

July 17, 2019

Ms. Shauna Little
Environmental Protection Agency
Office of Environmental Stewardship (OES)
Water Technical Unit
5 Post Office Square, Suite 100 (OES4-SMR)
Boston, Massachusetts 02109-3912

Re: Green Line Extension Project – Newbern Avenue RGP

Notice of Intent for Coverage under the Remediation General Permit for Massachusetts Discharge of Treated Groundwater to Mystic River, Somerville, Massachusetts

Dear Ms. Little:

On behalf of the Massachusetts Bay Transportation Authority (MBTA), GLX Constructors (GLXC), has prepared the attached National Pollutant Discharge Elimination System (NPDES) Notice of Intent (NOI) (Attachment A) for coverage under the Remediation General Permit (RGP) for a segment of the MBTA Green Line Extension (GLX) Project in Somerville, Massachusetts (the Project). This submittal is a request to discharge treated groundwater generated during Project construction activities related to an area of petroleum and chlorinated volatile organic compounds found in groundwater near the Broadway bridge. Additional NOIs for the GLX project will be submitted under separate cover for the other sections of the Project where treated groundwater is proposed to be discharged to other surface water bodies.

A Site Plan and a Massachusetts Department of Environmental Protection (MassDEP) Priority Resources Map are provided in Attachment B as Figures 1 and 2, respectively. Excavation dewatering and discharge of treated groundwater are expected to begin in July 2019 and end in July 2021.

Project Background

The GLX Project will extend the existing Green Line Light Rail System on two new branches from the proposed relocated Lechmere Station in Cambridge to Union Square Station in Somerville and College Avenue Station in Medford. The new Medford Branch will extend along the existing Lowell Branch Commuter Railroad Right-of Way (ROW) into Medford. The Union Square Branch will extend along the existing Fitchburg Branch Commuter Railroad ROW into Somerville. The work of the GLX Project also includes construction of retaining walls and noise walls along the ROWs; relocation of existing railroad tracks and utilities; construction of new track with sections on both existing viaducts and at grade; installation of new or replacement utilities, including sewer, water, and drain; installation of new traction power, overhead catenary, and signal systems; the replacement or reconstruction of seven roadway bridges and three railroad bridges; and the construction of seven new stations along the proposed route as well as a Vehicle Maintenance Facility and associated parking to support transportation operations.

Massachusetts Contingency Plan Applicability

The projected dewatering areas will include three existing Massachusetts Contingency Plan (MCP; 310 CMR 40.0000) Disposal Sites. Groundwater near Broadway in Somerville has been impacted by polycyclic aromatic hydrocarbons (PAHs), metals, and petroleum related volatile organic compounds (VOCs) [Release Tracking Numbers (RTNs) 3-1322, 3-4551, 3-30624, and 3-35568].

RTN 3-35568 was assigned on May 14, 2019 following the detection of benzene and C₅-C₈ aliphatic hydrocarbons in well GLC-NB-3 above RCGW-2 standards which is a 120-day reporting condition.

RTN 3-30624 is associated with the detection of arsenic, cadmium, and nickel in soil within the MBTA right of way discovered during soil pre-characterization work in 2013. A Permanent Solution Report submitted in 2017 documents that these detections are likely the result of the presence of Historic Fill and historical use of the site as a railroad right of way.

RTN 3-4551 (Former Knox Dodge at 643-645 Broadway in Somerville) was issued for releases of gasoline and diesel from underground storage tanks. 1,400 tons of petroleum-impacted soil was removed from the site between 1997 and 1998. In February 2004, oxygen release compound was injected into the aquifer as a remedial action. The RTN was closed with an A-3 Response Action Outcome in April 2005.

RTN 3-1322 was assigned to the (now former) Shell station at 620 Broadway in Somerville due to the discovery of petroleum-impacted soil during UST removal in June 1987. 1,846 tons of impacted soil was generated under a Release Abatement Measure associated with site redevelopment in January and February of 2002. This work included the removal of gasoline and heating oil USTs, dispensers, and the oil/water separator. A Permanent Solution Statement with Conditions was submitted in August 2014.

Groundwater Characterization

Groundwater samples were collected from monitoring wells GLC-NB-2, GLC-NB-3, GLC-NB-3-1, GLC-NB-3-2, GLC-NB-3-3, and GLC-NB-3-4 in May 2019. The groundwater samples were submitted to Alpha Analytical Laboratory in Westborough, Massachusetts (Alpha) and were analyzed for RGP parameters and several additional components (e.g. MassDEP Extractable Petroleum Hydrocarbons and pesticides via EPA 608) to simultaneously meet the requirements of a Massachusetts Water Resources Authority Construction Dewatering Permit Application should one be necessary. The monitoring wells are located within the proposed area of dewatering associated with this project.

A summary of groundwater sampling results is included as Table 1 in Attachment C, and the supporting laboratory analytical report is provided in Attachment D. Laboratory analytical results were compared to the RGP Technology Based Effluent Limitations (TBELs) and Water Quality Based Effluent Limitations (WQBELs). The WQBELs were calculated in accordance with Appendix V of the RGP, for sites in Massachusetts discharging to freshwater surface water bodies.

Elevated detection limits were encountered in samples GLC-NB-3, GLC-NB-3-1, and GLC-NB-3-2 due to detections of several VOCs (e.g. benzene and methyl tert butyl ether). Because of dilutions needed for the analysis, the elevated detection limits for VOCs caused the detection limits of other VOCs (e.g. 1,4-Dichlorobenzene and methylene chloride) to exceed the RGP minimum recording limits; however, these VOCs (if present) would be removed prior to discharge by the same methods used to remove the benzene.

Constituents of concern identified in the groundwater samples include pH, total suspended solids (TSS), VOCs, polycyclic aromatic hydrocarbons, and iron.

Receiving Water Classification

The Mystic River (ID: MA71-02) is a Massachusetts Class B surface water body and is listed on the Massachusetts 303(d) list for:

- Arsenic
- Chlordane
- Chlorophyll-a
- DDT
- Dissolved Oxygen Saturation
- Escherichia coli
- PCB in Fish Tissue

- Phosphorus (total)
- · Secchi disk transparency; and
- Sediment Bioassays -- Chronic Toxicity Freshwater.

On May 17, 2019, TRC personnel collected a surface water sample from the Mystic River outfall and submitted it for laboratory analysis of RGP metals, ammonia, and hardness (pH and temperature were measured in the field). Surface water sampling results are summarized in Table 2 provided in Attachment C, and the supporting laboratory analytical report is provided in Attachment D.

The 7Q10 low flow rate for the Mystic River is 3.52 cubic feet per second (cfs) [i.e., 2.275 million gallons per day (MGD)] (as determined by a US Geological Survey StreamStats Database – see Attachment E); however, MassDEP has made a determination that the proposed outfall is located in an inlet of this river therefore not eligible for a dilution factor. Documentation of this correspondence is attached in Attachment E

Proposed Treatment System

A Design Flow treatment system discharge rate of 100 gallons per minute (gpm) (i.e. 0.144 million gallons per day) was used to evaluate the applicable RGP discharge standards. Source water from the construction dewatering system will initially be pumped to a 18,000-gallon frac tank at head of the system for pH adjustment and chemical-aided settling of TSS prior to treatment to reduce metals and organic compound concentrations. Groundwater analyses indicate that the pH adjustment may be needed to raise the pH of the treated effluent. Dosing will depend on the pH of the influent water, the flow rate, and if the system operates continuously or intermittently. A pH adjustment system that is capable of raising or reducing pH will be implemented if required to meet the permit requirements. The pH system is designed to either raise or reduce pH with acid or caustic and includes an automatic metered acid feed system with a mix tank, feed pumps and setpoint controls that maintain the pH approved by the permit, usually set between 6.5 and 8.0. The pH is continuously monitored and the chemical will only be added if the setpoints are exceeded. Cutsheets of the pH Adjustment system are attached. GLXC chose the flow rate of 100 gallons per minute was chosen based on the system successfully utilized in the previous phase of the GLX Project and a discussion with that contractor. The precise dose to adjust pH is not known; however, a worst case scenario of 48 gallons per day to treat 100 gpm flow rate is 333 parts per million which is under the LC50 for fish. Actual chemical needs are expected to be an order of magnitude lower.

The chemical-aided settling system will utilize LRT-E-50 coagulant and LRT-823 series flocculant. The coagulant will be injected into the influent stream prior to entering the frac tank for rapid mixing while the flocculant will be injected directly into the tank for slow mixing. The system will include two chemical feed metering pumps, an in-line mixer, and two 55-gallon drums stored within secondary containment. Assuming the system operates at 100 gpm continuously, the LRT E-50 coagulant will be dosed up to 20 mg/L (equivalent to 2 gallons per day) and the LRT-823 series flocculant will be dosed up to 50 mg/L (equivalent to 5 gallons per day).

Part F of the RGP NOI requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- 1. The addition of pH conditioners, flocculant and coagulant will not add any pollutants in concentrations which exceed permit effluent limitations;
- 2. The use of these chemicals will not result in the exceedance of any applicable water quality standard; and
- 3. These chemicals will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit.

Safety data sheets for chemical used on-site and specifications on pH adjustment equipment are attached in Attachment F. Granular activated carbon/clay filters and ion exchange resin will be used to remove organic compounds and metals, respectively. A proposed groundwater treatment system schematic is

provided as Figure 3 in Attachment B. Based on effluent monitoring results, the treatment system or flow rate will be modified to comply with the effluent limits.

A Work Plan for the groundwater extraction and treatment systems satisfying the requirements of Section 2.5 of the RGP will be available at the Site prior to initiating dewatering activities.

Owner and Treatment System Sub-Contractor

Treatment System Sub-Contractor

GLX Constructors 200 Inner Belt Somerville, Massachusetts Strategic Environmental Services, Inc. 362 Putnam Hill Road Sutton, Massachusetts

Notice of Intent

Owner

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern (ACECs), the Endangered Species Act, and the National Historic Preservation Act, as documented below:

- Review of a Massachusetts Geographic Information Systems MassDEP Priority Resources Map, Figure 2 in Attachment B, shows the Site is not within an ACEC.
- According to the United States Fish and Wildlife Service Information, Planning and Conservation (USFWS) tool, there are no critical habitats at the Site. USFWS confirmed there are no critical habitats in the area and confirmed permit eligibility meets "Criterion A" (Attachment G).
- Additionally, according to the MassDEP Priority Resources Map, no Natural Heritage & Endangered Species Program Priority Habitats for Rare Species or Estimated Habitats for Rare Wildlife were present within half a mile downstream of the discharge location. Therefore, permit eligibility meets "Criterion A."
- This work will not affect historical properties that are listed by the United States Park Service or Massachusetts Cultural Resources. Cultural resources in the vicinity of the Site are listed in Attachment H. The Mystic River Reservation is on the northern bank of the Mystic River but would not be affected by the discharge of treated water.

The proposed treatment system has been designed to reduce contaminants of concern below the applicable effluent limits. Effluent compliance monitoring will be conducted in compliance with the RGP. Additionally, the flow rate, pH, and temperature levels will be monitored in the field and recorded.

Your assistance in processing this application is greatly appreciated. If you have any questions or would like additional information please feel free to contact me at (617) 350-3406 or via email at CMcDermott@trccompanies.com.

Sincerely,

TRC Environmental Corporation

Christopher McDermott Office Practice Leader

cc: Eileen London, GLX Constructors

Greg Mischel, Annie Cornell, Samantha Slater, Jamie Stapleton - TRC

Attachments:

Attachment A – RGP NOI Form and Calculation Spreadsheet

Attachment B – Figures

Figure 1 – GLX Newbern Ave. RGP (Site map)

Figure 2 - MassDEP Priority Resource Map

Figure 3 - Generalized Treatment System Schematic

Figure 4 - GLX Newbern Ave RGP

Attachment C - Tables

Table 1 - Summary of Newbern Avenue Groundwater Analytical Results

Table 2 - Summary of Surface Water Analytical Results – Mystic River

Attachment D – Laboratory Analytical Reports

Attachment E – Correspondence with MassDEP regarding the Mystic River

Attachment F – SDS and pH Adjustment Equipment Specifications

Attachment G - Letter from US Fish and Wildlife Service

Attachment H - Massachusetts Cultural Resources Database Search Results

ATTACHMENT A RGP NOI FORM AND CALCULATION SPREADSHEET

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: Newbern Avenue						
Green Line Extension Project at Newbern Avenue	Street:						
	City: Somerville		State: MA	^{Zip:} 02145			
2. Site owner Macage hypothe Boy Transportation Authority	Contact Person: Eileen London						
Massachusetts Bay Transportation Authority	Telephone: 617-684-3153	Email: Eile	een.London	@glxconstruct.com			
	Mailing address: 200 Inner Belt Road						
	Street:						
Owner is (check one): ☐ Federal ■ State/Tribal ☐ Private ☐ Other; if so, specify:	City: Somerville	State: MA	Zip: 02143				
3. Site operator, if different than owner	Contact Person:						
Same as owner	Telephone: Email:						
	Mailing address:	•					
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) tl 3-1322, ite	(check all th	at apply):				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	■ MA Chapter 21e; list RTN(s) 3-4551, 3-30624, □ NH Groundwater Managemei 3-35568.	□ CERCL □ UIC Pro □ POTW					

■ Yes □ No

B. Receiving water information:				
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classit	ication of receiving water(s):	
Mystic River	MA71-02	В		
Receiving water is (check any that apply): □ Outstan	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River	
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No		
Are sensitive receptors present near the site? (check If yes, specify:	one): □ Yes ■ No			
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP.	` '	· //	1 .	
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		n the instructions in	3.52 cfs (2.275 MGD)	
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s	1 2	_ /	0	
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: June 4, 20	19	, , ,		
7. Has the operator attached a summary of receiving (check one): ■ Yes □ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?	
C. Source water information:				
1. Source water(s) is (check any that apply):				
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:	
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other		
in accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix Appendix VIII? (check one): than the receiving water; if so, indicate waterbody:				

 \square Yes \square No

2. Source water contaminants: TPH, VOCs, SVOCs, cyanide, low pH, and	iron
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes ■ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
OF-50000 (Mystic River)	42.404576 / -71.097035
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:
City of Medford Stormwater System	
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Yes	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No
Provide the expected start and end dates of discharge(s) (month/year): July 20	019 - July 2021
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)			
	a. If Activity Categ	ory I or II: (check all that apply)		
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 			
	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)			
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination		
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)			
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply		

4. Influent and Effluent Characteristics

	Known	Known	# of samples	method limit	D 4 4	In	fluent	Effluent Limitations	
Parameter be	or believed absent				Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	6	4500NH3-	375	850	399	Report mg/L	
Chloride		✓	6	300.0	25000	1,120,000	647,333	Report μg/l	
Total Residual Chlorine	✓		6	4500CL-D	20	0	0	0.2 mg/L	11
Total Suspended Solids		✓	6	2540D	20,000	16,000	5,503	30 mg/L	30
Antimony	✓		6	200.8	4	0	0	206 μg/L	640
Arsenic		✓	6	200.8	1	21.45	11.7	104 μg/L	10
Cadmium		✓	6	200.8	0.2	2.11	0.6	10.2 μg/L	01.83
Chromium III		✓	6	200.8	10	<2,000	37	323 μg/L	713.1
Chromium VI	✓		6	200.8	10	<2,000	0	323 μg/L	11.4
Copper		✓	6	200.8	1	299.2	94.9	242 μg/L	84.6
Iron		✓	6	200.7	50	174,000	66,190	5,000 μg/L	1000
Lead		✓	6	200.8	1	263.7	105.7	160 μg/L	84.94
Mercury	✓	✓	6	245.1	0.2	0.3	0.05	0.739 μg/L	10.91
Nickel		✓	6	200.8	2	379.3	101.4	1,450 μg/L	462.8
Selenium	✓		6	200.8	5	0	0	235.8 μg/L	5
Silver		✓	6	200.8	0.4	0.91	0.28	35.1 μg/L	320.2
Zinc		✓	6	200.8	10	565.5	225.1	420 μg/L	1066.5
Cyanide		✓	6	4500CN-C	5	67	11.2	178 mg/L	5.2
B. Non-Halogenated VOCs	s								
Total BTEX		✓	6	8260C	10	2600	710	100 μg/L	
Benzene		✓	6	8260C	10	2600	613	5.0 μg/L	
1,4 Dioxane	✓		6	8260CSIM	500	< 500	< 500	200 μg/L	
Acetone	✓		6	8260C	100	<100	0	7.97 mg/L	
Phenol		✓	6	625.1	100	39	6.5	1,080 μg/L	300

^{*} exclusively present in soil

	Known	Known			-	In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	num average	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	1		6	8260C/624	10	<10	0	4.4 μg/L	1.6
1,2 Dichlorobenzene	1		6	8260C/624	50	<50	0	600 μg/L	
1,3 Dichlorobenzene	✓		6	8260C/624	50	<50	0	320 μg/L	
1,4 Dichlorobenzene	1		6	8260C/624	50	<50	0	5.0 μg/L	
Total dichlorobenzene	1		6	8260C/624	50	<50	0	763 μg/L in NH	
1,1 Dichloroethane	✓		6	8260C/624	10	<15	0	70 μg/L	
1,2 Dichloroethane		✓	6	8260C/624		21	0	5.0 μg/L	
1,1 Dichloroethylene	✓		6	8260C/624	15	<10	0	3.2 μg/L	
Ethylene Dibromide	✓		6	504.1	0.01	< 0.01	0	0.05 μg/L	
Methylene Chloride	✓		6	8260C/624	10	<10	0	4.6 μg/L	
1,1,1 Trichloroethane	✓		6	8260C/624	20	<20	0	200 μg/L	
1,1,2 Trichloroethane			6	8260C/624	15	<15	0	5.0 μg/L	
Trichloroethylene	1		6	8260C/624	10	<10	0	5.0 μg/L	
Tetrachloroethylene		✓	6	8260C/624	10	3.3	3.3	5.0 μg/L	3.3
cis-1,2 Dichloroethylene	✓		6	8260C/624	10	<10	0	70 μg/L	
Vinyl Chloride	✓		6	8260C/624	10	<10	0	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates		✓	6	625/8270D	5	2.6	0.4	190 μg/L	190
Diethylhexyl phthalate		✓	6	625/8270D	2.2	2.6	0.4	101 μg/L	2.2
Total Group I PAHs	1		6	625/8270D	0.10	1.6	0.285	1.0 μg/L	
Benzo(a)anthracene		√	6	625/8270D	0.10	0.27	0.05	1.5	0.0038
Benzo(a)pyrene		√	6	625/8270D	0.10	0.26	0.04	1	0.0038
Benzo(b)fluoranthene		√	6	625/8270D	0.10	0.45	0.09	1	0.0038
Benzo(k)fluoranthene		√	6	625/8270D	0.10	0.18	0.03	As Total PAHs	0.0038
Chrysene		√	6	625/8270D	0.10	0.31	0.05	1	0.0038
Dibenzo(a,h)anthracene	√		6	625/8270D	0.10	0	0	1	0.0038
Indeno(1,2,3-cd)pyrene		√	6	625/8270D	0.10	0.13	0.02	1	0.0038

^{*} exclusively present in soil

	Known	Known				Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	6	625/8270D	0.10	48	10.4	100 μg/L	
Naphthalene		✓	6	625/8270D	0.10	48	19	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		6	608.3	0.25	0	0	0.000064 μg/L	
Pentachlorophenol	✓		6	625	1	0	0	1.0 μg/L	
F. Fuels Parameters								•	
Total Petroleum Hydrocarbons	✓		6	1664A	4.40	1800	0	5.0 mg/L	
Ethanol	✓		6	1671A	2000	<2000	0	Report mg/L	
Methyl-tert-Butyl Ether		✓	6	8260C/624	50	4400	3100	70 μg/L	20
tert-Butyl Alcohol	✓		6	8260C/624	500	<2000	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		6	8260C/624	100	<200	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	e, hardness,	salinity, LC	50, addition				_		
pH (GW)		✓	6	Field	0.1 SU	5.5	6.32	6.5 - 8.3	
pH (Surface Water)		✓	1	Field	0.1 SU	6.53	N/A	6.5 - 8.3	
Temperature (GW)		✓	6	Field	0.1 deg C	16.29	13.43		
Temperature (Surface Water)		✓	1	Field	0.1 deg C	11.7	N/A		

^{*} exclusively present in soil

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption ■ Ion Exchange ■ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Fractionation and/or weir tank, pH adjustment, flocculation/coagulation, bag filtration, liquid phase GAC, and Ion Exchange Resin	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks■ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
■ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Ion Exchange Resin Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams ■ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \blacksquare Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ■ Yes □ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
other tribal representative that outlines measures the operator will carry out to initigate or prevent any adverse effects on historic properties? (check one):
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No
Thas the operator attached the certification requirement for the best ividing ement fractices right (bivirr): (check one).

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in at that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, ar	he system, or those nd complete. I have
A BMPP meeting the requirements of this general permit will be deve BMPP certification statement: initiation of discharge.	loped and implen	nented upon
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ Check one: Yes ■	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one. Tes =	NO LI NA LI
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes □	No □ NA ■
Signature: Dat	e:	
Print Name and Title:		

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGI
0.144	Q_p = Enter discharge flow in MGI
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
1320	C_d = Enter influent hardness in mg/L CaCO ₃
254	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

\downarrow	_
6.53	pH in Standard Units
11.7	Temperature in °C
1.62	Ammonia in mg/L
254	Hardness in mg/L CaCO ₃
	Salinity in ppt
0	Antimony in μg/L
1.42	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
3.5	Copper in µg/L
2800	Iron in μg/L
1.95	Lead in μg/L
0	Mercury in μg/L
3.28	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
75.83	Zinc in μg/L

Enter influent concentrations in the units specified

	-
0	TRC in µg/L
0.85	Ammonia in mg/L
0	Antimony in μg/L
21.45	Arsenic in μg/L
2.11	Cadmium in µg/L
222	Chromium III in µg/L
0	Chromium VI in µg/L
299.2	Copper in µg/L
174,000	Iron in μg/L
263.7	Lead in μg/L
0.3	Mercury in μg/L
379.3	Nickel in μg/L
0	Selenium in μg/L
0.91	Silver in μg/L
565.5	Zinc in μg/L
67	Cyanide in μg/L
12	Phenol in μg/L
10	Carbon Tetrachloride in µg/L
10	Tetrachloroethylene in μg/L
2.6	Total Phthalates in μg/L
2.6	Diethylhexylphthalate in μg/L
0.27	Benzo(a)anthracene in μg/L
0.26	Benzo(a)pyrene in μg/L
0.45	Benzo(b)fluoranthene in μg/L
0.18	Benzo(k)fluoranthene in μg/L
0.31	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0.13	Indeno(1,2,3-cd)pyrene in μg/L
4400	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less

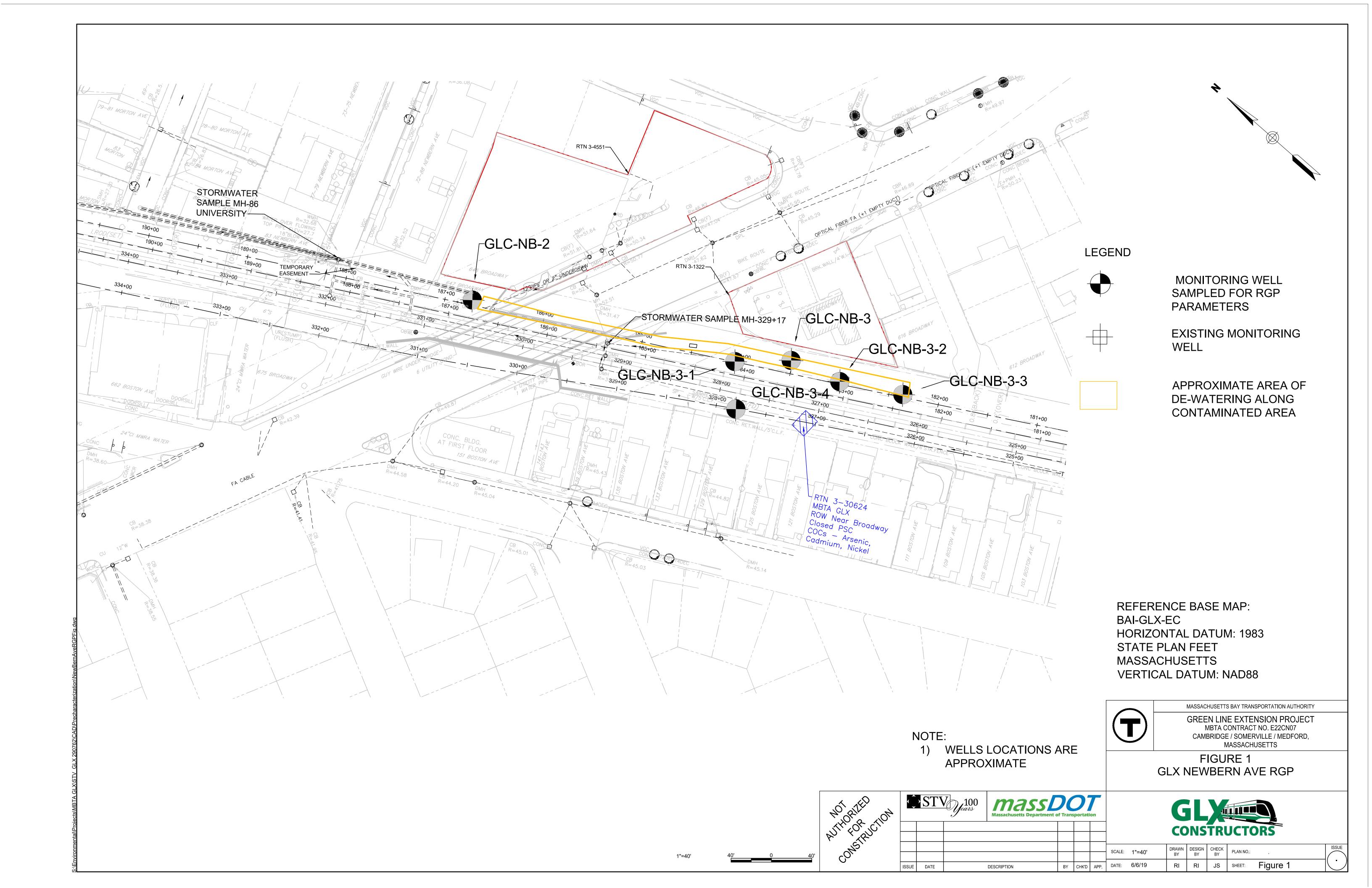
Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

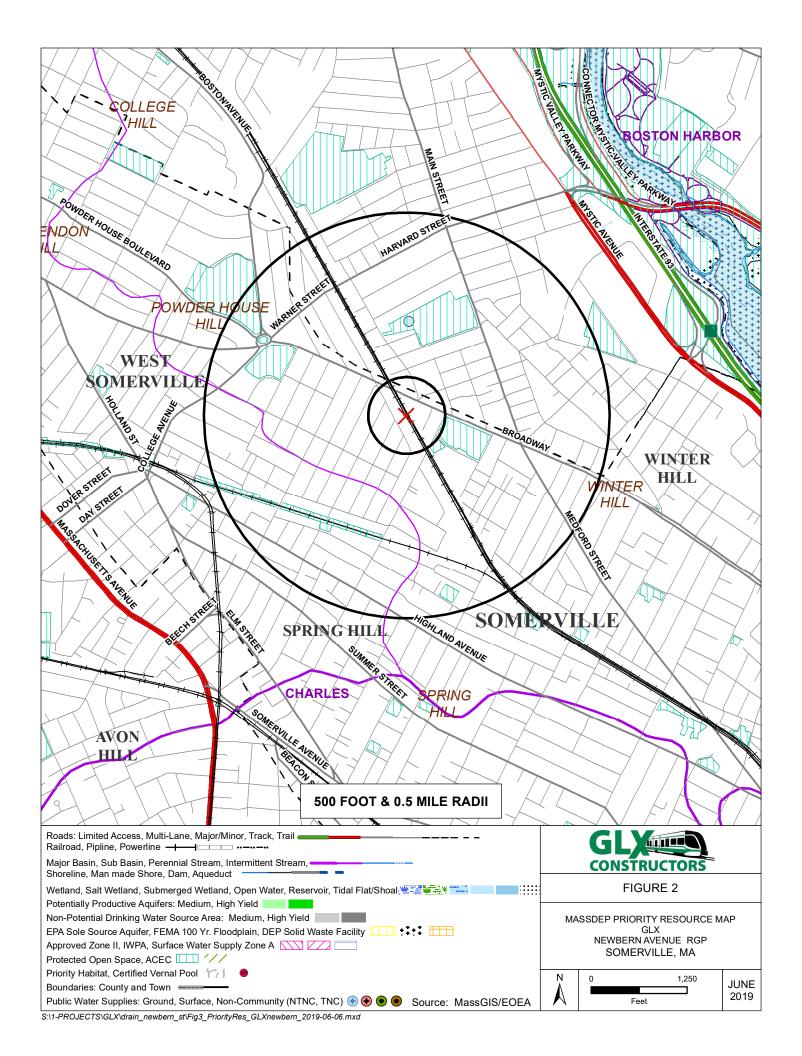
Only if approved by State as the entry for Q_R ; leave 0 if no entry

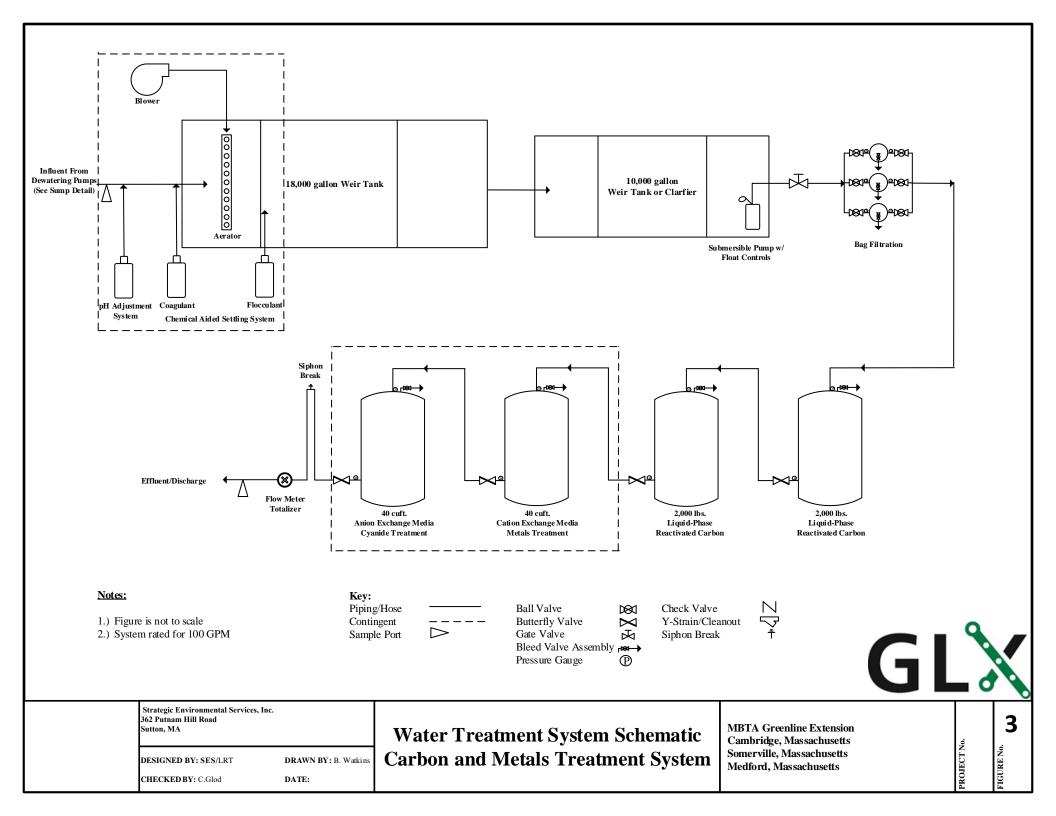
Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is ≥ 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile


Enter 0 if non-detect or testing not required


Dilution Factor 1.0


Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L			applies if shown	
Chloride	Report	_				
Total Residual Chlorine	0.2	μg/L mg/L	 11	∝/Т	50	~/T
Total Suspended Solids	30	mg/L		μg/L	30	μg/L
Antimony	206		640	ua/I		
Arsenic	104	μg/L μg/L	10	μg/L		
Cadmium			1.8306	μg/L		
Chromium III	10.2 323	μg/L	713.1	μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper		μg/L	84.6	μg/L		
Iron	242	μg/L		μg/L		
	5000	μg/L	1000	μg/L		
Lead	160	μg/L	84.94	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	462.8	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	320.2	μg/L		
Zinc	420	μg/L	1066.5	μg/L		
Cyanide	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	/T				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	$\mu g/L$	300	$\mu g/L$		
C. Halogenated VOCs				-		
Carbon Tetrachloride 1,2 Dichlorobenzene	4.4 600	μg/L	1.6	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2 0.05	μg/L				
Ethylene Dibromide Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70 2.0	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic	1.0	ua/I				
Aromatic Hydrocarbons Benzo(a)anthracene	1.0	μg/L μg/L	0.0038	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L μg/L	0.0038	μg/L μg/L	0.1	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(k)fluoranthene	1.0	$\mu g/L$	0.0038	$\mu g/L$	0.1	$\mu g/L$
Chrysene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Total Group II Polycyclic	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.00005				0.7	, -
	0.000064	μg/L μg/I			0.5	μg/L
Pentachlorophenol F. Fuels Parameters	1.0	μg/L				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	$\mu g/L$		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

ATTACHMENT B FIGURES

ATTACHMENT C TABLES

							1		2.0	2.4	256	0	7
							LOCATION:	GLC-NB-2 ¹	GLC-NB-3 ^{2,9}	GLC-NB-3-1 ^{3,4}	GLC-NB-3-2 ^{3,5,6}	GLC-NB-3-3 ⁸	GLC-NB-3-4 ⁷
					ı		PLING DATE:	5/21/2019	5/20/2019	5/21/2019	5/20/2019	5/20/2019	5/21/2019
		ı				LAB	SAMPLE ID:	L1921376-03	L1921130-02	L1921376-01	L1921376-09	L1921130-01	L1921376-02
			RG	P for Freshv	vater ^(a)	EPA	Required						
				- 4)	Compliance	-	Minimum						
Analysis Ana	alyte	Units	TBEL	WQBEL ^(b)	Level ^(c)	MCL	Level ^(d)						
Volatile Org	ganics												
Ben	nzene	ug/l	5.0	5.0	N/A	5	5	1 U	980	100	2,600	1 U	1 U
Tol	luene	ug/l	N/A	N/A	N/A	1,000	N/A	1 U	130	21	10 U	1 U	1 U
l	nylbenzene	ug/l	N/A	N/A	N/A	700	N/A	1 U	200	61	10 U	1 U	1 U
	n-Xylene	ug/l	N/A	N/A	N/A	10,000	N/A	2 U	100	38	20 U	2 U	2 U
<u> </u>						10,000	N/A		33	10 U	10 U	1 U	1 U
L	ylene	ug/l	N/A	N/A	N/A			1 U					
	tal BTEX	ug/l	<u>100</u>	100	N/A	N/A	100	ND	1,443	220	2,600	ND	ND
	-Dichloropropene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
	,3-Trichloropropane	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	120 U	12 U	50 U	5 U	5 U
Bro	omochloromethane	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
Tetı	rahydrofuran	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	120 U	12 U	50 U	5 U	5 U
2,2-	-Dichloropropane	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
_	,1,2-Tetrachloroethane	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	12 U	1.2 U	5 U	0.5 U	0.5 U
	omobenzene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
l	Butylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	12 U	2.8	5 U	0.5 U	0.5 U
	-Butylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	12 U	2.1	5 U	0.5 U	0.5 U
	•	_											†
	-Butylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
	Chlorotoluene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
<u> </u>	Chlorotoluene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
Hex	xachlorobutadiene	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	12 U	1.2 U	5 U	0.5 U	0.5 U
p-Is	sopropyltoluene	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	12 U	1.2 U	5 U	0.5 U	0.5 U
Nap	phthalene	ug/l	<u>20</u>	20	N/A	N/A	20	2.5 U	80	31	25 U^	2.5 U	2.5 U
n-Pi	Propylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	0.5 U	38	21	5 U	0.5 U	0.5 U
	,5-Trimethylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	12	25 U	2.5 U	2.5 U
	,4-Trimethylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	20	25 U	2.5 U	2.5 U
	yl ether	ug/l	N/A	N/A	N/A	N/A	N/A	2.5 U	62 U	6.2 U	25 U	2.5 U	2.5 U
	sopropyl Ether	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	50 U	5 U	20 U	2 U	2 U
	sopropyr Ether ryl-Tert-Butyl-Ether					N/A	N/A	2 U		5 U			
	· · · · · · · · · · · · · · · · · · ·	ug/l	N/A	N/A	N/A				50 U		20 U	2 U	2 U
	thylene chloride	ug/l	<u>4.6</u>	4.6	N/A	5	4.6	1 U	10 U^	10 U^	10 U^	1 U	1 U
	-Dichloroethane	ug/l	<u>70</u>	70	N/A	N/A	70	1.5 U	15 U	15 U	15 U	1.5 U	1.5 U
	loroform	ug/l	N/A	N/A	N/A	80	N/A	1 U	10 U	10 U	10 U	1 U	1 U
l——	rbon tetrachloride	ug/l	4.4	<u>1.6</u>	N/A	5	1.6	1 U	10 U^	10 U^	10 U^	1 U	1 U
1,2-	-Dichloropropane	ug/l	N/A	N/A	N/A	5	N/A	3.5 U	35 U	35 U	35 U	3.5 U	3.5 U
Dib	promochloromethane	ug/l	N/A	N/A	N/A	80	N/A	1 U	10 U	10 U	10 U	1 U	1 U
1,1,	,2-Trichloroethane	ug/l	5.0	5.0	N/A	5	5	1.5 U	15 U^	15 U^	15 U^	1.5 U	1.5 U
	Chloroethylvinyl ether	ug/l	N/A	N/A	N/A	N/A	N/A	10 U	100 U	100 U	100 U	10 U	10 U
l——	rachloroethene	ug/l	5.0	3.3	N/A	5	3.3	1 U	10 U^	10 U^	10 U^	1 U	3.3
	lorobenzene	ug/l	N/A	N/A	N/A	100	N/A	3.5 U	35 U	35 U	35 U	3.5 U	3.5 U
	chlorofluoromethane		N/A	N/A	N/A	N/A	N/A	5 U	50 U	50 U	50 U	5 U	1
		ug/l											
	-Dichloroethane	ug/l	<u>5.0</u>	5.0	N/A	5	5	1.5 U	<u>21</u>	20	15 U^	1.5 U	1.5 U
	,1-Trichloroethane	ug/l	200	200	N/A	200	200	2 U	20 U	20 U	20 U	2 U	2 U
	omodichloromethane	ug/l	N/A	N/A	N/A	80	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	ns-1,3-Dichloropropene	ug/l	N/A	N/A	N/A	N/A	N/A	1.5 U	15 U	15 U	15 U	1.5 U	1.5 U
cis-	-1,3-Dichloropropene	ug/l	N/A	N/A	N/A	N/A	N/A	1.5 U	15 U	15 U	15 U	1.5 U	1.5 U
Bro	omoform	ug/l	N/A	N/A	N/A	80	N/A	1 U	10 U	10 U	10 U	1 U	1 U
1,1,	,2,2-Tetrachloroethane	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	loromethane	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	50 U	50 U	50 U	5 U	5 U
	omomethane	ug/l	N/A	N/A	N/A	N/A	N/A	8.3	50 U	67	90	5 U	8.4
	nyl chloride	ug/l	2.0	2.0	N/A	2	2	1 U	10 U^	10 U^	10 U^	1 U	1 U
	loroethane	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	20 U	20 U	20 U	2 U	2 U
	-Dichloroethene	Ť	3.2	3.2	N/A N/A	7	3.2	1 U	10 U^	10 U^	10 U^	1 U	1 U
		ug/l				100							ł
	ns-1,2-Dichloroethene	ug/l	N/A	N/A	N/A		N/A	1.5 U	15 U	15 U	15 U	1.5 U	1.5 U
	-1,2-Dichloroethene	ug/l	<u>70</u>	70	N/A	70	70	1 U	10 U	10 U	10 U	1 U	1 U
	chloroethene	ug/l	<u>5.0</u>	5.0	N/A	5	5	1 U	10 U^	10 U^	10 U^	1 U	1 U
1,2-	-Dichlorobenzene	ug/l	<u>600</u>	600	N/A	600	600	5 U	50 U	50 U	50 U	5 U	5 U
1,3-	-Dichlorobenzene	ug/l	<u>320</u>	320	N/A	N/A	320	5 U	50 U	50 U	50 U	5 U	5 U
1,4-	-Dichlorobenzene	ug/l	5.0	5.0	N/A	75	5	5 U	50 U^	50 U^	50 U^	5 U	5 U
	rene	ug/l	N/A	N/A	N/A	100	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	etone	ug/l	7,970	7,970	N/A	N/A	7,970	10 U	100 U	100 U	100 U	10 U	10 U
1 12.00	rbon disulfide	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	50 U	50 U	50 U	5 U	5 U

4							LOCATION:	GLC-NB-2 ¹	GLC-NB-3 ^{2,9}	GLC-NB-3-1 ^{3,4}	GLC-NB-3-2 ^{3,5,6}	GLC-NB-3-3 ⁸	GLC-NB-3-4 ⁷
						SAMI	PLING DATE:	5/21/2019	5/20/2019	5/21/2019	5/20/2019	5/20/2019	5/21/2019
		_				LAB	SAMPLE ID:	L1921376-03	L1921130-02	L1921376-01	L1921376-09	L1921130-01	L1921376-02
			RG	P for Freshv	vater ^(a)	EPA	Required						
Analysis	Analyta	Units	TBEL	WQBEL ^(b)	Compliance	MCL	Minimum						
Analysis	·				Level ^(c)		Level ^(d)	10 11	100 11	100 11	100 H	10 11	10 11
	2-Butanone	ug/l	N/A	N/A N/A	N/A	N/A N/A	N/A N/A	10 U 10 U	100 U 100 U	100 U 100 U	100 U	10 U 10 U	10 U 10 U
	4-Methyl-2-pentanone 2-Hexanone	ug/l	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	10 U	100 U	100 U	100 U 100 U	10 U	10 U
H +	Acrolein	ug/l ug/l	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	8 U	80 U	80 U	80 U	8 U	8 U
l	Acrylonitrile	ug/l ug/l	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	10 U	100 U	220	100 U	10 U	10 U
II	Methyl tert butyl Ether	ug/l	70	20	N/A N/A	N/A	20	10 U	1,800	4,400	100 U^	10 U	10 U
l 	Dibromomethane	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	10 U
l	Tert-Butyl Alcohol	ug/l	120	120	N/A	N/A	120	100 U	2,000	1,000 U^	1,000 U^	100 U	100 U
H +	Tertiary-Amyl Methyl Ether	ug/l	90	90	N/A	N/A	90	20 U	200 U^	200 U^	200 U^	20 U	20 U
	Dichlorodifluoromethane	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	1,2,3-Trichlorobenzene	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	1 U
H	1,2,4-Trichlorobenzene	ug/l	N/A	N/A	N/A	70	N/A	1 U	10 U	10 U	10 U	1 U	1 U
H +	Isopropylbenzene	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	1,3-Dichloropropane	ug/l	N/A	N/A	N/A	N/A	N/A	1 U	10 U	10 U	10 U	1 U	1 U
	1,2-Dibromo-3-chloropropane	ug/l	N/A	N/A	N/A	0.2	N/A	2 U	20 U	20 U	20 U	2 U	2 U
	1,4-Dioxane	ug/l	200	200	N/A	N/A	50	50 U	500 U^	500 U^	500 U^	50 U	50 U
	1,2-Dibromoethane	ug/l	0.05	0.05	N/A	0.05	0.05	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
	Petroleum Hydrocarbons (VP												
	C5-C8 Aliphatics	ug/l	N/A	N/A	N/A	N/A	N/A	50 U	NA	4,190	2,650	50 U	50 U
	C9-C12 Aliphatics	ug/l	N/A	N/A	N/A	N/A	N/A	50 U	NA	1,390	500 U	50 U	50 U
	C9-C10 Aromatics	ug/l	N/A	N/A	N/A	N/A	N/A	50 U	NA	526	500 U	50 U	50 U
H	C5-C8 Aliphatics, Adjusted	ug/l	N/A	N/A	N/A	N/A	N/A	50 U	NA	2,730	1,100	50 U	50 U
	C9-C12 Aliphatics, Adjusted	ug/l	N/A	N/A	N/A	N/A	N/A	50 U	NA	500 U	500 U	50 U	50 U
	Benzene	ug/l	5.0	5.0	N/A	5	5	2 U	NA	250	1,550	2 U	2 U
	Toluene	ug/l	N/A	N/A	N/A	1,000	NA	2 U	NA	62	20 U	2 U	2 U
	Ethylbenzene	ug/l	N/A	N/A	N/A	700	NA	2 U	NA	413	20 U	2 U	2 U
	p/m-Xylene	ug/l	N/A	N/A	N/A	10,000	NA	2 U	NA	114	20 U	2 U	2 U
	o-Xylene	ug/l	N/A	N/A	N/A	10,000	NA	2 U	NA	20 U	20 U	2 U	2 U
	Total BTEX	ug/l	<u>100</u>	100	N/A	N/A	100	ND	ND	839	1,550	ND	ND
	Methyl tert butyl ether	ug/l	70	20	N/A	N/A	20	3 U	NA	1,140	30 U^	3 U	3 U
	Naphthalene	ug/l	<u>20</u>	20	N/A	N/A	20	4 U	NA	40 U^	40 U^	4 U	4 U
Extracta	ble Petroleum Hydrocarbons	(EPH)											
ſ	C9-C18 Aliphatics	ug/l	N/A	N/A	N/A	N/A	N/A	100 U	100 U	100 U	100 U	100 U	100 U
ı	C19-C36 Aliphatics	ug/l	N/A	N/A	N/A	N/A	N/A	100 U	100 U	100 U	100 U	100 U	100 U
ſ	C11-C22 Aromatics	ug/l	N/A	N/A	N/A	N/A	N/A	100 U	176	115	100 U	100 U	100 U
1	C11-C22 Aromatics, Adjusted	ug/l	N/A	N/A	N/A	N/A	N/A	100 U	128	115	100 U	100 U	100 U
Semivola	atile Organics by GC/MS												
	Bis(2-ethylhexyl)phthalate	ug/l	101	2.2	N/A	6	2.2	2.6	2.2 U	2.2 U	2.1 U	2.2 U	2.2 U
	Butyl benzyl phthalate	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
Į.	Di-n-butylphthalate	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
	Di-n-octylphthalate	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
	Diethyl phthalate	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
H +	Dimethyl phthalate	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
	Total Phthalates		<u>190</u>	190	N/A	N/A	190	2.60	ND	ND	ND	ND	ND
l	Benzidine	ug/l	N/A	N/A	N/A	N/A	N/A	20 U	20 U	20 U	20 U	20 U	20 U
l	1,2,4-Trichlorobenzene	ug/l	N/A	N/A	N/A	70	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
-	Bis(2-chloroethyl)ether	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
l	2-Chloronaphthalene	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
	3,3'-Dichlorobenzidine	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
	2,4-Dinitrotoluene	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
	2,6-Dinitrotoluene	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
-	Azobenzene	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
	4-Bromophenyl phenyl ether	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
i l'	Bis(2-chloroisopropyl)ether	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
	Bis(2-chloroethoxy)methane	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
]		ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
	Hexachlorobutadiene			37//	, I	~ ^	3.7/4						
	Hexachlorocyclopentadiene	ug/l	N/A	N/A	N/A	50	N/A	10 U	10 U	10 U	9.8 U	10 U	10 U
				N/A N/A N/A	N/A N/A N/A	50 N/A N/A	N/A N/A N/A	10 U 2 U 5 U	10 U 2 U 5 U	10 U 2 U 5 U	9.8 U 2 U 4.9 U	10 U 2 U 5 U	10 U 2 U 5 U

					1416	iy 20-22, 20	713					
						LOCATION:	GLC-NB-2 ¹	GLC-NB-3 ^{2,9}	GLC-NB-3-1 ^{3,4}	GLC-NB-3-2 ^{3,5,6}	GLC-NB-3-3 ⁸	GLC-NB-3-4 ⁷
				_	SAM	PLING DATE:	5/21/2019	5/20/2019	5/21/2019	5/20/2019	5/20/2019	5/21/2019
					LAE	SAMPLE ID:	L1921376-03	L1921130-02	L1921376-01	L1921376-09	L1921130-01	L1921376-02
		RG	P for Freshw	vater ^(a)	EPA	Required						
				Compliance		Minimum						
Analysis Analyte	Units	TBEL	WQBEL ^(b)	Level ^(c)	MCL	Level ^(d)						
NDPA/DPA	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
n-Nitrosodi-n-propylamine	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
Aniline	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
4-Chloroaniline	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
Dibenzofuran	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
2-Methylnaphthalene	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	10	2 U	2 U	2 U	2 U
Acetophenone	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
n-Nitrosodimethylamine	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
2,4,6-Trichlorophenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
p-Chloro-m-cresol	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
2-Chlorophenol	ug/l	N/A	N/A	N/A	N/A	N/A	2 U	2 U	2 U	2 U	2 U	2 U
2,4-Dichlorophenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
2,4-Dimethylphenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
2-Nitrophenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
4-Nitrophenol	ug/l	N/A	N/A	N/A	N/A	N/A	10 U	10 U	10 U	9.8 U	10 U	10 U
2,4-Dinitrophenol	ug/l	N/A	N/A	N/A	N/A	N/A	20 U	20 U	20 U	20 U	20 U	20 U
Phenol	ug/l	1,080	300	N/A	N/A	300	5 U	5 U	5 U	12	5 U	5 U
2-Methylphenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
3-Methylphenol/4-Methylphenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
2,4,5-Trichlorophenol	ug/l	N/A	N/A	N/A	N/A	N/A	5 U	5 U	5 U	4.9 U	5 U	5 U
Semivolatile Organics by GC/MS-SIM	_											
Benzo(a)anthracene	ug/l	1.0	0.0038	0.1	N/A	0.1	0.1 U	0.1 U	0.1 U	0.27	0.1 U	0.1 U
Benzo(a)pyrene	ug/l	1.0	0.0038	0.1	0.2	0.1	0.1 U	0.1 U	0.1 U	0.26	0.1 U	0.1 U
Benzo(b)fluoranthene	ug/l	1.0	0.0038	0.1	N/A	0.1	0.1 U	0.1 U	0.11	0.45	0.1 U	0.1 U
Benzo(k)fluoranthene	ug/l	1.0	0.0038	0.1	N/A	0.1	0.1 U	0.1 U	0.1 U	0.18	0.1 U	0.1 U
Chrysene	ug/l	1.0	0.0038	0.1	N/A	0.1	0.1 U	0.1 U	0.1 U	0.31	0.1 U	0.1 U
Dibenzo(a,h)anthracene	ug/l	1.0	0.0038	N/A	N/A	0.1	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Indeno(1,2,3-cd)pyrene	ug/l	1.0	0.0038	0.1	N/A	0.1	0.1 U	0.1 U	0.1 U	0.13	0.1 U	0.1 U
Total Group I PAHs	ug/l	1.0	1.0	N/A	N/A	1	ND	ND	0.110	1.60	ND	ND
Acenaphthene	ug/l	N/A	N/A	N/A	N/A	N/A	0.1 U	0.1 U	0.1 U	0.91	0.1 U	0.64
Fluoranthene	ug/l	N/A	N/A	N/A	N/A	N/A	0.11	0.1 U	0.11	0.6	0.1 U	0.61
Naphthalene	ug/l	20	20	N/A	N/A	20	0.1 U	48	6.8	2.2	0.1 U	0.1 U
Acenaphthylene	ug/l	N/A	N/A	N/A	N/A	N/A	0.1 U	0.1 U	0.1 U	0.13	0.1 U	0.1 U
Anthracene	ug/l	N/A	N/A	N/A	N/A	N/A	0.1 U	0.1 U	0.1 U	0.14	0.1 U	0.1 U
Benzo(ghi)perylene	ug/l	N/A	N/A	N/A	N/A	N/A	0.1 U	0.1 U	0.1 U	0.11	0.1 U	0.1 U
Fluorene	ug/l	N/A	N/A	N/A	N/A	N/A	0.1 U	0.1 U	0.1 U	0.47	0.1 U	0.14
Phenanthrene	ug/l	N/A	N/A	N/A	N/A	N/A	0.11	0.1 U	0.1 U	0.18	0.1 U	0.11
Pyrene	ug/l	N/A	N/A	N/A	N/A	N/A	0.11	0.1 U	0.1 U	0.58	0.1 U	0.42
Total Group II PAHs	ug/l	100	100	N/A	N/A	100	0.330	48.0	6.91	5.32	ND ND	1.92
Pentachlorophenol	ug/l	1.0	1.0	N/A	1	1	1 U	1 U	1 U	1 U	1 U	1 U
Hexachlorobenzene	ug/l	N/A	N/A	N/A	1	N/A	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Organochlorine Pesticides by GC	8-				-		4.2	0.12	412	412	4.2	
Delta-BHC	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Lindane	ug/l	N/A	N/A	N/A	0.2	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Alpha-BHC	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Beta-BHC	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor	ug/l	N/A	N/A	N/A	0.4	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Aldrin	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Heptachlor epoxide	ug/l	N/A	N/A	N/A	0.2	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Endrin	ug/l	N/A	N/A	N/A	2	N/A	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Endrin aldehyde	ug/l	N/A	N/A	N/A	N/A	N/A	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Endrin aldenyde Endrin ketone	ug/l	N/A	N/A	N/A	N/A	N/A	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Dieldrin	ug/l	N/A	N/A	N/A	N/A	N/A	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
4,4'-DDE	_	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U	0.04 U
4,4-DDE 4,4'-DDD	ug/l	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A		0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U	
4,4'-DDD 4,4'-DDT	ug/l	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A		0.04 U 0.04 U	0.04 U 0.04 U	0.04 U 0.04 U		0.04 U 0.04 U
	ug/l	1	+ +		N/A N/A	N/A N/A						
Endosulfan I	ug/l	N/A	N/A	N/A			0.02 U	0.02 U	0.02 U	0.02 U	0.02 U 0.04 U	0.02 U 0.04 U
Endosulfan II	ug/l	N/A	N/A	N/A	N/A N/A	N/A N/A	0.04 U	0.04 U	0.04 U	0.04 U	0.0.	
Endosulfan sulfate	ug/l	N/A	N/A	N/A			0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Methoxychlor	ug/l	N/A	N/A	N/A	40	N/A	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U

						LOCATION:	GLC-NB-2 ¹	GLC-NB-3 ^{2,9}	GLC-NB-3-1 ^{3,4}	GLC-NB-3-2 ^{3,5,6}		GLC-NB-3-4 ⁷
					i e	PLING DATE:	5/21/2019	5/20/2019	5/21/2019	5/20/2019	5/20/2019	5/21/2019
						SAMPLE ID:	L1921376-03	L1921130-02	L1921376-01	L1921376-09	L1921130-01	L1921376-02
	I	RG	P for Fresh		EPA	Required						
Analysis Analyte	Units	TBEL	WQBEL ^(b)	Compliance Level ^(c)	MCL	Minimum Level ^(d)						
Toxaphene	ug/l	N/A	N/A	N/A	3	N/A	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Chlordane	ug/l	N/A	N/A	N/A	2	N/A	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
cis-Chlordane	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
trans-Chlordane	ug/l	N/A	N/A	N/A	N/A	N/A	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Polychlorinated Biphenyls by GC	ug/1	17/11	11/11	11/11	11/11	1,711	0.02	0.02	0.02	0.02	0.02	0.02
Aroclor 1016	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1221	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1232	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1242	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1248	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1254	ug/l	N/A	N/A	N/A	N/A	N/A	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Aroclor 1260	ug/l	N/A	N/A	N/A	N/A	N/A	0.2 U	0.27 U	0.2 U	0.2 U	0.2 U	0.2 U
Total PCBs	ug/l	0.000064	0.000064	0.5	0.5	0.5	0.25 U	0.338 U	0.25 U	0.25 U	0.25 U	0.25 U
Total Metals												
Antimony, Total	ug/l	206	640	N/A	6	206	4 U	4 U	4 U	4 U	4 U	4 U
Arsenic, Total	ug/l	104	10	N/A	10	10	8.2	21.45	16.85	6.45	2.07	15.35
Cadmium, Total	ug/l	10.2	1.8306	N/A	5	0.25	0.49	0.2 U	2.11	0.2 U	0.2 U	1.03
Chromium, Total	ug/l	N/A	N/A	N/A	100	N/A	36.41	4.28	304.3	20.3	3.99	221.8
Copper, Total	ug/l	242	84.6	N/A	1,300	9	49.9	4.68	299.2	24.08	11.78	179.6
Iron, Total	ug/l	5,000	1,000	N/A	300 ^(e)	1,000	40,700	13,400	174,000	19,500	3,540	146,000
Lead, Total	ug/l	160	84.94	N/A	15	2.5	142.4	1.81	263.7	39.12	4.51	182.6
Mercury, Total	ug/l	0.739	0.91	N/A	2	0.77	0.2 U	0.2 U	0.3	0.2 U	0.2 U	0.2 U
Nickel, Total	ug/l	1,450	462.8	N/A	N/A	52	26.28	5.91	379.3	21.86	6.11	169.2
Selenium, Total	ug/l	235.8	5.0	N/A	50	5	5 U	5 U	5 U	5 U	5 U	5 U
Silver, Total	ug/l	<u>35.1</u>	320.2	N/A	100 ^(e)	3.2	0.4 U	0.4 U	0.91	0.4 U	0.4 U	0.79
Zinc, Total	ug/l	<u>420</u>	1,066.5	N/A	5,000 ^(e)	120	276.7	10 U	565.5	56.97	33.83	407.3
Dissolved Metals												
Antimony, Dissolved	ug/l	<u>206</u>	640	N/A	6	N/A	4 U	4 U	4 U	4 U	4 U	4 U
Arsenic, Dissolved	ug/l	104	<u>10</u>	N/A	10	N/A	1 U	26	2.1	7.5	1.2	1 U
Cadmium, Dissolved	ug/l	10.2	<u>1.8306</u>	N/A	5	N/A	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.3
Chromium, Dissolved	ug/l	N/A	N/A	N/A	100	N/A	1 U	1 U	6.7	1 U	1 U	1 U
Copper, Dissolved	ug/l	242	<u>84.6</u>	N/A	1,300	N/A	1 U	1.2	7.2	3.2	7	1 U
Iron, Dissolved	ug/l	5,000	<u>1,000</u>	N/A	300 ^(e)	N/A	2,190	12,000	5,270	50 U	117	50 U
Lead, Dissolved	ug/l	160	<u>84.94</u>	N/A	15	N/A	1 U	1 U	3.1	1 U	1 U	1 U
Mercury, Dissolved	ug/l	<u>0.739</u>	0.91	N/A	2	N/A	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Nickel, Dissolved	ug/l	<u>1,450</u>	462.8	N/A	N/A	N/A	2 U	3.8	18.4	6.3	4	7.4
Selenium, Dissolved	ug/l	<u>235.8</u>	5.0	N/A	50	N/A	5 U	5 U	5 U	5 U	5 U	5 U
Silver, Dissolved	ug/l	<u>35.1</u>	320.2	N/A	100 ^(e)	N/A	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Zinc, Dissolved	ug/l	<u>420</u>	1,066.5	N/A	5,000 ^(e)	N/A	24.7	10 U	12.3	10 U	10 U	10 U
General Chemistry												
Ethanol	ug/l	N/A	N/A	N/A	N/A	400	2,000 U^	2,000 U^	2,000 U^	2,000 U^	2,000 U^	2,000 U'
Chloride	ug/l	N/A	N/A	N/A	250,000 ^(e)	230,000	182,000	1,120,000	910,000	182,000	380,000	1,110,000
Hardness	ug/l	N/A	N/A	N/A	N/A	N/A	196,000	1,100,000	1,320,000	428,000	203,000	891,000
Chromium, Trivalent (Filtered)	ug/l	323	713.1	N/A	N/A	N/A	10 U	10 U	10 U	10 U	10 U	10 U
Chromium, Trivalent (Unfiltered)	ug/l	<u>323</u>	713.1	N/A	N/A	74	100 U^	50 U	2,000 U^	200 U^	10 U	222
Solids, Total Dissolved	ug/l	N/A	N/A	N/A	500,000 ^(e)	N/A	410,000	2,200,000	1,800,000	720,000	840,000	1,900,000
Solids, Total Suspended	ug/l	<u>30,000</u>	30,000	N/A	N/A	30,000	410,000	98,000	12,000,000	4,500,000	13,000	16,000,000
Cyanide, Dissolved	ug/l	178	<u>5.2</u>	N/A	N/A N/A	N/A	67	5 U	5 U	5 U	5 U	5 U
Cyanide, Total Residuel	ug/l	178 200	<u>5.2</u>	N/A	N/A N/A	5.2	5 U	5 U	5 U	5 U	5 U	5 U
Chlorine, Total Residual Nitrogen, Ammonia	ug/l	200 N/A	11 N/A	50 N/A	N/A N/A	100	20 U 295	20 U 96	20 U	20 U	20 U	20 U 533
Total Organic Carbon (TOC)	ug/l	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A		17,100	394	850 NA	6,350	1,520
Oil & Grease, Hem-Grav	ug/l	5,000	5,000	N/A N/A	N/A	5,000	2,790 5,200 U^	4,000 U	4,810 4,400 U	5,600 U^	4,000 U	1,520 4,800 U
TPH, SGT-HEM	ug/l	5,000 5,000		N/A N/A	N/A N/A	5,000	5,200 U^ 5,200 U^	4,000 U 4,000 U	· · · · · · · · · · · · · · · · · · ·	5,600 U^	4,000 U 4,000 U	4,800 U 4,800 U
Phenolics, Total	ug/l ug/l	1,080	5,000 300	N/A N/A	N/A N/A	300	30 U	4,000 U 30 U	4,400 U 30 U	39	4,000 U 30 U	4,800 U
Chromium, Hexavalent		323	11.4	N/A N/A	N/A	N/A	10 U	10 U	10 U	10 U	10 U	10 U
Chromium, Hexavalent (Unfiltered)	ug/l ug/l	323	11.4	N/A N/A	N/A	11	10 U 100 U^	50 U^	2,000 U^	200 U^	10 U	100 U
pH (Unfiltered)		6.5-8.3	6.5-8.3	N/A N/A	6.5-8.5	N/A	6.22	5.97	6.71	7.16	5.50	6.36
	su	0.5-0.5	0.5-0.5	IN/A	0.5-0.5	11/71	U.44	3.97	U./I	/.10	3.30	0.30
Temperature	deg. C	N/A	N/A	N/A	N/A	N/A	13	13.09	13.14	16.29	12.69	12.36

Table 1

Summary of Newbern Avenue Groundwater Analytical Results

MBTA Green Line Extension Project

Directive Letter 044 May 20-22, 2019

							LOCATION:	GLC-NB-2 ¹	GLC-NB-3 ^{2,9}	GLC-NB-3-1 ^{3,4}	GLC-NB-3-2 ^{3,5,6}	GLC-NB-3-3 ⁸	GLC-NB-3-4 ⁷
						SAMI	PLING DATE:	5/21/2019	5/20/2019	5/21/2019	5/20/2019	5/20/2019	5/21/2019
		_				LAB	SAMPLE ID:	L1921376-03	L1921130-02	L1921376-01	L1921376-09	L1921130-01	L1921376-02
			RG	P for Freshy	water ^(a)	EPA	Required						
				TYODET (b)	Compliance	MOT	Minimum						
Analysis	Analyte	Units	TBEL	WQBEL ^(b)	Level ^(c)	MCL	Level ^(d)						
	E. Coli (MPN)	MPN/100ml	N/A	N/A	N/A	N/A	N/A	NA	NA	115.28	2.02	NA	1

Notes

- ug/L micrograms per liter.
- su Standard unit.

