

June 13, 2019

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-1) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Gateway Center Phase V Everett Avenue Chelsea, MA

LRT Reference # 2-1868

Dear Sir/Madam:

On behalf of Boston Environmental Corporation (BEC), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) for coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP) under EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI form is provided in **Appendix A.**

Site Information/Work Summary

The proposed scope of work includes dewatering during the installation of utilities on Everett Avenue. These utilities include a new sewer, storm drain, water main and electrical conduit with associated laterals, service connections and appurtenances.

Please refer to **Figure 1** for a Locus Map and an overview of the immediate area surrounding the site. The site is depicted in **Figure 2** along with the proposed treatment system/outfall locations.

Discharge and Receiving Surface Water Information

A summary of the analytical results and a copy of the laboratory analytical report are provided in **Appendix B**. Concentrations of total suspended solids (TSS), metals, ammonia, and SVOCs were detected in groundwater. To meet the applicable NPDES RGP standards, Source Water will undergo treatment Details of the water treatment system are provided below. Please refer to figure 3 for discharge location and path.

Treatment System Monitoring

During the first week of discharge, influent and effluent samples will be collected two (2) times: one (1) sample of the influent and one (1) sample of the effluent collected on the first day of the discharge; and one (1) sample of the influent and one (1) sample of the effluent collected on one additional non-consecutive day within the first week of discharge. If the treatment system is operating as designed and achieving the effluent limitations in this general permit, sampling of the influent and effluent shall be as follows, thereafter:

- 1) One (1) influent and one (1) effluent sample / Week for three (3) additional weeks; and
- 2) One (1) influent and one (1) effluent sample / Month for the remaining term of the permit.

Dewatering and Water Treatment System

Water from the excavation area will be routed to a water treatment system designed to reduce total suspended solids (TSS) and CVOCs prior to discharge. Please refer to **Figure 4** for a system schematic and **Attachment C** for individual cut sheets of system components.

The treatment system is capable of treating water up to 75 gpm and consists of one (1) vacuum tight 21,000-gallon frac tank, one (1) vacuum tight 10,000-gallon closed-top weir tank, a submersible pump and various filtration components.

Two chemical additions; LRT-E-50 Coagulant and LRT-800 Series Flocculant will be added to aid in the settling process. The coagulant will be injected into the influent stream prior to entering the frac tank for rapid mixing while the flocculant will be injected into the weir tanks for a slow mixing. In addition, an antifoam system consisting of Foamtrol-100 will be added to the influent stream prior to entering the frac tank to counteract the impact of the Biosolve and Posi Shell products which will allow the applied LRT coagulant and flocculant to perform as designed. The chemical is contained in either plastic drums and/or poly mix tanks and injected via chemical feed pumps. The dose rate is set by the pumps and adjusted as necessary by the treatment system operator based on visual clues through the water treatment process and/or by additional jar testing.

The dosing concentration for these chemicals typically ranges from 25-50 mg/L. The actual dosing concentration is based on visual observations in the field. It is important to note that although the dosing concentration is 25-50 ppm, the detected concentration in the carryover (post bag filter) is in the ppt range (about 6 orders of magnitude less than the dosing concentration). This is because nearly all the applied chemical becomes incorporated in the sludge and removed from the waste stream as a solid from the weir tank and as part of typical system O&M.

A vacuum extraction blower equipped with a 4.5 hp motor capable of producing up to 206 scfm and a vacuum up to 98" H2O is proposed to extract potential vapors from within the weir and frac tank. Potential off-gas will be treated with two (2) vapor phase vessels plumbed in series, each containing 200 pounds of virgin vapor phase carbon, and then discharged to the atmosphere through a vent stack.

From the weir tank, water will be pumped via a 3-inch submersible pump to one (1) single bag filter skid with three (3) bag filter vessels plumbed in parallel such that two bag filter vessels can operate while one remains in standby. During a bag filter changeout, two vessels are opened while one remains closed so that water treatment never needs to be shut down. Each bag filter housing includes isolation valves, sample ports, and pressure gauges on the influent and effluent piping so that it is clear when a bag filter changeout

is required. Each filter is rated for a maximum flow rate of 75 GPM and a maximum pressure of 125 pounds per square inch (PSI).

From the bag filters, water is discharged to two (2) carbon vessels each containing 1,000 pounds of virgin coconut shell liquid phase carbon. Each vessel is rated for a maximum flow rate of 75 gpm and 75 PSI and includes isolation valves, sample ports and pressure gauges on the influent and effluent piping so that it is clear when backwashing is required. Prior to discharge to the approved NPDES discharge location depicted in figure 4, treated water will be monitored with a flow meter/totalizer.

Part F of the RGP NOI requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- 1. The addition of pH conditioners, flocculant, coagulant and antifoam will not add any pollutants in concentrations which exceed permit effluent limitations;
- 2. The use of these chemicals will not result in the exceedance of any applicable water quality standard; and
- 3. These chemicals will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit.

Safety Data Sheets for the chemical additions are provided in **Attachment D**.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species or Estimated Habitats of Rare Wildlife. There are no historic places documented within the work area. Therefore, the effluent water that will be discharged within a catch basin within that portion of the site is not anticipated to affect this historical property. Refer to **Appendix E** for database maps and information.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of GTA and the City of Chelsea, we are requesting coverage under the NPDES RGP for the discharge of treated construction dewatering effluent during excavation activities to Mystic River.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, GTA/BEC is the operator that has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Kim Gravelle

Kim Gravelle, PG Senior Project Manager Paul Lockwood

Paul Lockwood President

Encl: Figure 1 – Locus Plan

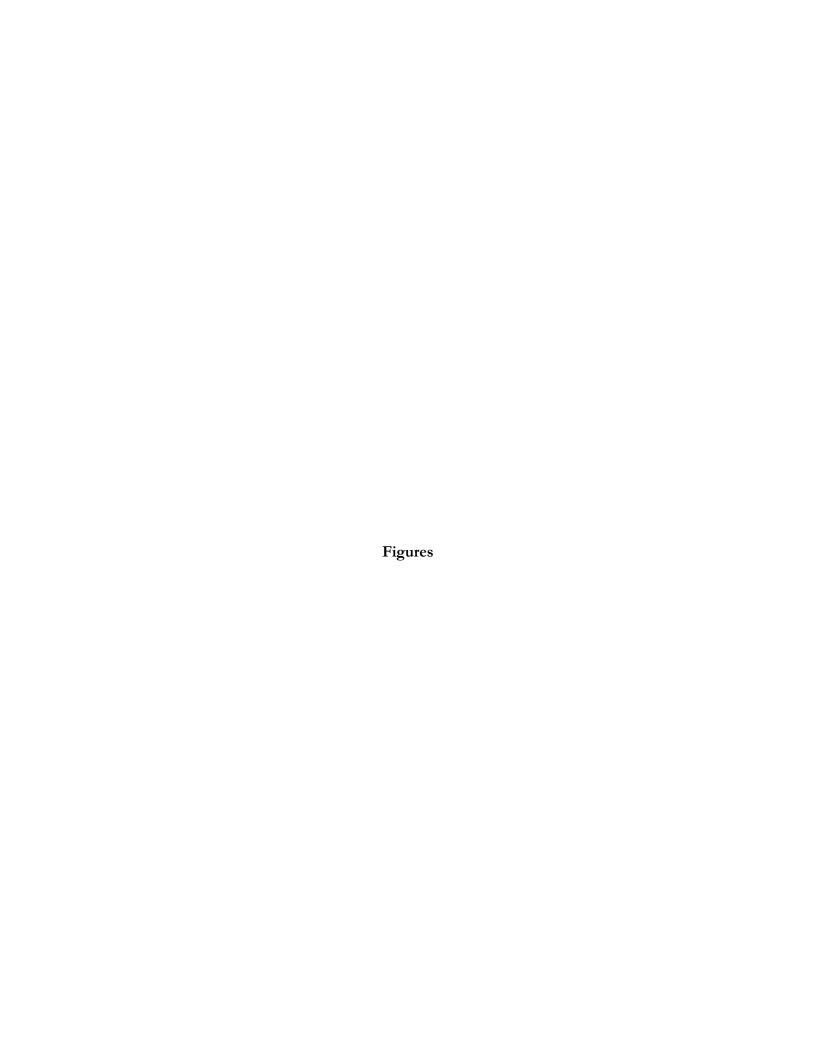
Figure 2 – Site Layout

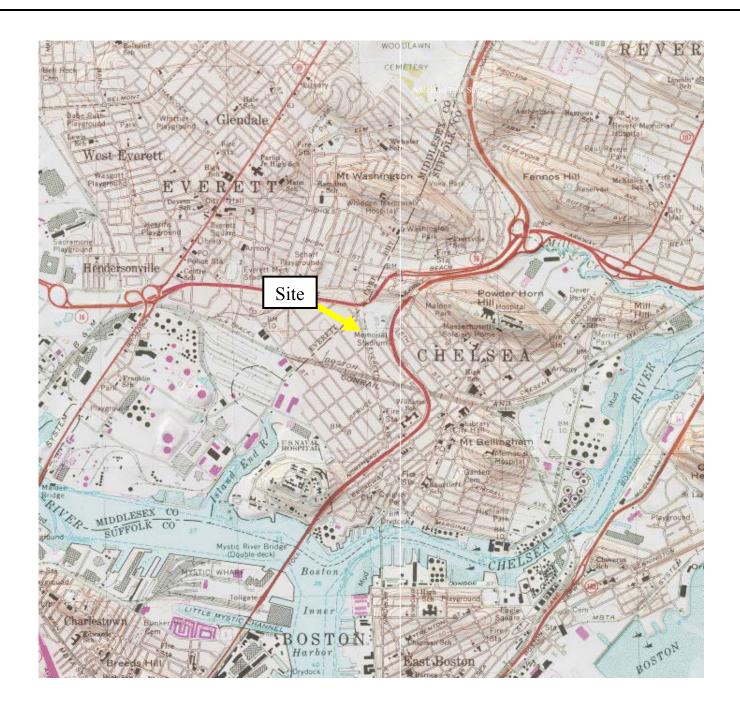
Figures 3 – Proposed Discharge Locations

Figures 4 – Water Treatment System Schematics

Appendix A – NOI Form Appendix B – Laboratory Data

Appendix C – Cutsheets


Appendix D – Safety Data Sheets (SDS) Appendix D – Supplemental Information

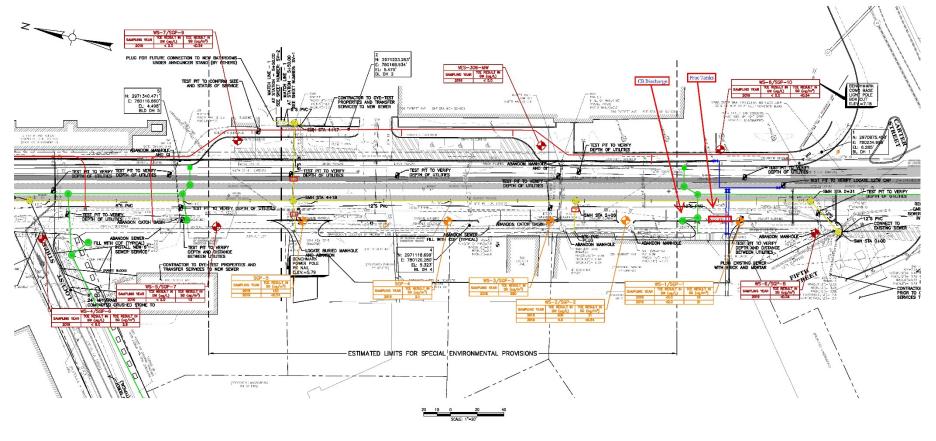

Appendix D Supplemental Infor

cc: Greg Antonelli, GTA Co., Inc.

Mike Toomey, Boston Environmental Company

Alex Train, City of Chelsea

Source: Base Map from MassGIS - OLIVER: Boston North - Massachusetts


Notes

1. Figure is not to scale.

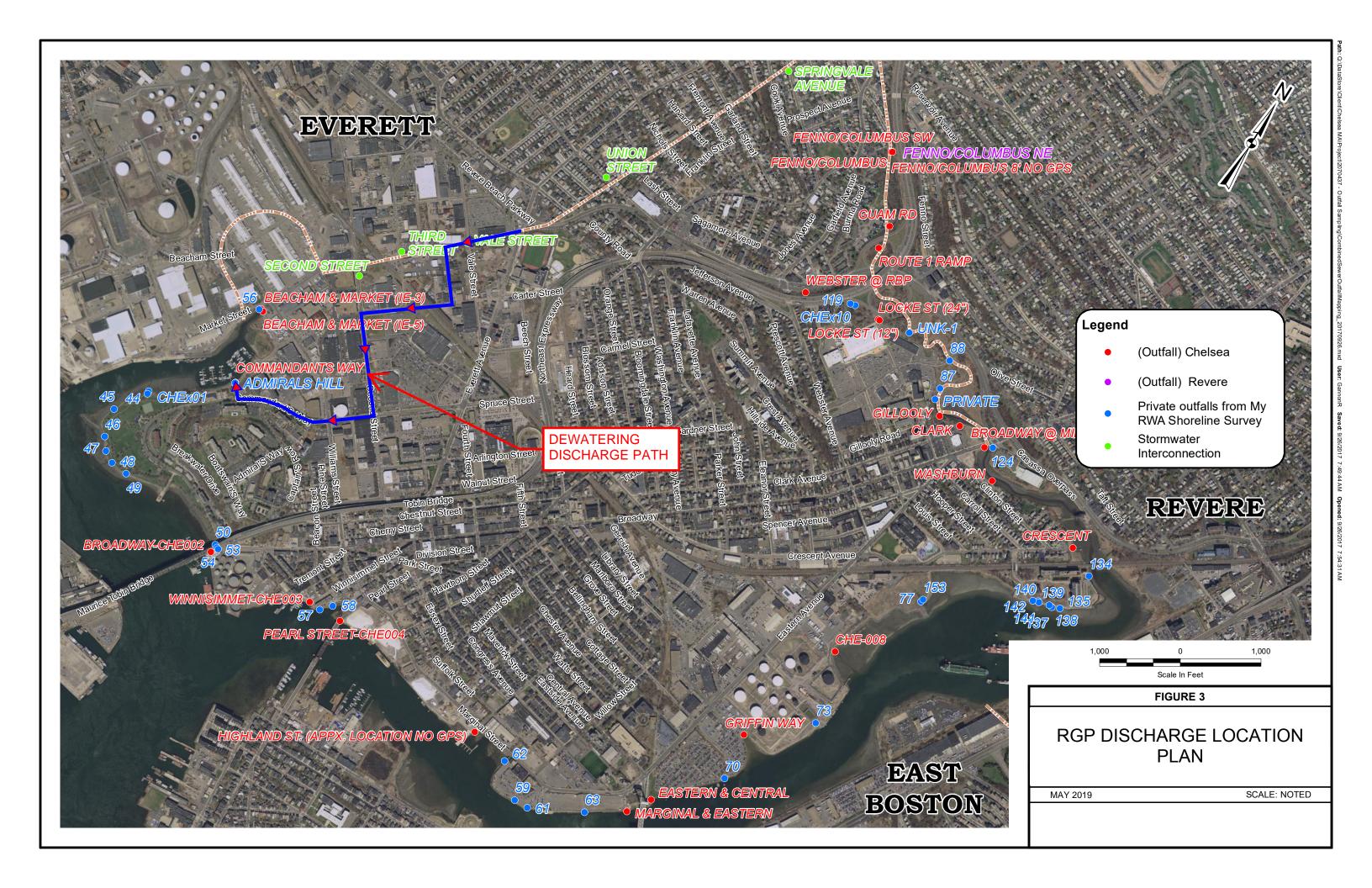
89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

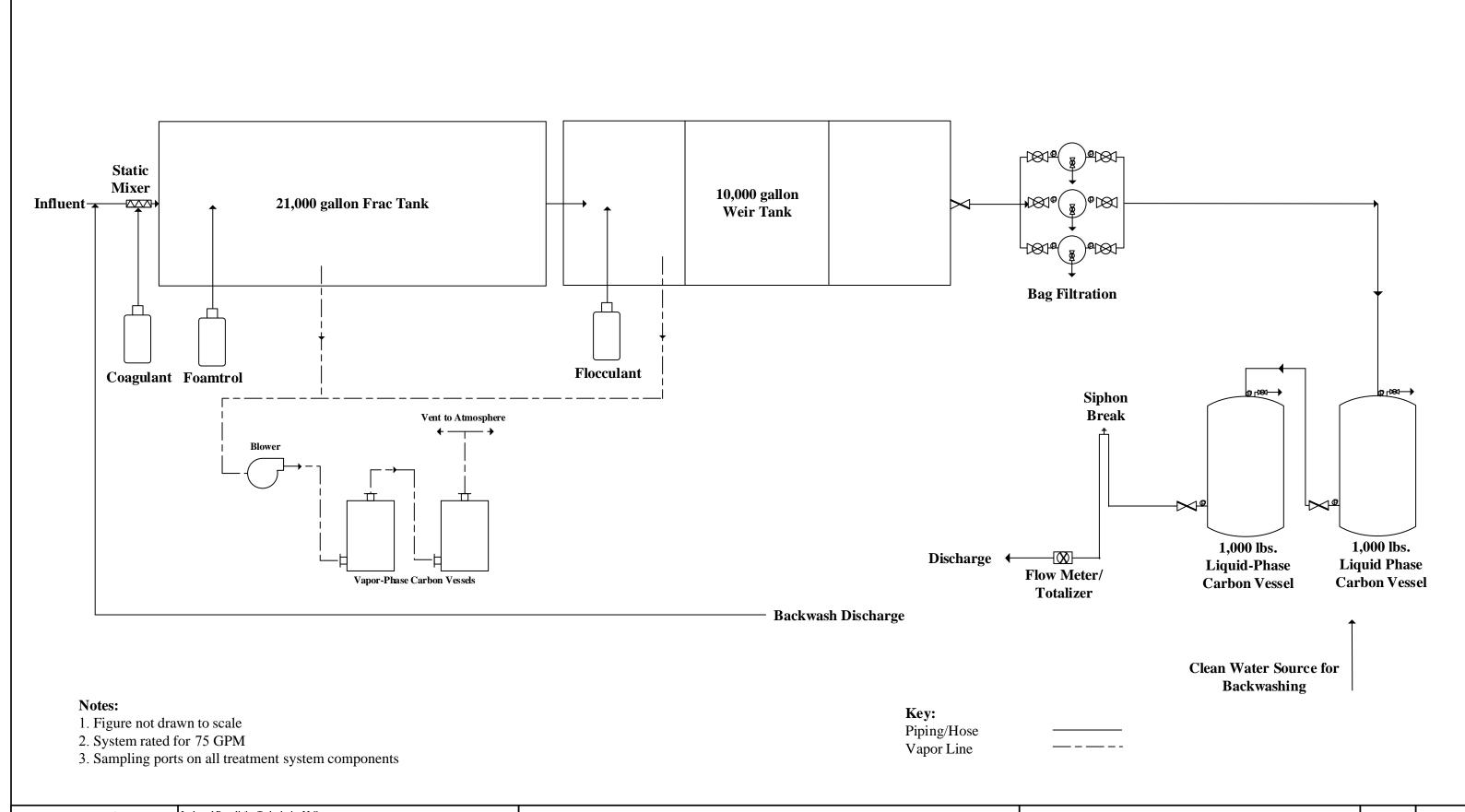
Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net **Figure 1 – Locus Plan** Gateway Center Everett Avenue Chelsea, Massachusetts

Source: SEP-1 – Special Environmental Provision Plan 1 of 1 – Weston & Sampson, dated August 15, 2018

Notes

1. Figure is not to scale.


89 Crawford Street


Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2 – Site Plan Gateway Center

Everett Avenue

Chelsea, Massachusetts

Lockwood Remediation Technologies LLC Lockwood Remediation Technologies, LLC
89 Crawford Street
Leominster, MA 01453
Office: 774-450-7177

DESIGNED BY: LRT

DRAWN BY: B.A.W.

DATE:

REVISION:

Water Treatment System Schematic

Water Treatment System

Gateway Center
Everett Avenue
Chelsea, Massachusetts

Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 300 Everett Avenue					
Gateway Center Phase V	Street:					
	City: Chelsea		State: MA	^{Zip:} 02150		
2. Site owner City of Chelsea	Contact Person: Thomas G. Ambrosino					
City of Chelsea	Telephone:	Email:				
	Mailing address:					
	Street:					
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private Other; if so, specify: City	City: Chelsea		State: MA	Zip: 02150		
3. Site operator, if different than owner	Contact Person: Greg Antonelli					
GTA Co. Inc.	Telephone: Email:					
	Mailing address:					
	Street: 140 Tremont Street					
	City: Everett		State: MA	Zip: 02149		
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all the	at apply):			
	■ MA Chapter 21e; list RTN(s):	□ CERCL				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	URAM RTN 3-35018 □ NH Groundwater Management Permit or	□ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404				
		□ CWAS	ection 404			

■ Yes □ No

B. Receiving water information:						
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classit	ication of receiving water(s):			
Mystic River	MA71-03	SB(CSC	O)			
Receiving water is (check any that apply): □ Outstan	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic	River			
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: ■ Yes □ No				
Are sensitive receptors present near the site? (check If yes, specify:	one): □ Yes ■ No					
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.	` '	. //	1 ,			
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.					
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s			1			
6. Has the operator received confirmation from the a If yes, indicate date confirmation received: Aprill 22, 7. Has the operator attached a summary of receiving (check one): ■ Yes □ No	2019 from Catherine Vakalopoulos, MassDEP	, , ,	±			
C. Source water information:						
1. Source water(s) is (check any that apply):						
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:			
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other				
in accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP is accordance with the instruction in Appendix VIII? (check one): than the receiving water; if so, spe						

 \square Yes \square No

2. Source water contaminants: TSS and VOCs				
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance			
the RGP? (check one): \square Yes \square No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No			
3. Has the source water been previously chlorinated or otherwise contains resid	ual chlorine? (check one): □ Yes ■ No			
D. Discharge information				
1. The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	discharge □ New source			
Outfall(s): Commandant's Way	Outfall location(s): (Latitude, Longitude) Latitude (Y): 42° 23' 30.75" N Longitude (X): 71° 2' 56.88" W			
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water Indirect discharge, if so, specify:			
Treated effluent will be discharged to the City of Chelsea's storm water ☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	catch basins and will eventually discharge to the Mystic river via Island End River. er system:			
Has notification been provided to the owner of this system? (check one): ■ Ye	s □ No			
Has the operator has received permission from the owner to use such system fo obtaining permission:	r discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for			
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): □ Yes ■ No			
Provide the expected start and end dates of discharge(s) (month/year): June 20	019 to July 2019			
Indicate if the discharge is expected to occur over a duration of: ■ less than 12 months □ 12 months or more □ is an emergency discharge				
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No			

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 				
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

Known Kno		Known		Tank		Influent		Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1	SM19-22	75	121	121	Report mg/L	
Chloride		✓	1	EPA 300.0	100000	2,300,000	2,300,000	Report µg/l	
Total Residual Chlorine		✓	1	SM21-22 +	20	<20	<20	0.2 mg/L	7.5 ug/L
Total Suspended Solids		✓	1	SM21-22 +		2,800	2,800	30 mg/L	
Antimony	✓		1	EPA 200.8	1.0	<1.0	<1.0	206 μg/L	
Arsenic		✓	1	EPA 200.8	1.0	<1.0	<1.0	104 μg/L	
Cadmium	✓		1	EPA 200.8	0.2	< 0.2	< 0.2	10.2 μg/L	
Chromium III	✓		1	EPA 200.8	10	<10	<10	323 μg/L	
Chromium VI	✓		1	SM21-22 +	4.0	0.0	0.0	323 μg/L	
Copper		✓	1	EPA 200.8	1.0	6.4	6.4	242 μg/L	3.7 ug/L
Iron		✓	1	EPA 200.7	50	400	400	5,000 μg/L	
Lead		✓	1	EPA 200.8	0.5	1.9	1.9	160 μg/L	
Mercury	✓		1	EPA 245.1	0.1	<0.1	<0.1	0.739 μg/L	
Nickel		✓	1	EPA 200.8	5.0	<5	<5	1,450 μg/L	
Selenium	✓		1	EPA 200.8	5.0	2.2	2.2	235.8 μg/L	
Silver	✓		1	EPA 200.8	0.2	< 0.2	< 0.2	35.1 μg/L	
Zinc		✓	1	EPA 200.8		22	22	420 μg/L	
Cyanide	✓		1	SM21-22	.001	< 0.001	< 0.001	178 mg/L	
B. Non-Halogenated VOC	Cs .							-	
Total BTEX	✓		1		2.78	<2.78	<2.78	100 μg/L	
Benzene	✓		1		0.36	< 0.36	< 0.36	5.0 μg/L	
1,4 Dioxane	✓		1	EPA 624.1	45	<45	<45	200 μg/L	
Acetone	✓		1	EPA 624.1	7.58	<7.58	<7.58	7.97 mg/L	
Phenol	✓		1	EPA 420.1	0.05	< 0.05	< 0.05	1,080 μg/L	

	Known	Known		_		In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1	EPA 624.1	.022	< 0.22	< 0.22	4.4 μg/L	
1,2 Dichlorobenzene	✓		1	EPA 624.1	.032	< 0.32	< 0.32	600 μg/L	
1,3 Dichlorobenzene	✓		1	EPA 624.1	0.24	< 0.24	< 0.24	320 μg/L	
1,4 Dichlorobenzene	✓		1	EPA 624.1	0.26	< 0.26	<.26	5.0 μg/L	
Total dichlorobenzene	✓		1	N/A	N/A	N/A	N/A	763 μg/L in NH	
1,1 Dichloroethane	✓		1	EPA 624.1	0.32	9.0	9.0	70 μg/L	
1,2 Dichloroethane	✓		1	EPA 624.1	0.82	< 0.82	< 0.82	5.0 μg/L	
1,1 Dichloroethylene	✓		1	EPA 624.1	0.64	< 0.64	< 0.64	3.2 μg/L	
Ethylene Dibromide	✓		1	EPA 624.1	.02	< 0.02	< 0.02	0.05 μg/L	
Methylene Chloride	✓		1	EPA 624.1	0.68	< 0.68	< 0.68	4.6 μg/L	
1,1,1 Trichloroethane		✓	1	EPA 624.1	0.4	4.94	4.94	200 μg/L	
1,1,2 Trichloroethane	✓		1	EPA 624.1	0.32	<4.0	<4.0	5.0 μg/L	
Trichloroethylene		✓	1	EPA 624.1	0.42	4.9	4.9	5.0 μg/L	
Tetrachloroethylene	✓		1	EPA 624.1	0.36	< 0.36	< 0.36	5.0 μg/L	
cis-1,2 Dichloroethylene		✓	1	EPA 624.1	0.26	104	104	70 μg/L	
Vinyl Chloride		✓	1	EPA 624.1	0.45	1.36	1.36	2.0 μg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates	✓		1	EPA 625.1	51	<51	<51	190 μg/L	
Diethylhexyl phthalate	✓		1	EPA 625.1	1.0	<1.0	<1.0	101 μg/L	
Total Group I PAHs		✓	1	EPA 625.1	1.0	0.068	0.068	1.0 μg/L	
Benzo(a)anthracene	✓		1	EPA 625.1	0.05	< 0.05	< 0.05		
Benzo(a)pyrene	✓		1	EPA 625.1	0.10	< 0.10	< 0.10]	
Benzo(b)fluoranthene		✓	1	EPA 625.1	.05	0.068	0.068] [
Benzo(k)fluoranthene	✓		1	EPA 625.1	0.2	< 0.20	< 0.20	As Total PAHs	
Chrysene	✓		1	EPA 625.1	0.2	< 0.20	< 0.20] [
Dibenzo(a,h)anthracene	✓		1	EPA 625.1	0.2	< 0.20	< 0.20] [
Indeno(1,2,3-cd)pyrene	✓		1	EPA 625.1	0.2	< 0.20	< 0.20]	

	Known	Known				Influent Efflue		Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	1	SW-846	4.85	0.1	0.1	100 μg/L	
Naphthalene	✓		1	SW-846	1.0	<1.0	<1.0	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1	EPA 625.1	.5864	< 0.5864	< 0.5864	0.000064 μg/L	
Pentachlorophenol	√		1	EPA 625.1	1.0	<1.0	<1.0	1.0 μg/L	
F. Fuels Parameters	-		•			•			
Total Petroleum Hydrocarbons	✓		1	EPA 624.1	1400	<1400	<1400	5.0 mg/L	
Ethanol	✓		1	EPA 624.1	0.0211	< 0.0211	< 0.0211	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	EPA 624.1	4.0	<4.0	<4.0	70 μg/L	
tert-Butyl Alcohol	✓		1	EPA 624.1	8.34	<8.34	<8.34	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1	EPA 624.1	0.28	<0.28	<0.28	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	C50, addition	nal pollutan	ts present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange ■ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Pumped dewatering fluids will be directed and contained in at least two (2) vapor-tight frac tanks and treated prior to discharge to the City's storm drain system. Frac tanks in series with the second liquid effluent port piped, manifolded and valved to a pump that discharges through two (2) bag filter assemblies plumbed in parallel and valved for independent or combined use. Two chemical additions; LRT-E-50 Coagulant and LRT-800 Series Flocculant will be added to aid in the settling process. The c injected into the influent stream prior to entering the frac tank for rapid mixing while the flocculant will be injected into the weir tanks for a slow mixing. An antifoam sys Identify each major treatment component (check any that apply):	coagulant will be
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter	
■ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	7
Indicate the most limiting component: Liquid-phase GAC vessels	
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	10
Provide the proposed maximum effluent flow in gpm.	75
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides ■ Antifoams ■ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
N/A
2. Provide the following information for each chemical/additive, using attachments, if necessary:
LRT E50 Coagulant, LRT 823 Flocculant, Foamtrol 100 - please see attached cover letter and SDS sheets.
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes 🗆 No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

