4	10.6	-	11.2	-	7.5	9.2	15	LPK2	5.4	10.3	-	10.8	•	7.5	8.9	13
LPD4	5.4	10.6	-	11.2	Ξ.	7.5	9.2	15	LPK3	5.4	10.6	•	10.7	-	7.5	9.2	13
LPE4	5.4	10.6	-	11.2	-	7.5	9.2	15	LPK5	5.4	10.9	-	11.7	-	7.5	9.5	18
LPF4	5.4	10.6	-	11.7	-	7.5	9.2	18	LPK7	6.1	11.7	•	11.2	-	8.2	10.3	21
LPG4	5.4	10.6	-	11.7	-	7.5	9.2	18	LPJ7	6.1	10	•	10.7	•	•	•	21

NOTE: Inches X 2.54 = cm /* the LPH8 is designed without a bleed valve available

pH Control

1/4-DIN and Field-Mount Controllers

+GF+® Signet pH/ORP Controllers

Versatile mounting options allow you to customize the installation for particular applications

Large, scratch-resistant, self-healing display

+GF+ Signet controllers are designed for broad application and ease of setup and operation. Multiple mounting options allow for installation best suited to your particular application. Intuitive software and four-button keypad arrangement make it easy to access important information such as measurement values, calibration data, relay setup menus, and more.

Optional universal mounting kit allows for mounting of field-mount units on pipes, tanks, and walls. RC filter kit prevents premature wearing of the relay outputs by providing protection from electrical noise. Order separately below.

Specificatio	ns		CERTIFIED SUPPLIER	s CE Karanty Meter only Meter only		
Model		+GF+ Signet 8750-1	+GF+ Signet 8750-2	+GF+ Signet 8750-3		
	pH	0.00 to 14.00	0.00 to 14.00	0.00 to 14.00		
Range	mV	-1000 to 2000 mV	-1000 to 2000 mV -1000 to 2000 mV			
	Temperature	-13 to 248°F (-25 to 120°C)	-13 to 248°F (-25 to 120°C)	-13 to 248°F (-25 to 120°C)		
	рH	0.01	0.01	0.01		
Resolution	mV	1 mV	1 mV	1 mV		
	Temperature	0.1°C (0.1°F)	0.1°C (0.1°F)	0.1°C (0.1°F)		
	pH	±0.03	±0.03	±0.03		
Accuracy	mV	±2 mV	±2 mV	±2 mV		
	Temperature	±0.5°C (±1°F)	±0.5°C (±1°F)	±0.5°C (±1°F)		
Temperature compensation		Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco		
Control type		On/off (limit) or proportional	On/off (limit) or proportional	On/off (limit) or proportional		
Number of se	t points	Two (low, high)	Two (low, high)	Two (low, high)		
	Relay	—	Two SPDT relays, 5 A at 30 VDC or 250 VAC resistive load maximum	_		
Output	Current	One 4 to 20 mA, isolated, fully adjustable and reversible	One 4 to 20 mA, isolated, fully adjustable and reversible	Two 4 to 20 mA, isolated, fully adjustable and reversible		
	Open collector	One open-collector, optically		Two open-collector, optically isolated, 50 mA max		
Dead band		User adjustable	User adjustable	User adjustable		
Housing		NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel		
Display		2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD		
Dimensions (W x H x D)		Field-mount: 3 ¹³ / ₁₆ " x 3 ¹³ / ₁₆ " x 4 ³ / ₁₆ " (96 x 96 x 106 mm) Panel-mount: 3 ¹³ / ₁₆ " x 3 ¹³ / ₁₆ " x 3 ¹³ / ₁₆ " (96 x 96 x 97 mm)				
Power		12 to 24 VDC	12 to 24 VDC	12 to 24 VDC		

Controllers

Catalog number	Model	Mounting style	Price
S-56560-18	+GF+ Signet 8750-1	Field mount	
S-56560-28	+GF+ Signet 8750-1P	Panel mount, ¼ DIN	
S-56560-20	+GF+ Signet 8750-2	Field mount	
S-56560-30	+GF+ Signet 8750-2P	Panel mount, ¼ DIN	
S-56560-22	+GF+ Signet 8750-3	Field mount	
S-56560-32	+GF+ Signet 8750-3P	Panel mount, ¼ DIN	

S-05631-50 Universal mounting kit for field-mount units
S-19007-52 RC filter kit for relay use. Pack of 2
S-17106-20 NIST-traceable calibration

Preamplifiers

Preamplifiers protect the relatively weak output signal of the pH or ORP electrode from electrical interferences common in industrial environments and are required for initial system installation. Unique DryLoc® connectors allow you to quickly form robust assemblies for submersible and in-line applications.