N/A - Not applicable/available.

- NA Not analyzed for the listed analyte.
- ID Not detected
- U Analyte was not detected at specified quantitation limit.
- Values in **bold** indicate the analyte was detected.

Values shown in bold and shaded black exceed the applicable bolded and underlined RGP Effluent Limits.

^ - Quantitation limit value exceeds the RGP Required Minimum Level.

- GC Gas Chromatography.
- MCL Maximum concentration limit, EPA Drinking Water Standards and Health Advisories, March 2018.
- MS Mass Spectrometry.
- PAHs Polynuclear Aromatic Hydrocarbons.
- RGP EPA Remediation General Permit, Effluent Limits, 2016.
- SIM Selected Ion Monitoring.
- TBEL Technology-Based Effluent Limitation.
- WQBEL Water Quality-Based Effluent Limitation.
- The above standards apply to discharge to freshwater receiving waters. The RGP contains separate discharge standards for discharges to saltwater receiving waters.
- (a) RGP for Freshwater standards are an average monthly discharge limitation in Massachusetts only.
- (b) No Dilution Factor has been applied based on the flow rate of the Mystic River. The WQBEL standards have been modified
- by the hardness of the Mystic River and the hardness of the groundwater proposed for treatment and discharge.
- (c) The compliance level is a discharge standard for analytes with detection limits above the RGP discharge standard.
- (d) Additional Resource for Selecting Sufficiently Sensitive Test Methods for RGP Notice of Intent (NOI) Sampling Requirements, Table 1.
- (e) EPA Secondary Drinking Water Regulations (SDWR), March, 2018.
- $1 All\ parameters\ except\ those\ noted\ below\ were\ collected\ on\ 5/21/19\ and\ were\ reported\ under\ lab\ ID\ L1921376-03.$
 - -TOC and VPH were collected on 5/22/19 and were reported under lab ID L1921376-14.
 - Ethanol was collected on 5/21/19 and was reported under lab ID 490-174548-3.
 - Dissolved Mercury was collected on 5/21/19 and was reported under lab ID 48786-006.
- Total Mercury was collected on 5/21/19 and was reported under lab ID 48786-003.

 2 Results from the undiluted and diluted Semivolatile Organics by GC/MS-SIM analyses have been combined in order to report
- all results within calibration range. Refer to laboratory report for further detail.
- 3 Results from the undiluted and diluted Volatile Organics by GC/MS analyses have been combined in order to report
- all results within calibration range. Refer to laboratory report for further detail.

 4 All parameters except those noted below were collected on 5/21/19 and were reported under lab ID L1921376-01.
 - E. coli was collected on 5/21/19 and was reported under lab ID L1921376-05.
 - TOC was collected on 5/21/19 and was reported under lab ID L1921376-13.
 - Ethanol was collected on 5/21/19 and was reported under lab ID $490\mbox{-}174548\mbox{-}1.$
 - Dissolved Mercury was collected on 5/21/19 and was reported under lab ID 48786-001.
- Total Mercury was collected on 5/21/19 and was reported under lab ID 48791-001.

 5 All parameters except those noted below were collected on 5/20/19 and were reported under lab ID L1921376-09.
 - Chloride, Trivalent Chromium (Unfiltered), Total Dissolved Solids, Total Suspended Solids, Total Residual Chlorine, and
 - Hexavalent Chromium (Unfiltered) were collected on 5/21/19 and were reported under lab ID L1921376-11.
 - E. coli was collected on $5 \slash\! 21 \slash\! 19$ and was reported under lab ID L1921376-04.
 - $\ Dissolved \ Metals, Trivalent \ Chromium \ (Filtered), \ Dissolved \ Cyanide, \ and \ Hexavalent \ Chromium \ were \ collected \ on \ Cyanide, \ and \ Cyanide, \ and \ Cyanide \ and \ and \ Cyanide \ and \ and \ Cyanide \ and \ and$
 - 5/22/19 and were reported under lab ID L1921376-12.
 - Ethanol was collected on 5/20/19 and was reported under lab ID 490-174548-4.
 - Dissolved Mercury was collected on 5/22/19 and was reported under lab ID 48786-005.
 - Total Mercury was collected on 5/20/19 and was reported under lab ID 48786-004.
- 6 The laboratory reported two sets of EPH results due to surrogate nonconformances in the original and re-analyses.
 Results from the original analysis have been tabulated. Refer to laboratory report for further detail.
- All parameters except those noted below were collected on 5/21/19 and were reported under lab ID L1921376-02
 - E. coli was collected on 5/21/19 and was reported under lab ID L1921376-07.
 - TOC and VPH were collected on 5/22/19 and was reported under lab ID L1921376-15.
 - Ethanol was collected on 5/21/19 and was reported under lab ID 490-174548-2.
 - Dissolved Mercury was collected on 5/21/19 and was reported under lab ID 48791-002.
 Total Mercury was collected on 5/21/19 and was reported under lab ID 48786-002.
- 8 All parameters except those noted below were collected on 5/20/19 and were reported under lab ID L1921130-01.
 - Ethanol was collected on 5/20/19 and was reported under lab ID 490-174593-1.
- 9 All parameters except those noted below were collected on 5/20/19 and were reported under lab ID L1921130-02.
 - Ethanol was collected on 5/20/19 and was reported under lab ID 490-174593-2.

Table 2 Summary of Surface Water Analytical Results Mystic River MBTA Green Line Extension Project Directive Letter 044 May 20-22, 2019

			MAZORIO DITA	TD.
		T O C A PRICE T	MYSTIC RIVI	
	G 13 m	LOCATION:		0000
		PLING DATE:	5/17/2019	. 1
	LAB	SAMPLE ID:	L1920900-01	. 1
Analysis	Analyte	Units		
Total M	etals			
	Antimony, Total	ug/l	4	U
	Arsenic, Total	ug/l	1.42	
	Cadmium, Total	ug/l	0.2	U
	Chromium, Total	ug/l	1	U
	Copper, Total	ug/l	3.5	
	Iron, Total	ug/l	2,800	
	Lead, Total	ug/l	1.95	
	Mercury, Total	ug/l	0.2	U
	Nickel, Total	ug/l	3.28	
	Selenium, Total	ug/l	5	U
	Silver, Total	ug/l	0.4	U
	Zinc, Total	ug/l	75.83	
General	Chemistry			
	Nitrogen, Ammonia	ug/l	1,620	
	Chromium, Trivalent	ug/l	10	U
	Chromium, Hexavalent	ug/l	10	U
	Hardness	ug/l	254,000	
	рН	su	6.53	
	Temperature	deg. C	11.7	

Notes:

ug/L - micrograms per liter.

su - Standard unit.

U - Analyte was not detected at specified quantitation limit.

Values in **bold** indicate the analyte was detected.

Total mercury analyzed by Absolute Resource Associates as Lab Sample ID 48785-001.

 $^{^{\}rm 1}$ All parameters except total mercury analyzed by Alpha Analytical.

ATTACHMENT D LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1921376

Client: TRC Environmental Consultants

650 Suffolk Street Lowell, MA 01854

ATTN: Diane Stallings Phone: (978) 970-5600

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Report Date: 05/29/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

ANALYTICAL REPORT

Lab Number: L1921130

Client: TRC Environmental Consultants

650 Suffolk Street Lowell, MA 01854

ATTN: Diane Stallings Phone: (978) 970-5600

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Report Date: 05/29/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date: 05/29/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1921130-01	GLC-NB-3-3	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/20/19 10:15	05/20/19
L1921130-02	GLC-NB-3	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/20/19 14:23	05/20/19

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130
Project Number: 290762.0016.0000 Report Date: 05/29/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	NO
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
)	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
Ξb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status		
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130
Project Number: 290762.0016.0000 Report Date: 05/29/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130
Project Number: 290762.0016.0000 Report Date: 05/29/19

Case Narrative (continued)

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

MCP Related Narratives

Report Submission

In reference to question B:

At the client's request, the analytical method(s) specified in the CAM protocol were not followed, with the exception of the EPH and VPH analysis.

Sample Receipt

L1921130-01: The VPH analysis was performed at the client's request.

L1921130-01: Containers for Bacteria analysis were received for the "GLC-NB-3-3" sample, but were not listed on the chain of custody. The analysis was not performed at the client's request.

L1921130-02: Containers for Bacteria analysis were received for the "GLC-NB-3" sample, but were not listed on the chain of custody. The analysis was not performed at the client's request.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

Non-MCP Related Narratives

Volatile Organics by Method 8260

L1921130-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130
Project Number: 290762.0016.0000 Report Date: 05/29/19

Case Narrative (continued)

Volatile Organics by Method 624

L1921130-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

Volatile Organics by SIM

L1921130-02: The sample has an elevated detection limit for 1,4-Dioxane due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics by SIM

L1921130-02: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

PCBs

L1921130-02: The sample has elevated detection limits due to limited sample volume available for analysis.

Chromium, Hexavalent (Unfiltered)

L1921130-02: The sample has an elevated detection limit due to the dilution required by the sample matrix. The WG1239362-4 MS recovery (72%), performed on L1921130-02, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

Chlorine, Total Residual

The WG1239298-4 MS recovery (228%), performed on L1921130-02, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Case Narrative (continued)

Phenolics, Total

The WG1239930-4 MS recovery (54%), performed on L1921130-01, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative Date: 05/29/19

ALPHA

QC OUTLIER SUMMARY REPORT

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000

Report Date:

05/29/19

					Recovery/RP	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
General Ch	nemistry - Westborough Lab							
420.1	Batch QC (L1921130-01)	WG1239930-4	Phenolics, Total	MS	54	70-130	01-02	potential low bias
4500CL-D	Batch QC (L1921130-02)	WG1239298-4	Chlorine, Total Residual	MS	228	80-120	01-02	potential high bias
7196A	Batch QC (L1921130-02)	WG1239362-4	Chromium, Hexavalent (Unfiltered)	MS	72	85-115	01-02	potential low bias

ORGANICS

VOLATILES

L1921130

05/29/19

Dilution Factor

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Result

Date Collected: 05/20/19 10:15

Lab ID: L1921130-01

Client ID: GLC-NB-3-3

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Date Received: 05/20/19
Field Prep: Refer to COC

MDL

Lab Number:

Report Date:

Sample Depth:

Parameter

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/23/19 17:33

Analyst: PK

Parameter	Result	Qualifier	Units	KL	MIDL	Dilution Factor	
Volatile Organics by GC/MS - We	stborough Lab						
1,1-Dichloropropene	ND		ug/l	2.5		1	
1,2,3-Trichloropropane	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.5		1	
Tetrahydrofuran	ND		ug/l	5.0		1	
2,2-Dichloropropane	ND		ug/l	2.5		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1	
Bromobenzene	ND		ug/l	2.5		1	
n-Butylbenzene	ND		ug/l	0.50		1	
sec-Butylbenzene	ND		ug/l	0.50		1	
tert-Butylbenzene	ND		ug/l	2.5		1	
o-Chlorotoluene	ND		ug/l	2.5		1	
p-Chlorotoluene	ND		ug/l	2.5		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	
n-Propylbenzene	ND		ug/l	0.50		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	

Qualifier

Units

RL

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	91	70-130	

L1921130

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: Date Received: 05/20/19 GLC-NB-3-3 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 17:21

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	3.5		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
2-Chloroethylvinyl ether	ND		ug/l	10		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	3.5		1	
Trichlorofluoromethane	ND		ug/l	5.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	1.5		1	
cis-1,3-Dichloropropene	ND		ug/l	1.5		1	
Bromoform	ND		ug/l	1.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	5.0		1	
Bromomethane	ND		ug/l	5.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.5		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921130-01 05/20/19 10:15

Date Received: Client ID: 05/20/19 GLC-NB-3-3 Field Prep: Refer to COC

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Styrene	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	10		1
4-Methyl-2-pentanone	ND		ug/l	10		1
2-Hexanone	ND		ug/l	10		1
Acrolein	ND		ug/l	8.0		1
Acrylonitrile	ND		ug/l	10		1
Methyl tert butyl Ether	ND		ug/l	10		1
Dibromomethane	ND		ug/l	1.0		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1
Dichlorodifluoromethane ¹	ND		ug/l	1.0		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
Isopropylbenzene	ND		ug/l	1.0		1
1,3-Dichloropropane	ND		ug/l	1.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	105		60-140	
Fluorobenzene	93		60-140	
4-Bromofluorobenzene	99		60-140	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Date Received: Client ID: 05/20/19 GLC-NB-3-3 Refer to COC

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep:

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/21/19 17:53

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM	- Westborough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier	Accep Crit	tance eria	
Fluorobenzene			101		60)-140	
4-Bromofluorobenzene			110		60)-140	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Date Received: Client ID: GLC-NB-3-3 05/20/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/22/19 03:35 Analytical Method: 14,504.1

Analytical Date: 05/22/19 19:00

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921130-02 05/20/19 14:23

Date Received: Client ID: GLC-NB-3 05/20/19

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/22/19 03:35 Analytical Method: 14,504.1

Analytical Date: 05/22/19 19:15

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1921130

05/29/19

Refer to COC

05/20/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Date Collected: 05/20/19 14:23

Lab Number:

Report Date:

Date Received:

Lab ID: D L1921130-02

Client ID: GLC-NB-3

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep:

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/23/19 18:09

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbo	orough Lab					
1,1-Dichloropropene	ND		ug/l	62		25
1,2,3-Trichloropropane	ND		ug/l	120		25
Bromochloromethane	ND			62		25
	ND ND		ug/l	120		25
Tetrahydrofuran			ug/l			
2,2-Dichloropropane	ND		ug/l	62		25
1,1,1,2-Tetrachloroethane	ND		ug/l	12		25
Bromobenzene	ND		ug/l	62		25
n-Butylbenzene	ND		ug/l	12		25
sec-Butylbenzene	ND		ug/l	12		25
tert-Butylbenzene	ND		ug/l	62		25
o-Chlorotoluene	ND		ug/l	62		25
p-Chlorotoluene	ND		ug/l	62		25
Hexachlorobutadiene	ND		ug/l	12		25
p-Isopropyltoluene	ND		ug/l	12		25
Naphthalene	80		ug/l	62		25
n-Propylbenzene	38		ug/l	12		25
1,3,5-Trimethylbenzene	ND		ug/l	62		25
1,2,4-Trimethylbenzene	ND		ug/l	62		25
Ethyl ether	ND		ug/l	62		25
Diisopropyl Ether	ND		ug/l	50		25
Ethyl-Tert-Butyl-Ether	ND		ug/l	50		25

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	104	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	91	70-130	

L1921130

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

Lab ID: L1921130-02 D 05/20/19 14:23

Client ID: Date Received: 05/20/19 GLC-NB-3 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 17:58

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	10		10	
1,1-Dichloroethane	ND		ug/l	15		10	
Chloroform	ND		ug/l	10		10	
Carbon tetrachloride	ND		ug/l	10		10	
1,2-Dichloropropane	ND		ug/l	35		10	
Dibromochloromethane	ND		ug/l	10		10	
1,1,2-Trichloroethane	ND		ug/l	15		10	
2-Chloroethylvinyl ether	ND		ug/l	100		10	
Tetrachloroethene	ND		ug/l	10		10	
Chlorobenzene	ND		ug/l	35		10	
Trichlorofluoromethane	ND		ug/l	50		10	
1,2-Dichloroethane	21		ug/l	15		10	
1,1,1-Trichloroethane	ND		ug/l	20		10	
Bromodichloromethane	ND		ug/l	10		10	
trans-1,3-Dichloropropene	ND		ug/l	15		10	
cis-1,3-Dichloropropene	ND		ug/l	15		10	
Bromoform	ND		ug/l	10		10	
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10	
Benzene	980		ug/l	10		10	
Toluene	130		ug/l	10		10	
Ethylbenzene	200		ug/l	10		10	
Chloromethane	ND		ug/l	50		10	
Bromomethane	ND		ug/l	50		10	
Vinyl chloride	ND		ug/l	10		10	
Chloroethane	ND		ug/l	20		10	
1,1-Dichloroethene	ND		ug/l	10		10	
trans-1,2-Dichloroethene	ND		ug/l	15		10	
cis-1,2-Dichloroethene	ND		ug/l	10		10	

MDL

05/29/19

Dilution Factor

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 Report Date:

Result

SAMPLE RESULTS

Lab ID: L1921130-02 D Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Qualifier

Units

RL

Sample Depth:

Parameter

i arameter	Nosun	Qualifici (J111113		 Dilation ractor
Volatile Organics by GC/MS - West	tborough Lab				
Trichloroethene	ND	1	ug/l	10	 10
1,2-Dichlorobenzene	ND	ı	ug/l	50	 10
1,3-Dichlorobenzene	ND	ı	ug/l	50	 10
1,4-Dichlorobenzene	ND	ı	ug/l	50	 10
p/m-Xylene	100	ı	ug/l	20	 10
o-xylene	33	ı	ug/l	10	 10
Styrene	ND	ı	ug/l	10	 10
Acetone	ND	ı	ug/l	100	 10
Carbon disulfide	ND	ı	ug/l	50	 10
2-Butanone	ND	ı	ug/l	100	 10
4-Methyl-2-pentanone	ND	ı	ug/l	100	 10
2-Hexanone	ND	ı	ug/l	100	 10
Acrolein	ND	ı	ug/l	80	 10
Acrylonitrile	ND	ı	ug/l	100	 10
Methyl tert butyl Ether	1800	ı	ug/l	100	 10
Dibromomethane	ND	ı	ug/l	10	 10
Tert-Butyl Alcohol	2000	ı	ug/l	1000	 10
Tertiary-Amyl Methyl Ether	ND	ı	ug/l	200	 10
Dichlorodifluoromethane ¹	ND	ı	ug/l	10	 10
1,2,3-Trichlorobenzene	ND	ı	ug/l	10	 10
1,2,4-Trichlorobenzene	ND	ı	ug/l	10	 10
Isopropylbenzene	ND		ug/l	10	 10
1,3-Dichloropropane	ND		ug/l	10	 10
1,2-Dibromo-3-chloropropane	ND		ug/l	20	 10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	108		60-140	
Fluorobenzene	97		60-140	
4-Bromofluorobenzene	100		60-140	

60-140

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: D Date Collected: L1921130-02 05/20/19 14:23

Date Received: Client ID: 05/20/19 GLC-NB-3

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/21/19 18:30

Analyst: GT

4-Bromofluorobenzene

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	Л - Westborough Lab					
1,4-Dioxane	ND		ug/l	500		10
Surrogate			% Recovery	Qualifier		eptance Criteria
Fluorobenzene			108			60-140

110

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/21/19 15:08

Analyst: GT

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01-02	Batch:	WG1239990-4	
1,4-Dioxane	ND		ug/l	50			

		Acceptance	
Surrogate	%Recovery Qualifier	Criteria	
			-
Fluorobenzene	98	60-140	
4-Bromofluorobenzene	109	60-140	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/22/19 17:15 Extraction Date: 05/22/19 03:35

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC	- Westborough Lab for	sample(s):	01-02	Batch:	WG1240014-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date:

05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/23/19 08:32

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	b for sample(s):	01-02 Batch:	WG1240495-5
1,1-Dichloropropene	ND	ug/l	2.5	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Diisopropyl Ether	ND	ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	100	70-130

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 16:08

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sample(s): 01-0	2 Batch:	WG1240508-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Chloroform	ND	ug/l	1.0	
Carbon tetrachloride	ND	ug/l	1.0	
1,2-Dichloropropane	ND	ug/l	3.5	
Dibromochloromethane	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	1.0	
Chlorobenzene	ND	ug/l	3.5	
Trichlorofluoromethane	ND	ug/l	5.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Bromodichloromethane	ND	ug/l	1.0	
trans-1,3-Dichloropropene	ND	ug/l	1.5	
cis-1,3-Dichloropropene	ND	ug/l	1.5	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Chloromethane	ND	ug/l	5.0	
Bromomethane	ND	ug/l	5.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	2.0	
1,1-Dichloroethene	ND	ug/l	1.0	
trans-1,2-Dichloroethene	ND	ug/l	1.5	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	

L1921130

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 16:08

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-02	Batch:	WG1240508-4
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Styrene	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	10	
4-Methyl-2-pentanone	ND	ug/l	10	
2-Hexanone	ND	ug/l	10	
Acrolein	ND	ug/l	8.0	
Acrylonitrile	ND	ug/l	10	
Methyl tert butyl Ether	ND	ug/l	10	
Dibromomethane	ND	ug/l	1.0	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	
Dichlorodifluoromethane ¹	ND	ug/l	1.0	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
Isopropylbenzene	ND	ug/l	1.0	
1,3-Dichloropropane	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 16:08

Analyst: NLK

Parameter	Result	Qualifier	Units	i	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	b for sample	e(s):	01-02	Batch:	WG1240508-4	

		Acceptance
Surrogate	%Recovery Qualifie	r Criteria
Pentafluorobenzene	104	60-140
Fluorobenzene	93	60-140
4-Bromofluorobenzene	97	60-140

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000 Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbord	ugh Lab Associa	ted sample(s)	: 01-02 Batch:	WG12399	990-3				
1,4-Dioxane	79		-		60-140	-		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	98 108			60-140 60-140

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000 Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01-02	2 Batch: WG1	240014-2					
1,2-Dibromoethane	80		-		80-120	-			Α

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date: 05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch: \	WG1240495-3	WG1240495-4		
1,1-Dichloropropene	88		89		70-130	1	20
1,2,3-Trichloropropane	87		88		64-130	1	20
Bromochloromethane	100		95		70-130	5	20
Tetrahydrofuran	87		84		58-130	4	20
2,2-Dichloropropane	100		100		63-133	0	20
1,1,1,2-Tetrachloroethane	94		93		64-130	1	20
Bromobenzene	91		93		70-130	2	20
n-Butylbenzene	93		99		53-136	6	20
sec-Butylbenzene	91		96		70-130	5	20
tert-Butylbenzene	91		93		70-130	2	20
o-Chlorotoluene	92		94		70-130	2	20
p-Chlorotoluene	92		94		70-130	2	20
Hexachlorobutadiene	87		94		63-130	8	20
p-Isopropyltoluene	94		97		70-130	3	20
Naphthalene	87		96		70-130	10	20
n-Propylbenzene	94		98		69-130	4	20
1,3,5-Trimethylbenzene	92		97		64-130	5	20
1,2,4-Trimethylbenzene	95		98		70-130	3	20
Ethyl ether	87		88		59-134	1	20
Diisopropyl Ether	91		90		70-130	1	20
Ethyl-Tert-Butyl-Ether	90		90		70-130	0	20

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1240495-3 WG1240495-4

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	97	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	95	97	70-130
Dibromofluoromethane	99	96	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date: 05/29/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1240508-3	3			
Methylene chloride	90		-		60-140	-	28	
1,1-Dichloroethane	80		-		50-150	-	49	
Chloroform	105		-		70-135	-	54	
Carbon tetrachloride	105		-		70-130	-	41	
1,2-Dichloropropane	95		-		35-165	-	55	
Dibromochloromethane	95		-		70-135	-	50	
1,1,2-Trichloroethane	90		-		70-130	-	45	
2-Chloroethylvinyl ether	90		-		1-225	-	71	
Tetrachloroethene	100		-		70-130	-	39	
Chlorobenzene	95		-		65-135	-	53	
Trichlorofluoromethane	85		-		50-150	-	84	
1,2-Dichloroethane	90		-		70-130	-	49	
1,1,1-Trichloroethane	105		-		70-130	-	36	
Bromodichloromethane	100		-		65-135	-	56	
trans-1,3-Dichloropropene	95		-		50-150	-	86	
cis-1,3-Dichloropropene	95		-		25-175	-	58	
Bromoform	105		-		70-130	-	42	
1,1,2,2-Tetrachloroethane	110		-		60-140	-	61	
Benzene	100		-		65-135	-	61	
Toluene	100		-		70-130	-	41	
Ethylbenzene	105		-		60-140	-	63	
Chloromethane	75		-		1-205	-	60	
Bromomethane	70		-		15-185	-	61	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date: 05/29/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated	sample(s): 01	I-02 Batch: W	/G1240508-	-3			
Vinyl chloride	80		-		5-195	-		66
Chloroethane	85		-		40-160	-		78
1,1-Dichloroethene	95		-		50-150	-		32
trans-1,2-Dichloroethene	95		-		70-130	-		45
cis-1,2-Dichloroethene	90		-		60-140	-		30
Trichloroethene	100		-		65-135	-		48
1,2-Dichlorobenzene	100		-		65-135	-		57
1,3-Dichlorobenzene	100		-		70-130	-		43
1,4-Dichlorobenzene	100		-		65-135	-		57
p/m-Xylene	100		-		60-140	-		30
o-xylene	100		-		60-140	-		30
Styrene	100		-		60-140	-		30
Acetone	80		-		40-160	-		30
Carbon disulfide	80		-		60-140	-		30
2-Butanone	84		-		60-140	-		30
4-Methyl-2-pentanone	94		-		60-140	-		30
2-Hexanone	92		-		60-140	-		30
Acrolein	85		-		60-140	-		30
Acrylonitrile	85		-		60-140	-		60
Methyl tert butyl Ether	90		-		60-140	-		30
Dibromomethane	90		-		70-130	-		30
Tert-Butyl Alcohol	75		-		60-140	-		30
Tertiary-Amyl Methyl Ether	85		-		60-140	-		30

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-02 Batch:	WG1240508-3	3				
Dichlorodifluoromethane ¹	70		-		70-130	-		30	
1,2,3-Trichlorobenzene	105		-		60-140	-		30	
1,2,4-Trichlorobenzene	110		-		60-140	-		30	
Isopropylbenzene	105		-		60-140	-		30	
1,3-Dichloropropane	95		-		60-140	-		30	
1,2-Dibromo-3-chloropropane	130		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	104		60-140
Fluorobenzene	93		60-140
4-Bromofluorobenzene	99		60-140

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	, RPD	Qual	RPD Limits	<u>Column</u>
Microextractables by GC - We Sample	estborough Lab	Associate	d sample(s): (01-02 QC Ba	tch ID: W	G1240014-	3 WG124001	4-4 QC	Sample: L	_1920453	3-02 C	Client ID:	MS
1,2-Dibromoethane	ND	0.25	0.216	86		0.227	90		80-120	5		20	Α
1,2-Dibromo-3-chloropropane	ND	0.25	0.238	95		0.248	98		80-120	4		20	Α

SEMIVOLATILES

L1921130

Project Name: Lab Number: MBTA GLX NEWBERN AVE II

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 10:15 L1921130-01

Date Received: Client ID: 05/20/19 GLC-NB-3-3

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 05/21/19 21:39 Analytical Method: 129,625.1

Analytical Date: 05/23/19 05:27

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Benzidine ¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene ¹	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Aniline ¹	ND		ug/l	2.0		1	
4-Chloroaniline ¹	ND		ug/l	5.0		1	
Dibenzofuran ¹	ND		ug/l	2.0		1	
2-Methylnaphthalene ¹	ND		ug/l	2.0		1	

05/29/19

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 Report Date:

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	Semivolatile Organics by GC/MS - Westborough Lab						
Acetophenone ¹	ND		ug/l	5.0		1	
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	5.0		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol ¹	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	25-87	
Phenol-d6	32	16-65	
Nitrobenzene-d5	77	42-122	
2-Fluorobiphenyl	79	46-121	
2,4,6-Tribromophenol	58	45-128	
4-Terphenyl-d14	90	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 05/21/19 21:43
Analytical Date: 05/23/19 20:50

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Westborough Lab						
Acenaphthene	ND		ua/l	0.10		1
Fluoranthene	ND		ug/l ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1
Hexachlorobenzene ¹	ND		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	44	25-87	
Phenol-d6	27	16-65	
Nitrobenzene-d5	79	42-122	
2-Fluorobiphenyl	75	46-121	
2,4,6-Tribromophenol	67	45-128	
4-Terphenyl-d14	76	47-138	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Report Date: **Project Number:** 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921130-02 05/20/19 14:23

Date Received: Client ID: 05/20/19 GLC-NB-3

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 05/21/19 21:39 Analytical Method: 129,625.1

Analytical Date: 05/23/19 05:55

Analyst: SZ

		Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Benzidine¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene ¹	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Aniline ¹	ND		ug/l	2.0		1	
4-Chloroaniline ¹	ND		ug/l	5.0		1	
Dibenzofuran ¹	ND		ug/l	2.0		1	
2-Methylnaphthalene ¹	10		ug/l	2.0		1	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acetophenone ¹	ND		ug/l	5.0		1	
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	5.0		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol ¹	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	58	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	82	42-122	
2-Fluorobiphenyl	77	46-121	
2,4,6-Tribromophenol	60	45-128	
4-Terphenyl-d14	83	47-138	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921130-02 05/20/19 14:23

Date Received: Client ID: 05/20/19 GLC-NB-3

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 05/21/19 21:43 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: DV

05/23/19 21:16

ough Lab					
		_			
. ID		ug/l	0.10		1
ND		ug/l	0.10		1
55	E	ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	0.10		1
ND		ug/l	1.0		1
ND		ug/l	0.10		1
	ND 55 ND	ND 55 E ND	ND	ND	ND ug/l 0.10 55 E ug/l 0.10 ND ug/l 0.10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	48	25-87	
Phenol-d6	30	16-65	
Nitrobenzene-d5	79	42-122	
2-Fluorobiphenyl	74	46-121	
2,4,6-Tribromophenol	64	45-128	
4-Terphenyl-d14	72	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 D Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 05/21/19 21:43
Analytical Date: 05/24/19 19:02

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	borough Lab					
Naphthalene	48		ug/l	0.50		5

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/23/19 05:00

Analyst: SZ

Extraction Method: EPA 625.1
Extraction Date: 05/21/19 21:39

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1239677-1
Benzidine ¹	ND		ug/l	20		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		
2-Chloronaphthalene	ND		ug/l	2.0		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		
2,4-Dinitrotoluene	ND		ug/l	5.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene ¹	ND		ug/l	2.0		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	2.0		
Hexachlorocyclopentadiene ¹	ND		ug/l	10		
Hexachloroethane	ND		ug/l	2.0		
Isophorone	ND		ug/l	5.0		
Nitrobenzene	ND		ug/l	2.0		
NDPA/DPA ¹	ND		ug/l	2.0		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Aniline ¹	ND		ug/l	2.0		
4-Chloroaniline ¹	ND		ug/l	5.0		
Dibenzofuran ¹	ND		ug/l	2.0		
2-Methylnaphthalene ¹	ND		ug/l	2.0		
Acetophenone ¹	ND		ug/l	5.0		

Project Number: 290762.0016.0000

Lab Number: L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/23/19 05:00

Analyst: SZ

Extraction Method: EPA 625.1 Extraction Date: 05/21/19 21:39

Result	Qualifier	Units	RL		MDL
- Westborough	Lab for s	ample(s):	01-02	Batch:	WG1239677-1
ND		ug/l	2.0		
ND		ug/l	5.0		
ND		ug/l	2.0		
ND		ug/l	2.0		
ND		ug/l	5.0		
ND		ug/l	5.0		
ND		ug/l	5.0		
ND		ug/l	10		
ND		ug/l	20		
ND		ug/l	5.0		
ND		ug/l	5.0		
ND		ug/l	5.0		
ND		ug/l	5.0		
	- Westborough ND ND ND ND ND ND ND ND ND N	- Westborough Lab for s ND	ND ug/l	- Westborough Lab for sample(s): 01-02 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0	- Westborough Lab for sample(s): 01-02 Batch: ND ug/l 2.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
3 Elyorophonol	53	25-87	
2-Fluorophenol			
Phenol-d6	32	16-65	
Nitrobenzene-d5	79	42-122	
2-Fluorobiphenyl	80	46-121	
2,4,6-Tribromophenol	50	45-128	
4-Terphenyl-d14	86	47-138	

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 05/22/19 18:31

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 05/21/19 21:43

arameter	Result	Qualifier	Units	RL	MDL	•
emivolatile Organics by GC/N	/IS-SIM - Westbo	rough Lab	for sample	e(s): 01-02	Batch:	WG1239678-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		
Hexachlorobenzene ¹	ND		ug/l	0.10		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	84	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	49	45-128
4-Terphenyl-d14	88	47-138

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

arameter	LCS %Recovery	Qual	LCSI %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
emivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	iated sample(s)	: 01-02	Batch:	WG1239	677-2				
Benzidine ¹	6		-			0-70	-		30	
1,2,4-Trichlorobenzene	66		-			57-130	-		50	
Bis(2-chloroethyl)ether	75		-			43-126	-		108	
2-Chloronaphthalene	78		-			65-120	-		24	
3,3'-Dichlorobenzidine	37		-			8-213	-		108	
2,4-Dinitrotoluene	88		-			48-127	-		42	
2,6-Dinitrotoluene	93		-			68-137	-		48	
Azobenzene ¹	78		-			44-115	-		23	
4-Bromophenyl phenyl ether	74		-			65-120	-		43	
Bis(2-chloroisopropyl)ether	68		-			63-139	-		76	
Bis(2-chloroethoxy)methane	79		-			49-165	-		54	
Hexachlorobutadiene	61		-			38-120	-		62	
Hexachlorocyclopentadiene ¹	62		-			7-118	-		35	
Hexachloroethane	61		-			55-120	-		52	
Isophorone	85		-			47-180	-		93	
Nitrobenzene	83		-			54-158	-		62	
NDPA/DPA ¹	78		-			45-112	-		36	
n-Nitrosodi-n-propylamine	84		-			14-198	-		87	
Bis(2-ethylhexyl)phthalate	86		-			29-137	-		82	
Butyl benzyl phthalate	99		-			1-140	-		60	
Di-n-butylphthalate	96		-			8-120	-		47	
Di-n-octylphthalate	95		-			19-132	-		69	
Diethyl phthalate	80		-			1-120	-		100	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recovery ry Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - We	stborough Lab Associa	ted sample(s): 01-02 E	Batch: WG1239677-2		
Dimethyl phthalate	92	-	1-120	-	183
Aniline ¹	46	-	1-75	-	66
4-Chloroaniline ¹	54	-	10-100	-	53
Dibenzofuran ¹	74	-	23-126	-	22
2-Methylnaphthalene ¹	75	-	40-109	-	18
Acetophenone ¹	94	-	46-113	-	28
n-Nitrosodimethylamine ¹	48	-	15-68	-	17
2,4,6-Trichlorophenol	92	-	52-129	-	58
p-Chloro-m-cresol ¹	93	-	68-130	-	73
2-Chlorophenol	78	-	36-120	-	61
2,4-Dichlorophenol	88	-	53-122	-	50
2,4-Dimethylphenol	85	-	42-120	-	58
2-Nitrophenol	89	-	45-167	-	55
4-Nitrophenol	63	-	13-129	-	131
2,4-Dinitrophenol	74	-	1-173	-	132
Phenol	40	-	17-120	-	64
2-Methylphenol ¹	77	-	38-102	-	23
3-Methylphenol/4-Methylphenol ¹	78	-	35-103	-	26
2,4,5-Trichlorophenol ¹	93	-	47-126	-	28

Lab Control Sample Analysis

Batch Quality Control MBTA GLX NEWBERN AVE II

Lab Number: L1921130

Project Number: Report Date: 290762.0016.0000

05/29/19

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1239677-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	7011000101y quar	7011000101y Quan	
2-Fluorophenol	54		25-87
Phenol-d6	36		16-65
Nitrobenzene-d5	83		42-122
2-Fluorobiphenyl	80		46-121
2,4,6-Tribromophenol	60		45-128
4-Terphenyl-d14	84		47-138

Project Name:

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery		.CSD ecovery	Qua	%Recovery I Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - \	Westborough Lab A	ssociated sample(s):	01-02	Batch:	WG1239678-2				
Acenaphthene	70		-		60-132	-		30	
Fluoranthene	75		-		43-121	-		30	
Naphthalene	71		-		36-120	-		30	
Benzo(a)anthracene	71		-		42-133	-		30	
Benzo(a)pyrene	64		-		32-148	-		30	
Benzo(b)fluoranthene	86		-		42-140	-		30	
Benzo(k)fluoranthene	88		-		25-146	-		30	
Chrysene	67		-		44-140	-		30	
Acenaphthylene	76		-		54-126	-		30	
Anthracene	71		-		43-120	-		30	
Benzo(ghi)perylene	33		-		1-195	-		30	
Fluorene	74		-		70-120	-		30	
Phenanthrene	70		-		65-120	-		30	
Dibenzo(a,h)anthracene	40		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	37		-		1-151	-		30	
Pyrene	73		-		70-120	-		30	
Pentachlorophenol	41		-		38-152	-		30	
Hexachlorobenzene ¹	40		-		8-142	-		30	

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000

Report Date:

05/29/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1239678-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48		25-87
Phenol-d6	31		16-65
Nitrobenzene-d5	80		42-122
2-Fluorobiphenyl	75		46-121
2,4,6-Tribromophenol	45		45-128
4-Terphenyl-d14	84		47-138

PETROLEUM HYDROCARBONS

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 131,VPH-18-2.1 Analytical Date: 05/22/19 19:39

Analyst: BAD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - \	Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	ND		ug/l	4.00		1

		Acceptance Criteria		
Surrogate	% Recovery	Qualifier	Ciliena	
2,5-Dibromotoluene-PID	93		70-130	
2,5-Dibromotoluene-FID	104		70-130	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/22/19 01:11

Analytical Date: 05/22/19 18:13 Cleanup Method1: EPH-04-1 Analyst: DG Cleanup Date1: 05/22/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Extractable Petroleum Hydrocarbons - Westborough Lab									
C9-C18 Aliphatics	ND		ug/l	100		1			
C19-C36 Aliphatics	ND		ug/l	100		1			
C11-C22 Aromatics	ND		ug/l	100		1			
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1			

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
Chloro-Octadecane	54		40-140				
o-Terphenyl	74		40-140				
2-Fluorobiphenyl	80		40-140				
2-Bromonaphthalene	81		40-140				

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/22/19 01:11

Analytical Date: 05/22/19 18:59 Cleanup Method1: EPH-04-1
Analyst: DG Cleanup Date1: 05/22/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		ug/l	100		1				
C19-C36 Aliphatics	ND		ug/l	100		1				
C11-C22 Aromatics	176		ug/l	100		1				
C11-C22 Aromatics, Adjusted	128		ug/l	100		1				

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	57		40-140			
o-Terphenyl	70		40-140			
2-Fluorobiphenyl	80		40-140			
2-Bromonaphthalene	81		40-140			

L1921130

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Report Date: **Project Number:** 290762.0016.0000 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 05/22/19 16:21

Analyst: LL

Extraction Method: EPA 3510C Extraction Date: 05/21/19 10:26 Cleanup Method: EPH-04-1 Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab f	or sample(s):	01-02	Batch: WG1239459-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance			
Surrogate	%Recovery Q	ualifier Criteria			
Chlora Ostadosena	47	40.440			
Chloro-Octadecane	47	40-140			
o-Terphenyl	58	40-140			
2-Fluorobiphenyl	99	40-140			
2-Bromonaphthalene	97	40-140			

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 05/22/19 10:54

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbons	Westboroug	h Lab for s	ample(s):	01 Batch:	WG1240320-4	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
2,5-Dibromotoluene-PID	79	70-130
2,5-Dibromotoluene-FID	89	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Extractable Petroleum Hydrocarbons - Westborough Lab Associated sample(s): C9-C18 Aliphatics 50 C19-C36 Aliphatics 72 C11-C22 Aromatics 106 Naphthalene 88 2-Methylnaphthalene 89 Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117 Benzo(b)fluoranthene 102	01-02 Batch 64 76 107 91 92 99 106 102 105	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140	WG1239459-3 25 5 1 3 5 6 4 3	25 25 25 25 25 25 25 25 25 25 25
C19-C36 Aliphatics 72 C11-C22 Aromatics 106 Naphthalene 88 2-Methylnaphthalene 89 Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	76 107 91 92 99 106	40-140 40-140 40-140 40-140 40-140 40-140	5 1 3 3 5 6 4	25 25 25 25 25 25 25 25 25
C11-C22 Aromatics 106 Naphthalene 88 2-Methylnaphthalene 89 Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	107 91 92 99 106 102	40-140 40-140 40-140 40-140 40-140	1 3 3 5 6 4	25 25 25 25 25 25 25
Naphthalene 88 2-Methylnaphthalene 89 Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	91 92 99 106 102	40-140 40-140 40-140 40-140 40-140	3 3 5 6 4	25 25 25 25 25 25
2-Methylnaphthalene 89 Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	92 99 106 102	40-140 40-140 40-140 40-140	3 5 6 4	25 25 25 25 25
Acenaphthylene 94 Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	99 106 102	40-140 40-140 40-140	5 6 4	25 25 25 25
Acenaphthene 100 Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	106 102	40-140 40-140	6	25 25
Fluorene 98 Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	102	40-140	4	25
Phenanthrene 102 Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117				
Anthracene 107 Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	105	40-140	3	25
Fluoranthene 100 Pyrene 102 Benzo(a)anthracene 105 Chrysene 117				
Pyrene 102 Benzo(a)anthracene 105 Chrysene 117	110	40-140	3	25
Benzo(a)anthracene 105 Chrysene 117	102	40-140	2	25
Chrysene 117	104	40-140	2	25
	106	40-140	1	25
Benzo(b)fluoranthene 102	117	40-140	0	25
	103	40-140	1	25
Benzo(k)fluoranthene 109	109	40-140	0	25
Benzo(a)pyrene 103	104	40-140	1	25
Indeno(1,2,3-cd)Pyrene 97	99	40-140	2	25
Dibenzo(a,h)anthracene 107	106	40-140	1	25
Benzo(ghi)perylene 98	98	40-140	0	25
Nonane (C9)	52	30-140	12	25
Decane (C10) 52	57	40-140	9	25
Dodecane (C12) 56	61	40-140	9	25

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove al Limits		Qual	RPD Limits
xtractable Petroleum Hydrocarbons - Westb	orough Lab As	ssociated sample	e(s): 01-02	Batch:	WG1239459-2	WG1239459-3		
Tetradecane (C14)	59		63		40-140	7		25
Hexadecane (C16)	61		64		40-140	5		25
Octadecane (C18)	63		66		40-140	5		25
Nonadecane (C19)	62		66		40-140	6		25
Eicosane (C20)	64		67		40-140	5		25
Docosane (C22)	65		68		40-140	5		25
Tetracosane (C24)	66		69		40-140	4		25
Hexacosane (C26)	69		72		40-140	4		25
Octacosane (C28)	71		74		40-140	4		25
Triacontane (C30)	74		77		40-140	4		25
Hexatriacontane (C36)	80		84		40-140	5		25

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Chloro-Octadecane	67	69	40-140
o-Terphenyl	89	89	40-140
2-Fluorobiphenyl	100	99	40-140
2-Bromonaphthalene	101	100	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Petroleum Hydrocarbons - V	Vestborough Lab Associa	ited sample(s)	: 01 Batch:	WG1240320-2	2 WG1240320-3				
C5-C8 Aliphatics	105		99		70-130	6		25	
C9-C12 Aliphatics	107		99		70-130	7		25	
C9-C10 Aromatics	93		87		70-130	7		25	
Benzene	97		91		70-130	6		25	
Toluene	97		92		70-130	6		25	
Ethylbenzene	100		94		70-130	6		25	
p/m-Xylene	97		90		70-130	7		25	
o-Xylene	94		88		70-130	6		25	
Methyl tert butyl ether	99		97		70-130	1		25	
Naphthalene	93		90		70-130	3		25	
1,2,4-Trimethylbenzene	93		87		70-130	7		25	
Pentane	107		98		70-130	8		25	
2-Methylpentane	107		100		70-130	7		25	
2,2,4-Trimethylpentane	108		103		70-130	5		25	
n-Nonane	111		103		30-130	7		25	
n-Decane	99		92		70-130	8		25	
n-Butylcyclohexane	112		104		70-130	7		25	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	95	88	70-130
2,5-Dibromotoluene-FID	105	98	70-130

PCBS

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 07:53

Analytical Date: 05/22/19 16:12 Cleanup Method: EPA 3665A Analyst: WR Cleanup Date: 05/22/19

Cleanup Method: EPA 3660B Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	81		37-123	В		
Decachlorobiphenyl	78		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	86		37-123	Α		
Decachlorobiphenyl	70		38-114	Α		

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 07:53

Analytical Date: 05/23/19 10:12 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 05/23/19

Cleanup Method: EPA 3660B Cleanup Date: 05/23/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.338		1	А
Aroclor 1221	ND		ug/l	0.338		1	Α
Aroclor 1232	ND		ug/l	0.338		1	Α
Aroclor 1242	ND		ug/l	0.338		1	Α
Aroclor 1248	ND		ug/l	0.338		1	Α
Aroclor 1254	ND		ug/l	0.338		1	Α
Aroclor 1260	ND		ug/l	0.270		1	Α

			Acceptance			
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	55		37-123	В		
Decachlorobiphenyl	94		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	68		37-123	Α		
Decachlorobiphenyl	71		38-114	Α		

L1921130

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 12:19

Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 05/22/19 00:55
Cleanup Method: EPA 3665A
Cleanup Date: 05/22/19
Cleanup Method: EPA 3660B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Polychlorinated Biphenyls by GC - '	Westboroug	h Lab for s	ample(s):	01-02 E	Batch:	WG12	39707-1
Aroclor 1016	ND		ug/l	0.250			А
Aroclor 1221	ND		ug/l	0.250			Α
Aroclor 1232	ND		ug/l	0.250			Α
Aroclor 1242	ND		ug/l	0.250			Α
Aroclor 1248	ND		ug/l	0.250			Α
Aroclor 1254	ND		ug/l	0.250			Α
Aroclor 1260	ND		ug/l	0.200			Α

		Acceptance Qualifier Criteria Colu						
Surrogate	%Recovery	Qualifier	Criteria	Column				
O 4.5. C. Tatarahlara as undana	75		27.402	<u> </u>				
2,4,5,6-Tetrachloro-m-xylene	75		37-123	В				
Decachlorobiphenyl	101		38-114	В				
2,4,5,6-Tetrachloro-m-xylene	81		37-123	Α				
Decachlorobiphenyl	96		38-114	Α				

Project Name: MBTA GLX NEWBERN AVE II

Lab Number: L1921130

Project Number: 290762.0016.0000

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - West	borough Lab Associa	ted sample(s): 01-02 Batch:	WG1239	707-2				
Aroclor 1016	74		-		50-140	-		36	Α
Aroclor 1260	79		-		8-140	-		38	А

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	54		37-123 B
Decachlorobiphenyl	101		38-114 B
2,4,5,6-Tetrachloro-m-xylene	58		37-123 A
Decachlorobiphenyl	94		38-114 A

PESTICIDES

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15

Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 07:52
Analytical Date: 05/22/19 15:01 Cleanup Method: EPA 3620B

Analyst: BM Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.020		1	А
Lindane	ND		ug/l	0.020		1	Α
Alpha-BHC	ND		ug/l	0.020		1	Α
Beta-BHC	ND		ug/l	0.020		1	Α
Heptachlor	ND		ug/l	0.020		1	Α
Aldrin	ND		ug/l	0.020		1	Α
Heptachlor epoxide	ND		ug/l	0.020		1	Α
Endrin	ND		ug/l	0.040		1	Α
Endrin aldehyde	ND		ug/l	0.040		1	Α
Endrin ketone ¹	ND		ug/l	0.040		1	А
Dieldrin	ND		ug/l	0.040		1	А
4,4'-DDE	ND		ug/l	0.040		1	А
4,4'-DDD	ND		ug/l	0.040		1	А
4,4'-DDT	ND		ug/l	0.040		1	А
Endosulfan I	ND		ug/l	0.020		1	А
Endosulfan II	ND		ug/l	0.040		1	Α
Endosulfan sulfate	ND		ug/l	0.040		1	Α
Methoxychlor ¹	ND		ug/l	0.100		1	Α
Toxaphene	ND		ug/l	0.400		1	Α
Chlordane	ND		ug/l	0.200		1	Α
cis-Chlordane ¹	ND		ug/l	0.020		1	Α
trans-Chlordane ¹	ND		ug/l	0.020		1	Α

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Date Collected: 05/20/19 10:15

Date Received: Client ID: 05/20/19 GLC-NB-3-3

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Lab ID:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

L1921130-01

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64		47-124	Α
Decachlorobiphenyl	55		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	69		47-124	В
Decachlorobiphenyl	74		32-167	В

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 Date Collected: 05/20/19 14:23

Client ID: GLC-NB-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 05/22/19 15:13
Extraction Date: 05/22/19 07:52
Cleanup Method: EPA 3620B

Analyst: BM Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by GC - V	Vestborough Lab						
Delta-BHC	ND		ug/l	0.020		1	А
Lindane	ND		ug/l	0.020		1	Α
Alpha-BHC	ND		ug/l	0.020		1	Α
Beta-BHC	ND		ug/l	0.020		1	Α
Heptachlor	ND		ug/l	0.020		1	Α
Aldrin	ND		ug/l	0.020		1	Α
Heptachlor epoxide	ND		ug/l	0.020		1	Α
Endrin	ND		ug/l	0.040		1	Α
Endrin aldehyde	ND		ug/l	0.040		1	Α
Endrin ketone ¹	ND		ug/l	0.040		1	Α
Dieldrin	ND		ug/l	0.040		1	Α
4,4'-DDE	ND		ug/l	0.040		1	Α
4,4'-DDD	ND		ug/l	0.040		1	Α
4,4'-DDT	ND		ug/l	0.040		1	Α
Endosulfan I	ND		ug/l	0.020		1	Α
Endosulfan II	ND		ug/l	0.040		1	А
Endosulfan sulfate	ND		ug/l	0.040		1	А
Methoxychlor ¹	ND		ug/l	0.100		1	А
Toxaphene	ND		ug/l	0.400		1	Α
Chlordane	ND		ug/l	0.200		1	Α
cis-Chlordane ¹	ND		ug/l	0.020		1	Α
trans-Chlordane ¹	ND		ug/l	0.020		1	Α

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921130-02 05/20/19 14:23

Date Received: Client ID: 05/20/19 GLC-NB-3 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Qualifier Units RL MDL **Dilution Factor** Column Parameter Result

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	63		47-124	Α
Decachlorobiphenyl	67		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	63		47-124	В
Decachlorobiphenyl	80		32-167	В

L1921130

05/29/19

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Report Date:

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 10:40

Analyst: BM

Extraction Method: EPA 608.3
Extraction Date: 05/21/19 15:24
Cleanup Method: EPA 3620B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Organochlorine Pesticides b	y GC - Westboroug	h Lab for	sample(s):	01-02	Batch:	WG12	239583-1
Delta-BHC	ND		ug/l	0.020			А
Lindane	ND		ug/l	0.020			Α
Alpha-BHC	ND		ug/l	0.020			Α
Beta-BHC	ND		ug/l	0.020			Α
Heptachlor	ND		ug/l	0.020			Α
Aldrin	ND		ug/l	0.020			Α
Heptachlor epoxide	ND		ug/l	0.020			А
Endrin	ND		ug/l	0.040			Α
Endrin aldehyde	ND		ug/l	0.040			А
Endrin ketone ¹	ND		ug/l	0.040			А
Dieldrin	ND		ug/l	0.040			А
4,4'-DDE	ND		ug/l	0.020			А
4,4'-DDD	ND		ug/l	0.040			А
4,4'-DDT	ND		ug/l	0.040			А
Endosulfan I	ND		ug/l	0.020			А
Endosulfan II	ND		ug/l	0.040			А
Endosulfan sulfate	ND		ug/l	0.040			А
Methoxychlor ¹	ND		ug/l	0.100			Α
Toxaphene	ND		ug/l	0.400			А
Chlordane	ND		ug/l	0.200			Α
cis-Chlordane ¹	ND		ug/l	0.020			А
trans-Chlordane1	ND		ug/l	0.020			А

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 10:40

Analyst: BM

Extraction Method: EPA 608.3
Extraction Date: 05/21/19 15:24
Cleanup Method: EPA 3620B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL		MDL	Column
Organochlorine Pesticides by GC -	Westborou	gh Lab for s	sample(s):	01-02	Batch:	WG12	39583-1

Surrogate		Acceptance			
	%Recovery Q	ualifier		Column	
2,4,5,6-Tetrachloro-m-xylene	54		47-124	Α	
Decachlorobiphenyl	49		32-167	Α	
2,4,5,6-Tetrachloro-m-xylene	60		47-124	В	
Decachlorobiphenyl	85		32-167	В	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westboro	ough Lab Assoc	ciated sample(s):	01-02 Batcl	n: WG123	9583-2				
Delta-BHC	71		-		19-140	-		52	Α
Lindane	68		-		32-140	-		39	А
Alpha-BHC	68		-		37-140	-		36	А
Beta-BHC	64		-		17-147	-		44	А
Heptachlor	40		-		34-140	-		43	А
Aldrin	52		-		42-140	-		35	А
Heptachlor epoxide	56		-		37-142	-		26	А
Endrin	67		-		30-147	-		48	А
Endrin aldehyde	60		-		30-150	-		30	А
Endrin ketone ¹	71		-		30-150	-		30	А
Dieldrin	65		-		36-146	-		49	А
4,4'-DDE	57		-		30-145	-		35	А
4,4'-DDD	67		-		31-141	-		39	А
4,4'-DDT	71		-		25-160	-		42	А
Endosulfan I	54		-		45-153	-		28	А
Endosulfan II	65		-		1-202	-		53	А
Endosulfan sulfate	75		-		26-144	-		38	А
Methoxychlor ¹	65		-		30-150	-		30	А
cis-Chlordane¹	51		-		45-140	-		35	Α
trans-Chlordane ¹	66		-		45-140	-		35	Α

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921130

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-02 Batch: WG1239583-2

Surrogate	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	57		47-124 A
Decachlorobiphenyl	52		32-167 A
2,4,5,6-Tetrachloro-m-xylene	62		47-124 B
Decachlorobiphenyl	88		32-167 B

METALS

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921130Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921130-01
 Date Collected:
 05/20/19 10:15

 Client ID:
 GLC-NB-3-3
 Date Received:
 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/l	0.00400		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Arsenic, Total	0.00207		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Cadmium, Total	ND		mg/l	0.00020		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Chromium, Total	0.00399		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Copper, Total	0.01178		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Iron, Total	3.54		mg/l	0.050		1	05/24/19 12:40	05/25/19 13:59	EPA 3005A	19,200.7	PS
Lead, Total	0.00451		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Mercury, Total	ND		mg/l	0.00020		1	05/28/19 09:02	2 05/28/19 11:36	EPA 245.1	3,245.1	GD
Nickel, Total	0.00611		mg/l	0.00200		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Selenium, Total	ND		mg/l	0.00500		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Silver, Total	ND		mg/l	0.00040		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Zinc, Total	0.03383		mg/l	0.01000		1	05/24/19 12:40	05/25/19 12:29	EPA 3005A	3,200.8	MG
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	203		mg/l	0.660	NA	1	05/24/19 12:40	05/25/19 13:59	EPA 3005A	19,200.7	PS
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		05/25/19 10:20	NA	107,-	
(Filtered) Chromium, Trivalent (Unfiltered)	ND		mg/l	0.010		1		05/25/19 12:29	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Arsenic, Dissolved	0.0012		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Cadmium, Dissolved	ND		mg/l	0.0002		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Chromium, Dissolved	ND		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Copper, Dissolved	0.0070		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Iron, Dissolved	0.117		mg/l	0.050		1	05/24/19 11:41	05/25/19 15:23	EPA 3005A	19,200.7	PS
Lead, Dissolved	ND		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:20	EPA 3005A	3,200.8	MG
Mercury, Dissolved	ND		mg/l	0.00020		1	05/28/19 09:50	05/28/19 12:56	EPA 245.1	3,245.1	GD

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130 **Project Number: Report Date:** 05/29/19

290762.0016.0000

SAMPLE RESULTS

Lab ID: L1921130-01 Date Collected: 05/20/19 10:15 Client ID: GLC-NB-3-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	0.0040		mg/l	0.0020		1	05/24/19 11:4	1 05/25/19 10:20	EPA 3005A	3,200.8	MG
Selenium, Dissolved	ND		mg/l	0.0050		1	05/24/19 11:4	1 05/25/19 10:20	EPA 3005A	3,200.8	MG
Silver, Dissolved	ND		mg/l	0.0004		1	05/24/19 11:4	1 05/25/19 10:20	EPA 3005A	3,200.8	MG
Zinc, Dissolved	ND		mg/l	0.0100		1	05/24/19 11:4	1 05/25/19 10:20	EPA 3005A	3,200.8	MG

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921130Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921130-02
 Date Collected:
 05/20/19 14:23

 Client ID:
 GLC-NB-3
 Date Received:
 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Arsenic, Total	0.02145		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Cadmium, Total	ND		mg/l	0.00020		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Chromium, Total	0.00428		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Copper, Total	0.00468		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Iron, Total	13.4		mg/l	0.050		1	05/24/19 12:40	05/25/19 14:03	EPA 3005A	19,200.7	PS
Lead, Total	0.00181		mg/l	0.00100		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Mercury, Total	ND		mg/l	0.00020		1	05/28/19 09:02	05/28/19 11:38	EPA 245.1	3,245.1	GD
Nickel, Total	0.00591		mg/l	0.00200		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Selenium, Total	ND		mg/l	0.00500		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Silver, Total	ND		mg/l	0.00040		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Zinc, Total	ND		mg/l	0.01000		1	05/24/19 12:40	05/25/19 12:33	EPA 3005A	3,200.8	MG
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	1100		mg/l	0.660	NA	1	05/24/19 12:40	05/25/19 14:03	EPA 3005A	19,200.7	PS
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		05/25/19 10:32	NA	107,-	
(Filtered) Chromium, Trivalent (Unfiltered)	ND		mg/l	0.050		1		05/25/19 12:33	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Arsenic, Dissolved	0.0260		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Cadmium, Dissolved	ND		mg/l	0.0002		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Chromium, Dissolved	ND		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Copper, Dissolved	0.0012		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Iron, Dissolved	12.0		mg/l	0.050		1	05/24/19 11:41	05/25/19 15:42	EPA 3005A	19,200.7	PS
Lead, Dissolved	ND		mg/l	0.0010		1	05/24/19 11:41	05/25/19 10:32	EPA 3005A	3,200.8	MG
Mercury, Dissolved	ND		mg/l	0.00020		1	05/28/19 09:50	05/28/19 13:01	EPA 245.1	3,245.1	GD

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921130 **Project Number: Report Date:** 05/29/19

290762.0016.0000

SAMPLE RESULTS

Lab ID: L1921130-02 Date Collected: 05/20/19 14:23 Client ID: GLC-NB-3 Date Received: 05/20/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Nickel, Dissolved	0.0038		mg/l	0.0020		1	05/24/19 11:4	1 05/25/19 10:32	EPA 3005A	3,200.8	MG
Selenium, Dissolved	ND		mg/l	0.0050		1	05/24/19 11:4	1 05/25/19 10:32	EPA 3005A	3,200.8	MG
Silver, Dissolved	ND		mg/l	0.0004		1	05/24/19 11:4	1 05/25/19 10:32	EPA 3005A	3,200.8	MG
Zinc, Dissolved	ND		mg/l	0.0100		1	05/24/19 11:4	1 05/25/19 10:32	EPA 3005A	3,200.8	MG

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab for samp	ole(s): 01-0	2 Batch	: WG1	240934-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Arsenic, Dissolved	ND	mg/l	0.0010		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Cadmium, Dissolved	ND	mg/l	0.0002		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Chromium, Dissolved	ND	mg/l	0.0010		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Copper, Dissolved	ND	mg/l	0.0010		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Lead, Dissolved	ND	mg/l	0.0010		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Nickel, Dissolved	ND	mg/l	0.0020		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Selenium, Dissolved	ND	mg/l	0.0050		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Silver, Dissolved	ND	mg/l	0.0004		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG
Zinc, Dissolved	ND	mg/l	0.0100		1	05/24/19 11:41	05/25/19 09:28	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	: 01-02 E	Batch: Wo	G12409	68-1				
Antimony, Total	ND	mg/l	0.00400		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Arsenic, Total	ND	mg/l	0.00100		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Cadmium, Total	ND	mg/l	0.00020		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Chromium, Total	ND	mg/l	0.00100		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Copper, Total	ND	mg/l	0.00100		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Lead, Total	ND	mg/l	0.00100		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Nickel, Total	ND	mg/l	0.00200		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Selenium, Total	ND	mg/l	0.00500		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Silver, Total	ND	mg/l	0.00040		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG
Zinc, Total	ND	mg/l	0.01000		1	05/24/19 12:40	05/25/19 11:40	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Dissolved Metals - Mans	sfield Lab	for sample	e(s): 01-02	2 Batch	: WG1	241274-1				
Iron, Dissolved	ND		mg/l	0.050		1	05/24/19 11:41	05/25/19 15:14	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: WO	G12412	83-1				
Iron, Total	ND	mg/l	0.050		1	05/24/19 12:40	05/26/19 14:51	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SN	M 2340B - Mansfield La	b for sam	nple(s):	01-02 E	Batch: WG1	1241283-1			
Hardness	ND	mg/l	0.660	NA	1	05/24/19 12:40	05/26/19 14:51	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mans	sfield Lab for sample(s):	01-02	Batch: W	G12416	344-1				
Mercury, Total	ND	mg/l	0.00020		1	05/28/19 09:02	05/28/19 11:24	3,245.1	GD

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 245.1

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mans	field Lab	for sample	(s): 01-02	2 Batch	: WG1	241676-1				
Mercury, Dissolved	ND		mg/l	0.00020		1	05/28/19 09:50	05/28/19 12:53	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01-02	Batch: W	G1240934-2					
Antimony, Dissolved	98		-		85-115	-		
Arsenic, Dissolved	105		-		85-115	-		
Cadmium, Dissolved	113		-		85-115	-		
Chromium, Dissolved	102		-		85-115	-		
Copper, Dissolved	101		-		85-115	-		
Lead, Dissolved	111		-		85-115	-		
Nickel, Dissolved	102		-		85-115	-		
Selenium, Dissolved	108		-		85-115	-		
Silver, Dissolved	106		-		85-115	-		
Zinc, Dissolved	113		-		85-115	-		

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Batch: W	/G1240968-2			
Antimony, Total	95	-	85-115	-	
Arsenic, Total	105	-	85-115	-	
Cadmium, Total	114	-	85-115	-	
Chromium, Total	100	-	85-115	-	
Copper, Total	100	-	85-115	-	
Lead, Total	112	-	85-115	-	
Nickel, Total	103	-	85-115	-	
Selenium, Total	114	-	85-115	-	
Silver, Total	108	-	85-115	-	
Zinc, Total	114	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated sa	ample(s): 01-02 Bate	ch: WG1241274-2			
Iron, Dissolved	104	-	85-115	-	
Fotal Metals - Mansfield Lab Associated sample	e(s): 01-02 Batch: W	/G1241283-2			
Iron, Total	106	-	85-115	-	
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample(s):	01-02 Batch: WG1241283-2			
Hardness	105	-	85-115	-	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	sample(s): 01-02 Batch: WC	G1241644-2			
Mercury, Total	103	-	85-115	-	
Dissolved Metals - Mansfield Lab Associ	ated sample(s): 01-02 Batch	n: WG1241676-2			
Mercury, Dissolved	98	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfi	eld Lab Associated	d sample(s)	: 01-02 Q	C Batch ID: WG	§1240934	4-3 QC	Sample: L1921	130-01	Client ID	GLC	-NB-3-3	
Antimony, Dissolved	ND	0.5	0.6299	126		-	-		70-130	-		20
Arsenic, Dissolved	0.0012	0.12	0.1265	104		-	-		70-130	-		20
Cadmium, Dissolved	ND	0.051	0.0586	115		-	-		70-130	-		20
Chromium, Dissolved	ND	0.2	0.2046	102		-	-		70-130	-		20
Copper, Dissolved	0.0070	0.25	0.2580	100		-	-		70-130	-		20
Lead, Dissolved	ND	0.51	0.5702	112		-	-		70-130	-		20
Nickel, Dissolved	0.0040	0.5	0.5177	103		-	-		70-130	-		20
Selenium, Dissolved	ND	0.12	0.1243	104		-	-		70-130	-		20
Silver, Dissolved	ND	0.05	0.0535	107		-	-		70-130	-		20
Zinc, Dissolved	ND	0.5	0.5655	113		-	-		70-130	-		20
issolved Metals - Mansfi	eld Lab Associated	d sample(s)	: 01-02 Q	C Batch ID: WG	G1240934	4-5 QC	Sample: L1921	130-02	Client ID	GLC	-NB-3	
Antimony, Dissolved	ND	0.5	0.6518	130		-	-		70-130	-		20
Arsenic, Dissolved	0.0260	0.12	0.1548	107		-	-		70-130	-		20
Cadmium, Dissolved	ND	0.051	0.0593	116		-	-		70-130	-		20
Chromium, Dissolved	ND	0.2	0.2098	105		-	-		70-130	-		20
Copper, Dissolved	0.0012	0.25	0.2570	102		-	-		70-130	-		20
Lead, Dissolved	ND	0.51	0.5952	117		-	-		70-130	-		20
Nickel, Dissolved	0.0038	0.5	0.5276	105		-	-		70-130	-		20
Selenium, Dissolved	ND	0.12	0.1302	108		-	-		70-130	-		20
Selenium, Dissolved Silver, Dissolved	ND ND	0.12 0.05	0.1302 0.0551	108 110		-	-		70-130 70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Parameter		Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Dissolved Metals -	Mansfield Lab	Associated	sample(s):	01-02 Q	C Batch ID: WG12	41274-3 Q0	C Sample: L1921130-01	Client ID:	GLC-NB-3-3	
Iron, Dissolved		0.117	1	1.16	104	-	-	75-125	-	20
Dissolved Metals -	Mansfield Lab	Associated	sample(s):	01-02 Q	C Batch ID: WG12	41676-3 Q0	C Sample: L1921130-01	Client ID:	GLC-NB-3-3	
Mercury, Dissolved		ND	0.005	0.00426	85	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