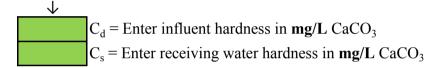
	□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
	listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
	2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No Please also note the following: 1) No discharging to any restricted rivers. 2) The discharge is to a marine Environment. 3) There are no species listed, the jurisdiction of the NMFS is identical to the EPA's species distribution explained in the consultation completed for the RGP. 4) Have not had any direct consultation with NMFS.
	Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.
•	H. National Historic Preservation Act eligibility determination
	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
	■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
	☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
	□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
	2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No
	Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
	other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): 🗖 Yes 🔳 No
	I. Supplemental information
	Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
	Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
	Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. (crui	icalion	requir	ement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP will be developed and maintained that meets the requirements of this permit. The BMPP will be BMPP certification statement: implemented on-site prior to initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes # No [] Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Check one: Yes □ No ■ NA □ Permission obtained from the owner of a private or municipal storm sewer system. If such system is used for site discharges. If yes, attach additional conditions, if no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional/discharge permit(s). Additional discharge permit is (check one): ☐ RGP ☐/DGP ☐/CGP ☐ MSGP/☐ Individual/NPDES permit Check one: Yes A No A NA M Other; if so, specify: Signature: Datc: June 14, 2019 Print Name and Title: Greg Antonelli, President CHELSEA, MA

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.108	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
	pH in Standard Units
	Temperature in °C
0.121	Ammonia in mg /L
0	Hardness in mg/L CaCO ₃
	Salinity in ppt
0	Antimony in μg/L
3.3	Arsenic in μg /L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
16	Copper in µg/L
130	Iron in μg/L
12	Lead in μg/L
0	Mercury in μg /L
5.1	Nickel in μg/L
4	Selenium in μg /L
0	Silver in μg/L
41	Zinc in μg/L

Enter **influent** concentrations in the units specified

\downarrow	_
0	TRC in µg/L
1.68	Ammonia in mg/L
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg /L
0	Chromium III in μg/L
0	Chromium VI in μg/L
6.4	Copper in μg/L
40	Iron in μg/L
1.9	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
2.2	Selenium in μg/L
0	Silver in μg/L
22	Zinc in μg/L
0	Cyanide in μg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in μg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor		0.0						
	A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown		
	Ammonia	Report	mg/L					
	Chloride	Report	μg/L					
	Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L	
	Total Suspended Solids	30	mg/L					
	Antimony	206	μg/L	640	μg/L			
	Arsenic	104	μg/L	36	μg/L			
	Cadmium	10.2	μg/L	8.9	μg/L			
	Chromium III	323	μg/L	100.0	μg/L			
	Chromium VI	323	μg/L	50	μg/L			
	Copper	242		3.7				
	Iron		μg/L		μg/L			
		5000	μg/L	 0 <i>5</i>	μg/L			
	Lead	160	μg/L	8.5	μg/L			
	Mercury	0.739	μg/L	1.11	μg/L			
	Nickel	1450	μg/L	8.3	μg/L			
	Selenium	235.8	μg/L	71	μg/L			
	Silver	35.1	μg/L	2.2	μg/L			
	Zinc	420	μg/L	86	μg/L			
	Cyanide	178	mg/L	1.0	$\mu g/L$		μg/L	
	B. Non-Halogenated VOCs							
	Total BTEX	100	μg/L					
	Benzene	5.0	μg/L					
	1,4 Dioxane Acetone	200 7.97	μg/L					
	Phenol	1,080	mg/L μg/L	300	μg/L			
	C. Halogenated VOCs	1,000	μg/L	300	μg/L			
	Carbon Tetrachloride	4.4		1.6	μg/L			
	1,2 Dichlorobenzene	600	μg/L		10			
	1,3 Dichlorobenzene	320	μg/L					
	1,4 Dichlorobenzene	5.0	$\mu g/L$					
	Total dichlorobenzene		μg/L					
	1,1 Dichloroethane	70	μg/L					
	1,2 Dichloroethane	5.0	μg/L					
	1,1 Dichloroethylene Ethylene Dibromide	3.2 0.05	μg/L					
	Methylene Chloride	4.6	μg/L μg/L					
	1,1,1 Trichloroethane	200	μg/L μg/L					
	1,1,2 Trichloroethane	5.0	μg/L					
	Trichloroethylene	5.0	μg/L					
	Tetrachloroethylene	5.0	μg/L	3.3	μg/L			
	cis-1,2 Dichloroethylene	70	$\mu g/L$					
	Vinyl Chloride	2.0	μg/L					

D. Non-Halogenated SVOCs

Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

Appendix B

Laboratory Data

Table 4 RGP Sample Analytical Results MassWorks Phase V Chelsea, MA

		Reportable Concentrations (RCs) RGP Concentrations		centrations	SAMPLING LOCATION		
Parameter	Units	RCGW-2	TBEL	WQBEL	IER OUTFALL 3/21/2019	WS-2 3/20/2019	
Inorganics					0/21/2010	0/20/2010	
AMMONIA AS N	mg/L	10	~	~	0.121	1.68	
CHLORINE	μg/L	~	~	~	10	2.3	
CHLORINE, RESIDUAL	μg/L	~	200	7.5	0.00003	<0.020	
TOTAL SUSPENDED SOLIDS	mg/L	~	30	30	46	2.8	
ANTIMONY	μg/L "	8000	206	640	<1.0	<1.0	
ARSENIC	μg/L	900	104	36	3.3	<1.0	
CADMIUM	μg/L	4 300	10.2	8.8 ~	<0.20 <10	<0.20	
CHROMIUM CHROMIUM III	μg/L	0.6	0.323	~ 0.1	<10 0	<10 0	
CHROMIUM VI	mg/L mg/L	0.8	0.323	0.05	<0.0040	<0.0040	
COPPER	μg/L	100000	242	3.1	16	6.4	
IRON	mg/L	~	5	~	0.13	0.4	
LEAD	μg/L	10	160	8.1	12	1.9	
MERCURY	mg/L	0.02	0.000739	0.00094	<0.00010	<0.00010	
NICKEL	μg/L	200	1450	8.2	5.1	<5.0	
SELENIUM	μg/L	100	235.8	71	4	2.2	
SILVER	μg/L	7	35.1	1.9	<0.20	<0.20	
ZINC	μg/L	900	420	81	41	22	
CYANIDE	mg/L	0.03	178	0.001	<0.001	<0.001	
Non-Halogenated Volatile Organic Carbons (VOCs)							
TOTAL BTEX	μg/L	~	100	100	<1.39	<2.78	
BENZENE	μg/L	1000	5	5	<0.180	<0.360	
1,4-DIOXANE	μg/L	6000	200	200	<22.5	<45.0	
ACETONE	μg/L	50000	7.97	7.97	<3.79	<7.58	
PHENOL	mg/L	2	1.08	0.3	<0.050	<0.050	
Halogenated Volatile Organic Carbons (VOCs)							
CARBON TETRACHLORIDE	μg/L	2	4.4	1.6	<0.110	<0.220	
1,2-DICHLOROBENZENE	μg/L	2000	600	600	<0.160	< 0.320	
1,3-DICHLOROBENZENE	μg/L	6000	320	320	<0.120	<0.240	
1,4-DICHLOROBENZENE	μg/L	60	5	5	<0.130	<0.260	
TOTAL DICHLOROBENZENE		~	~	~			
1,1-DICHLOROETHANE	μg/L "	2000	70	70	<0.160	9	
1,2-DICHLOROETHANE	μg/L	5	5	5	<0.410	<0.820	
1,1-DICHLOROETHYLENE ETHYLENE DIBROMIDE / 1,2-DIBROMOETHANE (EDB)	μg/L	80 2	3.2 0.05	3.2 0.05	<0.320 <0.020	<0.640 <0.020	
METHYLENE CHLORIDE	μg/L μg/L	2000	4.6	4.6	<0.340	<0.680	
1,1,1-TRICHLOROETHANE	μg/L	4000	200	200	<0.200	4.94	
1,1,2-TRICHLOROETHANE	μg/L	900	5	5	<0.160	<0.320	
TRICHLOROETHYLENE	μg/L	5	5	5	<0.240	4.9	
TETRACHLOROETHYLENE	μg/L	50	5	3.3	<0.180	< 0.360	
CIS-1,2-DICHLOROETHYLENE	μg/L	20	70	70	<0.130	104	
VINYL CHLORIDE	μg/L	2	2	2	<0.450	1.36	
Non-Halogenated Semi-Volatile Organic Carbons							
(SVOCs)							
TOTAL PHTHALATES		~	190	3.4	<51	<51	
DIETHYLHEXYL PHTHALATE / BIS (2-	μg/L	50000	101	2.2	<1.0	<1.0	
ETHYLHEXYL)PHTHALATE (SIM)	10						
TOTAL GROUP I POLYCYCLIC AROMATIC HYDROCARBONS	μg/L	~	1	~	0.068	<1	
BENZO(A)ANTHRACENE (SIM)	μg/L	1000	~	0.0038	<0.050	<0.050	
BENZO(A)PYRENE (SIM)	μg/L μg/L	500	~	0.0038	<0.00	<0.00	
BENZO(B)FLUORANTHENE (SIM)	μg/L	400	~	0.0038	0.068	<0.10	
BENZO(K)FLUORANTHENE (SIM)	μg/L	1	~	0.0038	<0.20	<0.20	
CHRYSENE (SIM)	μg/L	70	~	0.0038	<0.20	<0.20	
DIBENZ(A,H)ANTHRACENE (SIM)	μg/L	40	~	0.0038	<0.20	<0.20	
INDENO(1,2,3-CD)PYRENE (SIM)	μg/L	100	~	0.0038	<0.20	<0.20	
TOTAL GROUP II POLYCYCLIC AROMATIC	-	~	100	100	0.1	<4.85	
HYDROCARBONS	μg/L 						
NAPHTHALENE (SIM)	μg/L	700	20	20	<1.0	<1.0	
Halogenated Semi-Volatile Organic Carbons (SVOCs)							
TOTAL POLYCHLORINATED BIPHENYLS (PCBs)	μg/L	5	0.000064	0.000064	<0.5836	<0.5864	
PENTACHLOROPHENOL (SIM)	μg/L	200	1	1	<1.0	<1.0	
Fuel Parameters							
TOTAL PETROLEUM HYDROCARBONS / SILICA GEL	mg/L	5	5	5	<1.6	<1.4	
TREATED HEM (SGT-HEM)	_	10000	~	~	-0.010F	ZO 0211	
ETHANOL METHYL TERT-BUTYL ETHER (MTBE)	μg/L μg/L	10000 5000	~ 70	~ 20	<0.0105 <2.00	<0.0211 <4.00	
TERT-BUTYL ALCOHOL (TBA)	μg/L μg/L	10000	70 120	20 120	<2.00 <4.17	<8.34	
TERT-AMYL METHYL ETHER (TAME)	μg/L μg/L	~	90	90	<0.140	<0.280	
PCBs	15.						
PCBs PCB 1016	μg/L	5	~	~	<0.0889	<0.0893	
PCB 1221	μg/L μg/L	5	~	~	<0.0778	<0.0782	
PCB 1232	μg/L	5	~	~	<0.0961	<0.0966	
PCB 1242	μg/L	5	~	~	<0.0836	<0.0840	
PCB 1248	μg/L	5	~	~	<0.0918	<0.0922	
PCB 1254	μg/L	5	~	~	<0.0507	<0.0510	
PCB 1260	μg/L	5	~	~	<0.0947	<0.0951	

Table 4 **RGP Sample Analytical Results** MassWorks Phase V Chelsea, MA

		Reportable Concentrations (RCs)		entrations	SAMPLING LOCATION	
Parameter	Units	RCGW-2	TBEL	WQBEL	IER OUTFALL 3/21/2019	WS-2 3/20/2019
VOCs (μg/L)						
BROMOBENZENE	μg/L	10000	~	~	NT	NT
BROMOCHLOROMETHANE	μg/L	~	~	~	NT	NT
BROMODICHLOROMETHANE	μg/L	20	~	~	NT	NT
BROMOFORM	μg/L	700	~	~	NT	NT
BROMOMETHANE	μg/L	7	~	~	NT	NT
2-BUTANONE (MEK)	μg/L	50000	~	~	NT	NT
N-BUTYLBENZENE	μg/L	~	~	~	NT	NT
SEC-BUTYLBENZENE	μg/L	~	~	~	NT	NT
TERT-BUTYLBENZENE	μg/L	10000	~	~	NT	NT
TERT-BUTYL ETHYL ETHER (TBEE)	μg/L	~	~	~	NT	NT
CARBON DISULFIDE	μg/L "	10000	~	~	NT	NT
CHLOROBENZENE	μg/L	200	~	~	NT	NT
CHLORODIBROMOMETHANE	μg/L	20	~	~	NT	NT
CHLOROETHANE	μg/L	10000	~	~	NT	NT
CHLOROFORM	μg/L	50	~	~	NT	NT
CHLOROMETHANE	μg/L	10000	~ ~	~ ~	NT NT	NT NT
2-CHLOROTOLUENE	μg/L	10000 ~	~		NT	NT
4-CHLOROTOLUENE	μg/L		~ ~	~ ~	NT NT	NT NT
1,2-DIBROMO-3-CHLOROPROPANE (DBCP) DIBROMOMETHANE	μg/L	1000 50000	~ ~	~ ~	NT NT	NT NT
DICHLORODIFLUOROMETHANE (FREON 12)	μg/L	100000	~	~	NT NT	NT NT
`` '	μg/L	80	~		NT NT	NT NT
TRANS-1,2-DICHLOROETHYLENE 1.2-DICHLOROPROPANE	μg/L	ου 3	~ ~	~ ~	NT NT	NT
,	μg/L	_	~ ~	~ ~	NT NT	NT NT
1,3-DICHLOROPROPANE 2,2-DICHLOROPROPANE	μg/L	50000	~ ~	~ ~	NT NT	NT
1.1-DICHLOROPROPENE	μg/L	~	~	~	NT NT	NT
CIS-1.3-DICHLOROPROPENE	μg/L μg/L	5	~ ~	~	NT NT	NT
TRANS-1,3-DICHLOROPROPENE	μg/L	5	~	~	NT	NT NT
DIETHYL ETHER	μg/L	10000	~	~	NT	NT NT
DIISOPROPYL ETHER (DIPE)	μg/L	10000	~	~	NT	NT
ETHYLBENZENE	μg/L	5000	~	~	<0.130	<0.260
HEXACHLOROBUTADIENE	μg/L	50	~	~	NT	NT
2-HEXANONE (MBK)	μg/L	10000	~	~	NT	NT
ISOPROPYLBENZENE (CUMENE)	μg/L	100000	~	~	NT	NT
P-ISOPROPYLTOLUENE (P-CYMENE)	μg/L	10000	~	~	NT	NT
4-METHYL-2-PENTANONE (MIBK)	μg/L	50000	~	~	NT	NT
NAPHTHALENE	μg/L	700	20	20	NT	NT
N-PROPYLBENZENE	μg/L	10000	~	~	NT	NT
STYRENE	μg/L	100	~	~	NT	NT
1,1,1,2-TETRACHLOROETHANE	μg/L	10	~	~	NT	NT
1,1,2,2-TETRACHLOROETHANE	μg/L	9	~	~	NT	NT
TETRAHYDROFURAN	μg/L	50000	~	~	NT	NT
TOLUENE	μg/L	40000	~	~	<0.140	<0.280
1,2,3-TRICHLOROBENZENE	μg/L	~	~	~	NT	NT
1,2,4-TRICHLOROBENZENE	μg/L	200	~	~	NT	NT
TRICHLOROFLUOROMETHANE (FREON 11)	μg/L	100000	~	~	NT	NT
1,2,3-TRICHLOROPROPANE	μg/L	10000	~	~	NT	NT
1,2,4-TRIMETHYLBENZENE	μg/L	100000	~	~	NT	NT
1,3,5-TRIMETHYLBENZENE	μg/L	1000	~	~	NT	NT
M+P XYLENE	μg/L	~	~	~	<0.300	<0.600
O-XYLENE	μg/L	~	~	~	<0.170	<0.340
TOTAL XYLENES	μg/L	3000	~	~	<0.470	<0.940
SVOCs (µg/L)			~	~		
ACENAPHTHENE (SIM)	μg/L	10000	~	~	<0.30	<0.30
ACENAPHTHYLENE (SIM)	μg/L "	40	~	~	<0.30	<0.30
ANTHRACENE (SIM)	μg/L	30	~	~	<0.20	<0.20
BENZO(G,H,I)PERYLENE (SIM)	μg/L	20	~	~	< 0.50	< 0.50
FLUORANTHENE (SIM)	μg/L	200	~	~	<0.50	< 0.50
FLUORENE (SIM)	μg/L	40 10000	~	~	<1.0	<1.0
PHENANTHRENE (SIM)	μg/L	10000	~	~	0.1	<0.050
PYRENE (SIM)	μg/L	20	~	~	<1.0	<1.0
BUTYLBENZYLPHTHALATE	μg/L	10000	~	~	<10.0	<10.0
DI-N-BUTYLPHTHALATE	μg/L	50000	~	~	<10.0	<10.0
DIETHYLPHTHALATE	μg/L	9000	~ ~	~ ~	<10.0	<10.0
DIMETHYLPHTHALATE DI-N-OCTYLPHTHALATE	μg/L	50000 100000	~ ~	~ ~	<10.0 <10.0	<10.0 <10.0
	μg/L	100000				

 $\label{thm:construction} $$\sum_{x\in \mathbb{R}} Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP - May\ 2019.xls] RGP\ Table 4 - Groundwater\ Analytical\ Results\ RGP\ Table 4 - Groundwater\ RGP\ Table 4 - Ground\ Table 4 - Ground\ Table 4 - Ground\ Table 4 - Gr$

- NOTES:

 1. For VOCs and SVOCs, only compounds with either at least one detection greater than the laboratory reporting limit, or with a specific RGP Permit Standard, are shown.

 1. ND = Not detected above the lab reporting limits shown in parenthesis.

 2. NT = Not tested.

 3. ~ = No Method 1 Standard or UCL available

- 4. Yellow Shaded values exceed the MCP Reportable Concentrations (RCs).
- 5. Green Shaded values exceed the WQBEL under the RGP. 6. Bolded values exceed the Method 1 Cleanup Standards.
- Abbreviations mg/L = milligrams per liter

- μg/L = minigrants per liter
 μg/L = micrograms per liter
 RGP = Remediation General Permit
 TBEL = Technology-Based Effluent Limitations
 WQBEL = Water Quality-Based Effluent Limitations

April 12, 2019

Daron Kurkjian Weston & Sampson Engineers MA 55 Walkers Brook Drive Reading, MA 01867

Project Location: Chelsea, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 19C1063

Meghan S. Kelley

Enclosed are results of analyses for samples received by the laboratory on March 21, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Meghan E. Kelley Project Manager

Table of Contents

Sample Summary	4
Case Narrative	6
Sample Results	10
19C1063-01	10
19C1063-02	18
19C1063-03	26
19C1063-04	28
19C1063-05	30
19C1063-06	32
19C1063-07	34
19C1063-08	36
Sample Preparation Information	38
QC Data	41
Volatile Organic Compounds by GC/MS	41
B226497	41
Volatile Organic Compounds by GC/MS	46
B226492	46
B226552	47
Semivolatile Organic Compounds by GC/MS	49
B226623	49
Semivolatile Organic Compounds by - GC/MS	52
B226445	52
Polychlorinated Biphenyls By GC/ECD	54
B226617	54
Metals Analyses (Total)	56

Table of Contents (continued)

B220400	56
B226548	56
B226612	57
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	58
B226322	58
B226323	58
B226345	58
B226412	58
B226601	59
B226692	59
B226777	59
Drinking Water Organics EPA 504.1	60
B226349	60
Dual Column RPD Report	61
Flag/Qualifier Summary	67
Certifications	68
Chain of Custody/Sample Receipt	73

Weston & Sampson Engineers MA 55 Walkers Brook Drive Reading, MA 01867 ATTN: Daron Kurkjian

REPORT DATE: 4/12/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19C1063

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Chelsea, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
IER OUTFALL	19C1063-01	Surface Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 420.1	
				EPA 504.1	
				SM19-22 4500 NH3	MA M-MA-086/CT
				ВН	PH-0574/NY11148
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
WS-2	19C1063-02	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 420.1	
				EPA 504.1	
				SM19-22 4500 NH3	MA M-MA-086/CT
				ВН	PH-0574/NY11148
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
VES-306-MW	19C1063-03	Ground Water		SW-846 8260C	
WS-5	19C1063-04	Ground Water		SW-846 8260C	
VV D-3					

Weston & Sampson Engineers MA 55 Walkers Brook Drive Reading, MA 01867 ATTN: Daron Kurkjian

REPORT DATE: 4/12/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19C1063

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Chelsea, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
WS-1	19C1063-06	Ground Water		SW-846 8260C	
WS-7	19C1063-07	Ground Water		SW-846 8260C	
WS-4	19C1063-08	Ground Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT - 4/12/19 - MTBE added to 19C1063-01 & -02 per cleints request.

624.1

Qua	lifica	tio	ns:

RL-11

Elevated reporting limit due to high concentration of target compounds.

Analyte & Samples(s) Qualified:

19C1063-02[WS-2]

EPA 300.0

Qualifications:

MS-07

Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated. Analyte & Samples(s) Qualified:

Chloride

19C1063-01[IER OUTFALL], B226777-MS1

SM21-22 3500 Cr B

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

19C1063-02[WS-2]

SM21-22 4500 CL G

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Chlorine, Residual

19C1063-02[WS-2]

Z-01

SM4500 test had a calibration point outside acceptable back calculation recovery. Reanalysis yielded similar non-conformance.

Analyte & Samples(s) Qualified:

Chlorine, Residual

19C1063-01[IER OUTFALL], 19C1063-02[WS-2]

SW-846 8260C

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

 $19C1063-03[VES-306-MW], \\ 19C1063-04[WS-5], \\ 19C1063-05[WS-8], \\ 19C1063-06[WS-1], \\ 19C1063-07[WS-7], \\ 19C1063-08[WS-4], \\ B226497-BLK1, \\ B226497-BS1, \\ 19C1063-07[WS-7], \\ 19C1063-07[WS-7], \\ 19C1063-08[WS-4], \\ 19C1063-08[WS-8], \\ 19C1063$ B226497-BSD1, S033906-CCV1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

2,2-Dichloropropane

B226497-BS1

PR-08

pH of sample (pH 5) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

19C1063-05[WS-8]

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

Bromomethane

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4], B226497-BLK1, B226497-BS1, B2264

B226497-BSD1, S033906-CCV1

RL-14

Elevated reporting limit due to foaming sample matrix. MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK)

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4], B226497-BLK1, B226497-BS1, B226497-BSD1, S033906-CCV1

Diisopropyl Ether (DIPE)

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4], B226497-BLK1, B226497-BS1, 19C1063-07[WS-7], 19C1063-08[WS-8], 19C1063-07[WS-8], 19C1063-07[WSB226497-BSD1, S033906-CCV1

Tetrahydrofuran

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4], B226497-BLK1, B226497-BS1, B226497-BSD1, S033906-CCV1

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

Analyte & Samples(s) Qualified:

19C1063-03[VES-306-MW], 19C1063-04[WS-5], 19C1063-05[WS-8], 19C1063-06[WS-1], 19C1063-07[WS-7], 19C1063-08[WS-4], B226497-BLK1, B226497-BS1, B2264B226497-BSD1, S033906-CCV1

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

2,2-Dichloropropane

B226497-BS1, B226497-BSD1, S033906-CCV1

Bromochloromethane

B226497-BS1, B226497-BSD1, S033906-CCV1

Dibromomethane

B226497-BS1, B226497-BSD1, S033906-CCV1

Dichlorodifluoromethane (Freon 12

B226497-BS1, B226497-BSD1, S033906-CCV1

Tetrachloroethylene

B226497-BS1, B226497-BSD1, S033906-CCV1

trans-1,3-Dichloropropene

B226497-BS1, B226497-BSD1, S033906-CCV1

Trichlorofluoromethane (Freon 11)

B226497-BS1, B226497-BSD1, S033906-CCV1

V-36

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

Carbon Disulfide

B226497-BS1, B226497-BSD1, S033906-CCV1

SW-846 8260C

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits of 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, chloromethane, dichlorodifluoromethane, 2-hexanone, and bromomethane.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Toluene-d8

4-Bromofluorobenzene

Sampled: 3/21/2019 16:00

99.9

95.8

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	< 50.0	50.0	3.79	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
cis-1,2-Dichloroethylene	<1.00	1.00	0.130	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,4-Dioxane	<50.0	50.0	22.5	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Ethanol	< 50.0	50.0	10.5	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	LBD
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
o-Xylene	< 2.00	2.00	0.170	$\mu g/L$	1		624.1	3/25/19	3/25/19 12:20	EEH
Surrogates		% Reco	very	Recovery Limits	5	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					3/25/19 12:20	

70-130

70-130

3/25/19 12:20

3/25/19 12:20

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

2,4,6-Tribromophenol (SIM)

p-Terphenyl-d14

olatile Organic Compounds by GC/MS
olatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene (SIM)	< 0.30	0.30	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Acenaphthylene (SIM)	< 0.30	0.30	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Anthracene (SIM)	< 0.20	0.20	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Benzo(a)anthracene (SIM)	< 0.050	0.050	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Benzo(a)pyrene (SIM)	< 0.10	0.10	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Benzo(b)fluoranthene (SIM)	0.068	0.050	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Benzo(g,h,i)perylene (SIM)	< 0.50	0.50	μg/L	1		625.1	3/23/19	3/26/19 22:06	CLA
Benzo(k)fluoranthene (SIM)	< 0.20	0.20	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Bis(2-ethylhexyl)phthalate (SIM)	<1.0	1.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Chrysene (SIM)	< 0.20	0.20	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Dibenz(a,h)anthracene (SIM)	< 0.20	0.20	μg/L	1		625.1	3/23/19	3/26/19 22:06	CLA
Fluoranthene (SIM)	< 0.50	0.50	μg/L	1		625.1	3/23/19	3/26/19 22:06	CLA
Fluorene (SIM)	<1.0	1.0	μg/L	1		625.1	3/23/19	3/26/19 22:06	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.20	0.20	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Naphthalene (SIM)	<1.0	1.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Pentachlorophenol (SIM)	<1.0	1.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Phenanthrene (SIM)	0.10	0.050	μg/L	1		625.1	3/23/19	3/26/19 22:06	CLA
Pyrene (SIM)	<1.0	1.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 22:06	CLA
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
2-Fluorophenol (SIM)		44.5	15-110					3/26/19 22:06	
Phenol-d6 (SIM)		30.0	15-110					3/26/19 22:06	
Nitrobenzene-d5		90.1	30-130					3/26/19 22:06	
2-Fluorobiphenyl		63.7	30-130					3/26/19 22:06	

15-110

30-130

96.5

76.7

3/26/19 22:06

3/26/19 22:06

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Butylbenzylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:12	BGL
Di-n-butylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:12	BGL
Diethylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:12	BGL
Dimethylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:12	BGL
Di-n-octylphthalate	<10.0	10.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 21:12	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		35.8	15-110					3/26/19 21:12	
Phenol-d6		24.6	15-110					3/26/19 21:12	
Nitrobenzene-d5		75.7	30-130					3/26/19 21:12	
2-Fluorobiphenyl		82.1	30-130					3/26/19 21:12	
2,4,6-Tribromophenol		91.8	15-110					3/26/19 21:12	
p-Terphenyl-d14		89.2	30-130					3/26/19 21:12	

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0966	0.0966	0.0889	μg/L	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1221 [1]	< 0.0966	0.0966	0.0778	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1232 [1]	< 0.0966	0.0966	0.0961	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1242 [1]	< 0.0966	0.0966	0.0836	μg/L	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1248 [1]	< 0.0966	0.0966	0.0918	μg/L	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1254 [1]	< 0.0966	0.0966	0.0507	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:25	TG
Aroclor-1260 [1]	< 0.0966	0.0966	0.0947	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:25	TG
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		72.0		30-150					3/28/19 10:25	
Dagaghlarahinhanyl [2]		76.4		20.150					2/29/10 10:25	

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Metals	Anal	vses	(Total)	

