

July 16, 2019

Ms. Shauna Little
Environmental Protection Agency
Office of Environmental Stewardship (OES)
Water Technical Unit
5 Post Office Square, Suite 110 (OES4-SMR)
Boston, MA 02109-3912

Re: NPDES RGP NOI

Former Mobil Service Station No. 01707 694 Main Street (Route 28) Dennisport, MA Release Tracking Number 4-00933

Dear Ms. Little,

On behalf of ExxonMobil Environmental and Property Solutions Company (E&PS), Kleinfelder has prepared the attached National Pollutant Discharge Elimination System (NPDES) Notice of Intent (NOI) to discharge treated groundwater under the auspices of the Remediation General Permit (RGP). This request is to allow for the treatment and discharge of potentially impacted groundwater to allow excavation activities associated with the remediation of impacted soil under Massachusetts Department of Environmental Protection (MassDEP) Release Tracking Number (RTN) 4-00933. The excavation activities will be performed at property located at 694 Main Street, Dennisport, Massachusetts.

Excavation dewatering and the discharge of treated groundwater are currently anticipated to beginno earlier than September 3, 2019 and end in approximately February 2020.

The NOI form is included as Attachment A.

Project Background

This project will excavate and remove soils impacts with petroleum hydrocarbons from the property located at 694 Main Street (Route 28). These impacts are associated with the release of petroleum at this property.

Massachusetts Contingency Plan Applicability

Assessment and remedial activities associated with a release of gasoline have been performed since approximately 1979, and has been tracked under MassDEP RTN 4-00933 since 1990. A Site Locus is included in Attachment B as Figure 1. A Temporary Solution Statement was submitted to MassDEP in January 2017, subsequent site monitoring conducted at the site and has been documented in Temporary Solution Status Reports in accordance with the Massachusetts Contingency Plan (310 CMR 40.0000). Excavation, handling, removal, and treatment of impacted soils are also planned to be conducted under the applicable provisions of 310 CMR 40.0000. A Site Plan and Proposed Excavation Area is included in Attachment B as Figure 2.

20197823/WSB19R97649_01707/NPDES RGP NOI_June19

Groundwater Characterization

Groundwater sampling has been conducted under RTN 4-00933 for approximately 40 years. For the purpose of this application, a sample of groundwater was collected from an onsite monitoring well. A representative groundwater sample was collected from dewatering well MW-31 on June 5, 2019, and designated "NPDES Dewater Sample". The sample was submitted to Eurofins Spectrum Analytical of Agawam, MA for analysis of volatile organic compounds (VOCs) via EPA Methods 624 and 8260, polynuclear aromatic hydrocarbons (PAHs) and phenols via EPA Method 625 SIM, total PCBs via EPA Method 8082, total metals via EPA Method 200.7, Oil and Grease via EPA Method 1664A, chloride via EPA Method 300, ammonia via EPA Method 350.1, cyanide via EPA Method 335.4, ethanol via EPA method 8015 and total suspended solids via Standard Method 2540D. Groundwater pH and temperature were recorded in the field.

Groundwater analytical results are included as Attachment C. Kleinfelder notes some exceedances of the required detection limits due to laboratory dilutions, however, these exceedances are not expected to represent exceedances of effluent limitations in the water planned to be discharged under this permit. The detection limit for 1,4-dioxane was 1,000 ug/L, compared to a discharge limit of 200 ug/L, however, this compound is believed to be absent at the site. Sampling to be collected from effluent will be sufficiently sensitive to ensure detection limits are at required levels and/or below the discharge limit required. Kleinfelder also notes that for the analytes chloride and ethanol, the laboratory chose to run an alternative method than those specified for analysis. Chloride was analyzed by method 4500, and was detected with 68.9 ug/L. Ethanol was analyzed by method 8015, and was not detected, with a detection limit of 1 ug/L. The use of alternative laboratory methods is not considered to compromise the validity of the data.

Receiving Water Characterization

Discharge will occur through existing catch basin and/or manhole structures located on Main Street and/or Upper County Road to the stormwater system located on both of these streets and connecting at the intersection. Permission for this discharge is being simultaneously sought with the Massachusetts Department of Transportation (MassDOT), which controls the stormwater structures within this area of Main Street and Upper County Road.

Water is conveyed within stormwater structures to the east to the intersection with Division Street, and then south through stormwater structures running along Division Street, and is discharged into a wetland area, as shown on the NOI Map (Attachment B, Figure 3).

The wetland area extends west from Division Street, and continues to the south. At the southern end of the wetland area, a culvert beneath Lower County Road connects the wetland area to a large manmade retention pond (Pound Pond). At the southern edge of the pond, a headwall allows flow of the water to a culvert, which passes beneath an area of Sea View Park, and connects to stormwater infrastructure along Chase Avenue. Water is conveyed to the intersection of Chase Avenue and Inman Road, from which point if flows out of an outfall pipe at Inman Beach to the Nantucket Sound. The invert of the outfall pipe is located above Mean Low Water (MLW), at an approximate elevation of 0.35' NGVD29 (-0.53' NAVD88).

The wetland area was sampled June 5, 2019, at the point where it crosses Division Street, which is the first point at which the stormwater system daylights. The surface water sample was submitted to Eurofins Spectrum Analytical of Agawam, MA for analysis of total metals via EPA Method 200.7, ammonia via EPA Method 350.1 and hardness via EPA Method 130.1. Analtyical results are included as Attachment C.

The final receiving water body, Nantucket Sound, was sampled on July 10, 2019. The surface water sample was submitted to Alpha Analytical Laboratory for analysis of total metals via EPA Method 200.7, dissolved metals via EPA Method 200.7, ammonia via EPA Method 350.1 and salinity via EPA Method 2520B. Receiving water analytical results are included as Attachment C. Kleinfelder notes that due to the salinity of the sample, detection limits for some analytes exceed EPA-required levels.

Nantucket Sound is not listed in the Massachusetts Integrated List of Waters 303(d) list, nor are the wetland area or the unnamed manmade pond (Pound Pond). All of these water bodies are Class SA. No dilution due to flow in the receiving water body is assumed.

Proposed Treatment System

A Design Flow treatment system discharge rate of 350 gallons per minute (gpm) was used to evaluate the applicable RGP discharge standards. Extracted water from the excavation activities will be initially pumped into two 21,000-gallon fractionation tanks.

Following settling, extracted groundwater will be treated by passage through (at minimum) 50-micron particle filters, and through liquid-phase reactive carbon vessels. If needed the treatment system will include an organoclay and/or resin unit for the removal of dissolved metals. Flow will be measured using an in-line flowmeter and totalizer prior to the discharge into a catchbasin and/or manhole on Main Street and/or Upper County Road.

Kleinfelder anticipates that the dewatering system will operate from approximately September 3, 2019 through February 28, 2020. A Work Plan for the groundwater extraction and treatment systems satisfying the requirements of Section 2.5 of the RGP will be available at the Site prior to initiating dewatering activities. See Attachment B, Figure 4 for a Treatment System Schematic.

Proposed Remedial Additive

The remedial additive Petrofix is planned to be added to the bottom of the excavation after terminal depth is reached in each area. Due to the planned phasing of excavation work, there is a potential for the remedial additive to be present in groundwater during dewatering of subsequent areas of the excavation, prior to treatment.

Petrofix is a concentrated water-based suspension consisting of micron-scale activated carbon and biostimulating electron acceptors. PetroFix is designed to first remove hydrocarbons from the dissolved phase by adsorbing them onto activated carbon particles and then stimulating hydrocarbon biodegradation by adding electron acceptors. The additive comes in two parts, including one part that contains activated carbon, calcium sulfate dihydrate and an additive in suspension, and one that is a powder consisting of ammonium sulfate and sodium nitrate. The two parts are mixed and applied to the base and side walls of the excavation. None of the

components of the remedial additive are expected to cause an exceedance of the applicable water quality standards, and the application of this additive will not add any pollutants that would justify the application of permit conditions that are different from this permit.

The Safety Data Sheets (SDS) for the two components of Petrofix are included as Attachment D.

Notice of Intent

Preparation of this NOI has included a review of the literature pertaining to Areas of Critical Environmental Concern, (ACECs), the Endangered Species Act, and the National Historic Preservation Act:

- Review of the Massachusetts Geographic Information Systems MassDEP Priority Resources Map (Figure 5 in Attachment B) shows the Site is not within an ACEC.
- An "informal consultation" with the Fish and Wildlife Service resulted in a consistency letter
 opining that any take of the northern long-eared bat that may occur as a result of the Action
 is not prohibited under the applicable regulations, the permit eligibility therefore meets
 "Criterion B" (Attachment E).
- This work will not affect historical properties that are listed by the United States Park Service or Massachusetts Cultural Resources. Cultural resources in the vicinity of the Site are listed in Attachment F.

The proposed treatment system has been designed to reduce contaminants of concern below the applicable effluent limits. Effluent compliance monitoring will be conducted in compliance with the RGP. Additionally, the flow rate, pH, and temperature of the effluent will be monitoring in the field and recorded.

We appreciate your assistance in processing this Notice of Intent.

Should you have any questions regarding this correspondence, please do not hesitate to contact the undersigned at (617)497-7800.

Sincerely,

KLEINFELDER

Madeline Soule Staff Professional II Jeremy Blumberg Project Manager

Heremy Blumberg

cc: Mr. Kehat Falik, E&PS (file)

Modellin 7 Soule

cc: Dennisport Conservation Commission

cc: MassDOT, Highway Division, District 5 Permits Engineer

List of Attachments

Attachment A – RGP NOI Form

Attachment B – Figures

Figure 1 – Locus Plan

Figure 2 – Site Plan and Proposed Excavation Area

Figure 3 – NOI Map

Figure 4 – Treatment System Schematic

Attachment C – Laboratory Analytical Data

Attachment D – Safety Data Sheets

Attachment E - Fish and Wildlife Consistency Letter

Attachment F - Massachusetts Cultural Resources in Vicinity of Site

ATTACHMENT A RGP NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:	State:	Zip:				
3. Site operator, if different than owner	Contact Person:						
	Telephone:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):		at apply):				
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		☐ CWA Section 404					

В.	Receiving	water	infor	mation:

B. Receiving water information:		
Unnamed wetlands west of Division Street, discharging to manmade retention pond (Pound Pond). Pound pond discharges above MLW to Nantucket Sound	Waterbody identification of receiving water(s):	Classification of receiving water(s):
Receiving water is (check any that apply): □ Outstanding I	Resource Water □ Ocean Sanctuary □ territorial sea □ \	Wild and Scenic River
2. Has the operator attached a location map in accordance v	with the instructions in B, above? (check one): \Box Yes \Box	No
Are sensitive receptors present near the site? (check one): If yes, specify:	☐ Yes ☐ No	
3. Indicate if the receiving water(s) is listed in the State's Ir pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP.		
4. Indicate the seven day-ten-year low flow (7Q10) of the reAppendix V for sites located in Massachusetts and Append		ctions in
5. Indicate the requested dilution factor for the calculation of accordance with the instructions in Appendix V for sites in		
6. Has the operator received confirmation from the appropr If yes, indicate date confirmation received:	iate State for the 7Q10and dilution factor indicated? (che	eck one): Yes No
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in ac	cordance with the instruction in Appendix VIII?
(check one): ☐ Yes ☐ No		
C. Source water information:		

1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
□ Yes □ No	□ Yes □ No		

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \square Yes \square No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ☐ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	v discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): ☐ Direct di Discharge is to a catchbasin / stormwater system which discharg discharges to Nantucket Sound	scharge to the receiving water Indirect discharge, if so, specify: es to an unnamed wetland, connected to man-made retention pond, which
If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): \Box Ye	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): ☐ Yes ☐ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	Datastian	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3		•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 μg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

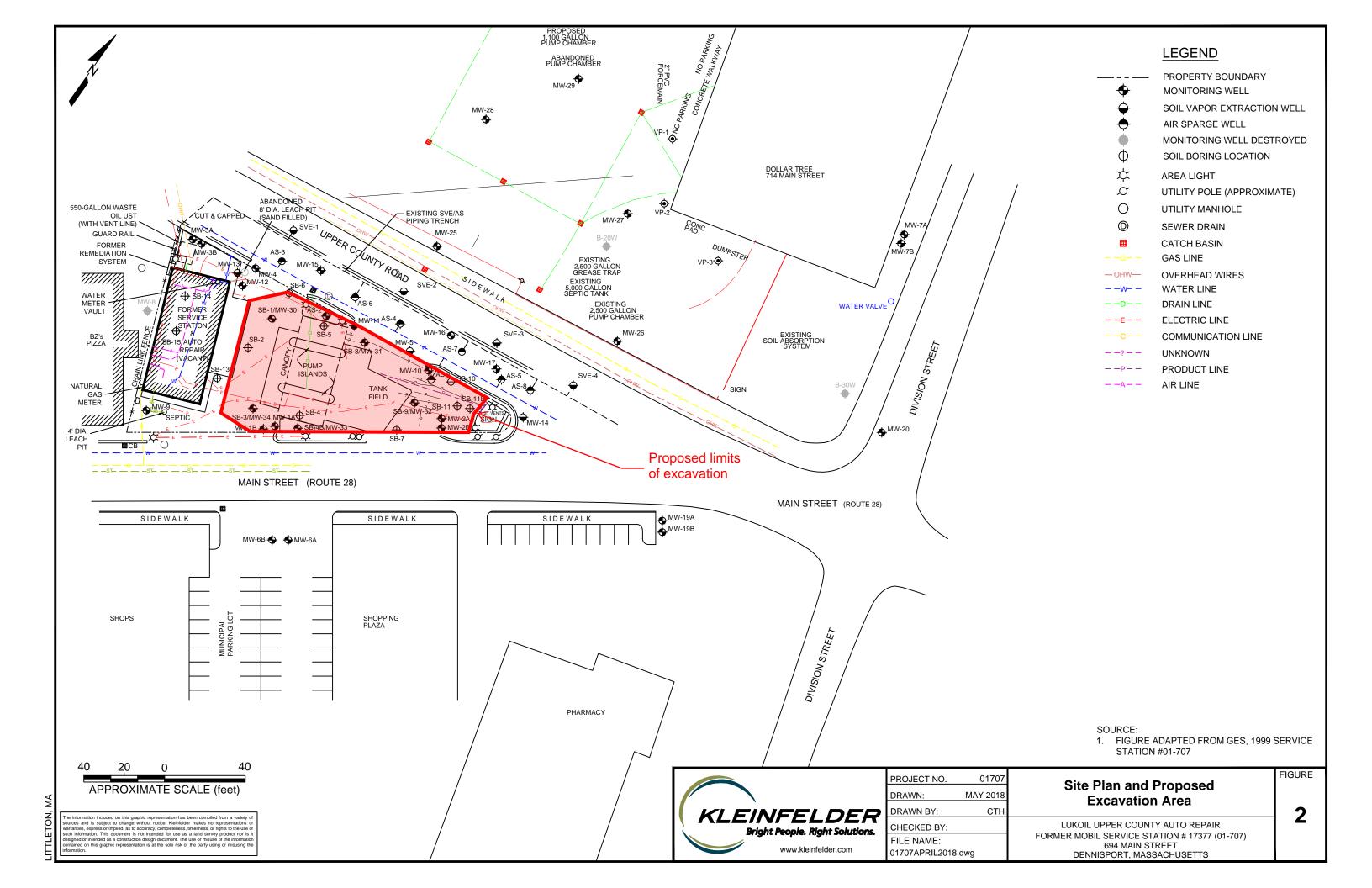
E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No


J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.						
BMPP certification statement:						
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No □				
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □	No □				
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □	No □ NA □				
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA □				
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge						
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □	No □ NA □				
☐ Other; if so, specify:						
Signature: Mosllim 7 Soul	te:					
Print Name and Title:						

ATTACHMENT B

Figures

U.S. Fish and Wildlife Service National Wetlands Inventory

Figure 3 - NOI Plan

July 16, 2019

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Other

Other

Riverine

Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Figure 4 Proposed Treatment System Schematic

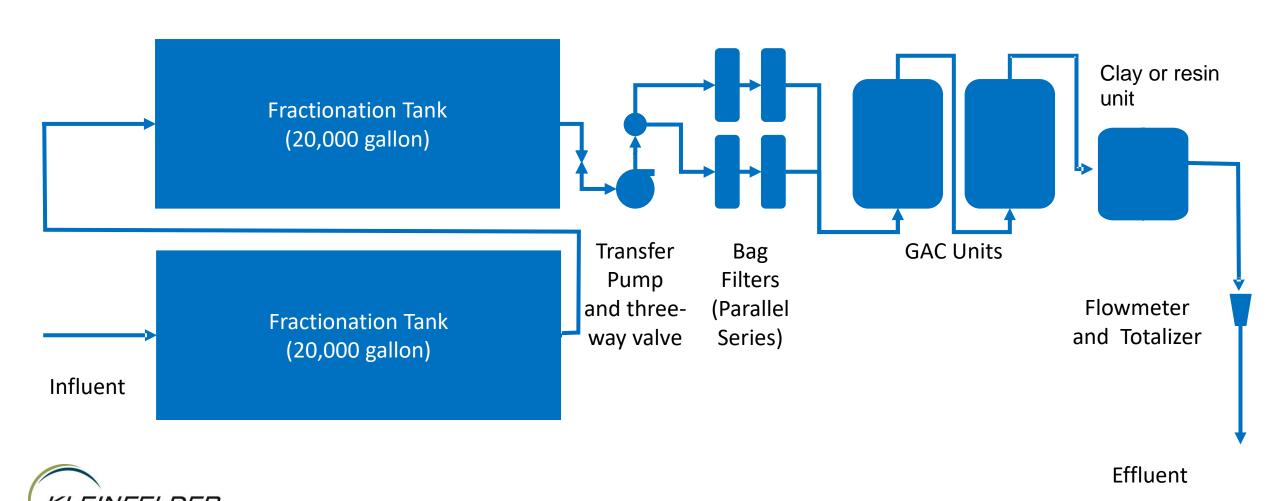
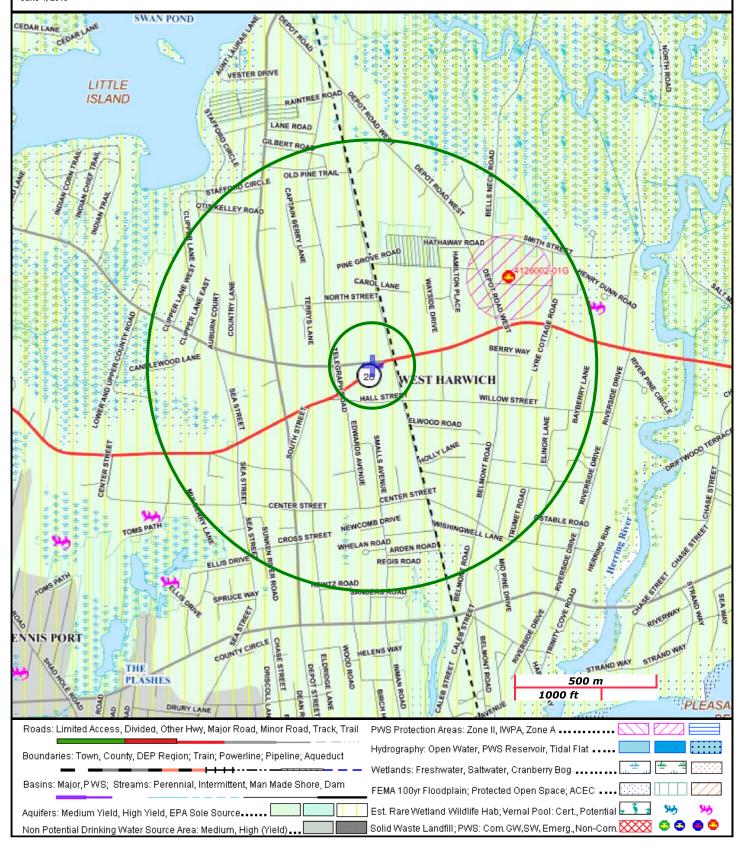


Figure 5 Priority
Resource Map

MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

694 MAIN STREET DENNIS, MA 4-00000933 NADB3 UTM Meters: 4613596mN , 406528mE (Zone: 19) June 4, 2019 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.