Parameter	Native Sample	Duplicate Sa	ample Units	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	: 01-02 QC Batc	h ID: WG1240934-4	QC Sample: L192	21130-01 Clie	nt ID: GLC	C-NB-3-3
Antimony, Dissolved	ND	ND	mg/l	NC		20
Arsenic, Dissolved	0.0012	0.0012	mg/l	1		20
Cadmium, Dissolved	ND	ND	mg/l	NC		20
Chromium, Dissolved	ND	ND	mg/l	NC		20
Copper, Dissolved	0.0070	0.0072	mg/l	3		20
Lead, Dissolved	ND	ND	mg/l	NC		20
Nickel, Dissolved	0.0040	0.0039	mg/l	1		20
Selenium, Dissolved	ND	ND	mg/l	NC		20
Silver, Dissolved	ND	ND	mg/l	NC		20
Zinc, Dissolved	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130

arameter	Native Sample	Duplicate Sa	ample Units	RPD	RPD Limits
bissolved Metals - Mansfield Lab Associated sample(s):	: 01-02 QC Batch ID	: WG1240934-6	QC Sample: L19	21130-02 Client	ID: GLC-NB-3
Antimony, Dissolved	ND	ND	mg/l	NC	20
Arsenic, Dissolved	0.0260	0.0261	mg/l	0	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	0.0012	0.0013	mg/l	8	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	0.0038	0.0038	mg/l	1	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20
ssolved Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch ID	: WG1241274-4	QC Sample: L19	21130-01 Client	ID: GLC-NB-3-3
Iron, Dissolved	0.117	0.118	mg/l	1	20
issolved Metals - Mansfield Lab Associated sample(s):	01-02 QC Batch ID	: WG1241676-4	QC Sample: L19	21130-01 Client	ID: GLC-NB-3-3
Mercury, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number:

L1921130

Report Date: 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-01 Client ID:

GLC-NB-3-3

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Date Collected: 05/20/19 10:15

Date Received: Field Prep:

05/20/19 Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Dissolved	840		mg/l	10		1	-	05/21/19 09:20	121,2540C	DW
Solids, Total Suspended	13.		mg/l	5.0	NA	1	-	05/21/19 10:50	121,2540D	DR
Cyanide, Dissolved	ND		mg/l	0.005		1	05/22/19 10:05	05/22/19 12:51	1,9010C/9012B	LH
Cyanide, Total	ND		mg/l	0.005		1	05/21/19 11:15	05/21/19 14:09	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/21/19 01:42	121,4500CL-D	JW
Nitrogen, Ammonia	0.224		mg/l	0.075		1	05/21/19 17:00	05/21/19 23:02	121,4500NH3-BH	H AT
Total Organic Carbon	6.35		mg/l	2.00		4	-	05/21/19 08:52	121,5310C	AG
Oil & Grease, Hem-Grav	ND		mg/l	4.0		1	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	4.00		1	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	05/22/19 09:25	05/22/19 13:53	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	05/21/19 05:00	05/21/19 06:36	1,7196A	MA
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0.010		1	05/21/19 05:00	05/21/19 06:38	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	380.		mg/l	12.5		25	-	05/23/19 22:24	44,300.0	AU

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number:

L1921130

Report Date: 05/29/19

SAMPLE RESULTS

Lab ID: L1921130-02 Client ID:

GLC-NB-3

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Date Collected: 05/20/19 14:23

Date Received: 05/20/19

Field Prep:

Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough Lab)								
Solids, Total Dissolved	2200		mg/l	10		1	-	05/21/19 09:20	121,2540C	DW
Solids, Total Suspended	98.		mg/l	5.0	NA	1	-	05/21/19 10:50	121,2540D	DR
Cyanide, Dissolved	ND		mg/l	0.005		1	05/22/19 10:05	05/22/19 12:52	1,9010C/9012B	LH
Cyanide, Total	ND		mg/l	0.005		1	05/21/19 11:15	05/21/19 14:10	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/21/19 01:42	121,4500CL-D	JW
Nitrogen, Ammonia	0.096		mg/l	0.075		1	05/21/19 17:00	05/21/19 23:03	121,4500NH3-BH	TA I
Total Organic Carbon	17.1		mg/l	5.00		10	-	05/21/19 08:52	121,5310C	AG
Oil & Grease, Hem-Grav	ND		mg/l	4.0		1	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	4.00		1	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	05/22/19 09:25	05/22/19 13:58	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	05/21/19 05:00	05/21/19 06:37	1,7196A	MA
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0.050		5	05/21/19 05:00	05/21/19 06:53	1,7196A	MA
Anions by Ion Chromatog	raphy - West	borough	Lab							
Chloride	1120		mg/l	12.5		25	-	05/23/19 22:36	44,300.0	AU

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	R	L N	IDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	G1239298-1				
Chlorine, Total Residual	ND		mg/l	(0.02		1	-	05/21/19 01:42	121,4500CL-D	JW
General Chemistry - Westbe	orough La	b for san	nple(s):	01-02	Batch	: WC	G1239346-1				
Solids, Total Dissolved	ND		mg/l		10		1	-	05/21/19 09:20	121,2540C	DW
General Chemistry - Westbe	orough La	b for san	nple(s):	01-02	Batch	: WC	31239351-1				
Total Organic Carbon	ND		mg/l	0	.500		1	-	05/21/19 08:52	121,5310C	AG
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	91239357-1				
Chromium, Hexavalent	ND		mg/l	0	.010		1	05/21/19 05:00	05/21/19 06:34	1,7196A	MA
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	91239362-1				
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0	.010		1	05/21/19 05:00	05/21/19 06:33	1,7196A	MA
General Chemistry - Westbo	orough La	b for sam	nple(s):	01-02	Batch	: WC	31239388-1				
Solids, Total Suspended	ND		mg/l		5.0	NA	1	-	05/21/19 10:50	121,2540D	DR
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	G1239449-1				
Cyanide, Total	ND		mg/l	0	.005		1	05/21/19 11:15	05/21/19 13:46	121,4500CN-CE	E LH
General Chemistry - Westbo	orough La	b for sam	nple(s):	01-02	Batch	: WC	G1239511-1				
Nitrogen, Ammonia	ND		mg/l	0	.075		1	05/21/19 17:00	05/21/19 22:35	121,4500NH3-B	H AT
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	G1239855-1				
Cyanide, Dissolved	ND		mg/l	0	.005		1	05/22/19 10:05	05/22/19 12:43	1,9010C/9012E	B LH
General Chemistry - Westbo	orough La	b for sam	nple(s):	01-02	Batch	: WC	G1239930-1				
Phenolics, Total	ND		mg/l	0	.030		1	05/22/19 09:25	05/22/19 13:51	4,420.1	BR
General Chemistry - Westbo	orough La	b for sam	nple(s):	01-02	Batch	: WC	G1240071-1				
Oil & Grease, Hem-Grav	ND		mg/l		4.0		1	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
General Chemistry - Westbo	orough La	b for san	nple(s):	01-02	Batch	: WC	G1240076-1				
TPH, SGT-HEM	ND		mg/l		1.00		1	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Anions by Ion Chromatogra	phy - Wes	tborough	Lab fo	r samp	le(s): C	1-02	Batch: W	G1240702-1			
Chloride	ND		mg/l	0	.500		1	-	05/23/19 12:11	44,300.0	AU

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239298-2				
Chlorine, Total Residual	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239346-2				
Solids, Total Dissolved	102	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239351-2				
Total Organic Carbon	103	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239357-2				
Chromium, Hexavalent	96	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239362-2				
Chromium, Hexavalent (Unfiltered)	96	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239449-2				
Cyanide, Total	95	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239511-2				
Nitrogen, Ammonia	99	-	80-120	-		20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Report Date:

05/29/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239855-2	WG1239855-3		
Cyanide, Dissolved	93	94	80-120	1	20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239930-2			
Phenolics, Total	93	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1240071-2			
Oil & Grease, Hem-Grav	94	-	78-114	-	18
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1240076-2			
ТРН	84	-	64-132	-	34
Anions by Ion Chromatography - Westb	orough Lab Associated samp	le(s): 01-02 Batch: W0	61240702-2		
Chloride	101	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921130

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recover Limits	•	Qual	RPD Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1:	239298-4	QC Sample:	L1921	130-02	Client ID:	GLC-N	B-3
Chlorine, Total Residual	ND	0.25	0.57	228	Q	-	-		80-120	-		20
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1:	239357-4	QC Sample:	L1921	130-02	Client ID:	GLC-N	B-3
Chromium, Hexavalent	ND	0.1	0.097	97		-	-		85-115	-		20
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1:	239362-4	QC Sample:	L1921	130-02	Client ID:	GLC-N	B-3
Chromium, Hexavalent (Unfiltered)	ND	0.5	0.360	72	Q	-	-		85-115	-		20
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01-02	QC Batch II	D: WG1:	239930-4	QC Sample:	L1921	130-01 (Client ID:	GLC-N	B-3-3
Phenolics, Total	ND	0.4	0.21	54	Q	-	-		70-130	-		20

Lab Duplicate Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

 Lab Number:
 L1921130

 Report Date:
 05/29/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sam	ple(s): 01-02 QC Batch ID): WG1239346-3	QC Sample:	L1921130-01	Client ID:	GLC-NB-3-3
Solids, Total Dissolved	840	860	mg/l	2		10
General Chemistry - Westborough Lab Associated sam	ple(s): 01-02 QC Batch ID): WG1239357-3	QC Sample:	L1921130-01	Client ID:	GLC-NB-3-3
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sam	ple(s): 01-02 QC Batch ID): WG1239362-3	QC Sample:	L1921130-01	Client ID:	GLC-NB-3-3
Chromium, Hexavalent (Unfiltered)	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sam	ple(s): 01-02 QC Batch ID): WG1239930-3	QC Sample:	L1921130-01	Client ID:	GLC-NB-3-3
Phenolics, Total	ND	ND	mg/l	NC		20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921130
Report Date: 05/29/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler	Custody Seal
A	Absent
В	Absent
С	Absent
D	Absent

L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3	Container Info	rmation		Initial	Final	Temp			Frozen	
L1921130-01A1	Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
Lig2t130-01B Vial HCl preserved	L1921130-01A	Vial HCl preserved	Α	NA		3.2	Υ	Absent		8260(14)
L1921130-01B1 Vial HCl preserved A NA 3.2 Y Absent VPH-DELUX-18(14) L1921130-01C1 Vial HCl preserved A NA 3.2 Y Absent 8260(14) L1921130-01C2 Vial HCl preserved A NA 3.2 Y Absent VPH-DELUX-18(14) L1921130-01C2 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D0 Vial Na2S2O3 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent G24.1-SIM-RGP(7),624.1-RGP(7)	L1921130-01A1	Vial HCI preserved	Α	NA		3.2	Υ	Absent		VPH-DELUX-18(14)
L1921130-01C Vial HCl preserved A NA 3.2 Y Absent VPH-DELUX-18(14) L1921130-01C1 Vial HCl preserved A NA 3.2 Y Absent VPH-DELUX-18(14) L1921130-01C2 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01D Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S203 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S203 preserved A NA 3.2 Y Absent 504(14)	L1921130-01B	Vial HCI preserved	Α	NA		3.2	Υ	Absent		8260(14)
L1921130-01C1 Vial HCl preserved A NA 3.2 Y Absent VPH-DELUX-18(14) L1921130-01C2 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D0 Vial Na2S2O3 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01B1	Vial HCI preserved	Α	NA		3.2	Υ	Absent		VPH-DELUX-18(14)
L1921130-01C2 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C	Vial HCI preserved	Α	NA		3.2	Υ	Absent		8260(14)
L1921130-01C3 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent SUB-ETHANOL(14) L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C1	Vial HCI preserved	Α	NA		3.2	Υ	Absent		VPH-DELUX-18(14)
L1921130-01C4 Vial HCl preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D0 Vial Na2S2O3 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C2	Vial HCI preserved	Α	NA		3.2	Υ	Absent		SUB-ETHANOL(14)
L1921130-01C5 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C3	Vial HCl preserved	Α	NA		3.2	Υ	Absent		SUB-ETHANOL(14)
L1921130-01C6 Vial H2SO4 preserved A NA 3.2 Y Absent TOC-5310(28) L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C4	Vial HCl preserved	Α	NA		3.2	Υ	Absent		SUB-ETHANOL(14)
L1921130-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3) L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01C5	Vial H2SO4 preserved	Α	NA		3.2	Υ	Absent		TOC-5310(28)
L1921130-01D1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7	L1921130-01C6	Vial H2SO4 preserved	Α	NA		3.2	Υ	Absent		TOC-5310(28)
L1921130-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(3)	L1921130-01D	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-01E1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7	L1921130-01D1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7)	L1921130-01E	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-01F1 Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-SIM-RGP(7),624.1-RGP(7	L1921130-01E1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01F	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14)	L1921130-01F1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
	L1921130-01G	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
L1921130-01J Plastic 120ml unpreserved A 7 7 3.2 Y Absent HEXCR-7196(1)	L1921130-01H	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
	L1921130-01J	Plastic 120ml unpreserved	Α	7	7	3.2	Υ	Absent		HEXCR-7196(1)

Lab Number: L1921130

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН		Pres	Seal	Date/Time	Analysis(*)
L1921130-01K	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1921130-01L	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1921130-01M	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		SCN-9010(14)
L1921130-01N	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		TCN-4500(14)
L1921130-01P	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		NH3-4500(28)
L1921130-01Q	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921130-01R	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		TSS-2540(7)
L1921130-01S	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-01S1	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-01T	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-01T1	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-01U	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PCB-608.3(7)
L1921130-01U1	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PCB-608.3(7)
L1921130-01V	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PESTICIDE-608.3(7)
L1921130-01V1	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent		PESTICIDE-608.3(7)
L1921130-01W	Amber 1000ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		TPHENOL-420(28)
L1921130-01W1	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		TPH-1664(28)
L1921130-01W2	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		TPH-1664(28)
L1921130-01W3	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L1921130-01W4	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent		OG-1664(28)
L1921130-01W5	Amber 1000ml HCl preserved	Α	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1921130-01W6	Amber 1000ml HCl preserved	Α	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1921130-01Y	Bacteria Cup Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		ARCHIVE()
L1921130-01Z	Bacteria Cup Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		ARCHIVE()

Lab Number: L1921130

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1921130-02A	Vial HCI preserved	Α	NA		3.2	Υ	Absent		8260(14)
L1921130-02B	Vial HCl preserved	Α	NA		3.2	Υ	Absent		8260(14)
L1921130-02C	Vial HCl preserved	Α	NA		3.2	Υ	Absent		SUB-ETHANOL(14)
L1921130-02C1	Vial H2SO4 preserved	Α	NA		3.2	Υ	Absent		TOC-5310(28)
L1921130-02C2	Vial H2SO4 preserved	Α	NA		3.2	Υ	Absent		TOC-5310(28)
L1921130-02D	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02D1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02E	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02E1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02F	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02F1	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921130-02G	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
L1921130-02H	Vial Na2S2O3 preserved	Α	NA		3.2	Υ	Absent		504(14)
L1921130-02J	Plastic 120ml unpreserved	В	7	7	3.5	Υ	Absent		HEXCR-7196(1)
L1921130-02K	Plastic 250ml HNO3 preserved	В	<2	<2	3.5	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB- 2008S(180),HG-R(28)
L1921130-02L	Plastic 250ml HNO3 preserved	В	<2	<2	3.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1921130-02M	Plastic 250ml NaOH preserved	В	>12	>12	3.5	Υ	Absent		SCN-9010(14)
L1921130-02N	Plastic 250ml NaOH preserved	В	>12	>12	3.5	Υ	Absent		TCN-4500(14)
L1921130-02P	Plastic 500ml H2SO4 preserved	В	<2	<2	3.5	Υ	Absent		NH3-4500(28)
L1921130-02Q	Plastic 950ml unpreserved	С	7	7	2.8	Y	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921130-02R	Plastic 950ml unpreserved	С	7	7	2.8	Υ	Absent		TSS-2540(7)
L1921130-02S	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-02S1	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-02T	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Lab Number: L1921130

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1921130-02T1	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921130-02U	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		PCB-608.3(7)
L1921130-02U1	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		PCB-608.3(7)
L1921130-02V	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7)
L1921130-02V1	Amber 1000ml Na2S2O3	С	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7)
L1921130-02W	Amber 1000ml H2SO4 preserved	С	<2	<2	2.8	Υ	Absent		TPHENOL-420(28)
L1921130-02W1	Amber 1000ml HCl preserved	D	NA		3.4	Υ	Absent		TPH-1664(28)
L1921130-02W2	Amber 1000ml HCl preserved	D	NA		3.4	Υ	Absent		TPH-1664(28)
L1921130-02W3	Amber 1000ml HCl preserved	D	NA		3.4	Υ	Absent		OG-1664(28)
L1921130-02W4	Amber 1000ml HCl preserved	D	NA		3.4	Υ	Absent		OG-1664(28)
L1921130-02W5	Amber 1000ml HCl preserved	D	<2	<2	3.4	Υ	Absent		EPH-10(14)
L1921130-02W6	Amber 1000ml HCl preserved	D	<2	<2	3.4	Υ	Absent		EPH-10(14)
L1921130-02Y	Bacteria Cup Na2S2O3 preserved	D	NA		3.4	Υ	Absent		ARCHIVE()
L1921130-02Z	Bacteria Cup Na2S2O3 preserved	D	NA		3.4	Υ	Absent		ARCHIVE()

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921130
Project Number: 290762.0016.0000 Report Date: 05/29/19

GLOSSARY

Acronyms

EDL

EPA

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.) $\,$

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921130Project Number:290762.0016.0000Report Date:05/29/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_eq} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921130Project Number:290762.0016.0000Report Date:05/29/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:05291919:57

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	San Land Control	to the same of the	PAGE 0	F	Date	e Rec'd	in Lab		st	20	lia		ALP	PHA J	lob#:	1	1921130	in to
ANALYTICA Wood Care Committy		Project Infon	mation			10000	port I	nforn	nation	Data	-			100000000000000000000000000000000000000		form	ation	PO #: 135774	
	Insfield, MA L: 508-822-9300	Project Name: I	MBTA GLX	Newbern Ave	11	1000	ADEx	8			Add'l De	eliverat	iles	Δ.	oame a	is Clien	tinio	PO#. 135/74	
FAX: 508-898-9193 FA	X: 508-822-3288	2 2000 000	527 N				gulato e/Fed F		D 1000 100	ement	s/Re	port L	imits	Criter		VI.			Ons.
Client Information	or attended to the	Project Location			ambridge	1000000	/ MCP	5 - F.W - 1 - 1	-					- TEVE	Section W	RCGW	-1		
Client: TRC Environn		Project #: 29076	62.0016.000	00		MC	PPR	ESUN	IPTIV	E CE	RTAIL	NTY-C	CT RE	THE OWNER OF THE OWNER OF	TO SHARE SHOWING	-		DENCE PROTOCO	OLS
Address: 650 Suffolk	Street	Project Manage	er: Diane Sta	allings			Yes		□ No		Are I	MCP A	nalytica	I Metho	ds Re	quired?			
Lowell, MA		ALPHA Quote #	#: 7918					_	⊠ No	_	Are (CT RCI	P (Reas	sonable	Confid	dence F	rotoco	ls) Required?	
Phone: 978-970-5600		Turn-Around	Time			AN	ALYS	IS	1	_			T -			_	_	SAMPLE HANDLING	0
_Fax:		Standard Standard	□ Ri	ish (ONLY IF PR	E-APPROVED:	1						5.7		6A				Filtration	Å
Email: DStallings@tro	csolutions.com					ote		범	≤			8/24		7196A				☑ Done ☐ Not Needed	
☐ These samples have be	en Previously analyzed by Alpha	Due Date:	Time:			per quote		ass	1664A			200.		by by				☐ Lab to do	В
	ific Requirements/Comment	s/Detection Limit	s:	8		1		by N	2			è	901	Chrom.				Preservation	O T T
Please report both To 5 day TAT standard p	RGP Appendix VII limits. Ital and Dissolved RGP metals (per quote.	including trivalent o	chromium)			GW 201	809 /	EPH (Fractions Only) by MassDEP	se (HEM)	SM2540C	200.7	Dissolved RGP Metals by 200.8/245.	Dissolved Cyanide by 9010			8260C		(Please specify below)	L E S
Add'l email: KMorin@ bayres@trccompanie	c VOC/SVOC analyte lists. trcsolutions.com, Riyer@trccon s	npanies.com			-	NPDES RGP GW	Pesticides by 608	(Fractio	and Grease	至	Hardness by 200.7	olved R(olved Cy	Total and Diss Hex.	by 5310	£			
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	Time	Sample Matrix	Sampler's Initials	NPD	Pest	EPH	Oila	TDS	Hard	Diss	Diss	Tota	TOC by	VOCs		Sample Specific Comments	
21130-01	E-E-EN-27	5/20/19	lois	GW	APC	X	2	7	B	8	2	Q	×	Q					
02	GCC-NB-2	72719	1423	1	APC	A	Q	0						图		V	1		-
	042.2		1100	-	TITC	in	n	П	n	n				H			H		\vdash
							ī	Ħ	Ħ	Ħ	H	$\overline{\Box}$	H	H	H	H	H		-
												ī	ī	Ħ	Ħ	Ħ	Ħ		1
															Ī	ī	Ħ		
															ī	Ħ	ī		_
																	ī		
		1																	
PLEASE ANSWER QU	ESTIONS ABOVE!			Co	ntainer Type	*	А	Α	Α	G	Р	P	P	Р	4	9		Tarante and	
					Preservative	¥	н	В	8	А	c	С	E	А	3		70	Please print clearly, legib and completely. Sample	sly is can
IS YOUR P		4.5	Relin	quished By:		Da	ate/Time	9 ,			Receive	ed By:			D	ate/Tin	ne	not be logged in and turnaround time clock will	1550
	r CT RCP?	A	8	10		SA	0/19	16	30/	74	1	AF	14		Smil	1670	7	start until any ambiguities resolved. All samples	s are
FORM NO: 81-910 (H+ 5-JAN-12)		772		4		520.19	18	40	14	in	N	i	1	15	1201	1	1848	submitted are subject to Alpha's Payment Terms.	
Page 106 of 121									0							30			

Subcontract Chain of Custody

Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204 Alpha Job Number L1921130

Project Information	Regulatory Requirements/Report Limits	ų
cation: MA inager: Ashaley Kane	State/Federal Program:	
naround & Deliverables Information	Regulatory Chteria.	
Date: 05/28/19 (RUSH) ibles:		
	Project Information cation: MA anager: Ashaley Kane rnaround & Deliverables Information Date: 05/28/19 (RUSH) ables:	cation: MA anager: Ashaley Kane rnaround & Deliverables Information Date: 05/28/19 (RUSH) State/Federal Program: Regulatory Criteria:

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L1921130 Report to include Method Blank, LCS/LCSD:

Additional Comments: Send all results/reports to subreports@alphalab.com 3 DAY RUSH

Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ar	nalysis	Bate QC
	GLC-NB-3-3 GLC-NB-3	05-20-19 10:15 05-20-19 14:23	WATER WATER	Ethanol by EPA 1671 Revi	MANAGEM CO.	
		ned By:		Date/Time:	Received By:	Date/Time:

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-174593-1 Client Project/Site: L1921130

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Reports Dept.

Authorized for release by: 5/29/2019 5:29:33 PM

Kuth Haye

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 108 of 121

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

9

10

11

Laboratory Job ID: 490-174593-1

Client: Alpha Analytical Inc Project/Site: L1921130

Table of Contents

Cover Page	1
Table of Contents	
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	8
QC Association	9
Chronicle	10
Method Summary	
Certification Summary	12
Chain of Custody	13

11

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1921130

Job ID: 490-174593-1

 6
J

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
490-174593-1	GLC-NB-3-3	Water	05/20/19 10:15	05/23/19 09:05	
490-174593-2	GLC-NB-3	Water	05/20/19 14:23	05/23/19 09:05	

4

5

6

Q

9

10

11

40

Case Narrative

Client: Alpha Analytical Inc Job ID: 490-174593-1 Project/Site: L1921130

Job ID: 490-174593-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-174593-1

Comments

No additional comments.

Receipt

The samples were received on 5/23/2019 9:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.3° C.

GC Semi VOA

Method 1671A: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch analytical batch 490-597997 recovered outside control limits for the following analyte: Ethanol.

Method 1671A: The surrogate recovery for the laboratory control sample (LCS) associated with analytical batch 490-597997 was outside the control limits. All associated sample surrogate recoveries were within control limits; therefore, the data has been qualified and reported.

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-597997.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: Alpha Analytical Inc Job ID: 490-174593-1

Project/Site: L1921130

Qualifiers

GC VOA Qualifier **Qualifier Description**

RPD of the LCS and LCSD exceeds the control limits

Χ Surrogate is outside control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

Minimum Detectable Activity (Radiochemistry) MDA MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Client Sample Results

Client: Alpha Analytical Inc Job ID: 490-174593-1

Project/Site: L1921130

Lab Sample ID: 490-174593-1 Client Sample ID: GLC-NB-3-3

Date Collected: 05/20/19 10:15 **Matrix: Water** Date Received: 05/23/19 09:05

Method: 1671A - Ethanol (GC/I Analyte Ethanol	•	Qualifier	RL	MDL 500	Unit ug/L	D	Prepared	Analyzed 05/28/19 11:42	Dil Fac
Surrogate Isopropyl acetate (Surr)	%Recovery	Qualifier	Limits 70 - 130			-	Prepared	Analyzed 05/28/19 11:42	Dil Fac

Client Sample Results

Client: Alpha Analytical Inc Job ID: 490-174593-1

Project/Site: L1921130

Client Sample ID: GLC-NB-3 Lab Sample ID: 490-174593-2

Matrix: Water

Date Collected: 05/20/19 14:23 Date Received: 05/23/19 09:05

Method: 1671A - Ethanol	(GC/FID)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	*	2000	500	ug/L			05/28/19 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	99		70 - 130			-		05/28/19 11:48	1

5

6

8

9

11

15

QC Sample Results

Client: Alpha Analytical Inc Job ID: 490-174593-1

Project/Site: L1921130

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-597997/4 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 597997

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			05/28/19 11:17	1

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed Isopropyl acetate (Surr) 91 70 - 130 05/28/19 11:17

Lab Sample ID: LCS 490-597997/5 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 597997

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	 50200	36480		ug/L	_	73	70 - 130	

LCS LCS

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 65 X 70 - 130

Lab Sample ID: LCSD 490-597997/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 597997

	Spike	LCSD LCSD			%Rec.		RPD
Analyte	Added	Result Qualifier	Unit D	%Rec	Limits	RPD	Limit
Ethanol	50200	44940 *	ug/L	89	70 - 130	21	20

LCSD LCSD

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 85 70 - 130

Eurofins TestAmerica, Nashville

QC Association Summary

Client: Alpha Analytical Inc
Project/Site: L1921130

Job ID: 490-174593-1

GC VOA

Analysis Batch: 597997

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-174593-1	GLC-NB-3-3	Total/NA	Water	1671A	
490-174593-2	GLC-NB-3	Total/NA	Water	1671A	
MB 490-597997/4	Method Blank	Total/NA	Water	1671A	
LCS 490-597997/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-597997/6	Lab Control Sample Dup	Total/NA	Water	1671A	

- 0

4

ŏ

10

11

46

Lab Chronicle

Client: Alpha Analytical Inc
Project/Site: L1921130

Job ID: 490-174593-1

Client Sample ID: GLC-NB-3-3 Lab Sample ID: 490-174593-1

Date Collected: 05/20/19 10:15 Matrix: Water Date Received: 05/23/19 09:05

Batch Batch Dil Initial Final **Batch** Prepared Factor Method or Analyzed **Prep Type** Type Run **Amount Amount** Number Analyst Lab Total/NA 597997 05/28/19 11:42 TAL NSH Analysis 1671A JDJ

Client Sample ID: GLC-NB-3

Lab Sample ID: 490-174593-2

Date Collected: 05/20/19 14:23 Date Received: 05/23/19 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			597997	05/28/19 11:48	JDJ	TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

4

5

6

Matrix: Water

8

9

10

12

Method Summary

Client: Alpha Analytical Inc Project/Site: L1921130

Job ID: 490-174593-1

Method	Method Description	Protocol	Laboratory
1671A	Ethanol (GC/FID)	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Accreditation/Certification Summary

Client: Alpha Analytical Inc
Project/Site: L1921130

Job ID: 490-174593-1

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA F	Region	Identification Number	Expiration Date
California	State Progr	am	9		2938	06-30-19
The following analyte the agency does not do		but the laboratory	y is not certifi	ed by the	governing authority. This	s list may include analytes for whi
Analysis Method	Prep Method	Matrix		Analyte)	
1671A		Water		Ethano	I	
Maine	State Progr	am	1		TN00032	11-03-19
The following analyte the agency does not do	•	but the laboratory	y is not certifi	ed by the	governing authority. This	s list may include analytes for whi
Analysis Method	Prep Method	Matrix		Analyte	•	
1671A		Water		Ethano	I	

-

-

4

5

7

ŏ

11

11

Cooler Received/Opened On05-23-2019_@	
Time Samples Removed From Cooler 4.46 Time Samples Placed In Storage 4.57	(2 Hour Window)
1. Tracking # 12 8065 401 917 4 ast 4 digits, FedEx) Courier: UPS NDA	,,
IR Gun ID31470368 pH Strip Lot/ Chlorine Strip Lot/	4
2. Temperature of rep. sample or temp blank when opened: 43 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO. (NA)
4. Were custody seals on outside of cooler?	NE NANA
If yes, how many and where:	KDOS-23-2019
5. Were the seals intact, signed, and dated correctly?	YESNO(NA)
6. Were custody papers inside cooler?	YES., NONA
certify that I opened the cooler and answered questions 1-6 (intial)	KI
7. Were custody seals on containers: YES (8) and Intact	YESNO(NA)
Were these signed and dated correctly?	YESNO(NA)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (ce) Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YÈSNONA
12. Did all container labels and tags agree with custody papers?	ESNONA
13a. Were VOA vials received?	TESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	e#
certify that I unloaded the cooler and answered questions 7-14 (intial)	$\langle \zeta \rangle$
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	YE9NONA
16. Was residual chlorine present?	YESNONA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	KD
17. Were custody papers properly filled out (ink, signed, etc)?	YESNONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	ESNONA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	KD
certify that I attached a label with the unique LIMS number to each container (intial)	
21. Were there Non-Conformance issues at login? YES(NO) Was a NCM generated? YES(NO)#	<u> </u>

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form

Revised 8/23/17

<u></u>	- Anna and a second		nS	bcontrac	Subcontract Chain of Custody			
	ALPHA WINTERNATION		Test A 2960 F Nashvi	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	hville) iton Drive		Alpha Job Number L1921130	umber
	Client Information	rmation	A	Project Information	rmation	Regulatory Requi	Regulatory Requirements/Report Limits	ts
Ϋ́	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	-abs /e \ 01581-1019	Project Location: MA Project Manager: Ashaley Kane Turnaround & Deliver	A shaley Kane d & Delive	t Location: MA t Manager: Ashaley Kane Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:		
- _	Phone: 508-439-5132 Email: akane@alphalab.com	com	Due Date: 05, Deliverables:	: 05/28/19 (RUSH)	(Н:			
			Project Specific R	equireme	Project Specific Requirements and/or Report Requirements	ments		
	Reference	Reference following Alpha Job Number on final report/deliverables: L1921130	iber on final report/de	liverables:		Report to include Method Blank, LCS/LCSD:	LCS/LCSD:	
	Additional Comments: Ser	Comments: Send all results/reports to subreports@alphalab.com 3 DAY RUSH	ibreports@alphalab.c	om 3 DAY	RUSH			
			The second of th		A STATE OF THE STA		The state of the s	
	Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Batch QC
ao 14 o	970 970 970	GLC-NB-3-3 GLC-NB-3	05-20-19 10:15 05-20-19 14:23	WATER WATER	Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A			
						Loc: 490 174593	603	
								_
						{		Genal_No.05
<u></u>		Relinguished By	×		Date/Time:	Received By:		
F/2					6/22/19	STUBELL THE	S 05-53-5019 (29:95
	Form No: AL_subcoc							
						7	43	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376 **Report Date:** 05/29/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1921376-01	GLC-NB-3-1	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 11:00	05/21/19
L1921376-02	GLC-NB-3-4	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 12:00	05/21/19
L1921376-03	GLC-NB-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 14:00	05/21/19
L1921376-04	GLC-NB-3-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 15:55	05/21/19
L1921376-05	GLC-NB-3-1	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 12:50	05/21/19
L1921376-06	GLC-NB-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 14:45	05/21/19
L1921376-07	GLC-NB-3-4	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 13:30	05/21/19
L1921376-08	GLC-NB-1	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 15:50	05/21/19
L1921376-09	GLC-NB-3-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/20/19 11:00	05/21/19
L1921376-10	TRIP BLANK	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/20/19 00:00	05/21/19
L1921376-11	GLC-NB-3-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/21/19 15:00	05/21/19
L1921376-12	GLC-NB-3-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/22/19 12:00	05/22/19
L1921376-13	GLC-NB-3-1	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/22/19 12:35	05/22/19
L1921376-14	GLC-NB-2	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/22/19 13:20	05/22/19
L1921376-15	GLC-NB-3-4	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/22/19 14:10	05/22/19
L1921376-16	TRIP BLANK	WATER	SOMERVILLE, MEDFORD, CAMBRIDGE	05/22/19 00:00	05/22/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	NO
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Case Narrative (continued)

Report Submission

May 29, 2019: This final report includes the results of all requested analyses.

May 28, 2019: This is a preliminary report.

May 24, 2019: This is a preliminary report.

The analyses of Ethanol, Total Mercury, and Dissolved Mercury were subcontracted. Copies of the laboratory reports are included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

MCP Related Narratives

Sample Receipt

All samples were logged according to the project manager's instruction.

L1921376-10 and -16: A sample identified as "TRIP BLANK" was received but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

In reference to question A:

L1921376-01: An aliquot was taken from an unpreserved container and preserved appropriately with HNO3 for the subcontracted analysis of Total Mercury.

Volatile Organics

L1921376-01 and -09: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

In reference to question G:

L1921376-01 and -09: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

VPH

Case Narrative (continued)

L1921376-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

In reference to question G:

L1921376-01 and -09: One or more of the target analytes did not achieve the requested CAM reporting limits.

EPH

In reference to question H:

L1921376-09: The surrogate recovery was outside the acceptance criteria for chloro-octadecane (28%); however, re-extraction achieved a similar result: chloro-octadecane (32%). The results of both extractions are reported; however, all associated compounds are considered to have a potential bias.

The WG1240040-2/-3 LCS/LCSD RPDs, associated with L1921376-09, are above the acceptance criteria for c11-c22 aromatics (53%), naphthalene (60%), 2-methylnaphthalene (60%), acenaphthylene (57%), acenaphthene (56%), fluorene (52%), phenanthrene (49%), anthracene (50%), fluoranthene (45%), pyrene (45%), benzo(a)anthracene (46%), chrysene (45%), benzo(b)fluoranthene (48%), benzo(k)fluoranthene (47%), benzo(a)pyrene (48%), indeno(1,2,3-cd)pyrene (55%), dibenzo(a,h)anthracene (51%), and benzo(ghi)perylene (56%).

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

Chromium, Hexavalent (Unfiltered)

L1921376-01, -02, -03, and -11: The sample has an elevated detection limit due to the dilution required by the sample matrix.

Cyanide, Dissolved

L1921376-03: The Dissolved Cyanide result is higher than the Total Cyanide result. The sample was repreped and re-analyzed for both analyses and the results were confirmed.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Case Narrative (continued)

Non-MCP Related Narratives

Volatile Organics by Method 624

L1921376-01 and -09: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

L1921376-01 and -09: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

The WG1240431-8 Method Blank, associated with L1921376-01D2 and -09D2, has a concentration above the reporting limit for bromomethane. Since the samples were non-detect to the RL for this analyte, no further actions were taken. The results of the original analysis are reported.

Volatile Organics by SIM

L1921376-01 and -09: The sample has an elevated detection limit due to the dilution required by the elevated concentrations of non-target compounds in the sample.

PCBs

L1921376-09: The surrogate recovery is outside the individual acceptance criteria for decachlorobiphenyl (139%), but within the overall method allowances. The results of the original analysis are reported. The surrogate recovery for the WG1240233-2 LCS, associated with L1921376-01, is outside the acceptance criteria for decachlorobiphenyl (136%). The LCS spike compounds are within overall method allowances; therefore, no further action was taken.

Pesticides

The surrogate recovery for the WG1239709-2 LCS, associated with L1921376-01, -02, -03, and -09, is outside the acceptance criteria for 2,4,5,6-tetrachloro-m-xylene (45%). The LCS spike compounds are within overall method allowances; therefore, no further action was taken.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Case Narrative (continued)

Total Metals

The WG1240560-2 LCS recovery, associated with L1921376-02, -03, -09, and -11, is above the acceptance criteria for selenium (117%); however, the associated samples are non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1240624-2 LCS recovery, associated with L1921376-01, is above the acceptance criteria for selenium (120%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1240624-3 MS recoveries for antimony (31%), cadmium (133%), and zinc (147%), performed on L1921376-01, recovered outside the 70-130% acceptance criteria. The results for these analytes are considered suspect due to either the heterogeneous nature of the sample or matrix interference. The WG1240628-3 MS recovery for iron (1500%), performed on L1921376-01, does not apply because the

Dissolved Metals

The WG1240627-2 LCS recoveries, associated with L1921376-01, -03, and -12, are above the acceptance criteria for selenium (118%) and silver (118%); however, the associated samples are non-detect to the RL for these target analytes. The results of the original analysis are reported.

The WG1240627-3 MS recovery for antimony (136%), performed on L1921376-12, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

The WG1240881-3 MS recovery for antimony (140%), performed on L1921376-02, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

E. Coli (MPN)

L1921376-05 was analyzed with the method required holding time exceeded.

sample concentration is greater than four times the spike amount added.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Case Narrative (continued)

Chlorine, Total Residual

The WG1240029-4 MS recovery (76%), performed on L1921376-11, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/29/19

600, Shawow Kelly Stenstrom

QC OUTLIER SUMMARY REPORT

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

					Recovery/RP		Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Extractable	Petroleum Hydrocarbons - Westboro	ough Lab						
EPH-04-1.1	GLC-NB-3-2	L1921376-09	Chloro-Octadecane	Surrogate	28	40-140	-	potential low bias
EPH-04-1.1	GLC-NB-3-2	L1921376-09 RE	Chloro-Octadecane	Surrogate	32	40-140	-	potential low bias
EPH-04-1.1	Batch QC	WG1240040-3	C11-C22 Aromatics	LCSD	53	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Naphthalene	LCSD	60	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	2-Methylnaphthalene	LCSD	60	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Acenaphthylene	LCSD	57	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Acenaphthene	LCSD	56	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Fluorene	LCSD	52	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Phenanthrene	LCSD	49	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Anthracene	LCSD	50	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Fluoranthene	LCSD	45	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Pyrene	LCSD	45	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Benzo(a)anthracene	LCSD	46	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Chrysene	LCSD	45	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Benzo(b)fluoranthene	LCSD	48	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Benzo(k)fluoranthene	LCSD	47	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Benzo(a)pyrene	LCSD	48	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Indeno(1,2,3-cd)Pyrene	LCSD	55	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Dibenzo(a,h)anthracene	LCSD	35	40-140	09	potential low bias
EPH-04-1.1	Batch QC	WG1240040-3	Dibenzo(a,h)anthracene	LCSD	51	25	09	non-directional bias
EPH-04-1.1	Batch QC	WG1240040-3	Benzo(ghi)perylene	LCSD	56	25	09	non-directional bias
Polychlorina	ated Biphenyls by GC - Westborough	n Lab						
608.3	GLC-NB-3-2	L1921376-09	Decachlorobiphenyl	Surrogate	139	38-114	-	potential high bias
608.3	Batch QC	WG1240233-2	Decachlorobiphenyl	Surrogate	136	38-114	-	potential high bias
Organochlo	orine Pesticides by GC - Westboroug	h Lab						
608.3	Batch QC	WG1239709-2	2,4,5,6-Tetrachloro-m-xylene	Surrogate	45	47-124	-	potential low bias

QC OUTLIER SUMMARY REPORT

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376 **Report Date:** 05/29/19

Project Number: 290762.0016.0000

> Recovery/RPD QC Limits Associated Data Quality QC Type (%) (%) Samples **Assessment**

Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
Dissolved N	Metals - Mansfield Lab							
200.8	Batch QC	WG1240627-2	Selenium, Dissolved	LCS	118	85-115	01,03,12	potential high bias
200.8	Batch QC	WG1240627-2	Silver, Dissolved	LCS	118	85-115	01,03,12	potential high bias
200.8	Batch QC (L1921376-12)	WG1240627-3	Antimony, Dissolved	MS	136	70-130	01,03,12	potential high bias
200.8	Batch QC (L1921376-02)	WG1240881-3	Antimony, Dissolved	MS	140	70-130	02	potential high bias
Total Metal	s - Mansfield Lab							
200.7	Batch QC (L1921376-01)	WG1240628-3	Iron, Total	MS	1500	75-125	01	potential high bias
200.8	Batch QC	WG1240560-2	Selenium, Total	LCS	117	85-115	02-03,09,11	potential high bias
200.8	Batch QC	WG1240624-2	Selenium, Total	LCS	120	85-115	01	potential high bias
200.8	Batch QC (L1921376-01)	WG1240624-3	Antimony, Total	MS	31	70-130	01	potential low bias
200.8	Batch QC (L1921376-01)	WG1240624-3	Cadmium, Total	MS	133	70-130	01	potential high bias
200.8	Batch QC (L1921376-01)	WG1240624-3	Zinc, Total	MS	147	70-130	01	potential high bias
General Ch	nemistry - Westborough Lab							
4500CL-D	Batch QC (L1921376-11)	WG1240029-4	Chlorine, Total Residual	MS	76	80-120	11	potential low bias

ORGANICS

VOLATILES

Lab Number: **Project Name:** MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 11:00 L1921376-01

Date Received: Client ID: 05/21/19 GLC-NB-3-1 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/23/19 14:40

Analytical Method: 14,504.1 Analytical Date: 05/23/19 15:32

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-01 D2 Date Collected: 05/21/19 11:00

Client ID: GLC-NB-3-1 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 05/23/19 12:16

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - W	estborough Lab						
Methyl tert butyl Ether	4400		ug/l	500		50	
Surrogate			% Recovery	Qualifier	Accept Crite		
Pentafluorobenzene			112		60-	140	
Fluorobenzene			109		60-	140	
4-Bromofluorobenzene			109		60-	140	

L1921376

05/29/19

05/21/19 11:00

05/21/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected:

Date Received:

Lab ID: L1921376-01 D

Client ID: GLC-NB-3-1

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/22/19 13:10

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,1-Dichloropropene	ND		ug/l	6.2		2.5			
1,2,3-Trichloropropane	ND			12		2.5			
Bromochloromethane			ug/l						
	ND		ug/l	6.2		2.5			
Tetrahydrofuran	ND		ug/l	12		2.5			
2,2-Dichloropropane	ND		ug/l	6.2		2.5			
1,1,1,2-Tetrachloroethane	ND		ug/l	1.2		2.5			
Bromobenzene	ND		ug/l	6.2		2.5			
n-Butylbenzene	2.8		ug/l	1.2		2.5			
sec-Butylbenzene	2.1		ug/l	1.2		2.5			
tert-Butylbenzene	ND		ug/l	6.2		2.5			
o-Chlorotoluene	ND		ug/l	6.2		2.5			
p-Chlorotoluene	ND		ug/l	6.2		2.5			
Hexachlorobutadiene	ND		ug/l	1.2		2.5			
p-Isopropyltoluene	ND		ug/l	1.2		2.5			
Naphthalene	31		ug/l	6.2		2.5			
n-Propylbenzene	21		ug/l	1.2		2.5			
1,3,5-Trimethylbenzene	12		ug/l	6.2		2.5			
1,2,4-Trimethylbenzene	20		ug/l	6.2		2.5			
Ethyl ether	ND		ug/l	6.2		2.5			
Diisopropyl Ether	ND		ug/l	5.0		2.5			
Ethyl-Tert-Butyl-Ether	ND		ug/l	5.0		2.5			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	84	70-130	

L1921376

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1921376-01 D Date Collected: 05/21/19 11:00

Client ID: Date Received: 05/21/19 GLC-NB-3-1 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 19:07

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - West	Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	10		10				
1,1-Dichloroethane	ND		ug/l	15		10				
Chloroform	ND		ug/l	10		10				
Carbon tetrachloride	ND		ug/l	10		10				
1,2-Dichloropropane	ND		ug/l	35		10				
Dibromochloromethane	ND		ug/l	10		10				
1,1,2-Trichloroethane	ND		ug/l	15		10				
2-Chloroethylvinyl ether	ND		ug/l	100		10				
Tetrachloroethene	ND		ug/l	10		10				
Chlorobenzene	ND		ug/l	35		10				
Trichlorofluoromethane	ND		ug/l	50		10				
1,2-Dichloroethane	20		ug/l	15		10				
1,1,1-Trichloroethane	ND		ug/l	20		10				
Bromodichloromethane	ND		ug/l	10		10				
trans-1,3-Dichloropropene	ND		ug/l	15		10				
cis-1,3-Dichloropropene	ND		ug/l	15		10				
Bromoform	ND		ug/l	10		10				
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10				
Benzene	100		ug/l	10		10				
Toluene	21		ug/l	10		10				
Ethylbenzene	61		ug/l	10		10				
Chloromethane	ND		ug/l	50		10				
Bromomethane	67		ug/l	50		10				
Vinyl chloride	ND		ug/l	10		10				
Chloroethane	ND		ug/l	20		10				
1,1-Dichloroethene	ND		ug/l	10		10				
trans-1,2-Dichloroethene	ND		ug/l	15		10				
cis-1,2-Dichloroethene	ND		ug/l	10		10				

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: D Date Collected: 05/21/19 11:00 L1921376-01

Date Received: Client ID: 05/21/19 GLC-NB-3-1 Field Prep: Refer to COC

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Trichloroethene	ND		ug/l	10		10
1,2-Dichlorobenzene	ND		ug/l	50		10
1,3-Dichlorobenzene	ND		ug/l	50		10
1,4-Dichlorobenzene	ND		ug/l	50		10
p/m-Xylene	38		ug/l	20		10
o-xylene	ND		ug/l	10		10
Styrene	ND		ug/l	10		10
Acetone	ND		ug/l	100		10
Carbon disulfide	ND		ug/l	50		10
2-Butanone	ND		ug/l	100		10
4-Methyl-2-pentanone	ND		ug/l	100		10
2-Hexanone	ND		ug/l	100		10
Acrolein	ND		ug/l	80		10
Acrylonitrile	220		ug/l	100		10
Methyl tert butyl Ether	3600	E	ug/l	100		10
Dibromomethane	ND		ug/l	10		10
Tert-Butyl Alcohol	ND		ug/l	1000		10
Tertiary-Amyl Methyl Ether	ND		ug/l	200		10
Dichlorodifluoromethane ¹	ND		ug/l	10		10
1,2,3-Trichlorobenzene	ND		ug/l	10		10
1,2,4-Trichlorobenzene	ND		ug/l	10		10
Isopropylbenzene	ND		ug/l	10		10
1,3-Dichloropropane	ND		ug/l	10		10
1,2-Dibromo-3-chloropropane	ND		ug/l	20		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	129		60-140	
Fluorobenzene	126		60-140	
4-Bromofluorobenzene	110		60-140	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: D Date Collected: 05/21/19 11:00 L1921376-01

Client ID: Date Received: 05/21/19 GLC-NB-3-1

Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/22/19 19:07

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM -	Westborough Lab						
1,4-Dioxane	ND		ug/l	500		10	
Surrogate			% Recovery	Qualifier	Accepta Crite		
Fluorobenzene			135		60-1	140	
4-Bromofluorobenzene			108		60-1	140	

L1921376

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

L1921376-02

Project Number: 290762.0016.0000

SAMPLE RESULTS

Date Collected: 05/21/19 12:00

Lab Number:

Report Date:

Client ID: Date Received: 05/21/19 GLC-NB-3-4

Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Lab ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/22/19 13:45

Analyst: KJD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	tborough Lab						
1,1-Dichloropropene	ND		ug/l	2.5		1	
1,2,3-Trichloropropane	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.5		1	
Tetrahydrofuran	ND		ug/l	5.0		1	
2,2-Dichloropropane	ND		ug/l	2.5		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1	
Bromobenzene	ND		ug/l	2.5		1	
n-Butylbenzene	ND		ug/l	0.50		1	
sec-Butylbenzene	ND		ug/l	0.50		1	
tert-Butylbenzene	ND		ug/l	2.5		1	
o-Chlorotoluene	ND		ug/l	2.5		1	
p-Chlorotoluene	ND		ug/l	2.5		1	
Hexachlorobutadiene	ND		ug/l	0.50		1	
p-Isopropyltoluene	ND		ug/l	0.50		1	
Naphthalene	ND		ug/l	2.5		1	
n-Propylbenzene	ND		ug/l	0.50		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Diisopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	92	70-130	
Dibromofluoromethane	94	70-130	

L1921376

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: Date Collected: 05/21/19 12:00 L1921376-02

Client ID: Date Received: 05/21/19 GLC-NB-3-4 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 19:42

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	h Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	3.5		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
2-Chloroethylvinyl ether	ND		ug/l	10		1
Tetrachloroethene	3.3		ug/l	1.0		1
Chlorobenzene	ND		ug/l	3.5		1
Trichlorofluoromethane	ND		ug/l	5.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	1.5		1
cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Bromoform	ND		ug/l	1.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	5.0		1
Bromomethane	8.4		ug/l	5.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.5		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-02 05/21/19 12:00

Date Received: Client ID: 05/21/19 GLC-NB-3-4

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Styrene	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	10		1
4-Methyl-2-pentanone	ND		ug/l	10		1
2-Hexanone	ND		ug/l	10		1
Acrolein	ND		ug/l	8.0		1
Acrylonitrile	ND		ug/l	10		1
Methyl tert butyl Ether	ND		ug/l	10		1
Dibromomethane	ND		ug/l	1.0		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1
Dichlorodifluoromethane ¹	ND		ug/l	1.0		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
Isopropylbenzene	ND		ug/l	1.0		1
1,3-Dichloropropane	ND		ug/l	1.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	128		60-140	
Fluorobenzene	121		60-140	
4-Bromofluorobenzene	118		60-140	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 12:00 L1921376-02

Client ID: Date Received: 05/21/19 GLC-NB-3-4

Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/22/19 19:42

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		ptance iteria

1,4-Dioxane	ND	ug/l	50		
Surrogate		% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene		129		60-140	
4-Bromofluorobenzene		120		60-140	

Lab Number: **Project Name:** MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-02 05/21/19 12:00

Date Received: Client ID: 05/21/19 GLC-NB-3-4 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/23/19 14:40

Analytical Method: 14,504.1 Analytical Date: 05/23/19 15:47

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1921376

05/29/19

Dilution Factor

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter

Lab ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/23/19 10:55

Analyst: PD

Parameter	Resuit	Qualifier Units	KL.	MIDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab					
1,1-Dichloropropene	ND	ug/l	2.5		1	
1,2,3-Trichloropropane	ND	ug/l	5.0		1	
Bromochloromethane	ND	ug/l	2.5		1	
Tetrahydrofuran	ND	ug/l	5.0		1	
2,2-Dichloropropane	ND	ug/l	2.5		1	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		1	
Bromobenzene	ND	ug/l	2.5		1	
n-Butylbenzene	ND	ug/l	0.50		1	
sec-Butylbenzene	ND	ug/l	0.50		1	
tert-Butylbenzene	ND	ug/l	2.5		1	
o-Chlorotoluene	ND	ug/l	2.5		1	
p-Chlorotoluene	ND	ug/l	2.5		1	
Hexachlorobutadiene	ND	ug/l	0.50		1	
p-Isopropyltoluene	ND	ug/l	0.50		1	
Naphthalene	ND	ug/l	2.5		1	
n-Propylbenzene	ND	ug/l	0.50		1	
1,3,5-Trimethylbenzene	ND	ug/l	2.5		1	
1,2,4-Trimethylbenzene	ND	ug/l	2.5		1	
Ethyl ether	ND	ug/l	2.5		1	
Diisopropyl Ether	ND	ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0		1	

Qualifier

Result

Units

RL

MDL

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	99	70-130	

L1921376

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: Date Received: 05/21/19 GLC-NB-2 Field Prep: Sample Location: Refer to COC SOMERVILLE, MEDFORD, CAMBRIDGE

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 20:50

Analyst: GT

1,1-Dichloroethane ND ug/l 1.5 1 Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichlorotethane ND ug/l 1.5 1 2-Chloroethylvinyl ether ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chloroberzene ND ug/l 3.5 1 Tetrachloroethane ND ug/l 3.5 1 1,1-1-Trichlorofluoromethane ND ug/l 1.5 1 Bromodichloromethane ND ug/l 1.5 1 Bromodichloromethane ND ug/l 1.5 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane	Volatile Organics by GC/MS - Westk	oorough Lab					
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 3.5 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.5 1 2-Chloroethythivinyl ether ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chloroethythivinyl ether ND ug/l 1.0 1 Chloroethylering ether ND ug/l 1.0 1 Chloroethyling ether ND ug/l 1.5 1 Trichloroethane ND ug/l 1.5 1 Chloroethane ND ug/l 1.0 1 Bromochloromethane ND ug/l 1.0 1	Methylene chloride	ND		ug/l	1.0		1
Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 3.5 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.5 1 2-Chloroethylvinyl ether ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Chlorobenzene ND ug/l 3.5 1 Trichlorofluoromethane ND ug/l 5.0 1 1,1,2-Trichloroethane ND ug/l 1.5 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloropropene ND ug/l 1.5 1 Itaras-1,3-Dichloropropene ND ug/l 1.0 <t< td=""><td>1,1-Dichloroethane</td><td>ND</td><td></td><td>ug/l</td><td>1.5</td><td></td><td>1</td></t<>	1,1-Dichloroethane	ND		ug/l	1.5		1
1,2-Dichloropropane ND Ug/l 3.5 - 1	Chloroform	ND		ug/l	1.0		1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	3.5		1
ND	Dibromochloromethane	ND		ug/l	1.0		1
Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 3.5 1 Trichlorofluoromethane ND ug/l 5.0 1 1,2-Dichloroethane ND ug/l 1.5 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.5 1 Bromodichloropropene ND ug/l 1.5 1 trans-1,3-Dichloropropene ND ug/l 1.5 1 Bromoform ND ug/l 1.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 5.0 1 Chloromethane <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.5</td> <td></td> <td>1</td>	1,1,2-Trichloroethane	ND		ug/l	1.5		1
ND	2-Chloroethylvinyl ether	ND		ug/l	10		1
Trichlorofluoromethane ND	Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane ND	Chlorobenzene	ND		ug/l	3.5		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	5.0		1
ND	1,2-Dichloroethane	ND		ug/l	1.5		1
trans-1,3-Dichloropropene ND ug/l 1.5 1 cis-1,3-Dichloropropene ND ug/l 1.5 1 Bromoform ND ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 5.0 1 Chloroethane ND ug/l 5.0 1 Toluene ND ug/l 1.0 1 Toluene ND ug/l 5.0 1 Toluene ND ug/l 1.0 1	1,1,1-Trichloroethane	ND		ug/l	2.0		1
Cis-1,3-Dichloropropene ND ug/l 1.5 1 Bromoform ND ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Bromodichloromethane	ND		ug/l	1.0		1
Bromoform ND ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 5.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	trans-1,3-Dichloropropene	ND		ug/l	1.5		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	cis-1,3-Dichloropropene	ND		ug/l	1.5		1
Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Bromoform	ND		ug/l	1.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Thirdichloroethane ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Benzene	ND		ug/l	1.0		1
Chloromethane ND ug/l 5.0 1 Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Toluene	ND		ug/l	1.0		1
Bromomethane 8.3 ug/l 5.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Chloromethane	ND		ug/l	5.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Bromomethane	8.3		ug/l	5.0		1
1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.5 1	Vinyl chloride	ND		ug/l	1.0		1
trans-1,2-Dichloroethene ND ug/l 1.5 1	Chloroethane	ND		ug/l	2.0		1
	1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene ND ug/l 1.0 1	trans-1,2-Dichloroethene	ND		ug/l	1.5		1
	cis-1,2-Dichloroethene	ND		ug/l	1.0		1

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Date Received: Client ID: 05/21/19 GLC-NB-2 Field Prep: Refer to COC

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Volatile Organics by GC/MS - Westborough Lab								
Trichloroethene	ND		ug/l	1.0		1		
1,2-Dichlorobenzene	ND		ug/l	5.0		1		
1,3-Dichlorobenzene	ND		ug/l	5.0		1		
1,4-Dichlorobenzene	ND		ug/l	5.0		1		
p/m-Xylene	ND		ug/l	2.0		1		
o-xylene	ND		ug/l	1.0		1		
Styrene	ND		ug/l	1.0		1		
Acetone	ND		ug/l	10		1		
Carbon disulfide	ND		ug/l	5.0		1		
2-Butanone	ND		ug/l	10		1		
4-Methyl-2-pentanone	ND		ug/l	10		1		
2-Hexanone	ND		ug/l	10		1		
Acrolein	ND		ug/l	8.0		1		
Acrylonitrile	ND		ug/l	10		1		
Methyl tert butyl Ether	ND		ug/l	10		1		
Dibromomethane	ND		ug/l	1.0		1		
Tert-Butyl Alcohol	ND		ug/l	100		1		
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1		
Dichlorodifluoromethane ¹	ND		ug/l	1.0		1		
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1		
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1		
Isopropylbenzene	ND		ug/l	1.0		1		
1,3-Dichloropropane	ND		ug/l	1.0		1		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1		

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	117		60-140	
Fluorobenzene	111		60-140	
4-Bromofluorobenzene	121		60-140	

60-140

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 14:00 L1921376-03

Date Received: Client ID: 05/21/19 GLC-NB-2 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/22/19 20:50

Analyst: GT

4-Bromofluorobenzene

Parameter	Result	Qualifier U	nits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	И - Westborough Lab					
1,4-Dioxane	ND	u	g/l	50		1
Surrogate		% F	Recovery	Qualifier		eptance iteria
Fluorobenzene			121		(60-140

124

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 05/23/19 14:40

Analytical Date: 05/23/19 16:02

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Lab Number: **Project Name:** MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 11:00 L1921376-09

Date Received: Client ID: 05/21/19 GLC-NB-3-2 Field Prep: Not Specified

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/23/19 14:40 Analytical Method: 14,504.1

Analytical Date: 05/23/19 16:32

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: D2 Date Collected: 05/20/19 11:00 L1921376-09

Client ID: Date Received: 05/21/19 GLC-NB-3-2 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/23/19 12:50

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	estborough Lab						
Benzene	2600		ug/l	20		20	
Surrogate			% Recovery	Qualifier	Accept Crite		
Pentafluorobenzene			129		60-	-140	
Fluorobenzene			126		60-	-140	
4-Bromofluorobenzene			126		60-	-140	

L1921376

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Report Date: 05/29/19

Lab Number:

Lab ID: D Date Collected: 05/20/19 11:00 L1921376-09

Date Received: Client ID: 05/21/19 GLC-NB-3-2 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/23/19 11:31

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westbo	Volatile Organics by GC/MS - Westborough Lab									
1,1-Dichloropropene	ND		ug/l	25		10				
1,2,3-Trichloropropane	ND		ug/l	50		10				
Bromochloromethane	ND		ug/l	25		10				
Tetrahydrofuran	ND ND			50		10				
2,2-Dichloropropane	ND ND		ug/l	25		10				
			ug/l							
1,1,1,2-Tetrachloroethane	ND		ug/l	5.0		10				
Bromobenzene	ND		ug/l	25		10				
n-Butylbenzene	ND		ug/l	5.0		10				
sec-Butylbenzene	ND		ug/l	5.0		10				
tert-Butylbenzene	ND		ug/l	25		10				
o-Chlorotoluene	ND		ug/l	25		10				
p-Chlorotoluene	ND		ug/l	25		10				
Hexachlorobutadiene	ND		ug/l	5.0		10				
p-Isopropyltoluene	ND		ug/l	5.0		10				
Naphthalene	ND		ug/l	25		10				
n-Propylbenzene	ND		ug/l	5.0		10				
1,3,5-Trimethylbenzene	ND		ug/l	25		10				
1,2,4-Trimethylbenzene	ND		ug/l	25		10				
Ethyl ether	ND		ug/l	25		10				
Diisopropyl Ether	ND		ug/l	20		10				
Ethyl-Tert-Butyl-Ether	ND		ug/l	20		10				

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	97	70-130	

L1921376

05/20/19 11:00

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Report Date: 05/29/19

Lab Number:

Date Collected:

Lab ID: D L1921376-09

Client ID: GLC-NB-3-2

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Date Received: 05/21/19 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/22/19 20:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
Methylene chloride	ND		ug/l	10		10			
1,1-Dichloroethane	ND		ug/l	15		10			
Chloroform	ND		ug/l	10		10			
Carbon tetrachloride	ND		ug/l	10		10			
1,2-Dichloropropane	ND		ug/l	35		10			
Dibromochloromethane	ND		ug/l	10		10			
1,1,2-Trichloroethane	ND		ug/l	15		10			
2-Chloroethylvinyl ether	ND		ug/l	100		10			
Tetrachloroethene	ND		ug/l	10		10			
Chlorobenzene	ND		ug/l	35		10			
Trichlorofluoromethane	ND		ug/l	50		10			
1,2-Dichloroethane	ND		ug/l	15		10			
1,1,1-Trichloroethane	ND		ug/l	20		10			
Bromodichloromethane	ND		ug/l	10		10			
trans-1,3-Dichloropropene	ND		ug/l	15		10			
cis-1,3-Dichloropropene	ND		ug/l	15		10			
Bromoform	ND		ug/l	10		10			
1,1,2,2-Tetrachloroethane	ND		ug/l	10		10			
Benzene	2600	Е	ug/l	10		10			
Toluene	ND		ug/l	10		10			
Ethylbenzene	ND		ug/l	10		10			
Chloromethane	ND		ug/l	50		10			
Bromomethane	90		ug/l	50		10			
Vinyl chloride	ND		ug/l	10		10			
Chloroethane	ND		ug/l	20		10			
1,1-Dichloroethene	ND		ug/l	10		10			
trans-1,2-Dichloroethene	ND		ug/l	15		10			
cis-1,2-Dichloroethene	ND		ug/l	10		10			