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Arsenic	3.3	1.0		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	3/24/19	3/26/19 6:51	MJH
Copper	16	1.0		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Iron	0.13	0.050		mg/L	1		EPA 200.7	3/25/19	3/26/19 19:35	QNW
Lead	12	0.50		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	3/26/19	3/27/19 13:02	TBC
Nickel	5.1	5.0		μg/L	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Selenium	4.0	5.0	1.4	$\mu g/L$	1	J	EPA 200.8	3/24/19	3/25/19 13:57	MJH
Silver	ND	0.20		μg/L	1		EPA 200.8	3/24/19	3/25/19 13:57	MJH
Zinc	41	20		μg/L	1		EPA 200.8	3/24/19	3/25/19 13:57	МЈН

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	10000	400		mg/L	400	MS-07	EPA 300.0	3/28/19	3/28/19 0:48	IS
Chlorine, Residual	0.030	0.020		mg/L	1	Z-01	SM21-22 4500 CL G	3/21/19	3/21/19 19:43	AIA
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	3/21/19	3/21/19 21:40	MJG
Phenol	ND	0.050		mg/L	1		EPA 420.1	3/26/19	3/27/19 12:30	LL
Total Suspended Solids	46	1.0		mg/L	1		SM21-22 2540D	3/22/19	3/22/19 18:25	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.6		mg/L	1		EPA 1664B	3/22/19	3/22/19 10:15	LL

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (2)	ND	0.020	μg/L	1		EPA 504.1	3/22/19	3/22/19 11:26	PJG
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1.2 Dibramanana (2)		107	70.120					2/22/10 11:26	

1,3-Dibromopropane (2) 107 70-130 3/22/19 11:26

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: IER OUTFALL

Sampled: 3/21/2019 16:00

Sample ID: 19C1063-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.121	0.075	0.024	mg/L	1		SM19-22 4500 NH3 BH		3/25/19 0:00	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		3/25/19 0:00	AAL

Work Order: 19C1063 Project Location: Chelsea, MA Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-2

Sampled: 3/20/2019 15:20

4.90

1.36

<4.00

<4.00

4.00

4.00

4.00

4.00

0.480

0.900

0.600

0.340

Sample ID: 19C1063-02 Sample Matrix: Ground Water

1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene

Vinyl Chloride

m+p Xylene

o-Xylene

Sample Flags: RL-11			Volatile	Organic Co	mpounds by G	C/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<100	100	7.58	μg/L	2		624.1	3/25/19	3/27/19 18:45	LBD
tert-Amyl Methyl Ether (TAME)	<1.00	1.00	0.280	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Benzene	< 2.00	2.00	0.360	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
tert-Butyl Alcohol (TBA)	<40.0	40.0	8.34	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Carbon Tetrachloride	<4.00	4.00	0.220	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,2-Dichlorobenzene	<4.00	4.00	0.320	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,3-Dichlorobenzene	<4.00	4.00	0.240	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,4-Dichlorobenzene	<4.00	4.00	0.260	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,2-Dichloroethane	<4.00	4.00	0.820	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
cis-1,2-Dichloroethylene	104	2.00	0.260	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,1-Dichloroethane	9.00	4.00	0.320	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,1-Dichloroethylene	<4.00	4.00	0.640	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,4-Dioxane	<100	100	45.0	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Ethanol	<100	100	21.1	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Ethylbenzene	<4.00	4.00	0.260	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Methyl tert-Butyl Ether (MTBE)	<4.00	4.00	0.500	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Methylene Chloride	<10.0	10.0	0.680	μg/L	2		624.1	3/25/19	3/27/19 18:45	LBD
Tetrachloroethylene	<4.00	4.00	0.360	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
Toluene	< 2.00	2.00	0.280	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,1,1-Trichloroethane	4.94	4.00	0.400	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD
1,1,2-Trichloroethane	<4.00	4.00	0.320	$\mu g/L$	2		624.1	3/25/19	3/27/19 18:45	LBD

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	94.7	70-130		3/27/19 18:45
Toluene-d8	100	70-130		3/27/19 18:45
4-Bromofluorobenzene	100	70-130		3/27/19 18:45

2

2

2

2

624.1

624.1

624.1

624.1

3/25/19

3/25/19

3/25/19

3/25/19

3/27/19 18:45

3/27/19 18:45

3/27/19 18:45

3/27/19 18:45

LBD

LBD

LBD

LBD

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

		Semivolatile Organ	ic Compound	s by GC/MS				
						Date	Date/Time	
Analyte	Results RL	Units	Dilutio	n Flag/Qual	Method	Prepared	Analyzed	Analyst
cenaphthene (SIM)	< 0.30 0.30	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
cenaphthylene (SIM)	< 0.30 0.30	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
nthracene (SIM)	< 0.20 0.20	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
enzo(a)anthracene (SIM)	< 0.050 0.050	0 μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
enzo(a)pyrene (SIM)	<0.10 0.10	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
enzo(b)fluoranthene (SIM)	< 0.050 0.050	0 μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
enzo(g,h,i)perylene (SIM)	<0.50 0.50	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
enzo(k)fluoranthene (SIM)	< 0.20 0.20	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
is(2-ethylhexyl)phthalate (SIM)	<1.0 1.0	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
hrysene (SIM)	<0.20 0.20) μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
ibenz(a,h)anthracene (SIM)	< 0.20 0.20) μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
uoranthene (SIM)	< 0.50 0.50) μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
uorene (SIM)	<1.0 1.0	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
deno(1,2,3-cd)pyrene (SIM)	<0.20 0.20) μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
aphthalene (SIM)	<1.0 1.0	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
entachlorophenol (SIM)	<1.0 1.0				625.1	3/23/19	3/26/19 22:36	CLA
nenanthrene (SIM)	< 0.050 0.050	0 μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
yrene (SIM)	<1.0 1.0	μg/L	1		625.1	3/23/19	3/26/19 22:36	CLA
Surrogates	% R	ecovery Recovery I	imits	Flag/Qual				
Fluorophenol (SIM)	37.6	5 15-110)				3/26/19 22:36	
nenol-d6 (SIM)	24.5	5 15-110)				3/26/19 22:36	
itrobenzene-d5	80.8	30-130)				3/26/19 22:36	
Fluorobiphenyl	57.3	30-130)				3/26/19 22:36	
4,6-Tribromophenol (SIM)	85.3	3 15-110)				3/26/19 22:36	
Terphenyl-d14	65.7	7 30-130)				3/26/19 22:36	
* * *								

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Samivalatila Organic	Compounds by	CCM

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Butylbenzylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:35	BGL
Di-n-butylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:35	BGL
Diethylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:35	BGL
Dimethylphthalate	<10.0	10.0	μg/L	1		625.1	3/23/19	3/26/19 21:35	BGL
Di-n-octylphthalate	<10.0	10.0	$\mu g/L$	1		625.1	3/23/19	3/26/19 21:35	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		33.1	15-110					3/26/19 21:35	
Phenol-d6		22.8	15-110					3/26/19 21:35	
Nitrobenzene-d5		77.8	30-130					3/26/19 21:35	
2-Fluorobiphenyl		79.0	30-130					3/26/19 21:35	
2,4,6-Tribromophenol		84.4	15-110					3/26/19 21:35	
p-Terphenyl-d14		80.3	30-130					3/26/19 21:35	

3/28/19 10:43

3/28/19 10:43

3/28/19 10:43

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

77.0

82.0

88.7

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Decachlorobiphenyl [2]

Tetrachloro-m-xylene [1]

Tetrachloro-m-xylene [2]

Polychi	orinated	Binhenvls	By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0971	0.0971	0.0893	μg/L	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1221 [1]	< 0.0971	0.0971	0.0782	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1232 [1]	< 0.0971	0.0971	0.0966	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1242 [1]	< 0.0971	0.0971	0.0840	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1248 [1]	< 0.0971	0.0971	0.0922	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1254 [1]	< 0.0971	0.0971	0.0510	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Aroclor-1260 [1]	< 0.0971	0.0971	0.0951	$\mu g/L$	1		608.3	3/27/19	3/28/19 10:43	TG
Surrogates		% Reco	very	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		72.5		30-150					3/28/19 10:43	

30-150

30-150

30-150

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA
Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	3/24/19	3/25/19 14:01	МЈН
Arsenic	ND	1.0		μg/L	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	3/24/19	3/26/19 6:51	MJH
Copper	6.4	1.0		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Iron	0.40	0.050		mg/L	1		EPA 200.7	3/25/19	3/26/19 19:51	QNW
Lead	1.9	0.50		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	3/26/19	3/27/19 12:57	TBC
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Selenium	2.2	5.0	1.4	$\mu g/L$	1	J	EPA 200.8	3/24/19	3/25/19 14:01	MJH
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH
Zinc	22	20		$\mu g/L$	1		EPA 200.8	3/24/19	3/25/19 14:01	MJH

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA
Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	2300	100		mg/L	100		EPA 300.0	3/27/19	3/27/19 10:33	IS
Chlorine, Residual	ND	0.020		mg/L	1	H-03, Z-01	SM21-22 4500 CL G	3/21/19	3/21/19 19:43	AIA
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	3/21/19	3/21/19 21:40	MJG
Phenol	ND	0.050		mg/L	1		EPA 420.1	3/26/19	3/27/19 12:30	LL
Total Suspended Solids	2.8	1.0		mg/L	1		SM21-22 2540D	3/22/19	3/22/19 18:25	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	3/22/19	3/22/19 10:15	LL

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA
Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (2)	ND	0.020	μg/L	1		EPA 504.1	3/22/19	3/22/19 11:49	PJG
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
1.2 Dibromonronou (2)		101	70.120					2/22/10 11:40	

Sample Description: Work Order: 19C1063

Project Location: Chelsea, MA
Date Received: 3/21/2019
Field Sample #: WS-2

Sampled: 3/20/2019 15:20

Sample ID: 19C1063-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		1.68	0.075	0.024	mg/L	1		SM19-22 4500 NH3 BH		3/25/19 0:00	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		3/25/19 0:00	AAL

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019

Field Sample #: VES-306-MW Sampled: 3/20/2019 13:45

Sample ID: 19C1063-03
Sample Matrix: Ground Water

Sample Flags: RL-14			Volatile Organic Co	mpounds by G	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
tert-Amyl Methyl Ether (TAME)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Benzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Bromobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Bromochloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Bromodichloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Bromoform	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Bromomethane	ND	10	μg/L	5	R-05	SW-846 8260C	3/25/19	3/25/19 18:25	LBD
2-Butanone (MEK)	ND	50	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 18:25	LBD
n-Butylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
sec-Butylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
tert-Butylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Carbon Disulfide	ND	25	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Carbon Tetrachloride	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Chlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Chlorodibromomethane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Chloroethane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Chloroform	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Chloromethane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
2-Chlorotoluene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
4-Chlorotoluene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2-Dibromoethane (EDB)	ND	2.5	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Dibromomethane	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,3-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,4-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Dichlorodifluoromethane (Freon 12)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1-Dichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2-Dichloroethane	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1-Dichloroethylene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
cis-1,2-Dichloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
trans-1,2-Dichloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2-Dichloropropane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,3-Dichloropropane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
2,2-Dichloropropane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1-Dichloropropene	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
cis-1,3-Dichloropropene	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
trans-1,3-Dichloropropene	ND	2.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Diethyl Ether	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Diisopropyl Ether (DIPE)	ND	2.5	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,4-Dioxane	ND	250	μg/L	5	V-16	SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Ethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD

Page 26 of 75

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019 Field Sample #: VES-306-MW

Sampled: 3/20/2019 13:45

Sample ID: 19C1063-03 Sample Matrix: Ground Water

Sample Flags: RL-14		Vo	latile Organic Comp	pounds by G	C/MS				
					T. (0.1		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
2-Hexanone (MBK)	ND	50	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Isopropylbenzene (Cumene)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
p-Isopropyltoluene (p-Cymene)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Methyl tert-Butyl Ether (MTBE)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Methylene Chloride	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
4-Methyl-2-pentanone (MIBK)	ND	50	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Naphthalene	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
n-Propylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Styrene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1,1,2-Tetrachloroethane	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1,2,2-Tetrachloroethane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Tetrachloroethylene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Tetrahydrofuran	ND	10	μg/L	5	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Toluene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2,3-Trichlorobenzene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1,1-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,1,2-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Trichloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Trichlorofluoromethane (Freon 11)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2,3-Trichloropropane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,2,4-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Vinyl Chloride	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
m+p Xylene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
o-Xylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 18:25	LBD
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		96.7	70-130					3/25/19 18:25	
Toluene-d8		102	70-130					3/25/19 18:25	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.7	70-130		3/25/19 18:25
Toluene-d8	102	70-130		3/25/19 18:25
4-Bromofluorobenzene	105	70-130		3/25/19 18:25

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019 Field Sample #: WS-5

Sampled: 3/20/2019 11:45

Sample ID: 19C1063-04 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: RL-14			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	20	μg/L	2	r rag/Quar	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
tert-Amyl Methyl Ether (TAME)	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Benzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Bromobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Bromochloromethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Bromodichloromethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Bromoform	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Bromomethane	ND	4.0	$\mu g/L$	2	R-05	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
2-Butanone (MEK)	ND	20	$\mu g/L$	2	V-05	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
n-Butylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
sec-Butylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
tert-Butylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Carbon Disulfide	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Carbon Tetrachloride	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Chlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Chlorodibromomethane	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Chloroethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Chloroform	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Chloromethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
2-Chlorotoluene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
4-Chlorotoluene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Dibromomethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,3-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,4-Dichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Dichlorodifluoromethane (Freon 12) 1,1-Dichloroethane	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2-Dichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1-Dichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
cis-1,2-Dichloroethylene	ND ND	2.0 2.0	μg/L	2 2		SW-846 8260C SW-846 8260C	3/25/19	3/25/19 18:56	LBD
trans-1,2-Dichloroethylene	ND ND	2.0	μg/L	2		SW-846 8260C	3/25/19 3/25/19	3/25/19 18:56 3/25/19 18:56	LBD LBD
1,2-Dichloropropane	ND ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,3-Dichloropropane	ND ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
2,2-Dichloropropane	ND ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1-Dichloropropene	ND ND	1.0	μg/L μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
cis-1,3-Dichloropropene	ND	1.0	μg/L μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
trans-1,3-Dichloropropene	ND	0.80	μg/L μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Diethyl Ether	ND	4.0	μg/L μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Diisopropyl Ether (DIPE)	ND	1.0	μg/L	2	V-05	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,4-Dioxane	ND	100	μg/L	2	V-16	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Ethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD

Page 28 of 75

Work Order: 19C1063 Sample Description:

Project Location: Chelsea, MA Date Received: 3/21/2019 Field Sample #: WS-5

Sampled: 3/20/2019 11:45

Sample ID: 19C1063-04 Sample Matrix: Ground Water

Sample Flags: RL-14		Vo	latile Organic Comp	pounds by G	C/MS				
	P 1/	DI	¥T *4	Dil	FL/C 1	M.a. i	Date	Date/Time	A 3
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
2-Hexanone (MBK)	ND	20	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Isopropylbenzene (Cumene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
p-Isopropyltoluene (p-Cymene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Methylene Chloride	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
4-Methyl-2-pentanone (MIBK)	ND	20	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Naphthalene	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
n-Propylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Styrene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1,1,2-Tetrachloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1,2,2-Tetrachloroethane	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Tetrachloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Tetrahydrofuran	ND	4.0	$\mu g/L$	2	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Toluene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2,3-Trichlorobenzene	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1,1-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,1,2-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Trichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Trichlorofluoromethane (Freon 11)	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2,3-Trichloropropane	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Vinyl Chloride	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
m+p Xylene	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
o-Xylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 18:56	LBD
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual				
1,2-Dichloroethane-d4		96.4	70-130					3/25/19 18:56	
Toluene-d8		101	70-130					3/25/19 18:56	
4-Bromofluorobenzene		104	70.120					3/25/10 18:56	

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-8

Sampled: 3/21/2019 14:05

Sample ID: 19C1063-05 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: PR-08, RL-14			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	5	r rag/Quar	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
tert-Amyl Methyl Ether (TAME)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Benzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Bromobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Bromochloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Bromodichloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Bromoform	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Bromomethane	ND	10	$\mu g/L$	5	R-05	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
2-Butanone (MEK)	ND	50	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
n-Butylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
sec-Butylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
tert-Butylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	2.5	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Carbon Disulfide	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Carbon Tetrachloride	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Chlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Chlorodibromomethane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Chloroethane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Chloroform	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Chloromethane	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
2-Chlorotoluene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
4-Chlorotoluene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2-Dibromoethane (EDB)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Dibromomethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,3-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,4-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Dichlorodifluoromethane (Freon 12)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1-Dichloroethane 1,2-Dichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	5.0 5.0	μg/L	5 5		SW-846 8260C SW-846 8260C	3/25/19	3/25/19 19:26 3/25/19 19:26	LBD
trans-1,2-Dichloroethylene	ND ND	5.0	μg/L μg/L	5		SW-846 8260C SW-846 8260C	3/25/19 3/25/19	3/25/19 19:26	LBD LBD
1,2-Dichloropropane	ND	5.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,3-Dichloropropane	ND	2.5	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
2,2-Dichloropropane	ND	5.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1-Dichloropropene	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
cis-1,3-Dichloropropene	ND	2.5	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
trans-1,3-Dichloropropene	ND	2.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Diethyl Ether	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Diisopropyl Ether (DIPE)	ND	2.5	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,4-Dioxane	ND	250	μg/L	5	V-16	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Ethylbenzene	ND	5.0	μg/L	5	-	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
-			rb -	-					

Page 30 of 75

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-8

Sampled: 3/21/2019 14:05

Sample ID: 19C1063-05 Sample Matrix: Ground Water

Volatile Organic	Compounds	by GC/MS
------------------	-----------	----------

Sample Flags: PR-08, RL-14		Vo	latile Organic Comp	pounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
2-Hexanone (MBK)	ND	50	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Isopropylbenzene (Cumene)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
p-Isopropyltoluene (p-Cymene)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Methyl tert-Butyl Ether (MTBE)	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Methylene Chloride	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
4-Methyl-2-pentanone (MIBK)	ND	50	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Naphthalene	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
n-Propylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Styrene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1,1,2-Tetrachloroethane	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1,2,2-Tetrachloroethane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Tetrachloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Tetrahydrofuran	ND	10	μg/L	5	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Toluene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2,3-Trichlorobenzene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1,1-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,1,2-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Trichloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Trichlorofluoromethane (Freon 11)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2,3-Trichloropropane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,2,4-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Vinyl Chloride	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
m+p Xylene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
o-Xylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 19:26	LBD
Surrogates		% Recovery	Recovery Limits	i	Flag/Qual				
1,2-Dichloroethane-d4		99.2	70-130					3/25/19 19:26	
Toluene-d8		101	70-130					3/25/19 19:26	

Project Location: Chelsea, MA Sample Description: Work Order: 19C1063

Date Received: 3/21/2019
Field Sample #: WS-1

Sampled: 3/21/2019 13:20

Sample ID: 19C1063-06
Sample Matrix: Ground Water

Sample Flags: RL-14			Volatile Organic Co	mpounds by G	SC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	20	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
tert-Amyl Methyl Ether (TAME)	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Benzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Bromobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Bromochloromethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Bromodichloromethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Bromoform	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Bromomethane	ND	4.0	$\mu g/L$	2	R-05	SW-846 8260C	3/25/19	3/25/19 19:57	LBD
2-Butanone (MEK)	ND	20	$\mu g/L$	2	V-05	SW-846 8260C	3/25/19	3/25/19 19:57	LBD
n-Butylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
sec-Butylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
tert-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Carbon Disulfide	ND	10	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Carbon Tetrachloride	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Chlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Chlorodibromomethane	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Chloroethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Chloroform	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Chloromethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
2-Chlorotoluene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
4-Chlorotoluene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2-Dibromoethane (EDB)	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Dibromomethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,4-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Dichlorodifluoromethane (Freon 12)	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1-Dichloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2-Dichloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1-Dichloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
cis-1,2-Dichloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
trans-1,2-Dichloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2-Dichloropropane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,3-Dichloropropane	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
2,2-Dichloropropane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1-Dichloropropene	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
cis-1,3-Dichloropropene	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
trans-1,3-Dichloropropene	ND	0.80	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Diethyl Ether	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Diisopropyl Ether (DIPE)	ND	1.0	μg/L	2	V-05	SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,4-Dioxane	ND	100	$\mu g/L$	2	V-16	SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Ethylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD

Page 32 of 75

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-1

Sampled: 3/21/2019 13:20

Sample ID: 19C1063-06 Sample Matrix: Ground Water

Sample Flags: RL-14		Vo	latile Organic Comp	oounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
2-Hexanone (MBK)	ND	20	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Isopropylbenzene (Cumene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
p-Isopropyltoluene (p-Cymene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Methylene Chloride	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
4-Methyl-2-pentanone (MIBK)	ND	20	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Naphthalene	ND	10	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
n-Propylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Styrene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Tetrachloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Tetrahydrofuran	ND	4.0	μg/L	2	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Toluene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2,3-Trichlorobenzene	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1,1-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,1,2-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Trichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Trichlorofluoromethane (Freon 11)	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2,3-Trichloropropane	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Vinyl Chloride	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
m+p Xylene	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
o-Xylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 19:57	LBD
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		98.0	70-130					3/25/19 19:57	
Toluene-d8		102	70-130					3/25/19 19:57	
4-Bromofluorobenzene		105	70.130					3/25/10 10:57	

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-7

Sampled: 3/21/2019 12:15

Sample ID: 19C1063-07 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: RL-14			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	20	μg/L	2	1 mg/ 2 mm	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
tert-Amyl Methyl Ether (TAME)	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Benzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Bromobenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Bromochloromethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Bromodichloromethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Bromoform	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Bromomethane	ND	4.0	μg/L	2	R-05	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
2-Butanone (MEK)	ND	20	μg/L	2	V-05	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
n-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
sec-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
tert-Butylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Carbon Disulfide	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Carbon Tetrachloride	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Chlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Chlorodibromomethane	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Chloroethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Chloroform	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Chloromethane	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
2-Chlorotoluene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
4-Chlorotoluene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2-Dibromoethane (EDB)	ND	1.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Dibromomethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,4-Dichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Dichlorodifluoromethane (Freon 12)	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1-Dichloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2-Dichloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1-Dichloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
cis-1,2-Dichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
trans-1,2-Dichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2-Dichloropropane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,3-Dichloropropane	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
2,2-Dichloropropane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1-Dichloropropene	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
cis-1,3-Dichloropropene	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
trans-1,3-Dichloropropene	ND	0.80	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Diethyl Ether	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Diisopropyl Ether (DIPE)	ND	1.0	μg/L	2	V-05	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,4-Dioxane	ND	100	μg/L	2	V-16	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Ethylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD

Page 34 of 75

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-7

Sampled: 3/21/2019 12:15

Sample ID: 19C1063-07 Sample Matrix: Ground Water

Sample Flags: RL-14		Vo	latile Organic Comp	pounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Hexachlorobutadiene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
2-Hexanone (MBK)	ND	20	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Isopropylbenzene (Cumene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
p-Isopropyltoluene (p-Cymene)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Methylene Chloride	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
4-Methyl-2-pentanone (MIBK)	ND	20	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Naphthalene	ND	10	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
n-Propylbenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Styrene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1,1,2-Tetrachloroethane	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1,2,2-Tetrachloroethane	ND	1.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Tetrachloroethylene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Tetrahydrofuran	ND	4.0	$\mu g/L$	2	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Toluene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2,3-Trichlorobenzene	ND	4.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2,4-Trichlorobenzene	ND	2.0	$\mu g/L$	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1,1-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,1,2-Trichloroethane	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Trichloroethylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Trichlorofluoromethane (Freon 11)	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2,3-Trichloropropane	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,2,4-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
1,3,5-Trimethylbenzene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Vinyl Chloride	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
m+p Xylene	ND	4.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
o-Xylene	ND	2.0	μg/L	2		SW-846 8260C	3/25/19	3/25/19 20:27	LBD
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		96.9	70-130					3/25/19 20:27	
Toluene-d8		102	70-130					3/25/19 20:27	
4-Bromofluorobenzene		102	70.130					3/25/10 20:27	

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-4

Sampled: 3/21/2019 11:00

Sample ID: 19C1063-08 Sample Matrix: Ground Water

Sample Matrix: Ground Water Sample Flags: RL-14 Volatile Organic Compounds by GC/MS										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Acetone	92	50	μg/L	5	1 mg/ 2 mm	SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
tert-Amyl Methyl Ether (TAME)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Benzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Bromobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Bromochloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Bromodichloromethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Bromoform	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Bromomethane	ND	10	μg/L	5	R-05	SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
2-Butanone (MEK)	50	50	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
n-Butylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
sec-Butylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
tert-Butylbenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
tert-Butyl Ethyl Ether (TBEE)	ND	2.5	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Carbon Disulfide	ND	25	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Carbon Tetrachloride	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Chlorobenzene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Chlorodibromomethane	ND	2.5	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Chloroethane	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Chloroform	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Chloromethane	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
2-Chlorotoluene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
4-Chlorotoluene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,2-Dibromo-3-chloropropane (DBCP)	ND	25	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,2-Dibromoethane (EDB)	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Dibromomethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,2-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,3-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,4-Dichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Dichlorodifluoromethane (Freon 12)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,1-Dichloroethane 1,2-Dichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	5.0 5.0	μg/L μg/L	5 5		SW-846 8260C SW-846 8260C	3/25/19 3/25/19	3/25/19 20:58	LBD	
trans-1,2-Dichloroethylene	ND ND	5.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58 3/25/19 20:58	LBD LBD	
1,2-Dichloropropane	ND ND	5.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,3-Dichloropropane	ND	2.5	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
2,2-Dichloropropane	ND	5.0	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,1-Dichloropropene	ND	2.5	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
cis-1,3-Dichloropropene	ND	2.5	μg/L μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
trans-1,3-Dichloropropene	ND	2.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Diethyl Ether	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Diisopropyl Ether (DIPE)	ND	2.5	μg/L	5	V-05	SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
1,4-Dioxane	ND	250	μg/L	5	V-16	SW-846 8260C	3/25/19	3/25/19 20:58	LBD	
Ethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD	

Page 36 of 75

Project Location: Chelsea, MA Work Order: 19C1063 Sample Description:

Date Received: 3/21/2019 Field Sample #: WS-4

Sampled: 3/21/2019 11:00

Sample ID: 19C1063-08 Sample Matrix: Ground Water

Sample Flags: RL-14

Volatile Organic Compounds by GC/MS

Sample Flags. RE-14			and organic comp	pourus by G	C/1120				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
2-Hexanone (MBK)	ND	50	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Isopropylbenzene (Cumene)	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
p-Isopropyltoluene (p-Cymene)	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Methyl tert-Butyl Ether (MTBE)	6.4	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Methylene Chloride	ND	25	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
4-Methyl-2-pentanone (MIBK)	ND	50	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Naphthalene	ND	25	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
n-Propylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Styrene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,1,2,2-Tetrachloroethane	ND	2.5	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Tetrachloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Tetrahydrofuran	ND	10	μg/L	5	L-04, V-05	SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Toluene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,2,3-Trichlorobenzene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,2,4-Trichlorobenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,1,1-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,1,2-Trichloroethane	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Trichloroethylene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Trichlorofluoromethane (Freon 11)	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,2,3-Trichloropropane	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,2,4-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Vinyl Chloride	ND	10	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
m+p Xylene	ND	10	μg/L	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
o-Xylene	ND	5.0	$\mu g/L$	5		SW-846 8260C	3/25/19	3/25/19 20:58	LBD
Surrogates		% Recovery	Recovery Limits		Flag/Qual		_	-	
1,2-Dichloroethane-d4		96.2	70-130					3/25/19 20:58	
Toluene-d8		101	70-130					3/25/19 20:58	

Sample Extraction Data

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19C1063-01 [IER OUTFALL]	B226617	1040	5.00	03/27/19	
19C1063-02 [WS-2]	B226617	1030	5.00	03/27/19	

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226492	5	5.00	03/25/19

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-02 [WS-2]	B226552	2.5	5.00	03/25/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226445	1000	1.00	03/23/19
19C1063-02 [WS-2]	B226445	1000	1.00	03/23/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19C1063-01 [IER OUTFALL]	B226623	1000	1.00	03/23/19	
19C1063-02 [WS-2]	B226623	1000	1.00	03/23/19	

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
19C1063-01 [IER OUTFALL]	B226345	900	03/22/19
19C1063-02 [WS-2]	B226345	1000	03/22/19

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226548 B226548	50.0 50.0	50.0 50.0	03/25/19 03/25/19
19C1063-02 [WS-2]	B226548	50.0	50.0	03/25/19

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226466	50.0	50.0	03/24/19
19C1063-02 [WS-2]	B226466	50.0	50.0	03/24/19

Sample Extraction Data

Prep Method:	EPA	245.1	-EPA	245.1
--------------	-----	-------	------	-------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226612	6.00	6.00	03/26/19
19C1063-02 [WS-2]	B226612	6.00	6.00	03/26/19

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-02 [WS-2]	B226692	10.0	10.0	03/27/19

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226777	10.0	10.0	03/28/19

EPA 420.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226601	50.0	50.0	03/26/19
19C1063-02 [WS-2]	B226601	50.0	50.0	03/26/19