ATTACHMENT C

Laboratory Analytical Data

	Final Report
V	Revised Report

Report Date: 24-Jun-19 16:14

Laboratory Report SC55030

Kleinfelder, Inc. 4 Technology Drive, Suite 110 Westborough, MA 01851 Attn: Jeremy Blumberg

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project #: 1707

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Erica Troy Quality Services Manager

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 43 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC55030

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project Number: 1707

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC55030-01NPDES Dewater SampleGround Water05-Jun-19 10:3005-Jun-19 16:21

24-Jun-19 16:14 Page 2 of 43

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 1.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

June 24, 2019

Report has been revised to include tert-butyl alcohol results.

ALCOHOL

HEADSPACE 06/10/19-1: CD29077

The following Continuing Calibration compounds did not meet % deviation criteria:

Samples: CD29077

Preceding CC 610A002 - Butanol 22%H (20%), Ethanol 29%H (20%), Isopropanol 22%H (20%)

Succeeding CC 610A013 - None.

VOA Narration

CHEM23 06/10/19-3: CD29077

The following Initial Calibration compounds did not meet RSD% criteria: 1,2-Dibromo-3-chloropropane 26% (20%), Bromoform 31% (20%), trans-1,4-dichloro-2-butene 25% (20%)

The following Initial Calibration compounds did not meet maximum RSD% criteria: None.

The following Continuing Calibration compounds did not meet % deviation criteria: Bromomethane 40% L (30%)

The following Continuing Calibration compounds did not meet Maximum % deviation criteria: None.

Up to eight compounds can be outside of ICAL %RSD criteria and up to sixteen compounds can be outside of CCAL %Dev criteria if less than 40%.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

E350.1

Blanks:

CD27630-BLK

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Ammonia as Nitrogen

Laboratory Control Samples:

E350.1

Laboratory Control Samples:

CD27630-LCS

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Ammonia as Nitrogen

E608

Laboratory Control Samples:

482363A BS

PCB-1221 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1232 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1242 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1248 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1254 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1262 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

PCB-1268 percent recovery 0 (40-140) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

482363A BSD

% DCBP RPD 40.8% (20%) is outside individual acceptance criteria.

CD28874-LCS

This parameter is outside laboratory rpd specified recovery limits.

% DCBP

CD28874-LCSD

This parameter is outside laboratory rpd specified recovery limits.

% DCBP

E624.1

Laboratory Control Samples:

E624.1

Laboratory Control Samples:

482831B BS

Tert-butyl alcohol percent recovery 60 (70-130) is outside individual acceptance criteria, but within overall method allowances.

All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

482831B BSD

Tert-butyl alcohol RPD 62.1% (30%) is outside individual acceptance criteria.

CD29614-LCS

This parameter is outside laboratory lcs/lcsd specified recovery limits.

Tert-butyl alcohol

This parameter is outside laboratory rpd specified recovery limits.

Tert-butyl alcohol

CD29614-LCSD

This parameter is outside laboratory rpd specified recovery limits.

Tert-butyl alcohol

CD30719-LCS

This parameter is outside laboratory lcs/lcsd specified recovery limits.

tert-butyl alcohol

This parameter is outside laboratory rpd specified recovery limits.

1,4-dioxane tert-butyl alcohol

CD30719-LCSD

This parameter is outside laboratory rpd specified recovery limits.

1,4-dioxane tert-butyl alcohol

E625.1/E625.1SIM

Laboratory Control Samples:

482093A BS

2-Nitroaniline percent recovery 132 (30-130) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

NPDES Dewater Sample

Bis(2-chloroisopropyl)ether percent recovery 60 (63-139) is outside individual acceptance criteria, but within overall method allowances. All reported results of the following samples are considered to have a potentially low bias:

NPDES Dewater Sample

482093A BSD

% 2-Fluorobiphenyl RPD 28.1% (20%) is outside individual acceptance criteria.

% 2-Fluorobiphenyl RPD 33.3% (20%) is outside individual acceptance criteria.

E625.1/E625.1SIM

Laboratory Control Samples:

482093A BSD

- % Nitrobenzene-d5 RPD 138.1% (20%) is outside individual acceptance criteria.
- % Nitrobenzene-d5 RPD 143.4% (20%) is outside individual acceptance criteria.
- % Phenol-d5 RPD 121.1% (20%) is outside individual acceptance criteria.
- % Phenol-d5 RPD 124.7% (20%) is outside individual acceptance criteria.
- 1,2,4-Trichlorobenzene RPD 137.3% (50%) is outside individual acceptance criteria.
- 2,6-Dichlorophenol RPD 46.7% (20%) is outside individual acceptance criteria.
- 2-Chloronaphthalene RPD 32.8% (24%) is outside individual acceptance criteria.
- 2-Methylnaphthalene RPD 58.6% (20%) is outside individual acceptance criteria.
- 2-Methylphenol (o-cresol) RPD 88.5% (20%) is outside individual acceptance criteria.
- 2-Nitrophenol RPD 98.0% (55%) is outside individual acceptance criteria.
- 3&4-Methylphenol (m&p-cresol) RPD 59.0% (20%) is outside individual acceptance criteria.
- 4-Chloroaniline RPD 60.7% (20%) is outside individual acceptance criteria.

Benzoic acid RPD 66.7% (20%) is outside individual acceptance criteria.

Benzyl alcohol RPD 79.6% (20%) is outside individual acceptance criteria.

Bis(2-chloroethoxy)methane RPD 74.6% (54%) is outside individual acceptance criteria.

Naphthalene RPD 121.8% (65%) is outside individual acceptance criteria.

Nitrobenzene RPD 135.8% (62%) is outside individual acceptance criteria.

N-Nitrosodimethylamine RPD 128.1% (20%) is outside individual acceptance criteria.

Phenol RPD 122.1% (64%) is outside individual acceptance criteria.

Pyridine RPD 22.6% (20%) is outside individual acceptance criteria.

CD27853-LCS

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Phenol-d5

Nitrobenzene

N-Nitrosodimethylamine

Pyridine

E625.1/E625.1SIM

Laboratory Control Samples:

CD27853-LCSD

This parameter is outside laboratory lcs/lcsd specified recovery limits.

% 2-Fluorophenol

% Nitrobenzene-d5

Hexachlorobutadiene

Hexachlorocyclopentadiene

Nitrobenzene

N-Nitrosodimethylamine

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Phenol-d5

Nitrobenzene

N-Nitrosodimethylamine

Pyridine

CE27853-LCS

This parameter is outside laboratory lcs/lcsd specified recovery limits.

2-Nitroaniline

Bis(2-chloroisopropyl)ether

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Phenol-d5

1,2,4-Trichlorobenzene

2,6-Dichlorophenol

2-Chloronaphthalene

2-Methylnaphthalene

2-Methylphenol (o-cresol)

2-Nitrophenol

 $3\&4\text{-}Methylphenol\ (m\&p\text{-}cresol)$

4-Chloroaniline

Benzoic acid

Benzyl alcohol

Bis(2-chloroethoxy)methane

Naphthalene

Phenol

CE27853-LCSD

E625.1/E625.1SIM

Laboratory Control Samples:

CE27853-LCSD

This parameter is outside laboratory lcs/lcsd specified recovery limits.

% 2-Fluorophenol

% Nitrobenzene-d5

1,2,4-Trichlorobenzene

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2,4-Dichlorophenol

2-Chloronaphthalene

2-Chlorophenol

2-Methylphenol (o-cresol)

2-Nitrophenol

Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether

Bis(2-chloroisopropyl)ether

Hexachloroethane

Naphthalene

Phenol

This parameter is outside laboratory rpd specified recovery limits.

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Phenol-d5

1,2,4-Trichlorobenzene

2,6-Dichlorophenol

2-Chloronaphthalene

2-Methylnaphthalene

2-Methylphenol (o-cresol)

2-Nitrophenol

3&4-Methylphenol (m&p-cresol)

4-Chloroaniline

Benzoic acid

Benzyl alcohol

Bis(2-chloroethoxy)methane

Naphthalene

Phenol

SM3500-Cr-B (11)/7196A

Samples:

SC55030-01 NPDES Dewater Sample

The Reporting Limit has been raised to account for matrix interference.

Hexavalent Chromium

SM4500-Cl-G (11)

Samples:

SC55030-01 NPDES Dewater Sample

The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis.

Total Residual Chlorine

SM4500-Cl-G (11)

Samples:

SC55030-01

NPDES Dewater Sample

The Reporting Limit has been raised to account for matrix interference.

Total Residual Chlorine

SW8015D MOD

Laboratory Control Samples:

482580A BSD

% 2-Pentanol(surr) RPD 30.2% (30%) is outside individual acceptance criteria.

SW8260C (OXY)

Laboratory Control Samples:

482831B BSD

1,4-Dioxane RPD 36.3% (30%) is outside individual acceptance criteria.

CD29614-LCS

This parameter is outside laboratory rpd specified recovery limits.

1,4-Dioxane

CD29614-LCSD

This parameter is outside laboratory rpd specified recovery limits.

1,4-Dioxane

Sample Acceptance Check Form

Kleinfelder, Inc. - Westborough, MA

Were samples accompanied by a Chain of Custody document?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

Project:	Exxon Mobil- 694 Main Street-Dennisport, MA / 1707			
Work Order:	SC55030			
Sample(s) received on:	6/5/2019			
The following outlines t	the condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody so	eals present?		\checkmark	
Were custody so	eals intact?			\checkmark
Were samples re	eceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples c	ooled on ice upon transfer to laboratory representative?	\overline{C}		
Were sample co	ontainers received intact?	$\overline{\checkmark}$		
	properly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	abla		

Client:

Summary of Hits

Lab ID: SC55030-01

Client ID:	NPDES Dewater Sample
Circuit ID.	THE BES BOWARD Sample

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Trivalent Chromium	0.0140		0.0050	mg/l	Calculation
O&G, Non-polar Material	3.6		1.6	mg/l	E1664A
Arsenic	0.040		0.002	mg/l	E200.7
Cadmium	0.003		0.001	mg/l	E200.7
Chromium	0.139		0.001	mg/l	E200.7
Copper	0.088		0.003	mg/l	E200.7
Iron	46.6		0.005	mg/l	E200.7
Lead	0.600		0.001	mg/l	E200.7
Nickel	0.025		0.001	mg/l	E200.7
Zinc	0.433		0.002	mg/l	E200.7
Mercury	0.0002		0.0002	mg/l	E245.1
Ammonia as Nitrogen	2.71		0.50	mg/l	E350.1
1,2,4-Trimethylbenzene	810		10	ug/l	E624
1,2-Dichlorobenzene	13		10	ug/l	E624
1,3,5-Trimethylbenzene	130		10	ug/l	E624
Benzene	19		7.0	ug/l	E624
Ethylbenzene	710		10	ug/l	E624
sopropylbenzene	56		10	ug/l	E624
n&p-Xylene	790		10	ug/l	E624
Naphthalene	130		10	ug/l	E624
-Butylbenzene	33		10	ug/l	E624
n-Propylbenzene	130		10	ug/l	E624
-Xylene	110		10	ug/l	E624
o-Isopropyltoluene	11		10	ug/l	E624
ec-Butylbenzene	22		10	ug/l	E624
Toluene	42		10	ug/l	E624
Total Xylenes	900		10	ug/l	E624
,2-Dichlorobenzene	13		5.0	ug/l	E624.1
1,4-Dichlorobenzene	5.2		5.0	ug/l	E624.1
Benzene	19		5.0	ug/l	E624.1
Ethylbenzene	710		5.0	ug/l	E624.1
n&p-Xylene	790		5.0	ug/l	E624.1
o-Xylene	110		5.0	ug/l	E624.1
Toluene	42		5.0	ug/l	E624.1
Benzo(a)anthracene	0.09		0.04	ug/l	E625.1/E625.1SIM
Benzo(b)fluoranthene	0.07		0.05	ug/l	E625.1/E625.1SIM
Benzo(k)fluoranthene	0.06		0.05	ug/l	E625.1/E625.1SIM
Chrysene	0.09		0.05	ug/l	E625.1/E625.1SIM
ndeno(1,2,3-c,d)pyrene	0.06		0.05	ug/l	E625.1/E625.1SIM
Phenanthrene	0.42		0.05	ug/l	E625.1/E625.1SIM
Total Suspended Solids	1300		25	mg/l	SM2540D-11
Chloride	68.9		3.0	mg/l	SM4500CLE

Lab ID:SC55030-01RE1Client ID:NPDES Dewater Sample

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hardness (CaCO3)	149		0.1	mg/l	E200.7
1,2-Dichlorobenzene	8.7		4.7	ug/l	E625.1/E625.1SIM
2-Methylnaphthalene	40		4.7	ug/l	E625.1/E625.1SIM
Lab ID: SC55030-01RE2			Client ID: NPDES De	ewater Sampl	e
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Naphthalene	110		23	ug/l	E625.1/E625.1SIM

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

-	<u>lentification</u> Dewater Sample -01				Project # 707		<u>Matrix</u> Ground Wa		lection Date 5-Jun-19 10			ceived Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	hemistry Parameters												
16065-83-1	Trivalent Chromium	0.0140		mg/l	0.0050		1	Calculation	06-Jun-19	13-Jun-19	EDT	1900777	
7782-50-5	Total Residual Chlorine	< 0.500	CIHT, R01, D,CIHT	mg/l	0.500	0.109	25	SM4500-CI-G (11)	05-Jun-19 16:15	05-Jun-19 17:12	ABW	1900775	X
18540-29-9	Hexavalent Chromium	< 0.125	R01, D	mg/l	0.125	0.102	25	SM3500-Cr-B (11)/7196A	06-Jun-19 08:00	06-Jun-19 09:02	ABW	1900777	
	acted Analyses acted Analyses												
	erformed by Phoenix Environ	mental Labs,	Inc. * - MAC	T007									
71-55-6	1,1,1-Trichloroethane	< 5.0		ug/l	5.0	5.0	10	E624.1	10-Jun-19 13:44	11-Jun-19 05:47	M-CT007	482787A	
79-34-5	1,1,2,2-tetrachloroethane	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 5.0		ug/l	5.0	5.0	10	n n	"	"	"	"	
75-34-3	1,1-Dichloroethane	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
75-35-4	1,1-Dichloroethene	< 5.0		ug/l	5.0	5.0	10		"		"		
95-50-1	1,2-Dichlorobenzene	13		ug/l	5.0	5.0	10		"	"		"	
107-06-2	1,2-Dichloroethane	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
78-87-5	1,2-Dichloropropane	< 5.0		ug/l	5.0	5.0	10	"	n n	"		"	
541-73-1	1,3-Dichlorobenzene	< 5.0		ug/l	5.0	5.0	10	"	n n	"		"	
106-46-7	1,4-Dichlorobenzene	5.2		ug/l	5.0	5.0	10	"	n n	"		"	
71-43-2	Benzene	19		ug/l	5.0	5.0	10	n	"	"		"	
75-27-4	Bromodichloromethane	< 5.0		ug/l	5.0	5.0	10	n	"	"		"	
75-25-2	Bromoform	< 5.0		ug/l	5.0	5.0	10		"	"			
74-83-9	Bromomethane	< 5.0		ug/l	5.0	5.0	10		"	"			
56-23-5	Carbon tetrachloride	< 5.0		ug/l	5.0	5.0	10	"					
108-90-7	Chlorobenzene	< 5.0		ug/l	5.0	5.0	10	"					
75-00-3	Chloroethane	< 5.0		ug/l	5.0	5.0	10	"					
67-66-3	Chloroform	< 5.0		ug/l	5.0	5.0	10	"					
74-87-3	Chloromethane	< 5.0		ug/l	5.0	5.0	10		"	"			
156-59-2	cis-1,2-Dichloroethene	< 5.0		ug/l	5.0	5.0	10		"	"		"	
10061-01-5	cis-1,3-Dichloropropene	< 4.0		ug/l	4.0	4.0	10	"	"	"	"		
124-48-1	Dibromochloromethane	< 5.0		ug/l	5.0	5.0	10	"					
100-41-4	Ethylbenzene	710		ug/l	5.0	5.0	10	"					
179601-23-1	•	790		ug/l	5.0	5.0	10	"					
1634-04-4	Methyl tert-butyl ether (MTBE)	< 10		ug/l	10	10	10	н	"	"	"	"	
75-09-2	Methylene chloride	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
95-47-6	o-Xylene	110		ug/l	5.0	5.0	10	"	"	"	"	"	
127-18-4	Tetrachloroethene	< 5.0		ug/l	5.0	5.0	10	"	"	"		"	
108-88-3	Toluene	42		ug/l	5.0	5.0	10	"	"	"		"	
156-60-5	trans-1,2-Dichloroethene	< 5.0		ug/l	5.0	5.0	10	"			"	"	
10061-02-6	trans-1,3-Dichloropropene	< 4.0		ug/l	4.0	4.0	10	"			"	"	
79-01-6	Trichloroethene	< 5.0		ug/l	5.0	5.0	10		"	"	"	"	
75-69-4	Trichlorofluoromethane	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
75-01-4	Vinyl chloride	< 5.0		ug/l	5.0	5.0	10	•	"		"	"	
Surrogate i	recoveries:												
2199-69-1	% 1,2-dichlorobenzene-d4	101			70-13	80 %		n n		"	"	"	
460-00-4	% Bromofluorobenzene	93			70-13			"			"	"	
.00 00 7	, a Diomonaulonenzene	30			70-13	.0 /0							