Catalog number	Thread size	Price
S-56560-03	3/4" NPT(M)	
S-56560-04	ISO 7-1 R3/4"	

Field-mount controller 56560-20

Panel-mount controller 56560-30

Electrodes

Feature-packed pH and ORP electrodes feature unique DryLoc connectors which offer resistance to intrusion from dirt and moisture. Extended reference path length extends electrode life over traditional combination electrodes. Electrode bodies are Ryton® PPS for added chemical resistance and feature a 3/4" NPT(M) or ISO 7-1 R3/4" threads for in-line installation. Flatsurface electrodes minimize abrasion and breakage problems by allowing sediment to sweep past the measurement surface. Bulb-style electrodes feature quick response and are well-suited to general-purpose applications. HF-resistant electrodes resist hydrofluoric acid in concentration less than 2%. LC-bulb electrodes are designed for ultrapure, low-conductivity water applications. All have a 3 k Ω Balco ATC element and measure 0 to 14 pH.

Catalog number	Туре	Thread size	Price
S-56561-02 S-56561-03	pH, flat surface	3⁄4" NPT(M) ISO 7-1 R3⁄4"	
S-56561-10 S-56561-11	pH, bulb style	3⁄4" NPT(M) ISO 7-1 R3⁄4"	
S-56561-06 S-56561-07	pH, HF-resistant bulb	3⁄4" NPT(M) ISO 7-1 R3⁄4"	
S-56561-14 S-56561-15	pH, LC bulb	3/4" NPT(M) ISO 7-1 R3/4"	
S-56561-16	ORP, flat surface	34" NPT(M)	

77% - 100% SULFURIC ACID

SECTION 1. PRO	DUCT IDENTIFICATION	
Trade Name		77 % - 100 % Sulfuric Acid
Product Code		None
Manufacturers/D	istributors	NorFalco Inc., 6000 Lombardo Center, The Genesis Blg, suite 650 Seven Hills, OH 44131 NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2
Information Cont	act	André Auger, Administration Assistant
Product Informat	ion	1-905-542-6901 (Mississauga)
Phone Number (T	'ransportation Emergency)	Canada 1-877-ERP-ACID (377-2243)
Phone Number (T	ransportation Emergency)	U.S.A. 1-800-424-9300 CHEMTREC
Phone Number (Medical Emergency)		1-418-656-8090
Phone Number (Emergency)		CANUTEC 1-613-996-6666
Synonyms		Dihydrogen Sulfate ; Oil of Vitriol ; Vitriol Brown Oil ; Sulphuric Acid.
		Acide sulfurique (French)
Name / Chemical	Formula	Sulfuric Acid / H ₂ SO ₄
Chemical Family		Acid
Utilization		Chemical industries ; Water treatment ; Fertilizer ; Pulp and Paper.
Manufacturers	CEZinc on behalf of Noranda II	ncome Limited Partnership, Salaberry-de-Valleyfield (Quebec) Canada J6T 6L4
	Xstrata Copper, Horne Smelter,	Rouyn-Noranda (Quebec) J9X 5B6
	Xstrata Zinc, Brunswick Smelti	ng, Belledune, New Brunswick E0B 1G0
Xstrata Copper, Kidd Metallurg		ical Division, Timmins, Ontario P4N 7K1
	Astrata Nickel, Sudbury Operat	ions, Falconbridge, Untario PUM ISO
SECTION 2. HAZ.	ARDS IDENTIFICATION	\sim
WHMIS (Canada) CLASS D-1A : Very t	oxic material causing immediate and serious effects
	CLASS E : Corrosive	material