Prep Method: EPA 504 water-EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226349	35.6	35.0	03/22/19
19C1063-02 [WS-2]	B226349	35.6	35.0	03/22/19

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
19C1063-01 [IER OUTFALL]	B226412	500	03/22/19
19C1063-02 [WS-2]	B226412	500	03/22/19

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226323	50.0	50.0	03/21/19
19C1063-02 [WS-2]	B226323	50.0	50.0	03/21/19

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19C1063-01 [IER OUTFALL]	B226322	100	100	03/21/19
19C1063-02 [WS-2]	B226322	100	100	03/21/19

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19C1063-03 [VES-306-MW]	B226497	1	5.00	03/25/19	
19C1063-04 [WS-5]	B226497	2.5	5.00	03/25/19	
19C1063-05 [WS-8]	B226497	1	5.00	03/25/19	
19C1063-06 [WS-1]	B226497	2.5	5.00	03/25/19	
19C1063-07 [WS-7]	B226497	2.5	5.00	03/25/19	
19C1063-08 [WS-4]	B226497	1	5.00	03/25/19	

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
19C1063-01 [IER OUTFALL]	B226466	50.0	03/24/19
19C1063-02 [WS-2]	B226466	50.0	03/24/19

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226497 - SW-846 5030B										
Blank (B226497-BLK1)				Prepared & A	Analyzed: 03/	25/19				
Acetone	ND	10	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichloromethane	ND	1.0	μg/L							
Bromoform	ND	1.0	μg/L							
Bromomethane	ND	2.0	$\mu g/L$							R-05
2-Butanone (MEK)	ND	10	$\mu g/L$							V-05
n-Butylbenzene	ND	1.0	$\mu g \! / \! L$							
sec-Butylbenzene	ND	1.0	$\mu g \! / \! L$							
tert-Butylbenzene	ND	1.0	$\mu \text{g/L}$							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g \! / \! L$							
Carbon Disulfide	ND	5.0	$\mu \text{g/L}$							
Carbon Tetrachloride	ND	1.0	$\mu \text{g/L}$							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L							
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropage	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L μg/I							
2,2-Dichloropropane 1,1-Dichloropropene	ND	1.0 0.50	μg/L μg/L							
cis-1,3-Dichloropropene	ND ND	0.50	μg/L μg/L							
trans-1,3-Dichloropropene	ND ND	0.40								
Diethyl Ether	ND ND	2.0	μg/L μg/L							
Diisopropyl Ether (DIPE)	ND ND	0.50	μg/L μg/L							V-05
1,4-Dioxane	ND ND	50	μg/L μg/L							V-05 V-16
Ethylbenzene	ND ND	1.0	μg/L μg/L							4-10
Hexachlorobutadiene	ND ND	0.60	μg/L μg/L							
2-Hexanone (MBK)		10	μg/L μg/L							
Isopropylbenzene (Cumene)	ND ND	1.0	μg/L μg/L							
p-Isopropyltoluene (p-Cymene)	ND ND	1.0	μg/L μg/L							
Methyl tert-Butyl Ether (MTBE)	ND ND	1.0	μg/L μg/L							
Methylene Chloride	ND ND	5.0	μg/L μg/L							
4-Methyl-2-pentanone (MIBK)	ND ND	10	μg/L μg/L							
Naphthalene	ND ND	2.0	μg/L μg/L							
raphinalelle	ND	2.0	μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B226497 - SW-846 5030B										
Blank (B226497-BLK1)				Prepared &	Analyzed: 03	/25/19				
n-Propylbenzene	ND	1.0	μg/L							
Styrene	ND	1.0	$\mu g/L$							
1,1,1,2-Tetrachloroethane	ND	1.0	$\mu g/L$							
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$							
Tetrachloroethylene	ND	1.0	$\mu g/L$							
Tetrahydrofuran	ND	2.0	$\mu g/L$							L-04, V-05
Toluene	ND	1.0	$\mu g/L$							
1,2,3-Trichlorobenzene	ND	2.0	μg/L							
1,2,4-Trichlorobenzene	ND	1.0	μg/L							
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$							
1,1,2-Trichloroethane	ND	1.0	μg/L							
Trichloroethylene	ND	1.0	$\mu g/L$							
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L							
1,2,3-Trichloropropane	ND	2.0	μg/L							
1,2,4-Trimethylbenzene	ND	1.0	μg/L							
1,3,5-Trimethylbenzene	ND	1.0	μg/L							
Vinyl Chloride	ND	2.0	μg/L							
m+p Xylene	ND	2.0	μg/L							
o-Xylene	ND	1.0	μg/L							
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		100	70-130			
Surrogate: Toluene-d8	25.5		$\mu g/L$	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	26.2		$\mu g/L$	25.0		105	70-130			
LCS (B226497-BS1)				Prepared &	Analyzed: 03	/25/19				
Acetone	132	10	$\mu g/L$	100		132	40-160			L-14
tert-Amyl Methyl Ether (TAME)	10.6	0.50	$\mu g/L$	10.0		106	70-130			
Benzene	10.3	1.0	μg/L	10.0		103	70-130			
Bromobenzene	10.6	1.0	μg/L	10.0		106	70-130			
Bromochloromethane	12.2	1.0	μg/L	10.0		122	70-130			V-20
Bromodichloromethane	11.7	1.0	μg/L	10.0		117	70-130			
Bromoform	10.3	1.0	μg/L	10.0		103	70-130			
Bromomethane	6.44	2.0	μg/L	10.0		64.4	40-160			L-14, R-05
2-Butanone (MEK)	81.5	10	μg/L	100		81.5	40-160			V-05
n-Butylbenzene	9.49	1.0	μg/L	10.0		94.9	70-130			
sec-Butylbenzene	9.59	1.0	μg/L	10.0		95.9	70-130			
tert-Butylbenzene	9.39	1.0	μg/L	10.0		93.9	70-130			
tert-Butyl Ethyl Ether (TBEE)	9.85	0.50	μg/L	10.0		98.5	70-130			
Carbon Disulfide	11.3	5.0	μg/L	10.0		113	70-130			V-36
Carbon Tetrachloride	11.5	1.0	μg/L	10.0		115	70-130			
Chlorobenzene	10.6	1.0	μg/L	10.0		106	70-130			
Chlorodibromomethane	12.2	0.50	μg/L	10.0		122	70-130			
Chloroethane	10.4	2.0	μg/L	10.0		104	70-130			
Chloroform	10.8	2.0	μg/L	10.0		108	70-130			
Chloromethane	7.31	2.0	μg/L	10.0		73.1	40-160			
2-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130			
4-Chlorotoluene	10.6	1.0	μg/L	10.0		106	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	9.09	2.0	μg/L	10.0		90.9	70-130			
1,2-Dibromoethane (EDB)	11.0	0.50	μg/L	10.0		110	70-130			
Dibromomethane	11.8	1.0	μg/L	10.0		118	70-130			V-20
1,2-Dichlorobenzene	10.0	1.0	μg/L	10.0		100	70-130			
1,3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130			
1,4-Dichlorobenzene	9.94	1.0	μg/L	10.0		99.4	70-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226497 - SW-846 5030B		· · · · · · · · · · · · · · · · · · ·								
LCS (B226497-BS1)				Prepared & A	Analyzed: 03	/25/19				
Dichlorodifluoromethane (Freon 12)	9.85	2.0	μg/L	10.0		98.5	40-160			V-20
1,1-Dichloroethane	10.8	1.0	μg/L	10.0		108	70-130			
1,2-Dichloroethane	11.0	1.0	μg/L	10.0		110	70-130			
1,1-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130			
cis-1,2-Dichloroethylene	10.6	1.0	μg/L	10.0		106	70-130			
trans-1,2-Dichloroethylene	11.1	1.0	μg/L	10.0		111	70-130			
1,2-Dichloropropane	10.1	1.0	μg/L	10.0		101	70-130			
1,3-Dichloropropane	10.5	0.50	μg/L	10.0		105	70-130			
2,2-Dichloropropane	13.4	1.0	μg/L	10.0		134 *	70-130			L-07, V-20
1,1-Dichloropropene	11.1	0.50	μg/L	10.0		111	70-130			
cis-1,3-Dichloropropene	11.5	0.40	μg/L	10.0		115	70-130			
trans-1,3-Dichloropropene	11.8	0.40	μg/L	10.0		118	70-130			V-20
Diethyl Ether	10.2	2.0	μg/L	10.0		102	70-130			
Diisopropyl Ether (DIPE)	8.19	0.50	μg/L	10.0		81.9	70-130			V-05
,4-Dioxane	74.0	50	μg/L	100		74.0	40-160			V-16
Ethylbenzene	10.1	1.0	μg/L	10.0		101	70-130			
Hexachlorobutadiene	10.9	0.60	μg/L	10.0		109	70-130			
-Hexanone (MBK)	85.5	10	μg/L	100		85.5	40-160			
sopropylbenzene (Cumene)	10.6	1.0	μg/L	10.0		106	70-130			
-Isopropyltoluene (p-Cymene)	9.41	1.0	μg/L	10.0		94.1	70-130			
Methyl tert-Butyl Ether (MTBE)	11.0	1.0	μg/L	10.0		110	70-130			
Methylene Chloride	8.61	5.0	μg/L	10.0		86.1	70-130			
-Methyl-2-pentanone (MIBK)	76.4	10	μg/L	100		76.4	40-160			
Naphthalene	9.97	2.0	μg/L	10.0		99.7	70-130			
-Propylbenzene	10.4	1.0	μg/L	10.0		104	70-130			
Styrene	10.5	1.0	μg/L	10.0		105	70-130			
1,1,1,2-Tetrachloroethane	11.0	1.0	μg/L	10.0		110	70-130			
,1,2,2-Tetrachloroethane	10.6	0.50	μg/L	10.0		106	70-130			
Fetrachloroethylene	12.7	1.0	μg/L	10.0		127	70-130			V-20
Tetrahydrofuran	6.90	2.0	μg/L	10.0		69.0 *	70-130			L-04, V-05
Foluene	10.8	1.0	μg/L	10.0		108	70-130			,
1,2,3-Trichlorobenzene	11.4	2.0	μg/L	10.0		114	70-130			
,2,4-Trichlorobenzene	10.8	1.0	μg/L	10.0		108	70-130			
1,1,1-Trichloroethane	11.6	1.0	μg/L	10.0		116	70-130			
1,1,2-Trichloroethane	11.5	1.0	μg/L	10.0		115	70-130			
Frichloroethylene	11.1	1.0	μg/L	10.0		111	70-130			
Frichlorofluoromethane (Freon 11)	11.3	2.0	μg/L	10.0		113	70-130			V-20
,2,3-Trichloropropane	10.2	2.0	μg/L	10.0		102	70-130			
,2,4-Trimethylbenzene	9.16	1.0	μg/L	10.0		91.6	70-130			
,3,5-Trimethylbenzene	10.4	1.0	μg/L	10.0		104	70-130			
/inyl Chloride	9.11	2.0	μg/L	10.0		91.1	70-130			
n+p Xylene	20.5	2.0	μg/L	20.0		103	70-130			
-Xylene	10.4	1.0	μg/L	10.0		104	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.8		μg/L	25.0		95.0	70-130			
Surrogate: Toluene-d8	25.5		μg/L	25.0		102	70-130			
Surrogate: 4-Bromofluorobenzene	26.0		μg/L	25.0		104	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226497 - SW-846 5030B										
LCS Dup (B226497-BSD1)				Prepared & A	Analyzed: 03	/25/19				
Acetone	127	10	μg/L	100		127	40-160	3.69	20	
ert-Amyl Methyl Ether (TAME)	10.5	0.50	$\mu g/L$	10.0		105	70-130	0.949	20	
Benzene	10.3	1.0	$\mu g/L$	10.0		103	70-130	0.291	20	
Bromobenzene	10.5	1.0	$\mu g/L$	10.0		105	70-130	0.570	20	
Bromochloromethane	12.2	1.0	$\mu g/L$	10.0		122	70-130	0.164	20	V-20
Bromodichloromethane	11.8	1.0	$\mu g/L$	10.0		118	70-130	0.426	20	
Bromoform	10.5	1.0	$\mu g/L$	10.0		105	70-130	1.73	20	
romomethane	7.98	2.0	$\mu g/L$	10.0		79.8	40-160	21.4	* 20	R-05
-Butanone (MEK)	78.9	10	$\mu g/L$	100		78.9	40-160	3.19	20	V-05
-Butylbenzene	9.28	1.0	$\mu g/L$	10.0		92.8	70-130	2.24	20	
ec-Butylbenzene	9.44	1.0	$\mu g/L$	10.0		94.4	70-130	1.58	20	
rt-Butylbenzene	9.22	1.0	$\mu g \! / \! L$	10.0		92.2	70-130	1.83	20	
rt-Butyl Ethyl Ether (TBEE)	9.68	0.50	$\mu g/L$	10.0		96.8	70-130	1.74	20	
arbon Disulfide	10.9	5.0	$\mu g/L$	10.0		109	70-130	3.51	20	V-36
arbon Tetrachloride	11.4	1.0	$\mu g/L$	10.0		114	70-130	0.350	20	
hlorobenzene	10.4	1.0	μg/L	10.0		104	70-130	2.66	20	
hlorodibromomethane	12.2	0.50	μg/L	10.0		122	70-130	0.411	20	
hloroethane	10.2	2.0	μg/L	10.0		102	70-130	2.13	20	
hloroform	10.6	2.0	μg/L	10.0		106	70-130	2.15	20	
hloromethane	7.26	2.0	μg/L	10.0		72.6	40-160	0.686	20	
Chlorotoluene	10.5	1.0	μg/L	10.0		105	70-130	0.570	20	
Chlorotoluene	10.3	1.0	μg/L	10.0		103	70-130	2.58	20	
2-Dibromo-3-chloropropane (DBCP)	9.01	2.0	μg/L	10.0		90.1	70-130	0.884	20	
2-Dibromoethane (EDB)	11.2	0.50	μg/L	10.0		112	70-130	1.71	20	
ibromomethane	12.1	1.0	μg/L	10.0		121	70-130	2.67	20	V-20
2-Dichlorobenzene	9.96	1.0	μg/L	10.0		99.6	70-130	0.401	20	. 20
3-Dichlorobenzene	10.2	1.0	μg/L	10.0		102	70-130	0.0981	20	
4-Dichlorobenzene	9.85	1.0	μg/L	10.0		98.5	70-130	0.910	20	
ichlorodifluoromethane (Freon 12)	9.40	2.0	μg/L	10.0		94.0	40-160	4.68	20	V-20
1-Dichloroethane	10.3	1.0	μg/L	10.0		103	70-130	4.94	20	· 20
2-Dichloroethane	11.3	1.0	μg/L	10.0		113	70-130	3.50	20	
1-Dichloroethylene	11.4	1.0	μg/L	10.0		114	70-130	1.90	20	
s-1,2-Dichloroethylene	11.4	1.0	μg/L μg/L	10.0		104	70-130	2.19	20	
ans-1,2-Dichloroethylene		1.0	μg/L μg/L	10.0		104	70-130	2.19	20	
2-Dichloropropane	10.8	1.0	μg/L μg/L	10.0		108	70-130	0.892	20	
3-Dichloropropane	10.0	0.50	μg/L μg/L	10.0		100			20	
2-Dichloropropane	10.4	1.0	μg/L μg/L	10.0		130	70-130 70-130	1.05 2.94	20	V-20
1-Dichloropropene	13.0	0.50								V-20
s-1,3-Dichloropropene	10.7	0.30	μg/L μg/L	10.0		107	70-130	4.13	20	
ans-1,3-Dichloropropene	11.5			10.0		115	70-130	0.522	20	V 20
iethyl Ether	11.6	0.40	μg/L	10.0		116	70-130	0.855	20	V-20
iisopropyl Ether (DIPE)	10.7	2.0	μg/L μg/I	10.0		107	70-130	4.58	20	11.05
* **	8.11	0.50	μg/L	10.0		81.1	70-130	0.982	20	V-05
4-Dioxane	74.8	50	μg/L	100		74.8	40-160	1.20	20	V-16
thylbenzene	9.98	1.0	μg/L	10.0		99.8	70-130	0.997	20	
exachlorobutadiene	10.6	0.60	μg/L	10.0		106	70-130	2.69	20	
Hexanone (MBK)	80.9	10	μg/L	100		80.9	40-160	5.53	20	
opropylbenzene (Cumene)	10.4	1.0	μg/L	10.0		104	70-130	2.19	20	
-Isopropyltoluene (p-Cymene)	9.37	1.0	μg/L	10.0		93.7	70-130	0.426	20	
Iethyl tert-Butyl Ether (MTBE)	10.8	1.0	μg/L	10.0		108	70-130	1.19	20	
Iethylene Chloride	8.52	5.0	μg/L	10.0		85.2	70-130	1.05	20	
-Methyl-2-pentanone (MIBK)	74.5	10	μg/L	100		74.5	40-160	2.47	20	
aphthalene	10.1	2.0	$\mu g/L$	10.0		101	70-130	1.69	20	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226497 - SW-846 5030B										
LCS Dup (B226497-BSD1)				Prepared &	Analyzed: 03	/25/19				
n-Propylbenzene	10.3	1.0	μg/L	10.0		103	70-130	1.64	20	
Styrene	10.2	1.0	μg/L	10.0		102	70-130	2.22	20	
1,1,1,2-Tetrachloroethane	10.6	1.0	μg/L	10.0		106	70-130	3.61	20	
1,1,2,2-Tetrachloroethane	10.1	0.50	μg/L	10.0		101	70-130	5.10	20	
Tetrachloroethylene	12.4	1.0	μg/L	10.0		124	70-130	2.23	20	V-20
Tetrahydrofuran	6.19	2.0	μg/L	10.0		61.9 *	70-130	10.8	20	L-04, V-05
Toluene	10.6	1.0	$\mu g/L$	10.0		106	70-130	2.24	20	
1,2,3-Trichlorobenzene	11.2	2.0	$\mu g/L$	10.0		112	70-130	2.13	20	
1,2,4-Trichlorobenzene	11.1	1.0	$\mu g/L$	10.0		111	70-130	2.74	20	
1,1,1-Trichloroethane	11.3	1.0	μg/L	10.0		113	70-130	3.05	20	
1,1,2-Trichloroethane	11.4	1.0	μg/L	10.0		114	70-130	0.699	20	
Trichloroethylene	10.9	1.0	μg/L	10.0		109	70-130	2.36	20	
Trichlorofluoromethane (Freon 11)	10.9	2.0	μg/L	10.0		109	70-130	3.43	20	V-20
1,2,3-Trichloropropane	9.69	2.0	$\mu g/L$	10.0		96.9	70-130	4.64	20	
1,2,4-Trimethylbenzene	9.15	1.0	$\mu g/L$	10.0		91.5	70-130	0.109	20	
1,3,5-Trimethylbenzene	10.3	1.0	μg/L	10.0		103	70-130	1.83	20	
Vinyl Chloride	9.30	2.0	$\mu g/L$	10.0		93.0	70-130	2.06	20	
m+p Xylene	20.2	2.0	$\mu g/L$	20.0		101	70-130	1.42	20	
o-Xylene	10.2	1.0	μg/L	10.0		102	70-130	1.85	20	
Surrogate: 1,2-Dichloroethane-d4	24.4		μg/L	25.0		97.6	70-130			
Surrogate: Toluene-d8	25.4		$\mu g/L$	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	25.9		$\mu g/L$	25.0		104	70-130			

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Batch B226492 - SW-846 5030B										
Blank (B226492-BLK1)				Prepared &	Analyzed: 03	/25/19				
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	μg/L							
Benzene	ND	1.00	μg/L							
ert-Butyl Alcohol (TBA)	ND	20.0	μg/L							
Carbon Tetrachloride	ND	2.00	μg/L							
,2-Dichlorobenzene	ND	2.00	μg/L							
,3-Dichlorobenzene	ND	2.00	μg/L							
,4-Dichlorobenzene	ND	2.00	μg/L							
2-Dichloroethane	ND	2.00	μg/L							
is-1,2-Dichloroethylene	ND	1.00	μg/L							
1-Dichloroethane	ND	2.00	μg/L							
1-Dichloroethylene	ND	2.00	μg/L							
4-Dioxane	ND	50.0	μg/L							
thanol	ND	50.0	μg/L							
thylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
lethylene Chloride	ND	5.00	μg/L							
etrachloroethylene	ND	2.00	μg/L							
bluene	ND	1.00	μg/L							
1,1-Trichloroethane	ND	2.00	μg/L							
1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
inyl Chloride	ND	2.00	μg/L							
+p Xylene Xylene	ND ND	2.00 2.00	μg/L μg/L							
urrogate: 1,2-Dichloroethane-d4	25.6	2.00	μg/L μg/L	25.0		102	70-130			
urrogate: Toluene-d8	24.8		μg/L μg/L	25.0		99.2	70-130			
urrogate: 4-Bromofluorobenzene	23.6		μg/L μg/L	25.0		94.5	70-130			
CS (B226492-BS1)				Prepared &	Analyzed: 03	/25/19				
cetone	280	50.0	μg/L	200	maryzea. 03	138	70-160			
rt-Amyl Methyl Ether (TAME)	21	0.500	μg/L μg/L	20.0		103	70-100			
enzene	18	1.00	μg/L μg/L	20.0		90.2	65-135			
rt-Butyl Alcohol (TBA)	170	20.0	μg/L μg/L	200		84.7	40-160			
arbon Tetrachloride	18	2.00	μg/L μg/L	20.0		89.2	70-130			
2-Dichlorobenzene	22	2.00	μg/L μg/L	20.0		110	65-135			
3-Dichlorobenzene	22	2.00	μg/L	20.0		111	70-130			
4-Dichlorobenzene	21	2.00	μg/L	20.0		106	65-135			
2-Dichloroethane	17	2.00	μg/L	20.0		83.0	70-130			
is-1,2-Dichloroethylene	19	1.00	μg/L	20.0		94.4	70-130			
,1-Dichloroethane	19	2.00	μg/L	20.0		95.4	70-130			
1-Dichloroethylene	21	2.00	μg/L	20.0		106	50-150			
4-Dioxane	190	50.0	μg/L	200		94.7	40-130			
thanol	240	50.0	μg/L	200		120	40-160			
thylbenzene	20	2.00	μg/L	20.0		101	60-140			
Iethyl tert-Butyl Ether (MTBE)	21	2.00	μg/L	20.0		107	70-130			
1ethylene Chloride	23	5.00	μg/L	20.0		114	60-140			
etrachloroethylene	18	2.00	μg/L	20.0		91.4	70-130			
oluene	19	1.00	μg/L	20.0		93.4	70-130			
,1,1-Trichloroethane	18	2.00	μg/L	20.0		87.8	70-130			
,1,2-Trichloroethane	20	2.00	$\mu g/L$	20.0		102	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226492 - SW-846 5030B										
CS (B226492-BS1)				Prepared &	Analyzed: 03	/25/19				
/inyl Chloride	22	2.00	$\mu g/L$	20.0		108	5-195			
n+p Xylene	41	2.00	μg/L	40.0		103	70-130			
-Xylene	21	2.00	μg/L	20.0		107	70-130			
urrogate: 1,2-Dichloroethane-d4	25.2		$\mu g/L$	25.0		101	70-130			
urrogate: Toluene-d8	24.7		$\mu g/L$	25.0		98.8	70-130			
urrogate: 4-Bromofluorobenzene	25.9		$\mu g/L$	25.0		104	70-130			
atch B226552 - SW-846 5030B										
lank (B226552-BLK1)				Prepared: 03	/25/19 Anal	yzed: 03/27/	19			
cetone	ND	50.0	$\mu g/L$							
rt-Amyl Methyl Ether (TAME)	ND	0.500	$\mu g/L$							
enzene	ND	1.00	$\mu \text{g/L}$							
rt-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
arbon Tetrachloride	ND	2.00	$\mu g/L$							
2-Dichlorobenzene	ND	2.00	$\mu g/L$							
3-Dichlorobenzene	ND	2.00	$\mu g/L$							
4-Dichlorobenzene	ND	2.00	$\mu g/L$							
2-Dichloroethane	ND	2.00	$\mu \text{g/L}$							
s-1,2-Dichloroethylene	ND	1.00	$\mu \text{g}/L$							
1-Dichloroethane	ND	2.00	$\mu g/L$							
1-Dichloroethylene	ND	2.00	μg/L							
4-Dioxane	ND	50.0	μg/L							
hanol	ND	50.0	μg/L							
hylbenzene	ND	2.00	μg/L							
ethyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
ethylene Chloride	ND	5.00	μg/L							
etrachloroethylene	ND	2.00	μg/L							
oluene	ND	1.00	μg/L							
1,1-Trichloroethane	ND	2.00	μg/L							
1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
inyl Chloride	ND	2.00	μg/L							
+p Xylene	ND	2.00	μg/L							
Xylene	ND	2.00	μg/L		_	_		_		_
urrogate: 1,2-Dichloroethane-d4	24.0		μg/L	25.0		96.0	70-130			
urrogate: Toluene-d8	24.7 25.8		μg/L μα/Ι	25.0 25.0		98.8 103	70-130 70-130			
arrogate: 4-Bromofluorobenzene	23.0		μg/L	25.0	1/25/10 A 1					
CS (B226552-BS1)	140	50.0	μg/L	Prepared: 03 200	0/23/19 Anal	72.5	70-160			
rt-Amyl Methyl Ether (TAME)	140	0.500	μg/L μg/L	20.0		83.4	70-100			
enzene	17	1.00	μg/L	20.0		83.3	65-135			
rt-Butyl Alcohol (TBA)	120	20.0	μg/L	200		57.5	40-160			
arbon Tetrachloride	120	2.00	μg/L μg/L	20.0		94.2	70-130			
2-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		95.8	65-135			
3-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		96.0	70-130			
4-Dichlorobenzene	19	2.00	μg/L μg/L	20.0		94.6	65-135			
2-Dichloroethane		2.00	μg/L μg/L	20.0		93.9	70-130			
s-1,2-Dichloroethylene	19	1.00	μg/L μg/L	20.0		78.1	70-130			
1-Dichloroethane	16	2.00	μg/L μg/L	20.0		83.2	70-130			
1-Dichloroethylene	17	2.00	μg/L μg/L	20.0		99.2	50-150			
1 Diemorochiyiene	20 120	50.0	μg/L μg/L	20.0		59.2 59.9	40-130			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B226552 - SW-846 5030B										
LCS (B226552-BS1)				Prepared: 03	/25/19 Analy	yzed: 03/27/1	9			
Ethanol	93	50.0	μg/L	200		46.5	40-160			
Ethylbenzene	19	2.00	$\mu g/L$	20.0		93.0	60-140			
Methyl tert-Butyl Ether (MTBE)	17	2.00	$\mu g/L$	20.0		86.6	70-130			
Methylene Chloride	13	5.00	$\mu g/L$	20.0		66.6	60-140			
Tetrachloroethylene	22	2.00	$\mu g/L$	20.0		109	70-130			
Toluene	18	1.00	$\mu \text{g/L}$	20.0		91.4	70-130			
1,1,1-Trichloroethane	19	2.00	$\mu g/L$	20.0		93.8	70-130			
1,1,2-Trichloroethane	19	2.00	$\mu g/L$	20.0		94.2	70-130			
Trichloroethylene	19	2.00	$\mu g/L$	20.0		96.6	65-135			
Vinyl Chloride	16	2.00	$\mu g/L$	20.0		79.2	5-195			
m+p Xylene	38	2.00	$\mu g/L$	40.0		95.2	70-130			
o-Xylene	19	2.00	$\mu g/L$	20.0		95.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.2		μg/L	25.0		93.0	70-130			
Surrogate: Toluene-d8	24.6		μg/L	25.0		98.6	70-130			
Surrogate: 4-Bromofluorobenzene	24.9		$\mu g/L$	25.0		99.8	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226623 - SW-846 3510C										
Blank (B226623-BLK1)				Prepared: 03	3/23/19 Analy	yzed: 03/26/1	9			
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.30	$\mu g/L$							
Anthracene (SIM)	ND	0.20	$\mu g/L$							
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	μg/L							
Chrysene (SIM)	ND	0.20	μg/L							
Dibenz(a,h)anthracene (SIM)	ND	0.20	μg/L							
luoranthene (SIM)	ND	0.50	μg/L							
fluorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.20	μg/L							
Naphthalene (SIM)	ND	1.0	μg/L							
entachlorophenol (SIM)	ND	1.0	μg/L							
Phenanthrene (SIM)	ND	0.050	μg/L							
yrene (SIM)	ND	1.0	μg/L							
· · · · · · · · · · · · · · · · · · ·				200		50.2	15 110			
urrogate: 2-Fluorophenol (SIM)	119		μg/L	200		59.3	15-110			
urrogate: Phenol-d6 (SIM)	80.0		μg/L	200		40.0	15-110			
urrogate: Nitrobenzene-d5	95.1		μg/L	100		95.1	30-130			
urrogate: 2-Fluorobiphenyl	67.6		μg/L	100		67.6	30-130			
urrogate: 2,4,6-Tribromophenol (SIM)	204		μg/L	200		102	15-110			
urrogate: p-Terphenyl-d14	81.5		μg/L	100		81.5	30-130			
CS (B226623-BS1)				Prepared: 03	3/23/19 Analy	yzed: 03/26/1	9			
Acenaphthene (SIM)	43.8	6.0	μg/L	50.0		87.6	40-140			
cenaphthylene (SIM)	44.6	6.0	μg/L	50.0		89.2	40-140			
anthracene (SIM)	46.5	4.0	μg/L	50.0		93.1	40-140			
enzo(a)anthracene (SIM)	42.6	1.0	μg/L	50.0		85.2	40-140			
enzo(a)pyrene (SIM)	48.9	2.0	μg/L	50.0		97.8	40-140			
enzo(b)fluoranthene (SIM)	49.0	1.0	μg/L	50.0		98.0	40-140			
enzo(g,h,i)perylene (SIM)	46.6	10	μg/L	50.0		93.3	40-140			
Benzo(k)fluoranthene (SIM)	48.6	4.0	μg/L	50.0		97.2	40-140			
Bis(2-ethylhexyl)phthalate (SIM)	48.2	20	μg/L	50.0		96.4	40-140			
hrysene (SIM)	44.6	4.0	μg/L	50.0		89.1	40-140			
Dibenz(a,h)anthracene (SIM)	48.8	4.0	$\mu \text{g/L}$	50.0		97.6	40-140			
luoranthene (SIM)	44.1	10	$\mu g \! / \! L$	50.0		88.2	40-140			
luorene (SIM)	43.8	20	$\mu g \! / \! L$	50.0		87.6	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	48.9	4.0	$\mu g/L$	50.0		97.7	40-140			
aphthalene (SIM)	40.6	20	$\mu g/L$	50.0		81.2	40-140			
entachlorophenol (SIM)	42.2	20	$\mu g \! / \! L$	50.0		84.4	40-140			
henanthrene (SIM)	44.8	1.0	$\mu g \! / \! L$	50.0		89.6	40-140			
yrene (SIM)	44.3	20	$\mu g/L$	50.0		88.6	40-140			
urrogate: 2-Fluorophenol (SIM)	104		μg/L	200		51.8	15-110			
urrogate: Phenol-d6 (SIM)	72.9		μg/L	200		36.4	15-110			
urrogate: Nitrobenzene-d5	89.1		μg/L	100		89.1	30-130			
surrogate: 2-Fluorobiphenyl	73.6		μg/L	100		73.6	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	194		μg/L	200		96.9	15-110			
Surrogate: p-Terphenyl-d14	82.2		μg/L μg/L	100		82.2	30-130			