	dentification Dewater Sample -01				<u>Project #</u> 707		<u>Matrix</u> Ground Wa		lection Date 5-Jun-19 10			<u>ceived</u> Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Subcontra	acted Analyses												
Subcontra	acted Analyses												
Analysis p	erformed by Phoenix Environ	mental Labs, Inc	. * - M-CT0	07									
1868-53-7	% Dibromofluoromethane	101			70-13	0 %		E624.1	10-Jun-19 13:44	-Jun-19 05:	4M-CT007	482787A	A
2037-26-5	% Toluene-d8	97			70-13	0 %		"	"	"		"	
Re-analys	sis of Subcontracted Analy	rses											
	recoveries:												
2199-69-1	% 1,2-dichlorobenzene-d4	101			70-13	0 %		E624.1	10lun-19	-Jun-19 05:	·M-CT007	482787#	4
	70 1,2 didinologenzene da	101			70 70	0 70		L024.1	13:44	0011 10 00.	-101 01007	4021011	
Re-analys	sis of Subcontracted Analy	<u>rses</u>											
Surrogate	recoveries:												
460-00-4	% Bromofluorobenzene	93			70-13	0 %		E624.1		-Jun-19 05:	.4M-CT007	482787A	A
									13:44				
Re-analys	sis of Subcontracted Analy	<u>'ses</u>											
_	recoveries:												
1868-53-7	% Dibromofluoromethane	101			70-13	0 %		E624.1	10-Jun-19 13:44	-Jun-19 05:	4M-CT007	482787A	4
Re-analys	sis of Subcontracted Analy	'ses							10.11				
-	recoveries:												
2037-26-5	% Toluene-d8	97			70-13	0 %		E624.1	10lun-19	-Jun-19 05:	-4M-CT007	482787#	١
	,	•				,,,			13:44		0.00.	.02.0	•
Re-analys	sis of Subcontracted Analy	<u>rses</u>											
75-65-0	Tert-butyl alcohol	< 100		ug/l	100	100	10	E624.1	11-Jun-19 05:47	11-Jun-19 05:47	M-CT007	482831B	3
Subcontra	acted Analyses								00.41	00.47			
	by method E1664A												
Analysis p	erformed by Phoenix Environ	mental Labs, Inc	. * - MACTO	007									
	O&G, Non-polar Material	3.6		mg/l	1.6	1.6	1.1	E1664A		10-Jun-19	M-CT007	482485A	A
Subcontr	acted Analyses								08:36	08:36			
	acteu Ariatyses erformed by Phoenix Environ	mantal Labs Inc	* MACTI	007									
7440-36-0	Antimony	< 0.003	MACI	mg/l	0.003	0.003	1	E200.7	07-Jun-19	08-Jun-19	M-CT007	482295 <i>E</i>	١
	, u.u	0.000		9	0.000	0.000	·		0. 00	18:18	0.00.	.02200	•
7440-38-2	Arsenic	0.040		mg/l	0.002	0.002	1	"	"	"	"	"	
7440-43-9	Cadmium	0.003		mg/l	0.001	0.001	1	"	"	"	"	"	
7440-47-3	Chromium	0.139		mg/l	0.001	0.001	1	"	"	"	"	"	
7440-50-8	Copper	0.088		mg/l	0.003	0.003	1	"	"	"	"	"	
7439-89-6	Iron	46.6		mg/l	0.005	0.005	1	"	"	"	"	"	
7439-92-1	Lead	0.600		mg/l	0.001	0.001	1	"	"	"	"	"	
7440-02-0	Nickel	0.025		mg/l	0.001	0.001	1	"	"	"	"	"	
7782-49-2	Selenium	< 0.005		mg/l	0.005	0.005	1				"		
7440-22-4	Silver	< 0.001		mg/l	0.001	0.001	1		"	"	"	"	
7440-66-6	Zinc	0.433		mg/l	0.002	0.002	1	"	"	"	ď	"	
La analya	sis of Subcontracted Analy	<u>'ses</u>			0.4	0.1	4	E200.7	40 him 40	40 1 40	M OTOOT	400005	
ine-allalys	Hardness (C-CCS)	4.40						F/UU /	12-Jun-19	12-Jun-19	IVI-C/LUU/	482295P	١.
ixe-allalys	Hardness (CaCO3)	149		mg/l	0.1	0.1	1	2200.7	14:49	14:49	0.00.		
	Hardness (CaCO3) by method SW7470A	149		mg/i	0.1	0.1	ı	2200.1	14:49		0.00.		
<u>Prepared</u>			:. * - MACT(-	0.0002	0.0002	1	E245.1					

	dentification Dewater Sample -01				<u>Project #</u> 707		<u>Matrix</u> Ground Wa		lection Date 5-Jun-19 10			<u>ceived</u> Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	acted Analyses by method SW9012B												
Analysis pe	erformed by Phoenix Environ	mental Labs, Inc	* - MAC7	T007									
57-12-5	Total Cyanide	< 0.010		mg/l	0.010	0.010	1	E335.4	07-Jun-19	10-Jun-19	M-CT007	482323A	
Prepared	by method E350.1									13:04			
	erformed by Phoenix Environ	mental Labs. Inc	* - MACT	7007									
7664-41-7	Ammonia as Nitrogen	2.71		mg/l	0.50	0.50	10	E350.1	08-Jun-19 09:18	08-Jun-19 09:18	M-CT007	482247A	ı
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Environ	mental Labs, Inc.	* - MACT	7007									
12674-11-2	PCB-1016	< 0.50		ug/l	0.50	0.50	1	E608	07-Jun-19	11-Jun-19 02:29	M-CT007	482363A	ı
11104-28-2	PCB-1221	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
11141-16-5	PCB-1232	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
53469-21-9	PCB-1242	< 0.50		ug/l	0.50	0.50	1	n n	"	"	"	"	
12672-29-6	PCB-1248	< 0.50		ug/l	0.50	0.50	1	n n	"	"	"	"	
11097-69-1	PCB-1254	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
11096-82-5	PCB-1260	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
37324-23-5	PCB-1262	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
11100-14-4	PCB-1268	< 0.50		ug/l	0.50	0.50	1	"	"	"	"	"	
Surrogate	recoveries:												
2051-24-3	% DCBP	95			30-15	50 %		"	"	"	"	"	
877-09-8	% TCMX	106			30-15	50 %		"	"	"	"	"	
Subcontra	acted Analyses												
Analysis p	erformed by Phoenix Environ	mental Labs, Inc	* - MAC7	7007									
630-20-6	1,1,1,2-Tetrachloroethane	< 10		ug/l	10	10	10	E624	10-Jun-19 13:44	11-Jun-19 05:47	M-CT007	482831A	
71-55-6	1,1,1-Trichloroethane	< 10		ug/l	10	10	10	"	"	"	"	"	
79-34-5	1,1,2,2-Tetrachloroethane	< 5.0		ug/l	5.0	5.0	10	"	"	"	"	"	
79-00-5	1,1,2-Trichloroethane	< 10		ug/l	10	10	10	"	"		"	"	
75-34-3	1,1-Dichloroethane	< 10		ug/l	10	10	10	"	"		"	"	
75-35-4	1,1-Dichloroethene	< 10		ug/l	10	10	10	"	"	"	"	"	
563-58-6	1,1-Dichloropropene	< 10		ug/l	10	10	10			"	"		
87-61-6	1,2,3-Trichlorobenzene	< 10		ug/l	10	10	10						
96-18-4	1,2,3-Trichloropropane	< 10		ug/l	10	10	10	"			"	"	
120-82-1	1,2,4-Trichlorobenzene	< 10		ug/l	10	10	10	"	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	810		ug/l	10	10	10	"	"		"		
96-12-8	1,2-Dibromo-3-chloroprop ane	< 10		ug/l	10	10	10						
106-93-4	1,2-Dibromoethane	< 10		ug/l	10	10	10				"		
95-50-1	1,2-Dichlorobenzene	13		ug/l	10	10	10						
107-06-2	1,2-Dichloroethane	< 6.0		ug/l	6.0	6.0	10	"		"	"	"	
78-87-5	1,2-Dichloropropane	< 10		ug/l	10	10	10	"	"		"	"	
108-67-8	1,3,5-Trimethylbenzene	130		ug/l	10	10	10	"	"		"		
541-73-1	1,3-Dichlorobenzene	< 10		ug/l	10	10	10	"	"	"	"	"	
142-28-9	1,3-Dichloropropane	< 10		ug/l	10	10	10	"	"		"		
106-46-7	1,4-Dichlorobenzene	< 10		ug/l	10	10	10	"	"		"	"	
594-20-7	2,2-Dichloropropane	< 10		ug/l	10	10	10						

-	entification Dewater Sample 01				Project # 707		<u>Matrix</u> Ground W		ection Date Jun-19 10			<u>ceived</u> Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert
Subcontra	cted Analyses												
Subcontra	cted Analyses												
Analysis pe	rformed by Phoenix Environi	nental Labs, In	c. * - MAC	Γ007									
156-60-5	trans-1,2-Dichloroethene	< 10		ug/l	10	10	10	E624	10-Jun-19 13:44	11-Jun-19 05:47	M-CT007	482831A	
10061-02-6	trans-1,3-Dichloropropene	< 4.0		ug/l	4.0	4.0	10	n .	"	"	"	"	
110-57-6	trans-1,4-dichloro-2-buten e	< 50		ug/l	50	50	10	n	"	"	"	"	
79-01-6	Trichloroethene	< 10		ug/l	10	10	10	n .	"	"	"	"	
75-69-4	Trichlorofluoromethane	< 10		ug/l	10	10	10	n .	"	"	"	"	
76-13-1	Trichlorotrifluoroethane	< 10		ug/l	10	10	10	n .	"	"	"	"	
75-01-4	Vinyl chloride	< 10		ug/l	10	10	10	"	n	"	"	"	
Surrogate r	ecoveries:												
2199-69-1	% 1,2-dichlorobenzene-d4	101			70-13	0 %		"	"		"	"	
460-00-4	% Bromofluorobenzene	93			70-13	0 %		"	"	"	"	"	
1868-53-7	% Dibromofluoromethane	101			70-13	0 %		"	"		"	"	
2037-26-5	% Toluene-d8	97			70-13	0 %		"	"		"	"	
Subcontra	cted Analyses												
	rformed by Phoenix Environ	nental Labs, In	c. * - MAC'	Γ007									
33-32-9	Acenaphthene	< 0.05		ug/l	0.05	0.05	1	E625.1/E625.1SI M	06-Jun-19	11-Jun-19 02:02	M-CT007	482093A	L
208-96-8	Acenaphthylene	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"	
66-55-3	Benzo(a)anthracene	0.09		ug/l	0.04	0.04	1	"	"	"	"	"	
0-32-8	Benzo(a)pyrene	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"	
05-99-2	Benzo(b)fluoranthene	0.07		ug/l	0.05	0.05	1	"	"	"	"	"	
91-24-2	Benzo(g,h,i)perylene	< 0.09		ug/l	0.09	0.09	1	n .	"	"	"	"	
207-08-9	Benzo(k)fluoranthene	0.06		ug/l	0.05	0.05	1	"	"	"	"	"	
218-01-9	Chrysene	0.09		ug/l	0.05	0.05	1	n .	"	"	"	"	
53-70-3	Dibenz(a,h)anthracene	< 0.02		ug/l	0.02	0.02	1	n .	"	"	"	"	
118-74-1	Hexachlorobenzene	< 0.06		ug/l	0.06	0.06	1	"	"		"	"	
37-68-3	Hexachlorobutadiene	< 0.09		ug/l	0.09	0.09	1	"	"		"	"	
77-47-4	Hexachlorocyclopentadien e	< 0.09		ug/l	0.09	0.09	1	n	II	"	II	"	
193-39-5	Indeno(1,2,3-c,d)pyrene	0.06		ug/l	0.05	0.05	1	"	"	"	"	"	
8-95-3	Nitrobenzene	< 0.09		ug/l	0.09	0.09	1	"	"	"	"	"	
62-75-9	N-Nitrosodimethylamine	< 0.05		ug/l	0.05	0.05	1	"	"	"	"	"	
37-86-5	Pentachlorophenol	< 0.05		ug/l	0.05	0.05	1	"	"		"	"	
35-01-8	Phenanthrene	0.42		ug/l	0.05	0.05	1	"	"		"	"	
110-86-1	Pyridine	< 0.47		ug/l	0.47	0.47	1	"	"	"	"	"	
Surrogate r	ecoveries:												
118-79-6	% 2,4,6-Tribromophenol	105			15-11	0 %		п	"	"	"	"	
321-60-8	% 2-Fluorobiphenyl	44			30-13			"	"	"	"	"	
367-12-4	% 2-Fluorophenol	32			15-11			"	"		"	"	
1165-60-0	% Nitrobenzene-d5	94			30-13			"	"	"	"	"	
1165-62-2	% Phenol-d5	37			15-11			"	"	"	"	"	
98904-43-9	% Terphenyl-d14	22			30-13			"	"	"	"	"	
	is of Subcontracted Analys												
120-82-1	1,2,4-Trichlorobenzene	< 4.7		ug/l	4.7	4.7	1	E625.1/E625.1SI M	06-Jun-19	11-Jun-19 13:43	M-CT007	482093A	ı

Sample Identification

-	entification rewater Sample				Project # 707		Matrix Ground W	· · · · · · · · · · · · · · · · · · ·	ection Date -Jun-19 10			<u>ceived</u> Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cer
Subcontrac	cted Analyses												
Analysis pe	rformed by Phoenix Environ	nental Labs, In	c. * - MACT	7007									
Re-analys	is of Subcontracted Analys	ses_											
117-84-0	Di-n-octylphthalate	< 4.7		ug/l	4.7	4.7	1	E625.1/E625.1SI M	06-Jun-19	11-Jun-19 13:43	M-CT007	482093A	
206-44-0	Fluoranthene	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
86-73-7	Fluorene	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
67-72-1	Hexachloroethane	< 0.94		ug/l	0.94	0.94	1	"	"	"	"	"	
78-59-1	Isophorone	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
621-64-7	N-Nitrosodi-n-propylamine	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
86-30-6	N-Nitrosodiphenylamine	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
108-95-2	Phenol	< 4.7		ug/l	4.7	4.7	1	"	"	"	"	"	
129-00-0	Pyrene	< 4.7		ug/l	4.7	4.7	1	u u	"	"	"	"	
Surrogate re	ecoveries:												
118-79-6	% 2,4,6-Tribromophenol	72			15-13	0 %		"	"	"	"	"	
321-60-8	% 2-Fluorobiphenyl	58			30-13	0 %		"	"	"	"	"	
367-12-4	% 2-Fluorophenol	43			10-13	0 %		"	"	"	"	"	
4165-60-0	% Nitrobenzene-d5	75			15-13	0 %		"	"	"	"	"	
4165-62-2	% Phenol-d5	30			10-13	0 %		"	"	"	"	"	
98904-43-9	% Terphenyl-d14	21			30-13	0 %		"	"	"	"	"	
Re-analys	is of Subcontracted Analys	ses_											
91-20-3	Naphthalene	110		ug/l	23	23	5	E625.1/E625.1SI M	06-Jun-19	11-Jun-19 16:10	M-CT007	482093A	
Surrogate re	ecoveries:												
118-79-6	% 2,4,6-Tribromophenol	93			15-13	0 %		"	"	"	"	"	
321-60-8	% 2-Fluorobiphenyl	52			30-13	0 %		"	"	"	"	"	
367-12-4	% 2-Fluorophenol	55			10-13	0 %		"	"	"	"	"	
4165-60-0	% Nitrobenzene-d5	21			15-13	0 %		"	"	"	"	"	
4165-62-2	% Phenol-d5	36			10-13	0 %		"	"	"	"	"	
98904-43-9 Prepared l	% Terphenyl-d14 by method SM2540D-11	23			30-13	0 %		n	"	"	"	"	
Analysis pe	rformed by Phoenix Environi	nental Labs, In	c. * - MACT	7007									
	Total Suspended Solids	1,300		mg/l	25	25	5	SM2540D-11		07-Jun-19	M-CT007	482192A	
Prepared F	by method SM4500CLE								06:26	06:26			
	rformed by Phoenix Environi	nental Lahs In	c. * - MAC7	7007									
16887-00-6		68.9	c. maci	mg/l	3.0	3.0	1	SM4500CLE	07-Jun-19 04:37	07-Jun-19 04:37	M-CT007	482272A	
	cted Analyses by method SW8015D MOI	<u> </u>											
Analysis pe	rformed by Phoenix Environi	nental Labs, In	c. * - MAC7	7007									
64-17-5	Ethanol	< 1.0		mg/l	1.0	1.0	1	SW8015D MOD	10-Jun-19	10-Jun-19 23:16	M-CT007	482580A	
Surrogate re	ecoveries:												
6032-29-7	% 2-Pentanol(surr)	87			70-13	0 %		··	"	"	"	"	
	cted Analyses by method SW8260C (OX	<u>Y)</u>											
Analysis pe	rformed by Phoenix Environi	nental Labs, In	c. * - MACT	7007									
123-91-1	1,4-Dioxane	< 1000		ug/l	1000	1000	10	SW8260C (OXY)	10-Jun-19 13:44	11-Jun-19 05:47	M-CT007	482831B	1

	lentification Dewater Sample -01				<u>Project #</u> 707		<u>Matrix</u> Ground W	-	ection Date -Jun-19 10	,	-	ceived Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Analysis p	erformed by Phoenix Enviro	onmental Labs, I	nc. * - MACT	007									
60-29-7	Diethyl ether	< 10		ug/l	10	10	10	SW8260C (OXY)	10-Jun-19 13:44	11-Jun-19 05:47	M-CT007	482831B	
108-20-3	Di-isopropyl ether	< 10		ug/l	10	10	10	"	"	"	"	"	
637-92-3	Ethyl tert-butyl ether	< 10		ug/l	10	10	10		"	"	"	"	
994-05-8	tert-amyl methyl ether	< 10		ug/l	10	10	10	ıı	"	"	"	"	