Labeling (EEC)

C Corrosive

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	CAS #	Percentage (%)	# CE	R Phrases ¹
Sulfuric (Acid)	7664-93-9	77 % to 100 %	231-639-5	R35
60 Deg Technical	10/22-000	77.7		
66 Deg Technical	22 sept.	93.2		
1.835 Electrolyte		93.2		
98 % Technical		98		
99 % Technical		99		
100 % Technical		100		
Water	7732-18-5	0-22		

Note 1 : See section 15 for the complete wording of risk phrases.

SECTION 4. FIRST-AID MEASURES

Eye Contact	Remove contact lenses if present. Immediately flush eyes with plenty of water, holding eyelids open for at least 15 minutes. Consult a physician. Possibility of conjonctivitis, severe irritation, severe burns, permanent eye damage.
Skin Contact	Remove contaminated clothing and shoes as quickly as possible protecting your hands and body. Place under a deluge shower for 15 minutes. Flush exposed skin gently and thoroughly with running water (Pay particular attention to : Folds, crevices, creases, groin). Call a physician if irritation persists. May irritate skin, cause burns (Highly corrosive) and possibility of some scarring.
	Wash contaminated clothing before reusing. While the patient is being transported to a medical facility, continue the application of cold, wet compresses. If medical treatment must be delayed, repeat the flushing with cold water or soak the affected area with cold water to help remove the last traces of sulfuric acid. Creams or ointments SHOULD NOT be applied before or during the washing phase of treatment.
Inhalation	Take precautions to avoid secondary contamination by residual acids. Remove the person to fresh air. If not breathing, give artificial respiration. Difficult breathing : Give oxygen. Get immediate medical attention. Possibility of damage to the upper respiratory tract and lung tissues. Maintain observation of the patient for delayed onset of pulmonary oedema. May cause irritation to the upper respiratory tract : Coughing, sore throat, shortness of breath.
Ingestion	DO NOT INDUCE VOMITING. Conscious and alert person : Rinse mouth with water and give ½ to 1 cup of water or milk to dilute material. Spontaneous vomiting : Keep head below hips to prevent aspiration ; Rinse mouth and give ½ to 1 cup of water or milk. UNCONSCIOUS person : DO NOT induce vomiting or give any liquid. Immediately obtain medical attention.

77% - 100% SULFURIC ACID

Notes to Physicians

Continued washing of the affected area with cold or iced water will be helpful in removing the last traces of sulfuric acid. Creams or ointments should not be applied before or during the washing phase of the treatment.