05/29/19

Report Date:

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab ID: L1921376-09 D Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
1,2-Dichlorobenzene ND ug/l 50 10 10 1,3-Dichlorobenzene ND ug/l 50 10 10 1,4-Dichlorobenzene ND ug/l 50 10 10 10 10 10 10 1	Volatile Organics by GC/MS - Westborough Lab									
ND	Trichloroethene	ND		ug/l	10		10			
1,4-Dichlorobenzene ND ug/l 50 10	1,2-Dichlorobenzene	ND		ug/l	50		10			
ND	1,3-Dichlorobenzene	ND		ug/l	50		10			
ND	1,4-Dichlorobenzene	ND		ug/l	50		10			
ND	p/m-Xylene	ND		ug/l	20		10			
Acetone ND ug/l 100 10 Carbon disulfide ND ug/l 50 10 2-Butanone ND ug/l 100 10 4-Methyl-2-pentanone ND ug/l 100 10 2-Hexanone ND ug/l 100 10 Acrolein ND ug/l 80 10 Acrolein ND ug/l 100 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 1000 10 Tertiary-Amyl Methyl Ether ND ug/l 10 10 Dicklorodifluoromethane¹ ND ug/l 10 10 1,2,3-Tri	o-xylene	ND		ug/l	10		10			
Carbon disulfide ND ug/l 50 10 2-Butanone ND ug/l 100 10 4-Methyl-2-pentanone ND ug/l 100 10 2-Hexanone ND ug/l 100 10 2-Hexanone ND ug/l 100 10 Acrolein ND ug/l 80 10 Acrolein ND ug/l 100 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 100 10 Tertiary-Amyl Methyl Ether ND ug/l 100 10 Tertiary-Amyl Methyl Ether ND ug/l 100 10 Dichlorodifluoromethane¹ ND ug/l 200 10 Dichlorodifluoromethane¹ ND ug/l 10 10 Dichlorodifluoromethane ND ug/l 10 10	Styrene	ND		ug/l	10		10			
2-Butanone ND ug/l 100 10 4-Methyl-2-pentanone ND ug/l 100 10 2-Hexanone ND ug/l 100 10 Acrolein ND ug/l 80 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 100 10 10 11 11 11 11 11 1	Acetone	ND		ug/l	100		10			
4-Methyl-2-pentanone ND ug/l 100 10 2-Hexanone ND ug/l 100 10 Acrolein ND ug/l 80 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 100 10 Tertary-Amyl Methyl Ether ND ug/l 100 10 Tertiary-Amyl Methyl Ether ND ug/l 100 10 Tertiary-Amyl Methyl Ether ND ug/l 200 10 Dichlorodifluoromethane¹ ND ug/l 10 10 Tertiary-Amyl Methyl Ether ND ug/l 10 10	Carbon disulfide	ND		ug/l	50		10			
2-Hexanone ND ug/l 100 10 Acrolein ND ug/l 80 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 1000 10 Tertiary-Amyl Methyl Ether ND ug/l 1000 10 Dichlorodifluoromethane ND ug/l 200 10 Dichlorodifluoromethane ND ug/l 10 10 I,2,3-Trichlorobenzene ND ug/l 10 10 I,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10	2-Butanone	ND		ug/l	100		10			
Acrolein ND ug/l 80 10 Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 10 10 Tert-Butyl Alcohol ND ug/l 1000 10 Tertiary-Amyl Methyl Ether ND ug/l 200 10 Dichlorodifluoromethane¹ ND ug/l 10 10 1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	4-Methyl-2-pentanone	ND		ug/l	100		10			
Acrylonitrile ND ug/l 100 10 Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 100 10 Tert-Butyl Alcohol ND ug/l 1000 10 Tertiary-Amyl Methyl Ether ND ug/l 200 10 Dichlorodifluoromethane ND ug/l 10 10 1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10	2-Hexanone	ND		ug/l	100		10			
Methyl tert butyl Ether ND ug/l 100 10 Dibromomethane ND ug/l 10 10 Tert-Butyl Alcohol ND ug/l 1000 10 Tertiary-Amyl Methyl Ether ND ug/l 200 10 Dichlorodifluoromethane¹ ND ug/l 10 10 1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	Acrolein	ND		ug/l	80		10			
Dibromomethane ND ug/l 10 10	Acrylonitrile	ND		ug/l	100		10			
Tert-Butyl Alcohol	Methyl tert butyl Ether	ND		ug/l	100		10			
Tertiary-Amyl Methyl Ether ND ug/l 200 10 Dichlorodifluoromethane¹ ND ug/l 10 10 1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	Dibromomethane	ND		ug/l	10		10			
Dichlorodifluoromethane¹ ND ug/l 10 10 1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	Tert-Butyl Alcohol	ND		ug/l	1000		10			
1,2,3-Trichlorobenzene ND ug/l 10 10 1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	Tertiary-Amyl Methyl Ether	ND		ug/l	200		10			
1,2,4-Trichlorobenzene ND ug/l 10 10 Isopropylbenzene ND ug/l 10 10 1,3-Dichloropropane ND ug/l 10 10	Dichlorodifluoromethane ¹	ND		ug/l	10		10			
Sopropylbenzene	1,2,3-Trichlorobenzene	ND		ug/l	10		10			
1,3-Dichloropropane ND ug/l 10 10	1,2,4-Trichlorobenzene	ND		ug/l	10		10			
7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Isopropylbenzene	ND		ug/l	10		10			
1,2-Dibromo-3-chloropropane ND ug/l 20 10	1,3-Dichloropropane	ND		ug/l	10		10			
	1,2-Dibromo-3-chloropropane	ND		ug/l	20		10			

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	123		60-140	
Fluorobenzene	119		60-140	
4-Bromofluorobenzene	114		60-140	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 D Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/22/19 20:16

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbor	ough Lab					
1,4-Dioxane	ND		ug/l	500		10
Surrogate			% Recovery	Qualifier		eptance riteria

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Fluorobenzene	130		60-140	
4-Bromofluorobenzene	122		60-140	

L1921376

Project Name: MBTA GLX NEWBERN AVE II

L1921376-10

Project Number: 290762.0016.0000

SAMPLE RESULTS

Date Collected: 05/20/19 00:00

Report Date: 05/29/19

Lab Number:

Client ID: TRIP BLANK Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Lab ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 05/24/19 09:45

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - Westborough Lab									
1,1-Dichloropropene	ND		ug/l	2.5		1			
1,2,3-Trichloropropane	ND		ug/l	5.0		1			
Bromochloromethane	ND		ug/l	2.5		1			
Tetrahydrofuran	ND		ug/l	5.0		1			
2,2-Dichloropropane	ND		ug/l	2.5		1			
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1			
Bromobenzene	ND		ug/l	2.5		1			
n-Butylbenzene	ND		ug/l	0.50		1			
sec-Butylbenzene	ND		ug/l	0.50		1			
tert-Butylbenzene	ND		ug/l	2.5		1			
o-Chlorotoluene	ND		ug/l	2.5		1			
p-Chlorotoluene	ND		ug/l	2.5		1			
Hexachlorobutadiene	ND		ug/l	0.50		1			
p-Isopropyltoluene	ND		ug/l	0.50		1			
Naphthalene	ND		ug/l	2.5		1			
n-Propylbenzene	ND		ug/l	0.50		1			
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1			
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1			
Ethyl ether	ND		ug/l	2.5		1			
Diisopropyl Ether	ND		ug/l	2.0		1			
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	107	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	108	70-130	

L1921376

05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab Number:

Report Date:

SAMPLE RESULTS

Lab ID: L1921376-10 Date Collected: 05/20/19 00:00

Client ID: TRIP BLANK Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 128,624.1
Analytical Date: 05/23/19 18:57

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	1.0		1	
1,1-Dichloroethane	ND		ug/l	1.5		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	3.5		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.5		1	
2-Chloroethylvinyl ether	ND		ug/l	10		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	3.5		1	
Trichlorofluoromethane	ND		ug/l	5.0		1	
1,2-Dichloroethane	ND		ug/l	1.5		1	
1,1,1-Trichloroethane	ND		ug/l	2.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	1.5		1	
cis-1,3-Dichloropropene	ND		ug/l	1.5		1	
Bromoform	ND		ug/l	1.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	1.0		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	5.0		1	
Bromomethane	ND		ug/l	5.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.5		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 00:00 L1921376-10

Date Received: Client ID: TRIP BLANK 05/21/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	oorough Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Styrene	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	10		1
4-Methyl-2-pentanone	ND		ug/l	10		1
2-Hexanone	ND		ug/l	10		1
Acrolein	ND		ug/l	8.0		1
Acrylonitrile	ND		ug/l	10		1
Methyl tert butyl Ether	ND		ug/l	10		1
Dibromomethane	ND		ug/l	1.0		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1
Dichlorodifluoromethane ¹	ND		ug/l	1.0		1
1,2,3-Trichlorobenzene	ND		ug/l	1.0		1
1,2,4-Trichlorobenzene	ND		ug/l	1.0		1
Isopropylbenzene	ND		ug/l	1.0		1
1,3-Dichloropropane	ND		ug/l	1.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	107		60-140	
Fluorobenzene	94		60-140	
4-Bromofluorobenzene	97		60-140	

L1921376

Project Name: Lab Number: MBTA GLX NEWBERN AVE II

Project Number: Report Date: 290762.0016.0000

05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 00:00 L1921376-10

Client ID: Date Received: 05/21/19 TRIP BLANK Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/23/19 18:57

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Westbo	rough Lab						
1,4-Dioxane	ND		ug/l	50		1	
Surrogate			% Recovery	Qualifier		ptance	

Fluorobenzene 97 60-140	Surrogate	% Recovery	Accept Qualifier Crite
	Surrogate Fluorobenzene	% Recovery	Qualifier Crite
	4-Bromofluorobenzene	110	60

Lab Number: **Project Name:** MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 00:00 L1921376-10

Date Received: Client ID: TRIP BLANK 05/21/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/23/19 14:40

Analytical Method: 14,504.1 Analytical Date: 05/23/19 16:47

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/22/19 08:55

Analyst: PD

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-02	Batch:	WG1240176-5
1,1-Dichloropropene	ND	ug/l	2.5	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Diisopropyl Ether	ND	ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	

		Acceptance			
Surrogate	%Recovery Qualifie	r Criteria			
1,2-Dichloroethane-d4	97	70-130			
Toluene-d8	98	70-130			
4-Bromofluorobenzene	94	70-130			
Dibromofluoromethane	96	70-130			

L1921376

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 12:25

arameter	Result	Qualifier Units	RL		MDL
olatile Organics by GC/MS	- Westborough L	ab for sample(s):	01-03,09	Batch:	WG1240431-4
Methylene chloride	ND	ug/l	1.0		
1,1-Dichloroethane	ND	ug/l	1.5		
Chloroform	ND	ug/l	1.0		
Carbon tetrachloride	ND	ug/l	1.0		
1,2-Dichloropropane	ND	ug/l	3.5		
Dibromochloromethane	ND	ug/l	1.0		
1,1,2-Trichloroethane	ND	ug/l	1.5		
2-Chloroethylvinyl ether	ND	ug/l	10		
Tetrachloroethene	ND	ug/l	1.0		
Chlorobenzene	ND	ug/l	3.5		
Trichlorofluoromethane	ND	ug/l	5.0		
1,2-Dichloroethane	ND	ug/l	1.5		
1,1,1-Trichloroethane	ND	ug/l	2.0		
Bromodichloromethane	ND	ug/l	1.0		
trans-1,3-Dichloropropene	ND	ug/l	1.5		
cis-1,3-Dichloropropene	ND	ug/l	1.5		
Bromoform	ND	ug/l	1.0		
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	1.0		
Toluene	ND	ug/l	1.0		
Ethylbenzene	ND	ug/l	1.0		
Chloromethane	ND	ug/l	5.0		
Bromomethane	ND	ug/l	5.0		
Vinyl chloride	ND	ug/l	1.0		
Chloroethane	ND	ug/l	2.0		
1,1-Dichloroethene	ND	ug/l	1.0		
trans-1,2-Dichloroethene	ND	ug/l	1.5		
cis-1,2-Dichloroethene	ND	ug/l	1.0		
Trichloroethene	ND	ug/l	1.0		

L1921376

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 12:25

arameter	Result	Qualifier Units	RL.	MDL
olatile Organics by GC/MS - V	/estborough La	b for sample(s):	01-03,09 E	Batch: WG1240431-4
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Styrene	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	10	
4-Methyl-2-pentanone	ND	ug/l	10	
2-Hexanone	ND	ug/l	10	
Acrolein	ND	ug/l	8.0	
Acrylonitrile	ND	ug/l	10	
Methyl tert butyl Ether	ND	ug/l	10	
Dibromomethane	ND	ug/l	1.0	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	
Dichlorodifluoromethane ¹	ND	ug/l	1.0	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
Isopropylbenzene	ND	ug/l	1.0	
1,3-Dichloropropane	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/22/19 12:25

Parameter	Result	Qualifier	Units	RI	_	MDL	
Volatile Organics by GC/MS - West	thorough La	ab for sample	e(s)·	01-03 09	Batch:	WG1240431-4	

	Acceptance				
Surrogate	%Recovery Qualif	ier Criteria			
Pentafluorobenzene	94	60-140			
Fluorobenzene	98	60-140			
4-Bromofluorobenzene	94	60-140			

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 10:47

arameter	Result	Qualifier Unit	s RL	MDL
olatile Organics by GC/MS - \	Westborough Lab	o for sample(s):	01,09 Batch:	WG1240431-8
Methylene chloride	ND	ug/	1.0	
1,1-Dichloroethane	ND	ug/	l 1.5	
Chloroform	ND	ug/	1.0	
Carbon tetrachloride	ND	ug/	1.0	
1,2-Dichloropropane	ND	ug/	l 3.5	
Dibromochloromethane	ND	ug/	1.0	
1,1,2-Trichloroethane	ND	ug/	l 1.5	
2-Chloroethylvinyl ether	ND	ug/	l 10	
Tetrachloroethene	ND	ug/	1.0	
Chlorobenzene	ND	ug/	l 3.5	
Trichlorofluoromethane	ND	ug/	1 5.0	
1,2-Dichloroethane	ND	ug/	l 1.5	
1,1,1-Trichloroethane	ND	ug/	1 2.0	
Bromodichloromethane	ND	ug/	1.0	
trans-1,3-Dichloropropene	ND	ug/	l 1.5	
cis-1,3-Dichloropropene	ND	ug/	l 1.5	
Bromoform	ND	ug/	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/	1.0	
Benzene	ND	ug/	1.0	
Toluene	ND	ug/	1.0	
Ethylbenzene	ND	ug/	1.0	
Chloromethane	ND	ug/	1 5.0	
Bromomethane	9.8	ug/	1 5.0	
Vinyl chloride	ND	ug/	1.0	
Chloroethane	ND	ug/	1 2.0	
1,1-Dichloroethene	ND	ug/	l 1.0	
trans-1,2-Dichloroethene	ND	ug/	l 1.5	
cis-1,2-Dichloroethene	ND	ug/	l 1.0	
Trichloroethene	ND	ug/	1.0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 10:47

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - W	estborough Lab	o for sample(s): 01,09	Batch:	WG1240431-8
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Styrene	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	10	
4-Methyl-2-pentanone	ND	ug/l	10	
2-Hexanone	ND	ug/l	10	
Acrolein	ND	ug/l	8.0	
Acrylonitrile	ND	ug/l	10	
Methyl tert butyl Ether	ND	ug/l	10	
Dibromomethane	ND	ug/l	1.0	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	
Dichlorodifluoromethane ¹	ND	ug/l	1.0	
1,2,3-Trichlorobenzene	ND	ug/l	1.0	
1,2,4-Trichlorobenzene	ND	ug/l	1.0	
Isopropylbenzene	ND	ug/l	1.0	
1,3-Dichloropropane	ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 10:47

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s): 01,09Batch: WG1240431-8

		Acceptance		
Surrogate	%Recovery Qualifie	Criteria		
Pentafluorobenzene	119	60-140		
Fluorobenzene	114	60-140		
4-Bromofluorobenzene	121	60-140		

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/22/19 12:25

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01-03,09	Batch: WG1240444-4
1,4-Dioxane	ND		ug/l	50	

	Acceptance				
Surrogate	%Recovery Qualifie	r Criteria			
		_			
Fluorobenzene	105	60-140			
4-Bromofluorobenzene	98	60-140			

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/23/19 08:32

Analyst: PD

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lat	o for sample(s): 03	,09 Batch:	WG1240495-5	
1,1-Dichloropropene	ND	ug/l	2.5		
1,2,3-Trichloropropane	ND	ug/l	5.0		
Bromochloromethane	ND	ug/l	2.5		
Tetrahydrofuran	ND	ug/l	5.0		
2,2-Dichloropropane	ND	ug/l	2.5		
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50		
Bromobenzene	ND	ug/l	2.5		
n-Butylbenzene	ND	ug/l	0.50		
sec-Butylbenzene	ND	ug/l	0.50		
tert-Butylbenzene	ND	ug/l	2.5		
o-Chlorotoluene	ND	ug/l	2.5		
p-Chlorotoluene	ND	ug/l	2.5		
Hexachlorobutadiene	ND	ug/l	0.50		
p-Isopropyltoluene	ND	ug/l	0.50		
Naphthalene	ND	ug/l	2.5		
n-Propylbenzene	ND	ug/l	0.50		
1,3,5-Trimethylbenzene	ND	ug/l	2.5		
1,2,4-Trimethylbenzene	ND	ug/l	2.5		
Ethyl ether	ND	ug/l	2.5		
Diisopropyl Ether	ND	ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0		

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
4.0 Dishlamathana d4	404	70.400
1,2-Dichloroethane-d4	104	70-130
Toluene-d8	99	70-130
4-Bromofluorobenzene	96	70-130
Dibromofluoromethane	100	70-130

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/23/19 15:17 Extraction Date: 05/23/19 14:40

Analyst: AWS

Parameter	Result	Qualifier	Units	RL		MDL	
Microextractables by GC - Westbor	ough Lab fo	r sample(s):	01-03,09-	10	Batch:	WG1240537-1	
1,2-Dibromoethane	ND		ug/l	0.01	0		Α

L1921376

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 11:27

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	ab for sample(s): 10) Batch:	WG1240909-4
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Chloroform	ND	ug/l	1.0	
Carbon tetrachloride	ND	ug/l	1.0	
1,2-Dichloropropane	ND	ug/l	3.5	
Dibromochloromethane	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
2-Chloroethylvinyl ether	ND	ug/l	10	
Tetrachloroethene	ND	ug/l	1.0	
Chlorobenzene	ND	ug/l	3.5	
Trichlorofluoromethane	ND	ug/l	5.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Bromodichloromethane	ND	ug/l	1.0	
trans-1,3-Dichloropropene	ND	ug/l	1.5	
cis-1,3-Dichloropropene	ND	ug/l	1.5	
Bromoform	ND	ug/l	1.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Chloromethane	ND	ug/l	5.0	
Bromomethane	ND	ug/l	5.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	2.0	
1,1-Dichloroethene	ND	ug/l	1.0	
trans-1,2-Dichloroethene	ND	ug/l	1.5	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	

L1921376

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 11:27

Volatile Organics by GC/MS - Westborough 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND p/m-Xylene ND o-xylene ND Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND Tert-Butyl Alcohol ND	Lab for sample(s): ug/l ug/l	5.0 5.0 5.0 2.0 1.0 1.0	WG1240909-4
1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND p/m-Xylene ND o-xylene ND Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l ug/l ug/l ug/l ug/l ug/l	5.0 5.0 2.0 1.0	
1,4-Dichlorobenzene ND p/m-Xylene ND o-xylene ND Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l ug/l ug/l ug/l ug/l	5.0 2.0 1.0 1.0	
p/m-Xylene ND o-xylene ND Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l ug/l ug/l ug/l	2.0 1.0 1.0	
o-xylene ND Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l ug/l ug/l	1.0	
Styrene ND Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l	1.0	
Acetone ND Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l		
Carbon disulfide ND 2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND		10	
2-Butanone ND 4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	/1	10	
4-Methyl-2-pentanone ND 2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/i	5.0	
2-Hexanone ND Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l	10	
Acrolein ND Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l	10	
Acrylonitrile ND Methyl tert butyl Ether ND Dibromomethane ND	ug/l	10	
Methyl tert butyl EtherNDDibromomethaneND	ug/l	8.0	
Dibromomethane ND	ug/l	10	
	ug/l	10	
Tert-Butyl Alcohol ND	ug/l	1.0	
	ug/l	100	
Tertiary-Amyl Methyl Ether ND	ug/l	20	
Dichlorodifluoromethane ¹ ND	ug/l	1.0	
1,2,3-Trichlorobenzene ND	ug/l	1.0	
1,2,4-Trichlorobenzene ND	ug/l	1.0	
Isopropylbenzene ND	ug/l	1.0	
1,3-Dichloropropane ND	ug/l	1.0	
1,2-Dibromo-3-chloropropane ND	ug/l	2.0	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/23/19 11:27

Analyst: GT

ParameterResultQualifierUnitsRLMDLVolatile Organics by GC/MS - Westborough Lab for sample(s):10Batch:WG1240909-4

	Acceptance				
Surrogate	%Recovery Qualif	ier Criteria			
Pentafluorobenzene	104	60-140			
Fluorobenzene	94	60-140			
4-Bromofluorobenzene	99	60-140			

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/23/19 11:27

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	10	Batch:	WG1240917-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifie	Criteria
Fluorobenzene	97	60-140
4-Bromofluorobenzene	111	60-140

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L19

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/24/19 09:17

Analyst: MKS

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS -	Westborough Lab	o for sample(s): 10	Batch:	WG1240958-5
1,1-Dichloropropene	ND	ug/l	2.5	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Diisopropyl Ether	ND	ug/l	2.0	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	

Surrogate	%Recovery	Acceptance Criteria
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	100	70-130
Dibromofluoromethane	106	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

arameter	LCS %Recovery	Qual	LCSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-02 Batch:	WG1240176-3 W	/G1240176-4			
1,1-Dichloropropene	90		85		70-130	6		20
1,2,3-Trichloropropane	93		88		64-130	6		20
Bromochloromethane	100		96		70-130	4		20
Tetrahydrofuran	88		83		58-130	6		20
2,2-Dichloropropane	100		97		63-133	3		20
1,1,1,2-Tetrachloroethane	98		92		64-130	6		20
Bromobenzene	96		93		70-130	3		20
n-Butylbenzene	100		98		53-136	2		20
sec-Butylbenzene	98		95		70-130	3		20
tert-Butylbenzene	96		93		70-130	3		20
o-Chlorotoluene	98		93		70-130	5		20
p-Chlorotoluene	98		95		70-130	3		20
Hexachlorobutadiene	94		95		63-130	1		20
p-Isopropyltoluene	99		96		70-130	3		20
Naphthalene	94		97		70-130	3		20
n-Propylbenzene	100		97		69-130	3		20
1,3,5-Trimethylbenzene	99		95		64-130	4		20
1,2,4-Trimethylbenzene	100		98		70-130	2		20
Ethyl ether	94		87		59-134	8		20
Diisopropyl Ether	92		87		70-130	6		20
Ethyl-Tert-Butyl-Ether	90		86		70-130	5		20

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1240176-3 WG1240176-4

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	95	92	70-130
Toluene-d8	100	98	70-130
4-Bromofluorobenzene	97	95	70-130
Dibromofluoromethane	96	94	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Parameter	LCS %Recovery	Qual	LCS %Reco		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westboroug	h Lab Associated	sample(s):	01-03,09	Batch:	WG12404	31-3				
Methylene chloride	105		-			60-140	-		28	
1,1-Dichloroethane	95		-			50-150	-		49	
Chloroform	105		-			70-135	-		54	
Carbon tetrachloride	110		-			70-130	-		41	
1,2-Dichloropropane	105		-			35-165	-		55	
Dibromochloromethane	100		-			70-135	-		50	
1,1,2-Trichloroethane	100		-			70-130	-		45	
2-Chloroethylvinyl ether	95		-			1-225	-		71	
Tetrachloroethene	110		-			70-130	-		39	
Chlorobenzene	95		-			65-135	-		53	
Trichlorofluoromethane	110		-			50-150	-		84	
1,2-Dichloroethane	110		-			70-130	-		49	
1,1,1-Trichloroethane	115		-			70-130	-		36	
Bromodichloromethane	110		-			65-135	-		56	
trans-1,3-Dichloropropene	100		-			50-150	-		86	
cis-1,3-Dichloropropene	105		-			25-175	-		58	
Bromoform	95		-			70-130	-		42	
1,1,2,2-Tetrachloroethane	100		-			60-140	-		61	
Benzene	110		-			65-135	-		61	
Toluene	110		-			70-130	-		41	
Ethylbenzene	105		-			60-140	-		63	
Chloromethane	100		-			1-205	-		60	
Bromomethane	85		-			15-185	-		61	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Parameter	LCS %Recovery	Qual	LC %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03,09	Batch:	WG12404	31-3				
Vinyl chloride	100			-		5-195	-		66	
Chloroethane	105			-		40-160	-		78	
1,1-Dichloroethene	120			-		50-150	-		32	
trans-1,2-Dichloroethene	110			-		70-130	-		45	
cis-1,2-Dichloroethene	105			-		60-140	-		30	
Trichloroethene	110			-		65-135	-		48	
1,2-Dichlorobenzene	100			-		65-135	-		57	
1,3-Dichlorobenzene	100			-		70-130	-		43	
1,4-Dichlorobenzene	100			-		65-135	-		57	
p/m-Xylene	105			-		60-140	-		30	
o-xylene	95			-		60-140	-		30	
Styrene	105			-		60-140	-		30	
Acetone	100			-		40-160	-		30	
Carbon disulfide	100			-		60-140	-		30	
2-Butanone	106			-		60-140	-		30	
4-Methyl-2-pentanone	106			-		60-140	-		30	
2-Hexanone	96			-		60-140	-		30	
Acrolein	82			-		60-140	-		30	
Acrylonitrile	95					60-140	-		60	
Methyl tert butyl Ether	100			•		60-140	-		30	
Dibromomethane	100			-		70-130	-		30	
Tert-Butyl Alcohol	100			•		60-140	-		30	
Tertiary-Amyl Methyl Ether	90			-		60-140	-		30	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03,09 Batch:	WG124043	31-3				
Dichlorodifluoromethane ¹	100		-		70-130	-		30	
1,2,3-Trichlorobenzene	95		-		60-140	-		30	
1,2,4-Trichlorobenzene	100		-		60-140	-		30	
Isopropylbenzene	110		-		60-140	-		30	
1,3-Dichloropropane	105		-		60-140	-		30	
1,2-Dibromo-3-chloropropane	90		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	97		60-140
Fluorobenzene	100		60-140
4-Bromofluorobenzene	97		60-140

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	01,09 Batch: W	/G1240431-7	7			
Methylene chloride	110		-		60-140	-	28	
1,1-Dichloroethane	95		-		50-150	-	49	
Chloroform	105		-		70-135	-	54	
Carbon tetrachloride	110		-		70-130	-	41	
1,2-Dichloropropane	105		-		35-165	-	55	
Dibromochloromethane	100		-		70-135	-	50	
1,1,2-Trichloroethane	100		-		70-130	-	45	
2-Chloroethylvinyl ether	100		-		1-225	-	71	
Tetrachloroethene	110		-		70-130	-	39	
Chlorobenzene	95		-		65-135	-	53	
Trichlorofluoromethane	105		-		50-150	-	84	
1,2-Dichloroethane	105		-		70-130	-	49	
1,1,1-Trichloroethane	110		-		70-130	-	36	
Bromodichloromethane	105		-		65-135	-	56	
trans-1,3-Dichloropropene	95		-		50-150	-	86	
cis-1,3-Dichloropropene	100		-		25-175	-	58	
Bromoform	95		-		70-130	-	42	
1,1,2,2-Tetrachloroethane	100		-		60-140	-	61	
Benzene	110		-		65-135	-	61	
Toluene	105		-		70-130	-	41	
Ethylbenzene	100		-		60-140	-	63	
Chloromethane	95		-		1-205	-	60	
Bromomethane	80		-		15-185	-	61	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

'arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated s	ample(s): 01,0	9 Batch: W	'G1240431-	7			
Vinyl chloride	95		-		5-195	-		66
Chloroethane	100		-		40-160	-		78
1,1-Dichloroethene	115		-		50-150	-		32
trans-1,2-Dichloroethene	115		-		70-130	-		45
cis-1,2-Dichloroethene	100		-		60-140	-		30
Trichloroethene	115		-		65-135	-		48
1,2-Dichlorobenzene	105		-		65-135	-		57
1,3-Dichlorobenzene	100		-		70-130	-		43
1,4-Dichlorobenzene	100		-		65-135	-		57
p/m-Xylene	102		-		60-140	-		30
o-xylene	95		-		60-140	-		30
Styrene	100		-		60-140	-		30
Acetone	100		-		40-160	-		30
Carbon disulfide	100		-		60-140	-		30
2-Butanone	100		-		60-140	-		30
4-Methyl-2-pentanone	108		-		60-140	-		30
2-Hexanone	96		-		60-140	-		30
Acrolein	90		-		60-140	-		30
Acrylonitrile	100		-		60-140	-		60
Methyl tert butyl Ether	105		-		60-140	-		30
Dibromomethane	100		-		70-130	-		30
Tert-Butyl Alcohol	100		-		60-140	-		30
Tertiary-Amyl Methyl Ether	95		-		60-140	-		30

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated s	sample(s):	01,09 Batch:	WG1240431-7					
Dichlorodifluoromethane ¹	90		-		70-130	-		30	
1,2,3-Trichlorobenzene	95		-		60-140	-		30	
1,2,4-Trichlorobenzene	100		-		60-140	-		30	
Isopropylbenzene	105		-		60-140	-		30	
1,3-Dichloropropane	100		-		60-140	-		30	
1,2-Dibromo-3-chloropropane	95		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	105		60-140
Fluorobenzene	101		60-140
4-Bromofluorobenzene	99		60-140

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376 05/29/19

Project Number: 290762.0016.0000

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ted sample(s)	: 01-03,09 Ba	atch: WG1	240444-3				
1,4-Dioxane	84		-		60-140	-		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Fluorobenzene 4-Bromofluorobenzene	105 98			60-140 60-140	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s): 03,0	09 Batch: W	G1240495-3	WG1240495-4			
1,1-Dichloropropene	88		89		70-130	1		20
1,2,3-Trichloropropane	87		88		64-130	1		20
Bromochloromethane	100		95		70-130	5		20
Tetrahydrofuran	87		84		58-130	4		20
2,2-Dichloropropane	100		100		63-133	0		20
1,1,1,2-Tetrachloroethane	94		93		64-130	1		20
Bromobenzene	91		93		70-130	2		20
n-Butylbenzene	93		99		53-136	6		20
sec-Butylbenzene	91		96		70-130	5		20
tert-Butylbenzene	91		93		70-130	2		20
o-Chlorotoluene	92		94		70-130	2		20
p-Chlorotoluene	92		94		70-130	2		20
Hexachlorobutadiene	87		94		63-130	8		20
p-Isopropyltoluene	94		97		70-130	3		20
Naphthalene	87		96		70-130	10		20
n-Propylbenzene	94		98		69-130	4		20
1,3,5-Trimethylbenzene	92		97		64-130	5		20
1,2,4-Trimethylbenzene	95		98		70-130	3		20
Ethyl ether	87		88		59-134	1		20
Diisopropyl Ether	91		90		70-130	1		20
Ethyl-Tert-Butyl-Ether	90		90		70-130	0		20

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03,09 Batch: WG1240495-3 WG1240495-4

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	97	70-130
Toluene-d8	98	100	70-130
4-Bromofluorobenzene	95	97	70-130
Dibromofluoromethane	99	96	70-130

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000 Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 0°	1-03,09-10 Batch:	WG12405	537-2				
1,2-Dibromoethane	80		-		80-120	-			Α

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 10 Batch: WC	G1240909-3		
Methylene chloride	95	-	60-140	-	28
1,1-Dichloroethane	85	-	50-150	-	49
Chloroform	100	-	70-135	-	54
Carbon tetrachloride	110	-	70-130	-	41
1,2-Dichloropropane	100	-	35-165	-	55
Dibromochloromethane	100	-	70-135	-	50
1,1,2-Trichloroethane	95	-	70-130	-	45
2-Chloroethylvinyl ether	90	-	1-225	-	71
Tetrachloroethene	105	-	70-130	-	39
Chlorobenzene	105	-	65-135	-	53
Trichlorofluoromethane	90	-	50-150	-	84
1,2-Dichloroethane	95	-	70-130	-	49
1,1,1-Trichloroethane	110	-	70-130	-	36
Bromodichloromethane	105	-	65-135	-	56
trans-1,3-Dichloropropene	95	-	50-150	-	86
cis-1,3-Dichloropropene	105	-	25-175	-	58
Bromoform	105	-	70-130	-	42
1,1,2,2-Tetrachloroethane	105	-	60-140	-	61
Benzene	100		65-135	-	61
Toluene	105		70-130	-	41
Ethylbenzene	110	-	60-140	-	63
Chloromethane	80		1-205	-	60
Bromomethane	70	-	15-185	-	61

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 10 Batch: WG	G1240909-3		
Vinyl chloride	85	-	5-195	-	66
Chloroethane	90	-	40-160	-	78
1,1-Dichloroethene	100	-	50-150	-	32
trans-1,2-Dichloroethene	100	-	70-130	-	45
cis-1,2-Dichloroethene	95	-	60-140	-	30
Trichloroethene	100	-	65-135	-	48
1,2-Dichlorobenzene	110	-	65-135	-	57
1,3-Dichlorobenzene	105	-	70-130	-	43
1,4-Dichlorobenzene	105	-	65-135	-	57
p/m-Xylene	110	-	60-140	-	30
o-xylene	105	-	60-140	-	30
Styrene	105	-	60-140	-	30
Acetone	76	-	40-160	-	30
Carbon disulfide	90	-	60-140	-	30
2-Butanone	80	-	60-140	-	30
4-Methyl-2-pentanone	90	-	60-140	-	30
2-Hexanone	84	-	60-140	-	30
Acrolein	85	-	60-140	-	30
Acrylonitrile	85	-	60-140	-	60
Methyl tert butyl Ether	85	-	60-140	-	30
Dibromomethane	90	-	70-130	-	30
Tert-Butyl Alcohol	69	-	60-140	-	30
Tertiary-Amyl Methyl Ether	80	-	60-140	-	30

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 10	Batch: WG1	240909-3					
Dichlorodifluoromethane ¹	75		-		70-130	-		30	
1,2,3-Trichlorobenzene	105		-		60-140	-		30	
1,2,4-Trichlorobenzene	110		-		60-140	-		30	
Isopropylbenzene	110		-		60-140	-		30	
1,3-Dichloropropane	100		-		60-140	-		30	
1,2-Dibromo-3-chloropropane	120		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	105		60-140
Fluorobenzene 4-Bromofluorobenzene	94 104		60-140 60-140

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000 Report Date:

05/29/19

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ted sample(s)	: 10 Batch:	WG1240917-	-3				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	97 109				60-140 60-140

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough I	_ab Associated	sample(s):	10 Batch: WG1	240958-3	WG1240958-4			
1,1-Dichloropropene	93		97		70-130	4	20	
1,2,3-Trichloropropane	100		96		64-130	4	20	
Bromochloromethane	110		110		70-130	0	20	
Tetrahydrofuran	110		95		58-130	15	20	
2,2-Dichloropropane	120		120		63-133	0	20	
1,1,1,2-Tetrachloroethane	110		110		64-130	0	20	
Bromobenzene	98		100		70-130	2	20	
n-Butylbenzene	100		100		53-136	0	20	
sec-Butylbenzene	91		95		70-130	4	20	
tert-Butylbenzene	99		100		70-130	1	20	
o-Chlorotoluene	120		120		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
Hexachlorobutadiene	95		98		63-130	3	20	
p-Isopropyltoluene	100		110		70-130	10	20	
Naphthalene	91		93		70-130	2	20	
n-Propylbenzene	98		100		69-130	2	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,2,4-Trimethylbenzene	100		100		70-130	0	20	
Ethyl ether	90		88		59-134	2	20	
Diisopropyl Ether	92		91		70-130	1	20	
Ethyl-Tert-Butyl-Ether	96		94		70-130	2	20	

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 10 Batch: WG1240958-3 WG1240958-4

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	113	111	70-130
Toluene-d8	98	99	70-130
4-Bromofluorobenzene	98	98	70-130
Dibromofluoromethane	106	104	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recove		Recovery Limits	RPD Qua	RPD I Limits	<u>Colum</u> n
Microextractables by GC -	- Westborough Lab	Associate	ed sample(s): (01-03,09-10	QC Batch	ID: WG12	40537-3	QC Sample	e: L1921376	-03 Client II	D: GLC-NB	5-2
1,2-Dibromoethane	ND	0.252	0.223	88		-	-		80-120	-	20	Α

SEMIVOLATILES

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-01 Date Collected: 05/21/19 11:00

Client ID: GLC-NB-3-1 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 05/22/19 01:38

Analytical Date: 05/23/19 07:17

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Benzidine ¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene ¹	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Aniline ¹	ND		ug/l	2.0		1	
4-Chloroaniline ¹	ND		ug/l	5.0		1	
Dibenzofuran ¹	ND		ug/l	2.0		1	
2-Methylnaphthalene ¹	ND		ug/l	2.0		1	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-01 Date Collected: 05/21/19 11:00

Client ID: GLC-NB-3-1 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - We	Semivolatile Organics by GC/MS - Westborough Lab								
Acetophenone ¹	ND		ug/l	5.0		1			
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1			
2,4,6-Trichlorophenol	ND		ug/l	5.0		1			
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1			
2-Chlorophenol	ND		ug/l	2.0		1			
2,4-Dichlorophenol	ND		ug/l	5.0		1			
2,4-Dimethylphenol	ND		ug/l	5.0		1			
2-Nitrophenol	ND		ug/l	5.0		1			
4-Nitrophenol	ND		ug/l	10		1			
2,4-Dinitrophenol	ND		ug/l	20		1			
Phenol	ND		ug/l	5.0		1			
2-Methylphenol ¹	ND		ug/l	5.0		1			
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1			
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1			

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	60	25-87	
Phenol-d6	38	16-65	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	87	46-121	
2,4,6-Tribromophenol	68	45-128	
4-Terphenyl-d14	99	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-01 Date Collected: 05/21/19 11:00

Client ID: GLC-NB-3-1 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 05/22/19 01:36
Analytical Date: 05/22/19 19:53

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	S-SIM - Westborough Lal	b				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	0.11		ug/l	0.10		1
Naphthalene	6.8		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	0.11		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1
Hexachlorobenzene ¹	ND		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	93	42-122	
2-Fluorobiphenyl	87	46-121	
2,4,6-Tribromophenol	63	45-128	
4-Terphenyl-d14	94	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 05/22/19 01:38

Analytical Date: 05/23/19 07:45

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Benzidine ¹	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
2-Chloronaphthalene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene ¹	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorobutadiene	ND		ug/l	2.0		1
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1
Hexachloroethane	ND		ug/l	2.0		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA ¹	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline ¹	ND		ug/l	2.0		1
4-Chloroaniline ¹	ND		ug/l	5.0		1
Dibenzofuran ¹	ND		ug/l	2.0		1
2-Methylnaphthalene ¹	ND		ug/l	2.0		1

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Wes	Semivolatile Organics by GC/MS - Westborough Lab								
Acetophenone ¹	ND		ug/l	5.0		1			
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1			
2,4,6-Trichlorophenol	ND		ug/l	5.0		1			
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1			
2-Chlorophenol	ND		ug/l	2.0		1			
2,4-Dichlorophenol	ND		ug/l	5.0		1			
2,4-Dimethylphenol	ND		ug/l	5.0		1			
2-Nitrophenol	ND		ug/l	5.0		1			
4-Nitrophenol	ND		ug/l	10		1			
2,4-Dinitrophenol	ND		ug/l	20		1			
Phenol	ND		ug/l	5.0		1			
2-Methylphenol ¹	ND		ug/l	5.0		1			
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1			
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1			

Surrogate	% Recovery G	Acceptance Qualifier Criteria	
2-Fluorophenol	54	25-87	
Phenol-d6	34	16-65	
Nitrobenzene-d5	86	42-122	
2-Fluorobiphenyl	86	46-121	
2,4,6-Tribromophenol	67	45-128	
4-Terphenyl-d14	97	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 05/22/19 01:36
Analytical Date: 05/23/19 18:37

Analyst: DV

Parameter	Result	Qualifier U	nits	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	-SIM - Westborough Lab)				
Acenaphthene	0.64		g/l	0.10		1
Fluoranthene	0.61		3 .	0.10		1
Naphthalene	ND			0.10		1
Benzo(a)anthracene	ND	u	g/l	0.10		1
Benzo(a)pyrene	ND	u	g/l	0.10		1
Benzo(b)fluoranthene	ND	u	g/l	0.10		1
Benzo(k)fluoranthene	ND	u	g/l	0.10		1
Chrysene	ND	u	g/l	0.10		1
Acenaphthylene	ND	u	g/l	0.10		1
Anthracene	ND	u	g/l	0.10		1
Benzo(ghi)perylene	ND	u	g/l	0.10		1
Fluorene	0.14	u	g/l	0.10		1
Phenanthrene	0.11	u	g/l	0.10		1
Dibenzo(a,h)anthracene	ND	u	g/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND	u	g/l	0.10		1
Pyrene	0.42	u	g/l	0.10		1
Pentachlorophenol	ND	u	g/l	1.0		1
Hexachlorobenzene ¹	ND	u	g/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	25-87
Phenol-d6	28	16-65
Nitrobenzene-d5	78	42-122
2-Fluorobiphenyl	75	46-121
2,4,6-Tribromophenol	60	45-128
4-Terphenyl-d14	72	47-138

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 05/22/19 01:38

Analytical Date: 05/23/19 08:13

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
Benzidine ¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1	
2,4-Dinitrotoluene	ND		ug/l	5.0		1	
2,6-Dinitrotoluene	ND		ug/l	5.0		1	
Azobenzene ¹	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	10		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	5.0		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1	
Bis(2-ethylhexyl)phthalate	2.6		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Aniline ¹	ND		ug/l	2.0		1	
4-Chloroaniline ¹	ND		ug/l	5.0		1	
Dibenzofuran ¹	ND		ug/l	2.0		1	
2-Methylnaphthalene ¹	ND		ug/l	2.0		1	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	tborough Lab						
Acetophenone ¹	ND		ug/l	5.0		1	
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	5.0		1	
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	5.0		1	
2,4-Dimethylphenol	ND		ug/l	5.0		1	
2-Nitrophenol	ND		ug/l	5.0		1	
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol ¹	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	60	25-87	
Phenol-d6	37	16-65	
Nitrobenzene-d5	91	42-122	
2-Fluorobiphenyl	89	46-121	
2,4,6-Tribromophenol	66	45-128	
4-Terphenyl-d14	100	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter

Matrix: Water Extraction Method: EPA 625.1

Result

Analytical Method: 129,625.1-SIM Extraction Date: 05/22/19 01:36
Analytical Date: 05/23/19 19:03

Analyst: DV

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	b					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	0.11		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	0.11		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	0.11		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	
Hexachlorobenzene ¹	ND		ug/l	0.10		1	

Qualifier

Units

RL

MDL

Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	53	25-87	
Phenol-d6	33	16-65	
Nitrobenzene-d5	89	42-122	
2-Fluorobiphenyl	85	46-121	
2,4,6-Tribromophenol	60	45-128	
4-Terphenyl-d14	79	47-138	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 05/24/19 15:46

Analyst: CB

05/27/19 15:59

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - W	estborough Lab						
Benzidine ¹	ND		ug/l	20		1	
1,2,4-Trichlorobenzene	ND		ug/l	4.9		1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1	
2-Chloronaphthalene	ND		ug/l	2.0		1	
3,3'-Dichlorobenzidine	ND		ug/l	4.9		1	
2,4-Dinitrotoluene	ND		ug/l	4.9		1	
2,6-Dinitrotoluene	ND		ug/l	4.9		1	
Azobenzene ¹	ND		ug/l	2.0		1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1	
Bis(2-chloroethoxy)methane	ND		ug/l	4.9		1	
Hexachlorobutadiene	ND		ug/l	2.0		1	
Hexachlorocyclopentadiene ¹	ND		ug/l	9.8		1	
Hexachloroethane	ND		ug/l	2.0		1	
Isophorone	ND		ug/l	4.9		1	
Nitrobenzene	ND		ug/l	2.0		1	
NDPA/DPA ¹	ND		ug/l	2.0		1	
n-Nitrosodi-n-propylamine	ND		ug/l	4.9		1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.1		1	
Butyl benzyl phthalate	ND		ug/l	4.9		1	
Di-n-butylphthalate	ND		ug/l	4.9		1	
Di-n-octylphthalate	ND		ug/l	4.9		1	
Diethyl phthalate	ND		ug/l	4.9		1	
Dimethyl phthalate	ND		ug/l	4.9		1	
Aniline ¹	ND		ug/l	2.0		1	
4-Chloroaniline ¹	ND		ug/l	4.9		1	
Dibenzofuran ¹	ND		ug/l	2.0		1	
2-Methylnaphthalene ¹	ND		ug/l	2.0		1	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: Report Date: 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 11:00 L1921376-09

Date Received: 05/21/19 Client ID: GLC-NB-3-2 Field Prep: Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - We	estborough Lab						
Acetophenone ¹	ND		ug/l	4.9		1	
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		1	
2,4,6-Trichlorophenol	ND		ug/l	4.9		1	
p-Chloro-m-cresol ¹	ND		ug/l	2.0		1	
2-Chlorophenol	ND		ug/l	2.0		1	
2,4-Dichlorophenol	ND		ug/l	4.9		1	
2,4-Dimethylphenol	ND		ug/l	4.9		1	
2-Nitrophenol	ND		ug/l	4.9		1	
4-Nitrophenol	ND		ug/l	9.8		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	12		ug/l	4.9		1	
2-Methylphenol ¹	ND		ug/l	4.9		1	
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	4.9		1	
2,4,5-Trichlorophenol ¹	ND		ug/l	4.9		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	34	25-87
Phenol-d6	24	16-65
Nitrobenzene-d5	52	42-122
2-Fluorobiphenyl	60	46-121
2,4,6-Tribromophenol	62	45-128
4-Terphenyl-d14	64	47-138

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Report Date: **Project Number:** 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 11:00 L1921376-09

Date Received: Client ID: 05/21/19 GLC-NB-3-2 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Not Specified

05/23/19 18:00

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 05/22/19 15:46 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SII	M - Westborough La	b				
Assembles	0.04		//	0.40		_
Acenaphthene	0.91		ug/l	0.10		1
Fluoranthene	0.60		ug/l	0.10		1
Naphthalene	2.2		ug/l	0.10		1
Benzo(a)anthracene	0.27		ug/l	0.10		1
Benzo(a)pyrene	0.26		ug/l	0.10		1
Benzo(b)fluoranthene	0.45		ug/l	0.10		1
Benzo(k)fluoranthene	0.18		ug/l	0.10		1
Chrysene	0.31		ug/l	0.10		1
Acenaphthylene	0.13		ug/l	0.10		1
Anthracene	0.14		ug/l	0.10		1
Benzo(ghi)perylene	0.11		ug/l	0.10		1
Fluorene	0.47		ug/l	0.10		1
Phenanthrene	0.18		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	0.13		ug/l	0.10		1
Pyrene	0.58		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1
Hexachlorobenzene ¹	ND		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	38	25-87	
Phenol-d6	27	16-65	
Nitrobenzene-d5	83	42-122	
2-Fluorobiphenyl	80	46-121	
2,4,6-Tribromophenol	49	45-128	
4-Terphenyl-d14	78	47-138	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/23/19 05:00

Analyst: SZ

Extraction Method: EPA 625.1 **Extraction Date:** 05/21/19 21:39

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	6 - Westboroug	h Lab for s	ample(s):	01-03	Batch:	WG1239677-1
Benzidine ¹	ND		ug/l	20		
1,2,4-Trichlorobenzene	ND		ug/l	5.0		
Bis(2-chloroethyl)ether	ND		ug/l	2.0		
2-Chloronaphthalene	ND		ug/l	2.0		
3,3'-Dichlorobenzidine	ND		ug/l	5.0		
2,4-Dinitrotoluene	ND		ug/l	5.0		
2,6-Dinitrotoluene	ND		ug/l	5.0		
Azobenzene ¹	ND		ug/l	2.0		
4-Bromophenyl phenyl ether	ND		ug/l	2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		
Hexachlorobutadiene	ND		ug/l	2.0		
Hexachlorocyclopentadiene ¹	ND		ug/l	10		
Hexachloroethane	ND		ug/l	2.0		
Isophorone	ND		ug/l	5.0		
Nitrobenzene	ND		ug/l	2.0		
NDPA/DPA ¹	ND		ug/l	2.0		
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		
Aniline ¹	ND		ug/l	2.0		
4-Chloroaniline ¹	ND		ug/l	5.0		
Dibenzofuran ¹	ND		ug/l	2.0		
2-Methylnaphthalene ¹	ND		ug/l	2.0		
Acetophenone ¹	ND		ug/l	5.0		

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/23/19 05:00

Analyst: SZ

Extraction Method: EPA 625.1 Extraction Date: 05/21/19 21:39

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01-03	Batch:	WG1239677-1
n-Nitrosodimethylamine ¹	ND		ug/l	2.0		
2,4,6-Trichlorophenol	ND		ug/l	5.0		
p-Chloro-m-cresol ¹	ND		ug/l	2.0		
2-Chlorophenol	ND		ug/l	2.0		
2,4-Dichlorophenol	ND		ug/l	5.0		
2,4-Dimethylphenol	ND		ug/l	5.0		
2-Nitrophenol	ND		ug/l	5.0		
4-Nitrophenol	ND		ug/l	10		
2,4-Dinitrophenol	ND		ug/l	20		
Phenol	ND		ug/l	5.0		
2-Methylphenol ¹	ND		ug/l	5.0		
3-Methylphenol/4-Methylphenol ¹	ND		ug/l	5.0		
2,4,5-Trichlorophenol ¹	ND		ug/l	5.0		

Surrogate	%Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	53		25-87
Phenol-d6	32		16-65
Nitrobenzene-d5	79		42-122
2-Fluorobiphenyl	80		46-121
2,4,6-Tribromophenol	50		45-128
4-Terphenyl-d14	86		47-138

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 05/22/19 18:31

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 05/21/19 21:43

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/l /G1239678-1	MS-SIM - Westbo	orough Lab	for sample	e(s): 01-03,09	Batch:	
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		
Hexachlorobenzene ¹	ND		ug/l	0.10		

Surrogate	%Recovery Q	Acceptance ualifier Criteria
2-Fluorophenol	49	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	84	42-122
2-Fluorobiphenyl	77	46-121
2,4,6-Tribromophenol	49	45-128
4-Terphenyl-d14	88	47-138

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/27/19 12:58

Analyst: CB

Extraction Method: EPA 625.1 **Extraction Date:** 05/24/19 04:11

arameter	Result	Qualifier	Units		RL	MDL
emivolatile Organics by GC/MS	S - Westboroug	h Lab for sa	imple(s):	09	Batch:	WG1240770-1
Benzidine ¹	ND		ug/l		20	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	
2-Chloronaphthalene	ND		ug/l		2.0	
3,3'-Dichlorobenzidine	ND		ug/l	;	5.0	
2,4-Dinitrotoluene	ND		ug/l		5.0	
2,6-Dinitrotoluene	ND		ug/l	;	5.0	
Azobenzene ¹	ND		ug/l	:	2.0	
4-Bromophenyl phenyl ether	ND		ug/l	:	2.0	
Bis(2-chloroisopropyl)ether	ND		ug/l	:	2.0	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	
Hexachlorobutadiene	ND		ug/l	:	2.0	
Hexachlorocyclopentadiene ¹	ND		ug/l		10	
Hexachloroethane	ND		ug/l	:	2.0	
Isophorone	ND		ug/l	,	5.0	
Nitrobenzene	ND		ug/l	:	2.0	
NDPA/DPA ¹	ND		ug/l	:	2.0	
n-Nitrosodi-n-propylamine	ND		ug/l	;	5.0	
Bis(2-ethylhexyl)phthalate	ND		ug/l	:	2.2	
Butyl benzyl phthalate	ND		ug/l	;	5.0	
Di-n-butylphthalate	ND		ug/l	;	5.0	
Di-n-octylphthalate	ND		ug/l	;	5.0	
Diethyl phthalate	ND		ug/l	;	5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Aniline ¹	ND		ug/l	:	2.0	
4-Chloroaniline ¹	ND		ug/l		5.0	
Dibenzofuran ¹	ND		ug/l	:	2.0	
2-Methylnaphthalene ¹	ND		ug/l	:	2.0	
Acetophenone ¹	ND		ug/l		5.0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 05/27/19 12:58

Analyst: CB

Extraction Method: EPA 625.1 05/24/19 04:11 **Extraction Date:**

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	3 - Westboroug	h Lab for sa	ample(s):	09	Batch:	WG1240770-1	
n-Nitrosodimethylamine1	ND		ug/l		2.0		
2,4,6-Trichlorophenol	ND		ug/l		5.0		
p-Chloro-m-cresol ¹	ND		ug/l		2.0		
2-Chlorophenol	ND		ug/l		2.0		
2,4-Dichlorophenol	ND		ug/l		5.0		
2,4-Dimethylphenol	ND		ug/l		5.0		
2-Nitrophenol	ND		ug/l		5.0		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l		20		
Phenol	ND		ug/l		5.0		
2-Methylphenol ¹	ND		ug/l		5.0		
3-Methylphenol/4-Methylphenol ¹	ND		ug/l		5.0		
2,4,5-Trichlorophenol ¹	ND		ug/l		5.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria	:e
2-Fluorophenol	46	25-87	
Phenol-d6	33	16-65	
Nitrobenzene-d5	75	42-122	
2-Fluorobiphenyl	83	46-121	
2,4,6-Tribromophenol	70	45-128	
4-Terphenyl-d14	87	47-138	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s)	: 01-03	Batch:	WG1239	677-2				
Benzidine ¹	6		-			0-70	-		30	
1,2,4-Trichlorobenzene	66		-			57-130	-		50	
Bis(2-chloroethyl)ether	75		-			43-126	-		108	
2-Chloronaphthalene	78		-			65-120	-		24	
3,3'-Dichlorobenzidine	37		-			8-213	-		108	
2,4-Dinitrotoluene	88		-			48-127	-		42	
2,6-Dinitrotoluene	93		-			68-137	-		48	
Azobenzene ¹	78		-			44-115	-		23	
4-Bromophenyl phenyl ether	74		-			65-120	-		43	
Bis(2-chloroisopropyl)ether	68		-			63-139	-		76	
Bis(2-chloroethoxy)methane	79		-			49-165	-		54	
Hexachlorobutadiene	61		-			38-120	-		62	
Hexachlorocyclopentadiene ¹	62		-			7-118	-		35	
Hexachloroethane	61		-			55-120	-		52	
Isophorone	85		-			47-180	-		93	
Nitrobenzene	83		-			54-158	-		62	
NDPA/DPA ¹	78		-			45-112	-		36	
n-Nitrosodi-n-propylamine	84		-			14-198	-		87	
Bis(2-ethylhexyl)phthalate	86		-			29-137	-		82	
Butyl benzyl phthalate	99		-			1-140	-		60	
Di-n-butylphthalate	96		-			8-120	-		47	
Di-n-octylphthalate	95		-			19-132	-		69	
Diethyl phthalate	80		-			1-120	-		100	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD Qual %Recove	%Recove ery Qual Limits		RPD Qual Limits	.
Semivolatile Organics by GC/MS - Westl	borough Lab Associ	ated sample(s): 01-03	Batch: WG1239677-2			
Dimethyl phthalate	92	-	1-120	-	183	
Aniline ¹	46	-	1-75	-	66	
4-Chloroaniline ¹	54	-	10-100	-	53	
Dibenzofuran ¹	74	-	23-126	-	22	
2-Methylnaphthalene ¹	75	-	40-109	-	18	
Acetophenone ¹	94	-	46-113	-	28	
n-Nitrosodimethylamine ¹	48	-	15-68	-	17	
2,4,6-Trichlorophenol	92	-	52-129	-	58	
p-Chloro-m-cresol ¹	93	-	68-130	-	73	
2-Chlorophenol	78	-	36-120	-	61	
2,4-Dichlorophenol	88	-	53-122	-	50	
2,4-Dimethylphenol	85	-	42-120	-	58	
2-Nitrophenol	89	-	45-167	-	55	
4-Nitrophenol	63	-	13-129	-	131	
2,4-Dinitrophenol	74	-	1-173	-	132	
Phenol	40	-	17-120	-	64	
2-Methylphenol ¹	77	-	38-102	-	23	
3-Methylphenol/4-Methylphenol ¹	78	-	35-103	-	26	
2,4,5-Trichlorophenol ¹	93	-	47-126	-	28	

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1239677-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	54		25-87
Phenol-d6	36		16-65
Nitrobenzene-d5	83		42-122
2-Fluorobiphenyl	80		46-121
2,4,6-Tribromophenol	60		45-128
4-Terphenyl-d14	84		47-138

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery		CSD covery Qı	%Recovery ual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS-SIM - \	Westborough Lab A	ssociated sample(s):	01-03,09 Ba	tch: WG1239678-2			
Acenaphthene	70		-	60-132	-	30	
Fluoranthene	75		-	43-121	-	30	
Naphthalene	71		-	36-120	-	30	
Benzo(a)anthracene	71		-	42-133	-	30	
Benzo(a)pyrene	64		-	32-148	-	30	
Benzo(b)fluoranthene	86		-	42-140	-	30	
Benzo(k)fluoranthene	88		-	25-146	-	30	
Chrysene	67		-	44-140	-	30	
Acenaphthylene	76		-	54-126	-	30	
Anthracene	71		-	43-120	-	30	
Benzo(ghi)perylene	33		-	1-195	-	30	
Fluorene	74		-	70-120	-	30	
Phenanthrene	70		-	65-120	-	30	
Dibenzo(a,h)anthracene	40		-	1-200	-	30	
Indeno(1,2,3-cd)pyrene	37		-	1-151	-	30	
Pyrene	73		-	70-120	-	30	
Pentachlorophenol	41		-	38-152	-	30	
Hexachlorobenzene ¹	40		-	8-142	-	30	

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

	LCS				%Recovery	RPD		
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03,09 Batch: WG1239678-2

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	48		25-87
Phenol-d6	31		16-65
Nitrobenzene-d5	80		42-122
2-Fluorobiphenyl	75		46-121
2,4,6-Tribromophenol	45		45-128
4-Terphenyl-d14	84		47-138

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Assoc	ated sample(s	s): 09 Batch:	WG1240770	-3			
Benzidine ¹	0		-		0-70	-		30
1,2,4-Trichlorobenzene	72		-		57-130	-		50
Bis(2-chloroethyl)ether	66		-		43-126	-		108
2-Chloronaphthalene	83		-		65-120	-		24
3,3'-Dichlorobenzidine	32		-		8-213	-		108
2,4-Dinitrotoluene	98		-		48-127	-		42
2,6-Dinitrotoluene	110		-		68-137	-		48
Azobenzene ¹	73		-		44-115	-		23
4-Bromophenyl phenyl ether	80		-		65-120	-		43
Bis(2-chloroisopropyl)ether	63		-		63-139	-		76
Bis(2-chloroethoxy)methane	69		-		49-165	-		54
Hexachlorobutadiene	74		-		38-120	-		62
Hexachlorocyclopentadiene ¹	78		-		7-118	-		35
Hexachloroethane	61		-		55-120	-		52
Isophorone	70		-		47-180	-		93
Nitrobenzene	73		-		54-158	-		62
NDPA/DPA ¹	79		-		45-112	-		36
n-Nitrosodi-n-propylamine	73		-		14-198	-		87
Bis(2-ethylhexyl)phthalate	78		-		29-137	-		82
Butyl benzyl phthalate	80		-		1-140	-		60
Di-n-butylphthalate	80		-		8-120	-		47
Di-n-octylphthalate	74		-		19-132	-		69
Diethyl phthalate	74		-		1-120	-		100

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L192

L1921376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s): 09 Batch:	WG1240770)-3			
Dimethyl phthalate	88		-		1-120	-		183
Aniline ¹	25		-		1-75	-		66
4-Chloroaniline ¹	48		-		10-100	-		53
Dibenzofuran¹	77		-		23-126	-		22
2-Methylnaphthalene ¹	78		-		40-109	-		18
Acetophenone ¹	70		-		46-113	-		28
n-Nitrosodimethylamine ¹	41		-		15-68	-		17
2,4,6-Trichlorophenol	91		-		52-129	-		58
p-Chloro-m-cresol ¹	81		-		68-130	-		73
2-Chlorophenol	67		-		36-120	-		61
2,4-Dichlorophenol	81		-		53-122	•		50
2,4-Dimethylphenol	50		-		42-120	•		58
2-Nitrophenol	82		-		45-167	-		55
4-Nitrophenol	56		-		13-129	-		131
2,4-Dinitrophenol	94		-		1-173	-		132
Phenol	39		-		17-120	-		64
2-Methylphenol ¹	61		-		38-102	-		23
3-Methylphenol/4-Methylphenol ¹	62		-		35-103	-		26
2,4,5-Trichlorophenol ¹	95		-		47-126	-		28

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 09 Batch: WG1240770-3

Surrogate	LCS LCS %Recovery Qual %Recov	Acceptance Criteria
2-Fluorophenol	50	25-87
Phenol-d6	37	16-65
Nitrobenzene-d5	79	42-122
2-Fluorobiphenyl	87	46-121
2,4,6-Tribromophenol	88	45-128
4-Terphenyl-d14	91	47-138

PETROLEUM HYDROCARBONS

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 11:00 L1921376-01

Client ID: GLC-NB-3-1 Date Received: 05/21/19

SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Sample Location: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C Analytical Method: 98,EPH-04-1.1 **Extraction Date:** 05/24/19 16:00

Analytical Date: 05/26/19 09:41 Cleanup Method1: EPH-04-1

Analyst: LL Cleanup Date1: 05/26/19

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Received on Ice

Sample Temperature upon receipt: Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Extractable Petroleum Hydrocarbons - Westborough Lab										
C9-C18 Aliphatics	ND		ug/l	100		1				
C19-C36 Aliphatics	ND		ug/l	100		1				
C11-C22 Aromatics	115		ug/l	100		1				
C11-C22 Aromatics, Adjusted	115		ug/l	100		1				

Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	43		40-140	
o-Terphenyl	79		40-140	
2-Fluorobiphenyl	83		40-140	
2-Bromonaphthalene	85		40-140	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: D Date Collected: 05/21/19 11:00 L1921376-01

Client ID: GLC-NB-3-1 Date Received: 05/21/19 SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Location:

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 05/23/19 12:25

Analyst: MKS

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Sample Temperature upon receipt: Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	4190		ug/l	500		10
C9-C12 Aliphatics	1390		ug/l	500		10
C9-C10 Aromatics	526		ug/l	500		10
C5-C8 Aliphatics, Adjusted	2730		ug/l	500		10
C9-C12 Aliphatics, Adjusted	ND		ug/l	500		10
Benzene	250		ug/l	20.0		10
Toluene	62.0		ug/l	20.0		10
Ethylbenzene	413		ug/l	20.0		10
p/m-Xylene	114		ug/l	20.0		10
o-Xylene	ND		ug/l	20.0		10
Methyl tert butyl ether	1140		ug/l	30.0		10
Naphthalene	ND		ug/l	40.0		10

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	92		70-130			
2,5-Dibromotoluene-FID	105		70-130			

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Sample Temperature upon receipt:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/22/19 03:57

Analytical Date: 05/22/19 16:42 Cleanup Method1: EPH-04-1 Analyst: DG Cleanup Date1: 05/22/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	- Westborough La	ıb				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	44		40-140			
o-Terphenyl	72		40-140			
2-Fluorobiphenyl	83		40-140			
2-Bromonaphthalene	84		40-140			

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Sample Temperature upon receipt:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/22/19 03:57