‡

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B226623 - SW-846 3510C											_
LCS Dup (B226623-BSD1)				Prepared: 03	5/23/19 Analy	zed: 03/26/	19				
Acenaphthene (SIM)	43.9	6.0	μg/L	50.0		87.8	40-140	0.228	20		_
Acenaphthylene (SIM)	44.7	6.0	μg/L	50.0		89.5	40-140	0.358	20		
Anthracene (SIM)	46.4	4.0	μg/L	50.0		92.9	40-140	0.215	20		
Benzo(a)anthracene (SIM)	42.6	1.0	μg/L	50.0		85.2	40-140	0.00	20		
Benzo(a)pyrene (SIM)	48.6	2.0	μg/L	50.0		97.3	40-140	0.574	20		
Benzo(b)fluoranthene (SIM)	48.7	1.0	μg/L	50.0		97.5	40-140	0.573	20		
Benzo(g,h,i)perylene (SIM)	46.6	10	μg/L	50.0		93.2	40-140	0.0858	20		
Benzo(k)fluoranthene (SIM)	48.2	4.0	μg/L	50.0		96.4	40-140	0.826	20		
Bis(2-ethylhexyl)phthalate (SIM)	48.6	20	μg/L	50.0		97.2	40-140	0.785	20		
Chrysene (SIM)	44.6	4.0	μg/L	50.0		89.2	40-140	0.0449	20		
Dibenz(a,h)anthracene (SIM)	48.6	4.0	μg/L	50.0		97.1	40-140	0.452	20		
Fluoranthene (SIM)	44.3	10	μg/L μg/L	50.0		88.6	40-140	0.432	20		
Fluorene (SIM)		20	μg/L μg/L	50.0		88.9	40-140	1.40	20		
Indeno(1,2,3-cd)pyrene (SIM)	44.4	4.0	μg/L μg/L	50.0		97.2	40-140	0.534	20		
Naphthalene (SIM)	48.6	20									
	40.7	20	μg/L μg/I	50.0		81.3	40-140	0.148	20		
Pentachlorophenol (SIM)	42.4		μg/L ug/I	50.0		84.8	40-140	0.378	20		
Phenanthrene (SIM)	44.7	1.0	μg/L	50.0		89.4	40-140	0.223	20		
Pyrene (SIM)	44.2	20	μg/L	50.0		88.5	40-140	0.136	20		
Surrogate: 2-Fluorophenol (SIM)	108		$\mu g/L$	200		53.9	15-110				
Surrogate: Phenol-d6 (SIM)	73.4		$\mu g/L$	200		36.7	15-110				
Surrogate: Nitrobenzene-d5	89.2		$\mu g/L$	100		89.2	30-130				
Surrogate: 2-Fluorobiphenyl	71.8		$\mu g/L$	100		71.8	30-130				
Surrogate: 2,4,6-Tribromophenol (SIM)	201		$\mu g/L$	200		101	15-110				
Surrogate: p-Terphenyl-d14	78.5		$\mu g/L$	100		78.5	30-130				
Matrix Spike (B226623-MS1)	Sou	rce: 19C1063-	02	Prepared: 03	3/23/19 Analy	zed: 03/26/	19				
Acenaphthene (SIM)	44.7	6.0	$\mu g/L$	50.0	ND	89.5	40-140				
Acenaphthylene (SIM)	45.2	6.0	μg/L	50.0	ND	90.4	40-140				
Anthracene (SIM)	46.4	4.0	μg/L	50.0	ND	92.8	40-140				
Benzo(a)anthracene (SIM)	42.8	1.0	μg/L	50.0	ND	85.5	40-140				
Benzo(a)pyrene (SIM)	48.5	2.0	$\mu g/L$	50.0	ND	97.0	40-140				
Benzo(b)fluoranthene (SIM)	48.3	1.0	$\mu g/L$	50.0	ND	96.5	40-140				
Benzo(g,h,i)perylene (SIM)	46.5	10	$\mu g\!/\!L$	50.0	ND	93.0	40-140				
Benzo(k)fluoranthene (SIM)	47.2	4.0	$\mu g/L$	50.0	ND	94.4	40-140				
Bis(2-ethylhexyl)phthalate (SIM)	49.7	20	$\mu g\!/\!L$	50.0	ND	99.3	40-140				
Chrysene (SIM)	44.5	4.0	$\mu \text{g/L}$	50.0	ND	89.0	40-140				
Dibenz(a,h)anthracene (SIM)	48.1	4.0	$\mu g/L$	50.0	ND	96.1	40-140				
Fluoranthene (SIM)	44.7	10	μg/L	50.0	ND	89.3	40-140				
Fluorene (SIM)	45.1	20	μg/L	50.0	ND	90.2	40-140				
Indeno(1,2,3-cd)pyrene (SIM)	48.7	4.0	μg/L	50.0	ND	97.4	40-140				
Naphthalene (SIM)	41.7	20	μg/L	50.0	ND		40-140				
Pentachlorophenol (SIM)	46.7	20	μg/L	50.0	ND	93.4	40-140				
Phenanthrene (SIM)	44.6	1.0	μg/L	50.0	ND	89.1	40-140				
Pyrene (SIM)	45.3	20	μg/L	50.0	ND	90.6	40-140				
Surrogate: 2-Fluorophenol (SIM)	84.9		μg/L	200		42.4	15-110				_
Surrogate: Phenol-d6 (SIM)	56.1		μg/L	200		28.1	15-110				
Surrogate: Nitrobenzene-d5	93.4		μg/L	100		93.4	30-130				
Surrogate: 2-Fluorobiphenyl	72.9		μg/L	100		72.9	30-130				
Surrogate: 2,4,6-Tribromophenol (SIM)	207		$\mu g/L$	200		104	15-110				

Surrogate: 2-Fluorobiphenyl

Surrogate: p-Terphenyl-d14

Surrogate: 2,4,6-Tribromophenol (SIM)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226623 - SW-846 3510C										
Matrix Spike Dup (B226623-MSD1)	Sourc	e: 19C1063-	02	Prepared: 03	3/23/19 Analyz	zed: 03/26/1	19			
Acenaphthene (SIM)	41.3	6.0	μg/L	50.0	ND	82.6	40-140	8.04	30	
Acenaphthylene (SIM)	41.8	6.0	$\mu g\!/\!L$	50.0	ND	83.6	40-140	7.81	30	
Anthracene (SIM)	42.3	4.0	$\mu g\!/\!L$	50.0	ND	84.6	40-140	9.24	30	
Benzo(a)anthracene (SIM)	37.9	1.0	$\mu g\!/\!L$	50.0	ND	75.8	40-140	12.1	30	
Benzo(a)pyrene (SIM)	42.7	2.0	μg/L	50.0	ND	85.4	40-140	12.7	30	
Benzo(b)fluoranthene (SIM)	42.8	1.0	μg/L	50.0	ND	85.5	40-140	12.1	30	
Benzo(g,h,i)perylene (SIM)	40.7	10	$\mu g\!/\!L$	50.0	ND	81.4	40-140	13.3	30	
Benzo(k)fluoranthene (SIM)	41.8	4.0	$\mu g\!/\!L$	50.0	ND	83.6	40-140	12.2	30	
Bis(2-ethylhexyl)phthalate (SIM)	42.7	20	μg/L	50.0	ND	85.4	40-140	15.1	30	
Chrysene (SIM)	39.4	4.0	μg/L	50.0	ND	78.8	40-140	12.2	30	
Dibenz(a,h)anthracene (SIM)	41.7	4.0	μg/L	50.0	ND	83.3	40-140	14.3	30	
Fluoranthene (SIM)	40.9	10	$\mu g/L$	50.0	ND	81.8	40-140	8.79	30	
Fluorene (SIM)	42.1	20	$\mu g/L$	50.0	ND	84.3	40-140	6.83	30	
Indeno(1,2,3-cd)pyrene (SIM)	42.3	4.0	$\mu g/L$	50.0	ND	84.6	40-140	14.1	30	
Naphthalene (SIM)	38.7	20	μg/L	50.0	ND	77.3	40-140	7.66	30	
Pentachlorophenol (SIM)	44.1	20	$\mu \text{g/L}$	50.0	ND	88.2	40-140	5.72	30	
Phenanthrene (SIM)	40.5	1.0	$\mu g/L$	50.0	ND	81.0	40-140	9.55	30	
Pyrene (SIM)	39.0	20	$\mu g/L$	50.0	ND	77.9	40-140	15.0	30	
Surrogate: 2-Fluorophenol (SIM)	78.1		μg/L	200		39.0	15-110			
Surrogate: Phenol-d6 (SIM)	50.7		$\mu g/L$	200		25.4	15-110			
Surrogate: Nitrobenzene-d5	84.3		$\mu g/L$	100		84.3	30-130			

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

100

200

100

66.9

98.8

70.1

30-130

15-110

30-130

66.9

198

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226445 - SW-846 3510C										
Blank (B226445-BLK1)				Prepared: 03	3/23/19 Analy	zed: 03/25/	19			
Butylbenzylphthalate	ND	10.0	μg/L							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
Piethylphthalate	ND	10.0	μg/L							
imethylphthalate	ND	10.0	$\mu g/L$							
i-n-octylphthalate	ND	10.0	$\mu \text{g/L}$							
is(2-Ethylhexyl)phthalate	ND	10.0	$\mu \text{g/L}$							
urrogate: 2-Fluorophenol	117		μg/L	200		58.5	15-110			
arrogate: Phenol-d6	78.3		μg/L	200		39.1	15-110			
arrogate: Nitrobenzene-d5	92.7		μg/L	100		92.7	30-130			
urrogate: 2-Fluorobiphenyl	98.8		μg/L	100		98.8	30-130			
urrogate: 2,4,6-Tribromophenol	213		μg/L	200		106	15-110			
rrogate: p-Terphenyl-d14	98.6		$\mu g/L$	100		98.6	30-130			
CS (B226445-BS1)				Prepared: 03	3/23/19 Analy	zed: 03/25/	19			
utylbenzylphthalate	45.1	10.0	μg/L	50.0		90.3	10-152			
i-n-butylphthalate	44.9	10.0	μg/L	50.0		89.9	10-120			
iethylphthalate	44.5	10.0	μg/L	50.0		89.0	10-120			
imethylphthalate	45.6	10.0	μg/L	50.0		91.3	10-120			
i-n-octylphthalate	44.4	10.0	μg/L	50.0		88.8	4-146			
is(2-Ethylhexyl)phthalate	46.7	10.0	μg/L	50.0		93.5	8-158			
urrogate: 2-Fluorophenol	117		μg/L	200		58.3	15-110			
arrogate: Phenol-d6	79.4		μg/L	200		39.7	15-110			
irrogate: Nitrobenzene-d5	91.6		μg/L	100		91.6	30-130			
ırrogate: 2-Fluorobiphenyl	97.9		μg/L	100		97.9	30-130			
arrogate: 2,4,6-Tribromophenol	209		μg/L	200		105	15-110			
rrogate: p-Terphenyl-d14	97.8		μg/L	100		97.8	30-130			
CS Dup (B226445-BSD1)				Prepared: 03	3/23/19 Analy	zed: 03/25/	19			
utylbenzylphthalate	47.5	10.0	μg/L	50.0		95.0	10-152	5.12	60	
i-n-butylphthalate	46.9	10.0	μg/L	50.0		93.9	10-132	4.33	47	
iethylphthalate	46.0	10.0	μg/L	50.0		92.0	10-120	3.36	100	
imethylphthalate	46.9	10.0	μg/L	50.0		93.7	10-120	2.62	183	
i-n-octylphthalate	47.5	10.0	μg/L	50.0		94.9	4-146	6.68	69	
s(2-Ethylhexyl)phthalate	48.7	10.0	μg/L μg/L	50.0		97.3	8-158	4.03	82	
		10.0						1.05	02	
urrogate: 2-Fluorophenol	116		μg/L	200		58.0	15-110			
urrogate: Phenol-d6	80.3		μg/L	200		40.1	15-110			
urrogate: Nitrobenzene-d5	89.8		μg/L	100		89.8	30-130			
urrogate: 2-Fluorobiphenyl	97.2		μg/L	100		97.2	30-130			
urrogate: 2,4,6-Tribromophenol	203		μg/L	200		102	15-110			
ırrogate: p-Terphenyl-d14	95.4		μg/L	100		95.4	30-130			
atrix Spike (B226445-MS1)		rce: 19C1063-			3/23/19 Analy					
utylbenzylphthalate	46.6	10.0	μg/L	50.0	ND		10-152			
-n-butylphthalate	46.4	10.0	μg/L	50.0	ND		10-120			
ethylphthalate	45.6	10.0	μg/L	50.0	ND		10-120			
methylphthalate	45.6	10.0	μg/L	50.0	ND		10-120			
-n-octylphthalate	45.5	10.0	μg/L	50.0	ND		4-146			
s(2-Ethylhexyl)phthalate	45.5	10.0	μg/L	50.0	ND	91.0	8-158			
rrogate: 2-Fluorophenol	89.3		$\mu g/L$	200		44.6	15-110			
nrrogate: Phenol-d6	61.5		$\mu g/L$	200		30.7	15-110			
urrogate: Nitrobenzene-d5	93.4		$\mu g/L$	100		93.4	30-130			
urrogate: 2-Fluorobiphenyl	91.4		μg/L	100		91.4	30-130			

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD		l
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	╛

Batch B226445 - SW-846 3510C										
Matrix Spike (B226445-MS1)	Source	e: 19C1063-	02	Prepared: 03/22	3/19 Analyz	zed: 03/26	5/19			
Surrogate: 2,4,6-Tribromophenol	197		μg/L	200		98.5	15-110			
Surrogate: p-Terphenyl-d14	92.4		$\mu g/L$	100		92.4	30-130			
Matrix Spike Dup (B226445-MSD1)	Source	e: 19C1063-	02	Prepared: 03/2	3/19 Analyz	zed: 03/26	5/19			
Butylbenzylphthalate	41.0	10.0	μg/L	50.0	ND	82.0	10-152	12.9	60	
Di-n-butylphthalate	40.8	10.0	μg/L	50.0	ND	81.6	10-120	12.7	47	
Diethylphthalate	40.6	10.0	μg/L	50.0	ND	81.2	10-120	11.7	100	
Dimethylphthalate	40.7	10.0	μg/L	50.0	ND	81.5	10-120	11.2	183	
Di-n-octylphthalate	40.2	10.0	μg/L	50.0	ND	80.5	4-146	12.3	69	
Bis(2-Ethylhexyl)phthalate	40.4	10.0	$\mu g/L$	50.0	ND	80.7	8-158	12.0	82	
Surrogate: 2-Fluorophenol	81.5		μg/L	200		40.7	15-110			
Surrogate: Phenol-d6	54.6		$\mu g/L$	200		27.3	15-110			
Surrogate: Nitrobenzene-d5	83.4		$\mu g/L$	100		83.4	30-130			
Surrogate: 2-Fluorobiphenyl	82.4		$\mu g/L$	100		82.4	30-130			
Surrogate: 2,4,6-Tribromophenol	177		$\mu g/L$	200		88.3	15-110			
Surrogate: p-Terphenyl-d14	81.2		μg/L	100		81.2	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B226617 - SW-846 3510C										
Blank (B226617-BLK1)				Prepared: 03	5/27/19 Analy	zed: 03/28	19			
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	μg/L							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	μg/L							
Aroclor-1242 [2C]	ND	0.100	μg/L							
Aroclor-1248	ND	0.100	μg/L							
Aroclor-1248 [2C]	ND	0.100	$\mu g\!/\!L$							
Aroclor-1254	ND	0.100	μg/L							
Aroclor-1254 [2C]	ND	0.100	μg/L							
Aroclor-1260	ND	0.100	$\mu g \! / \! L$							
Aroclor-1260 [2C]	ND	0.100	$\mu g\!/\!L$							
Surrogate: Decachlorobiphenyl	0.736		μg/L	1.00		73.6	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.774		$\mu g/L$	1.00		77.4	30-150			
Surrogate: Tetrachloro-m-xylene	0.778		$\mu g/L$	1.00		77.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.820		$\mu g/L$	1.00		82.0	30-150			
LCS (B226617-BS1)				Prepared: 03	5/27/19 Analy	zed: 03/28	19			
Aroclor-1016	0.388	0.200	μg/L	0.500		77.6	50-140			
Aroclor-1016 [2C]	0.429	0.200	μg/L	0.500		85.8	50-140			
Aroclor-1260	0.364	0.200	μg/L	0.500		72.8	8-140			
Aroclor-1260 [2C]	0.374	0.200	$\mu g/L$	0.500		74.8	8-140			
Surrogate: Decachlorobiphenyl	1.51		μg/L	2.00		75.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.59		μg/L μg/L	2.00		79.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.51		μg/L	2.00		75.6	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.60		μg/L	2.00		80.1	30-150			
LCS Dup (B226617-BSD1)				Prepared: 03	5/27/19 Analy	zed: 03/28	19			
Aroclor-1016	0.420	0.200	μg/L	0.500		84.1	50-140	8.03		
Aroclor-1016 [2C]	0.461	0.200	μg/L	0.500		92.1	50-140	7.09		
Aroclor-1260	0.403	0.200	μg/L	0.500		80.6	8-140	10.2		
Aroclor-1260 [2C]	0.413	0.200	μg/L	0.500		82.7	8-140	10.0		
Surrogate: Decachlorobiphenyl	1.68		μg/L	2.00		83.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.00 1.77		μg/L μg/L	2.00		88.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.61		μg/L μg/L	2.00		80.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.68		μg/L μg/L	2.00		84.0	30-150			
Matrix Spike (B226617-MS1)	Som	rce: 19C1063-		Prepared: 03	5/27/19 Analy	zed: 03/28	/19			
Aroclor-1016	0.191	0.0966	μg/L	0.242	ND		50-140			
Aroclor-1016 [2C]	0.202	0.0966	μg/L μg/L	0.242	ND ND		50-140			
Aroclor-1260		0.0966	μg/L μg/L	0.242	ND ND		8-140			
Aroclor-1260 [2C]	0.168 0.174	0.0966	μg/L μg/L	0.242	ND ND		8-140			
Surrogate: Decachlorobiphenyl	0.659			0.966	110	68.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.696		μg/L μα/I	0.966		72.1	30-150			
Surrogate: Tetrachloro-m-xylene	0.677		μg/L μα/I	0.966		70.0	30-150			
			μg/L μα/Ι			76.1	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.735		μg/L	0.966		/0.1	30-130			

Surrogate: Tetrachloro-m-xylene [2C]

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226617 - SW-846 3510C										
Matrix Spike Dup (B226617-MSD1)	Sour	ce: 19C1063-	01	Prepared: 03	/27/19 Analy	zed: 03/28/	19			
Aroclor-1016	0.217	0.0966	μg/L	0.242	ND	90.0	50-140	13.2	36	
Aroclor-1016 [2C]	0.217	0.0966	$\mu \text{g/L}$	0.242	ND	89.7	50-140	7.02	36	
Aroclor-1260	0.186	0.0966	μg/L	0.242	ND	77.2	8-140	10.6	38	
Aroclor-1260 [2C]	0.195	0.0966	$\mu g/L$	0.242	ND	80.9	8-140	11.4	38	
Surrogate: Decachlorobiphenyl	0.748		μg/L	0.966		77.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.785		μg/L	0.966		81.3	30-150			
Surrogate: Tetrachloro-m-xylene	0.772		$\mu g/L$	0.966		79.9	30-150			

 $\mu g/L$

0.966

85.2

30-150

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B226466 - EPA 200.8										
lank (B226466-BLK1)				Prepared: 03	3/24/19 Anal	yzed: 03/25/1	9			
ntimony	ND	1.0	μg/L							
rsenic	ND	1.0	μg/L							
'admium	ND	0.20	$\mu g/L$							
hromium	ND	10	$\mu g/L$							
opper	ND	1.0	$\mu g/L$							
ead	ND	0.50	$\mu g/L$							
ickel	ND	5.0	$\mu g/L$							
elenium	ND	5.0	$\mu g/L$							
lver	ND	0.20	$\mu g/L$							
nc	ND	20	$\mu g/L$							
CS (B226466-BS1)				Prepared: 03	3/24/19 Anal	yzed: 03/25/1	9			
ntimony	500	10	μg/L	500		100	85-115			
rsenic	498	10	$\mu g/L$	500		99.5	85-115			
admium	496	2.0	μg/L	500		99.1	85-115			
hromium	515	100	μg/L	500		103	85-115			
opper	1000	10	μg/L	1000		100	85-115			
ead	570	5.0	μg/L	500		114	85-115			
ickel	523	50	μg/L	500		105	85-115			
elenium	486	50	μg/L	500		97.3	85-115			
lver	497	2.0	μg/L	500		99.4	85-115			
nc	1010	200	$\mu \text{g}/L$	1000		101	85-115			
CS Dup (B226466-BSD1)				Prepared: 03	3/24/19 Anal	yzed: 03/25/1	9			
ntimony	516	10	μg/L	500		103	85-115	3.11	20	
rsenic	510	10	μg/L	500		102	85-115	2.48	20	
admium	510	2.0	μg/L	500		102	85-115	2.86	20	
hromium	527	100	μg/L	500		105	85-115	2.34	20	
opper	1040	10	μg/L	1000		104	85-115	3.29	20	
ead	502	5.0	μg/L	500		100	85-115	12.6	20	
ickel	532	50	μg/L	500		106	85-115	1.63	20	
elenium	504	50	μg/L	500		101	85-115	3.63	20	
lver	509	2.0	μg/L	500		102	85-115	2.51	20	
inc	1040	200	μg/L	1000		104	85-115	2.79	20	
atch B226548 - EPA 200.7										
lank (B226548-BLK1)				Prepared: 03	3/25/19 Anal	yzed: 03/26/1	9			
ron	ND	0.050	mg/L	•		•				
.CS (B226548-BS1)				Prepared: 03	3/25/19 Anal	yzed: 03/26/1	9			
ron	3.98	0.050	mg/L	4.00		99.4	85-115			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B226548 - EPA 200.7										
LCS Dup (B226548-BSD1)				Prepared: 03	/25/19 Analy	yzed: 03/26/1	9			
Iron	3.95	0.050	mg/L	4.00		98.8	85-115	0.567	20	
Duplicate (B226548-DUP1)	Sour				/25/19 Analy	yzed: 03/26/1	9			
Iron	0.135	0.050	mg/L		0.128			5.10	20	
Matrix Spike (B226548-MS1)	Sour	rce: 19C1063-	01	Prepared: 03	/25/19 Analy	yzed: 03/26/1	9			
Iron	3.70	0.050	mg/L	4.00	0.128	89.4	70-130			
Batch B226612 - EPA 245.1										
Blank (B226612-BLK1)				Prepared: 03	/26/19 Analy	yzed: 03/27/1	9			
Mercury	ND	0.00010	mg/L							
LCS (B226612-BS1)				Prepared: 03/26/19 Analyzed: 03/27/19						
Mercury	0.00388	0.00010	mg/L	0.00400		96.9	85-115			
LCS Dup (B226612-BSD1)				Prepared: 03	/26/19 Analy	yzed: 03/27/1	9			
Mercury	0.00385	0.00010	mg/L	0.00400		96.3	85-115	0.670	20	
Duplicate (B226612-DUP1)	Sour	rce: 19C1063-	02	Prepared: 03	/26/19 Analy	yzed: 03/27/1	9			
Mercury	ND	0.00010	mg/L		ND			NC	30	
Matrix Spike (B226612-MS1)	Sour	Source: 19C1063-02 P			Prepared: 03/26/19 Analyzed: 03/27/19					
Mercury	0.00379	0.00010	mg/L	0.00400	ND	94.6	75-125			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	result	Diiiit	Cinto	Level	resurt	, with the	Dillito	1012	Limit	110103
Batch B226322 - SM21-22 4500 CL G										
Blank (B226322-BLK1)				Prepared &	Analyzed: 03	5/21/19				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B226322-BS1)				Prepared &	Analyzed: 03	3/21/19				
Chlorine, Residual	1.1	0.020	mg/L	1.29		86.6	76-135			
LCS Dup (B226322-BSD1)				Prepared &	Analyzed: 03	5/21/19				
Chlorine, Residual	1.2	0.020	mg/L	1.29		92.3	76-135	6.38	7.41	
Batch B226323 - SM21-22 3500 Cr B										
Blank (B226323-BLK1)				Prepared &	Analyzed: 03	3/21/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B226323-BS1)				Prepared &	Analyzed: 03	3/21/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	83.2-114			
LCS Dup (B226323-BSD1)				Prepared &	Analyzed: 03	3/21/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	83.2-114	0.00	7.51	
Batch B226345 - EPA 1664B										
Blank (B226345-BLK1)				Prepared &	Analyzed: 03	3/22/19				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B226345-BS1)				Prepared &	Analyzed: 03	3/22/19				
Silica Gel Treated HEM (SGT-HEM)	9.5		mg/L	10.0		95.0	64-132			
Duplicate (B226345-DUP1)	Sour	ce: 19C1063-	01	Prepared &	Analyzed: 03	3/22/19				
Silica Gel Treated HEM (SGT-HEM)	ND	1.6	mg/L		NE)		NC	18	
Matrix Spike (B226345-MS1)	Sour	ce: 19C1063-	01	Prepared &	Analyzed: 03	3/22/19				
Silica Gel Treated HEM (SGT-HEM)	84	14	mg/L	100	NE	84.0	64-132			
Batch B226412 - SM21-22 2540D										
Blank (B226412-BLK1)				Prepared &	Analyzed: 03	3/22/19				
Total Suspended Solids	ND	2.5	mg/L	<u> </u>						
LCS (B226412-BS1)				Prepared &	Analyzed: 03	3/22/19				
Total Suspended Solids	154	10	mg/L	200		77.0	64.3-117			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226601 - EPA 420.1										
Blank (B226601-BLK1)				Prepared: 03	/26/19 Analy	yzed: 03/27/	19			
Phenol	ND	0.050	mg/L							
LCS (B226601-BS1)				Prepared: 03	/26/19 Analy	yzed: 03/27/	19			
Phenol	0.53	0.050	mg/L	0.500		106	72.7-125			
LCS Dup (B226601-BSD1)				Prepared: 03	/26/19 Analy	yzed: 03/27/	19			
Phenol	0.51	0.050	mg/L	0.500		102	72.7-125	4.40	9.52	
Ouplicate (B226601-DUP1)	Sou	rce: 19C1063-	02	Prepared: 03	/26/19 Analy	yzed: 03/27/	19			
henol	ND	0.050	mg/L		ND)		NC	37.2	
Matrix Spike (B226601-MS1)	Sou	rce: 19C1063-	01	Prepared: 03	/26/19 Analy	yzed: 03/27/	19			
Phenol	0.49	0.050	mg/L	0.500	ND	97.3	44.9-141			
Batch B226692 - EPA 300.0										
Blank (B226692-BLK1)				Prepared &	Analyzed: 03	/27/19				
Chloride	ND	1.0	mg/L							
LCS (B226692-BS1)				Prepared &	Analyzed: 03	/27/19				
Chloride	4.8	1.0	mg/L	5.00		95.1	90-110			
LCS Dup (B226692-BSD1)				Prepared &	Analyzed: 03	/27/19				
Chloride	4.7	1.0	mg/L	5.00		94.9	90-110	0.227	20	
Batch B226777 - EPA 300.0										
Blank (B226777-BLK1)				Prepared &	Analyzed: 03	/27/19				
Chloride	ND	1.0	mg/L							
LCS (B226777-BS1)				Prepared &	Analyzed: 03	/27/19				
Chloride	4.8	1.0	mg/L	5.00		96.0	90-110			
LCS Dup (B226777-BSD1)				Prepared &	Analyzed: 03	/27/19				
Chloride	4.8	1.0	mg/L	5.00		95.5	90-110	0.512	20	
Ouplicate (B226777-DUP1)	Sou	rce: 19C1063-	01	Prepared &	Analyzed: 03	/28/19				
Chloride	10000	400	mg/L		10000)		0.686	20	
Matrix Spike (B226777-MS1)	Sou	rce: 19C1063-	01	Prepared &	Analyzed: 03	/28/19				
Chloride	11000	400	mg/L	2000	10000	45.3 *	80-120			MS-07