SECTION 5. FIRE-FIGHTING MEASURES

Flash Point Not available Flammable Limits Not available Auto-Ignition Temperature Not available Auto-Ignition Temperature Not available Products of Combustion Releases of sulfur dioxide at extremely high temperatures. Fire Hazard Not flammable Explosion Ilazard Reacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container. Extinguishing media ERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material isto ft. Small fire: Dry chemical or CO ₂ . Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do to get water inside containers. Withdraw immediately in case of rising sound from recuting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothin	OECTION D. TIKE-FIGHTING	MEASORES
Flammable Limits Not available Auto-Ignition Temperature Not available Products of Combustion Releases of sulfur dioxide at extremely high temperatures. Fire Hazard Not flammable Explosion Hazard Releases of sulfur dioxide at extremely high temperatures. Fire Hazard Not flammable Explosion Hazard Recats with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container. Extinguishing media ERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material itself. Small fire : Dry chemical or CO ₂ . Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of task. ALWAYS stay away from tanks enguled in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel to upwind of fire. Generates heat upon addition of water, with possibility of	Flash Point	Not available
Auto-Ignition Temperature Not available Products of Combustion Releases of sulfur dioxide at extremely high temperatures. Fire Hazard Not flammable Explosion Hazard Reacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container. Extinguishing media ERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material itself. Small fire : Dry chemical or CO ₂ . Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if funes or mists are present	Flammable Limits	Not available
Products of Combustion Releases of sulfur dioxide at extremely high temperatures. Fire Hazard Not flammable Explosion Hazard Reacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container. Extinguishing media ERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material itself. Small fire : Dry chemical or CO ₂ . Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if funes or mists are present. Spill Review Fire and Explosion Hazards and Safety Precau	Auto-Ignition Temperature	Not available
Fire HazardNot flammableExplosion HazardReacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.Extinguishing mediaERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material itself. Small fire : Dry chemical or CO2. Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire and endition of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.Section 6. Accident Retease MEASURES SpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possibile. Soak up small spills with dry sand, clay or diatomaceous earth.MethodsDike large spills, and	Products of Combustion	Releases of sulfur dioxide at extremely high temperatures.
Explosion HazardReacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.Extinguishing mediaERG (Emergency Response Guidebook) : Guide 137 When material is not involved in fire, do not use water on material itself. Small fire : Dry chemical or CO2. Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.Section 6. Accident zetase MEASURES SpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaccous earth.MethodsDike large spills, and cautiously dilute and neutralize with line or soda ash, and transfer to waste water treatment system. Prevent liquid fr	Fire Hazard	Not flammable
Extinguishing media ERG (Emergency Response Guidebook): Guide 137 When material is not involved in fire, do not use water on material itself. Small fire: Dry chemical or CO ₂ . Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with line, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present. Section 6. Accidental Release MEASURES Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaccous carth. Methods Dike large spills, and cautiously dilute and neutralize with line or soda ash, and transfer to waste water treatment system. Prevent liquid from entering severs, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT)	Explosion Hazard	Reacts with most metals, especially when dilute : Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.
When material is not involved in fire, do not use water on material itself.Small fire : Dry chemical or CO2. Move containers from fire area if you can do it without risk.Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. Ifinsufficient water supply: knock down vapors only.Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fireis out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devicesor discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition ofwater, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution.Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wearself-contained breathing apparatus if fumes or mists are present.Section 6. Accident Release MEASURESSpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth.Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas.If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting re	Extinguishing media	ERG (Emergency Response Guidebook) : Guide 137
Small fire : Dry chemical or CO2. Move containers from fire area if you can do it without risk. Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.SECTION 6. ACCIDENTAL RELEASE MEASURES SpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth.MethodsDike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.Protective equipmentReview Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during cle		When material is not involved in fire, do not use water on material itself.
Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If insufficient water supply: knock down vapors only. Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire. Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present. Section 6. Accident Release Measures Sola up small spills with dry sand, clay or diatomaceous earth. Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. Section 7. HANDLING AND STORAGE State, PERSONAL PROTECTIVE EQUIPMENT during clean-up.		Small fire : Dry chemical or CO_2 . Move containers from fire area if you can do it without risk.
insufficient water supply: knock down vapors only.Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.SECTION 6. ACCIDENTAL RELEASE MEASURESSpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth.MethodsDike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering severs, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.Protective equipmentReview Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.SECTION 7. HANDLING AND STORAGE		Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If
Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after thre is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.Protective equipmentEvacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.Section 6. Accidental Release MEASURES SpillReview Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth. Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering severs, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.Protective equipmentReview Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.Section 7. HANDLING AND STORAGE		insufficient water supply: knock down vapors only.
Protective equipment Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present. SECTION 6. ACCIDENTAL RELEASE MEASURES Spill Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth. Methods Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. Section 7. HANDLING AND STORAGE State, and StorAGE		Fire involving Tanks or Car/Trailer Loads : Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.
Section 6. Accidental Release MEASURES Spill Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth. Methods Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. Section 7. HANDLING AND STORAGE	Protective equipment	Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.
Spill Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth. Methods Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. SECTION 7. HANDLING AND STORAGE	SECTION 6. ACCIDENTAL RE	LEASE MEASURES
Methods Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment system. Prevent liquid from entering sewers, waterways, or low areas. If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. SECTION 7. HANDLING AND STORAGE	Spilt	Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth.
Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.	Methods	Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment
Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean-up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. SECTION 7. HANDLING AND STORAGE		If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable
Protective equipment State, and local regulations on reporting releases. Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. SECTION 7. HANDLING AND STORAGE		Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal,
Protective equipment Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up. SECTION 7. HANDLING AND STORAGE		State, and local regulations on reporting releases.
Section 7. Handling and storage	Protective equipment	Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with clean- up. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.
	SECTION 7. HANDLING AND	STORAGE