24-Jun-19 16:14 Page 21 of 43

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
		8			20,01	220011	, , , , ,	210		2,11111
SM3500-Cr-B (11)/7196A										
Batch 1900777 - General Preparation					D.			l 40		
Blank (1900777-BLK1)	10.005		/I	0.005	Pre	epared & Al	nalyzed: 06-	-Jun-19		
Hexavalent Chromium	< 0.005		mg/l	0.005	_					
LCS (1900777-BS1)						epared & Ai	nalyzed: 06-			
Hexavalent Chromium	0.050		mg/l	0.005	0.0500		100	90-111		
Calibration Blank (1900777-CCB1)					<u>Pre</u>	epared & Ai	nalyzed: 06-	<u>-Jun-19</u>		
Hexavalent Chromium	-0.002		mg/l							
Calibration Blank (1900777-CCB2)					<u>Pre</u>	epared & A	nalyzed: 06-	<u>-Jun-19</u>		
Hexavalent Chromium	-0.003		mg/l							
Calibration Check (1900777-CCV1)					Pre	epared & A	nalyzed: 06-	<u>-Jun-19</u>		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500		100	90-110		
Calibration Check (1900777-CCV2)					Pre	epared & A	nalyzed: 06-	<u>-Jun-19</u>		
Hexavalent Chromium	0.049		mg/l	0.005	0.0500		99	90-110		
Reference (1900777-SRM1)					Pre	epared & A	nalyzed: 06-	-Jun-19		
Hexavalent Chromium	0.078		mg/l	0.005	0.0742		105	83.3-116		
SM4500-Cl-G (11)										
Batch 1900775 - General Preparation										
Blank (1900775-BLK1)					Pre	epared & Ai	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	< 0.020		mg/l	0.020						
LCS (1900775-BS1)					Pre	epared & A	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	0.048		mg/l	0.020	0.0500		95	90-110		
Calibration Blank (1900775-CCB1)					Pre	epared & A	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	0.001		mg/l							
Calibration Blank (1900775-CCB2)					Pre	epared & Ai	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	-0.0006		mg/l							
Calibration Check (1900775-CCV1)					Pre	epared & Ai	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	0.048		mg/l	0.020	0.0500		96	90-110		
Calibration Check (1900775-CCV2)					Pre	epared & Ai	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	0.054		mg/l	0.020	0.0500		108	90-110		
MRL Check (1900775-MRL1)			5		Pre	epared & A	nalyzed: 05-	-Jun-19		
Total Residual Chlorine	0.018		mg/l	0.020	0.0200		92	70-130		
Reference (1900775-SRM1)			3 ··			enared & A	nalyzed: 05-			
Total Residual Chlorine	0.110		mg/l	0.020	0.112	parou u A	98	90-110		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E 624.1										
Batch 482787A - E624.1										
Blank (CD30719-BLK)					Pre	epared & A	nalyzed: 10-	Jun-19		
Bromobenzene	ND		ug/l	1.0		,	ND	-		
Ethyl ether	ND		ug/l	1.0			ND	_		
1,4-dioxane	ND		ug/l	100			ND	_		
2,2-Dichloropropane	ND		ug/l	1.0			ND	_		
2-Chlorotoluene	ND		ug/l	1.0			ND	_		
2-Hexanone	ND		ug/l	5.0			ND	_		
2-Isopropyltoluene	ND		ug/l	1.0			ND	_		
4-Chlorotoluene	ND		ug/l	1.0			ND	_		
4-Methyl-2-pentanone	ND		ug/l	5.0			ND	_		
Acetone	ND		ug/l	5.0			ND	_		
Acrylonitrile	ND		ug/l	5.0			ND	_		
Bromochloromethane	ND ND		ug/l	1.0			ND	_		
n-Propylbenzene	ND		ug/l	1.0			ND	-		
n-Butylbenzene	ND		ug/l	1.0			ND	_		
Naphthalene	ND		ug/l	1.0			ND	_		
Carbon Disulfide	ND			1.0			ND	_		
Methyl ethyl ketone	ND ND		ug/l	5.0			ND	-		
• •	ND ND		ug/l	1.0			ND	_		
p-Isopropyltoluene			ug/l	0.40			ND	-		
Hexachlorobutadiene	ND		ug/l					-		
1,2-Dibromoethane	ND		ug/l	1.0			ND	-		
Dibromomethane	ND		ug/l	1.0			ND	-		
Isopropylbenzene	ND		ug/l	1.0			ND	-		
1,2,4-Trichlorobenzene	ND		ug/l	1.0			ND	-		
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0			ND	-		
trans-1,4-dichloro-2-butene	ND		ug/l	5.0			ND	-		
Trichlorotrifluoroethane	ND		ug/l	1.0			ND	-		
1,3-Dichloropropane	ND		ug/l	1.0			ND	-		
1,2,3-Trichlorobenzene	ND		ug/l	1.0			ND	-		
1,2,3-Trichloropropane	ND		ug/l	1.0			ND	-		
1,1-Dichloropropene	ND		ug/l	1.0			ND	-		
1,2,4-Trimethylbenzene	ND		ug/l	1.0			ND	-		
1,2-Dibromo-3-chloropropane	ND		ug/l	1.0			ND	-		
Tetrahydrofuran (THF)	ND		ug/l	2.5			ND	-		
tert-Butylbenzene	ND		ug/l	1.0			ND	-		
Dichlorodifluoromethane	ND		ug/l	1.0			ND	-		
Styrene	ND		ug/l	1.0			ND	-		
1,3,5-Trimethylbenzene	ND		ug/l	1.0			ND	-		
sec-Butylbenzene	ND		ug/l	1.0			ND	-		
m&p-Xylene	ND		ug/l	1.0			ND	-		
Ethylbenzene	ND		ug/l	1.0			ND	-		
Trichlorofluoromethane	ND		ug/l	1.0			ND	-		
Vinyl chloride	ND		ug/l	1.0			ND	-		
Trichloroethene	ND		ug/l	1.0			ND	-		
Methyl tert-butyl ether (MTBE)	ND		ug/l	1.0			ND	-		
Methylene chloride	ND		ug/l	1.0			ND	-		
trans-1,3-Dichloropropene	ND		ug/l	0.40			ND	-		
tert-butyl alcohol	ND		ug/l	10			ND	-		
Tetrachloroethene	ND		ug/l	1.0			ND	-		
o-Xylene	ND		ug/l	1.0			ND	-		
trans-1,2-Dichloroethene	ND		ug/l	1.0			ND	_		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E624.1										
Batch 482787A - E624.1										
Blank (CD30719-BLK)					Pre	epared & Ar	nalyzed: 10-	Jun-19		
Benzene	ND		ug/l	0.70			ND	-		
1,1,2,2-tetrachloroethane	ND		ug/l	0.50			ND	_		
1,1,2-Trichloroethane	ND		ug/l	1.0			ND	_		
1,1-Dichloroethane	ND		ug/l	1.0			ND	_		
1,1-Dichloroethene	ND		ug/l	1.0			ND	_		
Toluene	ND		ug/l	1.0			ND	_		
1,2-Dichlorobenzene	ND		ug/l	1.0			ND	_		
1,2-Dichloroethane	ND		ug/l	1.0			ND	_		
1,2-Dichloropropane	ND		ug/l	1.0			ND	_		
* *			-					-		
Dibromochloromethane	ND		ug/l	0.50			ND	-		
1,4-Dichlorobenzene	ND		ug/l	1.0			ND	-		
1,1,1-Trichloroethane	ND		ug/l	1.0			ND	-		
Bromodichloromethane	ND		ug/l	0.50			ND	-		
Bromoform	ND		ug/l	1.0			ND	-		
Bromomethane	ND		ug/l	1.0			ND	-		
Carbon tetrachloride	ND		ug/l	1.0			ND	-		
Chlorobenzene	ND		ug/l	1.0			ND	-		
Chloroethane	ND		ug/l	1.0			ND	-		
Chloroform	ND		ug/l	1.0			ND	-		
Chloromethane	ND		ug/l	1.0			ND	-		
cis-1,2-Dichloroethene	ND		ug/l	1.0			ND	-		
cis-1,3-Dichloropropene	ND		ug/l	0.40			ND	-		
1,3-Dichlorobenzene	ND		ug/l	1.0			ND	-		
Surrogate: % 1,2-dichlorobenzene-d4	101		ug/l		30		101	70-130		
Surrogate: % Bromofluorobenzene	94		ug/l		30		94	70-130		
Surrogate: % Toluene-d8	100		ug/l		30		100	70-130		
Surrogate: % Dibromofluoromethane	103		ug/l		30		103	70-130		
LCS (CD30719-LCS)			· ·		Pre	enared & Ar	nalyzed: 10-	Jun-19		
4-Methyl-2-pentanone	20.28		ug/l	5.0	20	sparoa a 7 ii	101	70-130		30
Methyl ethyl ketone	21.35		ug/l	5.0	20		107	70-130		30
Dibromomethane	20.49		ug/l	1.0	20		107	70-130		30
1,3,5-Trimethylbenzene	20.49			1.0	20		102	70-130		30
•			ug/l							
1,3-Dichloropropane	21.39		ug/l	1.0	20		107	70-130		30
Isopropylbenzene	20.46	_	ug/l	1.0	20		102	70-130		30
1,4-dioxane	279.2	r	ug/l	100	400		70	70-130		30
2,2-Dichloropropane	20.22		ug/l	1.0	20		101	70-130		30
2-Chlorotoluene	20.26		ug/l	1.0	20		101	70-130		30
2-Hexanone	20.40		ug/l	5.0	20		102	70-130		30
4-Chlorotoluene	20.35		ug/l	1.0	20		102	70-130		30
Acetone	20.13		ug/l	5.0	20		101	70-130		30
Acrylonitrile	19.51		ug/l	5.0	20		98	70-130		20
Hexachlorobutadiene	19.73		ug/l	0.40	20		99	70-130		30
Bromobenzene	20.48		ug/l	1.0	20		102	70-130		30
Bromochloromethane	21.46		ug/l	1.0	20		107	70-130		30
Ethyl ether	20.17		ug/l	1.0	20		101	70-130		30
Dichlorodifluoromethane	19.08		ug/l	1.0	20		95	70-130		30
Carbon Disulfide	19.11		ug/l	1.0	20		96	70-130		30
n-Propylbenzene	20.35		ug/l	1.0	20		102	70-130		30
2-Isopropyltoluene	18.93		ug/l	1.0	20		95	70-130		30
1,1,1,2-Tetrachloroethane	22.48		ug/l	1.0	20		112	70-130		30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E624.1</u>										
Batch 482787A - E624.1										
LCS (CD30719-LCS)					Pre	epared & Ar	nalyzed: 10-	-Jun-19		
Tetrahydrofuran (THF)	48.98		ug/l	2.5	50		98	70-130		30
tert-Butylbenzene	20.51		ug/l	1.0	20		103	70-130		30
Trichlorotrifluoroethane	19.35		ug/l	1.0	20		97	70-130		30
Styrene	21.10		ug/l	1.0	20		106	70-130		30
trans-1,4-dichloro-2-butene	107.2		ug/l	5.0	100		107	70-130		30
sec-Butylbenzene	22.20		ug/l	1.0	20		111	70-130		30
Naphthalene	20.14		ug/l	1.0	20		101	70-130		30
p-Isopropyltoluene	20.64		ug/l	1.0	20		103	70-130		30
1,2-Dibromoethane	22.13		ug/l	1.0	20		111	70-130		30
n-Butylbenzene	20.84		ug/l	1.0	20		104	70-130		30
1,2,3-Trichloropropane	22.36		ug/l	1.0	20		112	70-130		30
1,1-Dichloropropene	20.19		ug/l	1.0	20		101	70-130		30
1,2,3-Trichlorobenzene	18.83		ug/l	1.0	20		94	70-130		30
1,2-Dibromo-3-chloropropane	24.13		ug/l	1.0	20		121	70-130		30
1,2,4-Trimethylbenzene	20.55		ug/l	1.0	20		103	70-130		30
1,2,4-Trichlorobenzene	19.42		ug/l	1.0	20		97	70-130		30
cis-1,3-Dichloropropene	20.78		ug/l	0.40	20		104	25-175		20
Dibromochloromethane	23.95		ug/l	0.50	20		120	70-135		20
Tetrachloroethene	19.87		ug/l	1.0	20		99	70-130		20
o-Xylene	21.22		ug/l	1.0	20		106	70-130		30
tert-butyl alcohol	120.8	l, r	ug/l	10	200		60	70-130		30
cis-1,2-Dichloroethene	21.06		ug/l	1.0	20		105	70-130		20
m&p-Xylene	42.00		ug/l	1.0	40		105	70-130		30
Methyl tert-butyl ether (MTBE)	18.50		ug/l	1.0	20		92	70-130		30
Methylene chloride	20.82		ug/l	1.0	20		104	60-140		20
1,2-Dichlorobenzene	20.69		ug/l	1.0	20		103	65-135		20
Ethylbenzene	20.91		ug/l	1.0	20		105	60-140		20
1,2-Dichloroethane	21.14		ug/l	1.0	20		106	70-130		20
Vinyl chloride	19.03		ug/l	1.0	20		95	10-195		20
Trichlorofluoromethane	17.88		ug/l	1.0	20		89	50-150		20
Trichloroethene	20.33		ug/l	1.0	20		102	65-135		20
trans-1,3-Dichloropropene	20.80		ug/l	0.40	20		104	50-150		20
trans-1,2-Dichloroethene	21.14		ug/l	1.0	20		106	70-130		20
Toluene	20.24		ug/l	1.0	20		101	70-130		20
1,1,1-Trichloroethane	20.52		ug/l	1.0	20		103	70-130		20
1,1,2,2-tetrachloroethane	22.92		ug/l	0.50	20		115	60-140		20
1,1,2-Trichloroethane	20.56		ug/l	1.0	20		103	70-130		20
1,2-Dichloropropane	20.68		ug/l	1.0	20		103	35-165		20
1,1-Dichloroethene	21.52		ug/l	1.0	20		108	50-150		20
Chloromethane	18.36		ug/l	1.0	20		92	10-200		20
1,3-Dichlorobenzene	20.90		ug/l	1.0	20		104	70-130		20
1,4-Dichlorobenzene	20.85		ug/l	1.0	20		104	65-135		20
Benzene	20.26		ug/l	0.70	20		101	65-135		20
Bromodichloromethane	21.54		ug/l	0.50	20		108	65-135		20
Bromoform	23.94		ug/l	1.0	20		120	70-130		20
Bromomethane	16.23		ug/l	1.0	20		81	15-185		20
Carbon tetrachloride	22.12		ug/l	1.0	20		111	70-130		20
Chlorobenzene	20.98		ug/l	1.0	20		105	65-135		20
Chloroethane	18.64		ug/l	1.0	20		93	40-160		20
Chloroform	20.69		ug/l	1.0	20		103	70-135		20

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
<u>624.1</u>										
atch 482787A - E624.1										
LCS (CD30719-LCS)					Pro	epared & Ar	nalyzed: 10-	Jun-19		
1,1-Dichloroethane	21.06		ug/l	1.0	20		105	70-130		20
Surrogate: % Bromofluorobenzene	30.34		ug/l		30		101	70-130		
Surrogate: % Dibromofluoromethane	30.87		ug/l		30		103	70-130		
Surrogate: % 1,2-dichlorobenzene-d4	30.56		ug/l		30		102	70-130		
Surrogate: % Toluene-d8	29.73		ug/l		30		99	70-130		
LCS Dup (CD30719-LCSD)			-	030719-LCS	Pro	epared & Ar	nalyzed: 10-	Jun-19		
2-Isopropyltoluene	19.23		ug/l	1.0	20		96	70-130	1.0	30
Dibromomethane	20.90		ug/l	1.0	20		104	70-130	1.9	30
Carbon Disulfide	19.78		ug/l	1.0	20		99	70-130	3.1	30
Bromochloromethane	21.72		ug/l	1.0	20		109	70-130	1.9	30
Bromobenzene	20.96		ug/l	1.0	20		105	70-130	2.9	30
Acrylonitrile	19.97		ug/l	5.0	20		100	70-130	2.0	20
Acetone	20.50		ug/l	5.0	20		102	70-130	1.0	30
4-Chlorotoluene	20.86		ug/l	1.0	20		104	70-130	1.9	30
Hexachlorobutadiene	19.02		ug/l	0.40	20		95	70-130	4.1	30
2-Hexanone	20.23		ug/l	5.0	20		101	70-130	1.0	30
2-Chlorotoluene	20.23		ug/l	1.0	20		101	70-130	2.9	30
	20.76 19.95		ū	1.0	20			70-130		
2,2-Dichloropropane			ug/l				100		1.0	30
1,4-dioxane	405.8	r	ug/l	100	400		101	70-130	36.3	30
1,3-Dichloropropane	23.30		ug/l	1.0	20		116	70-130	8.1	30
4-Methyl-2-pentanone	20.45		ug/l	5.0	20		102	70-130	1.0	30
Ethyl ether	20.25		ug/l	1.0	20		101	70-130	0.0	30
1,3,5-Trimethylbenzene	21.30		ug/l	1.0	20		106	70-130	1.9	30
Isopropylbenzene	21.09		ug/l	1.0	20		105	70-130	2.9	30
Methyl ethyl ketone	21.29		ug/l	5.0	20		106	70-130	0.9	30
Naphthalene	19.47		ug/l	1.0	20		97	70-130	4.0	30
n-Propylbenzene	20.83		ug/l	1.0	20		104	70-130	1.9	30
p-Isopropyltoluene	20.97		ug/l	1.0	20		105	70-130	1.9	30
sec-Butylbenzene	22.44		ug/l	1.0	20		112	70-130	0.9	30
Styrene	21.51		ug/l	1.0	20		108	70-130	1.9	30
Trichlorotrifluoroethane	20.09		ug/l	1.0	20		100	70-130	3.0	30
trans-1,4-dichloro-2-butene	108.5		ug/l	5.0	100		109	70-130	1.9	30
Tetrahydrofuran (THF)	49.19		ug/l	2.5	50		98	70-130	0.0	30
tert-Butylbenzene	21.16		ug/l	1.0	20		106	70-130	2.9	30
n-Butylbenzene	21.21		ug/l	1.0	20		106	70-130	1.9	30
Dichlorodifluoromethane	20.05		ug/l	1.0	20		100	70-130	5.1	30
1,1-Dichloropropene	20.60		ug/l	1.0	20		103	70-130	2.0	30
1,1,1,2-Tetrachloroethane	22.87		ug/l	1.0	20		114	70-130	1.8	30
1,2-Dibromoethane	21.87		ug/l	1.0	20		109	70-130	1.8	30
1,2-Dibromo-3-chloropropane	22.41		ug/l	1.0	20		112	70-130	7.7	30
1,2,4-Trimethylbenzene	20.98		ug/l	1.0	20		105	70-130	1.9	30
1,2,4-Trichlorobenzene	19.20		ug/l	1.0	20		96	70-130	1.0	30
1,2,3-Trichloropropane	22.58		ug/l	1.0	20		113	70-130	0.9	30
1,2,3-Trichlorobenzene	18.43		ug/l	1.0	20		92	70-130	2.2	30
Dibromochloromethane	23.12		ug/l	0.50	20		116	70-135	3.4	20
1,1,1-Trichloroethane	21.20		ug/l	1.0	20		106	70-130	2.9	20
Ethylbenzene	21.21		ug/l	1.0	20		106	60-140	0.9	20
m&p-Xylene	43.32		ug/l	1.0	40		108	70-130	2.8	30
Methyl tert-butyl ether (MTBE)	18.58		ug/l	1.0	20		93	70-130	1.1	30
Methylene chloride	21.13		ug/l	1.0	20		106	60-140	1.9	20

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E624.1</u>										
Batch 482787A - E624.1										
LCS Dup (CD30719-LCSD)			Source: CI	D30719-LCS	Pr	epared & Ar	nalyzed: 10-	-Jun-19		
o-Xylene	21.89		ug/l	1.0	20		109	70-130	2.8	30
tert-butyl alcohol	227.9	r	ug/l	10	200		114	70-130	62.1	30
Tetrachloroethene	20.06		ug/l	1.0	20		100	70-130	1.0	20
cis-1,3-Dichloropropene	20.87		ug/l	0.40	20		104	25-175	0.0	20
trans-1,2-Dichloroethene	21.53		ug/l	1.0	20		108	70-130	1.9	20
Trichloroethene	20.15		ug/l	1.0	20		101	65-135	1.0	20
trans-1,3-Dichloropropene	20.66		ug/l	0.40	20		103	50-150	1.0	20
Trichlorofluoromethane	19.54		ug/l	1.0	20		98	50-150	9.6	20
Vinyl chloride	20.06		ug/l	1.0	20		100	10-195	5.1	20
1,2-Dichloropropane	21.21		ug/l	1.0	20		106	35-165	2.9	20
Toluene	20.83		ug/l	1.0	20		104	70-130	2.9	20
Bromomethane	18.37		_	1.0	20		92	15-185	12.7	20
			ug/l							
1,1,2-Trichloroethane 1,1-Dichloroethene	20.59 22.18		ug/l	1.0	20 20		103 111	70-130 50-150	0.0 2.7	20 20
,			ug/l	1.0						20
1,2-Dichlorobenzene	20.63		ug/l	1.0	20		103	65-135	0.0	
1,3-Dichlorobenzene	21.16		ug/l	1.0	20		106	70-130	1.9	20
Bromodichloromethane	21.74		ug/l	0.50	20		109	65-135	0.9	20
1,4-Dichlorobenzene	20.93		ug/l	1.0	20		105	65-135	1.0	20
1,2-Dichloroethane	21.09		ug/l	1.0	20		105	70-130	0.9	20
cis-1,2-Dichloroethene	21.34		ug/l	1.0	20		107	70-130	1.9	20
Benzene	20.58		ug/l	0.70	20		103	65-135	2.0	20
Bromoform	23.60		ug/l	1.0	20		118	70-130	1.7	20
1,1-Dichloroethane	21.54		ug/l	1.0	20		108	70-130	2.8	20
1,1,2,2-tetrachloroethane	23.07		ug/l	0.50	20		115	60-140	0.0	20
Carbon tetrachloride	21.54		ug/l	1.0	20		108	70-130	2.7	20
Chlorobenzene	21.31		ug/l	1.0	20		107	65-135	1.9	20
Chloroethane	21.27		ug/l	1.0	20		106	40-160	13.1	20
Chloroform	21.30		ug/l	1.0	20		106	70-135	2.9	20
Chloromethane	19.05		ug/l	1.0	20		95	10-200	3.2	20
Surrogate: % Bromofluorobenzene	30.71		ug/l		30		102	70-130		
Surrogate: % Dibromofluoromethane	29.97		ug/l		30		100	70-130		
Surrogate: % Toluene-d8	29.91		ug/l		30		100	70-130		
Surrogate: % 1,2-dichlorobenzene-d4	30.04		ug/l		30		100	70-130		
Batch 482831B - E624.1										
Blank (CD29614-BLK)					<u>Pr</u>	epared & Ar	nalyzed: 10	-Jun-19		
Tert-butyl alcohol	ND		ug/l	10			ND	-		
Surrogate: % Bromofluorobenzene	94		ug/l		30		94	70-130		
Surrogate: % Dibromofluoromethane	103		ug/l		30		103	70-130		
Surrogate: % 1,2-dichlorobenzene-d4	101		ug/l		30		101	70-130		
Surrogate: % Toluene-d8	100		ug/l		30		100	70-130		
LCS (CD29614-LCS)			3			enared & Ai	nalyzed: 10			
Tert-butyl alcohol	120.8	l, r	ug/l	10	200	epared & Ar	60	70-130		30
		-,-								
Surrogate: % 1,2-dichlorobenzene-d4	30.56		ug/l		30		102	70-130		
Surrogate: % Bromofluorobenzene	30.34		ug/l		30		101	70-130		
Surrogate: % Dibromofluoromethane	30.87		ug/l		30		103	70-130		
Surrogate: % Toluene-d8	29.73		ug/l		30		99	70-130		
LCS Dup (CD29614-LCSD)				D29614-LCS		epared & Ar	nalyzed: 10-			
Tert-butyl alcohol	227.9	r	ug/l	10	200		114	70-130	62.1	30
Surrogate: % 1,2-dichlorobenzene-d4	30.04		ug/l		30		100	70-130		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit

E624.1

Batch 482831B - E624.1

LCS Dup (CD29614-LCSD)		Source: CD29614-LCS	Prepa	red & Analyzed: 10-Jun-19	
Surrogate: % Toluene-d8	29.91	ug/l	30	100 70-130	
Surrogate: % Bromofluorobenzene	30.71	ug/l	30	102 70-130	
Surrogate: % Dibromofluoromethane	29.97	ug/l	30	100 70-130	

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E1664A										
Batch 482485A - E1664A										
Blank (CD28410-BLK)					Pre	epared & Ar	nalyzed: 10-	Jun-19		
O&G, Non-polar Material	< 1.4		mg/l	1.4	20	, pa. 0a a 7	BRL	-		
·			1119/1			narad 9 Ar	nalyzed: 10-	lup 10		
LCS (CD28410-LCS) O&G, Non-polar Material	18.10		ma/l	1.4	20	epareu & Ar	91	85-115		20
	16.10		mg/l	1.4	20		91	65-115		20
<u>2200.7</u>										
Batch 482295A - 200.7					_				40	
Blank (CD28124-BLK)					Pre	epared: 07-		alyzed: 08-Ju	<u>ın-19</u>	
Zinc	< 0.0020		mg/l	0.0020			BRL	-		
Silver	< 0.0005		mg/l	0.0005			BRL	-		
Selenium	< 0.0050		mg/l	0.0050			BRL	-		
Cadmium	< 0.0005		mg/l	0.0005			BRL	-		
Lead	< 0.0010		mg/l	0.0010			BRL	-		
Chromium	< 0.0005		mg/l	0.0005			BRL	-		
Arsenic	< 0.0020		mg/l	0.0020			BRL	-		
Antimony	< 0.0025		mg/l	0.0025			BRL	-		
Iron	< 0.0050		mg/l	0.0050			BRL	-		
Copper	< 0.0025		mg/l	0.0025			BRL	-		
LCS (CD28124-LCS)					Pre	epared: 07-	Jun-19 An	alyzed: 08-Ju	ın-19	
Copper	1.072		mg/l	0.0025	1		107	75-125		20
Zinc	1.048		mg/l	0.0020	1		105	75-125		20
Silver	0.2581		mg/l	0.0005	0.25		103	75-125		20
Selenium	1.011		mg/l	0.0050	1		101	75-125		20
Nickel	1.077		mg/l	0.0005	1		108	75-125		20
Iron	1.047		mg/l	0.0050	1		105	75-125		20
Chromium	1.045		mg/l	0.0005	1		105	75-125		20
Cadmium	1.047		mg/l	0.0005	1		105	75-125		20
Arsenic	2.059		mg/l	0.0020	2		103	75-125		20
Antimony	2.245		mg/l	0.0025	2		112	75-125 75-125		20
Lead	2.245		-	0.0023	2		105	75-125 75-125		20
	2.105		mg/l						40	20
LCS Dup (CD28124-LCSD)		<u>.</u>		028124-LCS	·	epared: 07-		alyzed: 08-Ju		
Cadmium	1.032		mg/l	0.0005	1		103	75-125	1.9	20
Silver	0.2511		mg/l	0.0005	0.25		100	75-125	3.0	20
Selenium	0.9974		mg/l	0.0050	1		99.7	75-125	1.3	20
Nickel	1.060		mg/l	0.0005	1		106	75-125	1.9	20
Zinc	1.029		mg/l	0.0020	1		103	75-125	1.9	20
Lead	2.076		mg/l	0.0010	2		104	75-125	1.0	20
Chromium	1.030		mg/l	0.0005	1		103	75-125	1.9	20
Arsenic	2.025		mg/l	0.0020	2		101	75-125	2.0	20
Antimony	2.211		mg/l	0.0025	2		111	75-125	0.9	20
Copper	1.049		mg/l	0.0025	1		105	75-125	1.9	20
Iron	1.047		mg/l	0.0050	1		105	75-125	0.0	20
Blank (CE28124-BLK)					Pre	epared: 07-	Jun-19 An	alyzed: 10-Ju	ın-19	
Nickel	< 0.0005		mg/l	0.0005	·		BRL	-		
<u>245.1</u>			3							
243.1 atch 482209A - SW7470A										
					Dra	nared & Ar	nalyzed: 10-	.lun-10		
Blank (CD29056-BLK)	< 0.0002		ma/l	0.0003	<u> 1716</u>	ραιτά & ΑΙ	BRL			
Mercury	< 0.0002		mg/l	0.0002	_			-		
LCS (CD29056-LCS)						epared & Ar	nalyzed: 10-			_ :
Mercury	0.002413		mg/l	0.0002	0.0025		96.5	75-125		30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
E335.4										
Batch 482323A - SW9012B										
Blank (CD27173-BLK)					Dre	nared: 07-	lun-10 An	alyzed: 10-Ju	ın_10	
Total Cyanide	< 0.010		mg/l	0.010	<u></u>	parca. or	BRL	- -	<u> </u>	
LCS (CD27173-LCS)	10.010		mg/i	0.010	Dro	parad: 07		alyzed: 10-Ju	ın 10	
Total Cyanide	0.4010		ma/l	0.010	0.429	:pareu. 07-	93.5	90-110	<u> </u>	30
•	0.4010		mg/l	0.010	0.429		93.5	90-110		30
E350.1										
Batch 482247A - E350.1										
Blank (CD27630-BLK)					Pre	pared: 07-	Jun-19 An	alyzed: 08-Ju	<u>ın-19</u>	
Ammonia as Nitrogen	< 0.05	c1	mg/l	0.05			BRL	-		
LCS (CD27630-LCS)					<u>Pre</u>	pared: 07-	Jun-19 An	alyzed: 08-Ju	<u>ın-19</u>	
Ammonia as Nitrogen	4.860	c1	mg/l	0.05	4.72		103	90-110		20
E608										
Batch 482363A - SW3510C										
Blank (CD28874-BLK)					Dra	nared: 07	lun-10 An	alyzed: 10-Ju	ın-19	
PCB-1248	ND		ug/l	0.050	<u>- 16</u>	,paieu. 0/-	ND	- aiyzeu. 10-31	<u> </u>	
PCB-1016	ND ND		ug/l ug/l	0.050			ND ND	-		
PCB-1010 PCB-1268	ND ND		_	0.050			ND ND	-		
PCB-1200 PCB-1262			ug/l	0.050			ND ND	-		
PCB-1262 PCB-1260	ND		ug/l	0.050				-		
	ND		ug/l				ND	-		
PCB-1254	ND		ug/l	0.050			ND	-		
PCB-1232	ND		ug/l	0.050			ND	-		
PCB-1242	ND		ug/l	0.050			ND	-		
PCB-1221	ND		ug/l	0.050			ND	-		
Surrogate: % TCMX	87		ug/l		100		87	30-150		
Surrogate: % DCBP	70		ug/l		100		70	30-150		
LCS (CD28874-LCS)					Pre	pared: 07-	Jun-19 An	alyzed: 10-Ju	<u>ın-19</u>	
PCB-1232	ND		ug/l	0.050	500			40-140		20
PCB-1268	ND		ug/l	0.050	500			40-140		20
PCB-1262	ND		ug/l	0.050				40-140		20
PCB-1260	577.7		ug/l	0.050	500		116	40-140		20
PCB-1254	ND		ug/l	0.050	500			40-140		20
PCB-1242	ND		ug/l	0.050	500			40-140		20
PCB-1221	ND		ug/l	0.050	500			40-140		20
PCB-1016	545.0		ug/l	0.050	500		109	40-140		20
PCB-1248	ND		ug/l	0.050	500			40-140		20
Surrogate: % TCMX	41.68		ug/l		40		104	30-150		
Surrogate: % DCBP	33.76	r	ug/l		40		84	30-150		
LCS Dup (CD28874-LCSD)			Source: CI	28874-LCS	Pre	pared: 07-	Jun-19 An	alyzed: 10-Ju	<u>ın-19</u>	
PCB-1232	ND		ug/l	0.050	500	•		40-140		20
PCB-1268	ND		ug/l	0.050	500			40-140		20
PCB-1262	ND		ug/l	0.050				40-140		20
PCB-1260	522.6		ug/l	0.050	500		105	40-140	10.0	20
PCB-1254	ND		ug/l	0.050	500			40-140		20
PCB-1221	ND		ug/l	0.050	500			40-140		20
PCB-1016	567.1		ug/l	0.050	500		113	40-140	3.6	20
PCB-1242	ND		ug/l	0.050	500			40-140	***	20
PCB-1248	ND		ug/l	0.050	500			40-140		20
			_	J.000			464			20
Surrogate: % TCMX Surrogate: % DCBP	48.40 50.77		ug/l		40 40		121 127	30-150		
		r	ug/l		40		407	30-150		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Aniaryte(s)	Result	riag	Units	·KDL	Level	Resuit	/0KEC	Lillits	KrD	LIIIII
<u>E624</u>										
Batch 482831A - E624										
Blank (CD29614-BLK)					Pre	epared & A	nalyzed: 10-	-Jun-19		
Dibromochloromethane	ND		ug/l	0.50			ND	-		
Methyl t-butyl ether (MTBE)	ND		ug/l	1.0			ND	-		
Methyl ethyl ketone	ND		ug/l	5.0			ND	-		
m&p-Xylene	ND		ug/l	1.0			ND	-		
Isopropylbenzene	ND		ug/l	1.0			ND	-		
Hexachlorobutadiene	ND		ug/l	0.40			ND	-		
Chlorobenzene	ND		ug/l	1.0			ND	-		
Ethylbenzene	ND		ug/l	1.0			ND	-		
Chloroethane	ND		ug/l	1.0			ND	-		
Dibromomethane	ND		ug/l	1.0			ND	-		
cis-1,3-Dichloropropene	ND		ug/l	0.40			ND	-		
cis-1,2-Dichloroethene	ND		ug/l	1.0			ND	-		
Chloromethane	ND		ug/l	1.0			ND	-		
Chloroform	ND		ug/l	1.0			ND	-		
Methylene chloride	ND		ug/l	1.0			ND	-		
Dichlorodifluoromethane	ND		ug/l	1.0			ND	-		
Tetrahydrofuran (THF)	ND		ug/l	2.5			ND	-		
Vinyl chloride	ND		ug/l	1.0			ND	-		
Trichlorotrifluoroethane	ND		ug/l	1.0			ND	-		
Trichlorofluoromethane	ND		ug/l	1.0			ND	-		
Trichloroethene	ND		ug/l	1.0			ND	-		
trans-1,4-dichloro-2-butene	ND		ug/l	5.0			ND	_		
2-Hexanone	ND		ug/l	5.0			ND	_		
trans-1,3-Dichloropropene	ND		ug/l	0.40			ND	_		
trans-1,2-Dichloroethene	ND		ug/l	1.0			ND	_		
Toluene	ND		ug/l	1.0			ND	_		
Naphthalene	ND		ug/l	1.0			ND	_		
Tetrachloroethene	ND		ug/l	1.0			ND	_		
tert-Butylbenzene	ND		ug/l	1.0			ND	_		
Styrene	ND		ug/l	1.0			ND	_		
sec-Butylbenzene	ND		ug/l	1.0			ND	_		
p-Isopropyltoluene	ND		ug/l	1.0			ND	_		
o-Xylene	ND		ug/l	1.0			ND	_		
n-Propylbenzene	ND		ug/l	1.0			ND	_		
n-Butylbenzene	ND		ug/l	1.0			ND	_		
Carbon tetrachloride	ND		ug/l	1.0			ND	_		
1,1-Dichloropropene	ND		ug/l	1.0			ND	_		
Carbon Disulfide	ND		ug/l	1.0			ND	_		
1,2-Dichlorobenzene	ND ND		ug/l	1.0			ND	_		
4-Chlorotoluene	ND ND		ug/l	1.0			ND	=		
1,2-Dibromo-3-chloropropane	ND ND		ug/l	1.0			ND	-		
1,2,4-Trimethylbenzene	ND ND		ug/l	1.0			ND	-		
1,2,4-Trichlorobenzene	ND ND		ug/l	1.0			ND	-		
1,2-Dichloropropane	ND ND		ug/l	1.0			ND			
1,2,3-Trichlorobenzene				1.0			ND	-		
	ND ND		ug/l							
1,2-Dichloroethane	ND		ug/l	1.0			ND	-		
1,1-Dichloroethene	ND ND		ug/l	1.0			ND	-		
1,1,1-Trichloroethane	ND		ug/l	1.0			ND	-		
1,1-Dichloroethane	ND		ug/l	1.0			ND	-		
1,1,2-Trichloroethane	ND		ug/l	1.0			ND	-		

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E <u>624</u>										
Batch 482831A - E624										
Blank (CD29614-BLK)					Pre	epared & A	nalyzed: 10-	Jun-19		
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		•	ND	_		
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0			ND	_		
1,2,3-Trichloropropane	ND		ug/l	1.0			ND	_		
Benzene	ND		ug/l	0.70			ND	_		
Bromomethane	ND		ug/l	1.0			ND	_		
Bromoform	ND		ug/l	1.0			ND	_		
Bromodichloromethane	ND		ug/l	0.50			ND	_		
1,2-Dibromoethane	ND		ug/l	1.0			ND	_		
Bromobenzene	ND		ug/l	1.0			ND	_		
1,3,5-Trimethylbenzene	ND		ug/l	1.0			ND	_		
Acrylonitrile	ND		ug/l	5.0			ND			
Acetone	ND		ug/l	5.0			ND	_		
			-	5.0				-		
4-Methyl-2-pentanone	ND ND		ug/l				ND ND	-		
2-Isopropyltoluene			ug/l	1.0				-		
2-Chlorotoluene	ND		ug/l	1.0			ND	-		
2,2-Dichloropropane	ND		ug/l	1.0			ND	-		
1,4-Dichlorobenzene	ND		ug/l	1.0			ND	-		
1,3-Dichloropropane	ND		ug/l	1.0			ND	-		
1,3-Dichlorobenzene	ND		ug/l	1.0			ND	-		
Bromochloromethane	ND		ug/l	1.0			ND	-		
Surrogate: % 1,2-dichlorobenzene-d4	101		ug/l		30		101	70-130		
Surrogate: % Bromofluorobenzene	94		ug/l		30		94	70-130		
Surrogate: % Dibromofluoromethane	103		ug/l		30		103	70-130		
Surrogate: % Toluene-d8	100		ug/l		30		100	70-130		
LCS (CD29614-LCS)					Pre	epared & A	nalyzed: 10-	Jun-19		
Trichlorofluoromethane	17.88		ug/l	1.0	20		89	70-130		30
Dibromochloromethane	23.95		ug/l	0.50	20		120	70-130		30
trans-1,4-dichloro-2-butene	107.2		ug/l	5.0	100		107	70-130		30
Methyl ethyl ketone	21.35		ug/l	5.0	20		107	40-160		30
m&p-Xylene	42.00		ug/l	1.0	40		105	70-130		30
Isopropylbenzene	20.46		ug/l	1.0	20		102	70-130		30
Hexachlorobutadiene	19.73		ug/l	0.40	20		99	70-130		30
Ethylbenzene	20.91		ug/l	1.0	20		105	70-130		30
Methylene chloride	20.82		ug/l	1.0	20		104	70-130		30
Dibromomethane	20.49		ug/l	1.0	20		102	70-130		30
Naphthalene	20.14		ug/l	1.0	20		101	70-130		30
cis-1,3-Dichloropropene	20.78		ug/l	0.40	20		104	70-130		30
cis-1,2-Dichloroethene	21.06		ug/l	1.0	20		105	70-130		30
Chloromethane	18.36		ug/l	1.0	20		92	40-160		30
Chloroform	20.69		ug/l	1.0	20		103	70-130		30
			-							
Chloroethane Chlorobenzene	18.64		ug/l	1.0 1.0	20 20		93 105	70-130 70-130		30 30
	20.98		ug/l							
Dichlorodifluoromethane	19.08		ug/l	1.0	20		95 103	40-160		30
tert-Butylbenzene	20.51		ug/l	1.0	20		103	70-130		30
Vinyl chloride	19.03		ug/l	1.0	20		95	70-130		30
Trichlorotrifluoroethane	19.35		ug/l	1.0	20		97	70-130		30
Trichloroethene	20.33		ug/l	1.0	20		102	70-130		30
trans-1,3-Dichloropropene	20.80		ug/l	0.40	20		104	70-130		30
trans-1,2-Dichloroethene	21.14		ug/l	1.0	20		106	70-130		30
Toluene	20.24		ug/l	1.0	20		101	70-130		30