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B226349 - EPA 504 water										
Blank (B226349-BLK1)				Prepared &	Analyzed: 03	/22/19				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
1,2-Dibromoethane (EDB) [2C]	ND	0.021	$\mu \text{g/L}$							
Surrogate: 1,3-Dibromopropane	1.12		μg/L	1.03		108	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.07		$\mu g/L$	1.03		104	70-130			
LCS (B226349-BS1)				Prepared &	Analyzed: 03	/22/19				
1,2-Dibromoethane (EDB)	0.202	0.021	μg/L	0.180		112	70-130			
1,2-Dibromoethane (EDB) [2C]	0.206	0.021	$\mu \text{g/L}$	0.180		114	70-130			
Surrogate: 1,3-Dibromopropane	1.11		μg/L	1.03		107	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.04		$\mu g/L$	1.03		101	70-130			
LCS Dup (B226349-BSD1)				Prepared &	Analyzed: 03	/22/19				
1,2-Dibromoethane (EDB)	0.241	0.021	μg/L	0.183		131 *	70-130	17.4		
1,2-Dibromoethane (EDB) [2C]	0.237	0.021	$\mu \text{g/L}$	0.183		130	70-130	14.1		
Surrogate: 1,3-Dibromopropane	1.22		μg/L	1.05		117	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.19		$\mu g/L$	1.05		114	70-130			

1,2-Dibromoethane (EDB)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

EPA 504.1

La	ab Sample ID: B22	.6349-BS1	<u> </u>	Da	Date(s) Analyzed: 03/22/2019		03/2	2/2019
Instrument ID (1):			Ins	strument ID				
G	C Column (1):	: ID: (mm)		ım) Gü	C Column (2	2):	ID:	(mm)
	ANALYTE	COL	RT	RT WII	NDOW TO	CONCENTRATION	%RPD	

0.000

0.000

0.000

0.000

1

2

3.193

3.201

0.202

0.206

1,2-Dibromoethane (EDB)

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

EPA 504.1

3.202

3.209

1 2

La	ab Sample ID:	B226349-B	SD1		D	Date(s) Analyzed: 03/22/2019			03/2	2/2019	
In	nstrument ID (1):					Instrument ID (2):					
G	C Column (1):	IC	:	(m	ım) G	GC Column (2):			ID:	(mm)	
	ANALYTE	со		RT	RT W	NDOW TO	CON	CENTRATION	%RPD		

0.000

0.000

0.000

0.000

0.241

0.237

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Sample ID:	B226617-BS1		Date(s) Analyzed:	03/28/2019	03/28/2019	€
Instrument ID (1):	ECD4	_	Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.10.12.12	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.388	
	2	0.000	0.000	0.000	0.429	9.5
Aroclor-1260	1	0.000	0.000	0.000	0.364	
	2	0.000	0.000	0.000	0.374	3.8

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

Lab Sample ID:	B226617-BSD1		Date(s) Analyzed:	03/28/2019	03/28/20	19
Instrument ID (1):	ECD4		Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.420	
	2	0.000	0.000	0.000	0.461	9.3
Aroclor-1260	1	0.000	0.000	0.000	0.403	
	2	0.000	0.000	0.000	0.413	3.2

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

Lab Sample ID: B226617-MS1			Date(s) Analyzed:	03/28/2019	03/28/2019	
Instrument ID (1):	ECD4	-	Instrument ID (2):	ECD4		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12.1.2	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.191	
	2	0.000	0.000	0.000	0.202	6.1
Aroclor-1260	1	0.000	0.000	0.000	0.168	
	2	0.000	0.000	0.000	0.174	2.3

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike Dup

Lab Sample ID: B226617-MSD1			Date(s) Analyzed:	03/28/2019 03/28/20		19
Instrument ID (1): ECD4			Instrument ID (2):	ECD4		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12.112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.217	
	2	0.000	0.000	0.000	0.217	1.4
Aroclor-1260	1	0.000	0.000	0.000	0.186	
	2	0.000	0.000	0.000	0.195	2.6

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but
L-14	the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Compound classified by MA CAM as difficult with acceptable recoveries of 40-160%. Recovery does not meet 70-130% criteria but does meet difficult compound criteria.
MS-07	Matrix spike recovery is outside of control limits. Analysis is in control based on laboratory fortified blank recovery. Possibility of sample matrix effects that lead to low bias for reported result or non-homogeneous sample aliquot cannot be eliminated.
PR-08	pH of sample (pH 5) is outside of method specified preservation criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
RL-11	Elevated reporting limit due to high concentration of target compounds.
RL-14	Elevated reporting limit due to foaming sample matrix. MA CAM reporting limit not met.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-36	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
Z-01	SM4500 test had a calibration point outside acceptable back calculation recovery. Reanalysis yielded similar non-conformance.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
2-Butanone (MEK)	MA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Disulfide	MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Dibromomethane	MA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Dichlorodifluoromethane (Freon 12)	NY,MA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,2-Dichloroethylene	NY,MA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA
2-Hexanone (MBK)	MA

CERTIFICATIONS

Certified Analyses included in this Report

Lead Nickel

Analyte	Certifications	
624.1 in Water		
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA	
4-Methyl-2-pentanone (MIBK)	NY,MA	
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC	
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
Styrene	NY,MA	
Naphthalene	NY,MA,NC	
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Toluene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2,4-Trichlorobenzene	MA,NC	
1,2,4-Trimethylbenzene	MA	
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,3,5-Trimethylbenzene	MA	
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA	
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
m+p Xylene	CT,NY,MA,NH,RI,NC	
o-Xylene	CT,NY,MA,NH,RI,NC	
625.1 in Water		
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
1,3-Dichlorobenzene	MA,NC	
1,4-Dichlorobenzene	MA,NC	
1,2-Dichlorobenzene	MA,NC	
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA	
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA	
Phenol	CT,MA,NH,NY,NC,RI,ME,VA	
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Fluorophenol	NC	
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	

CT,MA,NH,NY,RI,NC,ME,VA

CT,MA,NH,NY,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

1,2-Dibromoethane (EDB)

NY

Certified Analyses included in this Report	
Analyte	Certifications
EPA 200.8 in Water	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC NVMA VA ME NILCT DI
EPA 420.1 in Water	NC,NY,MA,VA,ME,NH,CT,RI
EPA 420.1 in water	
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	,,,,,,
Chlorine, Residual	CT,MA,RI,ME
SM21-22 4500 CN E in Water	
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA
SW-846 8260C in Water	
Acetone	CT,NH,NY,ME
tert-Amyl Methyl Ether (TAME)	NH,NY,ME
Benzene	CT,NH,NY,ME
Bromobenzene	ME
Bromochloromethane	NH,NY,ME
Bromodichloromethane	CT,NH,NY,ME
Bromoform	CT,NH,NY,ME
Bromomethane	CT,NH,NY,ME
2-Butanone (MEK)	CT,NH,NY,ME
n-Butylbenzene	NY,ME
sec-Butylbenzene	NY,ME
tert-Butylbenzene	NY,ME
tert-Butyl Ethyl Ether (TBEE)	NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	NY,ME
4-Chlorotoluene	NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY

CERTIFICATIONS

Certified Analyses included in this Report

W-846 8260C in Water Dibromomethane 1,2-Dichlorobenzene	
1.2-Dichlorobenzene	NH,NY,ME
1,2-Biemorobenzene	CT,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,3-Dichloropropane	NY,ME
2,2-Dichloropropane	NH,NY,ME
1,1-Dichloropropene	NH,NY,ME
cis-1,3-Dichloropropene	CT,NH,NY,ME
trans-1,3-Dichloropropene	CT,NH,NY,ME
Diisopropyl Ether (DIPE)	NH,NY,ME
Ethylbenzene	CT,NH,NY,ME
Hexachlorobutadiene	CT,NH,NY,ME
2-Hexanone (MBK)	CT,NH,NY,ME
Isopropylbenzene (Cumene)	NY,ME
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,ME
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,ME
Methylene Chloride	CT,NH,NY,ME
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,ME
Naphthalene	NH,NY,ME
n-Propylbenzene	CT,NH,NY,ME
Styrene	CT,NH,NY,ME
1,1,1,2-Tetrachloroethane	CT,NH,NY,ME
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME
Tetrachloroethylene	CT,NH,NY,ME
Toluene	CT,NH,NY,ME
1,2,3-Trichlorobenzene	NH,NY,ME
1,2,4-Trichlorobenzene	CT,NH,NY,ME
1,1,1-Trichloroethane	CT,NH,NY,ME
1,1,2-Trichloroethane	CT,NH,NY,ME
Trichloroethylene	CT,NH,NY,ME
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME
1,2,3-Trichloropropane	NH,NY,ME
1,2,4-Trimethylbenzene	NY,ME
1,3,5-Trimethylbenzene	NY,ME
Vinyl Chloride	CT,NH,NY,ME
m+p Xylene	CT,NH,NY,ME
o-Xylene	CT,NH,NY,ME

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

1901018

Doc # 381 Rev 1_03242017

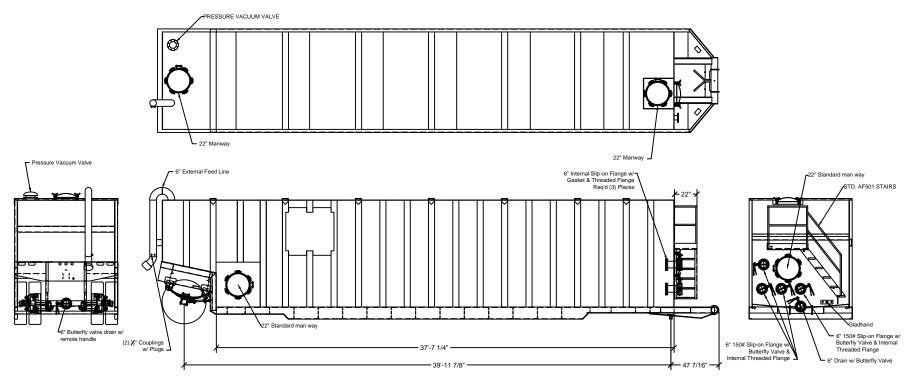
http://www.contestiabs.com

CON-KESK® Phone: 413-525-2332	CHAIN OF CL	CHAIN OF CUSTODY RECORD		39 Spruce Street	Page of 2
		The release of the		L	
	7-Day	10-Day			# of Containers
Niosalino + lints)M	Due Date:	Ó			² Preservation Code
5. W. S	100 cm (100 cm) (100				³ Container Code
Phone: 1808 Sar 950 N	1-Day	3-Day	¥	ANALYSIS REQUESTED	
ENERTH AVE (LAISE	2-Day	4-Day			O Field Filtered
Project Location: (N) GLL	(A)	1 Delivery			
Project Number:	Format: PDF	EXCEL [2]	্ব		
Project Manager: DG(の) Kurlく, La	Other:		Gy		
Con-Test Quote Name/Number: V)	CLP Like Data Pkg Required:	equired:	~ _		O Field Filtered
Invoice Recipient:	Email To: KUCK, (INA DOUSE MEDICAL			O Lab to Fifter
Sampled By: (B)	Fax To #;	0	برد درخ		
Con-Test Client Sample ID / Description	Beginning Ending Composite	e Grab Matrix Conc	S.S.		Matrix Codes:
					GW = Ground Water
I TEK OGAKII	7	7 52 7	>		ww = waste water Dw = Drinking Water
d Mar WS-2	3/20 1520	1 (EV) [L]	7		A = Air S = Soil
3 NES. 280-MW	3/20 1345	J.			SL = Sludge
4 WS-5	5021 11/	7			0 = Other (please
K WS.8	3/2, 1405				derine)
1					2 Presentation Codes
	3/21 15/2				l = lced
2·SM /	1/1 12:15				H = HCL
m-5/1/8	00'				N = Nitric Acid
	8				11 11
		**************************************	*		X = Sodium Hydroxide T = Sodium
Comments:					Thiosulfate
		Please use the	ollowing codes to	Please use the following codes to indicate possible sample concentration	on define)
		-	within the Con	within the Conc Code column above:	La casa de la composição de la composiçã
			, M - Medium; L	H • High; M • Medium; L • Low; C • Clean; U • Unknown	3 Container Codes:
Relinquished by: (signature) Date/Time:	The second section of the second seco	Special Requirements	equirements		G = Glass P = Plactic
	60-2	MCP Certification Form Required	n Required		ST = Sterile
(1/1/1) 3:30m 3/21/99		CT RCP	CT RCP Required		V = Viai S = Summa Canister
Relindushed by (signature)		RCP Certification Form Required	n Required	ANALYTICAL LABORATORY	
Selfed by (Agnature) Date/Time		MA State OW Required	Sourired		define)
3.3, 2,6 1011	# 1 E E 1 C E	PWSID #		NELAC and Alth-LAP, LLC Accredited	
52 inquished by: (signature) Date/Time:	Project Entity Government	Municipality	MWRA	Other Chromatogram	PCB ONLY
22 peived by: (signature) Date/Time:		21)]		Non Soxhlet
	(1) (c) (c)	Di Owill Icid	WI DW		

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False


Client	کی	production of the state of the		D-4-	1/2.114		Time	1/2: 7	
Receiv	-	<u>SL</u>		Date	3/21/19		ime	18hs	
How were th	*	In Cooler	<u> </u>	No Cooler		On Ice	<u> </u>	_ No Ice	
receiv	/ed?	Direct from Samp	ling			Ambient		Melted Ice	
Were samp	aloc within		By Gun #	3		Actual Tem	p-33, 2.6	-	
Temperatu		τ	By Blank #			Actual Tem	,		
•	Custody Se				re Samnie	s Tampered	***************************************	NA	
	COC Relin		NA	-	-	ree With Sar		<u>N/F1</u>	
		eaking/loose caps	on any sam	•	onani Ag سر	ice with oar	ripics:		
		st T	on any sam			ved within he	oldina time?		
Did COC ii		Client	ميد.	Analysis	سخد الماعا (Libies)		er Name		
pertinent Inf		Project		. Analysis . ID's	-/	<u>.</u>	Dates/Times		
•		d out and legible?	<u>'</u>	. 103		_ Conection	Dates/Times	'—— 1	
Are there La		-		•	Who wa	s notified?			
Are there Ru			F	-		s notified?			
Are there Sh			<u>į</u> į į	•		s notified?	***************************************		
Is there enou		.2	٠	•	vviio wa	3 Hotinea :			
		ere applicable?	F	•	MS/MSD?				
	-	• •		<u> </u>		samples rec	usirod?		
Proper Medi				-	On COC?		ulleur		
Were trip bla				Anial °		<u>F</u>	Base	~~ ^	
Do all sampl				Acid	121		Dase	DIT	
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	16	1 Liter		4		z Amb.	ļ
HCL-	20	500 mL Amb.	9	500 mL				nb/Clear	ļ
Meoh-		250 mL Amb.		250 mL		(0		nb/Clear	
Bisulfate-		Flashpoint		Col./Ba	*-			nb/Clear	ļ
DI-		Other Glass		Other				core	L
Thiosulfate-		SOC Kit	***************************************	Plasti			Frozen:		
Sulfuric-		Perchlorate		Zipl	ock				
				Unused I	Media				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	······	1 Liter				z Amb.	
HCL-		500 mL Amb.		500 mL	Plastic		8oz An	nb/Clear	<u> </u>
Meoh-		250 mL Amb.		250 mL	~~~~			nb/Clear	
Bisulfate-		Col./Bacteria			<u>point</u>			nb/Clear	
DI-		Other Plastic		Other				core	
Thiosulfate-		SOC Kit		Plasti			Frozen:		
Sulfuric-		Perchlorate		Zipl	ock				
Comments:									
0 10 1	1.1	coorific	1-01						

a Trip blanks received

		MADE	P MCP Analytical N	Method Report Cer	tification Form					
Laboratory Name: Con-Test Analytical Laboratory Project #: 19C1063										
Project Location: Chelsea, MA RTN:										
This F	orm provide	s certifications for	the following data set	t: [list Laboratory Sa	mple ID Number(s)]					
190	C1063-01 thr	u 19C1063-09								
Matri	ces:	Soil	Wa	ater						
CA	AM Protoco	ol (check all that	below)							
	VOC A (X)	7470/7471 Hg CAM IIIB ()	MassDEP VPH CAM IV A ()	8082 PCB CAM V A ()	9014 Total Cyanide/PAC	6860 Perchlo	orate			
OAW	11 74 (74)	OAW IIID ()	OAWTV A()	OAW VA()	CAM VI A ()	I	/III B ()			
	SVOC B ()	7010 Metals CAM III C ()	MassDEP VPH CAM IV C ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassD CAM I	EP APH			
CAIVI	п <i>в</i> ()	CAWIII C ()	CAIVITY C ()	CAIVI V B ()	CAW VI B ()	CAIVITA				
	Metals III A ()	6020 Metals CAM III D ()	MassDEP EPH CAM IV B ()	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15 CAM I				
	Affirmative response to Questions A throughF is required for "Presumptive Certainty" status									
A Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?							□No¹			
B Were the analytical method(s) and all associated QC requirements specificed in the selected CAM protocol(s) followed?							□No¹			
C Were all required corrective actions and analytical response actions specified in the selected CAM							□No¹			
protocol(s) implemented for all identified performance standard non-conformances? Does the laboratory report comply with all the reporting requirements specified in CAM VII A, Quality Assurance and Quality Control Guidlines for the Acquisition and Reporting of Analytical Data?						☑ Yes ☑ Yes	□No¹			
E a VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).						☐Yes	□No¹			
Εb	ADM 1.TO 45 M # 1 1 1 W # 1 1 1 1 1 1 1 1 1 1 1 1 1 1						□No¹			
F Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all No responses to Qestions A through E)?						☐ Yes ☑ Yes	□No¹			
			and I below is require			I				
G	protocol(s)?									
			resumptive Certainty" described in 310 CMI	<u>-</u>	ssarily meet the data us WSC-07-350.	sability				
Н	Were all QC p	perfomance standards s	specified in the CAM proto	ocol(s) achieved?		□ _{Yes}	\square_{No^1}			
Were results reported for the complete analyte list specified in the selected CAM protocol(s)?						☑ Yes	□No¹			
1 _{All}	Negative resp	onses must be addre	essed in an attached Er	nvironmental Laborato	ry case narrative.					
thos	se responsibl	-	nformation, the mater		ipon my personal inqui analytical report is, to ti	-				
Sigi	nature:	hisa 1	forthungton -	Position:	Project Manager					
Prir	Printed Name: Lisa A. Worthington Date: 03/28/19									

Appendix C

Cutsheets

STANDARD SPECIFICATION

CAPACITY: 21,000 GALLONS (500 BBL)

SIDE SHEETS: 1/4" A36 PLATE TOP SHEET: 1/4" A36 PLATE FRONT SHEET: 1/4" A36 PLATE REAR SHEET: 1/4" A36 PLATE

FLOOR: 1/4" A36 PLATE

MAIN FLOOR RAILS: 12" x 20.7# STRUCTURAL CHANNEL

FLOOR CROSSMEMBERS: 1/4" A36 PLATE

SIDE STAKES: ONE PIECE 3/16" A36 PLATE SUSPENSION: 3 LEAF SPRING, 22,500 LBS. CACPACITY

AXLE: 77.5" TRACK, 22,500 LBS. CAPACITY

TIRES: 11R22.5

WHEELS: 8.25 x 22.5 STEEL

MANWAYS: 3 - 22" DIA. FRONT & TOP

1 - 22" DIA. CURB SIDE

VALVES: 1 - BLAYLOCK PRESSURE VALVE

5 - 6" BUTTERFLY (FRONT)

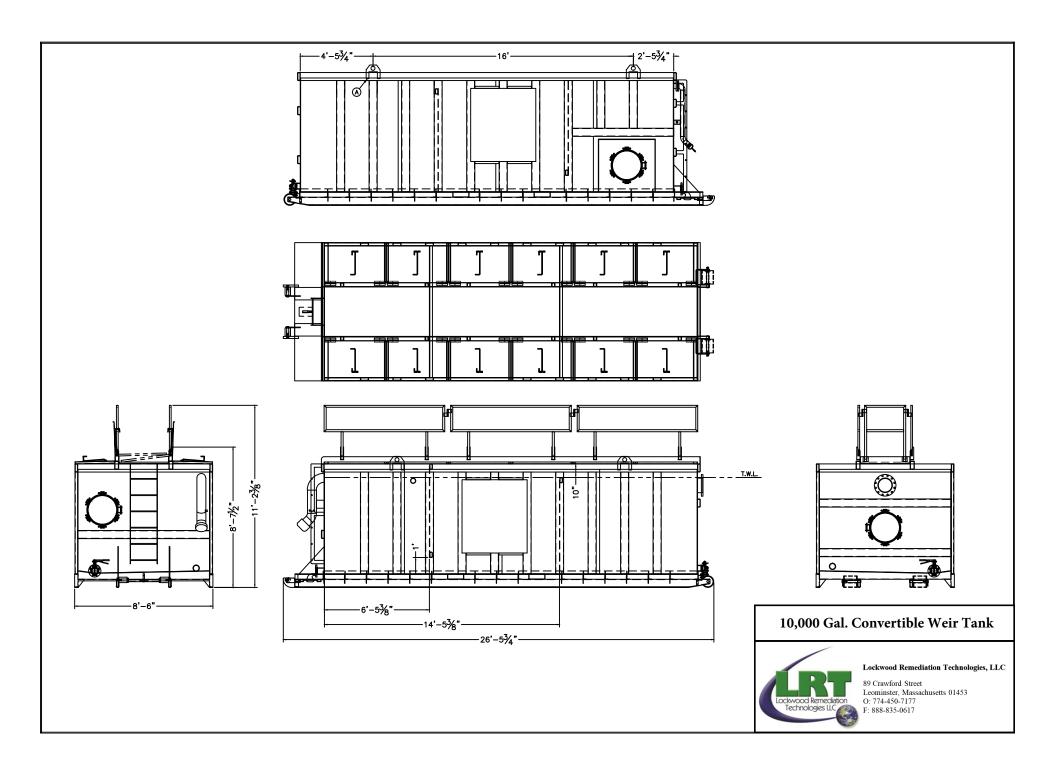
1 - 6" BUTTERFLY VALVE (REAR DRAIN)

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)

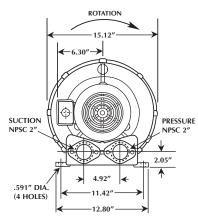
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)

PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.


(EXTERIOR) PRIMER COAT EPOXY 3.0 TO 4.0 MILS D.F.T. (EXTERIOR) FINISH COAT POLURETHANE 3.0 TO 4.0 D.F.T.

21,000 Gal. Frac Tank


Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

VFC600

The VFC600 is a single-stage ring compressor with a maximum pressure of 118 in. H2O, a maximum vacuum of 98 in. H2O, and a maximum capacity of 206 SCFM. It comes complete

with a direct-drive, 4.5 horsepower TEFC motor capable of operating on a wide range of voltages, and on 50 or 60 Hz. A pilot-duty thermal protector is standard equipment on all 3-phase

models. All versions have NEMA class B insulation, are UL recognized, CSA certified, and CE. 575 Volt units are CSA certified only.

SPECIFICATIONS		NS yatas	A TAY TO THE STATE OF THE STATE	A ST	, Arat ree	not of	Way Strike	dig Air.	A A Series	The second secon			
		Model No.	Hz	Lov	w Voltage/High Vo		in. H ₂ O	in. H ₂ O	SCFM	SCFM	°F(°C)	lbs.(kg)	
	e.	VFC600A-7W	60	200-240/400-480	12-11/6.0-5.5	78-90/39-45	118	98	206	56	126(70)	114(52)	
	Phase		50	190-230/380-460	9.2-10.5/4.6-5.2	88-102/44-51	86	72	175	28	108(65)	114(32)	
	6	VFC600A-5W	60	575	4.4	36	118	98	206	56	126(70)	114(52)	

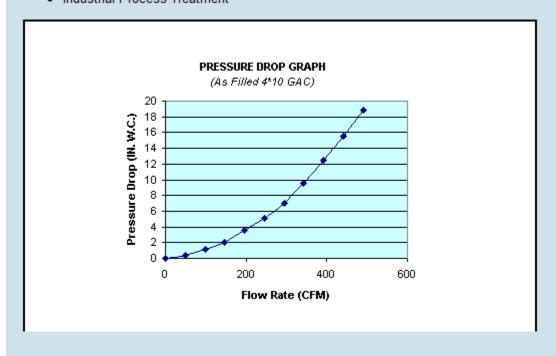
ACCESSORIES-For additional accessories: See pages 28-37.

Description	Vacuum Relief Valve	Pressure Relief Valve	Inlet Filter	Inlet Filter Cover	Inlet Filter/Receiver	Exhaust Silencer/Muffler
Model No.	VV6	PV6	F-67	C-67	R30P2.0	VFY-026A
See Page No.	33	33	28	28	31	30

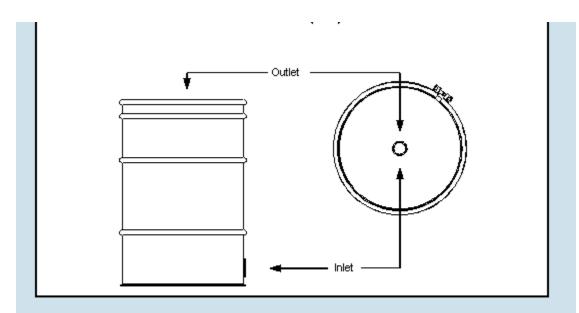
(E)

NOTE: Maximum allowable time at deadhead is 60 seconds.

89 Crawford Street


Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


VFD SERIES FILTERS MODEL VFD-110

The VFD-110 filter is a media filter vessel designed to treat vapor streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. The sturdy construction makes these filter vessels ideal for long term treatment units. Some applications include:

- · Soil Vapor Extraction Treatment
- · Air Stripper Off Gas Treatment
- Odor Removal System
- Storage Tank Purge Vapor Treatment
- Pilot Study
- · Industrial Process Treatment

,	VFD-110 S	SPECIFICATIONS	
Overall Height	erall Height 3'7"		CS/CS (False Floor)
Diameter	32"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	2"	External Coating	Urethane Enamel
Drain / Vent (FNPT)	OPT	Maximum Pressure / Temp	4 PSIG / 250° F
GAC Fill (lbs)	350	Cross Sectional Bed Area	4.9 FT ²
Shipping / Operational Weight (lbs)	450/600	Bed Depth/Volume	2.6 FT / 12.5 FT ³

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7
Capacity	GPH	0.50	1.00	2.00	4.00	10.00
nominal	GPD	12	24	48	96	240
(max.)	LPH	1.9	3.8	7.6	15.1	37.9
Pressure	PSIG	150	150	110	110	80
(max.)	BAR	10	10	7	7	5.6
Connections:	Tubing	Street, management		38" I.D. X .5	경상 [2014] [2014] [2014] [2014]	

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

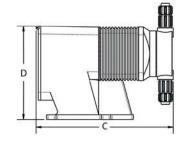
Average Current Draw:

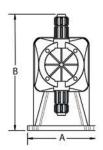
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

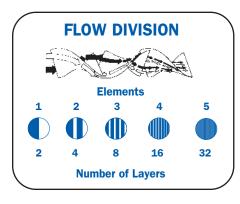
Custom Engineered Designs – Pre-Engineered Systems

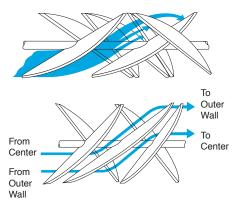

Pre-Engineered Systems

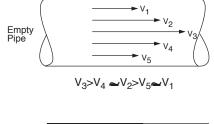

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

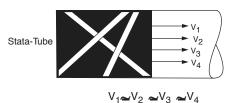
Dimensions

Series HV Dimensions (inches)								
Model No.	Α	В	С	D	Shipping Weight			
LVB3	5.4	9.3	9.5	7.5	13			
LVF4	5.4	10.8	10.8	7.5	18			
LVG4	5.4	9.5	10.6	7.5	18			
LVG5	5.4	10.8	10.8	7.5	18			
LVH7	6.1	11.5	11	8.2	25			


NOTE: Inches X 2.54 = cm







Principles of Operation

000000000

$$Blending = f\left\{ \mathsf{Re}, \mu, \frac{\mu_1}{\mu_2}, \frac{p_1}{p_2}, \frac{V_1}{V_2}, v, n, \frac{L}{D}, lnj \right\}$$

Where Re = Reynolds Number μ = Absolute viscosity

 μ_1/μ_2 = Viscosity ration of unmixed streams p_1/p_2 = Density ratio of unmixed streams V_1/V_2 = Volumetric ratio of unmixed streams

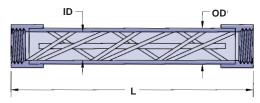
v = Shear rate

n = Number of elements


L/D = Element length to diameter ratioInj = Injection method of additive stream

Reynolds No	Spiral Mixer No Elements	Flow Characteristics		
<10	18	Laminar (creeping flow)		
10 to 100	12	Laminar through Transitional		
100 to 1000	6	Transitional		
1000 to 5000	4	Turbulent		
>5000	2	Turbulent		

50 SERIESStata-tube™ PVC Mixer

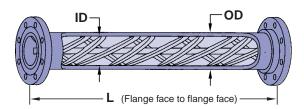


The Series 50 Stata-tube[™] is an effective answer to your mixing requirements. Operating in-line, with **no moving parts**, this mixer blends and disperses treatment chemicals into waste water streams. Compared to competitive mixers, its unique baffling design ensures complete mixing in a shorter length and lower pressure drop.