Handling	Do not get in eyes, on skin, or on clothing. Avoid breathing vapours or mist. Wear approved respirators if adequate ventilation cannot be provided. Wash thoroughly after handling. Ingestion or inhalation : Seek medical advice immediately and provide medical personnel with a copy of this MSDS.
Conditions for storage	Sulfuric acid must be stored in containers or tanks that have been specially designed for use with sulfuric acid. DO NOT add water or other products to contents in containers as violent reactions will result with resulting high heat, pressure and/or generation of hazardous acid mists. Keep containers away from heat, sparks, and flame. All closed containers must be safely vented before each opening. For more information on sulfuric acid tanks, truck tanks and tank cars including safe unloading information go to <u>www.norfalca.com</u> .

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

		Control parameters			
		ACGIH (U.S.A.) 2008	OSHA (U.S.A.)		
Name	# CAS	TLV-TWA (mg/m ³)	PEL - TWA (mg/m ³)		
Sulfuric (Acid)	7664-93-9	0.2 (thoracic fr.)	1		
60 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1		
66 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1		
1.835 Electrolyte	7664-93-9	0.2 (thoracic fr.)	1		
98 % Technical	7664-93-9	0.2 (thoracic fr.)	1		
99 % Technical	7664-93-9	0.2 (thoracic fr.)	1		
100 % Technical	7664-93-9	0.2 (thoracic fr.)	1		
Water	7732-18-5	Not established	Not established		

ACGIH : American Conference of Governmental Industrial Hygienists. OSHA : Occupational Safety and Health Administration.

77% - 100% SULFURIC ACID

Sulfuric (Acid): Exposure limits may be different in other jurisdictions. NIOSH REL-TWA (≤10 hours): 1 mg/m³; 1DLH: 15 mg/m³. Note : Consult local authorities for acceptable exposure limits.

Engineering Controls Individual protection

Good general ventilation should be provided to keep vapour and mist concentrations below the exposure limits. Chemical splash goggles ; Full-length face shield/chemical splash goggles combination ; Acid-proof gauntlet gloves, apron, and boots ; Long sleeve wool, acrylic, or polyester clothing ; Acid proof suit and hood ; Appropriate NIOSH respiratory protection.

In case of emergency or where there is a strong possibility of considerable exposure, wear a complete acid suit with hood, boots, and gloves. If acid vapour or mist are present and exposure limits may be exceeded, wear appropriate NIOSH respiratory protection.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State and Appearance	Liquid (Oily; Clear to turbid)	Odour	Odourless
Molecular Weight	98.08	Colour	Colourless to light grey
pH (1% soln/water)	< 1	Volatility	< 1 (Butyl Acetate = 1.0)
Boiling Point	193°C to 327 °C (379°F to 621°F) @ 760 mm Hg	Vapour Density	3.4
Melting Point	-35°C to 11°C (-31°F to 52°F)	Dispersion	Yes (Water)
Vapour Pressure	< 0.3 mm Hg @ 25°C (77 °F)	Solubility	Yes (Water)
	< 0.6 mm Hg @ 38°C (100 °F)		
10			

GRADE Boiling Point		Freezing Point		Specific Gravity	
	DEG °C	DEG °F	DEG °C	DEG °F	
60 DEG TECHNICAL	193	380	- 12	10	1.706
66 DEG TECHNICAL	279	535	- 35	- 31	1.835
1.835 ELECTROLYTE	279	535	- 35	- 31	1.835
98 % TECHNICAL	327	621	- 2	29	1.844
99 % TECHNICAL	310	590	4	40	1.842
100 % TECHNICAL	274	526	11	51	1.839