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
<u> 2624</u>										
Batch 482831A - E624										
LCS (CD29614-LCS)					Pre	epared & Ar	nalyzed: 10-	-Jun-19		
Methyl t-butyl ether (MTBE)	18.50		ug/l	1.0	20	•	92	70-130		30
Tetrachloroethene	19.87		ug/l	1.0	20		99	70-130		30
Bromomethane	16.23		ug/l	1.0	20		81	40-160		30
Styrene	21.10		ug/l	1.0	20		106	70-130		30
sec-Butylbenzene	22.20		ug/l	1.0	20		111	70-130		30
p-Isopropyltoluene	20.64		ug/l	1.0	20		103	70-130		30
o-Xylene	21.22		ug/l	1.0	20		106	70-130		30
n-Propylbenzene	20.35		ug/l	1.0	20		102	70-130		30
n-Butylbenzene	20.84		ug/l	1.0	20		104	70-130		30
Tetrahydrofuran (THF)	48.98		ug/l	2.5	50		98	70-130		30
1,2,3-Trichlorobenzene	18.83		ug/l	1.0	20		94	70-130		30
1,2-Dichloropropane	20.68		ug/l	1.0	20		103	70-130		30
1,2-Dichloroethane	21.14		-	1.0	20		106	70-130		30
1,2-Dichlorobenzene	21.14		ug/l ug/l	1.0	20		108	70-130 70-130		30
1,2-Dibromoethane	20.69		-	1.0	20		111	70-130 70-130		30
1,2-Dibromo-3-chloropropane	22.13 24.13		ug/l	1.0	20		121	70-130		30
			ug/l	1.0	20			70-130 70-130		30
1,2,4-Trimethylbenzene	20.55		ug/l				103			
Carbon tetrachloride	22.12		ug/l	1.0	20		111	70-130		30
1,2,3-Trichloropropane	22.36		ug/l	1.0	20		112	70-130		30
1,3-Dichloropropane	21.39		ug/l	1.0	20		107	70-130		30
1,1-Dichloropropene	20.19		ug/l	1.0	20		101	70-130		30
1,1-Dichloroethene	21.52		ug/l	1.0	20		108	70-130		30
1,1-Dichloroethane	21.06		ug/l	1.0	20		105	70-130		30
1,1,2-Trichloroethane	20.56		ug/l	1.0	20		103	70-130		30
1,1,2,2-Tetrachloroethane	22.92		ug/l	0.50	20		115	70-130		30
1,1,1-Trichloroethane	20.52		ug/l	1.0	20		103	70-130		30
1,2,4-Trichlorobenzene	19.42		ug/l	1.0	20		97	70-130		30
4-Methyl-2-pentanone	20.28		ug/l	5.0	20		101	40-160		30
1,1,1,2-Tetrachloroethane	22.48		ug/l	1.0	20		112	70-130		30
Bromoform	23.94		ug/l	1.0	20		120	70-130		30
Bromodichloromethane	21.54		ug/l	0.50	20		108	70-130		30
Bromochloromethane	21.46		ug/l	1.0	20		107	70-130		30
Bromobenzene	20.48		ug/l	1.0	20		102	70-130		30
Benzene	20.26		ug/l	0.70	20		101	70-130		30
1,3,5-Trimethylbenzene	20.84		ug/l	1.0	20		104	70-130		30
Acetone	20.13		ug/l	5.0	20		101	40-160		30
1,3-Dichlorobenzene	20.90		ug/l	1.0	20		104	70-130		30
4-Chlorotoluene	20.35		ug/l	1.0	20		102	70-130		30
2-Isopropyltoluene	18.93		ug/l	1.0	20		95	70-130		30
2-Hexanone	20.40		ug/l	5.0	20		102	40-160		30
2-Chlorotoluene	20.26		ug/l	1.0	20		101	70-130		30
2,2-Dichloropropane	20.22		ug/l	1.0	20		101	70-130		30
1,4-Dichlorobenzene	20.85		ug/l	1.0	20		104	70-130		30
Carbon Disulfide	19.11		ug/l	1.0	20		96	70-130		30
Acrylonitrile	19.51		ug/l	5.0	20		98	70-130		30
Surrogate: % Bromofluorobenzene	30.34		ug/l		30		101	70-130		
Surrogate: % Dibromofluoromethane	30.87		ug/l		30		103	70-130		
Surrogate: % Toluene-d8	29.73		ug/l		30		99	70-130		
Surrogate: % 1,2-dichlorobenzene-d4	30.56		ug/l		30		102	70-130 70-130		
LCS Dup (CD29614-LCSD)	30.00		Source: CE					-Jun-19		

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
<u> 2624</u>										
Batch 482831A - E624										
LCS Dup (CD29614-LCSD)			Source: CE	29614-LCS	Pre	epared & Ar	nalyzed: 10-	Jun-19		
Chloromethane	19.05		ug/l	1.0	20		95	40-160	3.2	30
Methyl ethyl ketone	21.29		ug/l	5.0	20		106	40-160	0.9	30
m&p-Xylene	43.32		ug/l	1.0	40		108	70-130	2.8	30
Isopropylbenzene	21.09		ug/l	1.0	20		105	70-130	2.9	30
Hexachlorobutadiene	19.02		ug/l	0.40	20		95	70-130	4.1	30
Ethylbenzene	21.21		ug/l	1.0	20		106	70-130	0.9	30
Dichlorodifluoromethane	20.05		ug/l	1.0	20		100	40-160	5.1	30
Dibromomethane	20.90		ug/l	1.0	20		104	70-130	1.9	30
Dibromochloromethane	23.12		ug/l	0.50	20		116	70-130	3.4	30
Methylene chloride	21.13		ug/l	1.0	20		106	70-130	1.9	30
cis-1,2-Dichloroethene	21.34		ug/l	1.0	20		107	70-130	1.9	30
o-Xylene	21.89		ug/l	1.0	20		109	70-130	2.8	30
Chloroform	21.30		ug/l	1.0	20		106	70-130	2.9	30
Chloroethane	21.27		ug/l	1.0	20		106	70-130	13.1	30
Chlorobenzene	21.31		ug/l	1.0	20		107	70-130	1.9	30
Carbon tetrachloride	21.54		ug/l	1.0	20		108	70-130	2.7	30
Carbon Disulfide	19.78		ug/l	1.0	20		99	70-130	3.1	30
cis-1,3-Dichloropropene	20.87		ug/l	0.40	20		104	70-130	0.0	30
Tetrahydrofuran (THF)	49.19		ug/l	2.5	50		98	70-130	0.0	30
Vinyl chloride	20.06		ug/l	1.0	20		100	70-130	5.1	30
Trichlorotrifluoroethane	20.09		ug/l	1.0	20		100	70-130	3.0	30
Trichlorofluoromethane	19.54		ug/l	1.0	20		98	70-130	9.6	30
Trichloroethene	20.15		ug/l	1.0	20		101	70-130	1.0	30
trans-1,4-dichloro-2-butene	108.5		ug/l	5.0	100		109	70-130	1.9	30
trans-1,3-Dichloropropene	20.66		ug/l	0.40	20		103	70-130	1.0	30
n-Butylbenzene	21.21		ug/l	1.0	20		106	70-130	1.9	30
Toluene	20.83		ug/l	1.0	20		104	70-130	2.9	30
Bromomethane	18.37		ug/l	1.0	20		92	40-160	12.7	30
Tetrachloroethene	20.06		ug/l	1.0	20		100	70-130	1.0	30
tert-Butylbenzene	21.16		ug/l	1.0	20		106	70-130	2.9	30
Styrene	21.51		ug/l	1.0	20		108	70-130	1.9	30
sec-Butylbenzene	22.44		ug/l	1.0	20		112	70-130	0.9	30
p-Isopropyltoluene	20.97		ug/l	1.0	20		105	70-130	1.9	30
Methyl t-butyl ether (MTBE)	18.58		ug/l	1.0	20		93	70-130	1.1	30
n-Propylbenzene	20.83		ug/l	1.0	20		104	70-130	1.9	30
trans-1,2-Dichloroethene	21.53		ug/l	1.0	20		108	70-130	1.9	30
1,1-Dichloroethane	21.54		ug/l	1.0	20		108	70-130	2.8	30
1,2-Dichloroethane	21.09		ug/l	1.0	20		105	70-130	0.9	30
1,2-Dichlorobenzene	20.63		ug/l	1.0	20		103	70-130	0.0	30
1,2-Dibromoethane	21.87		ug/l	1.0	20		109	70-130	1.8	30
1,2-Dibromo-3-chloropropane	22.41		ug/l	1.0	20		112	70-130	7.7	30
1,2,4-Trimethylbenzene	20.98		ug/l	1.0	20		105	70-130	1.9	30
1,2,4-Trichlorobenzene	19.20		ug/l	1.0	20		96	70-130	1.0	30
1,2-Dichloropropane	21.21		ug/l	1.0	20		106	70-130	2.9	30
1,1-Dichloropropene	20.60		ug/l	1.0	20		103	70-130	2.0	30
1,2,3-Trichlorobenzene	18.43		ug/l	1.0	20		92	70-130	2.2	30
1,1,2-Trichloroethane	20.59		ug/l	1.0	20		103	70-130	0.0	30
1,1,2,2-Tetrachloroethane	23.07		ug/l	0.50	20		115	70-130	0.0	30
1,1,1-Trichloroethane	21.20		ug/l	1.0	20		106	70-130	2.9	30
1,1,1,2-Tetrachloroethane	22.87		ug/l	1.0	20		114	70-130	1.8	30

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
E <u>624</u>										
Batch 482831A - E624										
LCS Dup (CD29614-LCSD)			Source: CE	029614-LCS	Pre	epared & Ar	nalyzed: 10-	-Jun-19		
Bromoform	23.60		ug/l	1.0	20		118	70-130	1.7	30
Naphthalene	19.47		ug/l	1.0	20		97	70-130	4.0	30
1,2,3-Trichloropropane	22.58		ug/l	1.0	20		113	70-130	0.9	30
2-Hexanone	20.23		ug/l	5.0	20		101	40-160	1.0	30
Benzene	20.58		ug/l	0.70	20		103	70-130	2.0	30
Acrylonitrile	19.97		ug/l	5.0	20		100	70-130	2.0	30
Acetone	20.50		ug/l	5.0	20		102	40-160	1.0	30
4-Methyl-2-pentanone	20.45		ug/l	5.0	20		102	40-160	1.0	30
1,3,5-Trimethylbenzene	21.30		ug/l	1.0	20		106	70-130	1.9	30
4-Chlorotoluene	20.86		ug/l	1.0	20		104	70-130	1.9	30
Bromobenzene	20.96		ug/l	1.0	20		105	70-130	2.9	30
2-Isopropyltoluene	19.23		ug/l	1.0	20		96	70-130	1.0	30
Bromochloromethane	21.72		ug/l	1.0	20		109	70-130	1.9	30
2-Chlorotoluene	20.78		ug/l	1.0	20		104	70-130	2.9	30
2,2-Dichloropropane	19.95		ug/l	1.0	20		100	70-130	1.0	30
1,4-Dichlorobenzene	20.93		ug/l	1.0	20		105	70-130	1.0	30
1,3-Dichloropropane	23.30		ug/l	1.0	20		116	70-130	8.1	30
1,1-Dichloroethene	22.18		ug/l	1.0	20		111	70-130	2.7	30
1,3-Dichlorobenzene	21.16		ug/l	1.0	20		106	70-130	1.9	30
Bromodichloromethane	21.74		ug/l	0.50	20		109	70-130	0.9	30
			-		30		100			
Surrogate: % Dibromofluoromethane	29.97		ug/l		30		100	70-130 70-130		
Surrogate: % 1,2-dichlorobenzene-d4	30.04		ug/l							
Surrogate: % Toluene-d8 Surrogate: % Bromofluorobenzene	29.91 30.71		ug/l ug/l		30 30		100 102	70-130 70-130		
-	30.71		ug/i		30		102	70-730		
E625.1/E625.1SIM										
Batch 482093A - E625.1										
Blank (CD27853-BLK)					Pre	epared: 06-		alyzed: 10-Ju	<u>ın-19</u>	
Acenaphthylene	ND		ug/l	0.50			ND	-		
Hexachlorocyclopentadiene	ND		ug/l	0.50			ND	-		
Hexachlorobutadiene	ND		ug/l	0.50			ND	-		
Hexachlorobenzene	ND		ug/l	0.50			ND	-		
Dibenz(a,h)anthracene	ND		ug/l	0.50			ND	-		
Chrysene	ND		ug/l	0.50			ND	-		
Benzo(k)fluoranthene	ND		ug/l	0.50			ND	-		
Benzo(g,h,i)perylene	ND		ug/l	0.50			ND	-		
Benzo(b)fluoranthene	ND		ug/l	0.50			ND	-		
Benzo(a)anthracene	ND		ug/l	0.50			ND	-		
Acenaphthene	ND		ug/l	0.50			ND	-		
Nitrobenzene	ND		ug/l	0.50			ND	-		
N-Nitrosodimethylamine	ND		ug/l	0.05			ND	-		
Pentachlorophenol	ND		ug/l	0.50			ND	-		
Phenanthrene	ND		ug/l	0.50			ND	-		
Pyridine	ND		ug/l	0.50			ND	-		
Indeno(1,2,3-c,d)pyrene	ND		ug/l	0.50			ND	-		
	ND		ug/l	0.50			ND	-		
Benzo(a)pyrene										
Benzo(a)pyrene Surrogate: % 2,4,6-Tribromophenol	91		ug/l		7.5		91	15-130		
			ug/l ug/l		7.5 7.5		91 72	15-130 10-130		
Surrogate: % 2,4,6-Tribromophenol	91		_							

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E625.1/E625.1SIM										
Batch 482093A - E625.1										
Blank (CD27853-BLK)					Pre	epared: 06-	Jun-19 Ana	alyzed: 10-Jı	un-19	
Surrogate: % Terphenyl-d14	78		ug/l		5		78	30-130		
Surrogate: % 2-Fluorophenol	72		ug/l		7.5		72	10-130		
LCS (CD27853-LCS)			3			anared: N6-		alyzed: 10-Jı	ın_10	
Hexachlorocyclopentadiene	1.647		ug/l	0.50	5	spared. 00-	33	30-130	<u> </u>	20
Acenaphthylene	3.820		ug/l	0.50	5		76	54-126		74
Benzo(a)anthracene	5.137		ug/l	0.50	5		103	42-133		53
Pyridine	2.531	r	ug/l	0.50	5		51	30-130		20
Benzo(b)fluoranthene	5.042	•	ug/l	0.50	5		101	42-140		71
• •	4.505			0.50	5		90	32-148		72
Benzo(a)pyrene			ug/l		5		109	25-146 25-146		63
Benzo(k)fluoranthene	5.441		ug/l	0.50						
Chrysene	4.682		ug/l	0.50	5		94	44-140		87 126
Dibenz(a,h)anthracene	5.769		ug/l	0.50	5		115	10-200		126
Hexachlorobutadiene	3.188		ug/l	0.50	5		64	38-120		62
Indeno(1,2,3-c,d)pyrene	5.717	_	ug/l	0.50	5		114	10-151		99
Nitrobenzene	3.379	r	ug/l	0.50	5		68	54-158		62
N-Nitrosodimethylamine	3.638	r	ug/l	0.05	5		73	30-130		20
Pentachlorophenol	3.104		ug/l	0.50	5		62	38-152		86
Phenanthrene	3.763		ug/l	0.50	5		75	65-120		39
Acenaphthene	3.786		ug/l	0.50	5		76	60-132		48
Hexachlorobenzene	4.160		ug/l	0.50	5		83	8-142		55
Benzo(g,h,i)perylene	4.618		ug/l	0.50	5		92	10-195		97
Surrogate: % 2-Fluorobiphenyl	3.269	r	ug/l		5		65	30-130		
Surrogate: % 2-Fluorophenol	3.892		ug/l		7.5		52	10-130		
Surrogate: % Nitrobenzene-d5	4.247	r	ug/l		5		85	15-130		
Surrogate: % Phenol-d5	5.172	r	ug/l		7.5		69	10-130		
Surrogate: % Terphenyl-d14	4.259		ug/l		5		85	30-130		
Surrogate: % 2,4,6-Tribromophenol	7.974		ug/l		7.5		106	15-130		
LCS Dup (CD27853-LCSD)			Source: CE	027853-LCS	Pre	epared: 06-	Jun-19 Ana	alyzed: 10-Jı	<u>un-19</u>	
Pyridine	3.191	r	ug/l	0.50	5		64	30-130	22.6	20
Hexachlorobenzene	4.224		ug/l	0.50	5		84	8-142	1.2	55
Hexachlorobutadiene	0	1	ug/l	0.50	5		<10	38-120	NC	62
Indeno(1,2,3-c,d)pyrene	5.758		ug/l	0.50	5		115	10-151	0.9	99
N-Nitrosodimethylamine	0.7990	l, r	ug/l	0.05	5		16	30-130	128.1	20
Dibenz(a,h)anthracene	6.150		ug/l	0.50	5		123	10-200	6.7	126
Phenanthrene	3.784		ug/l	0.50	5		76	65-120	1.3	39
Hexachlorocyclopentadiene	0.4188	1	ug/l	0.50	5		<10	30-130	NC	20
Pentachlorophenol	3.149		ug/l	0.50	5		63	38-152	1.6	86
Acenaphthene	3.362		ug/l	0.50	5		67	60-132	12.6	48
Benzo(k)fluoranthene	5.558		ug/l	0.50	5		111	25-146	1.8	63
Benzo(g,h,i)perylene	4.646		ug/l	0.50	5		93	10-195	1.1	97
Benzo(b)fluoranthene	5.127		ug/l	0.50	5		103	42-140	2.0	71
Benzo(a)pyrene	4.550		ug/l	0.50	5		91	32-148	1.1	72
Benzo(a)anthracene	5.218		ug/l	0.50	5		104	42-133	1.0	53
Acenaphthylene	3.235		ug/l ug/l	0.50	5 5		65	54-126	15.6	55 74
Nitrobenzene	3.235 0.6252	l, r		0.50	5 5		13	54-126 54-158	135.8	62
Chrysene	0.6252 4.721	1, 1	ug/l ug/l	0.50	5 5		94	54-158 44-140	0.0	87
·				0.50					0.0	01
Surrogate: % Nitrobenzene-d5	0.7094	l, r	ug/l		5		14	15-130		
Surrogate: % 2-Fluorophenol	0.06900	I	ug/l		7.5		<10	10-130		
Surrogate: % 2-Fluorobiphenyl	2.461	r	ug/l		5		49	30-130		

					Spike	Source		%REC		RPD	
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit	

E625.1/E625.1SIM

th 482093A - E625.1						
CS Dup (CD27853-LCSD)		Source: CD2	7853-LCS	Prepared	l: 06-Jun-19 An	alyzed: 10-Jun-19
urrogate: % 2,4,6-Tribromophenol	8.135	ug/l		7.5	108	15-130
urrogate: % Terphenyl-d14	4.518	ug/l		5	90	30-130
urrogate: % Phenol-d5	1.217	r ug/l		7.5	16	10-130
lank (CE27853-BLK)				Prepared	l: 06-Jun-19 An	alyzed: 11-Jun-19
,4-Dinitrotoluene	ND	ug/l	3.5		ND	-
,2-Dichlorobenzene	ND	ug/l	1.0		ND	-
,6-Dichlorophenol	ND	ug/l	10		ND	-
,4-Dinitrophenol	ND	ug/l	1.0		ND	-
,4-Dimethylphenol	ND	ug/l	1.0		ND	-
,4-Dichlorophenol	ND	ug/l	1.0		ND	-
,4,5-Trichlorophenol	ND	ug/l	1.0		ND	-
,2-Diphenylhydrazine	ND	ug/l	1.6		ND	-
,2,4-Trichlorobenzene	ND	ug/l	3.5		ND	-
,4,6-Trichlorophenol	ND	ug/l	1.0		ND	-
,3-Dichlorobenzene	ND	ug/l	1.0		ND	-
,6-Dinitro-2-methylphenol	ND	ug/l	1.0		ND	-
enzyl butyl phthalate	ND	ug/l	1.5		ND	-
enzyl alcohol	ND	ug/l	5.0		ND	-
enzoic acid	ND	ug/l	10		ND	-
enzidine	ND	ug/l	4.5		ND	-
yrene	ND	ug/l	1.5		ND	-
Nitrophenol	ND	ug/l	1.0		ND	-
4-Dichlorobenzene	ND	ug/l	1.0		ND	-
Chlorophenyl phenyl ether	ND	ug/l	1.0		ND	-
Chloroaniline	ND	ug/l	3.5		ND	-
s(2-chloroethoxy)methane	ND	ug/l	3.5		ND	-
Bromophenyl phenyl ether	ND	ug/l	3.5		ND	-
thracene	ND	ug/l	1.5		ND	-
Nitroaniline	ND	ug/l	5.0		ND	-
B'-Dichlorobenzidine	ND	ug/l	5.0		ND	-
k4-Methylphenol (m&p-cresol)	ND	ug/l	1.0		ND	-
Nitrophenol	ND	ug/l	1.0		ND	-
Nitroaniline	ND	ug/l	3.5		ND	-
Methylphenol (o-cresol)	ND	ug/l	1.0		ND	-
Methylnaphthalene	ND	ug/l	3.5		ND	-
Chlorophenol	ND	ug/l	1.0		ND	-
-Chloronaphthalene	ND	ug/l	3.5		ND	-
,6-Dinitrotoluene	ND	ug/l	3.5		ND	-
-Chloro-3-methylphenol	ND	ug/l	1.0		ND	-
exachloroethane	ND	ug/l	3.5		ND	-
nenol	ND	ug/l	1.0		ND	-
Nitrosodiphenylamine	ND	ug/l	3.5		ND	-
Nitrosodi-n-propylamine	ND	ug/l	3.5		ND	-
Nitroaniline	ND	ug/l	5.0		ND	-
ophorone	ND	ug/l	3.5		ND	-
is(2-chloroethyl)ether	ND	ug/l	1.0		ND	_
luorene	ND	ug/l	1.5		ND	_
luoranthene	ND	ug/l	1.5		ND	_
i-n-octylphthalate	ND	ug/l	1.5		ND	_
i-n-butylphthalate	ND	ug/l	1.5		ND	