Analytical Date: 05/22/19 17:27 Cleanup Method1: EPH-04-1

Analyst: DG Cleanup Date1: 05/22/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	55		40-140	
o-Terphenyl	73		40-140	
2-Fluorobiphenyl	80		40-140	
2-Bromonaphthalene	81		40-140	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/22/19 15:40

Analytical Date: 05/23/19 08:49 Cleanup Method1: EPH-04-1

Analyst: LL Cleanup Date1: 05/24/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbons	s - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	28	Q	40-140			
o-Terphenyl	80		40-140			
2-Fluorobiphenyl	97		40-140			
2-Bromonaphthalene	97		40-140			

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 RE Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 05/24/19 08:50

Analytical Date: 05/24/19 18:00 Cleanup Method1: EPH-04-1

Analyst: LL Cleanup Date1: 05/24/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	133		1
C19-C36 Aliphatics	ND		ug/l	133		1
C11-C22 Aromatics	ND		ug/l	133		1
C11-C22 Aromatics, Adjusted	ND		ug/l	133		1

		Acceptance				
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	32	Q	40-140			
o-Terphenyl	81		40-140			
2-Fluorobiphenyl	97		40-140			
2-Bromonaphthalene	97		40-140			

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: D Date Collected: 05/20/19 11:00 L1921376-09

Client ID: GLC-NB-3-2 Date Received: 05/21/19 SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 05/23/19 01:01

Analyst: **BAD**

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Received on Ice

Container Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	2650		ug/l	500		10
C9-C12 Aliphatics	ND		ug/l	500		10
C9-C10 Aromatics	ND		ug/l	500		10
C5-C8 Aliphatics, Adjusted	1100		ug/l	500		10
C9-C12 Aliphatics, Adjusted	ND		ug/l	500		10
Benzene	1550		ug/l	20.0		10
Toluene	ND		ug/l	20.0		10
Ethylbenzene	ND		ug/l	20.0		10
p/m-Xylene	ND		ug/l	20.0		10
o-Xylene	ND		ug/l	20.0		10
Methyl tert butyl ether	ND		ug/l	30.0		10
Naphthalene	ND		ug/l	40.0		10

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	83		70-130			
2,5-Dibromotoluene-FID	92		70-130			

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-10 Date Collected: 05/20/19 00:00

Client ID: TRIP BLANK Date Received: 05/21/19 SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 05/24/19 09:32

Analyst: MKS

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Received on Ice

Container Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	ND		ug/l	4.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Surrogate	// Necovery	Qualifier		
2,5-Dibromotoluene-PID	100		70-130	
2,5-Dibromotoluene-FID	107		70-130	

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/22/19 13:20 L1921376-14

Client ID: GLC-NB-2 Date Received: 05/22/19 SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Sample Location: None

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 05/23/19 13:45

Analyst: MKS

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container

Sample Temperature upon receipt: Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	ND		ug/l	4.00		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	96		70-130			
2,5-Dibromotoluene-FID	109		70-130			

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/22/19 14:10 L1921376-15

Client ID: GLC-NB-3-4 Date Received: 05/22/19 SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131, VPH-18-2.1 Analytical Date: 05/23/19 14:26

Analyst: MKS

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Sample Temperature upon receipt: Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	ND		ug/l	4.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	98		70-130	
2,5-Dibromotoluene-FID	112		70-130	

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-16 Date Collected: 05/22/19 00:00

Client ID: TRIP BLANK Date Received: 05/22/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 131,VPH-18-2.1 Analytical Date: 05/24/19 10:03

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - \	Vestborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	ND		ug/l	2.00		1
p/m-Xylene	ND		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	ND		ug/l	4.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	104		70-130	
2,5-Dibromotoluene-FID	112		70-130	

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Report Date: **Project Number:** 290762.0016.0000 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 05/22/19 16:21

Analyst: LL

Extraction Method: EPA 3510C **Extraction Date:** 05/21/19 10:26 Cleanup Method: EPH-04-1 Cleanup Date: 05/22/19

L1921376

Parameter	Result	Qualifier	Units	RL	MDL	
Extractable Petroleum Hydrocarbons	s - Westbo	rough Lab f	or sample(s):	02-03	Batch: WG1239459	9-1
C9-C18 Aliphatics	ND		ug/l	100		
C19-C36 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		

		Acceptance
Surrogate	%Recovery Q	ualifier Criteria
Chlora Ostadosena	47	40.440
Chloro-Octadecane	47	40-140
o-Terphenyl	58	40-140
2-Fluorobiphenyl	99	40-140
2-Bromonaphthalene	97	40-140

L1921376

Project Name: Lab Number: MBTA GLX NEWBERN AVE II

Report Date: Project Number: 290762.0016.0000 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 05/23/19 08:10

Analyst: LL

Extraction Method: EPA 3510C Extraction Date: 05/22/19 15:40 Cleanup Method: EPH-04-1

Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbo	rough Lab f	or sample(s):	09	Batch: WG1240040-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
Chloro-Octadecane	73	40-140	
o-Terphenyl	94	40-140	
2-Fluorobiphenyl	95	40-140	
2-Bromonaphthalene	97	40-140	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 131,VPH-18-2.1 05/22/19 10:54

Analyst:

MKS

Volatile Petroleum Hydrocarbons - Westborough Lab for sample(s): 09 Batch: WG1240320-4 C5-C8 Aliphatics ND ug/l 50.0 C9-C12 Aliphatics ND ug/l 50.0 C9-C10 Aromatics ND ug/l 50.0 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 C9-C12 Aliphatics, Adjusted ND ug/l 50.0 Benzene ND ug/l 2.00 Toluene ND ug/l 2.00	arameter	Result C	Qualifier Units	RL	MDL	
C9-C12 Aliphatics ND ug/l 50.0 C9-C10 Aromatics ND ug/l 50.0 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 C9-C12 Aliphatics, Adjusted ND ug/l 50.0 Benzene ND ug/l 2.00	olatile Petroleum Hydrocarbons	- Westborough L	Lab for sample(s):	: 09 Batch:	WG1240320-4	
C9-C10 Aromatics ND ug/l 50.0 C5-C8 Aliphatics, Adjusted ND ug/l 50.0 C9-C12 Aliphatics, Adjusted ND ug/l 50.0 Benzene ND ug/l 2.00	C5-C8 Aliphatics	ND	ug/l	50.0		
C5-C8 Aliphatics, Adjusted ND ug/l 50.0 C9-C12 Aliphatics, Adjusted ND ug/l 50.0 Benzene ND ug/l 2.00	C9-C12 Aliphatics	ND	ug/l	50.0		
C9-C12 Aliphatics, Adjusted ND ug/l 50.0 Benzene ND ug/l 2.00	C9-C10 Aromatics	ND	ug/l	50.0		
Benzene ND ug/l 2.00	C5-C8 Aliphatics, Adjusted	ND	ug/l	50.0		
	C9-C12 Aliphatics, Adjusted	ND	ug/l	50.0		
Toluene ND ug/l 2.00	Benzene	ND	ug/l	2.00		
1.5	Toluene	ND	ug/l	2.00		
Ethylbenzene ND ug/l 2.00	Ethylbenzene	ND	ug/l	2.00		
p/m-Xylene ND ug/l 2.00	p/m-Xylene	ND	ug/l	2.00		
o-Xylene ND ug/l 2.00	o-Xylene	ND	ug/l	2.00		
Methyl tert butyl ether ND ug/l 3.00	Methyl tert butyl ether	ND	ug/l	3.00		
Naphthalene ND ug/l 4.00	Naphthalene	ND	ug/l	4.00		

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
2,5-Dibromotoluene-PID	79	70-130
2,5-Dibromotoluene-FID	89	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 05/23/19 11:45

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL
Volatile Petroleum Hydrocarbons -	Westboroug	gh Lab for s	ample(s):	01,14-15	Batch: WG1240834-4
C5-C8 Aliphatics	ND		ug/l	50.0	
C9-C12 Aliphatics	ND		ug/l	50.0	
C9-C10 Aromatics	ND		ug/l	50.0	
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0	
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0	
Benzene	ND		ug/l	2.00	
Toluene	ND		ug/l	2.00	
Ethylbenzene	ND		ug/l	2.00	
p/m-Xylene	ND		ug/l	2.00	
o-Xylene	ND		ug/l	2.00	
Methyl tert butyl ether	ND		ug/l	3.00	
Naphthalene	ND		ug/l	4.00	

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
2,5-Dibromotoluene-PID	81	70-130
2,5-Dibromotoluene-FID	90	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L19

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 05/24/19 09:01

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons -	Westborou	gh Lab for s	ample(s):	10,16	Batch:	WG1240956-4
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		
Benzene	ND		ug/l	2.00		
Toluene	ND		ug/l	2.00		
Ethylbenzene	ND		ug/l	2.00		
p/m-Xylene	ND		ug/l	2.00		
o-Xylene	ND		ug/l	2.00		
Methyl tert butyl ether	ND		ug/l	3.00		
Naphthalene	ND		ug/l	4.00		

		Acceptance
Surrogate	%Recovery Qualifie	er Criteria
2,5-Dibromotoluene-PID	88	70-130
2,5-Dibromotoluene-FID	94	70-130

L1921376

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Report Date: **Project Number:** 290762.0016.0000 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1

05/24/19 17:22

Analyst: LL

Analytical Date:

Extraction Method: EPA 3510C Extraction Date: 05/24/19 08:50 EPH-04-1 Cleanup Method:

Cleanup Date: 05/24/19

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarb	ons - Westbo	rough Lab	for sample(s):	09	Batch: WG1240991-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

	Acceptance				
Surrogate	%Recovery Qu	alifier Criteria			
Olders Outside cons	07	40.440			
Chloro-Octadecane	67	40-140			
o-Terphenyl	89	40-140			
2-Fluorobiphenyl	94	40-140			
2-Bromonaphthalene	95	40-140			

L1921376

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Batch Quality Control

98,EPH-04-1.1

05/26/19 09:09

Analytical Date: 05/ Analyst: LL

Analytical Method:

Extraction Method: EPA 3510C
Extraction Date: 05/24/19 16:00
Cleanup Method: EPH-04-1
Cleanup Date: 05/26/19

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocar	bons - Westbo	rough Lab	for sample(s):	01	Batch: WG1241337-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
Chloro-Octadecane	68	40-140
o-Terphenyl	95	40-140
2-Fluorobiphenyl	106	40-140
2-Bromonaphthalene	107	40-140

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	Qual %l	LCSD Recovery	Qual	%Recove Limits	•	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Wes	tborough Lab As	sociated sample(s)	: 02-03	Batch: W	/G1239459-2	WG1239459-3		
C9-C18 Aliphatics	50		64		40-140	25		25
C19-C36 Aliphatics	72		76		40-140	5		25
C11-C22 Aromatics	106		107		40-140	1		25
Naphthalene	88		91		40-140	3		25
2-Methylnaphthalene	89		92		40-140	3		25
Acenaphthylene	94		99		40-140	5		25
Acenaphthene	100		106		40-140	6		25
Fluorene	98		102		40-140	4		25
Phenanthrene	102		105		40-140	3		25
Anthracene	107		110		40-140	3		25
Fluoranthene	100		102		40-140	2		25
Pyrene	102		104		40-140	2		25
Benzo(a)anthracene	105		106		40-140	1		25
Chrysene	117		117		40-140	0		25
Benzo(b)fluoranthene	102		103		40-140	1		25
Benzo(k)fluoranthene	109		109		40-140	0		25
Benzo(a)pyrene	103		104		40-140	1		25
Indeno(1,2,3-cd)Pyrene	97		99		40-140	2		25
Dibenzo(a,h)anthracene	107		106		40-140	1		25
Benzo(ghi)perylene	98		98		40-140	0		25
Nonane (C9)	46		52		30-140	12		25
Decane (C10)	52		57		40-140	9		25
Dodecane (C12)	56		61		40-140	9		25

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits
extractable Petroleum Hydrocarbons - Westb	orough Lab As	ssociated sample	e(s): 02-03	Batch: \	WG1239459-2	WG1239459-3		
Tetradecane (C14)	59	1	63		40-140	7		25
Hexadecane (C16)	61		64		40-140	5		25
Octadecane (C18)	63		66		40-140	5		25
Nonadecane (C19)	62		66		40-140	6		25
Eicosane (C20)	64		67		40-140	5		25
Docosane (C22)	65		68		40-140	5		25
Tetracosane (C24)	66		69		40-140	4		25
Hexacosane (C26)	69		72		40-140	4		25
Octacosane (C28)	71		74		40-140	4		25
Triacontane (C30)	74		77		40-140	4		25
Hexatriacontane (C36)	80		84		40-140	5		25

	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
Chloro-Octadecane	67	69	40-140
o-Terphenyl	89	89	40-140
2-Fluorobiphenyl	100	99	40-140
2-Bromonaphthalene	101	100	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Extractable Petroleum Hydrocarbons - Wes	tborough Lab Ass	sociated samp	ole(s): 09 Batc	h: WG124	0040-2 WG1240	040-3			
C9-C18 Aliphatics	85		88		40-140	3		25	
C19-C36 Aliphatics	112		112		40-140	0		25	
C11-C22 Aromatics	117		68		40-140	53	Q	25	
Naphthalene	112		60		40-140	60	Q	25	
2-Methylnaphthalene	109		59		40-140	60	Q	25	
Acenaphthylene	115		64		40-140	57	Q	25	
Acenaphthene	121		68		40-140	56	Q	25	
Fluorene	119		70		40-140	52	Q	25	
Phenanthrene	125		76		40-140	49	Q	25	
Anthracene	117		70		40-140	50	Q	25	
Fluoranthene	125		79		40-140	45	Q	25	
Pyrene	128		81		40-140	45	Q	25	
Benzo(a)anthracene	118		74		40-140	46	Q	25	
Chrysene	106		67		40-140	45	Q	25	
Benzo(b)fluoranthene	122		75		40-140	48	Q	25	
Benzo(k)fluoranthene	108		67		40-140	47	Q	25	
Benzo(a)pyrene	108		66		40-140	48	Q	25	
Indeno(1,2,3-cd)Pyrene	106		60		40-140	55	Q	25	
Dibenzo(a,h)anthracene	59		35	Q	40-140	51	Q	25	
Benzo(ghi)perylene	91		51		40-140	56	Q	25	
Nonane (C9)	60		66		30-140	10		25	
Decane (C10)	70		75		40-140	7		25	
Dodecane (C12)	75		79		40-140	5		25	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons - Westb	orough Lab As:	sociated sampl	e(s): 09 Batcl	n: WG1240040-2 WG1240	040-3		
Tetradecane (C14)	81		86	40-140	6	25	
Hexadecane (C16)	87		93	40-140	7	25	
Octadecane (C18)	92		97	40-140	5	25	
Nonadecane (C19)	94		98	40-140	4	25	
Eicosane (C20)	96		100	40-140	4	25	
Docosane (C22)	97		101	40-140	4	25	
Tetracosane (C24)	98		103	40-140	5	25	
Hexacosane (C26)	103		107	40-140	4	25	
Octacosane (C28)	108		112	40-140	4	25	
Triacontane (C30)	113		117	40-140	3	25	
Hexatriacontane (C36)	102		98	40-140	4	25	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance al Criteria
	, , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Chloro-Octadecane	80	85	40-140
o-Terphenyl	109	66	40-140
2-Fluorobiphenyl	107	59	40-140
2-Bromonaphthalene	110	61	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Petroleum Hydrocarbons - W	estborough Lab Associat	ted sample(s):	09 Batch:	WG1240320-2	2 WG1240320-3			
C5-C8 Aliphatics	105		99		70-130	6		25
C9-C12 Aliphatics	107		99		70-130	7		25
C9-C10 Aromatics	93		87		70-130	7		25
Benzene	97		91		70-130	6		25
Toluene	97		92		70-130	6		25
Ethylbenzene	100		94		70-130	6		25
p/m-Xylene	97		90		70-130	7		25
o-Xylene	94		88		70-130	6		25
Methyl tert butyl ether	99		97		70-130	1		25
Naphthalene	93		90		70-130	3		25
1,2,4-Trimethylbenzene	93		87		70-130	7		25
Pentane	107		98		70-130	8		25
2-Methylpentane	107		100		70-130	7		25
2,2,4-Trimethylpentane	108		103		70-130	5		25
n-Nonane	111		103		30-130	7		25
n-Decane	99		92		70-130	8		25
n-Butylcyclohexane	112		104		70-130	7		25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	95	88	70-130
2,5-Dibromotoluene-FID	105	98	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Petroleum Hydrocarbons -	Westborough Lab Associated	d sample(s): 01,14-15 E	Batch: WG1240834-2 WG124	40834-3	
C5-C8 Aliphatics	99	104	70-130	5	25
C9-C12 Aliphatics	101	105	70-130	4	25
C9-C10 Aromatics	87	90	70-130	3	25
Benzene	91	95	70-130	5	25
Toluene	91	96	70-130	4	25
Ethylbenzene	94	98	70-130	4	25
p/m-Xylene	91	94	70-130	4	25
o-Xylene	88	92	70-130	4	25
Methyl tert butyl ether	92	97	70-130	5	25
Naphthalene	87	91	70-130	5	25
1,2,4-Trimethylbenzene	87	90	70-130	3	25
Pentane	99	105	70-130	5	25
2-Methylpentane	100	106	70-130	6	25
2,2,4-Trimethylpentane	103	108	70-130	5	25
n-Nonane	106	109	30-130	3	25
n-Decane	94	97	70-130	3	25
n-Butylcyclohexane	106	110	70-130	4	25

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	88	91	70-130
2,5-Dibromotoluene-FID	98	102	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Petroleum Hydrocarbons - West	tborough Lab Associated	d sample(s): 10,16 Bate	ch: WG1240956-2 WG12409	56-3	
C5-C8 Aliphatics	95	93	70-130	2	25
C9-C12 Aliphatics	100	98	70-130	2	25
C9-C10 Aromatics	94	92	70-130	2	25
Benzene	92	90	70-130	2	25
Toluene	94	92	70-130	2	25
Ethylbenzene	97	94	70-130	2	25
p/m-Xylene	98	96	70-130	2	25
o-Xylene	94	92	70-130	2	25
Methyl tert butyl ether	100	98	70-130	2	25
Naphthalene	98	98	70-130	0	25
1,2,4-Trimethylbenzene	94	92	70-130	2	25
Pentane	92	90	70-130	2	25
2-Methylpentane	97	95	70-130	2	25
2,2,4-Trimethylpentane	94	92	70-130	2	25
n-Nonane	99	98	30-130	2	25
n-Decane	99	97	70-130	3	25
n-Butylcyclohexane	102	100	70-130	2	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery	Acceptance Qual Criteria
2,5-Dibromotoluene-PID	99	98	70-130
2,5-Dibromotoluene-FID	105	103	70-130

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery		.CSD ecovery	% Qual	Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Wes	tborough Lab Ass	sociated sample(s):	09 Batch	: WG124099	1-2 WG12409	91-3		
C9-C18 Aliphatics	61		59		40-140	3		25
C19-C36 Aliphatics	76		77		40-140	1		25
C11-C22 Aromatics	109		89		40-140	20		25
Naphthalene	88		70		40-140	23		25
2-Methylnaphthalene	90		73		40-140	21		25
Acenaphthylene	99		81		40-140	20		25
Acenaphthene	104		86		40-140	19		25
Fluorene	104		86		40-140	19		25
Phenanthrene	107		89		40-140	18		25
Anthracene	114		94		40-140	19		25
Fluoranthene	104		87		40-140	18		25
Pyrene	107		89		40-140	18		25
Benzo(a)anthracene	110		90		40-140	20		25
Chrysene	121		98		40-140	21		25
Benzo(b)fluoranthene	107		88		40-140	19		25
Benzo(k)fluoranthene	115		93		40-140	21		25
Benzo(a)pyrene	108		88		40-140	20		25
Indeno(1,2,3-cd)Pyrene	102		83		40-140	21		25
Dibenzo(a,h)anthracene	106		84		40-140	23		25
Benzo(ghi)perylene	95		75		40-140	24		25
Nonane (C9)	44		40		30-140	10		25
Decane (C10)	49		46		40-140	6		25
Dodecane (C12)	59		56		40-140	5		25

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	LCSD Qual %Recovery	%Reco ⁄ Qual Limi	-	RPD Qual Limits	
Extractable Petroleum Hydrocarbons	s - Westborough Lab Associ	ated sample(s): 09 B	atch: WG1240991-2 V	VG1240991-3		
Tetradecane (C14)	64	63	40-14	0 2	25	
Hexadecane (C16)	66	66	40-14	0 0	25	
Octadecane (C18)	67	68	40-14	0 1	25	
Nonadecane (C19)	67	68	40-14	0 1	25	
Eicosane (C20)	68	69	40-14	0 1	25	
Docosane (C22)	69	70	40-14	0 1	25	
Tetracosane (C24)	70	71	40-14	0 1	25	
Hexacosane (C26)	73	74	40-14	0 1	25	
Octacosane (C28)	76	76	40-14	0 0	25	
Triacontane (C30)	78	79	40-14	0 1	25	
Hexatriacontane (C36)	84	85	40-14	0 1	25	

Surrenate	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qual	%Recovery Q	ual Criteria
Chloro-Octadecane	69	68	40-140
o-Terphenyl	94	76	40-140
2-Fluorobiphenyl	96	79	40-140
2-Bromonaphthalene	98	80	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD Qual %Recover	%Recovery Y Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Wes	tborough Lab Ass	sociated sample(s): 01	Batch: WG1241337-2 WG12	241337-3	
C9-C18 Aliphatics	99	92	40-140	7	25
C19-C36 Aliphatics	89	84	40-140	6	25
C11-C22 Aromatics	125	119	40-140	5	25
Naphthalene	102	97	40-140	5	25
2-Methylnaphthalene	101	97	40-140	4	25
Acenaphthylene	110	107	40-140	3	25
Acenaphthene	113	109	40-140	4	25
Fluorene	116	112	40-140	4	25
Phenanthrene	120	117	40-140	3	25
Anthracene	120	117	40-140	3	25
Fluoranthene	124	121	40-140	2	25
Pyrene	129	126	40-140	2	25
Benzo(a)anthracene	123	121	40-140	2	25
Chrysene	126	122	40-140	3	25
Benzo(b)fluoranthene	126	124	40-140	2	25
Benzo(k)fluoranthene	123	119	40-140	3	25
Benzo(a)pyrene	120	118	40-140	2	25
Indeno(1,2,3-cd)Pyrene	122	119	40-140	2	25
Dibenzo(a,h)anthracene	122	119	40-140	2	25
Benzo(ghi)perylene	116	111	40-140	4	25
Nonane (C9)	64	60	30-140	6	25
Decane (C10)	73	68	40-140	7	25
Dodecane (C12)	78	74	40-140	5	25

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
xtractable Petroleum Hydrocarbons - Westb	orough Lab Ass	sociated sample	e(s): 01 Ba	ch: WG124	11337-2 WG1241	337-3			
Tetradecane (C14)	84		80		40-140	5		25	
Hexadecane (C16)	90		85		40-140	6		25	
Octadecane (C18)	95		90		40-140	5		25	
Nonadecane (C19)	96		91		40-140	5		25	
Eicosane (C20)	98		92		40-140	6		25	
Docosane (C22)	98		93		40-140	5		25	
Tetracosane (C24)	97		92		40-140	5		25	
Hexacosane (C26)	97	i	92		40-140	5		25	
Octacosane (C28)	96		92		40-140	4		25	
Triacontane (C30)	96	i	92		40-140	4		25	
Hexatriacontane (C36)	99		95		40-140	4		25	

	LCS	LCSD	Acceptance Criteria
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
Chloro-Octadecane	78	78	40-140
o-Terphenyl	113	104	40-140
2-Fluorobiphenyl	106	110	40-140
2-Bromonaphthalene	106	112	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

PCBS

Project Name: MBTA GLX NEWBERN AVE II **Lab Number:** L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 11:00

Client ID: GLC-NB-3-1 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3
Analytical Date: 05/23/19 14:05
Extraction Date: 05/23/19 03:04
Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 05/23/19

Cleanup Method: EPA 3660B Cleanup Date: 05/23/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	77		37-123	В
Decachlorobiphenyl	86		38-114	В
2,4,5,6-Tetrachloro-m-xylene	92		37-123	Α
Decachlorobiphenyl	62		38-114	Α

Project Name: MBTA GLX NEWBERN AVE II **Lab Number:** L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 04:02
Analytical Date: 05/22/19 13:36 Cleanup Method: EPA 3665A

Analytical Date: 05/22/19 13:36 Cleanup Method: EPA 3665A Analyst: HT Cleanup Date: 05/22/19

Cleanup Method: EPA 3660B Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	86		37-123	В
Decachlorobiphenyl	58		38-114	В
2,4,5,6-Tetrachloro-m-xylene	89		37-123	Α
Decachlorobiphenyl	52		38-114	Α

Project Name: MBTA GLX NEWBERN AVE II **Lab Number:** L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 04:02
Analytical Date: 05/22/19 13:49 Cleanup Method: EPA 3665A

Analytical Date: 05/22/19 13:49 Cleanup Method: EPA 3665A Analyst: HT Cleanup Date: 05/22/19

Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Westborough Lab							
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate			Acceptance	
	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		37-123	В
Decachlorobiphenyl	76		38-114	В
2,4,5,6-Tetrachloro-m-xylene	77		37-123	Α
Decachlorobiphenyl	70		38-114	Α

Project Name: MBTA GLX NEWBERN AVE II **Lab Number:** L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 15:47

Analytical Date: 05/23/19 09:46 Cleanup Method: EPA 3665A Analyst: HT Cleanup Date: 05/23/19

Cleanup Method: EPA 3660B Cleanup Date: 05/23/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - V	Vestborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	72		37-123	В
Decachlorobiphenyl	139	Q	38-114	В
2,4,5,6-Tetrachloro-m-xylene	88		37-123	Α
Decachlorobiphenyl	100		38-114	Α

L1921376

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 12:19

Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 05/22/19 00:55
Cleanup Method: EPA 3665A
Cleanup Date: 05/22/19
Cleanup Method: EPA 3660B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Westboroug	h Lab for s	ample(s):	02-03,09	Batch: WG1	239707-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		ce	
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	75	37-123	В
Decachlorobiphenyl	101	38-114	В
2,4,5,6-Tetrachloro-m-xylene	81	37-123	Α
Decachlorobiphenyl	96	38-114	Α

L1921376

Lab Number:

Project Name: MBTA GLX NEWBERN AVE II

Report Date: Project Number: 290762.0016.0000 05/29/19

Method Blank Analysis

Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/23/19 13:01

Analyst: HT

Extraction Method: EPA 608.3 05/23/19 03:04 **Extraction Date:** Cleanup Method: EPA 3665A Cleanup Date: 05/23/19 Cleanup Method: EPA 3660B Cleanup Date: 05/23/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01 Batch:	WG1240233	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	ce
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60	37-123	В
Decachlorobiphenyl	107	38-114	В
2,4,5,6-Tetrachloro-m-xylene	75	37-123	Α
Decachlorobiphenyl	80	38-114	Α

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number:

L1921376

Report Date:

05/29/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 02-03,09 B	Batch: WG12	239707-2				
Aroclor 1016	74		-		50-140	-		36	Α
Aroclor 1260	79		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	54		37-123 B
Decachlorobiphenyl	101		38-114 B
2,4,5,6-Tetrachloro-m-xylene	58		37-123 A
Decachlorobiphenyl	94		38-114 A

Project Name: MBTA GLX NEWBERN AVE II

Project Number:

MB171 GE7111E11BE111711

290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ted sample(s)	: 01 Batch:	WG1240233-	2				
Aroclor 1016	89		-		50-140	-		36	Α
Aroclor 1260	79		-		8-140	-		38	Α

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	69				37-123	В
Decachlorobiphenyl	136	Q			38-114	В
2,4,5,6-Tetrachloro-m-xylene	85				37-123	Α
Decachlorobiphenyl	100				38-114	Α

PESTICIDES

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Report Date: **Project Number:** 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/21/19 11:00 L1921376-01

Date Received: Client ID: 05/21/19 GLC-NB-3-1

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:** 05/22/19 04:05 Analytical Method: 127,608.3 Cleanup Method: EPA 3620B

Analytical Date: 05/22/19 15:51 05/22/19

Cleanup Date: Analyst: BM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by Go	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.020		1	В
Lindane	ND		ug/l	0.020		1	В
Alpha-BHC	ND		ug/l	0.020		1	В
Beta-BHC	ND		ug/l	0.020		1	В
Heptachlor	ND		ug/l	0.020		1	В
Aldrin	ND		ug/l	0.020		1	В
Heptachlor epoxide	ND		ug/l	0.020		1	В
Endrin	ND		ug/l	0.040		1	В
Endrin aldehyde	ND		ug/l	0.040		1	В
Endrin ketone ¹	ND		ug/l	0.040		1	В
Dieldrin	ND		ug/l	0.040		1	В
4,4'-DDE	ND		ug/l	0.040		1	В
4,4'-DDD	ND		ug/l	0.040		1	В
4,4'-DDT	ND		ug/l	0.040		1	В
Endosulfan I	ND		ug/l	0.020		1	В
Endosulfan II	ND		ug/l	0.040		1	В
Endosulfan sulfate	ND		ug/l	0.040		1	В
Methoxychlor ¹	ND		ug/l	0.100		1	В
Toxaphene	ND		ug/l	0.400		1	В
Chlordane	ND		ug/l	0.200		1	В
cis-Chlordane ¹	ND		ug/l	0.020		1	В
trans-Chlordane ¹	ND		ug/l	0.020		1	В

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-01 05/21/19 11:00

Date Received: Client ID: 05/21/19 GLC-NB-3-1 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	60		47-124	Α
Decachlorobiphenyl	46		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	67		47-124	В
Decachlorobiphenyl	69		32-167	В

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-02 Date Collected: 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 04:05
Analytical Date: 05/22/19 16:04 Cleanup Method: EPA 3620B

Analyst: BM Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by Go	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.020		1	В
Lindane	ND		ug/l	0.020		1	В
Alpha-BHC	ND		ug/l	0.020		1	В
Beta-BHC	ND		ug/l	0.020		1	В
Heptachlor	ND		ug/l	0.020		1	В
Aldrin	ND		ug/l	0.020		1	В
Heptachlor epoxide	ND		ug/l	0.020		1	В
Endrin	ND		ug/l	0.040		1	В
Endrin aldehyde	ND		ug/l	0.040		1	В
Endrin ketone ¹	ND		ug/l	0.040		1	В
Dieldrin	ND		ug/l	0.040		1	В
4,4'-DDE	ND		ug/l	0.040		1	В
4,4'-DDD	ND		ug/l	0.040		1	В
4,4'-DDT	ND		ug/l	0.040		1	В
Endosulfan I	ND		ug/l	0.020		1	В
Endosulfan II	ND		ug/l	0.040		1	В
Endosulfan sulfate	ND		ug/l	0.040		1	В
Methoxychlor ¹	ND		ug/l	0.100		1	В
Toxaphene	ND		ug/l	0.400		1	В
Chlordane	ND		ug/l	0.200		1	В
cis-Chlordane ¹	ND		ug/l	0.020		1	В
trans-Chlordane ¹	ND		ug/l	0.020		1	В

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-02 05/21/19 12:00

Date Received: Client ID: 05/21/19 GLC-NB-3-4

Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Column Parameter

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	66		47-124	Α
Decachlorobiphenyl	35		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	67		47-124	В
Decachlorobiphenyl	45		32-167	В

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Date Collected: 05/21/19 14:00

Client ID: GLC-NB-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 05/22/19 04:05

Analytical Date: 05/22/19 16:16 Cleanup Method: EPA 3620B

Analyst: BM Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Organochlorine Pesticides by Go	C - Westborough Lab						
Delta-BHC	ND		ug/l	0.020		1	В
Lindane	ND		ug/l	0.020		1	В
Alpha-BHC	ND		ug/l	0.020		1	В
Beta-BHC	ND		ug/l	0.020		1	В
Heptachlor	ND		ug/l	0.020		1	В
Aldrin	ND		ug/l	0.020		1	В
Heptachlor epoxide	ND		ug/l	0.020		1	В
Endrin	ND		ug/l	0.040		1	В
Endrin aldehyde	ND		ug/l	0.040		1	В
Endrin ketone ¹	ND		ug/l	0.040		1	В
Dieldrin	ND		ug/l	0.040		1	В
4,4'-DDE	ND		ug/l	0.040		1	В
4,4'-DDD	ND		ug/l	0.040		1	В
4,4'-DDT	ND		ug/l	0.040		1	В
Endosulfan I	ND		ug/l	0.020		1	В
Endosulfan II	ND		ug/l	0.040		1	В
Endosulfan sulfate	ND		ug/l	0.040		1	В
Methoxychlor ¹	ND		ug/l	0.100		1	В
Toxaphene	ND		ug/l	0.400		1	В
Chlordane	ND		ug/l	0.200		1	В
cis-Chlordane ¹	ND		ug/l	0.020		1	В
trans-Chlordane ¹	ND		ug/l	0.020		1	В

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-03 05/21/19 14:00

Date Received: Client ID: 05/21/19 GLC-NB-2 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Refer to COC

Sample Depth:

Qualifier Units RL MDL **Dilution Factor** Column Parameter Result

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	52		47-124	Α
Decachlorobiphenyl	39		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	56		47-124	В
Decachlorobiphenyl	52		32-167	В

05/22/19 15:47

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376

Report Date: **Project Number:** 290762.0016.0000 05/29/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/20/19 11:00 L1921376-09

Date Received: Client ID: 05/21/19 GLC-NB-3-2 Sample Location: Field Prep: SOMERVILLE, MEDFORD, CAMBRIDGE Not Specified

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:**

Analytical Method: 127,608.3 Cleanup Method: EPA 3620B Analytical Date: 05/24/19 09:25 05/23/19

Cleanup Date: Analyst: BM

Lindane ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Lindane ND	Organochlorine Pesticides by G	GC - Westborough Lab						
Lindane ND ug/l 0.020 1 B Alpha-BHC ND ug/l 0.020 1 B Beta-BHC ND ug/l 0.040 1 Beta-Bhc ND ug/l 0.040 1 Beta-Bhc ND ug/l 0.040 1 Beta-Bhc ND ug/l 0.040 -	Delta-BHC	ND		ua/l	0.020		1	В
Alpha-BHC ND ug/l 0.020 1 B Beta-BHC ND ug/l 0.020 1 B Heptachlor ND ug/l 0.020 1 B Aldrin ND ug/l 0.020 1 B Heptachlor epoxide ND ug/l 0.020 1 B Endrin ND ug/l 0.040 1 B Endrin aldehyde ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B 4,4*-DDE ND ug/l 0.040 1 B 4,4*-DDT ND ug/l 0.040 1 B								
Beta-BHC								
Heptachlor ND ug/l 0.020 1 B Aldrin ND ug/l 0.020 1 B Heptachlor epoxide ND ug/l 0.020 1 B Endrin ND ug/l 0.040 1 B Endrin aldehyde ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Dieldrin ND ug/l 0.040 1 B 4,4*DDE ND ug/l 0.040 1 B 4,4*DDT ND ug/l 0.040 1 B 4,4*DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.040 1 B Endosulfan sulfate ND ug/l 0.040 1 B </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
Aldrin ND ug/l 0.020 1 1 B Heptachlor epoxide ND ug/l 0.020 1 1 B Endrin ND ug/l 0.040 1 1 B Endrin aldehyde ND ug/l 0.040 1 1 B Endrin ketone¹ ND ug/l 0.040 1 8 Dieldrin ND ug/l 0.040 1 8 4.4°-DDE ND ug/l 0.040 1 8 4.4°-DDE ND ug/l 0.040 1 8 4.4°-DDD ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan I ND ug/l 0.040 1 8 Endosulfan Sulfate ND ug/l 0.040 1 1								
Heptachlor epoxide ND ug/l 0.020 1 B Endrin ND ug/l 0.040 1 B Endrin aldehyde ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Dieldrin ND ug/l 0.040 1 B 4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.040 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.040 1 B <td><u>.</u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>В</td>	<u>.</u>						1	В
Endrin ND ug/l 0.040 1 B Endrin aldehyde ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Dieldrin ND ug/l 0.040 1 B 4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan Sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.040 1 B Chlordane¹ ND ug/l 0.040 1 B <	Heptachlor epoxide	ND			0.020		1	В
Endrin aldehyde ND ug/l 0.040 1 B Endrin ketone¹ ND ug/l 0.040 1 B Dieldrin ND ug/l 0.040 1 B 4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B	Endrin	ND			0.040		1	В
Dieldrin ND ug/l 0.040 1 B 4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Endrin aldehyde	ND		-	0.040		1	В
4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Endrin ketone ¹	ND			0.040		1	В
4,4'-DDE ND ug/l 0.040 1 B 4,4'-DDD ND ug/l 0.040 1 B 4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.040 1 B Toxaphene ND ug/l 0.100 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Dieldrin	ND			0.040		1	В
4,4'-DDT ND ug/l 0.040 1 B Endosulfan I ND ug/l 0.020 1 B Endosulfan II ND ug/l 0.040 1 B Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.100 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	4,4'-DDE	ND		ug/l	0.040		1	В
Endosulfan I ND ug/I 0.020 1 B Endosulfan II ND ug/I 0.040 1 B Endosulfan sulfate ND ug/I 0.040 1 B Methoxychlor¹ ND ug/I 0.100 1 B Toxaphene ND ug/I 0.400 1 B Chlordane ND ug/I 0.200 1 B cis-Chlordane¹ ND ug/I 0.020 1 B	4,4'-DDD	ND		ug/l	0.040		1	В
Endosulfan II ND ug/I 0.040 1 B Endosulfan sulfate ND ug/I 0.040 1 B Methoxychlor¹ ND ug/I 0.100 1 B Toxaphene ND ug/I 0.400 1 B Chlordane ND ug/I 0.200 1 B cis-Chlordane¹ ND ug/I 0.020 1 B	4,4'-DDT	ND		ug/l	0.040		1	В
Endosulfan sulfate ND ug/l 0.040 1 B Methoxychlor¹ ND ug/l 0.100 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Endosulfan I	ND		ug/l	0.020		1	В
Methoxychlor¹ ND ug/l 0.100 1 B Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Endosulfan II	ND		ug/l	0.040		1	В
Toxaphene ND ug/l 0.400 1 B Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Endosulfan sulfate	ND		ug/l	0.040		1	В
Chlordane ND ug/l 0.200 1 B cis-Chlordane¹ ND ug/l 0.020 1 B	Methoxychlor ¹	ND		ug/l	0.100		1	В
cis-Chlordane ¹ ND ug/l 0.020 1 B	Toxaphene	ND		ug/l	0.400		1	В
-9-	Chlordane	ND		ug/l	0.200		1	В
trans-Chlordana1 ND us// 0.020 1 P	cis-Chlordane ¹	ND		ug/l	0.020		1	В
ugn 0.020 I B	trans-Chlordane ¹	ND		ug/l	0.020		1	В

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-09 Date Collected: 05/20/19 11:00

Client ID: GLC-NB-3-2 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Organochlorine Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70		47-124	Α
Decachlorobiphenyl	44		32-167	Α
2,4,5,6-Tetrachloro-m-xylene	72		47-124	В
Decachlorobiphenyl	61		32-167	В

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 15:26

Analyst: BM

Extraction Method: EPA 608.3
Extraction Date: 05/22/19 01:06
Cleanup Method: EPA 3620B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MD	L Column
Organochlorine Pesticides by	GC - Westboroug	h Lab for	sample(s):	01-03,09	Batch:	WG1239709-1
Delta-BHC	ND		ug/l	0.020		В
Lindane	ND		ug/l	0.020		В
Alpha-BHC	ND		ug/l	0.020		В
Beta-BHC	ND		ug/l	0.020		В
Heptachlor	ND		ug/l	0.020		В
Aldrin	ND		ug/l	0.020		В
Heptachlor epoxide	ND		ug/l	0.020		В
Endrin	ND		ug/l	0.040		В
Endrin aldehyde	ND		ug/l	0.040		В
Endrin ketone ¹	ND		ug/l	0.040		В
Dieldrin	ND		ug/l	0.040		В
4,4'-DDE	ND		ug/l	0.040		В
4,4'-DDD	ND		ug/l	0.040		В
4,4'-DDT	ND		ug/l	0.040		В
Endosulfan I	ND		ug/l	0.020		В
Endosulfan II	ND		ug/l	0.040		В
Endosulfan sulfate	ND		ug/l	0.040		В
Methoxychlor ¹	ND		ug/l	0.100		В
Toxaphene	ND		ug/l	0.400		В
Chlordane	ND		ug/l	0.200		В
cis-Chlordane ¹	ND		ug/l	0.020		В
trans-Chlordane1	ND		ug/l	0.020		В

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/22/19 15:26

Analyst: BM

Extraction Method: EPA 608.3
Extraction Date: 05/22/19 01:06
Cleanup Method: EPA 3620B
Cleanup Date: 05/22/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by GC	- Westhorou	igh Lah for s	amnle(s).	01-03 09	Batch: WG	1239709-1

		Acceptano	ce
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	64	47-124	Α
Decachlorobiphenyl	58	32-167	Α
2,4,5,6-Tetrachloro-m-xylene	70	47-124	В
Decachlorobiphenyl	98	32-167	В

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery		SD overy Q	%Recovery ual Limits	/ RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westbor	ough Lab Assoc	siated sample(s): 01-0	3,09 Batch:	WG1239709-2				
Delta-BHC	63		-	19-140	-		52	В
Lindane	72		-	32-140	-		39	В
Alpha-BHC	72		-	37-140	-		36	В
Beta-BHC	65		-	17-147	-		44	В
Heptachlor	48		-	34-140	-		43	В
Aldrin	45		-	42-140	-		35	В
Heptachlor epoxide	59		-	37-142	-		26	В
Endrin	79		-	30-147	-		48	В
Endrin aldehyde	60		-	30-150	-		30	В
Endrin ketone ¹	69		-	30-150	-		30	В
Dieldrin	76		-	36-146	-		49	В
4,4'-DDE	69		-	30-145	-		35	В
4,4'-DDD	73		-	31-141	-		39	В
4,4'-DDT	80		-	25-160	-		42	В
Endosulfan I	67		-	45-153	-		28	В
Endosulfan II	68		-	1-202	-		53	В
Endosulfan sulfate	60		-	26-144	-		38	В
Methoxychlor ¹	67		-	30-150	-		30	В
cis-Chlordane ¹	63		-	45-140	-		35	В
trans-Chlordane ¹	64		-	45-140	-		35	В

Project Name: MBTA GLX NEWBERN AVE II

Lab Number:

L1921376

Project Number: 290762.0016.0000

Report Date:

05/29/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01-03,09 Batch: WG1239709-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	45	Q			47-124	Α
Decachlorobiphenyl	66				32-167	Α
2,4,5,6-Tetrachloro-m-xylene	48				47-124	В
Decachlorobiphenyl	100				32-167	В

METALS

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-01
 Date Collected:
 05/21/19 11:00

 Client ID:
 GLC-NB-3-1
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01685		mg/l	0.00100		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00211		mg/l	0.00020		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Chromium, Total	0.3043		mg/l	0.00100		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Copper, Total	0.2992		mg/l	0.00100		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Iron, Total	174		mg/l	0.050		1	05/22/19 15:51	05/24/19 10:36	EPA 3005A	19,200.7	LC
Lead, Total	0.2637		mg/l	0.00100		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Nickel, Total	0.3793		mg/l	0.00200		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Silver, Total	0.00091		mg/l	0.00040		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Zinc, Total	0.5655		mg/l	0.01000		1	05/22/19 15:51	05/24/19 03:35	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	1320		mg/l	0.660	NA	1	05/22/19 15:51	05/24/19 10:36	EPA 3005A	19,200.7	LC
General Chemistry Chromium, Trivalent (Filtered)	- Mansfie	ld Lab	mg/l	0.010		1		05/24/19 02:55	NA	107,-	
Chromium, Trivalent (Unfiltered)	ND		mg/l	2.00		1		05/24/19 03:35	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0021		mg/l	0.0010		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Chromium, Dissolved	0.0067		mg/l	0.0010		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0072		mg/l	0.0010		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Iron, Dissolved	5.27		mg/l	0.050		1	05/23/19 19:32	05/24/19 09:57	EPA 3005A	19,200.7	LC
Lead, Dissolved	0.0031		mg/l	0.0010		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Nickel, Dissolved	0.0184		mg/l	0.0020		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	05/23/19 19:32	05/24/19 02:55	EPA 3005A	3,200.8	AM

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-01
 Date Collected:
 05/21/19 11:00

 Client ID:
 GLC-NB-3-1
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Silver, Dissolved	ND		mg/l	0.0004		1	05/23/19 19:3	2 05/24/19 02:55	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0123		mg/l	0.0100		1	05/23/19 19:3	2 05/24/19 02:55	EPA 3005A	3,200.8	AM

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-02
 Date Collected:
 05/21/19 12:00

 Client ID:
 GLC-NB-3-4
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01535		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00103		mg/l	0.00020		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Chromium, Total	0.2218		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Copper, Total	0.1796		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Iron, Total	146		mg/l	0.050		1	05/23/19 20:00	05/24/19 15:59	EPA 3005A	19,200.7	LC
Lead, Total	0.1826		mg/l	0.00100		1	05/23/19 20:00) 05/24/19 04:32	EPA 3005A	3,200.8	AM
Nickel, Total	0.1692		mg/l	0.00200		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Silver, Total	0.00079		mg/l	0.00040		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Zinc, Total	0.4073		mg/l	0.01000		1	05/23/19 20:00	05/24/19 04:32	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	891		mg/l	0.660	NA	1	05/23/19 20:00	05/24/19 15:59	EPA 3005A	19,200.7	LC
General Chemistry Chromium, Trivalent (Filtered)	ND	ld Lab	mg/l	0.010		1		05/24/19 14:35	NA	107,-	
Chromium, Trivalent (Unfiltered)	0.222		mg/l	0.100		1		05/24/19 04:32	NA	107,-	
Dissolved Metals -	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	ND		mg/l	0.0010		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	0.0003		mg/l	0.0002		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Iron, Dissolved	ND		mg/l	0.050		1	05/24/19 09:58	3 05/24/19 15:56	EPA 3005A	19,200.7	LC
Lead, Dissolved	ND		mg/l	0.0010		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Nickel, Dissolved	0.0074		mg/l	0.0020		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	05/24/19 09:58	3 05/24/19 14:35	EPA 3005A	3,200.8	AM

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-02
 Date Collected:
 05/21/19 12:00

 Client ID:
 GLC-NB-3-4
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Silver, Dissolved	ND		mg/l	0.0004		1	05/24/19 09:5	8 05/24/19 14:35	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100		1	05/24/19 09:5	8 05/24/19 14:35	EPA 3005A	3,200.8	AM

05/21/19 14:00

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376 **Report Date:** 05/29/19

Project Number: 290762.0016.0000

SAMPLE RESULTS

Lab ID: L1921376-03

Client ID: GLC-NB-2 SOMERVILLE, MEDFORD, CAMBRIDGE Sample Location:

Date Received: 05/21/19 Field Prep: Refer to COC

Date Collected:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/23/19 20:00	0 05/24/19 04:36	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00820		mg/l	0.00100		1	05/23/19 20:00	0 05/24/19 04:36	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00049		mg/l	0.00020		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Chromium, Total	0.03641		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Copper, Total	0.04990		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Iron, Total	40.7		mg/l	0.050		1	05/23/19 20:00	05/24/19 16:04	EPA 3005A	19,200.7	LC
Lead, Total	0.1424		mg/l	0.00100		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Nickel, Total	0.02628		mg/l	0.00200		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Zinc, Total	0.2767		mg/l	0.01000		1	05/23/19 20:00	05/24/19 04:36	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340	3 - Mansfiel	ld Lab								
Hardness	196		mg/l	0.660	NA	1	05/23/19 20:00	05/24/19 16:04	EPA 3005A	19,200.7	LC
General Chemistry Chromium, Trivalent (Filtered)	- Mansfie	eld Lab	mg/l	0.010		1		05/24/19 02:59	NA	107,-	
Chromium, Trivalent (Unfiltered)	ND		mg/l	0.100		1		05/24/19 04:36	NA	107,-	
Dissolved Metals -	Mansfield	l Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Iron, Dissolved	2.19		mg/l	0.050		1	05/23/19 19:32	2 05/24/19 10:02	EPA 3005A	19,200.7	LC
Lead, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Nickel, Dissolved	ND		mg/l	0.0020		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	05/23/19 19:32	2 05/24/19 02:59	EPA 3005A	3,200.8	AM

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1921376 **Project Number:** 290762.0016.0000 05/29/19

Report Date:

SAMPLE RESULTS

Lab ID: L1921376-03

GLC-NB-2

Date Collected:

05/21/19 14:00

Sample Location:

Date Received:

05/21/19 Refer to COC

SOMERVILLE, MEDFORD, CAMBRIDGE

Field Prep:

Sample Depth:

Matrix:

Client ID:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Silver, Dissolved	ND		mg/l	0.0004		1	05/23/19 19:3	32 05/24/19 02:59	EPA 3005A	3,200.8	AM
Zinc, Dissolved	0.0247		mg/l	0.0100		1		32 05/24/19 02:59		3,200.8	AM

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-09
 Date Collected:
 05/20/19 11:00

 Client ID:
 GLC-NB-3-2
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00645		mg/l	0.00100		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Chromium, Total	0.02030		mg/l	0.00100		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Copper, Total	0.02408		mg/l	0.00100		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Iron, Total	19.5		mg/l	0.050		1	05/23/19 20:00	05/24/19 16:09	EPA 3005A	19,200.7	LC
Lead, Total	0.03912		mg/l	0.00100		1	05/23/19 20:00) 05/24/19 05:00	EPA 3005A	3,200.8	AM
Nickel, Total	0.02186		mg/l	0.00200		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Zinc, Total	0.05697		mg/l	0.01000		1	05/23/19 20:00	05/24/19 05:00	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfield									
Hardness	428		mg/l	0.660	NA	1	05/23/19 20:00	05/24/19 16:09	EPA 3005A	19,200.7	LC

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

Lab ID:L1921376-11Date Collected:05/21/19 15:00Client ID:GLC-NB-3-2Date Received:05/21/19Sample Location:SOMERVILLE, MEDFORD, CAMBRIDGEField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Chromium, Total	0.02030		mg/l	0.00100		1	05/23/19 20:0	0 05/24/19 05:00	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.200		1		05/24/19 05:00	NA	107,-	
(Unfiltered)			-								

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-12
 Date Collected:
 05/22/19 12:00

 Client ID:
 GLC-NB-3-2
 Date Received:
 05/22/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
General Chemistry -	· Mansfiel	d Lab									
Chromium, Trivalent (Filtered)	ND		mg/l	0.010		1		05/24/19 01:47	NA	107,-	
Dissolved Metals - N	Mansfield	Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Arsenic, Dissolved	0.0075		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Copper, Dissolved	0.0032		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Iron, Dissolved	ND		mg/l	0.050		1	05/23/19 19:32	2 05/24/19 09:38	EPA 3005A	19,200.7	LC
Lead, Dissolved	ND		mg/l	0.0010		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Nickel, Dissolved	0.0063		mg/l	0.0020		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004		1	05/23/19 19:32	2 05/24/19 01:47	EPA 3005A	3,200.8	AM

1

05/23/19 19:32 05/24/19 01:47 EPA 3005A

mg/l

0.0100

3,200.8

AM

Zinc, Dissolved

ND

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s)	02-03,09	Batch:	WG124	10555-1				
Iron, Total	ND	mg/l	0.050		1	05/23/19 20:00	05/24/19 15:32	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield Lab	o for sam	nple(s):	02-03,09	Batch:	WG1240555-1			
Hardness	ND	mg/l	0.660	NA	1	05/23/19 20:00	05/24/19 15:32	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	02-03,09	,11 Bato	h: WG	1240560-1				
Antimony, Total	ND	mg/l	0.00400		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/23/19 20:00	05/24/19 03:11	3,200.8	AM

Prep Information

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01 Bato	h: WG12	40624	-1				
Antimony, Total	ND	mg/l	0.00400		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/22/19 15:51	05/24/19 02:26	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab for sam	ole(s): 01,0	3,12 Ba	itch: W	G1240627-	1			
Antimony, Dissolved	ND	mg/l	0.0040		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Lead, Dissolved	ND	mg/l	0.0010		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100		1	05/23/19 19:32	05/24/19 01:31	3,200.8	AM

Prep Information

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG12	240628-	1				
Iron, Total	ND	mg/l	0.050		1	05/22/19 15:51	05/24/19 10:21	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bate	ch: WG124	0628-1			
Hardness	ND	mg/l	0.660	NA	1	05/22/19 15:51	05/24/19 10:21	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	ansfield Lab	for sample	e(s): 01,03	3,12 Ba	atch: W	G1240629-1				
Iron, Dissolved	ND		mg/l	0.050		1	05/23/19 19:32	05/24/19 09:29	19,200.7	LC

Prep Information

Parameter	Result Qual	ifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Man	sfield Lab for s	sample(s): 02	Batch: V	VG1240)881-1				
Antimony, Dissolved	ND	mg/l	0.0040		1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Arsenic, Dissolved	ND	mg/l	0.0010		1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Cadmium, Dissolved	ND	mg/l	0.0002		1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Chromium, Dissolved	ND	mg/l	0.0010		1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Copper, Dissolved	ND	mg/l	0.0010		1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Method Blank Analysis Batch Quality Control

Lead, Dissolved	ND	mg/l	0.0010	 1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Nickel, Dissolved	ND	mg/l	0.0020	 1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Selenium, Dissolved	ND	mg/l	0.0050	 1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Silver, Dissolved	ND	mg/l	0.0004	 1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM
Zinc, Dissolved	ND	mg/l	0.0100	 1	05/24/19 09:58	05/24/19 14:08	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Ma	nsfield Lab	for sample	e(s): 02	Batch: \	NG1240	882-1				
Iron, Dissolved	ND		mg/l	0.050		1	05/24/19 09:58	05/24/19 16:01	19,200.7	LC

Prep Information

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

05/29/19

Total Metals - Mansfield Lab Associated sample(s): 02-03,09 Batch: WG1240555-2 Iron, Total 106 - 85-115 - Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 02-03,09 Batch: WG1240555-2 Hardness 106 - 85-115 - Total Metals - Mansfield Lab Associated sample(s): 02-03,09,11 Batch: WG1240560-2 Antimony, Total 96 - 85-115 - Arsenic, Total 110 - 85-115 - Cadmium, Total 114 - 85-115 - Chromium, Total 103 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 106 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 - Silver, Total 114 - 85-115 - Silver, Total 114 - 85-115 -	Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 02-03,09 Batch: WG1240555-2 Hardness 106 - 85-115 - Total Metals - Mansfield Lab Associated sample(s): 02-03,09,11 Batch: WG1240560-2 Antimony, Total 96 - 85-115 - Arsenic, Total 110 - 85-115 - Cadmium, Total 114 - 85-115 - Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 107 - 85-115 - Selenium, Total 107 - 85-115 - Silver, Total 117 Q - 85-115 -	Total Metals - Mansfield Lab Associated sample	e(s): 02-03,09 E	Batch: WG1	240555-2					
Hardness 106 - 85-115 -	Iron, Total	106		-		85-115	-		
Fotal Metals - Mansfield Lab Associated sample(s): 02-03,09,11 Batch: WG1240560-2 Antimony, Total 96 - 85-115 - Arsenic, Total 110 - 85-115 - Cadmium, Total 114 - 85-115 - Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Fotal Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 02-03,	,09 Batch: WG1	240555-2				
Antimony, Total 96 - 85-115 - Arsenic, Total 110 - 85-115 - Cadmium, Total 114 - 85-115 - Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 107 Q - 85-115 - Silver, Total 114 - 85-115 -	Hardness	106		-		85-115	-		
Cadmium, Total 114 - 85-115 - Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -			Dateri. W			85-115	-		
Cadmium, Total 114 - 85-115 - Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Antimony, Total	96		-		85-115	-		
Chromium, Total 105 - 85-115 - Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Arsenic, Total	110		-		85-115	-		
Copper, Total 103 - 85-115 - Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Cadmium, Total	114		-		85-115	-		
Lead, Total 107 - 85-115 - Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Chromium, Total	105		-		85-115	-		
Nickel, Total 106 - 85-115 - Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Copper, Total	103		-		85-115	-		
Selenium, Total 117 Q - 85-115 - Silver, Total 114 - 85-115 -	Lead, Total	107		-		85-115	-		
Silver, Total - 85-115 -	Nickel, Total	106		-		85-115	-		
	Selenium, Total	117	Q	-		85-115	-		
Zinc, Total - 85-115 -	Silver, Total	114		-		85-115	-		
	Zinc, Total	115		-		85-115	-		

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: WG1:	240624-2			
Antimony, Total	102	-	85-115	-	
Arsenic, Total	109	-	85-115	-	
Cadmium, Total	111	-	85-115	-	
Chromium, Total	106	-	85-115	-	
Copper, Total	105	-	85-115	-	
Lead, Total	115	-	85-115	-	
Nickel, Total	106	-	85-115	-	
Selenium, Total	120 Q	-	85-115	-	
Silver, Total	114	-	85-115	-	
Zinc, Total	107	-	85-115	-	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	ample(s): 01,03,12 Ba	atch: WG1240627-2			
Antimony, Dissolved	95	-	85-115	-	
Arsenic, Dissolved	104	-	85-115	-	
Cadmium, Dissolved	108	-	85-115	-	
Chromium, Dissolved	108	-	85-115	-	
Copper, Dissolved	105	-	85-115	-	
Lead, Dissolved	114	-	85-115	-	
Nickel, Dissolved	107	-	85-115	-	
Selenium, Dissolved	118 Q	-	85-115	-	
Silver, Dissolved	118 Q	-	85-115	-	
Zinc, Dissolved	115	-	85-115	-	
Total Metals - Mansfield Lab Associated sampl	e(s): 01 Batch: WG12	240628-2			
Iron, Total	113	-	85-115	-	
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 0	1 Batch: WG1240628-2			
Hardness	109	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated s	ample(s): 01,03,12 Ba	atch: WG1240629-2			
Iron, Dissolved	108	-	85-115	-	

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated s	ample(s): 02 Batch	: WG1240881-2			
Antimony, Dissolved	85	-	85-115	-	
Arsenic, Dissolved	96	-	85-115	-	
Cadmium, Dissolved	102	-	85-115	-	
Chromium, Dissolved	95	-	85-115	-	
Copper, Dissolved	93	-	85-115	-	
Lead, Dissolved	110	-	85-115	-	
Nickel, Dissolved	97	-	85-115	-	
Selenium, Dissolved	86	-	85-115	-	
Silver, Dissolved	100	-	85-115	-	
Zinc, Dissolved	97	-	85-115	-	
Dissolved Metals - Mansfield Lab Associated s	ample(s): 02 Batch	: WG1240882-2			
Iron, Dissolved	108	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	•	Qual	RPD Limits
otal Metals - Mansfield L	ab Associated sar	nple(s): 01	QC Batch	ID: WG124062	4-3	QC Sample	: L1921376-01	Client ID: GLO	C-NB-3-1		
Antimony, Total	ND	0.5	0.1542	31	Q	-	-	70-130	-		20
Arsenic, Total	0.01685	0.12	0.1028	72		-	-	70-130	-		20
Cadmium, Total	0.00211	0.051	0.06992	133	Q	-	-	70-130	-		20
Chromium, Total	0.3043	0.2	0.5366	116		-	-	70-130	-		20
Copper, Total	0.2992	0.25	0.6026	121		-	-	70-130	-		20
Lead, Total	0.2637	0.51	0.9280	130		-	-	70-130	-		20
Nickel, Total	0.3793	0.5	0.9630	117		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.08554	71		-	-	70-130	-		20
Silver, Total	0.00091	0.05	0.05888	116		-	-	70-130	-		20
Zinc, Total	0.5655	0.5	1.301	147	Q	-	-	70-130	-		20
Dissolved Metals - Mansfi	eld Lab Associated	d sample(s)	: 01,03,12	QC Batch ID:	WG124	0627-3	QC Sample: L1	921376-12 Clie	ent ID: G	LC-NB-	3-2
Antimony, Dissolved	ND	0.5	0.6775	136	Q	-	-	70-130	-		20
Arsenic, Dissolved	0.0075	0.12	0.1358	107		-	-	70-130	-		20
Cadmium, Dissolved	ND	0.051	0.0618	121		-	-	70-130	-		20
Chromium, Dissolved	ND	0.2	0.2097	105		-	-	70-130	-		20
Copper, Dissolved	0.0032	0.25	0.2611	103		-	-	70-130	-		20
Lead, Dissolved	ND	0.51	0.5755	113		-	-	70-130	-		20
Nickel, Dissolved	0.0063	0.5	0.5372	106		-	-	70-130	-		20
Selenium, Dissolved	ND	0.12	0.1330	111		-	-	70-130	-		20
Silver, Dissolved	ND	0.05	0.0574	115		-	-	70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG124062	.8-3 Q0	C Sample:	L1921376-01 CI	ient ID: GLC-	NB-3-1	
Iron, Total	174	1	189	1500	Q	-	-	75-125	-	20
Total Hardness by SM 2340E	B - Mansfield Lab	o Associate	d sample(s)	: 01 QC Bato	ch ID: WO	G1240628-	·3 QC Sample: L	1921376-01	Client ID:	GLC-NB-3-1
Hardness	1320	66.2	1370	76		-	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	01,03,12	QC Batch ID:	WG1240	629-3 Q	C Sample: L19213	376-12 Clien	t ID: GLC-N	√B-3-2
Iron, Dissolved	ND	1	1.15	115		-	-	75-125	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	02 QC Ba	atch ID: WG12	40881-3	QC San	nple: L1921376-02	Client ID: (GLC-NB-3-4	
Antimony, Dissolved	ND	1	1.400	140	Q	-	-	70-130	-	20
Arsenic, Dissolved	ND	0.24	0.2618	109		-	-	70-130	-	20
Cadmium, Dissolved	0.0003	0.102	0.1199	117		-	-	70-130	-	20
Chromium, Dissolved	ND	0.4	0.4251	106		-	-	70-130	-	20
Copper, Dissolved	ND	0.5	0.5329	106		-	-	70-130	-	20
Lead, Dissolved	ND	1.02	1.150	113		-	-	70-130	-	20
Nickel, Dissolved	0.0074	1	1.074	107		-	-	70-130	-	20
Selenium, Dissolved	ND	0.24	0.2641	110		-	-	70-130	-	20
Silver, Dissolved	ND	0.1	0.1144	114		-	-	70-130	-	20
Zinc, Dissolved	ND	1	1.127	113		-	-	70-130	-	20
Dissolved Metals - Mansfield	Lab Associated	sample(s):	02 QC Ba	atch ID: WG12	40882-3	QC San	nple: L1921376-02	Client ID: 0	GLC-NB-3-4	
Iron, Dissolved	ND	2	2.17	108		-	-	75-125	-	20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

 Lab Number:
 L1921376

 Report Date:
 05/29/19

Parameter	Native Sample D	uplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1240624	-4 QC Sample: I	L1921376-01 C	lient ID: G	LC-NB-3-1	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01685	0.01682	mg/l	0		20
Cadmium, Total	0.00211	0.00217	mg/l	3		20
Chromium, Total	0.3043	0.3154	mg/l	4		20
Copper, Total	0.2992	0.3188	mg/l	6		20
Lead, Total	0.2637	0.2867	mg/l	8		20
Nickel, Total	0.3793	0.3915	mg/l	3		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	0.00091	0.00109	mg/l	18		20
Zinc, Total	0.5655	0.5940	mg/l	5		20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Parameter	Native Sar	mple	Duplicate Sam	ple Units	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	01,03,12	QC Batch ID:	WG1240627-4	QC Sample: L19	21376-12	Client ID: GLC-NB-3-2
Antimony, Dissolved	ND		ND	mg/l	NC	20
Arsenic, Dissolved	0.0075		0.0078	mg/l	4	20
Cadmium, Dissolved	ND		ND	mg/l	NC	20
Chromium, Dissolved	ND		ND	mg/l	NC	20
Copper, Dissolved	0.0032		0.0032	mg/l	0	20
Lead, Dissolved	ND		ND	mg/l	NC	20
Nickel, Dissolved	0.0063		0.0062	mg/l	1	20
Selenium, Dissolved	ND		ND	mg/l	NC	20
Silver, Dissolved	ND		ND	mg/l	NC	20
Zinc, Dissolved	ND		ND	mg/l	NC	20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch II	D: WG124062	28-4 QC Samp	le: L1921376-01	Client ID:	GLC-NB-3-1
Iron, Total	174		177	mg/l	2	20
Total Hardness by SM 2340B - Mansfield Lab Associated	d sample(s):	01 QC Bato	ch ID: WG12406	28-4 QC Sampl	e: L19213	76-01 Client ID: GLC-NB-3-1
Hardness	1320		1330	mg/l	1	20
Dissolved Metals - Mansfield Lab Associated sample(s):	01,03,12	QC Batch ID:	WG1240629-4	QC Sample: L19	21376-12	Client ID: GLC-NB-3-2
Iron, Dissolved	ND		ND	mg/l	NC	20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376 **Report Date:** 05/29/19

Native Sample Duplicate Sample Units RPD RPD Limits Parameter Dissolved Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1240881-4 QC Sample: L1921376-02 Client ID: GLC-NB-3-4 Antimony, Dissolved ND ND mg/l NC 20 NC Arsenic, Dissolved ND ND mg/l 20 Cadmium, Dissolved 0.0003 0.0003 mg/l 5 20 Chromium, Dissolved ND ND mg/l NC 20 Copper, Dissolved NC ND ND mg/l 20 Lead, Dissolved ND ND mg/l NC 20 Nickel, Dissolved 0.0074 0.0067 mg/l 9 20 Selenium, Dissolved ND ND mg/l NC 20 Silver, Dissolved ND ND mg/l NC 20 Zinc, Dissolved ND ND mg/l NC 20 Dissolved Metals - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1240882-4 QC Sample: L1921376-02 Client ID: GLC-NB-3-4 NC Iron, Dissolved ND ND mg/l 20

INORGANICS & MISCELLANEOUS

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-01

Client ID: GLC-NB-3-1

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Date Collected: 05/21/19 11:00 Date Received: 05/21/19

Field Prep: Refer to COC

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Dissolved	1800		mg/l	10		1	-	05/22/19 08:10	121,2540C	DW
Solids, Total Suspended	12000		mg/l	500	NA	100	-	05/22/19 14:45	121,2540D	DR
Cyanide, Dissolved	ND		mg/l	0.005		1	05/22/19 10:05	05/22/19 12:53	1,9010C/9012B	LH
Cyanide, Total	ND		mg/l	0.005		1	05/22/19 05:30	05/22/19 14:22	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/22/19 03:09	121,4500CL-D	JW
Nitrogen, Ammonia	0.394		mg/l	0.375		5	05/22/19 16:21	05/22/19 21:41	121,4500NH3-BH	I AT
Oil & Grease, Hem-Grav	ND		mg/l	4.4		1.1	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	4.40		1.1	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	05/22/19 09:25	05/22/19 13:58	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	05/22/19 03:30	05/22/19 04:00	1,7196A	EJ
Chromium, Hexavalent (Unfiltered)	ND		mg/l	2.00		200	05/22/19 05:45	05/22/19 06:35	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	stborough	Lab							
Chloride	910.		mg/l	25.0		50	-	05/23/19 00:03	44,300.0	JT

Project Name: MBTA GLX NEWBERN AVE II

Lab Number: L1921376 Project Number: **Report Date:** 05/29/19 290762.0016.0000

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-02 05/21/19 12:00

Client ID: GLC-NB-3-4 Date Received: 05/21/19

Refer to COC Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Dissolved	1900		mg/l	10		1	-	05/22/19 08:10	121,2540C	DW
Solids, Total Suspended	16000		mg/l	500	NA	100	-	05/22/19 14:45	121,2540D	DR
Cyanide, Dissolved	ND		mg/l	0.005		1	05/22/19 10:05	05/22/19 12:56	1,9010C/9012B	LH
Cyanide, Total	ND		mg/l	0.005		1	05/22/19 05:30	05/22/19 14:23	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/22/19 03:09	121,4500CL-D	JW
Nitrogen, Ammonia	0.533		mg/l	0.375		5	05/22/19 16:21	05/22/19 21:15	121,4500NH3-BH	l AT
Oil & Grease, Hem-Grav	ND		mg/l	4.8		1.2	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	4.80		1.2	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	05/22/19 09:25	05/22/19 13:59	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	05/22/19 03:30	05/22/19 04:03	1,7196A	EJ
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0.100		10	05/22/19 05:45	05/22/19 06:36	1,7196A	MA
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	1110		mg/l	25.0		50	-	05/23/19 00:15	44,300.0	JT

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Lab Number:

L1921376

Report Date:

05/29/19

SAMPLE RESULTS

Lab ID: L1921376-03 Client ID:

GLC-NB-2

Date Collected:

05/21/19 14:00

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE

Date Received: 05/21/19 Refer to COC Field Prep:

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Solids, Total Dissolved	410		mg/l	10		1	-	05/22/19 08:10	121,2540C	DW
Solids, Total Suspended	410		mg/l	25	NA	5	-	05/22/19 14:45	121,2540D	DR
Cyanide, Dissolved	0.067		mg/l	0.005		1	05/22/19 10:05	05/22/19 12:57	1,9010C/9012B	LH
Cyanide, Total	ND		mg/l	0.005		1	05/22/19 05:30	05/22/19 14:24	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/22/19 03:09	121,4500CL-D	JW
Nitrogen, Ammonia	0.295		mg/l	0.075		1	05/22/19 16:21	05/22/19 21:16	121,4500NH3-BH	l AT
Oil & Grease, Hem-Grav	ND		mg/l	5.2		1.3	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	5.20		1.3	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	05/23/19 06:27	05/23/19 09:47	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	05/22/19 03:30	05/22/19 04:04	1,7196A	EJ
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0.100		10	05/22/19 05:45	05/22/19 06:54	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	borough	Lab							
Chloride	182.		mg/l	5.00		10	-	05/22/19 22:03	44,300.0	JT

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

SAMPLE RESULTS

Lab ID: L1921376-04 Date Collected: 05/21/19 15:55

Client ID: GLC-NB-3-2 Date Received: 05/21/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: None

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analy	ysis - Westboroug	h Lab							
E. Coli (MPN)	2.02	MPN/100ml	1	NA	1	-	05/21/19 21:10	121,9223B	AJ

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

SAMPLE RESULTS

 Lab ID:
 L1921376-05
 Date Collected:
 05/21/19 12:50

 Client ID:
 GLC-NB-3-1
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analy	sis - Westborough	ı Lab							
E. Coli (MPN)	115.28	MPN/100ml	1	NA	1	-	05/21/19 21:10	121,9223B	AJ

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

SAMPLE RESULTS

 Lab ID:
 L1921376-07
 Date Collected:
 05/21/19 13:30

 Client ID:
 GLC-NB-3-4
 Date Received:
 05/21/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analy	sis - Westboroug	jh Lab							
E. Coli (MPN)	1	MPN/100ml	1	NA	1	-	05/21/19 21:10	121,9223B	AJ

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

SAMPLE RESULTS

Lab ID: L1921376-08 Date Collected: 05/21/19 15:50

Client ID: GLC-NB-1 Date Received: 05/21/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Anal	lysis - Westboroug	jh Lab							
E. Coli (MPN)	<1	MPN/100ml	1	NA	1	-	05/21/19 21:10	121,9223B	AJ

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

L1921376 Project Number: **Report Date:** 05/29/19 290762.0016.0000

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-09 05/20/19 11:00 Client ID: GLC-NB-3-2 Date Received: 05/21/19

Not Specified Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lat									
Cyanide, Total	ND		mg/l	0.005		1	05/22/19 16:45	05/23/19 12:45	121,4500CN-CE	LH
Nitrogen, Ammonia	0.850		mg/l	0.075		1	05/22/19 21:15	05/22/19 23:54	121,4500NH3-BH	I AT
Oil & Grease, Hem-Grav	ND		mg/l	5.6		1.4	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
TPH, SGT-HEM	ND		mg/l	5.60		1.4	05/22/19 16:30	05/22/19 22:00	74,1664A	ML
Phenolics, Total	0.039		mg/l	0.030		1	05/23/19 06:27	05/23/19 09:52	4,420.1	BR

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

L1921376 Project Number: **Report Date:** 05/29/19 290762.0016.0000

SAMPLE RESULTS

Lab ID: Date Collected: L1921376-11 05/21/19 15:00 Client ID: GLC-NB-3-2 Date Received: 05/21/19

Not Specified Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total Dissolved	720		mg/l	10		1	-	05/23/19 09:00	121,2540C	DW
Solids, Total Suspended	4500		mg/l	170	NA	33.3	-	05/23/19 11:00	121,2540D	DR
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/22/19 14:30	121,4500CL-D	JO
Chromium, Hexavalent (Unfiltered)	ND		mg/l	0.200		20	05/22/19 14:35	05/22/19 14:57	1,7196A	LH
Anions by Ion Chromato	graphy - Wes	borough	Lab							
Chloride	182.		mg/l	5.00		10	-	05/22/19 22:15	44,300.0	JT

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-12 Date Collected: 05/22/19 12:00

Client ID: GLC-NB-3-2 Date Received: 05/22/19
Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Refer to COC

Sample Education. Solviet Vicee, Medi Old, Child Nibol.