101 40 STADILITY AND DEADTD/ITY

Yes (Under normal conditions of ambiant temperature) Reacts violently with water, organic substances and base solutions with evolution of heat and hazardous mists.
Heat : Possibility of decomposition. Release of dangerous gases (Sulfur oxides SO ₂ , SO ₃) Polymerization will not occur.
Vigorous reactions with : Water; alkaline solutions ; Metals, metal powder ; Carbides ; Chlorates ; Fulminates ; nitrates ; Picrates ; Strong oxidizing, reducing, or combustible organic materials. Hazardous gases are evolved on contact with chemicals such as cyanides, sulfides, and carbides.
Yes
ICAL INFORMATION
Ingestion. Inhalation. Skin and eye contacts.
Strong inorganic acid mists containing sulfuric acid (Occupational exposures) : PROVEN (Human, Group 1, IARC) ; SUSPECTED (Human, Group A2, ACGIH) ; Group X (NTP) ; Classification not applicable to sulfuric acid and sulfuric acid solutions.
Not applicable. Not applicable.
ORAL (LD50) : 2 140 mg/kg (Rat); INHALATION (LC50, 2 hours) : 510 mg/m ³ (Rat) ; 320 mg/m ³ (Mouse). (RTECS).
May be fatal if inhaled or ingested in large quantity. Liquids or acid mists : May produce tissue damage : Mucous membranes (Eyes, mouth, respiratory tract). Extremely dangerous by eyes and skin contact (Corrosive). Severe irritant for eyes : Inflammation (Redness, watering, itching). Very dangerous in case of inhalation (Mists) at high concentrations : May produce severe irritation of respiratory tract (Coughing, shortness of breath, choking).
Target organs for acute and chronic overexposure (NIOSH 90-117): Respiratory system, eyes, skin, teeth. Acid mists : Overexposure to strong inorganic mists containing sulfuric acid : Possibility of laryngeal cancer (HSBD, IARC). Possibility of irritation of the nose and throat with sneezing, sore throat or runny nose. Headache, nausea and weakness. Gross overexposure : Possibility of irritation of nose, throat, and lungs with cough, difficulty breathing or shortness of breath. Pulmonary edema with cough, wheezing, abnormal lung sounds, possibly progressing to severe shortness of breath and bluish discoloration of the skin. Symptoms may be delayed. Repeated

77% - 100% SULFURIC ACID

Toxicity	 Contact (Skin) : Possibility of corrosion, burns or ulcers. Contact with a 1 % solution : Possibility of slight irritation with itching, redness or swelling. Repeated or prolonged exposure (Mist) : Possibility of irritation with itching, burning, redness, swelling or rash. Contact (Eye) : Possibility of corrosion or ulceration (Blindness may result). Repeated or prolonged exposure (Mist) : Possibility of eye irritation with tearing, pain or blurred vision. Ingestion : Immediate effects of overexposure : Burns of the mouth, throat, esophagus and stomach, with severe pain, bleeding, vomiting, diarrhea and collapse of blood pressure. Damage may appear days after exposure. Persons with the following pre-existing conditions warrant particular attention : Sulfuric (Acid) : Laryngeal irritation. Eating, drinking and smoking must be prohibited in areas where this material is handled and processed. Wash hands and face before eating, drinking and smoking.
SECTION 12. ECOLOGICAL	NFORMATION
Ecotoxicity Toxicity to Animals	 Aquatic toxicity: Slightly to moderately toxic. Bluegill Sunfish (LC50; 48 hours): 49 mg/l (Tap water, 20 °C, conditions of bioessay not specified). (HSBD). Flounder (LC50; 48 hours): 100-330 mg/l (Aerated water, conditions of bioessay not specified). (HSBD). EYE: Concentrated compound is corrosive. 10 % solution: Moderate eye irritant. SKIN: Concentrated compound is corrosive. 10 % solution: Slight skin irritant. Single and repeated exposure: Irritation of the respiratory tract; Corrosion of the respiratory tract; Lung damage; Labored breathing; Altered respiratory rate; Pulmonary oedema. Repeated exposure: Altered red blood cell count.
Mobility (Soil) Persistence and degradability Bioaccumulation	Easy soil seeping under rain action Sulfate ion : Ubiquitous in the environment. Metabolized by micro-organisms and plants. Sulfate ion : Ubiquitous in the environment. Metabolized by micro-organisms and plants whitout bioaccumulation.
Biodegradation Products Biodegradation Products (Tox Remarks on Environment BOD5 and COD	Not available kicity) Not applicable Due to the product's composition, particular attention must be taken for transportation and storage. Protect from rain because the run-off water will become acidic and may be harmful to flora and fauna. Not available