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
625.1/E625.1SIM										
atch 482093A - E625.1										
Blank (CE27853-BLK)					Pre	epared: 06-	Jun-19 Ana	alyzed: 11-Ju	<u>un-19</u>	
Diethyl phthalate	ND		ug/l	1.5			ND	-		
Naphthalene	ND		ug/l	1.5			ND	-		
Dibenzofuran	ND		ug/l	3.5			ND	-		
Bis(2-ethylhexyl)phthalate	3.2		ug/l	1.5			3.2	-		
Dimethylphthalate	ND		ug/l	1.5			ND	_		
Bis(2-chloroisopropyl)ether	ND		ug/l	1.0			ND	-		
Surrogate: % 2-Fluorophenol	51		ug/l		7.5		51	10-130		
Surrogate: % 2-Fluorobiphenyl	72		ug/l		5		72	30-130		
Surrogate: % Nitrobenzene-d5	70		ug/l		5		70	15-130		
Surrogate: % Phenol-d5	61		ug/l		7.5		61	10-130		
Surrogate: % Terphenyl-d14	75		ug/l		5		75	30-130		
Surrogate: % 2,4,6-Tribromophenol	72		ug/l		7.5		72	15-130		
LCS (CE27853-LCS)	- -		~ 3. '			epared: 06-		alyzed: 11-Ju	ın-19	
N-Nitrosodiphenylamine	38.85		ug/l	3.5	50		78	30-130	<u> 10</u>	20
Fluoranthene	45.03		ug/l	1.5	50		90	43-121		66
Diethyl phthalate	45.71		ug/l	1.5	50		91	10-120		100
• •	49.09			1.5	50 50		98	29-137		82
Bis(2-ethylhexyl)phthalate		1	ug/l							76
Bis(2-chloroisopropyl)ether	30.17	'	ug/l	1.0	50 50		60	63-139		47
Di-n-butylphthalate	47.85		ug/l	1.5	50		96	8-120		
Di-n-octylphthalate	51.63		ug/l	1.5	50		103	19-132		69
Fluorene	41.21		ug/l	1.5	50		82	70-120		38
Hexachloroethane	30.58		ug/l	3.5	50		61	55-120		52
Isophorone	40.02		ug/l	3.5	50		80	47-180		93
N-Nitrosodi-n-propylamine	43.39		ug/l	3.5	50		87	14-198		87
Phenol	30.89	r	ug/l	1.0	50		62	17-120		64
Pyrene	44.87		ug/l	1.5	50		90	70-120		49
Dibenzofuran	40.59		ug/l	3.5	50		81	30-130		20
Bis(2-chloroethyl)ether	30.86		ug/l	1.0	50		62	43-126		108
Naphthalene	34.84	r	ug/l	1.5	50		70	36-120		65
2,4,6-Trichlorophenol	44.41		ug/l	1.0	50		89	52-129		58
2-Methylnaphthalene	37.55	r	ug/l	3.5	50		75	30-130		20
2-Chloronaphthalene	38.79	r	ug/l	3.5	50		78	65-120		24
2,6-Dinitrotoluene	45.45		ug/l	3.5	50		91	68-137		48
2,6-Dichlorophenol	37.23	r	ug/l	10	50		74	30-130		20
2,4-Dinitrotoluene	49.09		ug/l	3.5	50		98	48-127		42
2,4-Dinitrophenol	43.43		ug/l	1.0	50		87	10-173		132
1,2,4-Trichlorobenzene	34.79	r	ug/l	3.5	50		70	57-130		50
2,4-Dichlorophenol	41.32		ug/l	1.0	50		83	53-122		50
2-Methylphenol (o-cresol)	37.33	r	ug/l	1.0	50		75	30-130		20
2,4,5-Trichlorophenol	43.51		ug/l	1.0	50		87	30-130		20
1,4-Dichlorobenzene	29.70		ug/l	1.0	50		59	30-130		20
1,3-Dichlorobenzene	30.18		ug/l	1.0	50		60	46-154		20
1,2-Diphenylhydrazine	44.37		ug/l	1.6	50		89	30-130		20
1,2-Dichlorobenzene	30.13		ug/l	1.0	50		60	30-130		20
Dimethylphthalate	44.25		ug/l	1.5	50		89	10-120		183
Bis(2-chloroethoxy)methane	40.51	r	ug/l	3.5	50		81	49-165		54
2,4-Dimethylphenol	40.91	•	ug/l	1.0	50		82	49-103		58
4-Chloroaniline	43.97	r	ug/l	3.5	50		88	30-130		20
Benzyl butyl phthalate		•	-	3.5 1.5	50 50		98	10-140		60
Denzyi butyi piitiiaiate	48.76		ug/l	1.5	30		30	10-140		00

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E625.1/E625.1SIM										
Batch 482093A - E625.1										
LCS (CE27853-LCS)					Pre	epared: 06-	Jun-19 An	alyzed: 11-Ju	ın-19	
Benzoic acid	18.23	r	ug/l	10	50		36	30-130		20
Benzidine	43.17		ug/l	4.5	50		86	30-130		20
Anthracene	43.68		ug/l	1.5	50		87	43-120		66
4-Nitrophenol	55.13		ug/l	1.0	50		110	13-129		131
2-Chlorophenol	33.94		ug/l	1.0	50		68	36-120		61
4-Chlorophenyl phenyl ether	42.21		ug/l	1.0	50		84	38-145		61
2-Nitroaniline	66.10	1	ug/l	3.5	50		132	30-130		20
4-Chloro-3-methylphenol	48.52		ug/l	1.0	50		97	41-128		73
4-Bromophenyl phenyl ether	43.42		ug/l	3.5	50		87	65-120		43
4,6-Dinitro-2-methylphenol	49.47		ug/l	1.0	50		99	30-130		20
3-Nitroaniline	52.23		ug/l	5.0	50		104	30-130		20
3,3'-Dichlorobenzidine	32.84		-	5.0	50		66	8-213		108
•		-	ug/l							
3&4-Methylphenol (m&p-cresol)	44.79	r	ug/l	1.0	50 50		90	30-130		20 55
2-Nitrophenol	38.20	r	ug/l	1.0	50		76	45-167		55
4-Nitroaniline	45.95		ug/l	5.0	50		92	30-130		20
Surrogate: % 2-Fluorobiphenyl	35.17	r	ug/l		50		70	30-130		
Surrogate: % 2,4,6-Tribromophenol	69.29		ug/l		75		92	15-130		
Surrogate: % Nitrobenzene-d5	35.40	r	ug/l		50		71	15-130		
Surrogate: % 2-Fluorophenol	36.69		ug/l		75		49	10-130		
Surrogate: % Terphenyl-d14	40.01		ug/l		50		80	30-130		
Surrogate: % Phenol-d5	45.97	r	ug/l		75		61	10-130		
LCS Dup (CE27853-LCSD)			Source: CE	27853-LCS	Pre	epared: 06-	Jun-19 An	alyzed: 11-Ju	ın-19	
Benzoic acid	36.07	r	ug/l	10	50		72	30-130	66.7	20
Bis(2-chloroisopropyl)ether	2.158	ı	ug/l	1.0	50		<10	63-139	NC	76
Bis(2-chloroethyl)ether	1.546	ı	ug/l	1.0	50		<10	43-126	NC	108
2,4-Dinitrophenol	45.59		ug/l	1.0	50		91	10-173	4.5	132
Bis(2-chloroethoxy)methane	18.35	l, r	ug/l	3.5	50		37	49-165	74.6	54
Benzyl alcohol	17.20	.,. r	ug/l	5.0	50		34	30-130	79.6	20
Diethyl phthalate		•	_	1.5	50		89	10-120	2.2	100
	44.65		ug/l							
Benzidine	47.52		ug/l	4.5	50		95	30-130	9.9	20
Anthracene	42.45		ug/l	1.5	50		85	43-120	2.3	66
4-Nitrophenol	55.74		ug/l	1.0	50		111	13-129	0.9	131
4-Nitroaniline	43.02		ug/l	5.0	50		86	30-130	6.7	20
4-Chlorophenyl phenyl ether	39.42		ug/l	1.0	50		79	38-145	6.1	61
4-Chloroaniline	23.57	r	ug/l	3.5	50		47	30-130	60.7	20
Benzyl butyl phthalate	47.92		ug/l	1.5	50		96	10-140	2.1	60
Dibenzofuran	36.37		ug/l	3.5	50		73	30-130	10.4	20
Dimethylphthalate	43.06		ug/l	1.5	50		86	10-120	3.4	183
Di-n-butylphthalate	47.23		ug/l	1.5	50		94	8-120	2.1	47
Di-n-octylphthalate	50.67		ug/l	1.5	50		101	19-132	2.0	69
Fluoranthene	44.12		ug/l	1.5	50		88	43-121	2.2	66
Fluorene	38.47		ug/l	1.5	50		77	70-120	6.3	38
Hexachloroethane	1.144	1	ug/l	3.5	50		<10	55-120	NC	52
Isophorone	27.98		ug/l	3.5	50		56	47-180	35.3	93
Naphthalene	8.591	l, r	ug/l	1.5	50		17	36-120	121.8	65
N-Nitrosodi-n-propylamine	20.99		ug/l	3.5	50		42	14-198	69.8	87
N-Nitrosodiphenylamine	37.77		ug/l	3.5	50		76	30-130	2.6	20
Phenol	7.654	l, r	ug/l	1.0	50		15	17-120	122.1	64
Pyrene	43.65	·, ·	ug/l	1.5	50		87	70-120	3.4	49
1 310110	43.03		ugn	1.5	50		01	10 120	∪. ¬	70

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
E625.1/E625.1SIM										
Batch 482093A - E625.1										
LCS Dup (CE27853-LCSD)			Source: CI	027853-LCS	Pr	epared: 06-	Jun-19 An	alyzed: 11-Ju	<u>un-19</u>	
Bis(2-ethylhexyl)phthalate	48.79		ug/l	1.5	50		98	29-137	0.0	82
2,6-Dinitrotoluene	43.27		ug/l	3.5	50		87	68-137	4.5	48
2,6-Dichlorophenol	22.87	r	ug/l	10	50		46	30-130	46.7	20
4-Bromophenyl phenyl ether	41.38		ug/l	3.5	50		83	65-120	4.7	43
1,2-Dichlorobenzene	1.033	1	ug/l	1.0	50		<10	30-130	NC	20
1,2-Diphenylhydrazine	41.83		ug/l	1.6	50		84	30-130	5.8	20
1,3-Dichlorobenzene	1.118	1	ug/l	1.0	50		<10	46-154	NC	20
1,4-Dichlorobenzene	1.055	1	ug/l	1.0	50		<10	30-130	NC	20
2,4,5-Trichlorophenol	40.76		ug/l	1.0	50		82	30-130	5.9	20
2,4,6-Trichlorophenol	39.91		ug/l	1.0	50		80	52-129	10.7	58
2,4-Dichlorophenol	26.19	1	ug/l	1.0	50		52	53-122	45.9	50
2,4-Dinitrotoluene	47.28		ug/l	3.5	50		95	48-127	3.1	42
1,2,4-Trichlorobenzene	6.470	l, r	ug/l	3.5	50		13	57-130	137.3	50
2-Chloronaphthalene	28.03	l, r	ug/l	3.5	50		56	65-120	32.8	24
2-Chlorophenol	1.937	1	ug/l	1.0	50		<10	36-120	NC	61
2-Methylnaphthalene	20.44	r	ug/l	3.5	50		41	30-130	58.6	20
2-Methylphenol (o-cresol)	14.32	l, r	ug/l	1.0	50		29	30-130	88.5	20
2-Nitroaniline	60.90		ug/l	3.5	50		122	30-130	7.9	20
2-Nitrophenol	12.77	l, r	ug/l	1.0	50		26	45-167	98.0	55
3&4-Methylphenol (m&p-cresol)	24.30	r	ug/l	1.0	50		49	30-130	59.0	20
3,3'-Dichlorobenzidine	32.05		ug/l	5.0	50		64	8-213	3.1	108
3-Nitroaniline	42.87		ug/l	5.0	50		86	30-130	18.9	20
4,6-Dinitro-2-methylphenol	48.63		ug/l	1.0	50		97	30-130	2.0	20
2,4-Dimethylphenol	27.88		ug/l	1.0	50		56	42-120	37.7	58
Surrogate: % 2-Fluorobiphenyl	24.95	r	ug/l		50		50	30-130		
Surrogate: % 2,4,6-Tribromophenol	66.25		ug/l		75		88	15-130		
Surrogate: % Nitrobenzene-d5	6.523	l, r	ug/l		50		13	15-130		
Surrogate: % Terphenyl-d14	39.55		ug/l		50		79	30-130		
Surrogate: % Phenol-d5	11.54	r	ug/l		75		15	10-130		
Surrogate: % 2-Fluorophenol	0.2452	i	ug/l		75		<10	10-130		
SM2540D-11	0.2.02		ug		. •			70 700		
Batch 482192A - SM2540D-11										
Blank (CD27905-BLK)					Pr	epared & Ar	nalyzed: 07-	Jun-19		
Total Suspended Solids	< 5.0		mg/l	5.0	87.1		BRL	_		
LCS (CD27905-LCS)			g			enared & Ai	nalyzed: 07-	lun_10		
Total Suspended Solids	78.00		mg/l	5.0	87.1	epared & Ai	90	85-115		
SM4500CLE	70.00		mg/i	0.0	07.1		50	00 110		
Batch 482272A - SM4500CLE										
Blank (CD28960-BLK)					Pr	enared & Ar	nalyzed: 07-	. lun-19		
Chloride	< 3.0		mg/l	3.0		cparca a 7 ti	BRL	<u>-</u>		
	٧٥.٥		mg/i	5.0	D.,	0 A.		- lum 40		
LCS (CD28960-LCS) Chloride	20.00		ma/l	30	<u>Pr</u> 89690721		<u>nalyzed: 07-</u> 97.0	- <u>Jun-19</u> 90-110		20
	29.09		mg/l	3.0	03030727		91.0	9U-11U		20
SW8015D MOD										
Batch 482580A - SW8015D MOD										
Blank (CD28482-BLK)					<u>Pr</u>	epared & Ar	nalyzed: 10-			
Ethanol	ND		mg/l	1.0			ND	-		
Surrogate: % 2-Pentanol(surr)	95		mg/l		10		95	70-130		
LCS (CD28482-LCS)					Pr	epared & Ar	nalyzed: 10-	<u>-Jun-</u> 19		

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
SW8015D MOD										
Batch 482580A - SW8015D MOD										
LCS (CD28482-LCS)					Pro	epared & Ar	nalyzed: 10	-Jun-19		
Ethanol	12.89		mg/l	1.0	10		129	70-130		30
Surrogate: % 2-Pentanol(surr)	10.26		mg/l		10		103	70-130		
LCS Dup (CD28482-LCSD)			Source: Cl	D28482-LCS	Pro	epared & Ar	nalyzed: 10-	-Jun-19		
Ethanol	10.35		mg/l	1.0	10		104	70-130	21.5	30
Surrogate: % 2-Pentanol(surr)	7.585		mg/l		10		76	70-130		
SW8260C (OXY)										
Batch 482831B - SW8260C (OXY)										
Blank (CD29614-BLK)					Pro	epared & Ar	nalyzed: 10	-Jun-19		
1,4-Dioxane	ND		ug/l	100			ND	-		
Diethyl ether	ND		ug/l	1.0			ND	-		
LCS (CD29614-LCS)					<u>Pr</u>	epared & Ar	nalyzed: 10	-Jun-19		
1,4-Dioxane	279.2	r	ug/l	100	400		70	40-160		30
Diethyl ether	20.17		ug/l	1.0	20		101	70-130		30
LCS Dup (CD29614-LCSD)			Source: Cl	D29614-LCS	Pro	epared & Ar	nalyzed: 10-	-Jun-19		
Diethyl ether	20.25		ug/l	1.0	20		101	70-130	0.0	30
1,4-Dioxane	405.8	r	ug/l	100	400		101	40-160	36.3	30

Notes and Definitions

c1 TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis.

D Data reported from a dilution

This parameter is outside laboratory lcs/lcsd specified recovery limits.

This parameter is outside laboratory rpd specified recovery limits.

R01 The Reporting Limit has been raised to account for matrix interference.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

[2C] Indicates concentration was reported from the secondary, confirmation column.

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are

considered out of hold time at the time of sample receipt.

Interpretation of Total Petroleum Hydrocarbon Report

Petroleum identification is determined by comparing the GC fingerprint obtained from the sample with a library of GC fingerprints obtained from analyses of various petroleum products. Possible match categories are as follows:

Gasoline - includes regular, unleaded, premium, etc.