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ıb								
Cyanide, Dissolved	ND		mg/l	0.005		1	05/23/19 12:10	05/23/19 14:59	1,9010C/9012B	LH
Chromium, Hexavalent	ND		mg/l	0.010		1	05/23/19 00:01	05/23/19 00:34	1,7196A	JW

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-13 Date Collected: 05/22/19 12:35

Client ID: GLC-NB-3-1 Date Received: 05/22/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	4.81		mg/l	0.500		1	-	05/23/19 08:49	121,5310C	DW

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

Lab ID: L1921376-14 Date Collected: 05/22/19 13:20

Client ID: GLC-NB-2 Date Received: 05/22/19 Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: None

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	2.79		mg/l	0.500		1	-	05/23/19 08:49	121,5310C	DW

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 **Report Date:** 05/29/19

SAMPLE RESULTS

 Lab ID:
 L1921376-15
 Date Collected:
 05/22/19 14:10

 Client ID:
 GLC-NB-3-4
 Date Received:
 05/22/19

Sample Location: SOMERVILLE, MEDFORD, CAMBRIDGE Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	1.52		mg/l	0.500		1	-	05/23/19 08:49	121,5310C	DW

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	R	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Microbiological Analysis - V	/estborou	ıgh Lab fo	r sample	e(s): C)4-0	5,07-08	Batch: WC	91239683-2			
E. Coli (MPN)	<1		MPN/100)ml	1	NA	1	-	05/21/19 21:10	121,9223B	AJ
General Chemistry - Westb	orough La	ab for sam	nple(s):	01-03	Ва	tch: W	G1239737-1				
Chlorine, Total Residual	ND		mg/l	(0.02		1	-	05/22/19 03:09	121,4500CL-D	JW
General Chemistry - Westb	orough La	ab for sam	nple(s):	01-03	Ва	tch: W	G1239739-1				
Chromium, Hexavalent	ND		mg/l	0	.010		1	05/22/19 03:30	05/22/19 03:58	1,7196A	EJ
General Chemistry - Westb	orough La	ab for sam	nple(s):	01-03	Ва	itch: Wo	G1239759-1				
Solids, Total Dissolved	ND		mg/l		10		1	-	05/22/19 08:10	121,2540C	DW
General Chemistry - Westb	orough La	ab for sam	nple(s):	01-03	Ва	ntch: Wo	G1239761-1				
Cyanide, Total	ND		mg/l		.005		1	05/22/19 05:30	05/22/19 14:14	121,4500CN-CE	E LH
General Chemistry - Westb	orough La	ab for sam	nple(s):	01-03	Ва	ntch: W	G1239770-1				
Chromium, Hexavalent (Unfiltered)	ND		mg/l		.010		1	05/22/19 05:45	05/22/19 06:34	1,7196A	MA
General Chemistry - Westb	orouah La	ab for sam	nple(s): (01-03	Ва	itch: W	G1239825-1				
Solids, Total Suspended	ND		mg/l		5.0	NA	1	-	05/22/19 14:45	121,2540D	DR
General Chemistry - Westb	orouah La	ab for sam	nple(s): (01-03	Ba	itch: W0	G1239855-1				
Cyanide, Dissolved	ND		mg/l		.005		1	05/22/19 10:05	05/22/19 12:43	1,9010C/9012E	B LH
General Chemistry - Westb	orough La	ab for sam	nple(s): (01-02	Ba	ntch: W0	31239930-1				
Phenolics, Total	ND		mg/l		0.030		1	05/22/19 09:25	05/22/19 13:51	4,420.1	BR
General Chemistry - Westb	orough I :	ab for sam	nnle(s): (01-03	Ba	ntch: WO	31239939-1				
Nitrogen, Ammonia	ND	ab 101 0a11	mg/l		0.075		1	05/22/19 16:21	05/22/19 21:10	121,4500NH3-B	H AT
General Chemistry - Westb	orough L:	ah for sam	nnle(s)·	11 R	atch	· WG12	240006-1				
Chromium, Hexavalent (Unfiltered)	ND	ab 101 0a11	mg/l		0.010		1	05/22/19 14:35	05/22/19 14:50	1,7196A	LH
General Chemistry - Westb	orough L:	ah for sam	nnle(s).	11 R	atch	· WG12	240029-1				
Chlorine, Total Residual	ND	ab ioi saii	mg/l		0.02	. VVO 12 	1		05/22/19 14:30	121,4500CL-D	JO
General Chemistry - Westb		ah for sam				Ratch:	WG124007	1_1		,	
Oil & Grease, Hem-Grav	ND	au iui Sali	mg/l		,09 4.0	batch.	1	05/22/19 16:30	05/22/19 17:30	74,1664A	ML
		ob for sem							32.22.10	,	
General Chemistry - Westb TPH, SGT-HEM	ND	au iui sali	ipie(s): · mg/l		,09 4.00	Batch:	WG124007	05/22/19 16:30	05/22/19 22:00	74,1664A	ML

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date: 05/29/19

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westbo	orough La	b for sam	ple(s): 09	Batch:	WG12	40170-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/22/19 21:15	05/22/19 23:51	121,4500NH3-B	H AT
General Chemistry - Westbo	rough La	b for sam	ple(s): 12	Batch:	WG12	40203-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	05/23/19 00:01	05/23/19 00:33	1,7196A	JW
Anions by Ion Chromatograp	ohy - Wes	tborough	Lab for sar	mple(s):	01-03,	11 Batch:	WG1240263	-1		
Chloride	ND		mg/l	0.500		1	-	05/22/19 16:50	44,300.0	JT
General Chemistry - Westbo	orough La	b for sam	ple(s): 11	Batch:	WG12	40275-1				
Solids, Total Dissolved	ND		mg/l	10		1	-	05/23/19 09:00	121,2540C	DW
General Chemistry - Westbo	orough La	b for sam	ple(s): 13-	15 Bat	ch: WG	1240277-1				
Total Organic Carbon	ND		mg/l	0.500		1	-	05/23/19 08:49	121,5310C	DW
General Chemistry - Westbo	orough La	b for sam	ple(s): 03,	09 Bat	ch: WG	1240310-1				
Phenolics, Total	ND		mg/l	0.030		1	05/23/19 06:27	05/23/19 09:46	4,420.1	BR
General Chemistry - Westbo	orough La	b for sam	ple(s): 11	Batch:	WG12	40340-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/23/19 11:00	121,2540D	DR
General Chemistry - Westbo	orough La	b for sam	ple(s): 12	Batch:	WG12	40474-1				
Cyanide, Dissolved	ND		mg/l	0.005		1	05/23/19 12:10	05/23/19 14:48	1,9010C/9012E	B LH
General Chemistry - Westbo	orough La	b for sam	ple(s): 09	Batch:	WG12	40984-1				
Cyanide, Total	ND		mg/l	0.005		1	05/22/19 16:45	05/23/19 12:31	121,4500CN-CE	E LH

Lab Control Sample Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery Qua	%Recovery al Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239737-2				
Chlorine, Total Residual	92	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239739-2				
Chromium, Hexavalent	101	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239759-2				
Solids, Total Dissolved	100	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239761-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239770-2				
Chromium, Hexavalent (Unfiltered)	100	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1239855-2	WG1239855-3			
Cyanide, Dissolved	93	94	80-120	1		20
General Chemistry - Westborough Lab	Associated sample(s): 01-02	Batch: WG1239930-2				
Phenolics, Total	93	-	70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-	03 Batch: WG1239939-2			
Nitrogen, Ammonia	100	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 11	Batch: WG1240006-2			
Chromium, Hexavalent (Unfiltered)	98	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 11	Batch: WG1240029-2			
Chlorine, Total Residual	96	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01-	03,09 Batch: WG1240071-	-2		
Oil & Grease, Hem-Grav	94	-	78-114	-	18
General Chemistry - Westborough Lab	Associated sample(s): 01-	03,09 Batch: WG1240076-	-2		
ТРН	84	-	64-132	-	34
General Chemistry - Westborough Lab	Associated sample(s): 09	Batch: WG1240170-2			
Nitrogen, Ammonia	97	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): 12	Batch: WG1240203-2			
Chromium, Hexavalent	102	-	85-115	-	20

Lab Control Sample Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westboroug	h Lab Associated sa	ample(s): 01-03,11 Batch:	WG1240263-2		
Chloride	100	-	90-110	-	
General Chemistry - Westborough Lab Asso	ciated sample(s): 11	Batch: WG1240275-2			
Solids, Total Dissolved	85	-	80-120	-	
General Chemistry - Westborough Lab Asso	ciated sample(s): 13	-15 Batch: WG1240277-2			
Total Organic Carbon	105	-	90-110	-	
General Chemistry - Westborough Lab Asso	ciated sample(s): 03	,09 Batch: WG1240310-2			
Phenolics, Total	82	-	70-130	-	
General Chemistry - Westborough Lab Asso	ciated sample(s): 12	Batch: WG1240474-2 W	/G1240474-3		
Cyanide, Dissolved	88	98	80-120	11	20
General Chemistry - Westborough Lab Asso	ciated sample(s): 09	Batch: WG1240984-2 W	/G1240984-3		
Cyanide, Total	95	96	90-110	1	

L1921376

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01-03	QC Batch II	D: WG12	39737-4	QC Sample:	L1921376-03	Client ID: C	GLC-NB-2
Chlorine, Total Residual	ND	0.25	0.24	96		-	-	80-120	-	20
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01-03	QC Batch II	D: WG12	39739-4	QC Sample:	L1921376-01	Client ID: C	GLC-NB-3-1
Chromium, Hexavalent	ND	0.1	0.099	99		-	-	85-115	-	20
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01-03	QC Batch II	D: WG12	39770-4	QC Sample:	L1921376-03	Client ID: C	SLC-NB-2
Chromium, Hexavalent (Unfiltered)	ND	1	0.903	90		-	-	85-115	-	20
General Chemistry - Westborou GLC-NB-3-1	gh Lab Asso	ociated samp	ole(s): 01-03	QC Batch II	D: WG12	39855-4	WG1239855-5	QC Sample: I	L1921376-01	Client ID:
Cyanide, Dissolved	ND	0.2	0.199	100		0.197	98	80-120	1	20
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 11	QC Batch ID: V	VG12400	006-4	QC Sample: L19	921376-11 Cli	ent ID: GLC	-NB-3-2
Chromium, Hexavalent (Unfiltered)	ND	2	1.70	85		-	-	85-115	-	20
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 11	QC Batch ID: V	VG12400)29-4 (QC Sample: L19	921376-11 Cli	ent ID: GLC	:-NB-3-2
Chlorine, Total Residual	ND	0.25	0.19	76	Q	-	-	80-120	-	20
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01-03	,09 QC Batc	h ID: WO	31240071	I-4 QC Samp	le: L1921376-0	3 Client ID	: GLC-NB-2
Oil & Grease, Hem-Grav	ND	50	40	81		-	-	78-114		18
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 01-03	,09 QC Batc	h ID: WO	31240076	6-4 QC Samp	le: L1921376-0	3 Client ID	: GLC-NB-2
TPH	ND	25	19.2	77		-	-	64-132	-	34
General Chemistry - Westborou	gh Lab Asso	ociated samp	ole(s): 09	QC Batch ID: V	VG1240′	170-4 (QC Sample: L19	921376-09 Cli	ent ID: GLC	S-NB-3-2
Nitrogen, Ammonia	0.850	4	5.04	105		-	-	80-120	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits RPD	RPD Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 12	QC Batch ID: W	/G1240203-4	QC Sample: L19	21376-12 Client ID: GL	_C-NB-3-2
Chromium, Hexavalent	ND	0.1	0.101	101	-	-	85-115 -	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 03,0	9 QC Batch ID	: WG1240310-4	QC Sample: I	_1921376-03 Client ID:	GLC-NB-2
Phenolics, Total	ND	0.4	0.31	77	-	-	70-130 -	20
General Chemistry - Westbor NB-3-2	ough Lab Asso	ciated samp	ole(s): 12	QC Batch ID: W	/G1240474-4 W	/G1240474-5 Q	C Sample: L1921376-12	Client ID: GLC
Cyanide, Dissolved	ND	0.2	0.193	96	0.198	99	80-120 3	20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Parameter N	ative Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample(s): 01-03 QC Bate	ch ID: WG1239737-3	QC Sample: I	L1921376-01	Client ID:	GLC-NB-3-1
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01-03 QC Bate	ch ID: WG1239739-3	QC Sample: I	L1921376-02	Client ID:	GLC-NB-3-4
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01-03 QC Bate	ch ID: WG1239759-3	QC Sample: I	L1921376-01	Client ID:	GLC-NB-3-1
Solids, Total Dissolved	1800	1800	mg/l	0		10
General Chemistry - Westborough Lab Associated sample(s): 01-03 QC Bate	ch ID: WG1239770-3	QC Sample: I	L1921376-02	Client ID:	GLC-NB-3-4
Chromium, Hexavalent (Unfiltered)	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 11 QC Batch I	D: WG1240006-3 QC	C Sample: L19	21376-11 Cli	ent ID: GL	.C-NB-3-2
Chromium, Hexavalent (Unfiltered)	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 11 QC Batch I	D: WG1240029-3 QC	Sample: L19	21376-11 Cli	ent ID: GL	.C-NB-3-2
Chlorine, Total Residual	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated sample(s): 01-03,09 QC E	Batch ID: WG1240071-	3 QC Sample	e: L1921376-	03 Client	D: GLC-NB-2
Oil & Grease, Hem-Grav	ND	ND	mg/l	NC		18
General Chemistry - Westborough Lab Associated sample(s): 01-03,09 QC E	Batch ID: WG1240076-	3 QC Sample	e: L1921376-	03 Client	D: GLC-NB-2
TPH, SGT-HEM	ND	ND	mg/l	NC		34
General Chemistry - Westborough Lab Associated sample(s): 09 QC Batch I	D: WG1240170-3 QC	C Sample: L19	21376-09 Cli	ent ID: GL	.C-NB-3-2
Nitrogen, Ammonia	0.850	0.856	mg/l	1		20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1921376

Report Date:

Parameter	Native Sample	Duplicate Sample	Units RPI	RPD Limits
General Chemistry - Westborough Lab Associated samp	le(s): 12 QC Batch ID:	WG1240203-3 Q	C Sample: L1921376-12	? Client ID: GLC-NB-3-2
Chromium, Hexavalent	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Associated samp	le(s): 11 QC Batch ID:	WG1240275-3 Q	C Sample: L1921376-11	Client ID: GLC-NB-3-2
Solids, Total Dissolved	720	730	mg/l 1	10
General Chemistry - Westborough Lab Associated samp	le(s): 03,09 QC Batch I	D: WG1240310-3	QC Sample: L1921376	-03 Client ID: GLC-NB-2
Phenolics, Total	ND	ND	mg/l NC	20

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1921376
Report Date: 05/29/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal
Absent

Container Info		Initial		Temp			Frozen		
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1921376-01A	Vial HCl preserved	В	NA		2.9	Υ	Absent		SUB-ETHANOL(14)
L1921376-01B	Vial HCl preserved	В	NA		2.9	Υ	Absent		SUB-ETHANOL(14)
L1921376-01C	Vial HCl preserved	В	NA		2.9	Υ	Absent		SUB-ETHANOL(14)
L1921376-01D	Vial HCl preserved	В	NA		2.9	Υ	Absent		8260(14)
L1921376-01E	Vial HCl preserved	В	NA		2.9	Υ	Absent		8260(14)
L1921376-01F	Vial HCI preserved	В	NA		2.9	Υ	Absent		8260(14)
L1921376-01G	Vial HCI preserved	В	NA		2.9	Υ	Absent		VPH-DELUX-18(14)
L1921376-01H	Vial HCI preserved	В	NA		2.9	Υ	Absent		VPH-DELUX-18(14)
L1921376-01I	Vial HCI preserved	В	NA		2.9	Υ	Absent		VPH-DELUX-18(14)
L1921376-01J	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-01K	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-01L	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-01M	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1921376-01N	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-01O	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-01P	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-01Q	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-01R	Plastic 250ml HNO3 preserved	F	<2	<2	3.1	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L1921376-01S	Plastic 250ml HNO3 preserved	F	<2	<2	3.1	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB-2008S(180)
L1921376-01S1	Plastic 120ml HNO3 preserved split	F	NA		3.1	Υ	Absent		SUB-HG-245S()
L1921376-01T	Plastic 250ml NaOH preserved	G	>12	>12	5.1	Υ	Absent		SCN-9010(14)
L1921376-01U	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		TCN-4500(14)
L1921376-01V	Plastic 120ml unpreserved	D	7	7	5.2	Υ	Absent		HEXCR-7196(1)
L1921376-01V1	Plastic 120ml HNO3 preserved split	E	7	<2	4.0	N	Absent		SUB-HG-245T()
L1921376-01W	Plastic 950ml unpreserved	Е	7	7	4.0	Υ	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921376-01W1	Plastic 950ml unpreserved	E	7	7	4.0	Υ	Absent		TSS-2540(7)
L1921376-01W2	Plastic 500ml H2SO4 preserved	G	<2	<2	5.1	Υ	Absent		NH3-4500(28)
L1921376-01W3	Amber 1000ml H2SO4 preserved	F	<2	<2	3.1	Υ	Absent		TPHENOL-420(28)
L1921376-01Y1	Amber 1000ml Na2S2O3	В	7	7	2.9	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-01Y2	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-01Y3	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-01Y4	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-01Y6	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-01Y7	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-01Y8	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-01Y9	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-01Z1	Amber 1000ml HCl preserved	F	<2	<2	3.1	Υ	Absent		EPH-10(14)
L1921376-01Z2	Amber 1000ml HCl preserved	В	<2	<2	2.9	Υ	Absent		EPH-10(14)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1921376-01Z3	Amber 1000ml HCl preserved	В	<2	<2	2.9	Υ	Absent		EPH-10(14)
L1921376-01Z4	Amber 1000ml HCI preserved	В	<2	<2	2.9	Υ	Absent		EPH-10(14)
L1921376-01Z5	Amber 1000ml HCI preserved	D	NA		5.2	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-01Z6	Amber 1000ml HCI preserved	D	NA		5.2	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-02A1	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-02A2	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-02A3	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-02A4	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-02A5	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-02A6	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-02A7	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-02A8	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-02B1	Vial HCl preserved	С	NA		3.5	Υ	Absent		8260(14)
L1921376-02B2	Vial HCl preserved	С	NA		3.5	Υ	Absent		8260(14)
L1921376-02B3	Vial HCl preserved	С	NA		3.5	Υ	Absent		SUB-ETHANOL(14)
L1921376-02C	Plastic 950ml unpreserved	Е	7	7	4.0	Υ	Absent		TSS-2540(7)
L1921376-02D	Plastic 950ml unpreserved	E	7	7	4.0	Υ	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921376-02E	Plastic 120ml unpreserved	D	7	7	5.2	Υ	Absent		HEXCR-7196(1)
L1921376-02F1	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		TCN-4500(14)
L1921376-02F2	Plastic 250ml NaOH preserved	G	>12	>12	5.1	Υ	Absent		SCN-9010(14)
L1921376-02G	Plastic 500ml H2SO4 preserved	G	<2	<2	5.1	Υ	Absent		NH3-4500(28)
L1921376-02H	Plastic 250ml HNO3 preserved	G	<2	<2	5.1	Υ	Absent		ARCHIVE()
L1921376-02l	Plastic 250ml HNO3 preserved	G	<2	<2	5.1	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L1921376-02I1	Plastic 120ml HNO3 preserved split	G	NA		5.1	Υ	Absent		SUB-HG-245T()
L1921376-02J	Amber 1000ml H2SO4 preserved	F	<2	<2	3.1	Υ	Absent		TPHENOL-420(28)
L1921376-02K1	Amber 1000ml HCI preserved	D	NA		5.2	Υ	Absent		OG-1664(28),TPH-1664(28)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН		Pres	Seal	Date/Time	Analysis(*)
L1921376-02K2	Amber 1000ml HCl preserved	D	NA		5.2	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-02K3	Amber 1000ml HCl preserved	D	<2	<2	5.2	Υ	Absent		EPH-10(14)
L1921376-02K4	Amber 1000ml HCl preserved	D	<2	<2	5.2	Υ	Absent		EPH-10(14)
L1921376-02K5	Amber 1000ml HCl preserved	D	<2	<2	5.2	Υ	Absent		EPH-10(14)
L1921376-02K6	Amber 1000ml HCl preserved	Α	<2	<2	3.6	Υ	Absent		EPH-10(14)
L1921376-02K7	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-02K8	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-02L	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-02M	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-02N	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-02O	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-02P	Amber 1000ml Na2S2O3	G	7	7	5.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-02P1	Plastic 120ml HNO3 preserved split	E	NA		4.0	Υ	Absent		SUB-HG-245S()
L1921376-02P2	Plastic 120ml HNO3 preserved split	Е	NA		4.0	Υ	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB-2008S(180)
L1921376-02Q	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-02R	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-02S	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-02V	Plastic 120ml unpreserved split	E	7	7	4.0	Υ	Absent		-
L1921376-02V1	Plastic 120ml unpreserved split	E	7	7	4.0	Υ	Absent		SUB-HG-245S()
L1921376-03A	Plastic 120ml unpreserved	E	7	7	4.0	Υ	Absent		HEXCR-7196(1)
L1921376-03A1	Vial HCl preserved	A1	NA		3.0	Υ	Absent		8260(14)
L1921376-03B	Plastic 950ml unpreserved	Е	7	7	4.0	Υ	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921376-03B1	Vial HCl preserved	A1	NA		3.0	Υ	Absent		8260(14)
L1921376-03C	Plastic 950ml unpreserved	E	7	7	4.0	Υ	Absent		TSS-2540(7)
L1921376-03C1	Vial HCl preserved	A1	NA		3.0	Υ	Absent		SUB-ETHANOL(14)
L1921376-03D	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		SCN-9010(14),504(14)
L1921376-03D1	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		504(14)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1921376-03D2	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		504(14)
L1921376-03D3	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		504(14)
L1921376-03D4	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		504(14)
L1921376-03E	Amber 1000ml Na2S2O3	Н	7	7	2.8	Y	Absent		PESTICIDE-608.3(7),624.1-SIM-RGP(7),624.1-RGP(3),PCB-608.3(7)
L1921376-03E1	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-03E2	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-03E3	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-03E4	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-03E5	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-RGP(3)
L1921376-03E6	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-RGP(3)
L1921376-03E7	Vial Na2S2O3 preserved	A1	NA		3.0	Υ	Absent		624.1-RGP(3)
L1921376-03F	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-03F1	Amber 950ml H2SO4 preserved	A1	<2	<2	3.0	Υ	Absent		TPHENOL-420(28)
L1921376-03G	Amber 1000ml Na2S2O3	Н	7	7	2.8	Υ	Absent		PESTICIDE-608.3(7),PCB-608.3(7)
L1921376-03H	Amber 1000ml Na2S2O3	В	7	7	2.9	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-03I	Amber 1000ml Na2S2O3	В	7	7	2.9	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-03J	Amber 1000ml Na2S2O3	В	7	7	2.9	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-03K1	Amber 1000ml HCl preserved	С	NA		3.5	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-03K2	Amber 1000ml HCl preserved	В	<2	<2	2.9	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-03K3	Amber 1000ml HCl preserved	В	<2	<2	2.9	Υ	Absent		EPH-10(14)
L1921376-03K4	Amber 1000ml HCl preserved	Α	<2	<2	3.6	Υ	Absent		EPH-10(14)
L1921376-03K5	Amber 1000ml HCl preserved	Α	<2	<2	3.6	Υ	Absent		EPH-10(14)
L1921376-03K8	Amber 1000ml Na2S2O3	A1	7	7	3.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-03K9	Amber 1000ml Na2S2O3	A1	7	7	3.0	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-03L	Plastic 250ml unpreserved split	В	7	7	2.9	Υ	Absent		ARCHIVE()
L1921376-03M	Plastic 250ml HNO3 preserved split	В	7	<2	2.9	N	Absent		ARCHIVE()
L1921376-03N	Plastic 250ml NaOH preserved split	В	7	>12	2.9	N	Absent		ARCHIVE()
L1921376-03O	Plastic 250ml H2SO4 preserved split	Е	7	<2	4.0	N	Absent		ARCHIVE()

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1921376-03P	Plastic 250ml HNO3 preserved	A1	<2	<2	3.0	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB-2008S(180)
L1921376-03P1	Plastic 120ml HNO3 preserved split	A1	<2	<2	3.0	Υ	Absent		SUB-HG-245S()
L1921376-03Q	Plastic 250ml HNO3 preserved	A1	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L1921376-03Q1	Plastic 120ml HNO3 preserved split	A1	<2	<2	3.0	Υ	Absent		SUB-HG-245T()
L1921376-03R	Plastic 500ml H2SO4 preserved	A1	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L1921376-03S	Plastic 250ml NaOH preserved	A1	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L1921376-03X	Plastic 120ml HNO3 preserved Filtrates	E	<2	<2	4.0	Υ	Absent		ARCHIVE()
L1921376-04A	Bacteria Cup Na2S2O3 preserved	В	NA		2.9	Υ	Absent		E-COLI-QT(.33)
L1921376-04B	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-05A	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-05B	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-06A	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		HOLD(14)
L1921376-06B	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		HOLD(14)
L1921376-07A	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-07B	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-08A	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-08B	Bacteria Cup Na2S2O3 preserved	D	NA		5.2	Υ	Absent		E-COLI-QT(.33)
L1921376-09A	Vial HCl preserved	С	NA		3.5	Υ	Absent		8260(14)
L1921376-09A1	Amber 1000ml HCI preserved	B1	<2	<2	2.7	Υ	Absent		EPH-10(14)
L1921376-09A2	Amber 1000ml HCI preserved	B1	<2	<2	2.7	Υ	Absent		EPH-10(14)
L1921376-09B	Vial HCl preserved	С	NA		3.5	Υ	Absent		8260(14)
L1921376-09B1	Amber 1000ml HCI preserved	B1	NA		2.7	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-09B2	Amber 1000ml HCl preserved	B1	NA		2.7	Υ	Absent		OG-1664(28),TPH-1664(28)
L1921376-09C	Vial HCl preserved	С	NA		3.5	Υ	Absent		8260(14)
L1921376-09D	Vial HCl preserved	С	NA		3.5	Υ	Absent		VPH-DELUX-18(14)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН		Pres	Seal	Date/Time	Analysis(*)
L1921376-09D1	Amber 950ml H2SO4 preserved	B1	<2	<2	2.7	Υ	Absent		TPHENOL-420(28)
L1921376-09E	Vial HCl preserved	С	NA		3.5	Υ	Absent		VPH-DELUX-18(14)
L1921376-09E1	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PESTICIDE-608.3(7)
L1921376-09E2	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PESTICIDE-608.3(7)
L1921376-09E3	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PESTICIDE-608.3(7)
L1921376-09E4	Amber 1000ml HCl preserved	B1	NA		2.7	Υ	Absent		TPH-1664(28)
L1921376-09E5	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PCB-608.3(7)
L1921376-09E6	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PCB-608.3(7)
L1921376-09E7	Amber 1000ml Na2S2O3	B1	7	7	2.7	Υ	Absent		PCB-608.3(7)
L1921376-09F	Vial HCl preserved	С	NA		3.5	Υ	Absent		VPH-DELUX-18(14)
L1921376-09G	Vial HCl preserved	С	NA		3.5	Υ	Absent		SUB-ETHANOL(14)
L1921376-09H	Vial HCl preserved	В	NA		2.9	Υ	Absent		SUB-ETHANOL(14)
L1921376-09I	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-RGP(3)
L1921376-09J	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-RGP(3)
L1921376-09K	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-RGP(3)
L1921376-09L	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7)
L1921376-09M	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7)
L1921376-09N	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7)
L1921376-09O	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-09P	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-09Q	Vial H2SO4 preserved	С	NA		3.5	Υ	Absent		ARCHIVE()
L1921376-09R	Vial H2SO4 preserved	С	NA		3.5	Υ	Absent		ARCHIVE()
L1921376-09S	Plastic 250ml NaOH preserved	В	>12	>12	2.9	Υ	Absent		TCN-4500(14),ARCHIVE()
L1921376-09T	Plastic 250ml HNO3 preserved	F	<2	<2	3.1	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),SE-2008T(180),ARCHIVE(),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1921376-09T1	Plastic 120ml HNO3 preserved split	F	<2	<2	3.1	Υ	Absent		SUB-HG-245T()
L1921376-09U	Plastic 500ml H2SO4 preserved	G	<2	<2	5.1	Υ	Absent		NH3-4500(28)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	- 1	Pres	Seal	Date/Time	Analysis(*)
L1921376-09V	Amber 1000ml Na2S2O3	F	7	7	3.1	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1921376-10A	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-10B	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-10C	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		624.1-SIM-RGP(7),624.1-RGP(3)
L1921376-10D	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-10E	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-10F	Vial Na2S2O3 preserved	С	NA		3.5	Υ	Absent		504(14)
L1921376-10G	Vial HCl preserved	В	NA		2.9	Υ	Absent		VPH-DELUX-18(14)
L1921376-10H	Vial HCl preserved	В	NA		2.9	Υ	Absent		8260(14)
L1921376-11A	Plastic 950ml unpreserved	B1	7	7	2.7	Υ	Absent		CL-300(28),HEXCR-7196-UF(1),TRC- 4500(1),TDS-2540(7)
L1921376-11B	Plastic 250ml unpreserved	B1	7	7	2.7	Υ	Absent		TSS-2540(7)
L1921376-12A	Plastic 120ml unpreserved	Α	7	7	3.6	Υ	Absent		HEXCR-7196(1)
L1921376-12B	Plastic 250ml NAOH preserved Filtrates	Α	>12	>12	3.6	Υ	Absent		SCN-9010(14)
L1921376-12C	Plastic 250ml HNO3 preserved Filtrates	А	<2	<2	3.6	Y	Absent		AG-2008S(180),CR-2008S(180),FE- RI(180),AS-2008S(180),PB-2008S(180),ZN- 2008S(180),NI-2008S(180),SE-2008S(180),CD- 2008S(180),CU-2008S(180),SB-2008S(180)
L1921376-12C1	Plastic 120ml HNO3 preserved split	Α	<2	<2	3.6	Υ	Absent		SUB-HG-245S()
L1921376-12D	Amber 1000ml HCl preserved	Α	<2	<2	3.6	Υ	Absent		ARCHIVE()
L1921376-13A	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-13B	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-14A	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-14B	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-14C	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-14D	Vial HCl preserved	Α	NA		3.6	Υ	Absent		VPH-DELUX-18(14)
L1921376-14E	Vial HCl preserved	Α	NA		3.6	Υ	Absent		VPH-DELUX-18(14)
L1921376-14F	Vial HCl preserved	Α	NA		3.6	Υ	Absent		-
L1921376-15A	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-15B	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)
L1921376-15C	Vial H2SO4 preserved	Α	NA		3.6	Υ	Absent		TOC-5310(28)

Lab Number: L1921376

Report Date: 05/29/19

Project Name: MBTA GLX NEWBERN AVE II

С	Container Information				Initial	Final	Temp			Frozen	
С	ontainer ID	Container Type	Co	oler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1	921376-15D	Vial HCl preserved	А		NA		3.6	Υ	Absent		VPH-DELUX-18(14)
L1	921376-15E	Vial HCI preserved	Α		NA		3.6	Υ	Absent		VPH-DELUX-18(14)
L1	921376-15F	Vial HCI preserved	Α		NA		3.6	Υ	Absent		-
L1	921376-16A	Vial HCI preserved	Α		NA		3.6	Υ	Absent		VPH-DELUX-18(14)
L1	921376-16B	Vial HCl preserved	А		NA		3.6	Υ	Absent		VPH-DELUX-18(14)

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1921376

Project Number: 290762.0016.0000 Report Date: 05/29/19

GLOSSARY

Acronyms

EDL

LOQ

MS

NP

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1921376Project Number:290762.0016.0000Report Date:05/29/19

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05291917:01

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

CHAIN	OF CUSTO	Jan. 3	PAGE OI	2		Rec'd	Trees.	-	121	V	1		ALP	HA J	ob #:	LI	921376
AHALYTICAL	Project inion	mation			100000000000000000000000000000000000000	FAX	nform	ation	Data		verab	les		ng In			PO #: 135774
Westborough, MA Mansfield, MA TEL: 508-898-9220 TEL: 508-822-9300	Project Name: I	MBTA GLX I	Newbern Ave	II .		ADEx	W 2		- 77	dd'l De							
FAX: 508-898-9193 FAX: 508-822-3288 Client Information	Project Location	n: Somerville	, Medford, C	ambridge	State	Julato e/Fed P			ement	s/Rep	ort L	imits.	Criter	ia RGP / F	acow.		
Client: TRC Environmental Corp	Project #: 29076	62.0016.000	0	70.00		Market Street	ESUN	IPTIV	E CE	RTAIN	ITY-C	TRE	ALC: UNKNOWN	AND DESCRIPTION OF THE PERSON NAMED IN	The same		ENCE PROTOCOLS
Address: 650 Suffolk Street	Project Manage	er: Diane Sta	llings		⊠ '			□ No		100000	2000	nalytica	100000000000000000000000000000000000000		11/10/19		ENGLINGIGGGES
Lowell, MA	ALPHA Quote #	‡: 7918				'es	_ ()	⊠ No		Are (CT RCF	(Reas	onable	Confid	ence F	rotocol	s) Required?
Phone: 978-970-5600	Turn-Around	Time	THE TWO	1 × 1 = 1	_AN	ALYS	IS	_								_	SAMPLE HANDLING T
Fax: Email: DStallings@trcsolutions.com These samples have been Previously analyzed by Alph.	Standard	7/200	sh (ONLY IF PR	E-APPROVED;	per quote		MassDEP	1664A			200.8/245.1	10	m. by 7196A				SAMPLE HANDLING Filtration Done Not Needed Lab to do Preservation
Other Project Specific Requirements/Co RLs must meet EPA RGP Appendix VII limits Please report both Total and Dissolved RGP 5 day TAT standard per quote. Report project-specific VOC/SVOC analyte lis Add'l email: KMorin@trcsolutions.com, Riyer(bayres@trccompanies	metals (including trivalent o				NPDES RGP GW 2017	Pesticides by 608	EPH (Fractions Only) by MassDEP	Oil and Grease (HEM) by 1664A	by SM2540C	Hardness by 200.7	Dissolved RGP Metals by	Dissolved Cyanide by 9010	Total and Diss Hex. Chrom.	TOC by 5310	s by 8260C	4	Lab to do (Please specify below)
ALPHA Lab ID Sample ID (Lab Use Only)	Date	ection Time	Sample Matrix	Sampler's Initials	NPO	Pest	EPH	0	TDS by	Hard	Diss	Diss	Tota	100	VOCs	3	Sample Specific Comments
21376 - OF OUR NB 3-1	A Sound		GW		П												
-01 GCC-NB-3-1	5/21/19	1100		TD		<	×	B	×	×	-	×	×	1	X	R	
-00 GLC-NB-3-4		1200		20	K	X	x		K	2	12	K	R		R		
-03 (d. (-NB-2	4	1400		TD	K	K	×	X	×	囚	N	d	X		P		
ECC-NB-180		1.	1	218													
much Several a																	
PLEASE ANSWER QUESTIONS ABOVE!				ntainer Type	2	A H	A B	A B	G A	P	P C	P E	P	2	3	5	Please print clearly, legibly
S YOUR PROJECT Relinqu			200	Preservative		ate/Time							- Andrews		100		and completely. Samples can not be logged in and
MA MCP or CT RCP?				uished By:						AAL	Date/Time 2 5/21 1607 AL SIÐI 1888			turnaround time clock will not start unit any ambiguities are resolved. All samples submitted are subject to Alpha's Payment Terms.			
Page 213 of 249					5/2					-7-	1.000.00			1			

ALPHA	CHAIN OF	CUSTO Project Infor	-	PAGE	2		le Rec'o		5	121	V- 1		YIL.	ALF	РНА .	Job #	: L1	921376
Would Class Chamist	a L	r roject illior	mation				port I	nforr	nation	0.000	a Deli	veral	oles	The state of the state of	100000	nform as Clier	ation	PO #: 135774
	Mansfield, MA TEL: 508-622-9300	Project Name:	MBTA GLX	Newbern Ave	11					SECTION.	Add'l De	eliveral	oles	Δ.	same a	ss Ciler	it into	PO#. 135774
	FAX: 508-822-3288					Re	gulat	ory R	equir	emen	ts/Re	port	Limits	-	306		HEAVE.	The state of the state of
Client Informatio	on	Project Location	n: Somerville	e, Medford, Ca	ambridge	Sta	te/Fed F	Program	~					Criter	ria			
Client: TRC Environ	nmental Corp	Project #: 2907	united and			Manager 1	A/MCP		MDTI.							RCGW		
Address: 650 Suffol	k Street	Project Manage				⊠		ESU	□ No	E CE								ENCE PROTOCO
Lowell, MA		ALPHA Quote		ining o		- 1-2_0000 New Year						Methods Required? conable Confidence Protocols) Required?						
Phone: 978-970-56	00	Turn-Around	The state of the s	The state of	THE STATE OF	AN	ALYS	is	00				***					
Fax:	2076	Standard	CALL CONTRACTOR OF THE PARTY OF	ish (ONLY IF PR								-		4				SAMPLE HANDLING Filtration
Email: DStallings@	trcsolutions.com	- D		AN ONLY IF PR	E-APPROVED)	note		Only) by MassDEP	4A			8/245		/ 7196A				□ Not Needed
These samples have	been Previously analyzed by Alpha	Due Date:	Time			e d		Mass	166			200	9010	Chrom. by			1	Lab to do Preservation Lab to do (Please specify below)
5 day TAT standard Report project-spec Add'l email: KMorin bayres@trccompan	ific VOC/SVOC analyte lists. @trcsolutions.com, Riyer@trccollies	COLUMN TO THE RESERVE TO SERVE THE SERVE TO SERVE THE SE	**************************************			NPDES RGP GW 2017 per quote	Pesticides by 608	(Fractions	Oil and Grease (HEM) by 1664A	TDS by SM2540C	Hardness by 200.7	Dissolved RGP Metals by 200.8/245.1	Dissolved Cyanide by	Total and Diss Hex.	TOC by 5310	VOCs by 8260C	Coli	#
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	MP	Pest	ЕРН	Oila	TDS	Hand	Diss	Disso	Total	700	Voc	D	Sample Specific Comments
21376-04	GEC-NB-3-2	5/21/19	ISSS	GW			П	П	П	П		П				П	Q	
-02	GC-108-3-1	5/2/19	1250	1	JD	H	Ī		Ħ	H	H	$\overline{\Box}$		\Box	H	片	K	
-0b	GLC-NB-3	3/21/19	1445		JO				Ħ	Ħ	Ħ	Ħ	n	H	H	H	N X	
-07	GC-108-3-4	5/21/19	1330		JD							百		$\overline{\Box}$	H	Ħ	R	
-08	660 NB-3	5/21/19	1550	1	BA											一	K	
-6		(8.0)																
	<u> </u>																	
	L VIZEOUS SETTINGS OF THE SETTINGS																	
LEASE ANSWER C	QUESTIONS ABOVE!				ntainer Type		Α	A	Α	G	Р	P	Р	Р	3.	*	£	VALUE OF SECTION
e vous	DDOJECT		700		Preservative	*	н	В	В	Α	С	С	E	A	*		0	Please print clearly, legibly and completely. Samples
S YOUR PROJECT MA MCP or CT RCP?			Relin	quished By		5/21		607		w	Réceive	ed By:	AAL	Date/Time not be logged in and turnaround time clock will start until any ambiguities			turnaround time clock will a start until any ambiguities resolved. All samples	
ORM/NO 01-01(I) res. 5-JAN-12)	MNO: 01.0tml				All AN 5		5721 1855			1855 alana Kiggs AA				submitted are subject			submitted are subject to Alpha's Payment Terms.	

Дена	CHAIN O	CUSTO	DY ,	PAGE	OF	Date Re	c'd in Lab	. 5	122/10	1	ALPH	A Job #:	L1921376
8 Walkup Drive	320 Forbes Blvd	Project Inform		Ish a		Report	Informa	tion - Data	Deliveral	oles	Billing	Informat	ion
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name: N	BTA GLX	Newben	n Ave 11	□ ADE		⊠ EMAIL			☐ Same	as Client in	16 PO#: 135774
Client Informatio	n	Project Location:	Solderally	20 111	Malo	Regula	tory Rec	uirements	& Pro	oject In			
Client: IPC E	Environmental Corp.	Project#: 290	162. MIG	0000)			ICP Analytic Spike Req			☐ Ye	es De No C	T RCP Analytical Methods
Address: 650	Suffolk St.	Project Manager:	Dione S	Je lune	c	☐ Yes ☐	No GW1	Standards					
Lowell, M	(A-	ALPHA Quote #:		armid.)	MESSINGSON,	No NPD	Program				Criteria	
Phone: 978-0	170-5600	Turn-Around	Гime				/ /	15 2	12/2	1	13	#0	/ / /
Additional Pr PL'S Must Mu PLENE CETOT 61 Add EMERK	SGTRCBOMPONIES. COM roject Information: elt EPA RGP APPOLIX of total ad Disc. R ccompanies. com, RI Ba	Date Due:	tucledy Ti	ty "I Cutoma	4)	A1 A1	METALS: DMCP 13 C.	EPH. DRanges & Targets DRCP 15 VPH. Dr.	C PCB C PEST TPH: CQuant C	TRC - 450 INC 3	35	NO CHEST TOTAL	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID		ollection	Sample Matrix	Sampler Initials	Voc.	METAL	EPH: D	D PCB	IRC.	19	H#Evo	Sample Comments
21376-11	GC-NB-3-2	5/21/1	1 1500	GW	JD					(Campic Comments
09	~	5/20/1		1	1					×	XX		
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	Relinquished By:	F	Pre	eservative	g l	Replan	ed By:	1 6	Pate/	Time		les submitted are subject t
nge 215 of 249	I= Ascorbic Acid J = NH ₄ Ci K= Zn Acetate O= Other			5/22/1	9 133	J.	ME	_e",	an 5	122/19	1235	See reve	Ferms and Conditions, erse side. 01-01 (rev. 12-Mar-2012)

ALPHA
World Class Chemistry

Subcontract Chain of Custody

WATE CLASS CHAMBELLY	Te 29i Na	st America (N. 50 Foster Crei shville, TN 37	Juy	Alpha Job Number L1921376					
Client Information	No.	Project In	formation	Regulatory Red	quirements/Report Limits				
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	Project Location Project Manage		ne erables Information	State/Federal Program Regulatory Criteria:					
Phone: 508-439-5132 Email: akane@alphalab.com	Due Date Deliverables:	05/24/19							
A Transfer of Lines of State Control of	Project Specif	ic Requirem	ents and/or Report	Requirements	Allega to the Allega				
Reference following Alpha Job Nu	mber on final repor	t/deliverables	: L1921376	Report to include Method Bla	ink, LCS/LCSD:				
Lab ID Client ID	Collection Date/Time	Sample Matrix	A	nalysis	Batch QC				
GLC-NB-3-1 GLC-NB-3-4 GLC-NB-2 GLC-NB-3-2	05-21-19 11:00 05-21-19 12:00 05-21-19 14:00 05-20-19 11:00	WATER WATER WATER	Ethanol by EPA 1671 Revi Ethanol by EPA 1671 Revi Ethanol by EPA 1671 Revi Ethanol by EPA 1671 Revi	ision A					
Relinquished	Ву:		Date/Time:	Received By:	Date/Time:				
	\rightarrow		5122119						
			3.1400-352 - 26 - 10M3						

Агрна	CHAIN OF	CU	STO	Y P	AGE	OF	Date Re	c'd in Lai	: 5/2	2/15	7		ALP	HA Jo	ob #:	L1921376)
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		Project Na	Informat	KTA G	X NASIJA	en de 11	Report	Informa	ation - Da	ita Deli L	iverabl	es	Billi	ng Info ne as C	ormat	tion	
Lowell, M	vienmital Coop, uptoin ST.	Project Lo Project #: Project M: ALPHA (29076 anager: 0	altilge, 2.0016. Ione S	Melfol,	Somville	Yes C	No GW	Standard ES RGP d Program	s (Info F	Required	SDG?	(Requ	Yes 🛭	No C MCP vith Ta	CT RCP Analytical Me Inorganics)	thods
Additional PI PL'S M-15+ M Regse Teach	70-500 SCTRCLampinies, Com roject Information: eet the Appalix UTT both total and Di uncrin & TRC Companies Bayres C TRC Companies	Date D	ne: Smetal: Dretal:	FRUSH (only)	uly Tri	cwar)	A 150	METALS: DMCP 1.	EPH: DRanges 8 T.	D PCB CB Targets & Targets D Ranges Only	TPH: DQuant Only	C S J	0155 4 80.00	Hace (A)	1-906 (co)	SAMPLE IN Filtration Field Lab to do	n c
ALPHA Lab ID (Lab Use Only)	Sample ID		Date	Time	Sample Matrix	Sampler Initials	SVO.	META	EPH.	Hay O	H. J.	7=		_	70	Sample Comme	
21376-12	(16-NB-3-2		5/20/19	1000 T 153	GW	BA				+	- N		X >	X	×		
-14	GC-NB-3-1			1335					+		X	No.		+	Н		+
~15	GLC- NB-3-4		Ų.	1410	1	1					×						
																	+
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube	Preservative A= None B= HCl C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH	Relinqu	ished By:		Pre	ainer Type eservative e/Time		Rece	ived By:			Date	/Time				
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascerbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	Syr	260) At	5/20	19 19 145	John	Su	00	A	915/2	2/19	16:	65 A	lpha's ee rev	oles submitted are su Terms and Conditions erse side. : 01-01 (rev. 12-Mar-2012)	

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-174548-1 Client Project/Site: L1921376

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Reports Dept.

Authorized for release by: 5/23/2019 5:39:25 PM

Kuth Haye

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 218 of 249

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

_

3

5

6

Ω

9

10

11

Laboratory Job ID: 490-174548-1

Client: Alpha Analytical Inc Project/Site: L1921376

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	11
Chronicle	12
Method Summary	13
Certification Summary	14
Chain of Custody	15

3

4

6

8

9

10

11

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1921376

Job ID: 490-174548-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asse
490-174548-1	GLC-NB-3-1	Water	05/21/19 11:00	05/23/19 09:05	
490-174548-2	GLC-NB-3-4	Water	05/21/19 12:00	05/23/19 09:05	
490-174548-3	GLC-NB-2	Water	05/21/19 14:00	05/23/19 09:05	
490-174548-4	GLC-NB-3-2	Water	05/20/19 11:00	05/23/19 09:05	

6

9

10

11

Case Narrative

Client: Alpha Analytical Inc

Project/Site: L1921376

Job ID: 490-174548-1

Job ID: 490-174548-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-174548-1

Comments

No additional comments.

Receipt

The samples were received on 5/23/2019 9:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 5.7° C.

GC Semi VOA

Method 1671A: Surrogate recovery was outside acceptance limits for the following matrix spike (MS) sample: (490-174494-A-2 MS). The parent sample's surrogate recovery was within limits. The MS sample has been qualified and reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

2

9

4

E

6

7

8

9

10

1

Definitions/Glossary

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Qualifiers

GC VOA
Qualifier Qualifier Description

X Surrogate is outside control limits

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)
LOD Limit of Detection (DoD/DOE)
LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

9

- 4

4

5

J

b

o

_

10

11

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Client Sample ID: GLC-NB-3-1 Lab Sample ID: 490-174548-1

Matrix: Water

Date Collected: 05/21/19 11:00 Date Received: 05/23/19 09:05

Method: 1671A - Ethanol	(GC/FID)								
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND		2000	500	ug/L			05/23/19 12:22	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	101		70 - 130			-		05/23/19 12:22	1

9

10

11

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Client Sample ID: GLC-NB-3-4 Lab Sample ID: 490-174548-2 Date Collected: 05/21/19 12:00

Matrix: Water

Date Received: 05/23/19 09:05

Method: 1671A - Ethanol	(GC/FID)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	2000	500	ug/L			05/23/19 12:28	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	95	70 - 130					05/23/19 12:28	1

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Client Sample ID: GLC-NB-2 Lab Sample ID: 490-174548-3

Matrix: Water

Date Collected: 05/21/19 14:00 Date Received: 05/23/19 09:05

Method: 1671A - Ethanol (0	GC/FID)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND ND	2000	500	ug/L			05/23/19 12:34	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	97	70 - 130					05/23/19 12:34	1

2

-

5

_

8

9

1 1

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Lab Sample ID: 490-174548-4 Client Sample ID: GLC-NB-3-2

Date Collected: 05/20/19 11:00 **Matrix: Water** Date Received: 05/23/19 09:05

Method: 1671A - Ethanol (GC/	FID)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			05/23/19 12:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)	90		70 - 130			-		05/23/19 12:40	1

QC Sample Results

Client: Alpha Analytical Inc Job ID: 490-174548-1

Project/Site: L1921376

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-597177/4 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 597177

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			05/23/19 11:27	1

MB MB

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed Isopropyl acetate (Surr) 97 70 - 130 05/23/19 11:27

Lab Sample ID: LCS 490-597177/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 597177

%Rec. Spike LCS LCS Added Analyte Result Qualifier Unit D %Rec Limits Ethanol 50200 43570

ug/L 70 - 130

LCS LCS

Limits Surrogate %Recovery Qualifier Isopropyl acetate (Surr) 101 70 - 130

Lab Sample ID: LCSD 490-597177/6 **Client Sample ID: Lab Control Sample Dup Matrix: Water** Prep Type: Total/NA

Analysis Batch: 597177

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits Limit D %Rec **RPD** Ethanol 50200 43280 ug/L 86 70 - 130

LCSD LCSD Surrogate %Recovery Qualifier Limits

Isopropyl acetate (Surr) 103 70 - 130

Lab Sample ID: 490-174494-A-2 MS **Client Sample ID: Matrix Spike** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 597177

Sample Sample Spike MS MS %Rec. Result Qualifier Added Analyte Result Qualifier Unit Limits %Rec 50200 Ethanol ND 38370 76 70 - 130 ug/L

MS MS

Surrogate %Recovery Qualifier Limits 67 X 70 - 130 Isopropyl acetate (Surr)

Lab Sample ID: 490-174494-A-2 MSD **Matrix: Water**

Analysis Batch: 597177

RPD Sample Sample Spike MSD MSD %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Ethanol ND 50200 43440 86 ug/L 70 - 130 20

MSD MSD

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 101 70 - 130

Eurofins TestAmerica, Nashville

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

QC Association Summary

Client: Alpha Analytical Inc
Project/Site: L1921376

Job ID: 490-174548-1

GC VOA

Analysis Batch: 597177

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-174548-1	GLC-NB-3-1	Total/NA	Water	1671A	
490-174548-2	GLC-NB-3-4	Total/NA	Water	1671A	
490-174548-3	GLC-NB-2	Total/NA	Water	1671A	
490-174548-4	GLC-NB-3-2	Total/NA	Water	1671A	
MB 490-597177/4	Method Blank	Total/NA	Water	1671A	
LCS 490-597177/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-597177/6	Lab Control Sample Dup	Total/NA	Water	1671A	
490-174494-A-2 MS	Matrix Spike	Total/NA	Water	1671A	
490-174494-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	1671A	

5

4

7

O

3

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1921376

Job ID: 490-174548-1

Client Sample ID: GLC-NB-3-1 Lab Sample ID: 490-174548-1

Date Collected: 05/21/19 11:00 **Matrix: Water** Date Received: 05/23/19 09:05

		Batch	Batch		Dil	Initial	Final	Batch	Prepared		
F	Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
1	Total/NA	Analysis	1671A		1			597177	05/23/19 12:22	ZXS	TAL NSH

Client Sample ID: GLC-NB-3-4

Lab Sample ID: 490-174548-2 Date Collected: 05/21/19 12:00 **Matrix: Water**

Date Received: 05/23/19 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			597177	05/23/19 12:28	ZXS	TAL NSH

Lab Sample ID: 490-174548-3 Client Sample ID: GLC-NB-2

Date Collected: 05/21/19 14:00 **Matrix: Water**

Date Received: 05/23/19 09:05

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			597177	05/23/19 12:34	ZXS	TAL NSH

Client Sample ID: GLC-NB-3-2 Lab Sample ID: 490-174548-4 **Matrix: Water**

Date Collected: 05/20/19 11:00 Date Received: 05/23/19 09:05

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Type Method Run **Factor** Amount **Amount** Number or Analyzed Analyst Lab Total/NA Analysis 1671A 597177 05/23/19 12:40 ZXS TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

5/23/2019

Method Summary

Client: Alpha Analytical Inc Project/Site: L1921376 Job ID: 490-174548-1

2

Method	Method Description	Protocol	Laboratory
1671A	Ethanol (GC/FID)	EPA	TAL NSH

4

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

9

10

44

Accreditation/Certification Summary

Client: Alpha Analytical Inc
Project/Site: L1921376

Job ID: 490-174548-1

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
Massachusetts	State Pro	gram	1	M-TN032	06-30-19
The following analyte	s are included in this repo	rt, but the laboratory is	not certified by the	e governing authority. This	list may include analytes for which
the agency does not	•	,	,	,	,
the agency does not Analysis Method	•	Matrix	Analyt	e	

1

8

10

11

COOLER RECEIPT FORM

Cooler Received/Opened On05-23-2019_@09-05	
Time Samples Removed From Cooler 19-24 Time Samples Placed In Storage 07:30	(2 Hour Window)
1. Tracking # 2830654019153(last 4 digits, FedEx) Courier: LIPS WDA	
IR Gun ID31470368 pH Strip LotChlorine Strip Lot	<u> </u>
2. Temperature of rep. sample or temp blank when opened:	a -
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO(NA)
4. Were custody seals on outside of cooler?	YESNO)NA
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YES NO NA
Certify that I opened the cooler and answered questions 1-6 (intial)	
7. Were custody seals on containers: YES (10) and Intact	YESNONA
Were these signed and dated correctly?	YESNO(NA)
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Other None
9. Cooling process: (Ice Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	FESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA
12. Did all container labels and tags agree with custody papers?	(E8NONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequence	**
I certify that I unloaded the cooler and answered questions 7-14 (intial)	<u></u>
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YES NO NO
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	
17. Were custody papers properly filled out (ink, signed, etc)?	YES/NONA
18. Did you sign the custody papers in the appropriate place?	ESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YES NO NA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	<u> </u>
I certify that I attached a label with the unique LIMS number to each container (intial)	_KI)
21. Were there Non-Conformance issues at login? YES(NO)#	<u> </u>

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form

Revised 8/23/17

		nS	bcontrac	Subcontract Chain of Custody				
ANAREKY 1 0 A L		Test A 2960 F Nashv	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	rhville) tton Drive 34			Alpha Job Number L1921376	mber
Client	Client Information	4	Project Information	ırmation	Regul	Regulatory Requirements/Report Limits	nts/Report Limits	10
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	cal Labs Drive , MA 01581-1019	Project Location: MA Project Manager: Ashaley Kane Turnaround & Deliver	IA Ishaley Kand d & Delive	ation: MA nager: Ashaley Kane naround & Deliverables Information	State/Federal Program: Regulatory Criteria:	ıl Program: riteria:		
Phone: 508-439-5132 Email: akane@alphalab.com	2 Ilab.com	Due Date: 05/24/19 Deliverables:	/24/19					
		Project Specific R	kequireme	or Report Req	ments			
Refere Additional Comments:	Reference following Alpha Job Number on final report/deliverables: L1921376 Additional Comments: Send all results/reports to subreports@alphalab.com	nber on final report/de ubreports@alphalab.c	sliverables: com		ort to include N	Report to include Method Blank, LCS/LCSD:	.csD:	
						A STATE OF THE STA		
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis			Be	Batch QC
	GLC-NB-3-1 GLC-NB-3-4 GLC-NB-2 GLC-NB-3-2	05-21-19 11:00 05-21-19 12:00 05-21-19 14:00 05-20-19 11:00	WATER WATER WATER	Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A Ethanol by EPA 1671 Revision A				
						Loc: 490 174548		
	Relinquished By	*		Date/Time: 5 22 19	Received BV:	and TAMINS	Date/Time: 05-23-2019, 09	3.02
Form No: AL_subcoc								
							00	

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Ashaley Kane
Alpha Analytical Laboratories
8 Walkup Drive
Westborough, MA 01581

PO Number: None
Job ID: 48786

Date Received: 5/23/19

Project: L1921376

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Jennifer Lowe

Laboratory Manager

Date of Approval: 5/24/2019

Total number of pages: 8

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
GLC-NB-3-1	Water	5/21/2019 11:00	48786-001	
				Mercury in water by 245.1
				Rush TAT Surcharge (200%)
GLC-NB-3-4	Water	5/21/2019 12:00	48786-002	
				Mercury in water by 245.1
GLC-NB-2	Water	5/21/2019 14:00	48786-003	
				Mercury in water by 245.1
GLC-NB-3-2	Water	5/20/2019 11:00	48786-004	
				Mercury in water by 245.1
GLC-NB-3-2	Water	5/22/2019 12:00	48786-005	
				Mercury in water by 245.1
GLC-NB-2-DISS	Water	5/21/2019 14:00	48786-006	
010 1 1 1.00		5,2 ., 25 15 1 1.00	.5. 25 555	Mercury in water by 245.1

Project ID: L1921376

Job ID: 48786

Sample#: 48786-001 **Sample ID**: GLC-NB-3-1

Matrix: Water

Sampled: 5/21/19 11:00 **Analysis** Reporting Prep Instr Dil'n Analyst Date **Parameter** Result Limit Units Factor Batch Date Time Reference < 0.0002 0.0002 AGN 5/24/19 11708 5/24/19 E245.1 Mercury mq/L 1 15:59

Sample#: 48786-002 Sample ID: GLC-NB-3-4

Matrix: Water

Sampled: 5/21/19 12:00 Reporting Prep **Analysis** Instr Dil'n Analyst Date Limit Date Time **Parameter** Result Units Factor Batch Reference Mercury < 0.0002 0.0002 mq/L AGN 5/24/19 11708 5/24/19 16:01 E245.1

Sample#: 48786-003 Sample ID: GLC-NB-2 Matrix: Water

Sampled: 5/21/19 14:00 Reporting Instr Dil'n Prep Analysis

Parameter Limit Analyst Date Batch Date Time Result Units Factor Reference < 0.0002 0.0002 mg/L Mercury 1 AGN 5/24/19 11708 5/24/19 16:03 E245.1

Sample#: 48786-004 Sample ID: GLC-NB-3-2

Matrix: Water

Sampled: 5/20/19 11:00 Reporting Prep **Analysis** Instr Dil'n Limit Analyst Date Batch Date Time Result Factor **Parameter** Units Reference 11708 5/24/19 < 0.0002 0.0002 mg/L AGN 5/24/19 16:05 E245.1 Mercury 1

Sample#: 48786-005 Sample ID: GLC-NB-3-2

Matrix: Water

Sampled: 5/22/19 12:00 Reporting Instr Dil'n Prep **Analysis** Limit **Parameter** Analyst Date Batch Date Time Result Units Factor Reference < 0.0002 0.0002 Mercury mg/L 1 AGN 5/24/19 11708 5/24/19 16:06 E245.1

Sample#: 48786-006

Sample ID: GLC-NB-2-DISS

Matrix: Water

Sampled: 5/21/19 14:00 Reporting Prep **Analysis** Instr Dil'n **Parameter** Result Limit Units Factor Analyst Date Batch Date Time Reference < 0.0002 0.0002 mg/L AGN 5/24/19 11708 5/24/19 16:08 E245.1 Mercury 1

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Absolute Resource

Case Narrative Lab # 48786

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration

No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

Not applicable.