The Series 50 are easily installed in new or existing process lines. They are available in pipe sizes from 3/8" to 18" diameter. Construction materials include PVC, CPVC and Polypropylene.

PIPE MIXERS 3/8" through 2"

Elements: Polypropylene, Non Removable


Housing: PVC Type 1 (white or gray)

 ${\it Clear\ PVC\ Housing}\ {\rm is\ available,\ contact\ factory.}$

CPVC also Available.

PART NUMBER	NUMBER OF STAGES	ID INCH	OD INCH	END FNPT INCH	L INCH	PRESSURE LIMITATION psi @ 75°F	PIPE SCHEDULE
050-031F	7	0.43	0.675	3/8	5.7	850	80
050-032F	14	0.43	0.675	3/8	7.0	850	
050-061	7	0.69	1.050	3/4	7.0	690	80
050-062	14	0.69	1.050	3/4	10.5	690	
050-081	7	0.91	1.315	1	8.2	630	80
050-082	14	0.91	1.315	1	12.6	630	
050-121	7	1.38	1.660	1 1/4	10.3	370	40
050-122	14	1.38	1.660	1 1/4	17.5	370	
050-161	5	2.05	2.375	2	11.3	280	40
050-162	10	2.05	2.375	2	19.3	280	

PROCESS MIXERS 3" through 12"

Elements: PVC or CPVC Type 1, Removable

Housing: PVC, Type 1

Flanges: FFSO, Van Stone ASA #150 Drilling

Side Ports: Available upon request

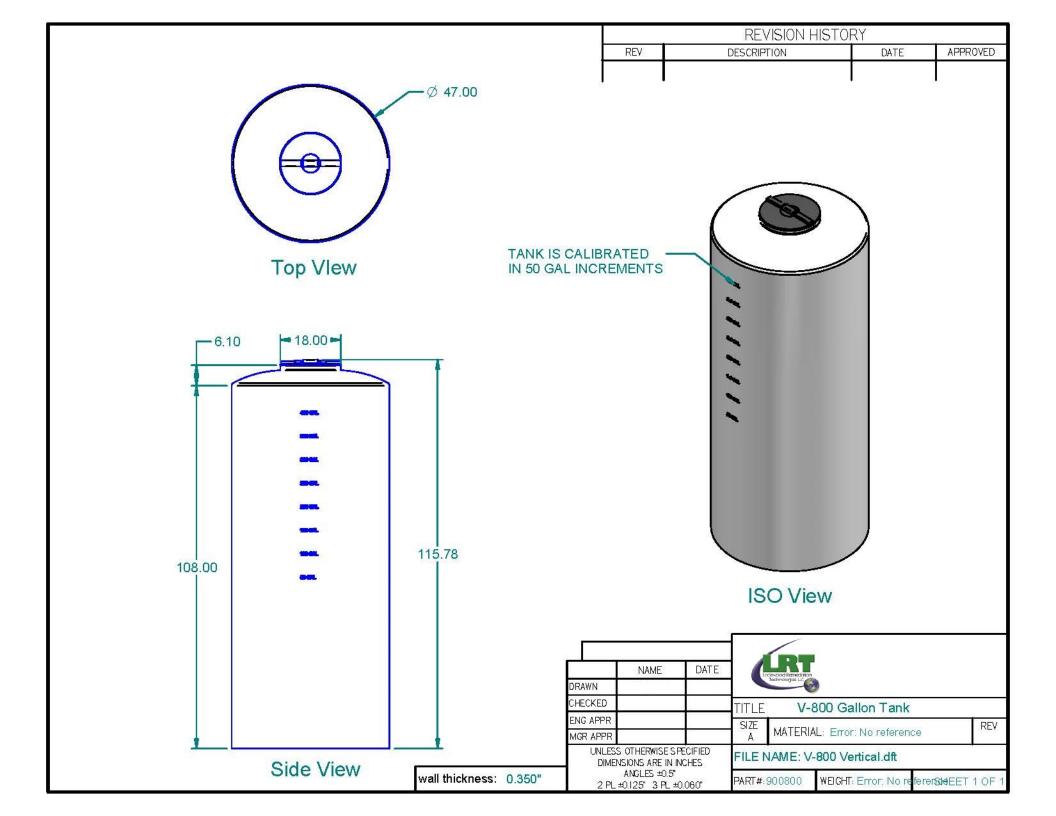
Consult factory for Process Mixers greater than 12"

PART	STATIC I	MIXER			HOUSING		
NUMBER	Number of Stages	Material	Pipe	ID Inch	L Inch	Weight lbs.	Material
T-3-G57-H31	3	CPVC	3" Sch 80	2.90	17	9	PVC
T-3-G57-H61	6	CPVC	3" Sch 80	2.90	30	16	PVC
T-3-H57-H31	3	CPVC	3" Sch 80	2.90	17	9	CPVC
T-3-H57-H61	6	CPVC	3" Sch 80	2.90	30	16	CPVC
T-4-G57-H31	3	CPVC	4" Sch 80	3.83	20	16	PVC
T-4-G57-H61	6	CPVC	4" Sch 80	3.83	35	22	PVC
T-4-H57-H31	3	CPVC	4" Sch 80	3.83	20	16	CPVC
T-4-H57-H61	6	CPVC	4" Sch 80	3.83	35	22	CPVC
T-6-G57-H31	3	CPVC	6" Sch 80	5.76	28	33	PVC
T-6-G57-H61	6	CPVC	6" Sch 80	5.76	51	50	PVC
T-6-H57-H31	3	CPVC	6" Sch 80	5.76	28	33	CPVC
T-6-H57-H61	6	CPVC	6" Sch 80	5.76	51	50	CPVC
T-8-G57-G31	3	PVC	8" Sch 80	7.63	33	55	PVC
T-8-G57-G61	6	PVC	8" Sch 80	7.63	59	90	PVC
T-10-G57-G31	3	PVC	10" Sch 80	9.56	40	88	PVC
T-10-G57-G61	6	PVC	10" Sch 80	9.56	72	130	PVC
T-12-G57-G31	3	PVC	12" Sch 80	11.38	50	140	PVC
T-12-G57-G61	6	PVC	12" Sch 80	11.38	88.5	200	PVC

TAH Industries, Inc. 8 Applegate Drive Robbinsville, NJ 08691 USA

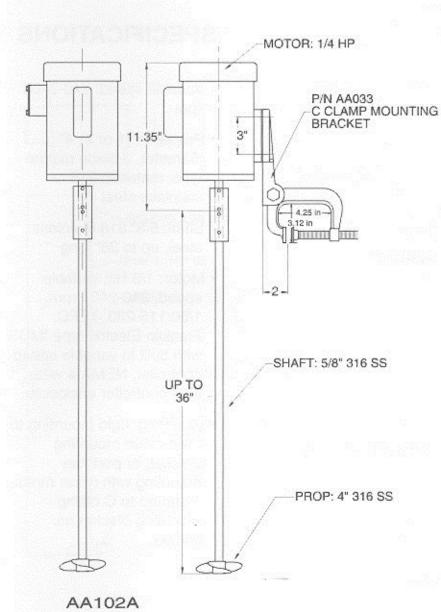
Toll Free: 800-257-5238

Tel: 609-259-9222 Fax: 609-259-0957 Website: www.tah.com **TAH Europe, Inc.** 2 Francis Court


Wellingborough Road

Rushden, Northamptonshire NN10 6AY

Great Britain


Tel: 44 (0) 1933 413233 Fax: 44 (0) 1933 413194 Website: www.tah.com

Distributed By:

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

Centrifugal - Single Phase

Motor Protection

All models provide built-in thermal overload protection that shuts down the pump when operating temperature becomes too high, and automatically restarts once the motor cools and a proper temperature is met.

YELLSUB 1 1/4" Discharge 33 GPM - 15' HEAD

The Yellow Submarine is MQ's most lightweight, compact submersible pump. A great choice for common household moving water applications. One piece polymer pump casing body resists corrosion and heat. Includes internal thermal overload protection. dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

ST2038P 2" Discharge

60 GPM - 38' HEAD

This lightweight, compact submersible pump is ideal for moving water in multiple confined and open area applications. The unique casing design permits it to draw water to a level of 1/16" without having to place the pump in any kind of sump. The ST2038P incorporates a rugged cast aluminum housing, internal thermal overload protection, and sealed dual shaft seals and bearings.

ST2047 2" Discharge 87 GPM - 47' HEAD

A compact, powerful pump that tackles tough dewatering jobs. Perfect for Contractors, Service Utilities, Municipalities, and Homeowners. The ST2047 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 50' Power Cable with strain relief.

Quality and Safety

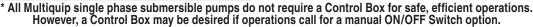
ST Series Single Phase Pumps are in accordance with ISO9001 Quality Management System standard. Also, all Single Phase models carry the Underwriters Laboratories (UL) Listing for compliance with both U.S. or Canadian electrical safety codes.

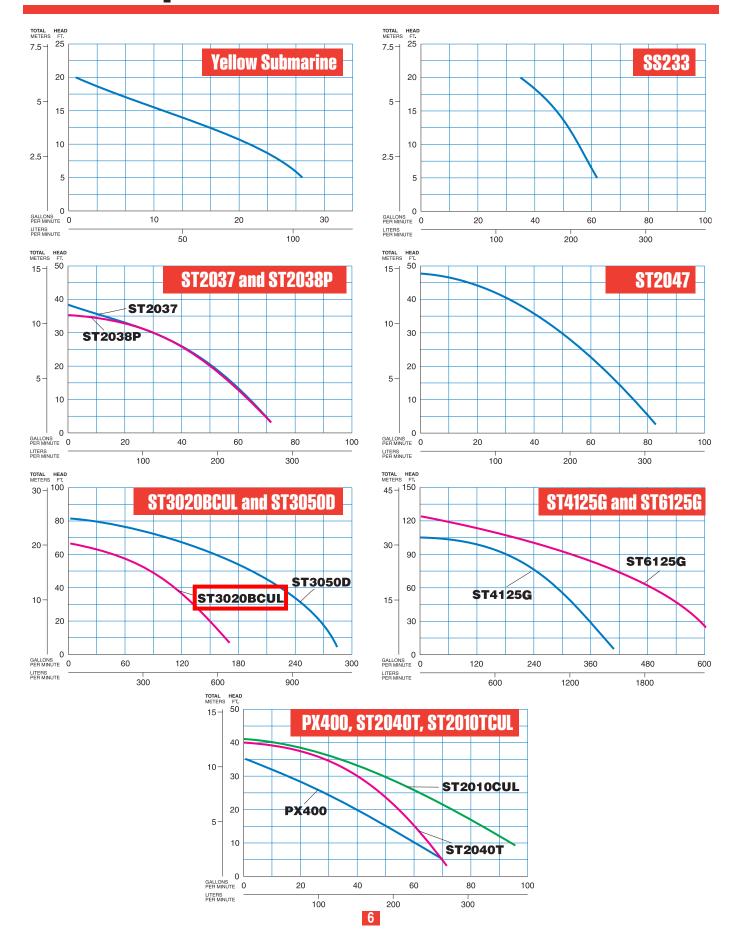
SS233 2" Discharge 60 GPM - 20' HEAD

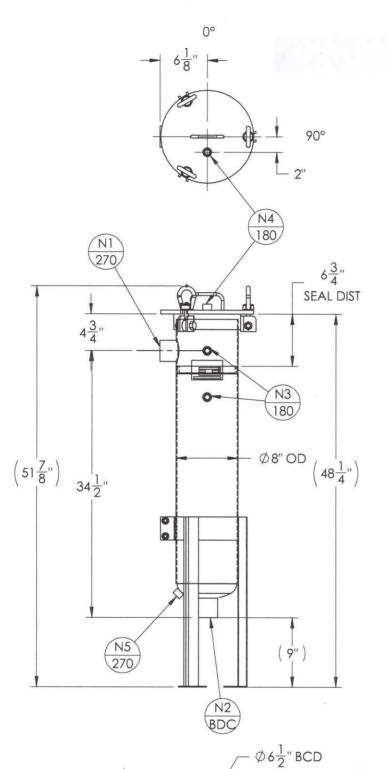
This lightweight, compact submersible pump is the first choice for many applications: flooded rooms, flat roofs, fill tanks, basins, fountains and waterfalls. Hardy thermoplastic pump casing body resists corrosion and heat. Further, the SS233 incorporates internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

ST2037

2" Discharge 73 GPM - 37' HEAD


The ST2037 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 25' Power Cable with strain relief. This is a powerful, versatile, low maintenance pump that is perfect for a wide range of operations supporting Contractors Service Utilities, Municipalities, and Homeowners.


ST3020BCUL 3" Discharge 170 GPM - 72' HEAD


This is a rugged 2HP 230V pump with a heat conducting cast iron/steel motor casing. Pumps liquid up to 120° and de-waters surfaces up to 1/2. The ST3020BCUL incorporates reliable double mechanical oil-filled seals. internal thermal overload protection. sealed ball bearings, Ductile Iron impeller, carrying handle, and molded 50' Power Cable with strain relief. The 6.7" diameter design permits the pump to fit into tight spaces & conduits.

Pump Performance Curves

		NOZZLE	SCHEDULE		
MARK	QTY	SIZE	/ RATING	DESCI	RIPTION
N1	1	2" 150	# NPT	IN	LET
N2	1	2" 150)# NPT	OU.	TLET
N3	2	1/2" 30	00# NPT	PRES	SS GA
N4	1	1/2" 30	00# NPT	VE	NT
N5	1	1/2" 30	00# NPT	CLEAN	DRAIN
N6	-		-	DIRT	/ DRAIN
	VESS	SEL DESIG	N CONDITION	S	
CODE:	BES	Т СОММЕ	RCIAL PRACT	ICE	
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.:	-20° F	@ 150 PSI
M.A.E.P.:	15 PSI @	250°F			
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI
STAMP:	'NC'		SERVICE:	NON I	ETHAL
PWHT:	N/A		RADIOGRAP	HY:	N/A
MATERIAL:	SS 304/	L	GASKET:	BUN	IA-N

DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $otin \frac{1}{2}$ " TYP.

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

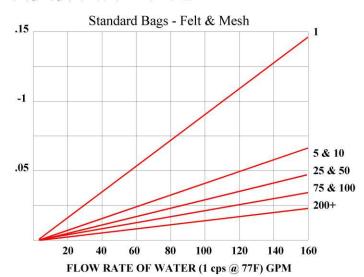
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

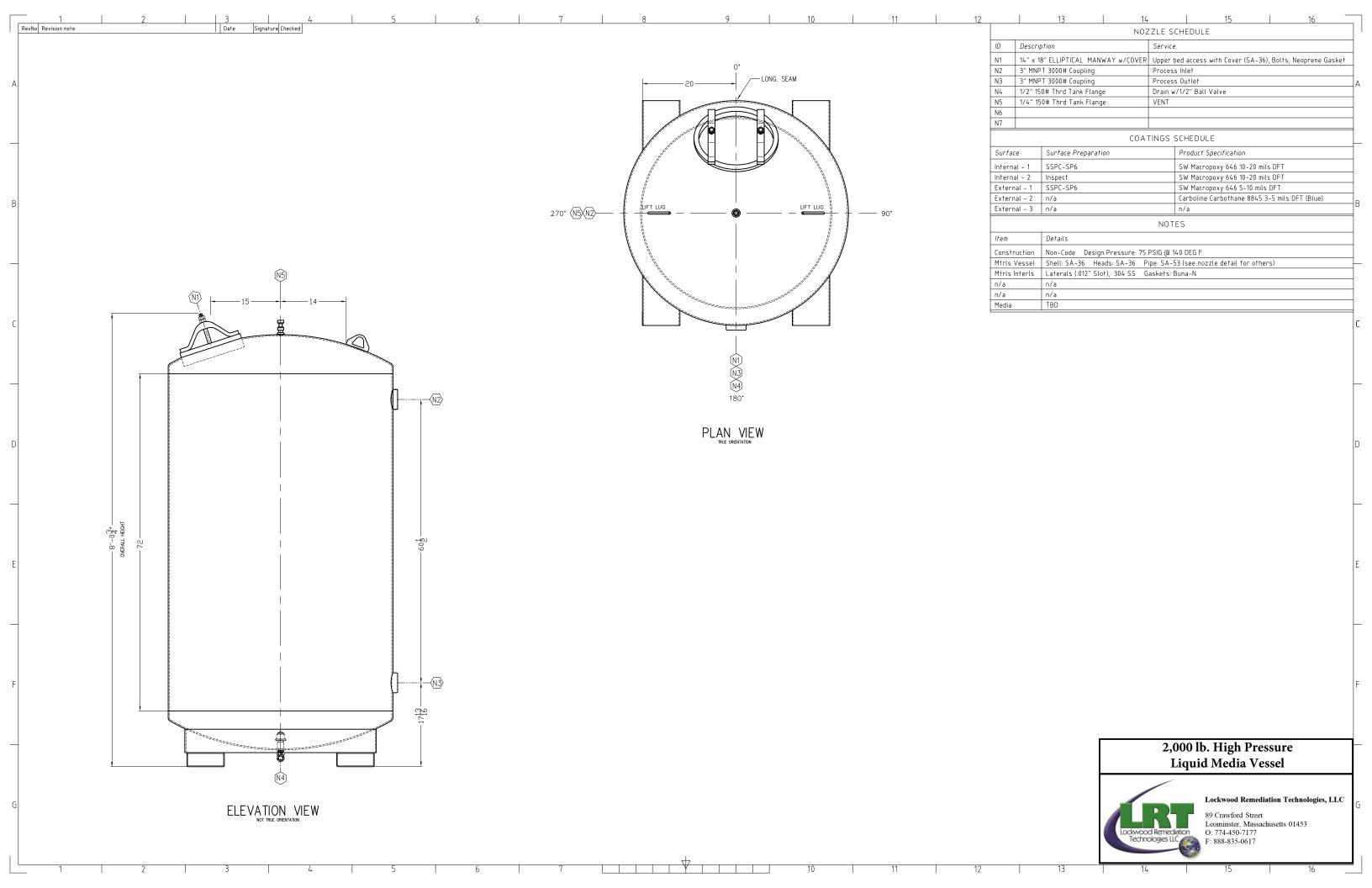
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

ZENNER PERFORMANCE Cast Iron Turbine Meters

Sizes 2" through 12"

INTRODUCTION: ZENNER PERFORMANCE Turbine Meters are designed for applications where flows are usually moderate to high and occasionally low. They are used in measurement of potable cold water in commercial and industrial services where flows are in one direction.

OPERATION: Water flows through the turbine section which causes the rotor to turn proportionately to the quantity of water flowing through the meter. A drive magnet transmits the motion of the rotor to a driven magnet located within the hermetically sealed register. The magnet is connected to a gear train which translates the rotations into volume totalization displayed on the register dial face. The only moving parts in the meter are the rotor assembly and vertical shaft .

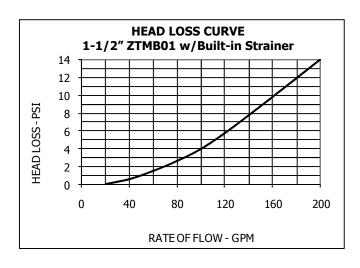
CONSTRUCTION: ZENNER PERFORMANCE Turbine Meters consist of three basic components: Cast Iron Epoxy Coated main case, measuring element, and sealed register. The measuring element assembly includes the rotor assembly, vertical shaft and a calibration vane which eliminates the need for calibration change gears.

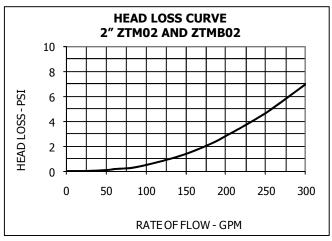
MAINTENANCE: ZENNER PERFORMANCE Turbine Meters are engineered and manufactured to provide long-term service and operate virtually maintenance free. If necessary the universal measuring element (UME) can be removed from the main case for maintenance. Interchangeability of certain parts between like sized meters minimizes spare parts inventory.

CONFORMANCE: ZENNER PERFORMANCE Turbine Meters are tested and comply with AWWA C701 Class II performance standards.

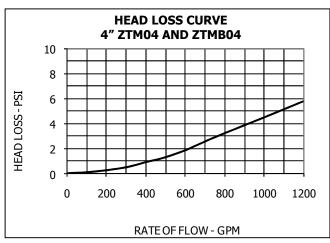
STRAINERS: ZENNER PERFORMANCE recommends the use of a separate strainer upstream from the turbine meter. Strainers reduce the chance of damage to the rotor as well as the frequency in which it must be removed for inspection. The lack of a strainer may void the warranty of the turbine meter.

CONNECTIONS: Companion flanges for installation of meters on various pipe types and sizes are available in bronze or cast iron.






MODEL		PMT02	PMT03	PMT04	PMT06	PMT08	PMT10	PMT12
SIZE		2"	3"	4"	6"	8"	10"	12"
Flow rate maximum intermittent	USGPM	400	550	1250	2500	4500	7000	8800
Maximum continuous	USGPM	200	450	1000	2000	3500	5500	6200
Optimum operating flow range	USGPM	3 - 200	5 - 550	10 - 1250	20 - 2500	30 - 4500	50 - 7000	90 - 8800
Low flow rate	USGPM	2	2-1/2	5	12	20	45	65
Start-up flow rate	USGPM	7/8	1-1/8	1-3/8	7-1/2	8	15	15
Maximum Working Pressure	P.S.I.	160	160	160	160	160	160	160
Maximum Temperature	Deg. F	140	140	140	140	140	140	140
Length	Inches	7-7/8	8-7/8	9-7/8	11-7/8	13-3/4	17-3/4	19-5/8
Height	Inches	9-1/2	10-1/4	11	12-7/8	14-1/4	19	20-1/4
Width	Inches	7	7-1/2	9	11	13-1/2	16	19
Weight	Pounds	24	32	38	84	126	225	255
Number of holes per flange		4	4	8	8	8	12	12



ZENNER ZTM and ZTMB Turbine Water Meters (Without Strainer) Typical Head Loss Curves

Appendix D
Safety Data Sheets (SDS)

Revision date 2019-15-4

SAFETY DATA SHEET

Revision number 1

SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION

Product ID: Redux-823

Product Name: Processing aid for industrial applications

Revision Date: Apr 15, 2019 Supersedes Date: Jan 25, 2018

Manufacturer's Name: Azure Water Services

Address: 280 Callegari Drive West Haven, CT, US, 06516

Emergency Phone: Chemtrec 800-424-9300, in US and Canada only

SECTION 2) HAZARDS IDENTIFICATION

Classification of the substance or mixture

Not a hazardous substance or mixture according to United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (29 CFR 1910.1200).

Hazards Not Otherwise Classified (HNOC)

None.

SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS

None of the chemicals in this product are hazardous according to the GHS.

SECTION 4) FIRST-AID MEASURES

Inhalation

Remove source of exposure or move person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/doctor/. If breathing has stopped, trained personnel should begin rescue breathing or, if the heart has stopped, immediately start cardiopulmonary resuscitation (CPR) or automated external defibrillation (AED).

Eye Contact

Remove source of exposure or move person to fresh air. Rinse eyes cautiously with lukewarm, gently flowing water for several minutes, while holding the eyelids open. Remove contact lenses, if present and easy to do. Continue rinsing for a flushing duration of 30 minutes. Take care not to rinse contaminated water into the unaffected eye or onto the face. Immediately call a POISON CENTER/doctor.

Skin Contact

Take off immediately all contaminated clothing, shoes and leather goods (e.g. watchbands, belts). Rinse skin with lukewarm, gently flowing water/shower for a duration of 30 minutes or until medical aid is available. Immediately call a POISON CENTER/doctor. Wash contaminated clothing before re-use or discard.

Ingestion

Rinse mouth with water. Do NOT induce vomiting. Give 1 to 2 cups of milk or water to drink. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, lie on your side, in the recovery position. Immediately call a POISON CENTER/doctor.

Most Important Symptoms and Effects, Both acute and Delayed

No data available.

Indication of Any Immediate Medical Attention and Special Treatment Needed

No data available.

SECTION 5) FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, foam, carbon dioxide. Sand or earth may be used for small fires only.

Use extinguishing agent suitable for type of surrounding fire.

Unsuitable Extinguishing Media

Do not use direct water stream since this may cause fire to spread.

Specific Hazards in Case of Fire

In case of fire, hazardous decomposition products may include sulphur oxides.

Fire-Fighting Procedures

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, especially if sprayed into containers of hot, burning liquid. Dispose of fire debris and contaminated extinguishing water in accordance with official regulations.

Special Protective Actions

Wear protective pressure self-contained breathing apparatus (SCBA) and full turnout gear.

SECTION 6) ACCIDENTAL RELEASE MEASURES

Emergency Procedure

Isolate hazard area and keep unnecessary people away. Remove all possible sources of ignition in the surrounding area. Notify authorities if any exposure to the general public or the environment occurs or is likely to occur.

Absorb spill with absorbent material or vacuum spill into polyethylene lined steel or plastic drums.

Do not touch or walk through spilled material.

If spilled material is cleaned up using a regulated solvent, the resulting waste mixture may be regulated.

Recommended Equipment

Positive pressure, full-facepiece self-contained breathing apparatus (SCBA), or positive pressure supplied air respirator with escape SCBA (NIOSH approved).

Personal Precautions

Avoid breathing vapor or mist. Avoid contact with skin, eye or clothing. Ensure adequate ventilation. Do not touch damaged containers or spilled materials unless wearing appropriate protective clothing.

Environmental Precautions

Stop spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems and natural waterways by using sand, earth, or other appropriate barriers.

Methods and Materials for Containment and Cleaning Up

Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Contaminated absorbent material may pose the same hazard as the spilled product.

SECTION 7) HANDLING AND STORAGE

General

Wash hands after use.

Do not get in eyes, on skin or on clothing.

Do not breathe vapors or mists.

Use good personal hygiene practices.

Eating, drinking and smoking in work areas is prohibited.

Remove contaminated clothing and protective equipment before entering eating areas.

Eyewash stations and showers should be available in areas where this material is used and stored.

Ventilation Requirements

Use only with adequate ventilation to control air contaminants to their exposure limits. The use of local ventilation is recommended to control emissions near the source.

Storage Room Requirements

Keep container(s) tightly closed and properly labeled. Store in cool, dry, well-ventilated areas away from heat, direct sunlight and strong oxidizers. Store in approved containers and protect against physical damage. Keep containers securely sealed when not in use. Indoor storage should meet OSHA standards and appropriate fire codes. Containers that have been opened must be carefully resealed to prevent leakage. Empty containers retain residue and may be dangerous.

Use non-sparking ventilation systems, approved explosion-proof equipment and intrinsically safe electrical systems in areas where this product is used and stored.

SECTION 8) EXPOSURE CONTROLS, PERSONAL PROTECTION

Eye Protection

Wear eye protection with side shields or goggles. Wear indirect-vent, impact and splash resistant goggles when working with liquids. If additional protection is needed for entire face, use in combination with a face shield.

Skin Protection

Use of gloves approved to relevant standards made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Use of an apron and over-boots of chemically impervious materials such as neoprene or nitrile rubber is recommended to avoid skin sensitization. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Launder soiled clothes or properly disposed of contaminated material, which cannot be decontaminated.

Respiratory Protection

If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker, a respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed. Check with respiratory protective equipment suppliers.