SECTION 13. DISPOSAL CONSIDERATIONS

Disposal methods

Cleaned-up material may be an hazardous waste on *Resource Conservation and Recovery Act* (RCRA) on disposal due to the corrosivity characteristic. **DO NOT** flush to surface water or sanitary sewer system. Comply with Federal, State, and local regulations. If approved, neutralize and transfer to waste treatment system.

SECTION 14. TRANSPORT INFORMATION

TDG (Canada) PIN	CLASS 8 Corrosives UN1830 SULFURIC AC	CID PG II	
Special Provisions (Transport) DOT (U.S.A.)/IMO (Maritime)	None Proper Shipping Name Hazard Class UN N° DOT/IMO Label Packing Group Reportable Quantity Shipping Containers	SULFURIC ACID 8 1830 CORROSIVE II 1000 lbs (454 kg) Tank Cars, Tank Trucks,	Vessel
ERG	Guide 137		
SECTION 15 REGULATORY INFOR	MATION		
Labeling (EEC)	EU (Directive 67/548/EEC) : Sulfuric (Acid) : C Corrosive (Pictogram) Annex I Index number : 016-020-00-8 ; EU Consolidated Inventories : EC Number 231-639-5 $C \ge 15 \%$ C ; R35 ; S2, 26, 30, 45.		
Risk Phrases (EEC) Safety Phrases (EEC)	 R35- Causes severe burns S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice S30- Nerver add water to this product S36/37/39- Wear suitable protective clothing, gloves and eye/face protection S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label wher possible). 		
		304 94 30.59 CO 00	

77% - 100% SULFURIC ACID

CEPA DSL	(CANADA)	CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) : On the Domestic Substances List (DSL); Acceptable for use under the provisions of CEPA. Sulfuric Acid is a Class B Drug Precursor under <u>Health Canada's Controlled Drugs and Substances Act</u> and <u>Precursor Control Regulations</u> .			
Regulation	(U.S.A.) CERCLA Section 103 Hazardous substances (40 CFR 302.4); SARA Section 302 Extremely Ha Substances (40 CFR 355) : Yes; SARA Section 313, Toxic Chemicals (40 CFR 372.65); US Inventory : Listed : Suffurie (Acid) (Final RO) : 1 000 pounds (454 kg)				
	Sulfuric Acid is subject to reporting requirements of Section 313, <u>Title III of the Superfund Amendments</u> and Reauthorization Act of 1986 (SARA), 40 CFR Part 372.				
		Certain companies must report emissions of Sulfuric Acid as required under <u>The Comprehensive</u> <u>Environmental Response, Compensation and Liability Act of 1980 (CERCLA)</u> , 40 CFR Part 302			
		For more information call the SARA Hotline 800-424-9346.			
		Strong Inorganic Acid Mists Containing Sulfuric Acid : Chemical listed effective March 14, 2003 to the State of California, Proposal 65.			
		<u>U.S. FDA Food Bioterrorism Regulations</u> : These regulations apply to Sulfuric Acid when being distributed, stored or used for Food or Food Processing.			
Classificati	ons HCS (U.S.A.)	Corrosive liquid			
NFPA (Nat Fire Hazar	ional Fire Protection Ass d 0 Reactivi	aciation) (U.S.A.) ty 2 Health 3 Special Hazard ACID			
NPCA- HM Fíre Hazar	IIS Rating d 0 Reactivi	ty 2 Health 3			
References	 TLVs and BEIs (2008 Agents & Biological CCOHS (2008) - Car CSST (2008) - Comm http://www.reptox.css ERG (2008). Emergen Secretariat of Communication HSDB (2008) - Hazar environmental health. Bethesda, MD 20894 IARC - Monographs Merck Index (1999). NIOSH U.S. (2008) - Patty's Industrial Hyg Règlement sur les pro RTECS (2008). Regis Toxicologie industrie 	 Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Exposure Indices. ACGIH, Cincinnati, OH – http://www.acgih.org adian Centre for Occupational Health and Safety - http://www.ccohs.ca/ ission de la Santé et de la Sécurité du Travail (Québec). Service du répertoire toxicologique - t.qc.ca/ tcy Response Guidebook, Developed by the U.S. Department of Transportation, Transport Canada, and the inications and Transportation of Mexico dous Substances Data Bank. TOXNET® Network of databases on toxicology, hazardous chemicals, and NLM Databases & Electronic Resources, U.S. National Library of Medicine, NHI, 8600 Rockville Pike, http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB on the Evaluation of Carcinogenic Risks to Humans (collection) - http://www.cie.iarc.fr/ Merck & CO., Inc, 12th edition Pocket Guide to Chemical Hazards - http://www.cdc.gov/niosh/npg/ iene and Toxicology, 3rd Revised Edition duits contrôlés (Canada) ttry of Toxic Effects of Chemical Substances, NIOSH, CDC lie intoxication professionnelle, 3e édition, Lauwerys 			
Glossary	USST : Commission HSDB : Hazardous S IARC : Internationa NIOSH : National Ins NTP : U.S. Nation RTECS : Registry of	a de la Sante et de la Sécurité du Travail (Québec). Substances Data Bank. I Agency for Research on Cancer. stitute of Occupational Safety and Health. al Toxicology Program. Toxic Effects of Chemical Substances			
Note					
For further i	nformation, see NorFalco	Inc. Sulfuric Acid « Storage and Handling Bulletin ».			
Because of i	ts corrosive characteristics	s and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application;			