Laboratory Control Sample Results

No exceptions noted.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

GLOSSARY

%R Percent Recovery

BLK Blank (Method Blank, Preparation Blank)

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

Dil'n Dilution

DL Detection Limit

DUP Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection

LOQ Limit of Quantitation

MB Methanol Blank (associated with solid VOC samples)

MLCS Methanol Laboratory Control Sample (associated with solid VOC samples)

MLCSD Methanol Laboratory Control Sample Duplicate (associated with solid VOC samples)

MS Matrix Spike

MSD Matrix Spike Duplicate

PB Preparation Blank

QC Quality Control

RL Reporting Limit

RPD Relative Percent Difference

SUR Surrogate

124 Heritage Avenue Unit 16 Portsmouth, NH 03801

www.absoluteresourceassociates.com

- QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Limits		RPD	RPD	Limit
E245.1	BLK11708	Mercury		<	0.0002	mg/L							
E245.1	DUP11708	Mercury	48719-001	<	0.0002	mg/L							20
E245.1	LCS11708	Mercury			0.0022	mg/L	0.002	110	85	115			
E245.1	LCSD11708	Mercury			0.0022	mg/L	0.002	108	85	115		2	20
E245.1	MS11708	Mercury	48719-001		0.0021	mg/L	0.002	104	85	115			
E245.1	MS11708	Mercury	48739-007		0.0021	mg/L	0.002	105	85	115			

Subcontract Chain of Custody

Absolute Resource Associates 124 Heriatge Avenue Portsmouth, NH 03801

48786

Alpha Job Number

L1921376

Client Information

Project Information

Regulatory Requirements/Report Limits

Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019

Phone: 508-439-5132 Email: akane@alphalab.com

Project Location: MA Project Manager: Ashaley Kane

State/Federal Program: Regulatory Criteria:

Due Date: 05/24/19 (RUSH) Deliverables:

Turnaround & Deliverables Information

Collection

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L1921376

Report to include Method Blank, LCS/LCSD:

Additional Comments: Send all results/reports to subreports@alphalab.com 24 Hr Rush for Total & Dissolved Hg by 245.1. Dissolved samples Field

Filtered.

Lab ID	Client ID	Date/Time	Sample Matrix	Analysis			QC
48786 701	GLC-NB-3-1 GLC-NB-3-4 GLC-NB-2 GLC-NB-3-2 GLC-NB-3-2	05-21-19 11:00 05-21-19 12:00 05-21-19 14:00 05-20-19 11:00 05-22-19 12:00	WATER WATER WATER WATER WATER	Dissolvedl Mercury by 245.1 Total Mercury by 245.1 Dissolvedl Mercury by 245.1; Total I Total Mercury by 245.1 Dissolvedl Mercury by 245.1	Mercury by 245.1		
				×			
	Relinquished [3y:		Dajte/Time:	Received By:	Date/Time:	
Form No: AL_subcoc	Jan G	Blech		923/19 /1:13 5/23/19 1702	MSA ZOLA		3 75 702

On ile e you

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Ashaley Kane PO Number: None
Alpha Analytical Laboratories Job ID: 48791
8 Walkup Drive Date Received: 5/28/19

Westborough, MA 01581

Project: L1921376

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely,

Absolute Resource Associates

Jennifer Lowe

Laboratory Manager

Date of Approval: 5/29/2019 Total number of pages: 8

reserved to progress of

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Project ID: L1921376

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
GLC-NB-3-1	Water	5/21/2019 11:00	48791-001	
				Mercury in water by 245.1
				Rush TAT Surcharge (100%)
GLC-NB-3-4	Water	5/21/2019 12:00	48791-002	
				Mercury in water by 245.1

Project ID: L1921376 **Job ID:** 48791

Sample#: 48791-001 **Sample ID:** GLC-NB-3-1

Matrix: Water

Sampled: 5/21/19 11:00 Reporting Prep **Analysis** Instr Dil'n Limit Units Factor Analyst Date **Batch** Date Time **Parameter** Result Reference Mercury 0.0003 0.0002 mg/L AGN 5/29/19 11715 5/29/19 15:41 E245.1

Sample#: 48791-002 Sample ID: GLC-NB-3-4

Matrix: Water

Sampled: 5/21/19 12:00		Reporting		Instr Dil'n	Prep			Analysis		
Parameter	Result	Limit	Units	Factor	Analyst	Date	Batch	Date	Time	Reference
Mercury	< 0.0002	0.0002	mg/L	1	AGN 5/	/29/19	11715	5/29/19	15:43	E245.1

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Serial_No:05291917:01

Absolute Resource

Case Narrative Lab # 48791

Sample Receiving and Chain of Custody Discrepancies

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

Not applicable.

Laboratory Control Sample Results

No exceptions noted.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

GLOSSARY

%R Percent Recovery

BLK Blank (Method Blank, Preparation Blank)

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

Dil'n Dilution

DL Detection Limit

DUP Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection

LOQ Limit of Quantitation

MB Methanol Blank (associated with solid VOC samples)

MLCS Methanol Laboratory Control Sample (associated with solid VOC samples)

MLCSD Methanol Laboratory Control Sample Duplicate (associated with solid VOC samples)

MS Matrix Spike

MSD Matrix Spike Duplicate

PB Preparation Blank

QC Quality Control

RL Reporting Limit

RPD Relative Percent Difference

SUR Surrogate

124 Heritage Avenue Unit 16 Portsmouth, NH 03801

www.absoluteresourceassociates.com

- QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units A	mt Added	%R	Limits		RPD	RPD	Limit
E245.1	BLK11715	Mercury		<	0.0002	mg/L							
E245.1	DUP11715	Mercury	48762-001	<	0.0002	mg/L							20
E245.1	LCS11715	Mercury			0.0022	mg/L	0.002	111	80	120			
E245.1	LCSD11715	Mercury			0.0020	mg/L	0.002	100	80	120		10	20
E245.1	MS11715	Mercury	48762-001		0.0020	mg/L	0.002	102	80	120			

Serial_No:05291917:01

Subcontract Chain of Custody

Absolute Resource Associates 124 Heriatge Avenue Portsmouth, NH 03801

48791

Alpha Job Number

L1921376

Client Information

Project Information

Regulatory Requirements/Report Limits

Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019

Project Location: MA Project Manager: Ashaley Kane

State/Federal Program:

Turnaround & Deliverables Information

Regulatory Criteria:

Phone: 508-439-5132 Email: akane@alphalab.com

Due Date: 05/24/19 (RUSH) Deliverables:

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L1921376

Report to include Method Blank, LCS/LCSD:

Additional Comments: Send all results/reports to subreports@alphalab.com 24 Hr Rush for Total & Dissolved Hg by 245.1. Dissolved samples Field Filtered.

Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis	Batch QC
48791-01	GLC-NB-3-1 GLC-NB-3-4 GLC-NB-2	05-21-19 11:00 05-21-19 12:00	WATER WATER	Dissolved Mercury by 245.1, Total Mercury by 245.1 Dissolved Mercury by 245.1; Total Mercury by 245.1 Dissolved Mercury by 245.1, Total Mercury by 245.1	
	OLC-ND-3-2 OLC-ND-3-2	05-20-13 11.00 05-22-13 12.00 5-23-19 16.731	WATER	Dissolved Mercury by 245.1 Dissolved Mercury by 245.1	
*	EATLACTON SUL	5-23-19 10:01	WATER	Pu A. Kare Size 19	
				5/28/9	
MIO	T-28-19 Relinguished	Bv:		Date/Time: Received By: Date/Time:	

Form No: AL subcoc

5/24/19 2137

ANALYTICAL REPORT

Lab Number: L1920900

Client: TRC Environmental Consultants

650 Suffolk Street Lowell, MA 01854

ATTN: Diane Stallings Phone: (978) 970-5600

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Report Date: 05/24/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

50000

Lab Number:

L1920900

Report Date: 05/24/19

Alpha Sample ID

L1920900-01

Client ID

Matrix MYSTIC RIVER OUTFALL OF- WATER Sample Location

SOMERVILLE, MA

Collection Date/Time

Receive Date

05/17/19 09:20 05/17/19

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1920900
Project Number: 290762.0016.0000 Report Date: 05/24/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1920900
Project Number: 290762.0016.0000 Report Date: 05/24/19

Case Narrative (continued)

Report Submission

May 24, 2019: This final report includes the results of all requested analyses.

May 21, 2019: This is a preliminary report.

The analysis of Total Mercury was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Total Metals

The WG1238678-2 LCS recovery, associated with L1920900-01, is above the acceptance criteria for selenium (122%); however, the associated sample is non-detect for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/24/19

600, Sew on Kelly Stenstrom

METALS

Project Name: Lab Number: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 **Report Date:**

L1920900 05/24/19

SAMPLE RESULTS

Lab ID: L1920900-01 Date Collected:

05/17/19 09:20

Client ID:

MYSTIC RIVER OUTFALL OF-50000

Date Received:

05/17/19

Sample Location:

SOMERVILLE, MA

Field Prep:

Not Specified

Sample Depth:

Matrix:

Water

MG MG
MG
MG
MG
MG
LC
MG
LC
33 33 33 33 33 33 7

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1920900

Report Date: 05/24/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batch	n: WG12	238678-	1				
Iron, Total	ND	mg/l	0.050		1	05/18/19 13:27	05/20/19 10:07	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bato	h: WG123	8678-1			
Hardness	ND	mg/l	0.660	NA	1	05/18/19 13:27	05/20/19 10:07	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG12	238680-	·1				
Antimony, Total	ND	mg/l	0.00400		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Arsenic, Total	ND	mg/l	0.00100		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Cadmium, Total	ND	mg/l	0.00020		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Chromium, Total	ND	mg/l	0.00100		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Copper, Total	ND	mg/l	0.00100		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Lead, Total	ND	mg/l	0.00100		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Nickel, Total	ND	mg/l	0.00200		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Selenium, Total	ND	mg/l	0.00500		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Silver, Total	ND	mg/l	0.00040		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG
Zinc, Total	ND	mg/l	0.01000		1	05/18/19 13:27	05/18/19 18:14	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1920900

Report Date:

Parameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: W	/G1238678-2					
Iron, Total	115	-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample((s): 01 Batch: WG123867	8-2				
Hardness	113	-		85-115	-		
Total Metals - Mansfield Lab Associated sample Antimony, Total	(s): 01 Batch: W	/G1238680-2 -		85-115			
Arsenic, Total	106	-		85-115	_		
Cadmium, Total	112	-		85-115	-		
Chromium, Total	102	-		85-115	-		
Copper, Total	102	-		85-115	-		
Lead, Total	113	-		85-115	-		
Nickel, Total	103	-		85-115	-		
Selenium, Total	112	-		85-115	-		
Silver, Total	108	-		85-115	-		
Zinc, Total	115	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1920900

Report Date:

Parameter	Native Sample	MS Added	MS Found ^o	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits		RPD Qual Limits
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch ID): WG123867	'8-3	QC Sample:	L1920160-01	Client ID: MS S	ample	
Iron, Total	ND	1	1.27	127	Q	-	-	75-125	-	20
Total Hardness by SM 2340	DB - Mansfield Lal	o Associate	ed sample(s):	01 QC Bate	ch ID: \	NG1238678-	3 QC Samp	ole: L1920160-01	Client ID	: MS Sample
Hardness	269	66.2	332	95		-	-	75-125	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch IE): WG123867	8-7	QC Sample:	L1919010-01	Client ID: MS S	ample	
Iron, Total	20.4	1	21.0	60	Q	-	-	75-125	-	20
Total Hardness by SM 2340	DB - Mansfield Lal	o Associate	ed sample(s):	01 QC Bate	ch ID: \	NG1238678-7	7 QC Samp	ole: L1919010-01	Client ID	: MS Sample
Hardness	361	66.2	439	118		-	-	75-125	-	20
Total Metals - Mansfield Lal	b Associated sam	ple(s): 01	QC Batch IE): WG123868	80-3	QC Sample:	L1920160-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.6450	129		-	-	70-130	-	20
Arsenic, Total	0.00120	0.12	0.1356	112		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.06162	121		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2251	112		-	-	70-130	-	20
Copper, Total	0.00477	0.25	0.2789	110		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5886	115		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5628	112		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1450	121		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05799	116		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.6031	121		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number: L1920900

Report Date: 05/24/19

Parameter	Native Sample	e Dupl	icate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	NG1238678-4	QC Sample:	L1920160-01 (Client ID: [DUP Sample	
Iron, Total	ND		ND	mg/l	NC		20
Total Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 01	QC Batch ID:	WG1238678-	4 QC Sample	: L192016	0-01 Client I	D: DUP Sample
Hardness	269		265	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: V	VG1238680-4	QC Sample:	L1920160-01 (Client ID: [DUP Sample	
Antimony, Total	ND		ND	mg/l	NC		20
Arsenic, Total	0.00120		ND	mg/l	NC		20
Cadmium, Total	ND		ND	mg/l	NC		20
Chromium, Total	ND		ND	mg/l	NC		20
Copper, Total	0.00477		0.00473	mg/l	1		20
Lead, Total	ND		ND	mg/l	NC		20
Nickel, Total	ND		ND	mg/l	NC		20
Selenium, Total	ND		ND	mg/l	NC		20
Silver, Total	ND		ND	mg/l	NC		20
Zinc, Total	ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: MBTA GLX NEWBERN AVE II Lab Number:

L1920900

Project Number: 290762.0016.0000

Report Date: 05/24/19

SAMPLE RESULTS

Lab ID: L1920900-01

Date Collected:

05/17/19 09:20

Client ID:

MYSTIC RIVER OUTFALL OF-50000

Date Received:

05/17/19

Sample Location: SOMERVILLE, MA

COMEDIALE MA

Field Prep: Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Nitrogen, Ammonia	1.62		mg/l	0.075		1	05/20/19 13:28	05/20/19 17:57	121,4500NH3-BH	ML
Chromium, Hexavalent	ND		mg/l	0.010		1	05/18/19 07:55	05/18/19 08:22	1,7196A	JT

L1920900

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000 Report Da

Method Blank Analysis
Batch Quality Control

Report Date: 05/24/19

Lab Number:

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	Batch:	WG12	38582-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	05/18/19 07:55	05/18/19 08:20	1,7196A	JT
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	Batch:	WG12	39003-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/20/19 13:28	05/20/19 17:28	121,4500NH3-E	BH ML

Lab Control Sample Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number:

290762.0016.0000

Lab Number:

L1920900

Report Date:

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab As	ssociated sample(s): 01 B	atch: WG1238582-2	2					
Chromium, Hexavalent	102	-		85-115	-		20	
General Chemistry - Westborough Lab As	ssociated sample(s): 01 B	satch: WG1239003-2	2					
Nitrogen, Ammonia	94	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1920900

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Qu	RPD al Limits
General Chemistry - Westboroug OUTFALL OF-50000	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	NG1238582-4	QC Sample: L19209	00-01 Client I	D: MYSTI	C RIVER
Chromium, Hexavalent	ND	0.1	0.098	98	-	-	85-115	-	20
General Chemistry - Westborough	gh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1239003-4	QC Sample: L19208	44-01 Client I	D: MS Sa	mple
Nitrogen, Ammonia	0.284	4	4.17	97	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: MBTA GLX NEWBERN AVE II

Project Number: 290762.0016.0000

Lab Number:

L1920900

Report Date:

Parameter	Native Sample	Duplicate Samp	ole Units	RPD	Qual RPD Limits
General Chemistry - Westborough Lab Associated s OUTFALL OF-50000	sample(s): 01 QC Batch ID:	WG1238582-3	QC Sample: L192	:0900-01 Clie	ent ID: MYSTIC RIVER
Chromium, Hexavalent	ND	ND	mg/l	NC	20
General Chemistry - Westborough Lab Associated s	sample(s): 01 QC Batch ID:	WG1239003-3	QC Sample: L192	:0844-01 Clie	ent ID: DUP Sample
Nitrogen, Ammonia	0.284	0.241	mg/l	16	20

Lab Number: L1920900

Report Date: 05/24/19

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

MBTA GLX NEWBERN AVE II

Cooler Information

Project Name:

Custody Seal Cooler

Project Number: 290762.0016.0000

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1920900-01A	Plastic 250ml unpreserved	Α	7	7	2.5	Υ	Absent		HEXCR-7196(1)
L1920900-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	2.5	Υ	Absent		CD-2008T(180),NI-2008T(180),SUB-HG- 245T(),ZN-2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),SE-2008T(180),CR-2008T(180),PB- 2008T(180),SB-2008T(180)
L1920900-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.5	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: MBTA GLX NEWBERN AVE II L1920900 **Project Number:** 290762.0016.0000 **Report Date:** 05/24/19

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the RPD

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:MBTA GLX NEWBERN AVE IILab Number:L1920900Project Number:290762.0016.0000Report Date:05/24/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: MBTA GLX NEWBERN AVE II Lab Number: L1920900
Project Number: 290762.0016.0000 Report Date: 05/24/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

17.	CHAIN OF	CUSTO	DY	PAGE OF	1	Date	Rec'd i	n Lab:	51	17	119			ALP	HA J	ob #:	119	120900
ALPHA	A	Project Inform	mation	NIES.	2015	Rep	ort Ir	form	ation	Data	Deliv	verab	les			forma	Section 1	NAME OF STREET
ANALYTIC		E CALL					FAX			⊠ E	MAIL			⊠ s	ame as	s Client	info	PO #: 135774
	Mansfield, MA	WANTE SE		17.22.71500	NO NECTOR	Ø	ADEx				dd'l De	liverab	les					
TEL: 508-898-9220	TEL: 506-822-9300	Project Name:	MBTA GLX N	Newbern Ave	11	-				ment	s/Rep	ort L	imits	1000000				
	FAX: 508-822-3288	Draigat Lagation	n: Camandilla	MA		State		rogram	-	_	-			Criteri EPA F	ia RGP/RI	CGW-1		
Client Information	0000	Project Location	W	Jane, etc.				ESUM	PTIV	E CE	RTAIN	NTY-0	T RE	Name and Address of the Owner, where			CONTRACTOR OF THE PARTY OF	ENCE PROTOCOLS
Client: TRC Enviror		Project #: 2907	THE THINK] No			1777		Metho				
Boston, MA 02109		Project Manage ALPHA Quote #	MARKAN WAR	llings			0.00	77.77	⊠ No		Are (CT RC	P (Reas	sonable	Confid	lence P	rotocols	s) Required?
Phone: 617-476-13		Turn-Around	N. Carlotte	507 - XX	(-15,75)	AN	ALYS							()				SAMPLE HANDLING T
Fax:	000	Standard	Total Control of the					245.	7196		2							Filtration Ĉ
Email: DStallings@	Procompanies com	☐ Standard	M Ku	sh (ONLY IF PR		000		200.8/245.1	1 A	- Lo								⊠ Not Needed #
	been Previously analyzed by Alpha	Due Date:	Time:	tode	9	SM 4500	2	A 20	y EP	Calculation								☐ Lab to do B Preservation ☐ Lab to do T
The state of the s	ecific Requirements/Comments	1922-000	1400-0000000000000000000000000000000000	LA	1	by S	200.7	s EPA	E									☐ Lab to do (Please specify
RLs must meet EP/	A RGP Appendix VII limits.					gen	è	Metals	imo	l in								(Please specify L below) E S
Add'l emails: KMori bayres@trccompar	in@trccompanies.com, Riyer@trcco nies.com	ompanies.com				N C	ness	ES	Ch	hron								
,						Ammonia Nitrogen by	Hardness	Total NPDES	Hexavalent Chromium by EPA	Trivalent Chromium								
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	Ĭ	Total	otal	exa	rivale								Sample Specific Comments
(Lab Use Only)	/08	Date	Time	Matrix	Initials	4	-	H	1 -	-)			Ł	5			Comments
20900-01	Mystic River Outfell	05/17/19	0920	sw	BA	U	V	V	V	V								
	0F - 5000				1													
													닏				부	
						님	님	님	닏	닏	님	닏	님	님	Ц	님	뷰	
					-	H	H	H	님	님	H	님	님	님	H	님	H	
					-		片	H	님		H	片	ዙ	H	H	H	H	
						Н	H	H	H	H	H	片	H	H	H	H	H	
					+	H	ㅐ	H	H	H	H	늠	片	H	H	H	늄	
						H	旨	Ħ	H	H	H	H	恄	T		T	1	
PLEASE ANSWER	QUESTIONS ABOVE!			Co	ontainer Type	v	٧	A	A	A	A	A	A	A	A	A	A	i '-
	A				Preservative	F	G	A	A	A	A	Α	A	A	A	A	A	Please print clearly, legibly and completely. Samples ca
IS YOUR	PROJECT		Relin	quished By:		D	ate/Tim	ie			Regen	vga By			ı	Qate/Tir	me	not be logged in and turnaround time clock will not
전환경 - 11 - 17 - 17 - 17 - 17 - 17 - 17 - 1	or CT RCP?	Ashi	y Pillsh	May- C	oyne	05-	17-1	9		NUL	MA		- F	A	51	17,	1613	start until any ambiguities are resolved. All samples
FORM NO: 05-UNU) (Fex. 5-JAN-12)		100000000000000000000000000000000000000	Note-	bac	J	2/1	7	1545	a	/		2	_		5/1	7/19	1845	submitted are subject to Alpha's Payment Terms.
															100	.19 7 17		

Laboratory Report

Absolute Resource associates

124 Heritage Avenue Portsmouth NH 03801

Ashaley Kane
Alpha Analytical Laboratories
8 Walkup Drive
Westborough, MA 01581

Job ID: 48785

PO Number: None

Date Received: 5/23/19

Project: L1920900

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of Absolute Resource Associates' Quality Assurance Plan. The Standard Operating Procedures are based upon USEPA SW-846, USEPA Methods for Chemical Analysis of Water and Wastewater, Standard Methods for the Examination of Water and Wastewater and other recognized methodologies. The results contained in this report pertain only to the samples as indicated on the chain of custody.

Absolute Resource Associates maintains certification with the agencies listed below.

We appreciate the opportunity to provide laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be glad to assist you.

Sincerely, Absolute Resource Associates

Jennifer Lowe

Laboratory Manager

Date of Approval: 5/24/2019

Total number of pages: 8

Absolute Resource Associates Certifications

New Hampshire 1732 Massachusetts M-NH902

Maine NH903

Project ID: L1920900

Sample Association Table

Field ID	Matrix	Date-Time Sampled	Lab#	Analysis
MYSTIC RIVER OUTFALL OF-50000	Water	5/17/2019 9:20	48785-001	
				Mercury in water by 245.1
				Rush TAT Surcharge (200%)

Project ID: L1920900 **Job ID:** 48785

Sample#: 48785-001

Sample ID: MYSTIC RIVER OUTFALL OF-50000

Matrix: Water

Sampled: 5/17/19 9:20 Reporting Instr Dil'n Prep **Analysis Parameter** Result Limit Analyst Date Batch Date Time Units Factor Reference Mercury < 0.0002 0.0002 mg/L AGN 5/24/19 11708 5/24/19 E245.1 15:57

Quality Control Report

124 Heritage Avenue Unit 16 Portsmouth, NH 03801 www.absoluteresourceassociates.com

Absolute Resource

Case Narrative Lab # 48785

•	1	D		1	α .	c		ъ.	•
Sami	nle	Rec	PIVIT	าช ภทศ	Chair	n ot	Custody	/ Discre	nancies
Oum		1100	. , , , ,	-5	CHAIL		Custou	Disci	paneres

Samples were received in acceptable condition, at 2 degrees C, on ice, and in accordance with sample handling, preservation and integrity guidelines.

Calibration No exceptions noted.

Method Blank

No exceptions noted.

Surrogate Recoveries

Not applicable.

Laboratory Control Sample Results

No exceptions noted.

Matrix Spike/Matrix Spike Duplicate/Duplicate Results

Not requested for this project.

Other

Reporting Limits: Dilutions performed during the analysis are noted on the result pages.

No other exceptions noted.

GLOSSARY

%R Percent Recovery

BLK Blank (Method Blank, Preparation Blank)

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

Dil'n Dilution

DL Detection Limit

DUP Duplicate

LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LOD Limit of Detection

LOQ Limit of Quantitation

MB Methanol Blank (associated with solid VOC samples)

MLCS Methanol Laboratory Control Sample (associated with solid VOC samples)

MLCSD Methanol Laboratory Control Sample Duplicate (associated with solid VOC samples)

MS Matrix Spike

MSD Matrix Spike Duplicate

PB Preparation Blank

QC Quality Control

RL Reporting Limit

RPD Relative Percent Difference

SUR Surrogate

124 Heritage Avenue Unit 16 Portsmouth, NH 03801

www.absoluteresourceassociates.com

- QC Report -

Method	QC ID	Parameter	Associated Sample		Result	Units A	Amt Added	%R	Limits		RPD	RPD	Limit
E245.1	BLK11708	Mercury		<	0.0002	mg/L							
E245.1	DUP11708	Mercury	48719-001	<	0.0002	mg/L							20
E245.1	LCS11708	Mercury			0.0022	mg/L	0.002	110	85	115			
E245.1	LCSD11708	Mercury			0.0022	mg/L	0.002	108	85	115		2	20
E245.1	MS11708	Mercury	48719-001		0.0021	mg/L	0.002	104	85	115			
E245.1	MS11708	Mercury	48739-007		0.0021	mg/L	0.002	105	85	115			

Subcontract Chain of Custody

Absolute Resource Associates 124 Heriatge Avenue Portsmouth, NH 03801

48785

Alpha Job Number L1920900

TARREST TO THE	T 1/4
Cliont	Information
Client	ıındınıadıdı

Project Information

Regulatory Requirements/Report Limits

Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019

Phone: 508-439-5132 Email: akane@alphalab.com

Project Location: MA Project Manager: Ashaley Kane

State/Federal Program: Regulatory Criteria:

Turnaround & Deliverables Information

Due Date: 05/24/19 (RUSH) Deliverables:

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L1920900 Report to include Method Blank, LCS/LCSD:

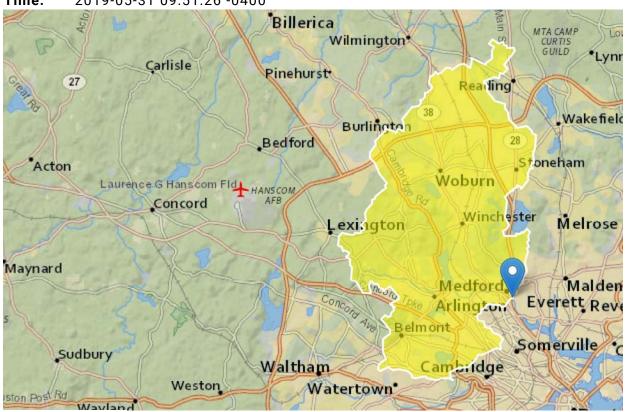
Additional Comments: Send all results/reports to subreports@alphalab.com 24 hr rush

Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysi	is		Batch QC
878501	MYSTIC RIVER OUTFALL OF- 50000	05-17-19 09:20	WATER	Total Mercury by 245.1		4 4	
				.50			
	Relinquished	By:		Date/Time:	Received By:	Date/Time:	
	Mu Ul	Sal		5/23/19 11:13	S VIM		113
	Man			5/23/15/ 1220	774		1345
				5/23/19 1702	XVIA-	15/23/	7170

Onju cou

ATTACHMENT E CORRESPONDENCE WITH MASSDEP REGARDING MYSTIC RIVER

StreamStats Page 2 of 4


StreamStats Report

Region ID: MA

Workspace ID: MA20190531135109822000

Clicked Point (Latitude, Longitude): 42.41469, -71.10306

Time: 2019-05-31 09:51:26 -0400

Mystic River

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	48.2	square miles			
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.429	percent			
DRFTPERSTR	Area of stratified drift per unit of stream length	0.26	square mile per mile			

StreamStats Page 3 of 4

Parameter Code	Parameter Description	Value	Unit
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

LOW-FIOW STATISTICS Parameters[Statewide Low Flow WRIR00 4135]	

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	48.2	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.429	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.26	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	7.31	ft^3/s	2.2	23.4	49.5	49.5
7 Day 10 Year Low Flow	3.52	ft^3/s	0.867	13.3	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

StreamStats Page 4 of 4

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.1

From: Vakalopoulos, Catherine (DEP)
To: Stapleton, Jamie

Subject: RE: 7Q10 & DF Confirmation Request: Mystic River

Date: Tuesday, June 4, 2019 5:45:44 PM

Attachments: image001.png

Hi Jamie,

It seems there is a glitch in StreamStats that classifies the Mystic where the proposed discharge will be as marine. The segment of the Mystic above the Amelia Earhart dam is classified as B (freshwater Class B) and downstream of the dam is classified as SB (marine Class B). I tried calculating the 7Q10 using gage data from 01103040 (Rt. 16 bridge, Medford) but couldn't get a result, perhaps because it was only in service from 2015 to 2017. I think your approach to look upstream where you can get StreamStats to work closest to the proposed discharge is the best you could have done considering the glitch in StreamStats.

Regardless, the proposed discharge will be to an inlet of the Mystic River, not to the mainstem Mystic River. As with other RGP discharges to the Lechmere Canal on the Charles, a dilution factor can't be granted in this inlet in the Mystic due to its shallow and narrow characteristics. If the location of the proposed discharge is moved to the mainstem of the Mystic then I can check your calculation below.

To help you with the NOI, this segment of the Mystic River is identified as MA71-02, is classified (as mentioned above) as Class B, and not an Outstanding Resource Water. There are no approved TMDLs for this segment. To see the list of impairments, go to: https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf and search for "MA71-02".

I've probably told you this before but if the site of the proposed project is not a *current* MCP site then you will also have to apply with MassDEP (https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent) and there is a \$500 fee unless fee exempt (e.g. a municipality).

Please let me know if you have any questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection
1 Winter St., Boston, MA 02108, 617-348-4026

Please consider the environment before printing this e-mail

From: Stapleton, Jamie [mailto:JStapleton@trccompanies.com]

Sent: Monday, June 03, 2019 8:33 AM **To:** Vakalopoulos, Catherine (DEP)

Cc: Ruan, Xiaodan (DEP)
Subject: 7Q10 & DF Confirmation Request: Mystic River

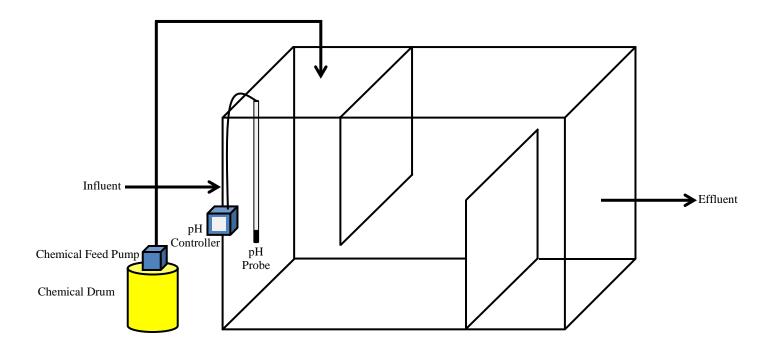
Hi Cathy,

I am requesting confirmation of the below 7Q10 info and dilution factors for a construction dewatering project in Somerville which is proposed to discharge treated groundwater through the municipal stormwater system to the Mystic River. StreamStats does not map to this exact location so the streamstats mapping point (see attachment) is just east of the Route 93 bridge over the Mystic which is almost a mile upstream of the outfall proposed (see attached map) to be used. If you have 7Q10 data for the vicinity of the proposed outfall I can redo the DF calculation.

Discharge	Receiving Waterbody	Lat	Long		7Q10 (cf	s)	StreamStats Output Link for	Treatn	nent Disch	narge Rate	Dilution
Location	Neceiving Waterbody	Lat	LONG	cfs	gpm	MGD	7Q10 Entered Into Column F	cfs	gpm	MGD	Factor
Mystic River											
Near 93 &											
Mystic	Mystic River	42.404576	-71.097035	3.5	1579.9	2.275	See email attachment	0.22	100.0	0.144	16.8
Valley	IVIYSUC NIVEI	42.404370	-71.097033	3.3	13/3.3	2.273	See email attachment	0.22	100.0	0.144	10.6
Parkway											
Bridge											

Thank you. -Jamie

Jamie Stapleton Project Manager / Senior Geologist



670 N. Commercial St, Suite 203, Manchester, NH 03101

C 603-325-5480 | E jstapleton@trccompanies.com LinkedIn | Twitter | Blog | TRCcompanies.com

Attachment F – SDS and pH Adjustment Equipment Specifications

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

SAFETY DATA SHEET

M32415 - ANSI - EN

CAUSTIC SODA LIQUID (ALL GRADES)

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

SECTION 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Company Identification: Occidental Chemical Corporation

5005 LBJ Freeway P.O. Box 809050 Dallas, TX 75380-9050 1-800-752-5151

24 Hour Emergency Telephone

Number:

1-800-733-3665 or 1-972-404-3228 (USA); CANUTEC (Canada): 1-613-996-6666; CHEMTREC (within USA and Canada): 1-800-424-9300; CHEMTREC (outside USA and Canada): +1 703-527-3887; CHEMTREC Contract No: CCN16186

To Request an SDS: MSDS@oxy.com or 1-972-404-3245

Customer Service: 1-800-752-5151 or 1-972-404-3700 (55) 55959542 (Mexico)

Product Identifier: CAUSTIC SODA LIQUID (ALL GRADES)

Trade Name: Caustic Soda Diaphragm Grade 10%, 15%, 18%, 20%, 25%, 30%, 35%, 40%,

50%, Caustic Soda Membrane 6%, 18%, 20%, 25%, 30%, 48%, 50%, 50% Caustic Soda Membrane OS, 50% Caustic Soda Diaphragm OS, Caustic Soda Low Salt 50%, Membrane Blended, 50% Caustic Soda Diaphragm (West Coast),

Membrane Cell Liquor

Synonyms: Sodium hydroxide solution, Liquid Caustic, Lye Solution, Caustic, Lye, Soda Lye,

Secondary Caustic Soda Liquids

Product Use: Metal finishing, Cleaner, Process chemical, Petroleum Industry

Uses Advised Against: None identified

Print date: 13-Jan-2016 1 of 16

SDS No.: M32415

CAUSTIC SODA LIQUID (ALL GRADES)

SDS Revision Date: 13-Jan-2016

SECTION 2. HAZARDS IDENTIFICATION

OSHA REGULATORY STATUS: This material is considered hazardous by the OSHA Hazard Communication

Standard (29 CFR 1910.1200).

EMERGENCY OVERVIEW:

Color: Colorless to slightly colored

Physical State: Liquid

Appearance: Clear to opaque

Odorless

Signal Word: <u>DANGER</u>

MAJOR HEALTH HAZARDS: CORROSIVE. CAUSES SERIOUS EYE DAMAGE. CAUSES SEVERE SKIN BURNS AND EYE DAMAGE. MAY CAUSE RESPIRATORY IRRITATION. EFFECTS OF CONTACT OR INHALATION MAY BE DELAYED.

PHYSICAL HAZARDS: MAY BE CORROSIVE TO METALS. Mixing with water, acid or incompatible materials may cause splattering and release of heat. Do not store in aluminum container or use aluminum fittings or transfer lines, as flammable hydrogen gas may be generated.

ECOLOGICAL HAZARDS: This material has exhibited moderate toxicity to aquatic organisms. Keep out of water supplies and sewers. This material is alkaline and may raise the pH of surface waters.

PRECAUTIONARY STATEMENTS: Do not get in eyes, on skin, or on clothing. Wear eye protection, face protection, protective gloves. Do not breathe mist, vapors, or spray. Do not ingest. Do not eat, drink or smoke when using this product. Use only outdoors or in a well-ventilated area. Wash thoroughly after handling- exposure can cause burns which are not immediately painful or visible.

ADDITIONAL HAZARD INFORMATION: This material is corrosive. It may cause severe burns and permanent damage to any tissue with which it comes into contact. Toxicity may be delayed, and may not be readily visible. To treat contacted tissue, flush with water to dilute. There is no specific antidote. Significant exposures must be referred for medical attention immediately.

GHS CLASSIFICATION:

GHS: PHYSICAL HAZARDS:	Corrosive to Metals
	Mixing with water may cause splattering and release of heat
GHS: CONTACT HAZARD - SKIN:	Category 1B - Causes severe skin burns and eye damage.
GHS: CONTACT HAZARD - EYE:	Category 1 - Causes serious eye damage

Print date: 13-Jan-2016 2 of 16

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

GHS: TARGET ORGAN TOXICITY (SINGLE EXPOSURE):	Category 3 - May cause respiratory irritation
1	Not classified as a carcinogen per GHS criteria. This product is not classified as a carcinogen by NTP, IARC or OSHA.
GHS: HAZARDOUS TO AQUATIC ENVIRONMENT - ACUTE HAZARD:	Category 3 - Harmful to aquatic life

UNKNOWN ACUTE TOXICITY: 100% of the mixture consists of ingredient(s) of unknown toxicity. There is no acute toxicity data available for this product.

GHS SYMBOL: Corrosive

GHS SIGNAL WORD: DANGER

GHS HAZARD STATEMENTS:

GHS - Physical Hazard Statement(s)

May be corrosive to metals

GHS - Health Hazard Statement(s)

- · Causes serious eye damage
- · Causes severe skin burns and eye damage
- May cause respiratory irritation

GHS - Precautionary Statement(s) - Prevention

- Do not breathe mist, vapors, or spray
- · Wear protective gloves, protective clothing, eye, and face protection
- Wash thoroughly after handling
- Keep only in original container
- · Use only outdoors or in a well-ventilated area

GHS - Precautionary Statement(s) - Response

- IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower
- · Wash contaminated clothing before reuse
- IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing
- Immediately call a POISON CENTER or doctor/physician
- IF INHALED: Remove person to fresh air and keep comfortable for breathing
- Immediately call a POISON CENTER or doctor/physician
- IF SWALLOWED: Rinse mouth. Do NOT induce vomiting
- IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician
- Specific treatment (see First Aid information on product label and/or Section 4 of the SDS)
- · Absorb spillage to prevent material damage

Print date: 13-Jan-2016 **3 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

GHS - Precautionary Statement(s) - Storage

- Store locked up
- Store in a well-ventilated place. Keep container tightly closed
- Store in corrosive resistant and NON-ALUMINUM container with a resistant inner liner (NOTE: flammable hydrogen gas may be generated if aluminum container and/or aluminum fittings are used)

GHS - Precautionary Statement(s) - Disposal

• Dispose of contents and container in accordance with applicable local, regional, national, and/or international regulations

Hazards Not Otherwise Classified (HNOC)

Mixing with water may cause splattering and release of heat

Additional Hazard Information

Mixing with water may cause splattering and release of heat.

See Section 11: TOXICOLOGICAL INFORMATION

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Synonyms: Sodium hydroxide solution, Liquid Caustic, Lye Solution, Caustic, Lye, Soda Lye, Secondary Caustic Soda Liquids

Component	Percent [%]	CAS Number
Water	48.5 - 94.5	7732-18-5
Sodium Hydroxide	5.5 - 51.5	1310-73-2
Sodium Chloride	0 - 35	7647-14-5

Notes: All hazardous and non-hazardous components of product composition are listed.

SECTION 4. FIRST AID MEASURES

INHALATION: If inhalation of mists, vapors, or spray occurs and adverse effects result, remove to uncontaminated area. Evaluate ABC's (is Airway constricted, is Breathing occurring, and is blood Circulating) and treat symptomatically. GET MEDICAL ATTENTION IMMEDIATELY. There is no specific antidote, treat symptomatically.

SKIN CONTACT: Immediately flush contaminated areas with water. Remove contaminated clothing, jewelry, and shoes immediately. Wash contaminated areas with large amounts of water. GET MEDICAL ATTENTION IMMEDIATELY. Thoroughly clean and dry contaminated clothing before reuse. Discard contaminated leather goods.

EYE CONTACT: Immediately flush contaminated eyes with a directed stream of water for as long as possible. Remove contact lenses, if present and easy to do. Continue rinsing. GET MEDICAL ATTENTION IMMEDIATELY. Washing eyes within several seconds is essential to achieve maximum effectiveness.

Print date: 13-Jan-2016 **4 of 16**

SDS No.: M32415 **SDS Revision Date**: 13-Jan-2016

INGESTION: If swallowed, do not induce vomiting. For definite or probable ingestion, do not administer oral fluids. If vomiting occurs spontaneously, keep airway clear. Monitor airway. Volume resuscitation (IV fluids) and circulatory support (CPR) may be required. Never give anything by mouth to an unconscious or convulsive person. GET MEDICAL ATTENTION IMMEDIATELY.

Most Important Symptoms/Effects (Acute and Delayed) Corrosive. This material may be corrosive to any tissue it comes in contact with. It can cause serious burns and extensive tissue destruction resulting in: liquefaction, necrosis, and/or perforation.

Acute Symptoms/Effects: Listed below.

Inhalation (Breathing): Respiratory System Effects: Exposure to airborne material may cause irritation, redness of upper and lower airways, coughing, laryngeospasm, shortness of breath, bronchoconstriction, and possible pulmonary edema. Severe and permanent scarring may occur. Pulmonary edema may develop several hours after a severe acute exposure. Aspiration of this material may cause the same conditions.

Skin: Skin Corrosion. Exposure to skin may cause redness, itching, irritation, swelling, burns (first, second, or third degree), liquefaction of skin, and damage to underlying tissues (deep and painful wounds).

Eye: Serious Eye Damage. Eye exposures may cause eye lid burns, conjunctivitis, corneal edema, corneal burn, corneal perforation, damage to internal contents of the eye, permanent visual defects, and blindness and/or loss of the eye.

Ingestion (Swallowing): Gastrointestinal System Effects: Exposure by ingestion may cause irritation, swelling, and perforation of upper and lower gastrointestinal tissues. Permanent scarring may occur.

Delayed Symptoms/Effects:

- Skin: Repeated and prolonged skin contact may cause a chronic dermatitis

Interaction with Other Chemicals Which Enhance Toxicity: None known.

Medical Conditions Aggravated by Exposure: May aggravate preexisting conditions such as: eye disorders that decrease tear production or have reduced integrity of the eye; skin disorders that compromise the integrity of the skin; and respiratory conditions including asthma and other breathing disorders.

Protection of First-Aiders: Protect yourself by avoiding contact with this material. Avoid contact with skin and eyes. Do not breathe vapors or spray mist. Do not ingest. Use personal protective equipment. Refer to Section 8 for specific personal protective equipment recommendations. At minimum, treating personnel should utilize PPE sufficient for prevention of bloodborne pathogen transmission.

Notes to Physician: Medical observation and assessment is recommended for all ingestions, all eye exposures, and symptomatic inhalation and dermal exposures. For symptomatic ingestion, do not administer oral fluids and consider investigation by endoscopy, X-ray, or CT scan. Esophageal perforation, airway compromise, hypotension, and shock are possible. For prolonged exposures and significant exposures, consider delayed injury to exposed tissues. There is no antidote. Treatment is supportive care. Follow normal parameters for airway, breathing, and circulation. Surgical intervention may be required.

SECTION 5. FIRE-FIGHTING MEASURES

Print date: 13-Jan-2016 5 of 16

SDS No.: M32415 **SDS Revision Date**: 13-Jan-2016

Fire Hazard: Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. May react with chemically reactive metals such as aluminum, zinc, magnesium, copper, etc. to release hydrogen gas which can form explosive mixtures in air.

Extinguishing Media: Use extinguishing agents appropriate for surrounding fire.

Fire Fighting: Move container from fire area if it can be done without risk. Cool containers with water. Do not apply water directly on this product. Heat is generated when mixed with water. Wear NIOSH approved positive-pressure self-contained breathing apparatus operated in pressure demand mode. Avoid contact with skin.

Component	Immediately Dangerous to Life/ Health (IDLH)
Sodium Hydroxide	10 mg/m³ IDLH
1310-73-2	

Hazardous Combustion

Sodium hydroxide fumes can be generated by thermal decomposition at elevated

Products: temperatures

Sensitivity to Mechanical

Impact:

Not sensitive.

Sensitivity to Static Discharge: Not sensitive.

Lower Flammability Level (air): Not flammable

Upper Flammability Level (air): Not flammable

Flash point: Not flammable

Auto-ignition Temperature: Not applicable

GHS: PHYSICAL HAZARDS:

- Corrosive to Metals

- Mixing with water may cause splattering and release of heat

SECTION 6. ACCIDENTAL RELEASE MEASURES

Personal Precautions:

Do not get in eyes, on skin or on clothing. Avoid breathing mist, vapor, or spray. Do not ingest. Wear appropriate personal protective equipment recommended in Section 8 of the SDS.

Methods and Materials for Containment and Cleaning Up:

In case of spill or leak, stop the leak as soon as possible, if safe to do so. Completely contain spilled materials with dikes, sandbags, etc. Shovel dry material into suitable container. Liquid material may be removed with a vacuum truck. Remaining material may be diluted with water and neutralized with dilute acid, then absorbed and collected. Flush spill area with water, if appropriate.

Environmental Precautions:

Keep out of water supplies and sewers. Do not flush into surface water or sanitary sewer system. This material is alkaline and may raise the pH of surface waters with low buffering capacity. Releases should be reported, if required, to appropriate agencies.

Print date: 13-Jan-2016 6 of 16

SDS No.: M32415 SDS Revision Date: 13-Jan-2016

SECTION 7. HANDLING AND STORAGE

Precautions for Safe Handling:

Avoid breathing vapor or mist. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling. Do not ingest. Do not eat, drink or smoke in areas where this material is used. Wear personal protective equipment as described in Exposure Controls/Personal Protection (Section 8) of the SDS. NEVER add water to product. When mixing, slowly add to water to minimize heat generation and spattering.

Safe Storage Conditions:

Store and handle in accordance with all current regulations and standards. Keep container tightly closed and properly labeled. Do not store in aluminum container or use aluminum fittings or transfer lines, as flammable hydrogen gas may be generated. Keep separated from incompatible substances (see below or Section 10 of the Safety Data Sheet).

Incompatibilities/ Materials to Avoid:

Acids and halogenated compounds, Prolonged contact with aluminum, brass, bronze, copper, lead, tin, zinc or other alkali sensitive metals or alloys. Releases heat when diluted in water

GHS: PHYSICAL HAZARDS:

- Corrosive to Metals
- Mixing with water may cause splattering and release of heat

SECTION 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Regulatory Exposure Limit(s): Listed below for the product components that have regulatory occupational exposure limits (OEL's).

Component	OSHA Final PEL TWA	OSHA Final PEL STEL	OSHA Final PELCeiling
Sodium Hydroxide 1310-73-2	2 mg/m³		

OEL: Occupational Exposure Limit; OSHA: United States Occupational Safety and Health Administration; PEL: Permissible Exposure Limit; TWA: Time Weighted Average; STEL: Short Term Exposure Limit

NON-REGULATORY EXPOSURE LIMIT(S): Listed below for the product components that have non-regulatory occupational exposure limits (OEL's).

Component	ACGIH TWA	ACGIH STEL	ACGIH Ceiling	OSHA TWA (Vacated)	OSHA STEL (Vacated)	OSHA Ceiling (Vacated)
Sodium Hydroxide			2 mg/m ³			2 mg/m ³

⁻ The Non-Regulatory United States Occupational Safety and Health Administration (OSHA) limits, if shown, are the Vacated 1989 PEL's (vacated by 58 FR 35338, June 30, 1993).

Print date: 13-Jan-2016 **7 of 16**

SDS No.: M32415 **SDS Revision Date**: 13-Jan-2016

- The American Conference of Governmental Industrial Hygienists (ACGIH) is a voluntary organization of professional industrial hygiene personnel in government or educational institutions in the United States. The ACGIH develops and publishes recommended occupational exposure limits each year called Threshold Limit Values (TLVs) for hundreds of chemicals, physical agents, and biological exposure indices.

Component	OXY REL	OXY REL	OXY REL
	8 hr TWA	STEL	Ceiling
Sodium Chloride 7647-14-5 (0 - 35)			

ENGINEERING CONTROLS: Provide local exhaust ventilation where dust or mist may be generated. Ensure compliance with applicable exposure limits.

PERSONAL PROTECTIVE EQUIPMENT:

Eye Protection: Wear chemical safety goggles with a face-shield to protect against eye and skin contact when appropriate. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin and Body Protection: Wear protective clothing to minimize skin contact. Wear chemical resistant clothing and rubber boots when potential for contact with the material exists. Always place pants legs over boots. Contaminated clothing should be removed, then discarded or laundered. Discard contaminated leather goods.

Hand Protection: Wear appropriate chemical resistant gloves. Consult a glove supplier for assistance in selecting an appropriate chemical resistant glove.

Protective Material Types:

- Natural rubber
- Neoprene
- Nitrile
- Polyvinyl chloride (PVC)
- Tvvek®
- Tychem®

Respiratory Protection: A NIOSH approved respirator with N95 (dust, fume, mist) cartridges may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits, or when symptoms have been observed that are indicative of overexposure. If eye irritation occurs, a full face style mask should be used. A respiratory protection program that meets 29 CFR 1910.134 must be followed whenever workplace conditions warrant use of a respirator.

Component	Immediately Dangerous to Life/ Health (IDLH)
Sodium Hydroxide	10 mg/m³ IDLH
1310-73-2	

HYGIENE MEASURES: Handle in accordance with good industrial hygiene and safety practices. Wash hands and affected skin immediately after handling, before breaks, and at the end of the workday. When using do not eat or drink. When using do not smoke.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Print date: 13-Jan-2016 8 of 16

SDS No.: M32415 SDS Revision Date: 13-Jan-2016

Physical State: Liquid

Appearance: Clear to opaque

Color: Colorless to slightly colored

Odor: Odorless

Odor Threshold [ppm]: No data available.

Molecular Weight: 40.01
Molecular Formula: NaOH

Decomposition Temperature: No data available

Boiling Point/Range: 215 - 291°F (102 - 144°C)
Freezing Point/Range: -26 to 59°F (-32 to 15 °C).

Vapor Pressure: 13 - 135 mmHg @ 60 °C

Vapor Density (air=1): No data available

Relative Density/Specific Gravity 1.05 - 1.56 @ 15.6 °C

(water=1):

Density: 8.8 - 13.0 lbs/gal @ 15.6 °C

Water Solubility: 100%

pH: 14.0 (theoretical value of 7.5% solution)

Volatility: No data available
Evaporation Rate (ether=1): No data available
Partition Coefficient No data available

(n-octanol/water):

Flash point:

Flammability (solid, gas):

Lower Flammability Level (air):

Upper Flammability Level (air):

Auto-ignition Temperature:

Not flammable
Not flammable
Not applicable

Viscosity: About 24cp for 50% solution at 40 °C (104 °F)

SECTION 10. STABILITY AND REACTIVITY

Reactivity: Soluble in water, releasing heat sufficient to ignite combustibles. Reacts with metals, and may form hydrogen gas.

Chemical Stability: Stable at normal temperatures and pressures.

Possibility of Hazardous Reactions:

Mixing with water, acid, or incompatible materials may cause splattering and release of large amounts of heat. Will react with some metals forming flammable hydrogen gas. Carbon monoxide gas may form upon contact with reducing sugars, food and beverage products in enclosed spaces.

Conditions to Avoid: (e.g., static discharge, shock, or vibration) -. None known.

Incompatibilities/ Materials to Avoid: Acids and halogenated compounds. Prolonged contact with aluminum, brass, bronze, copper, lead, tin, zinc or other alkali sensitive metals or alloys. Releases heat when diluted in water.

Hazardous Decomposition Products: Toxic fumes of sodium oxide

Hazardous Polymerization: Will not occur.

Print date: 13-Jan-2016 **9 of 16**

SDS No.: M32415 SDS Revision Date: 13-Jan-2016

SECTION 11. TOXICOLOGICAL INFORMATION

IRRITATION DATA: PRIMARY SKIN IRRITATION: Severe Irritation, Corrosive (rabbit, 24 hr)

PRIMARY EYE IRRITATION: Severe Irritation, Corrosive (rabbit, 24 hr)

TOXICITY DATA:

PRODUCT TOXICITY DATA: CAUSTIC SODA LIQUID (ALL GRADES)

LD50 Oral:	LD50 Dermal:	LC50 Inhalation:
No reliable data available	No reliable data available	No data available

COMPONENT TOXICITY DATA:

Note: The component toxicity data is populated by the LOLI database and may differ from the product toxicity data given.

Component	LD50 Oral:	LD50 Dermal:	LC50 Inhalation:
Water 7732-18-5	90 mL/kg (Rat)		
Sodium Hydroxide 1310-73-2	140-3400 mg/kg	1350 mg/kg (Rabbit)	
Sodium Chloride 7647-14-5	3 g/kg (Rat)		42 g/m³ (1 hr-Rat)

POTENTIAL HEALTH EFFECTS:

Eye contact: Corrosive. Causes serious eye damage which can result in: severe irritation, pain

and burns, and permanent damage including blindness.

Skin contact: Corrosive. Causes severe skin burns. Prolonged or repeat skin exposures can

result in dermatitis.

Inhalation: Corrosive. Inhalation injury may result from ingestion and/or aspiration of this

material. May cause severe irritation of the respiratory tract with potential airway compromise, coughing, choking, pain, and burns of the mucous membrane and respiratory system. This material can be extremely destructive to the tissue of the mucus membranes and respiratory system. Aspiration may cause chemical

pneumonitis, pulmonary edema, damage to lung tissue, death.

Ingestion: Corrosive. If swallowed, may cause severe oral and esophageal, mucus

membrane, and gastrointestinal burns and possible perforation. If swallowed, may

pose a lung aspiration hazard during vomiting.

Chronic Effects: Repeated or prolonged skin contact may result in dermatitis.

Print date: 13-Jan-2016 **10 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

SIGNS AND SYMPTOMS OF EXPOSURE:

This material may cause severe burns and permanent damage to any tissue with which it comes into contact. It can cause serious burns and extensive tissue destruction resulting in liquefaction, necrosis and/or perforation. Signs and symptoms of exposure vary, and are dependent on the route of exposure, degree of exposure, and duration of exposure.

Inhalation (Breathing): Respiratory System Effects: Exposure to airborne material may cause irritation, redness of upper and lower airways, coughing, laryngeospasm, shortness of breath, bronchoconstriction, and possible pulmonary edema. Severe and permanent scarring may occur. Pulmonary edema may develop several hours after a severe acute exposure. Aspiration of this material may cause the same conditions.

Skin: Skin Corrosion. Exposure to skin may cause redness, itching, irritation, swelling, burns (first, second, or third degree), liquefaction of skin, and damage to underlying tissues (deep and painful wounds).

Eye: Serious Eye Damage. Eye exposures may cause eye lid burns, conjunctivitis, corneal edema, corneal burn, corneal perforation, damage to internal contents of the eye, permanent visual defects, and blindness and/or loss of the eye.

Ingestion (Swallowing): Gastrointestinal System Effects: Exposure by ingestion may cause irritation, swelling, and perforation of upper and lower gastrointestinal tissues. Permanent scarring may occur.

TOXICITY:

When in solution, this material will affect all tissues with which it comes in contact. The severity of the tissue damage is a function of its concentration, the length of tissue contact time, and local tissue conditions. After exposure there may be a time delay before irritation and other effects occur. This material is a strong irritant and is corrosive to the skin, eyes, and mucus membranes. This material may cause severe burns and permanent damage to any tissue with which it comes into contact.

Interaction with Other Chemicals Which Enhance Toxicity: None known.

GHS HEALTH HAZARDS:
GHS: CONTACT HAZARD - EYE: Category 1 - Causes serious eye damage

GHS: CONTACT HAZARD - Category 1B - Causes severe skin burns and eye damage **SKIN:**

Skin Absorbent / Dermal Route? No.

GHS: CARCINOGENICITY:

Not classified as a carcinogen per GHS criteria. This product is not classified as a carcinogen by NTP, IARC or OSHA.

SPECIFIC TARGET ORGAN TOXICITY (Single Exposure):

Category 3 - Respiratory Irritation

SECTION 12. ECOLOGICAL INFORMATION

ECOTOXICITY DATA:

Print date: 13-Jan-2016 **11 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

Aquatic Toxicity:

This material has exhibited moderate toxicity to aquatic organisms. Data provided are for sodium hydroxide

Component	Invertebrate Toxicity:	Algae Toxicity:	Other Toxicity:
Sodium Chloride	340.7 - 469.2 mg/L		
7647-14-5 (0 - 35)	EC50 = 1000 mg/L EC50		

FATE AND TRANSPORT:

BIODEGRADATION: This material is inorganic and not subject to biodegradation

PERSISTENCE: This material is alkaline and may raise the pH of surface waters with low buffering capacity This material is believed to exist in the disassociated state in the environment

BIOCONCENTRATION: This material is not expected to bioconcentrate in organisms.

BIOACCUMULATIVE POTENTIAL: Does not bioaccumulate.

MOBILITY IN SOIL: No data available.

<u>ADDITIONAL ECOLOGICAL INFORMATION:</u> This material has exhibited slight toxicity to terrestrial organisms. This material has exhibited moderate toxicity to aquatic organisms.

SECTION 13. DISPOSAL CONSIDERATIONS

Waste from material:

Reuse or reprocess, if possible. May be subject to disposal regulations. Dispose in accordance with all applicable regulations.

Container Management:

Dispose of container in accordance with applicable local, regional, national, and/or international regulations. Container rinsate must be disposed of in compliance with applicable regulations.

SECTION 14. TRANSPORT INFORMATION

LAND TRANSPORT

U.S. DOT 49 CFR 172.101:

UN NUMBER: UN1824

PROPER SHIPPING NAME: Sodium Hydroxide Solution

HAZARD CLASS/ DIVISION: 8

Print date: 13-Jan-2016 **12 of 16**

SDS No.: M32415 SDS Revision Date: 13-Jan-2016

PACKING GROUP: || LABELING REQUIREMENTS: 8

RQ (lbs): RQ 1000 lbs. (Sodium Hydroxide)

CANADIAN TRANSPORTATION OF DANGEROUS GOODS:

UN NUMBER: UN1824

SHIPPING NAME: Sodium hydroxide solution

CLASS OR DIVISION: 8
PACKING/RISK GROUP: ||
LABELING REQUIREMENTS: 8

MARITIME TRANSPORT (IMO / IMDG) :

UN NUMBER: UN1824

PROPER SHIPPING NAME: Sodium hydroxide solution

HAZARD CLASS / DIVISION: 8
Packing Group: ||
LABELING REQUIREMENTS: 8

SECTION 15. REGULATORY INFORMATION

U.S. REGULATIONS

OSHA REGULATORY STATUS:

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200)

CERCLA SECTIONS 102a/103 HAZARDOUS SUBSTANCES (40 CFR 302.4):

If a release is reportable under CERCLA section 103, notify the state emergency response commission and local emergency planning committee. In addition, notify the National Response Center at (800) 424-8802 or (202) 426-2675.

Component	CERCLA Reportable Quantities:	
Sodium Hydroxide	1000 lb (final RQ)	

SARA EHS Chemical (40 CFR 355.30)

No components are listed

EPCRA SECTIONS 311/312 HAZARD CATEGORIES (40 CFR 370.10):

Acute Health Hazard

EPCRA SECTION 313 (40 CFR 372.65):

No components are listed

Print date: 13-Jan-2016 **13 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

DEPARTMENT OF HOMELAND SECURITY (DHS)- Chemical Facility Anti-Terrorism Standards (6 CFR 27):

No components in this material are regulated under DHS

OSHA PROCESS SAFETY (PSM) (29 CFR 1910.119):

Not regulated

FDA: This material has Generally Recognized as Safe (GRAS) status under specific FDA regulations. Additional information is available from the Code of Federal Regulations which is accessible on the FDA's website. This product is not produced under all current Good Manufacturing Practices (cGMP) requirements as defined by the Food and Drug Administration (FDA).