Appropriate Engineering Controls

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

SECTION 9) PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical Properties							
Density	6.26 lb/gal						
Specific Gravity	0.6 - 0.9						
Appearance	granular, white solid						
рН	5 - 9 @ 5 g/L						
Odor Threshold	N/A						
Odor Description	N/A						
Water Solubility	Complete						
Viscosity	N/A						
Vapor Pressure	Similar to water						
Vapor Density	N/A						
Freezing Point	<32 °F						
Boiling Point	>212 °F						
Evaporation Rate	N/A						
Flammability	Will not burn						

Redux-823 Page 3 of 5

SECTION 10) STABILITY AND REACTIVITY

Stability

Stable under normal storage and handling conditions.

Conditions To Avoid

Avoid heat, sparks, flame, high temperature and contact with incompatible materials.

Hazardous Reactions/Polymerization

Hazardous polymerization will not occur.

Incompatible Materials

Strong bases, acids, oxidizing and reducing agents.

Hazardous Decomposition Products

May produce carbon monoxide, carbon dioxide.

SECTION 11) TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

No Data Available

Acute Toxicity

Inhalation, Testing: Not expected to be toxic by inhalation.

Ingestion, Testing: LD50, Rat > 5,00 mg/kg Dermal, Testing: LD50, Rat > 5,000 mg/kg

Respiratory/Skin Sensitization

No Data Available

Serious Eye Damage/Irritation

No Data Available

Skin Corrosion/Irritation

No Data Available

Specific Target Organ Toxicity - Repeated Exposure

No Data Available

Specific Target Organ Toxicity - Single Exposure

No Data Available

SECTION 12) ECOLOGICAL INFORMATION

Acute Ecotoxicity

Danio Rerio: 96 hr LC50 >100 mg/l (OECD 203)

Fathead Minnow (pimephales promelas): 96hr LC50 >100 mg/l (OECD 203)

Daphnia Magna: 48hr EC50 >100 mg/l (OECD 202)

Scenedesmus Subspicatus: 72hr IC50 >100 mg/l (OECD 201)

Mobility in Soil

No data available.

Bio-accumulative Potential

Not bioaccumulating.

Persistence and Degradability

Not readily biodegradable.

Other Adverse Effect

No data available.

SECTION 13) DISPOSAL CONSIDERATIONS

Waste Disposal

Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws. Empty Containers retain product residue which may exhibit hazards of material, therefore do not pressurize, cut, glaze, weld or use for

any other purposes. Return drums to reclamation centers for proper cleaning and reuse.

SECTION 14) TRANSPORT INFORMATION

U.S. DOT Information

For all transportation accidents, call CHEMTREC at 800/424-9300. All spills and leaks of this material must be handled in accordance with local, state, and federal regulations.

DOT Shipping Designation:

Non-hazardous under 29-CFR 1910.1200. Water treatment compound

SECTION 15) REGULATORY INFORMATION

CAS	Chemical Name	% By Weight	Regulation List
No applicable CAS	No applicable chemical	-	-

SECTION 16) OTHER INFORMATION

Glossary

ACGIH- American Conference of Governmental Industrial Hygienists; ANSI- American National Standards Institute; Canadian TDGCanadian Transportation of Dangerous Goods; CAS- Chemical Abstract Service; Chemtrec- Chemical Transportation Emergency Center(US); CHIP- Chemical Hazard Information and Packaging; DSL- Domestic Substances List; EC- Equivalent Concentration; EH40 (UK)- HSE Guidance Note EH40 Occupational Exposure Limits; EPCRA- Emergency Planning and Community Right-To-Know Act; ESL Effects screening levels; HMIS- Hazardous Material Information Service; LC- Lethal Concentration; LD- Lethal Dose; NFPA- National Fire Protection Association; OEL- Occupational Exposure Limits; OSHA- Occupational Safety and Health Administration, US Department of Labor; PEL- Permissible Exposure Limit; SARA (Title III)- Superfund Amendments and Reauthorization Act; SARA 313- Superfund Amendments and Reauthorization Act, Section 313; SCBA- Self Contained Breathing Apparatus; STEL-Short Term Exposure Limit; TCEQ Texas Commission on Environmental Quality; TLV- Threshold Limit Value; TSCA- Toxic Substances Control Act Public Law 94-469; TWA Time Weighted Value; US DOT- US Department of Transportation; WHMIS- Workplace Hazardous Materials Information System.

Additional Information

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

Version 1.0:

Revision Date: Jan 25, 2018 First Edition.

DISCLAIMER

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist. The above information pertains to this product as currently formulated, and is based on the information available at this time. Addition of reducers or other additives to this product may substantially alter the composition and hazards of the product. Since conditions of use are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information.

Redux-823 Page 5 of 5

Revision date 2019-15-4

Revision number 1

SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION

Product Name: Redux E50

Product Use: Water and Wastewater Treatment Coagulant/Flocculant

Revision Date: Apr 15, 2019
Supersedes Date: Mar 5, 2015

Manufacturer's Name: Azure Water Services

Address: 280 Callegari Dr. West Haven CT, 06516

Emergency Phone: Chemtrec, (1) 800-424-9300, in US and Canada only

SECTION 2) HAZARDS IDENTIFICATION

Classification

Corrosive to metals - Category 1

Eye Irritation - Category 2

Skin Irritation - Category 2

Pictograms

Signal Word

Warning

Hazardous Statements - Health

Causes serious eye irritation

Causes skin irritation

Hazardous Statements - Physical

May be corrosive to metals

Precautionary Statements - General

If medical advice is needed, have product container or label at hand.

Keep out of reach of children.

Read label before use.

Precautionary Statements - Prevention

Keep only in original packaging.

Wash thoroughly after handling.

Wear protective gloves/protective clothing/eye protection/face protection.

Precautionary Statements - Response

Absorb spillage to prevent material damage.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

If eye irritation persists: Get medical advice/attention.

IF ON SKIN: Wash with plenty of water.

Specific treatment (see first-aid on this SDS).

If skin irritation occurs: Get medical advice/attention.

Take off contaminated clothing. And wash it before reuse.

Precautionary Statements - Storage

Store in a corrosive resistant container with a resistant inner liner.

Precautionary Statements - Disposal

No precautionary statement available.

Hazards Not Otherwise Classified (HNOC)

None.

SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS

CAS Chemical Name % By Weight
PROPRIETARY Trade Secret Ingredient 45 - 55%

Specific chemical identity and/or exact percentage (concentration) of the composition has been withheld to protect confidentiality.

SECTION 4) FIRST-AID MEASURES

Inhalation

Remove source of exposure or move person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/doctor/. If breathing has stopped, trained personnel should begin rescue breathing or, if the heart has stopped, immediately start cardiopulmonary resuscitation (CPR) or automated external defibrillation (AED).

Eve Contact

Remove source of exposure or move person to fresh air. Rinse eyes cautiously with lukewarm, gently flowing water for several minutes, while holding the eyelids open. Remove contact lenses, if present and easy to do. Continue rinsing for a flushing duration of 30 minutes. Take care not to rinse contaminated water into the unaffected eye or onto the face. Immediately call a POISON CENTER/doctor.

Skin Contact

Take off immediately all contaminated clothing, shoes and leather goods (e.g. watchbands, belts). Rinse skin with lukewarm, gently flowing water/shower for a duration of 30 minutes or until medical aid is available. Immediately call a POISON CENTER/doctor. Wash contaminated clothing before re-use or discard.

Ingestion

Rinse mouth with water. Do NOT induce vomiting. Give 1 to 2 cups of milk or water to drink. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, lie on your side, in the recovery position. Immediately call a POISON CENTER/doctor.

Most Important Symptoms and Effects, Both acute and Delayed

No data available.

Indication of Any Immediate Medical Attention and Special Treatment Needed

No data available.

SECTION 5) FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, foam, carbon dioxide. Sand or earth may be used for small fires only.

Use extinguishing agent suitable for type of surrounding fire.

Unsuitable Extinguishing Media

Do not use direct water stream since this may cause fire to spread.

Specific Hazards in Case of Fire

In case of fire, hazardous decomposition products may include sulphur oxides.

Fire-Fighting Procedures

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, especially if sprayed into containers of hot, burning liquid. Dispose of fire debris and contaminated extinguishing water in accordance with official regulations.

Special Protective Actions

Wear protective pressure self-contained breathing apparatus (SCBA) and full turnout gear.

SECTION 6) ACCIDENTAL RELEASE MEASURES

Emergency Procedure

Isolate hazard area and keep unnecessary people away. Remove all possible sources of ignition in the surrounding area. Notify authorities if any exposure to the general public or the environment occurs or is likely to occur.

Absorb spill with absorbent material or vacuum spill into polyethylene lined steel or plastic drums.

Do not touch or walk through spilled material.

If spilled material is cleaned up using a regulated solvent, the resulting waste mixture may be regulated.

Recommended Equipment

Positive pressure, full-facepiece self-contained breathing apparatus (SCBA), or positive pressure supplied air respirator with escape SCBA (NIOSH approved).

Personal Precautions

Avoid breathing vapor or mist. Avoid contact with skin, eye or clothing. Ensure adequate ventilation. Do not touch damaged containers or spilled materials unless wearing appropriate protective clothing.

Environmental Precautions

Stop spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems and natural waterways by using sand, earth, or other appropriate barriers.

Methods and Materials for Containment and Cleaning Up

Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Contaminated absorbent material may pose the same hazard as the spilled product.

SECTION 7) HANDLING AND STORAGE

General

Wash hands after use.

Do not get in eyes, on skin or on clothing.

Do not breathe vapors or mists.

Use good personal hygiene practices.

Eating, drinking and smoking in work areas is prohibited.

Remove contaminated clothing and protective equipment before entering eating areas.

Eyewash stations and showers should be available in areas where this material is used and stored.

Ventilation Requirements

Use only with adequate ventilation to control air contaminants to their exposure limits. The use of local ventilation is recommended to control emissions near the source.

Storage Room Requirements

Keep container(s) tightly closed and properly labeled. Store in cool, dry, well-ventilated areas away from heat, direct sunlight and strong oxidizers. Store in approved containers and protect against physical damage. Keep containers securely sealed when not in use. Indoor storage should meet OSHA standards and appropriate fire codes. Containers that have been opened must be carefully resealed to prevent leakage. Empty containers retain residue and may be dangerous.

Use non-sparking ventilation systems, approved explosion-proof equipment and intrinsically safe electrical systems in areas where this product is used and stored.

SECTION 8) EXPOSURE CONTROLS, PERSONAL PROTECTION

Eye Protection

Wear eye protection with side shields or goggles. Wear indirect-vent, impact and splash resistant goggles when working with liquids. If additional protection is needed for entire face, use in combination with a face shield.

Skin Protection

Use of gloves approved to relevant standards made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Use of an apron and over-boots of chemically impervious materials such as neoprene or nitrile rubber is recommended to avoid skin sensitization. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Launder soiled clothes or properly disposed of contaminated material, which cannot be decontaminated.

Respiratory Protection

If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker, a respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed. Check with respiratory protective equipment suppliers.

Appropriate Engineering Controls

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

SECTION 9) PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical Properties

Density	11.10 lb/gal	
Specific Gravity	1.33 - 1.35	
Appearance	Colorless to yellow liquid	
рН	3 - 4	
Odor Threshold	N/A	
Odor Description	N/A	
Water Solubility	complete	
Viscosity	< 100cps @20C	
Vapor Pressure	Similar to water	
Vapor Density	N/A	
Freezing Point	<19 °F	
Boiling Point	>212 °F	
Evaporation Rate	N/A	
Flammability	Will not burn	

SECTION 10) STABILITY AND REACTIVITY

Stability

Stable under normal storage and handling conditions.

Conditions To Avoid

Avoid heat, sparks, flame, high temperature and contact with incompatible materials.

Hazardous Reactions/Polymerization

Hazardous polymerization will not occur.

Incompatible Materials

Strong bases, acids, oxidizing and reducing agents.

Hazardous Decomposition Products

May produce carbon monoxide, carbon dioxide.

SECTION 11) TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

Inhalation LC50 : Not Available Oral LD50 : Not Available Dermal LD50 : Not Available

Acute Toxicity

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/k (Rat)	

Aspiration Hazard

No Data Available

Respiratory/Skin Sensitization

No Data Available

Serious Eye Damage/Irritation

Causes serious eye irritation

Skin Corrosion/Irritation

Causes skin irritation

Specific Target Organ Toxicity - Repeated Exposure

No Data Available

Specific Target Organ Toxicity - Single Exposure

No Data Available

SECTION 12) ECOLOGICAL INFORMATION

Ecotoxicity

Acute aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

EC 50 (48 hour, static) 33.2 mg/L Ceriodaphnia dubia (Water Flea)

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L (Brachydanio rerio)	

Mobility in Soil

No data available.

Bio-accumulative Potential

No data available.

Persistence and Degradability

No data available.

Other Adverse Effect

No data available.

Redux E50 Page 5 of 6

SECTION 13) DISPOSAL CONSIDERATIONS

Waste Disposal

Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws. Empty Containers retain product residue which may exhibit hazards of material, therefore do not pressurize, cut, glaze, weld or use for any other purposes. Return drums to reclamation centers for proper cleaning and reuse.

SECTION 14) TRANSPORT INFORMATION

U.S. DOT Information

NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging material must not be aluminum, steel or be degraded by this product

SECTION 15) REGULATORY INFORMATION

CAS	Chemical Name	% By Weight	Regulation List
No applicable CAS	No applicable chemical	-	-

SECTION 16) OTHER INFORMATION

Glossary

ACGIH- American Conference of Governmental Industrial Hygienists; ANSI- American National Standards Institute; Canadian TDGCanadian Transportation of Dangerous Goods; CAS- Chemical Abstract Service; Chemtrec- Chemical Transportation Emergency Center(US); CHIP- Chemical Hazard Information and Packaging; DSL- Domestic Substances List; EC- Equivalent Concentration; EH40 (UK)- HSE Guidance Note EH40 Occupational Exposure Limits; EPCRA- Emergency Planning and Community Right-To-Know Act; ESL Effects screening levels; HMIS- Hazardous Material Information Service; LC- Lethal Concentration; LD- Lethal Dose; NFPA- National Fire Protection Association; OEL- Occupational Exposure Limits; OSHA- Occupational Safety and Health Administration, US Department of Labor; PEL- Permissible Exposure Limit; SARA (Title III)- Superfund Amendments and Reauthorization Act; SARA 313- Superfund Amendments and Reauthorization Act, Section 313; SCBA- Self Contained Breathing Apparatus; STEL-Short Term Exposure Limit; TCEQ Texas Commission on Environmental Quality; TLV- Threshold Limit Value; TSCA- Toxic Substances Control Act Public Law 94-469; TWA Time Weighted Value; US DOT- US Department of Transportation; WHMIS- Workplace Hazardous Materials Information System.

Additional Information

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

Version 1.0:

Revision Date: Apr 15,2019

First Edition.

DISCLAIMER

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist. The above information pertains to this product as currently formulated, and is based on the information available at this time. Addition of reducers or other additives to this product may substantially alter the composition and hazards of the product. Since conditions of use are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information.

Redux E50 Page 6 of 6

SAFETY DATA SHEET

Revision date 2019-04-15 Revision number 1

SECTION 1) CHEMICAL PRODUCT AND SUPPLIER'S IDENTIFICATION

Product ID: FOAMTROL-100

Product Name: Blended Water Treatment.

Revision Date: Apr15,2019
Supersedes Date: Dec 11, 2018

Manufacturer's Name: Azure Water Services

Address: 280 Callegari Drive West Haven, CT, US, 06516 Emergency Phone: Chemtrec 800-424-9300, in US and Canada only

SECTION 2) HAZARDS IDENTIFICATION

Classification of the substance or mixture

Not a hazardous substance or mixture according to United States Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (29 CFR 1910.1200).

Hazards Not Otherwise Classified (HNOC)

None.

SECTION 3) COMPOSITION / INFORMATION ON INGREDIENTS

All of the product's ingredients are either listed or exempt from the TSCA Inventory.

Specific chemical identity is being withheld as a trade secrets

None of the chemicals in this product are hazardous according to the GHS.

SECTION 4) FIRST-AID MEASURES

Inhalation

Remove source of exposure or move person to fresh air and keep comfortable for breathing. Immediately call a POISON CENTER/doctor/. If breathing has stopped, trained personnel should begin rescue breathing or, if the heart has stopped, immediately start cardiopulmonary resuscitation (CPR) or automated external defibrillation (AED).

Eye Contact

Remove source of exposure or move person to fresh air. Rinse eyes cautiously with lukewarm, gently flowing water for several minutes, while holding the eyelids open. Remove contact lenses, if present and easy to do. Continue rinsing for a flushing duration of 30 minutes. Take care not to rinse contaminated water into the unaffected eye or onto the face. Immediately call a POISON CENTER/doctor.

Skin Contact

Take off immediately all contaminated clothing, shoes and leather goods (e.g. watchbands, belts). Rinse skin with lukewarm, gently flowing water/shower for a duration of 30 minutes or until medical aid is available. Immediately call a POISON CENTER/doctor. Wash contaminated clothing before re-use or discard.

Ingestion

Rinse mouth with water. Do NOT induce vomiting. Give 1 to 2 cups of milk or water to drink. Never give anything by mouth to an unconscious person. If vomiting occurs naturally, lie on your side, in the recovery position. Immediately call a POISON CENTER/doctor.

Most Important Symptoms and Effects, Both acute and Delayed

No data available.

Indication of Any Immediate Medical Attention and Special Treatment Needed

No data available.

SECTION 5) FIRE-FIGHTING MEASURES

Suitable Extinguishing Media

Dry chemical, foam, carbon dioxide. Sand or earth may be used for small fires only.

Use extinguishing agent suitable for type of surrounding fire.

Unsuitable Extinguishing Media

Do not use direct water stream since this may cause fire to spread.

Specific Hazards in Case of Fire

In case of fire, hazardous decomposition products may include sulphur oxides.

Fire-Fighting Procedures

Isolate immediate hazard area and keep unauthorized personnel out. Stop spill/release if it can be done safely. Move undamaged containers from immediate hazard area if it can be done safely. Water spray may be useful in minimizing or dispersing vapors and to protect personnel. Water may be ineffective but can be used to cool containers exposed to heat or flame. Caution should be exercised when using water or foam as frothing may occur, especially if sprayed into containers of hot, burning liquid. Dispose of fire debris and contaminated extinguishing water in accordance with official regulations.

Special Protective Actions

Wear protective pressure self-contained breathing apparatus (SCBA) and full turnout gear.

SECTION 6) ACCIDENTAL RELEASE MEASURES

Emergency Procedure

Isolate hazard area and keep unnecessary people away. Remove all possible sources of ignition in the surrounding area. Notify authorities if any exposure to the general public or the environment occurs or is likely to occur.

Absorb spill with absorbent material or vacuum spill into polyethylene lined steel or plastic drums.

Do not touch or walk through spilled material.

If spilled material is cleaned up using a regulated solvent, the resulting waste mixture may be regulated.

Recommended Equipment

Positive pressure, full-facepiece self-contained breathing apparatus (SCBA), or positive pressure supplied air respirator with escape SCBA (NIOSH approved).

Personal Precautions

Avoid breathing vapor or mist. Avoid contact with skin, eye or clothing. Ensure adequate ventilation. Do not touch damaged containers or spilled materials unless wearing appropriate protective clothing.

Environmental Precautions

Stop spill/release if it can be done safely. Prevent spilled material from entering sewers, storm drains, other unauthorized drainage systems and natural waterways by using sand, earth, or other appropriate barriers.

Methods and Materials for Containment and Cleaning Up

Contain and collect spillage with non-combustible, absorbent material e.g. sand, earth, vermiculite or diatomaceous earth and place in container for disposal according to local regulations. Contaminated absorbent material may pose the same hazard as the spilled product.

SECTION 7) HANDLING AND STORAGE

General

Wash hands after use.

Do not get in eyes, on skin or on clothing.

Do not breathe vapors or mists.

Use good personal hygiene practices.

Eating, drinking and smoking in work areas is prohibited.

Remove contaminated clothing and protective equipment before entering eating areas.

Eyewash stations and showers should be available in areas where this material is used and stored.

FOAMTROL-100 Page 2 of 5

Ventilation Requirements

Use only with adequate ventilation to control air contaminants to their exposure limits. The use of local ventilation is recommended to control emissions near the source.

Storage Room Requirements

Keep container(s) tightly closed and properly labeled. Store in cool, dry, well-ventilated areas away from heat, direct sunlight and strong oxidizers. Store in approved containers and protect against physical damage. Keep containers securely sealed when not in use. Indoor storage should meet OSHA standards and appropriate fire codes. Containers that have been opened must be carefully resealed to prevent leakage. Empty containers retain residue and may be dangerous.

Use non-sparking ventilation systems, approved explosion-proof equipment and intrinsically safe electrical systems in areas where this product is used and stored.

SECTION 8) EXPOSURE CONTROLS, PERSONAL PROTECTION

Eye Protection

Wear eye protection with side shields or goggles. Wear indirect-vent, impact and splash resistant goggles when working with liquids. If additional protection is needed for entire face, use in combination with a face shield.

Skin Protection

Use of gloves approved to relevant standards made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Use of an apron and over-boots of chemically impervious materials such as neoprene or nitrile rubber is recommended to avoid skin sensitization. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Launder soiled clothes or properly disposed of contaminated material, which cannot be decontaminated.

Respiratory Protection

If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker, a respiratory protection program that meets or is equivalent to OSHA 29 CFR 1910.134 and ANSI Z88.2 should be followed. Check with respiratory protective equipment suppliers.

Appropriate Engineering Controls

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value.

SECTION 9) PHYSICAL AND CHEMICAL PROPERTIES

Physical and Chemical Properties

Density	8.18 lb/gal
Specific Gravity	0.98

Appearance milky, white liquid pH 6.75 - 7.25

Odor Threshold N/A

Odor Description characteristic
Water Solubility complete

Viscosity 500 - 3,000 cps 65F Vapor Pressure Similar to water

Vapor Density

N/A

Freezing Point

32 °F

Boiling Point

>212 °F

Evaporation Rate

N/A

Flammability Will not burn

SECTION 10) STABILITY AND REACTIVITY

Stability

Stable under normal storage and handling conditions.

Conditions To Avoid

Avoid heat, sparks, flame, high temperature and contact with incompatible materials.

Hazardous Reactions/Polymerization

Hazardous polymerization will not occur.

Incompatible Materials

Strong bases, acids, oxidizing and reducing agents.

Hazardous Decomposition Products

May produce carbon monoxide, carbon dioxide.

SECTION 11) TOXICOLOGICAL INFORMATION

Likely Routes of Exposure

Inhalation, ingestion, skin absorption.

Acute Toxicity

Not Established.

Chronic Exposure Toxicity

The chronic local effect may consist of multiple areas of superficial destruction of the skin or of primary irritant dermatitis. Similarly, inhalation of dust, spray, or mist may result in varying degrees of irritation or damage to the respiratory tract tissues and an increased susceptibility to respiratory illness,

Carcinogenicity

This product does not contain any known or anticipated carcinogens according to the criteria of the NTP Annual Report on carcinogens and OSHA 29 CFR 1910.Z.

SECTION 12) ECOLOGICAL INFORMATION

Toxicity

No data available.

No Data Available

Mobility in Soil

No data available.

Bio-accumulative Potential

No data available.

Persistence and Degradability

No data available.

Other Adverse Effect

No data available.

SECTION 13) DISPOSAL CONSIDERATIONS

Waste Disposal

Under RCRA it is the responsibility of the user of the product to determine at the time of disposal whether the product meets RCRA criteria for hazardous waste. Waste management should be in full compliance with federal, state and local laws.

Empty Containers retain product residue which may exhibit hazards of material, therefore do not pressurize, cut, glaze, weld or use for any other purposes. Return drums to reclamation centers for proper cleaning and reuse.

SECTION 14) TRANSPORT INFORMATION

U.S. DOT Information

For all transportation accidents, call CHEMTREC at 800/424-9300. All spills and leaks of this material must be handled in accordance with local, state, and federal regulations.

DOT Shipping Designation:

Non-hazardous under 29-CFR 1910.1200. Water treatment compound

SECTION 15) REGULATORY INFORMATION

CAS	Chemical Name	% By Weight	Regulation List
No applicable CAS	No applicable chemical	-	-

SECTION 16) OTHER INFORMATION

Glossary

ACGIH- American Conference of Governmental Industrial Hygienists; ANSI- American National Standards Institute; Canadian TDGCanadian Transportation of Dangerous Goods; CAS- Chemical Abstract Service; Chemtrec- Chemical Transportation Emergency Center(US); CHIP- Chemical Hazard Information and Packaging; DSL- Domestic Substances List; EC- Equivalent Concentration; EH40 (UK)- HSE Guidance Note EH40 Occupational Exposure Limits; EPCRA- Emergency Planning and Community Right-To-Know Act; ESL Effects screening levels; HMIS- Hazardous Material Information Service; LC- Lethal Concentration; LD- Lethal Dose; NFPA- National Fire Protection Association; OEL- Occupational Exposure Limits; OSHA- Occupational Safety and Health Administration, US Department of Labor; PEL- Permissible Exposure Limit; SARA (Title III)- Superfund Amendments and Reauthorization Act; SARA 313- Superfund Amendments and Reauthorization Act, Section 313; SCBA- Self Contained Breathing Apparatus; STEL-Short Term Exposure Limit; TCEQ Texas Commission on Environmental Quality; TLV- Threshold Limit Value; TSCA- Toxic Substances Control Act Public Law 94-469; TWA Time Weighted Value; US DOT- US Department of Transportation; WHMIS- Workplace Hazardous Materials Information System.

Additional Information

Any concentration shown as a range is to protect confidentiality or is due to batch variation.

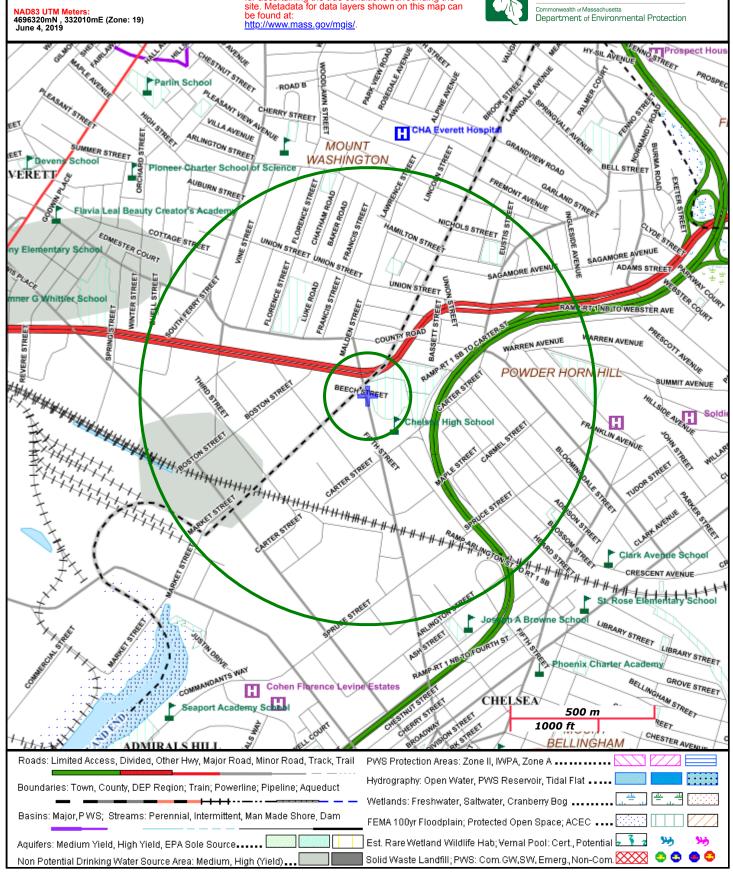
Version 1.0:

Revision Date: Dec 11, 2018

First Edition.

DISCLAIMER

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein. Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist. The above information pertains to this product as currently formulated, and is based on the information available at this time. Addition of reducers or other additives to this product may substantially alter the composition and hazards of the product. Since conditions of use are outside our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information.


Appendix E
Supplemental Information

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: GATEWAY CENTER PHASE V 340 EVERETT AVE CHELSEA, MA

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found. be found at:

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix II of the NPDES RGP, the project located on Everett Street in Chelsea, MA is eligible for coverage under this general permit under FWS Criterion C. This project is located in Suffolk County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

No Endangered species found at this location.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 19, 2019

Consultation Code: 05E1NE00-2019-SLI-1473

Event Code: 05E1NE00-2019-E-03541

Project Name: Gateway Center Phase V Infrastructure Improvements

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1473

Event Code: 05E1NE00-2019-E-03541

Project Name: Gateway Center Phase V Infrastructure Improvements

Project Type: WASTEWATER PIPELINE

Project Description: Subsurface utility improvements along Everett Avenue in Chelsea, MA.

Project will require dewatering through a know contaminated Site. Water will be adequately treated and then discharged to the City's storm water

system.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.40009171223757N71.0409892277828W

Counties: Suffolk, MA

Endangered Species Act Species

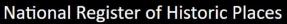
There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.


Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updated in April, 2014.

Home | Frequently Asked Questions | Website Policies | Contact Us

EXPERIENCE YOUR AMERICA™

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Chelsea; Street No: 340; Street Name: Everett Ave; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

Tuesday, June 4, 2019 Page 1 of 1