Because of its corrosive characteristics and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application; regardless of whether they are formulated for residential, commercial or industrial use. NorFalco will not knowingly sell sulfuric acid to individuals or companies who repackage the product for sale as sewer or drain cleaners, or any other similar use.

The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

For additional information, please visited our website : www.norfalco.com

Written by : Groupe STEM Consultants / NorFalco Sales Inc. Complete revision : 2009-01-24 Partial review : None

Previous complete revision : 2008-01-24

Verified by : Guy Desgagnés and Eric Kuraitis, Technical Representative - Sulfuric Acid Request to : André Auger, Administration Assistant Tel. : (905) 542-6901 extension 0 Fax : (905) 542-6914 / 6924 NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

Notice to Reader

Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. NorFalco Sales Inc.extends no warranty and assumes no responsibility for the accuracy of the content and expressly disclaims all liability for reliance thereon. This material safety data sheet provides guidelines for the safe handling and processing of this product; it does not and cannot advise on all possible situations, therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

♥TENCATE Mirafi®

Mirafi[®] 140N

Mirafi[®] 140N is a needlepunched nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. Mirafi[®] 140N is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids. Mirafi[®] 140N meets Aashto M288-06 Class 3 for elongation > 50%.

Mechanical Properties	Test Method	Unit	Minimum Average Roll Value	
			MD	CD
Grab Tensile Strength	ASTM D4632	lbs (N)	120 (534)	120 (534)
Grab Tensile Elongation	ASTM D4632	%	50	50
Trapezoid Tear Strength	ASTM D4533	lbs (N)	50 (223)	50 (223)
CBR Puncture Strength	ASTM D6241	lbs (N)	310 (1380)
Apparent Opening Size (AOS) ¹	ASTM D4751	U.S. Sieve (mm)	70 (0.212)	
Permittivity	ASTM D4491	sec ⁻¹	1.7	
Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	135 (5500)	
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	70	

¹ ASTM D4751: AOS is a Maximum Opening Diameter Value

Physical Properties	Unit	Typical Value		
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 360 (4.5 x 110)	
Roll Area	yd² (m²)	500 (418)	600 (502)	
Estimated Roll Weight	lb (kg)	133 (60)	160 (72)	

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi[®] is a registered trademark of Nicolon Corporation

`FGS000385 ETQR54