NATIONAL INVENTORY STATUS

U.S. INVENTORY STATUS: Toxic Substance Control Act (TSCA): All components are listed or exempt

Component	U.S. INVENTORY STATUS: Toxic Substance Control Act (TSCA):
Water 7732-18-5 (48.5 - 94.5)	Listed
Sodium Hydroxide 1310-73-2 (5.5 - 51.5)	Listed
Sodium Chloride 7647-14-5 (0 - 35)	Listed

TSCA 12(b): This product is not subject to export notification.

Canadian Chemical Inventory: All components of this product are listed on either the DSL or the NDSL.

STATE REGULATIONS

California Proposition 65:

This product and its ingredients are not listed, but it may contain impurities/trace elements known to the State of California to cause cancer or reproductive toxicity as listed under Proposition 65 State Drinking Water and Toxic Enforcement Act. For additional information, contact OxyChem Technical Services at 1-800-733-1165.

Component	Proposition 65 Cancer	Proposition 65 CRT List - Male reproductive	Proposition 65 CRT List - Female	Right to Know Hazardous	Hazardous	New Jersey Special Health Hazards Substance List
Sodium Hydroxide 1310-73-2	Not Listed	Not Listed	Not Listed	Listed	1706	corrosive

Component	Environmental	to Know Hazardous Substance List	to Know Special Hazardous	to Know	Rhode Island Right to Know Hazardous Substance List
Water 7732-18-5	Not Listed	Listed	Not Listed	Not Listed	Not Listed
Sodium Hydroxide 1310-73-2	Not Listed	Listed	Not Listed	Present	Listed

CANADIAN REGULATIONS

Print date: 13-Jan-2016 **14 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

• This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the SDS contains all the information required by the Controlled Products Regulations

Component	Water
WHMIS - Classifications of Substances:	
Uncontrolled product according to WHMIS classification criteria	
Component	Sodium Hydroxide
WHMIS - Classifications of Substances:	
E	
Component	Sodium Chloride
WHMIS - Classifications of Substances:	
Uncontrolled product according to WHMIS classification criteria	

SECTION 16. OTHER INFORMATION

Prepared by: OxyChem Corporate HESS - Product Stewardship

Rev. Date: 13-Jan-2016

Other information:

The Safety Data Sheet for Caustic Soda Liquid (ALL Grades) can be used for hazard communication purposes for off-specification, secondary caustic soda liquids generated when cleaning caustic soda storage tanks, including the general disclaimer found in section 16 of the Safety Data Sheet

HMIS: (SCALE 0-4) (Rated using National Paint & Coatings Association HMIS: Rating Instructions, 2nd Edition)

Health Rating: 3 Flammability Rating: 0 Reactivity Rating: 1

NFPA 704 - Hazard Identification Ratings (SCALE 0-4): Listed below.

Health Rating: 3 Flammability: 0 Reactivity Rating: 1

Reason for Revision:

Changed GHS Classification: SEE SECTION 2

Toxicological Information has been revised: SEE SECTION 11

Print date: 13-Jan-2016 **15 of 16**

SDS No.: M32415 **SDS Revision Date:** 13-Jan-2016

IMPORTANT:

The information presented herein, while not guaranteed, was prepared by technical personnel and is true and accurate to the best of our knowledge. NO WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTY OR GUARANTY OF ANY OTHER KIND, EXPRESSED OR IMPLIED, IS MADE REGARDING PERFORMANCE, SAFETY, SUITABILITY, STABILITY OR OTHERWISE. This information is not intended to be all-inclusive as to the manner and conditions of use, handling, storage, disposal and other factors that may involve other or additional legal, environmental, safety or performance considerations, and OxyChem assumes no liability whatsoever for the use of or reliance upon this information. While our technical personnel will be happy to respond to questions, safe handling and use of the product remains the responsibility of the customer. No suggestions for use are intended as, and nothing herein shall be construed as, a recommendation to infringe any existing patents or to violate any Federal, State, local or foreign laws

OSHA Standard 29 CFR 1910.1200 requires that information be provided to employees regarding the hazards of chemicals by means of a hazard communication program including labeling, safety data sheets, training and access to written records. We request that you, and it is your legal duty to, make all information in this Safety Data Sheet available to your employees

End of Safety Data Sheet

Print date: 13-Jan-2016 16 of 16

CHEMTRADE

Sulfuric Acid, 70-100%

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's

Hazardous Products Regulation, February 11, 2015.

Date of Issue: 05/31/2016 Revision Date: 05/07/2018 Version: 4.0

SECTION 1: IDENTIFICATION

Product Identifier

Product Form: Mixture

Product Name: Sulfuric Acid, 70-100%

Formula: H2-O4-S

Intended Use of the Product

Use Of The Substance/Mixture: Industrial use.

Name, Address, and Telephone of the Responsible Party

Manufacturer

CHEMTRADE LOGISTICS INC. 155 Gordon Baker Road Suite 300

Toronto, Ontario M2H 3N5 For SDS Info: (416) 496-5856 www.chemtradelogistics.com

Emergency Telephone Number

Emergency Number : Canada: CANUTEC +1-613-996-6666 / US: CHEMTREC +1-800-424-9300

> INTERNATIONAL: +1-703-741-5970 Chemtrade Emergency Contact: (866) 416-4404

For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call CHEMTREC - Day or Night

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

GHS Classification

Met. Corr. 1 H290 Skin Corr. 1A H314 Eye Dam. 1 H318 H350 Carc. 1A Aquatic Acute 3 H402

Full text of hazard classes and H-statements: see section 16

Label Elements GHS Labeling

Hazard Pictograms

Signal Word : Danger

Hazard Statements : H290 - May be corrosive to metals.

H314 - Causes severe skin burns and eye damage.

H318 - Causes serious eye damage. H350 - May cause cancer (Inhalation).

H402 - Harmful to aquatic life.

Precautionary Statements : P201 - Obtain special instructions before use.

P202 - Do not handle until all safety precautions have been read and understood.

P234 - Keep only in original container.

P260 - Do not breathe vapors, mist, or spray.

P264 - Wash hands, forearms, and other exposed areas thoroughly after handling.

P273 - Avoid release to the environment.

P280 - Wear protective gloves, protective clothing, and eye protection. P301+P330+P331 - IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

05/07/2018 SDS#: CHE-1010S 1/9 EN (English US)

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

P303+P361+P353 - IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water.

P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing.

P305+P351+P338 - IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P308+P313 - If exposed or concerned: Get medical advice/attention.

P310 - Immediately call a POISON CENTER or doctor.

P321 - Specific treatment (see section 4 on this SDS).

P363 - Wash contaminated clothing before reuse.

P390 - Absorb spillage to prevent material damage.

P405 - Store locked up.

P406 - Store in corrosive resistant container with a resistant inner liner.

P501 - Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Other Hazards

Exposure may aggravate pre-existing eye, skin, or respiratory conditions.

Unknown acute toxicity

No data available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

Mixture

Name	Product Identifier	%*	GHS Ingredient Classification
Sulfuric acid**	(CAS-No.) 7664-93-9	70 - 100	Met. Corr. 1, H290
			Skin Corr. 1A, H314
			Eye Dam. 1, H318
			Carc. 1A, H350
			Aquatic Acute 3, H402
Water	(CAS-No.) 7732-18-5	0.1 - 30	Not classified

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First-aid Measures

General: Never give anything by mouth to an unconscious person. If you feel unwell, seek medical advice (show the label where possible).

Inhalation: When symptoms occur: go into open air and ventilate suspected area. Obtain medical attention if breathing difficulty persists.

Skin Contact: Remove contaminated clothing. Immediately flush skin with plenty of water for at least 30 minutes. Get immediate medical advice/attention. Wash contaminated clothing before reuse.

Eye Contact: Rinse cautiously with water for at least 30 minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Get immediate medical advice/attention.

Ingestion: Rinse mouth. Do NOT induce vomiting. Obtain medical attention.

Most Important Symptoms and Effects Both Acute and Delayed

General: Corrosive to eyes, respiratory system and skin. May cause cancer.

Inhalation: May be corrosive to the respiratory tract.

Skin Contact: Causes severe irritation which will progress to chemical burns. **Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

05/07/2018 EN (English US) SDS#: CHE-1010S 2/9

^{*}Percentages are listed in weight by weight percentage (w/w%) for liquid and solid ingredients. Gas ingredients are listed in volume by volume percentage (v/v%).

^{**}Strong inorganic acid aerosols/mists containing this substance are carcinogenic to humans via inhalation. Under normal conditions of use this route of exposure is not expected.

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

<u>Indication of Any Immediate Medical Attention and Special Treatment Needed</u>

If exposed or concerned, get medical advice and attention. If medical advice is needed, have product container or label at hand.

SECTION 5: FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Foam, carbon dioxide, dry chemical.

Unsuitable Extinguishing Media: Do not use water. Do not get water inside containers. Do not apply water stream directly at source of leak

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Not flammable.

Explosion Hazard: Product is not explosive.

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Advice for Firefighters

Precautionary Measures Fire: Exercise caution when fighting any chemical fire.

Firefighting Instructions: Use water spray or fog for cooling exposed containers.

Protection During Firefighting: Do not enter fire area without proper protective equipment, including respiratory protection.

Hazardous Combustion Products: Toxic fumes are released.

Other Information: Do not allow run-off from fire fighting to enter drains or water courses.

Reference to Other Sections

Refer to Section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Do not get in eyes, on skin, or on clothing. Do not breathe vapor, mist or spray. Do not handle until all safety precautions have been read and understood.

For Non-Emergency Personnel

Protective Equipment: Use appropriate personal protective equipment (PPE).

Emergency Procedures: Evacuate unnecessary personnel.

For Emergency Personnel

Protective Equipment: Equip cleanup crew with proper protection.

Emergency Procedures: Upon arrival at the scene, a first responder is expected to recognize the presence of dangerous goods, protect oneself and the public, secure the area, and call for the assistance of trained personnel as soon as conditions permit. Ventilate area.

Environmental Precautions

Prevent entry to sewers and public waters. Avoid release to the environment.

Methods and Materials for Containment and Cleaning Up

For Containment: Contain any spills with dikes or absorbents to prevent migration and entry into sewers or streams. As an immediate precautionary measure, isolate spill or leak area in all directions.

Methods for Cleaning Up: Clean up spills immediately and dispose of waste safely. Absorb spillage to prevent material damage. Cautiously neutralize spilled liquid. Transfer spilled material to a suitable container for disposal. Contact competent authorities after a spill.

Reference to Other Sections

See Section 8 for exposure controls and personal protection and Section 13 for disposal considerations.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Wash hands and other exposed areas with mild soap and water before eating, drinking or smoking and when leaving work. Handle empty containers with care because they may still present a hazard. Do not get in eyes, on skin, or on clothing. Do not breathe vapors, mist, spray. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood.

Additional Hazards When Processed: May be corrosive to metals. May release corrosive vapors. NEVER pour water into this substance; when dissolving or diluting always add it slowly to the water.

05/07/2018 EN (English US) SDS#: CHE-1010S 3/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures.

Conditions for Safe Storage, Including Any Incompatibilities

Technical Measures: Comply with applicable regulations.

Storage Conditions: Keep container closed when not in use. Store in a dry, cool place. Keep/Store away from extremely high or low

temperatures and incompatible materials. Store in original container or corrosive resistant and/or lined container.

Incompatible Materials: Combustible materials. Reducing agents. Strong oxidizers. Strong bases. Metals. Water.

Specific End Use(s)

Industrial use.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

For substances listed in section 3 that are not listed here, there are no established Exposure limits from the manufacturer, supplier, importer, or the appropriate advisory agency including: ACGIH (TLV), AIHA (WEEL), NIOSH (REL), OSHA (PEL), Canadian provincial governments, or the Mexican government.

Sulfuric acid (7664-93-9)	-				
Mexico	OEL TWA (mg/m³)	1 mg/m³			
USA ACGIH	ACGIH TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
USA ACGIH	ACGIH chemical category	Suspected Human Carcinogen contained in strong inorganic acid mists			
USA OSHA	OSHA PEL (TWA) (mg/m³)	1 mg/m ³			
USA NIOSH	NIOSH REL (TWA) (mg/m³)	1 mg/m³			
USA IDLH	US IDLH (mg/m³)	15 mg/m³			
Alberta	OEL STEL (mg/m³)	3 mg/m ³			
Alberta	OEL TWA (mg/m³)	1 mg/m³			
British Columbia	OEL TWA (mg/m³)	0.2 mg/m³ (Thoracic, contained in strong inorganic acid mists)			
Manitoba	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
New Brunswick OEL STEL (mg/m³) 3 mg/m³		3 mg/m³			
New Brunswick OEL TWA (mg/m³)		1 mg/m³			
Newfoundland & Labrador OEL TWA (mg/m³)		0.2 mg/m³ (thoracic particulate matter)			
Nova Scotia	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
Nunavut	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)			
Nunavut	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)			
Northwest Territories	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction, strong acid mists only)			
Northwest Territories	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction, strong acid mists only)			
Ontario	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic)			
Prince Edward Island	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic particulate matter)			
Québec	VECD (mg/m³)	3 mg/m ³			
Québec	VEMP (mg/m³)	1 mg/m³			
Saskatchewan	OEL STEL (mg/m³)	0.6 mg/m³ (thoracic fraction)			
Saskatchewan	OEL TWA (mg/m³)	0.2 mg/m³ (thoracic fraction)			
Yukon	OEL STEL (mg/m³)	1 mg/m³			
Yukon	OEL TWA (mg/m³)	1 mg/m³			

Exposure Controls

Appropriate Engineering Controls: Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Ensure adequate ventilation, especially in confined areas. Ensure all national/local regulations are observed.

Personal Protective Equipment: Gloves. Protective clothing. Protective goggles. Face shield. Insufficient ventilation: wear respiratory protection.

05/07/2018 EN (English US) SDS#: CHE-1010S 4/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Materials for Protective Clothing: Acid-resistant clothing.

Hand Protection: Wear protective gloves.

Eye Protection: Chemical safety goggles and face shield. **Skin and Body Protection:** Wear suitable protective clothing.

Respiratory Protection: If exposure limits are exceeded or irritation is experienced, approved respiratory protection should be worn. In case of inadequate ventilation, oxygen deficient atmosphere, or where exposure levels are not known wear approved respiratory protection.

Other Information: When using, do not eat, drink or smoke.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State : Liquid

Appearance : Clear, Colorless to Amber, Oily

Odor Threshold : Pungent : Not available

pH : 0.3

Evaporation Rate Not available **Melting Point** 10.56 °C (51.01 °F) **Freezing Point** Not available **Boiling Point** 290 °C (554 °F) **Flash Point** Not applicable **Auto-ignition Temperature** Not applicable Not available **Decomposition Temperature** Flammability (solid, gas) Not applicable **Lower Flammable Limit** Not applicable **Upper Flammable Limit** Not applicable

Vapor Pressure : 0.00027 - 0.16 kPa at 25 °C (77 °F)

Relative Vapor Density at 20°C: 3.4 (air = 1)Relative Density: Not availableSpecific Gravity: 1.84 g/l

Solubility : Water: Miscible
Partition Coefficient: N-Octanol/Water : Not available
Viscosity : Not available

SECTION 10: STABILITY AND REACTIVITY

Reactivity: May be corrosive to metals. Contact with metals may evolve flammable hydrogen gas. May react exothermically with water releasing heat. Adding an acid to a base or base to an acid may cause a violent reaction. This product may act as an oxidizer.

Chemical Stability: Stable under recommended handling and storage conditions (see section 7).

<u>Possibility of Hazardous Reactions</u>: Hazardous polymerization will not occur.

Conditions to Avoid: Extremely high or low temperatures and incompatible materials.

<u>Incompatible Materials</u>: Combustible materials. Reducing agents. Strong bases. Strong oxidizers. Metals. Water.

Hazardous Decomposition Products: Thermal decomposition generates: Corrosive vapors.

SECTION 11: TOXICOLOGICAL INFORMATION

<u>Information on Toxicological Effects - Product</u>

Acute Toxicity (Oral): Not classified
Acute Toxicity (Dermal): Not classified
Acute Toxicity (Inhalation): Not classified

LD50 and LC50 Data: Not available

Skin Corrosion/Irritation: Causes severe skin burns and eye damage.

pH: 0.3

Eye Damage/Irritation: Causes serious eye damage.

05/07/2018 EN (English US) SDS#: CHE-1010S 5/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

pH: 0.3

Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

Carcinogenicity: May cause cancer (Inhalation).

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): Not classified

Aspiration Hazard: Not classified

Symptoms/Effects After Inhalation: May be corrosive to the respiratory tract.

Symptoms/Effects After Skin Contact: Causes severe irritation which will progress to chemical burns. **Symptoms/Effects After Eye Contact:** Causes permanent damage to the cornea, iris, or conjunctiva.

Symptoms/Effects After Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract.

Chronic Symptoms: Strong inorganic acid mists containing sulfuric acid are carcinogenic to humans. Prolonged inhalation of fumes or mists may cause erosion of the teeth.

<u>Information on Toxicological Effects - Ingredient(s)</u>

LD50 and LC50 Data:

1550 and 1650 bata.			
Water (7732-18-5)			
LD50 Oral Rat > 90000 mg/kg			
Sulfuric acid (7664-93-9)			
LD50 Oral Rat	2140 mg/kg		
C50 Inhalation Rat 510 mg/m³ (Exposure time: 2 h)			
Sulfuric acid (7664-93-9)			
IARC Group	1		
OSHA Hazard Communication Carcinogen List In OSHA Hazard Communication Carcinogen list.			
Strong inorganic acid mists containing sulfuric acid			
National Toxicology Program (NTP) Status Known Human Carcinogens.			

SECTION 12: ECOLOGICAL INFORMATION

Toxicity

Ecology - General: Harmful to aquatic life.

Sulfuric acid (7664-93-9)	
LC50 Fish 1	500 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [static])
LC50 Fish 2	42 mg/l (Exposure time: 96 h - Species: Gambusia affinis [static])

Persistence and Degradability

Sulfuric Acid, 70-100%	
Persistence and Degradability	Not established.

Bioaccumulative Potential

Sulfuric Acid, 70-100%	
Bioaccumulative Potential	Not established.
Sulfuric acid (7664-93-9)	
BCF Fish 1	(no bioaccumulation)

Mobility in Soil Not available

Other Adverse Effects

Other Information: Avoid release to the environment.

SECTION 13: DISPOSAL CONSIDERATIONS

Waste Disposal Recommendations: Dispose of contents/container in accordance with local, regional, national, territorial, provincial, and international regulations.

Additional Information: Container may remain hazardous when empty. Continue to observe all precautions.

Ecology - Waste Materials: Avoid release to the environment. This material is hazardous to the aquatic environment. Keep out of sewers and waterways.

05/07/2018 EN (English US) SDS#: CHE-1010S 6/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

SECTION 14: TRANSPORT INFORMATION

The shipping description(s) stated herein were prepared in accordance with certain assumptions at the time the SDS was authored, and can vary based on a number of variables that may or may not have been known at the time the SDS was issued.

TRANSPORTATION	DOT	TDG	IMDG	IATA
CLASSIFICATION				
Identification Number	UN1830	UN1830	UN1830	UN1830
Proper Shipping Name	SULFURIC ACID	SULFURIC ACID	SULPHURIC ACID	SULPHURIC ACID
Transport Hazard	8	8	8	8
Class(es)				
	CORROSIVE		8	8
Packing Group	II	II	II	II
Environmental Hazards	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant : No	Marine Pollutant:
				N/A
Emergency Response	ERG Number: 137	ERAP Index: 3 000	EMS: F-A, S-B	ERG code (IATA):
				8L
Additional Information	Not applicable	Not applicable	Not applicable	Not applicable

SECTION 15: REGULATORY INFORMATION

US Federal Regulations

Chemical Name (CAS No.)	CERCLA RQ	EPCRA 304 RQ	SARA 302 TPQ	SARA 313
Sulfuric acid (7664-93-9)	1000 lb	1000 lb	1000 lb	Yes

SARA 311/312

Sulfuric Acid, 70-100%

Immediate (acute) health hazard. Delayed (chronic) health hazard. Reactive hazard

US TSCA Flags Not present

US State Regulations

California Proposition 65

Chemical Name (CAS No.)	Carcinogenicity	Developmental Toxicity	Female Reproductive Toxicity	Male Reproductive Toxicity
Sulfuric acid (7664-93-9)	Yes	No	No	No
Strong inorganic acid mists containing sulfuric acid	Yes	No	No	No

State Right-To-Know Lists

Sulfuric acid (7664-93-9)

- U.S. Massachusetts Right To Know List Yes
- U.S. New Jersey Right to Know Hazardous Substance List Yes
- U.S. Pennsylvania RTK (Right to Know) Environmental Hazard List Yes
- U.S. Pennsylvania RTK (Right to Know) Special Hazardous Substances No
- U.S. Pennsylvania RTK (Right to Know) List Yes

Canadian Regulations

Sulfuric acid (7664-93-9)

Listed on the Canadian DSL (Domestic Substances List)

Not listed on the Canadian NDSL (Non-Domestic Substances List)

International Inventories/Lists

Chemical Name (CAS No.)	Australia	Turkey	Korea	EU	EU	EU	EU	Mexico
	AICS	CICR	ECL	EINECS	ELINCS	SVHC	NLP	INSQ
Sulfuric acid (7664-93-9)	Yes	No	Yes	Yes	No	No	No	No

05/07/2018 EN (English US) SDS#: CHE-1010S 7/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

Chemical Name (CAS No.)	China IECSC	Japan ENCS	Japan ISHL	Japan PDSCL	Japan PRTR	Philippines PICCS	New Zealand NZIOC	US TSCA
Sulfuric acid (7664-93-9)	Yes	Yes	No	Yes	No	Yes	Yes	Yes

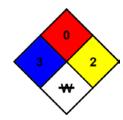
SECTION 16: OTHER INFORMATION, INCLUDING DATE OF PREPARATION OR LAST REVISION

Date of Preparation or Latest Revision : 05/07/2018

Revision Summary

Section	Change	Date Changed
16	Data modified	05/07/2018

Other Information


: This document has been prepared in accordance with the SDS requirements of the OSHA Hazard Communication Standard 29 CFR 1910.1200 and Canada's Hazardous Products Regulations (HPR).

GHS Full Text Phrases:

Aquatic Acute 3	Hazardous to the aquatic environment - Acute Hazard Category 3
Carc. 1A	Carcinogenicity Category 1A
Eye Dam. 1	Serious eye damage/eye irritation Category 1
Met. Corr. 1	Corrosive to metals Category 1
Skin Corr. 1A	Skin corrosion/irritation Category 1A
H290	May be corrosive to metals
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H350	May cause cancer
H402	Harmful to aquatic life

NFPA 704

NFPA Health Hazard : 3
NFPA Fire Hazard : 0
NFPA Reactivity Hazard : 2
NFPA Specific Hazards : W

HMIS Rating

Health : 3
Flammability : 0
Physical : 2

PPE See Section 8

Abbreviations and Acronyms

AICS – Australian Inventory of Chemical Substances LC50 - Median Lethal Concentration

ACGIH – American Conference of Governmental Industrial Hygienists LD50 - Median Lethal Dose

AIHA – American Industrial Hygiene Association

LOAEL - Lowest Observed Adverse Effect Level

ATE - Acute Toxicity Estimate

LOEC - Lowest-observed-effect Concentration

BEF - Biological Exposure Indices (BEI)

ATE - Acute Toxicity Estimate

LOEC - Lowest-observed-effect Concentration

Log Pow - Octanol/water Partition Coefficient

NFPA 704 - National Fire Protection Association

BEI - Biological Exposure Indices (BEI)

NFPA 704 – National Fire Protection Association - Standard System for the CAS No. - Chemical Abstracts Service number

Identification of the Hazards of Materials for Emergency Response

CERCLA RQ - Comprehensive Environmental Response, Compensation, and NIOSH - National Institute for Occupational Safety and Health

Liability Act - Reportable Quantity

CICR - Turkish Inventory and Control of Chemicals

DOT - 49 CFR - US Department of Transportation - Code of Federal

Regulations Title 49 - Transportation.

NZIOC - New Zealand Inventory of Chemicals

Regulations Title 49 – Transportation.

EC50 - Median effective concentration

NZIOC - New Zealand Inventory of Chemicals
OEL - Occupational Exposure Limits

ECL - Korea Existing Chemicals List

OSHA – Occupational Safety and Health Administration

EINECS - European Inventory of Existing Commercial Chemical Substances

PEL - Permissible Exposure Limits

ELINCS - European List of Notified Chemical Substances

EMS - IMDG Emergency Schedule Fire & Spillage

PICCS - Philippine Inventory of Chemicals and Chemical Substances

PDSCL - Japan Poisonous and Deleterious Substances Control Law

ENCS - Japanese Existing and New Chemical Substances Inventory PPE - Personal Protective Equipment

05/07/2018 EN (English US) SDS#: CHE-1010S 8/9

Safety Data Sheet

According to U.S. Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules And Regulations and according to Canada's Hazardous Products Regulation, February 11, 2015.

EPA - Environmental Protection Agency

EPCRA 304 RQ – EPCRA 304 Extremely Hazardous Substance Emergency Planning and Community Right-to-Know-Act – Reportable Quantity ERAP Index – Emergency Response Assistance Plan Quantity Limit

ErC50 - EC50 in Terms of Reduction Growth Rate

 ${\sf ERG\ code\ (IATA)-Emergency\ Response\ Drill\ Code\ as\ found\ in\ the\ International}$

Civil Aviation Organization (ICAO)

ERG No. - Emergency Response Guide Number HCCL - Hazard Communication Carcinogen List HMIS – Hazardous Materials Information System IARC - International Agency for Research on Cancer

IATA - International Air Transport Association – Dangerous Goods Regulations

IDLH - Immediately Dangerous to Life or Health

IECSC - Inventory of Existing Chemical Substances Produced or Imported in

China

IMDG - International Maritime Dangerous Goods Code INSQ - Mexican National Inventory of Chemical Substances

ISHL - Japan Industrial Safety and Health Law

PRTR - Japan Pollutant Release and Transfer Register

REL - Recommended Exposure Limit

SADT - Self Accelerating Decomposition Temperature SARA - Superfund Amendments and Reauthorization Act

SARA 302 - Section 302, 40 CFR Part 355

SARA 311/312 - Sections 311 and 312, 40 CFR Part 370 Hazard Categories

SARA 313 - Section 313, 40 CFR Part 372 SRCL - Specifically Regulated Carcinogen List

STEL - Short Term Exposure Limit

SVHC – European Candidate List of Substance of Very High Concern TDG – Transport Canada Transport of Dangerous Goods Regulations

TLM - Median Tolerance Limit TLV - Threshold Limit Value TPQ - Threshold Planning Quantity

TSCA - United StatesToxic Substances Control Act

TWA - Time Weighted Average

WEEL - Workplace Environmental Exposure Levels

Handle product with due care and avoid unnecessary contact. This information is supplied under U.S. OSHA'S "Right to Know" (29 CFR 1910.1200) and Canada's WHMIS regulations. Although certain hazards are described herein, we cannot guarantee these are the only hazards that exist. The information contained herein is based on data available to us and is believed to be true and accurate but it is not offered as a product specification. No warranty, expressed or implied, regarding the accuracy of this data, the hazards connected with the use of the product, or the results to be obtained from the use thereof, is made and Chemtrade and its affiliates assume no responsibility. Chemtrade is a member of the CIAC (Chemistry Industry Association of Canada) and adheres to the codes and principles of Responsible Care™.

Chemtrade NA GHS SDS 2015

05/07/2018 EN (English US) SDS#: CHE-1010S 9/9

Lockwood Remediation Technologies, LLC

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

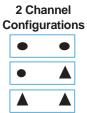
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous Models			
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Broad Range of Digital and Analog Sensors				
Parameter	Sensor	Digital or Analog		
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•		
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•		
Chlorine Dioxide	9185 sc	•		
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A		
Dissolved Oxygen	LDO® Model 2, 5740 sc	•		
Dissolved Oxygen	5500	A		
Flow	U53, F53 Sensors	A		
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•		
Oil in Water	FP360 sc	•		
Organics	UVAS sc	•		
Ozone	9187 sc	•		
pH/ORP	pHD	•		
pH/ORP	pHD, pH Combination, LCP			
Phosphate	PHOSPHAX™ sc	•		
Sludge Level	SONATAX™sc	•		
Suspended Solids	SOLITAX™ sc, TSS sc	•		
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•		
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A		
Ultra Pure pH/ORP	8362	A		

 \bullet = Digital \triangle = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

(144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

backlighting, transreflective

5.7 in x 5.7 in x 7.1 in

Display Size 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

Power Requirements 50/60 Hz

(Hz)

Operating **Temperature Range** -20 to 60 °C, 0 to 95% RH non-condensing

100 - 240 V AC, 24 V DC

Two (Five with optional expansion **Analog Outputs**

module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Analog Output Functional Mode Linear, Logarithmic, Bi-linear, PID

Security Levels 2 password-protected levels Wall, pole, and panel mounting Mounting

Configurations **Enclosure Rating Conduit Openings**

Relay: Operational

Mode

1/2 in NPT Conduit Primaryorsecondary

NEMA 4X/IP66

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays

(Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485, PROFIBUS DPV1, or HART7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and

radiated emissions:

- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1

(Industrial limits)

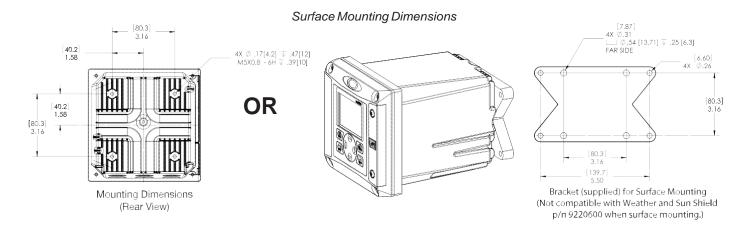
Safety

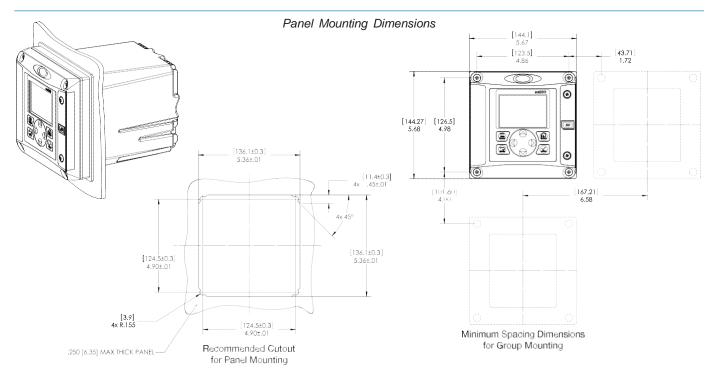
cETLus safety mark for:

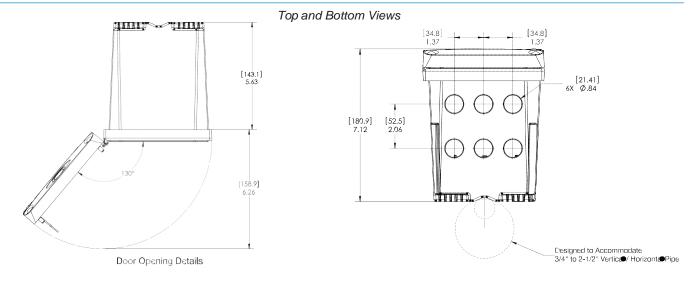
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No.

61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller

Dimensions

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS® (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

 $DW = drinking \ water \ WW = wastewater \ municipal \ PW = pure \ water / power$ $IW = industrial \ water \ E = environmental \ C = collections \ FB = food \ and \ beverage$

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

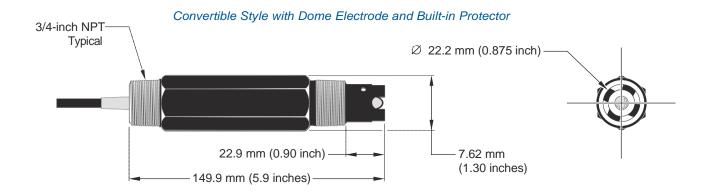
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

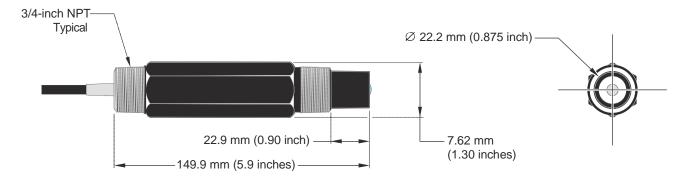
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-

Optional (125 SPM only)

Controls Options							
	Standard	Optional					
Feature	Configuration	Configuration ¹					
External Pacing		Auto / Manual Selection /					
External Pace w/ Stop		Auto / Manual Selection 2					
(125SPMonly)							
Manual Stroke Rate	10:1 Ratio	100:1 Raio					
Manual Stroke Length	10:1 Ratio	10:1 Ratio					
Total Turndown Ratio	1001 Ratio	1000:1 Ratio					

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1 turn down pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers (PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
	GFPP,PVDF,316SS											
	or PVC <; Ncode)											
Pressure ³	wITFE Seats)	PSIG	250 (17)	4=0 (40)	0=0 (4=)	4=0 (40)	100 (=)	40.0 (=)	=0 (0.0)	250 (17)	4=0 (40)	400(=)
(max.)	PVC (V code) Viton or	(Bar)		150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)		150 (10)	100(7)
	CSPE Seats IDegas											
	Liquid End		150 (10)							150(10)		
Connections:		Tubina		114'IDX 3'8' OD 318'DX 112' OD				114	IO X 318' OI			
		Pioina					1	14'FNPT				
Strokes/Minute		SPM				125				,	250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

> **PTFE** 316 SS

Alloy C

GFPPL Fittings Materials Available: PVC

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capady

Viscosity Max CPS: 1000CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

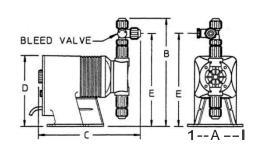
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hput Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series A PLUS Dimensions (inches)									
						Shipping			
Model No.	Α	В	С	D	Е	Weight			
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10			
LBC2	5.0	9.9	9.5	6.5	8.5	10			
LBC3	5.0	9.9	9.5	6.5	8.5	10			
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10			
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10			
LB64	5.0	9.9	9.5	6.5	8.5	10			
LBC4	5.0	9.9	9.5	6.5	8.5	10			

NOTE: hches X2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Office: 774-450-7177 • Fax: 888-835-0617

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7	
Capacity	GPH	0.50	1.00	2.00	4.00	10.00	
nominal	GPD	12	24	48	96	240	
(max.)	LPH	1.9	3.8	7.6	15.1	37.9	
Pressure	PSIG	150	150	110	110	80	
(max.)	BAR	10	10	7	7	5.6	
Connections:	Tubing	Street, management	(S) .50" I.D. X .75" O.D38" I.D. X .50" OD (LVB3 & F4 only)				

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

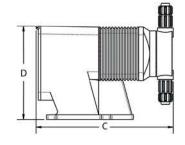
Average Current Draw:

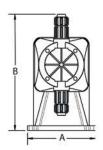
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

Peak Input Power: 300 Watts
Average Input Power @ Max SPM: 130 Watts

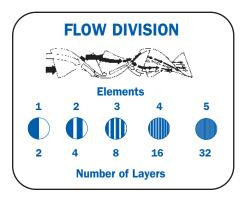
Custom Engineered Designs – Pre-Engineered Systems

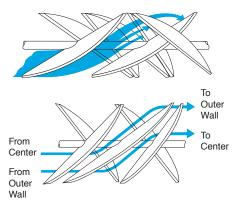

Pre-Engineered Systems

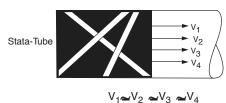

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series HV Dimensions (inches)							
Model No.	Α	В	С	D	Shipping Weight		
LVB3	5.4	9.3	9.5	7.5	13		
LVF4	5.4	10.8	10.8	7.5	18		
LVG4	5.4	9.5	10.6	7.5	18		
LVG5	5.4	10.8	10.8	7.5	18		
LVH7	6.1	11.5	11	8.2	25		


NOTE: Inches X 2.54 = cm





Principles of Operation

000000000

$$Blending = f\left\{ \mathsf{Re}, \mu, \frac{\mu_1}{\mu_2}, \frac{p_1}{p_2}, \frac{V_1}{V_2}, v, n, \frac{L}{D}, lnj \right\}$$

Where Re = Reynolds Number μ = Absolute viscosity

 μ_1/μ_2 = Viscosity ration of unmixed streams p_1/p_2 = Density ratio of unmixed streams V_1/V_2 = Volumetric ratio of unmixed streams

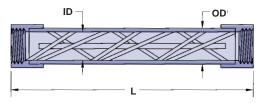
v = Shear rate

n = Number of elements


L/D = Element length to diameter ratioInj = Injection method of additive stream

Reynolds No	Spiral Mixer No Elements	Flow Characteristics	
<10	18	Laminar (creeping flow)	
10 to 100	12	Laminar through Transitional	
100 to 1000	6	Transitional	
1000 to 5000	4	Turbulent	
>5000	2	Turbulent	

50 SERIESStata-tube™ PVC Mixer

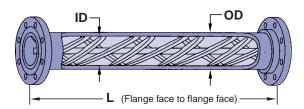


The Series 50 Stata-tube[™] is an effective answer to your mixing requirements. Operating in-line, with **no moving parts**, this mixer blends and disperses treatment chemicals into waste water streams. Compared to competitive mixers, its unique baffling design ensures complete mixing in a shorter length and lower pressure drop.

The Series 50 are easily installed in new or existing process lines. They are available in pipe sizes from 3/8" to 18" diameter. Construction materials include PVC, CPVC and Polypropylene.

PIPE MIXERS 3/8" through 2"

Elements: Polypropylene, Non Removable


Housing: PVC Type 1 (white or gray)

 ${\it Clear\ PVC\ Housing}\ {\rm is\ available,\ contact\ factory.}$

CPVC also Available.

PART NUMBER	NUMBER OF STAGES	ID INCH	OD INCH	END FNPT INCH	L INCH	PRESSURE LIMITATION psi @ 75°F	PIPE SCHEDULE
050-031F	7	0.43	0.675	3/8	5.7	850	80
050-032F	14	0.43	0.675	3/8	7.0	850	
050-061	7	0.69	1.050	3/4	7.0	690	80
050-062	14	0.69	1.050	3/4	10.5	690	
050-081	7	0.91	1.315	1	8.2	630	80
050-082	14	0.91	1.315	1	12.6	630	
050-121	7	1.38	1.660	1 1/4	10.3	370	40
050-122	14	1.38	1.660	1 1/4	17.5	370	
050-161	5	2.05	2.375	2	11.3	280	40
050-162	10	2.05	2.375	2	19.3	280	

PROCESS MIXERS 3" through 12"

Elements: PVC or CPVC Type 1, Removable

Housing: PVC, Type 1

Flanges: FFSO, Van Stone ASA #150 Drilling

Side Ports: Available upon request

Consult factory for Process Mixers greater than 12"

PART	STATIC MIXER				HOUSING		
NUMBER	Number of Stages	Material	Pipe	ID Inch	L Inch	Weight lbs.	Material
T-3-G57-H31	3	CPVC	3" Sch 80	2.90	17	9	PVC
T-3-G57-H61	6	CPVC	3" Sch 80	2.90	30	16	PVC
T-3-H57-H31	3	CPVC	3" Sch 80	2.90	17	9	CPVC
T-3-H57-H61	6	CPVC	3" Sch 80	2.90	30	16	CPVC
T-4-G57-H31	3	CPVC	4" Sch 80	3.83	20	16	PVC
T-4-G57-H61	6	CPVC	4" Sch 80	3.83	35	22	PVC
T-4-H57-H31	3	CPVC	4" Sch 80	3.83	20	16	CPVC
T-4-H57-H61	6	CPVC	4" Sch 80	3.83	35	22	CPVC
T-6-G57-H31	3	CPVC	6" Sch 80	5.76	28	33	PVC
T-6-G57-H61	6	CPVC	6" Sch 80	5.76	51	50	PVC
T-6-H57-H31	3	CPVC	6" Sch 80	5.76	28	33	CPVC
T-6-H57-H61	6	CPVC	6" Sch 80	5.76	51	50	CPVC
T-8-G57-G31	3	PVC	8" Sch 80	7.63	33	55	PVC
T-8-G57-G61	6	PVC	8" Sch 80	7.63	59	90	PVC
T-10-G57-G31	3	PVC	10" Sch 80	9.56	40	88	PVC
T-10-G57-G61	6	PVC	10" Sch 80	9.56	72	130	PVC
T-12-G57-G31	3	PVC	12" Sch 80	11.38	50	140	PVC
T-12-G57-G61	6	PVC	12" Sch 80	11.38	88.5	200	PVC

TAH Industries, Inc. 8 Applegate Drive Robbinsville, NJ 08691 USA

Toll Free: 800-257-5238

Tel: 609-259-9222 Fax: 609-259-0957 Website: www.tah.com **TAH Europe, Inc.** 2 Francis Court

Wellingborough Road

Rushden, Northamptonshire NN10 6AY

Great Britain

Tel: 44 (0) 1933 413233 Fax: 44 (0) 1933 413194 Website: www.tah.com

Distributed By:

Revision date 2019-15-4

Revision number 1

SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION

Product Name: Redux E50

Product Use: Water and Wastewater Treatment Coagulant/Flocculant

Revision Date: Apr 15, 2019
Supersedes Date: Mar 5, 2015

Manufacturer's Name: Azure Water Services

Address: 280 Callegari Dr. West Haven CT, 06516

Emergency Phone: Chemtrec, (1) 800-424-9300, in US and Canada only

SECTION 2) HAZARDS IDENTIFICATION

Classification

Corrosive to metals - Category 1

Eye Irritation - Category 2

Skin Irritation - Category 2

Pictograms

Signal Word

Warning

Hazardous Statements - Health

Causes serious eye irritation

Causes skin irritation

Hazardous Statements - Physical

May be corrosive to metals

Precautionary Statements - General

If medical advice is needed, have product container or label at hand.

Keep out of reach of children.

Read label before use.

Precautionary Statements - Prevention

Keep only in original packaging.

Wash thoroughly after handling.

Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary Statements - Response

Absorb spillage to prevent material damage.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

If eye irritation persists: Get medical advice/attention.

IF ON SKIN: Wash with plenty of water.

Specific treatment (see first-aid on this SDS).

If skin irritation occurs: Get medical advice/attention.

Take off contaminated clothing. And wash it before reuse.

Precautionary Statements - Storage

Store in a corrosive resistant container with a resistant inner liner.

Precautionary Statements - Disposal

No precautionary statement available.

Hazards Not Otherwise Classified (HNOC)

None.

SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS

CAS Chemical Name % By Weight
PROPRIETARY Trade Secret Ingredient 45 - 55%

Specific chemical identity and/or exact percentage (concentration) of the composition has been withheld to protect confidentiality.

SECTION 4) FIRST-AID MEASURES

Inhalation

Remove source of exposure or move person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/doctor/. If breathing has stopped, trained personnel should begin rescue breathing or, if the heart has stopped, immediately start cardiopulmonary resuscitation (CPR) or automated external defibrillation (AED).

Eve Contact

Remove source of exposure or move person to fresh air. Rinse eyes cautiously with lukewarm, gently flowing water for several minutes, while holding the eyelids open. Remove contact lenses, if present and easy to do. Continue rinsing for a flushing duration of 30 minutes. Take care not to rinse contaminated water into the unaffected eye or onto the face. Immediately call a POISON CENTER/doctor.

Skin Contact

Take off immediately all contaminated clothing, shoes and leather goods (e.g. watchbands, belts). Rinse skin with lukewarm, gently flowing water/shower for a duration of 30 minutes or until medical aid is available. Immediately call a POISON CENTER/doctor. Wash contaminated clothing before re-use or discard.

Ingestion

Rinse mouth with water. Do NOT induce vomiting. Give 1 to 2 cups of milk or water to drink. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, lie on your side, in the recovery position. Immediately call a POISON CENTER/doctor.

Most Important Symptoms and Effects, Both acute and Delayed

No data available.

Indication of Any Immediate Medical Attention and Special Treatment Needed

No data available.

SECTION 5) FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, foam, carbon dioxide. Sand or earth may be used for small fires only.

Use extinguishing agent suitable for type of surrounding fire.

Unsuitable Extinguishing Media

Do not use direct water stream since this may cause fire to spread.

Specific Hazards in Case of Fire

In case of fire, hazardous decomposition products may include sulphur oxides.

Fire-Fighting Procedures

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, especially if sprayed into containers of hot, burning liquid. Dispose of fire debris and contaminated extinguishing water in accordance with official regulations.

Special Protective Actions

Wear protective pressure self-contained breathing apparatus (SCBA) and full turnout gear.

SECTION 6) ACCIDENTAL RELEASE MEASURES

Emergency Procedure

Isolate hazard area and keep unnecessary people away. Remove all possible sources of ignition in the surrounding area. Notify authorities if any exposure to the general public or the environment occurs or is likely to occur.

Absorb spill with absorbent material or vacuum spill into polyethylene lined steel or plastic drums.

Do not touch or walk through spilled material.

If spilled material is cleaned up using a regulated solvent, the resulting waste mixture may be regulated.

Recommended Equipment

Positive pressure, full-facepiece self-contained breathing apparatus (SCBA), or positive pressure supplied air respirator with escape SCBA (NIOSH approved).

Personal Precautions

Avoid breathing vapor or mist. Avoid contact with skin, eye or clothing. Ensure adequate ventilation. Do not touch damaged containers or spilled materials unless wearing appropriate protective clothing.

Environmental Precautions

Stop spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems and natural waterways by using sand, earth, or other appropriate barriers.

Methods and Materials for Containment and Cleaning Up

Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Contaminated absorbent material may pose the same hazard as the spilled product.

SECTION 7) HANDLING AND STORAGE

General

Wash hands after use.

Do not get in eyes, on skin or on clothing.

Do not breathe vapors or mists.

Use good personal hygiene practices.

Eating, drinking and smoking in work areas is prohibited.

Remove contaminated clothing and protective equipment before entering eating areas.

Eyewash stations and showers should be available in areas where this material is used and stored.

Ventilation Requirements

Use only with adequate ventilation to control air contaminants to their exposure limits. The use of local ventilation is recommended to control emissions near the source.

Storage Room Requirements

Keep container(s) tightly closed and properly labeled. Store in cool, dry, well-ventilated areas away from heat, direct sunlight and strong oxidizers. Store in approved containers and protect against physical damage. Keep containers securely sealed when not in use. Indoor storage should meet OSHA standards and appropriate fire codes. Containers that have been opened must be carefully resealed to prevent leakage. Empty containers retain residue and may be dangerous.

Use non-sparking ventilation systems, approved explosion-proof equipment and intrinsically safe electrical systems in areas where this product is used and stored.

SECTION 8) EXPOSURE CONTROLS, PERSONAL PROTECTION

Eye Protection

Wear eye protection with side shields or goggles. Wear indirect-vent, impact and splash resistant goggles when working with liquids. If additional protection is needed for entire face, use in combination with a face shield.

Skin Protection

Use of gloves approved to relevant standards made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Use of an apron and over-boots of chemically impervious materials such as neoprene or nitrile rubber is recommended to avoid skin sensitization. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Launder soiled clothes or properly disposed of contaminated material, which cannot be decontaminated.

Respiratory Protection

If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker, a respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed. Check with respiratory protective equipment suppliers.

Appropriate Engineering Controls

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

SECTION 9) PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical Properties

Density	11.10 lb/gal
Specific Gravity	1.33 - 1.35
Appearance	Colorless to yellow liquid
рН	3 - 4
Odor Threshold	N/A
Odor Description	N/A
Water Solubility	complete
Viscosity	< 100cps @20C
Vapor Pressure	Similar to water
Vapor Density	N/A
Freezing Point	<19 °F
Boiling Point	>212 °F
Evaporation Rate	N/A
Flammability	Will not burn

SECTION 10) STABILITY AND REACTIVITY

Stability

Stable under normal storage and handling conditions.

Conditions To Avoid

Avoid heat, sparks, flame, high temperature and contact with incompatible materials.

Hazardous Reactions/Polymerization

Hazardous polymerization will not occur.

Incompatible Materials

Strong bases, acids, oxidizing and reducing agents.

Hazardous Decomposition Products

May produce carbon monoxide, carbon dioxide.

SECTION 11) TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

Inhalation LC50 : Not Available Oral LD50 : Not Available Dermal LD50 : Not Available

Acute Toxicity

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/k (Rat)	

Aspiration Hazard

No Data Available

Respiratory/Skin Sensitization

No Data Available

Serious Eye Damage/Irritation

Causes serious eye irritation

Skin Corrosion/Irritation

Causes skin irritation

Specific Target Organ Toxicity - Repeated Exposure

No Data Available

Specific Target Organ Toxicity - Single Exposure

No Data Available

SECTION 12) ECOLOGICAL INFORMATION

Ecotoxicity

Acute aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

EC 50 (48 hour, static) 33.2 mg/L Ceriodaphnia dubia (Water Flea)

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L (Brachydanio rerio)	

Mobility in Soil

No data available.

Bio-accumulative Potential

No data available.

Persistence and Degradability

No data available.

Other Adverse Effect

No data available.

Redux E50 Page 5 of 6

SECTION 13) DISPOSAL CONSIDERATIONS

Waste Disposal

Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws. Empty Containers retain product residue which may exhibit hazards of material, therefore do not pressurize, cut, glaze, weld or use for any other purposes. Return drums to reclamation centers for proper cleaning and reuse.

SECTION 14) TRANSPORT INFORMATION

U.S. DOT Information

NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging material must not be aluminum, steel or be degraded by this product

SECTION 15) REGULATORY INFORMATION

CAS	Chemical Name	% By Weight	Regulation List
No applicable CAS	No applicable chemical	-	-

SECTION 16) OTHER INFORMATION

Glossary

ACGIH- American Conference of Governmental Industrial Hygienists; ANSI- American National Standards Institute; Canadian TDGCanadian Transportation of Dangerous Goods; CAS- Chemical Abstract Service; Chemtrec- Chemical Transportation Emergency Center(US); CHIP- Chemical Hazard Information and Packaging; DSL- Domestic Substances List; EC- Equivalent Concentration; EH40 (UK)- HSE Guidance Note EH40 Occupational Exposure Limits; EPCRA- Emergency Planning and Community Right-To-Know Act; ESL Effects screening levels; HMIS- Hazardous Material Information Service; LC- Lethal Concentration; LD- Lethal Dose; NFPA- National Fire Protection Association; OEL- Occupational Exposure Limits; OSHA- Occupational Safety and Health Administration, US Department of Labor; PEL- Permissible Exposure Limit; SARA (Title III)- Superfund Amendments and Reauthorization Act; SARA 313- Superfund Amendments and Reauthorization Act, Section 313; SCBA- Self Contained Breathing Apparatus; STEL-Short Term Exposure Limit; TCEQ Texas Commission on Environmental Quality; TLV- Threshold Limit Value; TSCA- Toxic Substances Control Act Public Law 94-469; TWA Time Weighted Value; US DOT- US Department of Transportation; WHMIS- Workplace Hazardous Materials Information System.

Additional Information

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

Version 1.0:

Revision Date: Apr 15,2019

First Edition.

DISCLAIMER

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist. The above information pertains to this product as currently formulated, and is based on the information available at this time. Addition of reducers or other additives to this product may substantially alter the composition and hazards of the product. Since conditions of use are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information.

Redux E50 Page 6 of 6

Revision date 2019-15-4

SAFETY DATA SHEET

Revision number 1

SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION

Product ID: Redux-823

Product Name: Processing aid for industrial applications

Revision Date: Apr 15, 2019 Supersedes Date: Jan 25, 2018

Manufacturer's Name: Azure Water Services

Address: 280 Callegari Drive West Haven, CT, US, 06516

Emergency Phone: Chemtrec 800-424-9300, in US and Canada only

SECTION 2) HAZARDS IDENTIFICATION

Classification of the substance or mixture

Not a hazardous substance or mixture according to United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (29 CFR 1910.1200).

Hazards Not Otherwise Classified (HNOC)

None.

SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS

None of the chemicals in this product are hazardous according to the GHS.

SECTION 4) FIRST-AID MEASURES

Inhalation

Remove source of exposure or move person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/doctor/. If breathing has stopped, trained personnel should begin rescue breathing or, if the heart has stopped, immediately start cardiopulmonary resuscitation (CPR) or automated external defibrillation (AED).

Eye Contact

Remove source of exposure or move person to fresh air. Rinse eyes cautiously with lukewarm, gently flowing water for several minutes, while holding the eyelids open. Remove contact lenses, if present and easy to do. Continue rinsing for a flushing duration of 30 minutes. Take care not to rinse contaminated water into the unaffected eye or onto the face. Immediately call a POISON CENTER/doctor.

Skin Contact

Take off immediately all contaminated clothing, shoes and leather goods (e.g. watchbands, belts). Rinse skin with lukewarm, gently flowing water/shower for a duration of 30 minutes or until medical aid is available. Immediately call a POISON CENTER/doctor. Wash contaminated clothing before re-use or discard.

Ingestion

Rinse mouth with water. Do NOT induce vomiting. Give 1 to 2 cups of milk or water to drink. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, lie on your side, in the recovery position. Immediately call a POISON CENTER/doctor.

Most Important Symptoms and Effects, Both acute and Delayed

No data available.

Indication of Any Immediate Medical Attention and Special Treatment Needed

No data available.

SECTION 5) FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, foam, carbon dioxide. Sand or earth may be used for small fires only.

Use extinguishing agent suitable for type of surrounding fire.

Unsuitable Extinguishing Media

Do not use direct water stream since this may cause fire to spread.

Specific Hazards in Case of Fire

In case of fire, hazardous decomposition products may include sulphur oxides.

Fire-Fighting Procedures

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, especially if sprayed into containers of hot, burning liquid. Dispose of fire debris and contaminated extinguishing water in accordance with official regulations.

Special Protective Actions

Wear protective pressure self-contained breathing apparatus (SCBA) and full turnout gear.

SECTION 6) ACCIDENTAL RELEASE MEASURES

Emergency Procedure

Isolate hazard area and keep unnecessary people away. Remove all possible sources of ignition in the surrounding area. Notify authorities if any exposure to the general public or the environment occurs or is likely to occur.

Absorb spill with absorbent material or vacuum spill into polyethylene lined steel or plastic drums.

Do not touch or walk through spilled material.

If spilled material is cleaned up using a regulated solvent, the resulting waste mixture may be regulated.

Recommended Equipment

Positive pressure, full-facepiece self-contained breathing apparatus (SCBA), or positive pressure supplied air respirator with escape SCBA (NIOSH approved).

Personal Precautions

Avoid breathing vapor or mist. Avoid contact with skin, eye or clothing. Ensure adequate ventilation. Do not touch damaged containers or spilled materials unless wearing appropriate protective clothing.

Environmental Precautions

Stop spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems and natural waterways by using sand, earth, or other appropriate barriers.

Methods and Materials for Containment and Cleaning Up

Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Contaminated absorbent material may pose the same hazard as the spilled product.

SECTION 7) HANDLING AND STORAGE

General

Wash hands after use.

Do not get in eyes, on skin or on clothing.

Do not breathe vapors or mists.

Use good personal hygiene practices.

Eating, drinking and smoking in work areas is prohibited.

Remove contaminated clothing and protective equipment before entering eating areas.

Eyewash stations and showers should be available in areas where this material is used and stored.

Ventilation Requirements

Use only with adequate ventilation to control air contaminants to their exposure limits. The use of local ventilation is recommended to control emissions near the source.

Storage Room Requirements

Keep container(s) tightly closed and properly labeled. Store in cool, dry, well-ventilated areas away from heat, direct sunlight and strong oxidizers. Store in approved containers and protect against physical damage. Keep containers securely sealed when not in use. Indoor storage should meet OSHA standards and appropriate fire codes. Containers that have been opened must be carefully resealed to prevent leakage. Empty containers retain residue and may be dangerous.

Use non-sparking ventilation systems, approved explosion-proof equipment and intrinsically safe electrical systems in areas where this product is used and stored.

SECTION 8) EXPOSURE CONTROLS, PERSONAL PROTECTION

Eye Protection

Wear eye protection with side shields or goggles. Wear indirect-vent, impact and splash resistant goggles when working with liquids. If additional protection is needed for entire face, use in combination with a face shield.

Skin Protection

Use of gloves approved to relevant standards made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Use of an apron and over-boots of chemically impervious materials such as neoprene or nitrile rubber is recommended to avoid skin sensitization. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Launder soiled clothes or properly disposed of contaminated material, which cannot be decontaminated.

Respiratory Protection

If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker, a respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed. Check with respiratory protective equipment suppliers.

Appropriate Engineering Controls

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

SECTION 9) PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical Properties					
Density	6.26 lb/gal				
Specific Gravity	0.6 - 0.9				
Appearance	granular, white solid				
рН	5 - 9 @ 5 g/L				
Odor Threshold	N/A				
Odor Description	N/A				
Water Solubility	Complete				
Viscosity	N/A				
Vapor Pressure	Similar to water				
Vapor Density	N/A				
Freezing Point	<32 °F				
Boiling Point	>212 °F				
Evaporation Rate	N/A				
Flammability	Will not burn				

Redux-823 Page 3 of 5

SECTION 10) STABILITY AND REACTIVITY

Stability

Stable under normal storage and handling conditions.

Conditions To Avoid

Avoid heat, sparks, flame, high temperature and contact with incompatible materials.

Hazardous Reactions/Polymerization

Hazardous polymerization will not occur.

Incompatible Materials

Strong bases, acids, oxidizing and reducing agents.

Hazardous Decomposition Products

May produce carbon monoxide, carbon dioxide.

SECTION 11) TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

No Data Available

Acute Toxicity

Inhalation, Testing: Not expected to be toxic by inhalation.

Ingestion, Testing: LD50, Rat > 5,00 mg/kg Dermal, Testing: LD50, Rat > 5,000 mg/kg

Respiratory/Skin Sensitization

No Data Available

Serious Eye Damage/Irritation

No Data Available

Skin Corrosion/Irritation

No Data Available

Specific Target Organ Toxicity - Repeated Exposure

No Data Available

Specific Target Organ Toxicity - Single Exposure

No Data Available

SECTION 12) ECOLOGICAL INFORMATION

Acute Ecotoxicity

Danio Rerio: 96 hr LC50 >100 mg/l (OECD 203)

Fathead Minnow (pimephales promelas): 96hr LC50 >100 mg/l (OECD 203)

Daphnia Magna: 48hr EC50 >100 mg/l (OECD 202)

Scenedesmus Subspicatus: 72hr IC50 >100 mg/l (OECD 201)

Mobility in Soil

No data available.

Bio-accumulative Potential

Not bioaccumulating.

Persistence and Degradability

Not readily biodegradable.

Other Adverse Effect

No data available.

SECTION 13) DISPOSAL CONSIDERATIONS

Waste Disposal

Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws. Empty Containers retain product residue which may exhibit hazards of material, therefore do not pressurize, cut, glaze, weld or use for

any other purposes. Return drums to reclamation centers for proper cleaning and reuse.

SECTION 14) TRANSPORT INFORMATION

U.S. DOT Information

For all transportation accidents, call CHEMTREC at 800/424-9300. All spills and leaks of this material must be handled in accordance with local, state, and federal regulations.

DOT Shipping Designation:

Non-hazardous under 29-CFR 1910.1200. Water treatment compound

SECTION 15) REGULATORY INFORMATION

CAS	Chemical Name	% By Weight	Regulation List
No applicable CAS	No applicable chemical	-	-

SECTION 16) OTHER INFORMATION

Glossary

ACGIH- American Conference of Governmental Industrial Hygienists; ANSI- American National Standards Institute; Canadian TDGCanadian Transportation of Dangerous Goods; CAS- Chemical Abstract Service; Chemtrec- Chemical Transportation Emergency Center(US); CHIP- Chemical Hazard Information and Packaging; DSL- Domestic Substances List; EC- Equivalent Concentration; EH40 (UK)- HSE Guidance Note EH40 Occupational Exposure Limits; EPCRA- Emergency Planning and Community Right-To-Know Act; ESL Effects screening levels; HMIS- Hazardous Material Information Service; LC- Lethal Concentration; LD- Lethal Dose; NFPA- National Fire Protection Association; OEL- Occupational Exposure Limits; OSHA- Occupational Safety and Health Administration, US Department of Labor; PEL- Permissible Exposure Limit; SARA (Title III)- Superfund Amendments and Reauthorization Act; SARA 313- Superfund Amendments and Reauthorization Act, Section 313; SCBA- Self Contained Breathing Apparatus; STEL-Short Term Exposure Limit; TCEQ Texas Commission on Environmental Quality; TLV- Threshold Limit Value; TSCA- Toxic Substances Control Act Public Law 94-469; TWA Time Weighted Value; US DOT- US Department of Transportation; WHMIS- Workplace Hazardous Materials Information System.

Additional Information

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

Version 1.0:

Revision Date: Jan 25, 2018 First Edition.

DISCLAIMER

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist. The above information pertains to this product as currently formulated, and is based on the information available at this time. Addition of reducers or other additives to this product may substantially alter the composition and hazards of the product. Since conditions of use are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information.

Redux-823 Page 5 of 5

ATTACHMENT G LETTER FROM US FISH & WILDLIFE SERVICE

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: June 03, 2019

Consultation Code: 05E1NE00-2019-SLI-1868

Event Code: 05E1NE00-2019-E-04611

Project Name: GLX Project

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1868

Event Code: 05E1NE00-2019-E-04611

Project Name: GLX Project

Project Type: TRANSPORTATION

Project Description: Temporary discharge of treated water

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.405181877871556N71.09768741262369W

Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

ATTACHMENT H MASSACHUSETTS CULTURAL RESOURCES DATABASE SEARCH RESULTS

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Medford; Street Name: Mystic Ave; Resource Type(s): Area, Burial Ground, Building, Object, Structure;

Inv. No.	Property Name	Street	Town	Year	
MDF.1541	Blanchard, Eben - Bates, Walter Tenant House	11-13 Mystic Ave	Medford	r 1865	
MDF.571		29 Mystic Ave	Medford	c 1965	
MDF.34	Hall, Benjamin - Swan, Dr. Daniel House	41 Mystic Ave	Medford	1752	
MDF.578		45 Mystic Ave	Medford	c 1900	
MDF.584		67 Mystic Ave	Medford	c 1958	
MDF.585		71 Mystic Ave	Medford	c 1900	
MDF.587			73 Mystic Ave	Medford	c 1945
MDF.588			81 Mystic Ave	Medford	c 1945
MDF.590		93 Mystic Ave	Medford	c 1955	
MDF.591		101 Mystic Ave	Medford	c 1953	

Monday, June 3, 2019 Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Medford; Street Name: Mystic Valley;

Inv. No.	Property Name	Street	Town	Year
MDF.938	Mystic Valley Parkway - Nelson Circle	High St	Medford	r 1920
MDF.902	Lawrence, Gen. Bridge	Mystic Valley Pkwy	Medford	1933
MDF.920	Mystic Valley Parkway Bridge over Route 38	Mystic Valley Pkwy	Medford	1961
MDF.923	Mystic Valley Parkway - Armory Bridge	Mystic Valley Pkwy	Medford	1906
MDF.937	Mystic Valley Parkway - Mystic Lakes Segment	Mystic Valley Pkwy	Medford	1896
MDF.939	Mystic Valley Parkway Bridge over Mystic River	Mystic Valley Pkwy	Medford	1936
MDF.940	Mystic Valley Parkway - Central Segment	Mystic Valley Pkwy	Medford	c 1905
MDF.941	Mystic Valley Parkway Tree Canopy	Mystic Valley Pkwy	Medford	r 1920
MDF.408		1416 Mystic Valley Pkwy	Medford	c 1910
MDF.1155	Craddock Cove Condominums	2500 Mystic Valley Pkwy	Medford	1980

Monday, June 3, 2019 Page 1 of 1