Fuel Oil #2 - includes home heating oil, #2 fuel oil, and diesel

Fuel Oil #4 - includes #4 fuel oil

Fuel Oil #6 - includes #6 fuel oil and bunker "C" oil

Motor Oil - includes virgin and waste automobile oil

Ligroin - includes mineral spirits, petroleum naphtha, vm&p naphtha

Aviation Fuel - includes kerosene, Jet A and JP-4

Other Oil - includes lubricating and cutting oil, and silicon oil

At times, the unidentified petroleum product is quantified using a calibration that most closely approximates the distribution of compounds in the sample. When this occurs, the result is qualified as Calculated as.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

eu	
ro	
fins	

	335 635 12	Telephone #* P-508-370-8	rvarnell@kleinfelder.com	Westborough, MA 01581	4 Technology Drive, Suite 110	Report To: Kleinfelder - Attn: Robin Yarnell		Schloillis	o profing	
AND THE PROPERTY OF THE PROPER	40071.000-040-1401	D-508-370-8256 / E: 508-628-1401	com	01581	Suite 110	bin Yarnell	Spectrum Analytical	Construe Analytical	_	
	P.O No.: 51341-337177 Quote #:		Accounts Pavable US@kleinfelder.com	San Diego, CA 92101	550 West C Street, Suite 1200	Invoice To: Kleinfelder	Page of	CHAIN OF CUSTODY RECORD	EXXON MODII	
	Samplet(s)	Complete (a)	Location-	Site Name:		Project No:			,	
	Natie Dwyel	Notice Princes of Commoposis	694 Main Street Dennisport	ExxonMobil-Dennisport		1707	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed	☐ Rush TAT - Date Needed: 7 c	☑ Standard TAT - 7 to 10 business days	Special Handling:
		Diane. Inter	State: MA		zz.		rwise instructed.	7 day TAT	- 2017-77	

Add Part P	□ Present □ Intact □ Broken	eals:	Custody Seals:	135	Condition upon receipt:	n upon	ondition		Coprected				1		1			_						
Comparison Section S	yr.com	infelde	g@kle	lumber	Jb			tetor	orocquon Fa	2	01		1	15	6	a a		J.				Des	Res.	0
Containers Section S	ı, msoule@kleinfelder.com	der.con	deinfel	unell@		mail to:		1	Observed (.4	6	<u>-</u>	2	\$	6		Se Co	2 de	B	0	7	n	MO	MAN
C Clab Sumple C Composite C Composite C Composite C Composite C C Composite C C C C C C C C C					1)D form			Temp		Time:		**	Date			by:	Received				hed by:	Relinquis	
Containers Con	~ or D3695					_																		
C	***Ni, Se, Ag, Zn																		28					
C- Grab	***Sb, As, Cd, Cr3, Cr6, Cu, Fe, Pb, Hg																							
Particul Hillered Janasso, 9-Deionized Water 10-H ₂ PO ₄ 11= unpres 12= DW-Drinking Water GW=Groundwater SW=Surface Water WW-Waste Water GW=Groundwater SW=Surface Water WW-Waste Water Gass XI = Sudge A=Indoor/Ambient Air SG=Soil Gass XI = Soil SI=Sludge A=Indoor/Ambient Air SG=Soil Gass XI = Soil SI=Sludge A=Indoor/Ambient Air SG=Soil Gass XI = Type Matrix Type Matrix # of VOA Vials # of Amber Glass # of Plastic X = Total Suspended Solids via SN2540D X = Total Metals via 200.7*** Figx Chr.gm. X = Cyanide via 335.4 X = USEPA VOCs via 624** X = VOCs via \$260** X = Total PCBs 8082																		not be	f _A		4			
Date: Time: Time: Time: Total Matals via Sangole Solid State Solid State Solid Solid State Solid Sol	**Napthalene, phenol, pentachlorophenol																							
C=Compsite Date: Time: Time: Time: Total Metals via Sessible Analysis Sessible Analysis Sessible Analysis Surface Surface Surface Surface Surface Surface Surface Surface	**Chrysene, Dibenzo(a,h)anthracene, Indeno(1,2,3-od)pyrene											1			4									
DW=Drinking Water GW=Groundwater SW=Surface Water I0=H ₃ PO ₄ 11= unpress 12= SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas X1= X2= X3=	"Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthen																							%
Particular Hiered I=Na ₂ S20 ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: Particular Hiered I=Na ₂ S20 ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: Particular Hiered I=Na ₂ S20 ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: Particular Hiered I=Na ₂ S20 ₃ 2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid List Preservative Code below: Sample ID: Cand E Containers Analysis # of VOA Vials # of Amber Glass # of Clear Glass # of Plastic Analysis Analysis Analysis Analysis Analysis Analysis Containers # of Clear Glass # of Plastic Analysis Analysis Analysis Cyanide via 335.4 X Espanol.9; 16tal Acid X Total Metals via 200.7; 16tal Acid X Cyanide via 335.4 X USEPA VOCs via 624* X Ocs via 8260* X Total PCBs 8082 X Total PCBs 8082 X Total PCBs 8082 X Ethanol via 1664, 1671~ Check if chlorinated	** Total Phthalates, Diethythexyl phthalate, Benzo(a)anthracen																							
Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ 4=HNO ₅ S=NaOH 6=Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 2=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=HCl 3-H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Acid Pellodic Fillered I=Na,S20; 1=H ₂ SO ₄ Ascorbic Aci																								
Containers	* See attached for analytes to be reported		5			-			×	×	o		6			765944	030	1/5/2019	6	ample	Dewater Sa	NPDES	4	55030
OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= unpres. 12= OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= unpres. 12= ** Additional charges may appply ** addit	Ē	Ethar	**********	SIM	VOC		200.7	via S. Total	Resid CI G	350.1		# of 0	# of	5000000		(4)	Time	Date:			ample ID:	S		Lab ID
OH 8-NaHSO ₄ 9-Deionized Water 10-H ₃ PO ₄ 11= unpres. 12= OH 8-NaHSO ₄ 9-Deionized Water 10-H ₃ PO ₄ 11= unpres. 12= ** Additional charges may appply ** additional charges may apply ** additional charges may appply ** additi	□ NJ Reduced* □ Tier II*	iol via		*	s via 8		***/F	M2540 Meta	ual Cl and E	; Haro		Clear	Ambe			900000	- (1.04E)	C=Compsite				rab	G= C	
OH 8-NaHSO ₄ 9-Deionized Water 10-H ₃ PO ₄ 11= unpres. 12= OH 8-NaHSO ₄ 9-Deionized Water 10-H ₃ PO ₄ 11= unpres. 12= **additional charges may appply rinking Water GW=Groundwater SW=Surface Water WW=Waste Water Containers **Additional charges may appply SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas SO=Soil SL=Sludge A=Indoor/Ambient Air SG=Soil Gas **Additional charges may appply Standard Soil Gas So	□ ASP A*	1666,	786 70002		260*		Hex C	D	hlorine	iness 1		Glass	r Glas	Vials				X3=		2= -	X			X1=
ered I=Na ₂ S2O ₃ Z=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ II= unpres. 12= 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ II= unpres. 12= 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ II= unpres. 12= 8	CT DPH RCP Report? ☐ Yes ☐ Standard ☐ No QC							onus	e-4500-	30.1			S				il Gas		ıbient Aiı	ıdoor/An		SL=Sludg	SO=Soil	
ered 1=Na ₂ S2O ₃	☑ Yes □				sis	Analys					ers	ontain	•		,1	e Water	/W=Wast		Surface \	SW=	oundwater	GW=Gro	ing Water	DW=Drink
ered I=Na ₂ S2O ₃ Z=HCI 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 6=Ascorbic Acid 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄ 11= unpres. 12= List Preservative Code below:	additional charges may apppy	F		_		H		-		3/4										À	¥			
	QA/QC Reporting Notes:			elow:	Code b	vative	Preser	List		Designation of the last of the	7	Į.		Acid	Ascorbic	S.	unpres	11		у 10=H ₃	nized Wate	$^{1}Na_{2}SZO_{3}$ 1 $^{9}=Deio$		7=CH3OH

Batch Summary

1900775

General Chemistry Parameters

1900775-BLK1

1900775-BS1

1900775-CCB1

1900775-CCB2

1900775-CCV1

1900775-CCV2

1900//3-CC v 2

1900775-MRL1

1900775-SRM1

SC55030-01 (NPDES Dewater Sample)

1900777

General Chemistry Parameters

1900777-BLK1

1900777-BS1

1900777-CCB1

1900777-CCB2

1900777-CCV1

1900777-CCV2

1900777-SRM1

SC55030-01 (NPDES Dewater Sample)

482093A

Subcontracted Analyses

CD27853-BLK

CD27853-LCS

CD27853-LCSD

CE27853-BLK

CL27033-DLK

CE27853-LCSD

SC55030-01 (NPDES Dewater Sample)

SC55030-01RE1 (NPDES Dewater Sample)

SC55030-01RE2 (NPDES Dewater Sample)

482192A

Subcontracted Analyses

CD27905-BLK

CD27905-LCS

SC55030-01 (NPDES Dewater Sample)

482209A

Subcontracted Analyses

CD29056-BLK

CD29056-LCS

SC55030-01 (NPDES Dewater Sample)

482247A

Subcontracted Analyses

CD27630-BLK

CD27630-LCS

SC55030-01 (NPDES Dewater Sample)

482272A

Subcontracted Analyses

CD28960-BLK

CD28960-LCS

SC55030-01 (NPDES Dewater Sample)

482295A

Subcontracted Analyses

CD28124-BLK

CD28124-LCS

CD28124-LCSD

CE28124-BLK

SC55030-01 (NPDES Dewater Sample)

SC55030-01RE1 (NPDES Dewater Sample)

482323A

Subcontracted Analyses

CD27173-BLK

CD27173-LCS

SC55030-01 (NPDES Dewater Sample)

482363A

Subcontracted Analyses

CD28874-BLK

CD28874-LCS

CD28874-LCSD

SC55030-01 (NPDES Dewater Sample)

482485A

Subcontracted Analyses

CD28410-BLK

CD28410-LCS

SC55030-01 (NPDES Dewater Sample)

482580A

Subcontracted Analyses

CD28482-BLK

CD28482-LCS

CD28482-LCSD

SC55030-01 (NPDES Dewater Sample)

482787A

Subcontracted Analyses

CD30719-BLK

CD30719-LCS

CD30719-LCSD

SC55030-01 (NPDES Dewater Sample)

SC55030-01RE1 (NPDES Dewater Sample)

SC55030-01RE2 (NPDES Dewater Sample)

SC55030-01RE3 (NPDES Dewater Sample)

SC55030-01RE4 (NPDES Dewater Sample)

482831A

Subcontracted Analyses

CD29614-BLK

CD29614-LCS

CD29614-LCSD

SC55030-01 (NPDES Dewater Sample)

482831B

Subcontracted Analyses

CD29614-BLK

CD29614-LCS

CD29614-LCSD

SC55030-01 (NPDES Dewater Sample)

SC55030-01RE5 (NPDES Dewater Sample)

V	Final Report
	Revised Report

Report Date: 14-Jun-19 13:38

Laboratory Report SC55031

Kleinfelder, Inc. 4 Technology Drive, Suite 110 Westborough, MA 01851 Attn: Jeremy Blumberg

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project #: 1707

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Vaun & Woscik

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 9 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC55031

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project Number: 1707

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC55031-01NPDES Receiving WaterGround Water05-Jun-19 12:0005-Jun-19 16:21

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 1.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

E350.1

Blanks:

CD27630-BLK

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Ammonia as Nitrogen

Laboratory Control Samples:

CD27630-LCS

TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

Ammonia as Nitrogen

14-Jun-19 13:38 Page 3 of 9

Sample Acceptance Check Form

Kleinfelder, Inc. - Westborough, MA

Project:	Exxon Mobil- 694 Main Street-Dennisport, MA / 1707			
Work Order:	SC55031			
Sample(s) received on:	6/5/2019			
The following outlines t	he condition of samples for the attached Chain of Custody upon receipt.			
. 0		Yes	<u>No</u>	N/A
Were custody se	eals present?		$\overline{\checkmark}$	
Were custody se	eals intact?			√
Were samples re	eceived at a temperature of \leq 6°C?	$\overline{\checkmark}$		
Were samples co	pooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample co	ntainers received intact?	\checkmark		
	roperly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	/		
Were samples a	ccompanied by a Chain of Custody document?	$\overline{\checkmark}$		
Does Chain of C	Custody document include proper, full, and complete documentation, which shall	$\overline{\checkmark}$		

include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

Client:

Summary of Hits

Lab ID: SC55031-01

Client ID: NPDES Receiving Water

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Iron	0.170		0.005	mg/l	E200.7
Lead	0.001		0.001	mg/l	E200.7
Zinc	0.014		0.002	mg/l	E200.7
Ammonia as Nitrogen	0.09		0.05	mg/l	E350.1
Lab ID: SC55031-01RE1			Client ID: NPDES	Receiving Wate	r
Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Hardness (CaCO3)	30.1		0.1	mg/l	E200.7

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

	<u>lentification</u> Receiving Water -01				Project # 707		<u>Matrix</u> Ground Wa		lection Date 5-Jun-19 12			<u>ceived</u> Jun-19	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	hemistry Parameters												
16065-83-1	Trivalent Chromium	< 0.0050		mg/l	0.0050		1	Calculation	06-Jun-19	13-Jun-19	EDT	1900777	
18540-29-9	Hexavalent Chromium	< 0.005		mg/l	0.005	0.004	1	SM3500-Cr-B (11)/7196A	06-Jun-19 08:00	06-Jun-19 09:06	ABW	"	
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, In	c. * - MACT	T007									
7440-36-0	Antimony	< 0.003		mg/l	0.003	0.003	1	E200.7	07-Jun-19	08-Jun-19 18:15	M-CT007	′ 482295A	
7440-38-2	Arsenic	< 0.002		mg/l	0.002	0.002	1	II .	"	"	"	"	
7440-43-9	Cadmium	< 0.001		mg/l	0.001	0.001	1	II .	"	"	"	"	
7440-47-3	Chromium	< 0.001		mg/l	0.001	0.001	1	"	"	"	"	"	
7440-50-8	Copper	< 0.003		mg/l	0.003	0.003	1	"	"	"	"	"	
7439-89-6	Iron	0.170		mg/l	0.005	0.005	1	"	n n	"	"	"	
7439-92-1	Lead	0.001		mg/l	0.001	0.001	1	"	n n	"	"	"	
7440-02-0	Nickel	< 0.001		mg/l	0.001	0.001	1	"	"	"	"	"	
7782-49-2	Selenium	< 0.005		mg/l	0.005	0.005	1	"	"	"	"	"	
7440-22-4	Silver	< 0.001		mg/l	0.001	0.001	1	"	n n	"	"	"	
7440-66-6	Zinc	0.014		mg/l	0.002	0.002	1	"	"	"	"	"	
Re-analys	sis of Subcontracted Ana	<u>lyses</u>											
	Hardness (CaCO3)	30.1		mg/l	0.1	0.1	1	E200.7	11-Jun-19 16:30	11-Jun-19 16:30	M-CT007	′ 482295A	
	by method SW7470A												
, ,	erformed by Phoenix Enviro		c. * - MACT										
7439-97-6	Mercury	< 0.0002		mg/l	0.0002	0.0002	1	E245.1	10-Jun-19	10-Jun-19 16:05	M-CT007	′ 482209A	
	by method E350.1		- * 1///2	F007									
Analysis pe 7664-41-7	erformed by Phoenix Enviro		c. * - MACI		0.05	0.05	4	E250 4	00 1 10	00 1 10	M CTOO	1000474	
7004-41-7	Ammonia as Nitrogen	0.09		mg/l	0.05	0.05	1	E350.1	08-Jun-19 09:16	08-Jun-19 09:16	IVI-C 1 007	40224/A	

14-Jun-19 13:38 Page 6 of 9

General Chemistry Parameters - Quality Control

1										
Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SM3500-Cr-B (11)/7196A										
Batch 1900777 - General Preparation										
Blank (1900777-BLK1)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	< 0.005		mg/l	0.005						
LCS (1900777-BS1)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500		100	90-111		
Calibration Blank (1900777-CCB1)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	-0.002		mg/l							
Calibration Blank (1900777-CCB2)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	-0.003		mg/l							
Calibration Check (1900777-CCV1)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500		100	90-110		
Calibration Check (1900777-CCV2)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.049		mg/l	0.005	0.0500		99	90-110		
<u>Duplicate (1900777-DUP1)</u>		<u>s</u>	ource: SC	C55031-01	Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	< 0.005		mg/l	0.005		BRL				20
Matrix Spike (1900777-MS1)		<u>s</u>	ource: SC	C55031-01	Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.050		mg/l	0.005	0.0500	BRL	101	85-115		
Matrix Spike Dup (1900777-MSD1)		<u>s</u>	ource: SC	C55031-01	Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.050	_	mg/l	0.005	0.0500	BRL	101	85-115	0.2	20
Reference (1900777-SRM1)					Pre	epared & Ar	nalyzed: 06	-Jun-19		
Hexavalent Chromium	0.078		mg/l	0.005	0.0742		105	83.3-116		
			-							

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
E200.7										
Batch 482295A - 200.7										
Blank (CD28124-BLK)					Pre	pared: 07-	Jun-19 An	alyzed: 08-Ju	<u>un-19</u>	
Antimony	< 0.0025		mg/l	0.0025			BRL	-		
Zinc	< 0.0020		mg/l	0.0020			BRL	-		
Silver	< 0.0005		mg/l	0.0005			BRL	-		
Selenium	< 0.0050		mg/l	0.0050			BRL	-		
Lead	< 0.0010		mg/l	0.0010			BRL	-		
Iron	< 0.0050		mg/l	0.0050			BRL	-		
Copper	< 0.0025		mg/l	0.0025			BRL	-		
Chromium	< 0.0005		mg/l	0.0005			BRL	-		
Arsenic	< 0.0020		mg/l	0.0020			BRL	-		
Cadmium	< 0.0005		mg/l	0.0005			BRL	-		
LCS (CD28124-LCS)					Pre	epared: 07	lun-19 An	alyzed: 08-Ju	ın-19	
Cadmium	1.047		mg/l	0.0005	1	<u>, pa. oa. o</u>	105	75-125	<u></u>	20
Antimony	2.245		mg/l	0.0025	2		112	75-125		20
Chromium	1.045		mg/l	0.0005	1		105	75-125		20
Copper	1.072		mg/l	0.0025	1		107	75-125		20
Iron	1.047		mg/l	0.0050	1		105	75-125		20
Lead	2.105		mg/l	0.0010	2		105	75-125		20
Nickel	1.077		mg/l	0.0005	1		108	75-125		20
Selenium	1.011		mg/l	0.0050	1		101	75-125 75-125		20
Silver	0.2581		mg/l	0.0005	0.25		103	75-125 75-125		20
Zinc	1.048		mg/l	0.0003	1		105	75-125 75-125		20
Arsenic	2.059		mg/l	0.0020	2		103	75-125		20
	2.033		· ·			narad: 07			ın 10	20
LCS Dup (CD28124-LCSD)	4.000			0.0005		epared: 07-		alyzed: 08-Ju		20
Cadmium	1.032		mg/l		1		103	75-125	1.9	20
Zinc	1.029		mg/l	0.0020	1		103	75-125	1.9	20
Silver	0.2511		mg/l	0.0005	0.25		100	75-125	3.0	20
Selenium	0.9974		mg/l	0.0050	1		99.7	75-125	1.3	20
Nickel	1.060		mg/l	0.0005	1		106	75-125	1.9	20
Lead	2.076		mg/l	0.0010	2		104	75-125	1.0	20
Iron	1.047		mg/l	0.0050	1		105	75-125	0.0	20
Chromium	1.030		mg/l	0.0005	1		103	75-125	1.9	20
Arsenic	2.025		mg/l	0.0020	2		101	75-125	2.0	20
Antimony	2.211		mg/l	0.0025	2		111	75-125	0.9	20
Copper	1.049		mg/l	0.0025	1		105	75-125	1.9	20
Blank (CE28124-BLK)					Pre	pared: 07-		alyzed: 10-Ju	<u>un-19</u>	
Nickel	< 0.0005		mg/l	0.0005			BRL	-		
<u>2245.1</u>										
satch 482209A - SW7470A										
Blank (CD29056-BLK)					Pre	pared & Ar	alyzed: 10-	Jun-19		
Mercury	< 0.0002		mg/l	0.0002	<u>-</u>		BRL			
LCS (CD29056-LCS)			3		Pre	nared & Ar	alyzed: 10-	.lun-19		
Mercury	0.002413		mg/l	0.0002	0.0025	, parou u Al	96.5	75-125		30
•	0.002413		riig/i	0.0002	0.0020		50.5	.0 120		50
<u>2350.1</u>										
eatch 482247A - E350.1										
Blank (CD27630-BLK)					Pre	pared: 07-	Jun-19 An	alyzed: 08-Ju	<u>un-19</u>	
Ammonia as Nitrogen	< 0.05	c1	mg/l	0.05			BRL	-		
LCS (CD27630-LCS)					Pre	pared: 07-	Jun-19 An	alyzed: 08-Ju	<u>un-19</u>	
	4.860	c1		0.05			103	90-110		20

Notes and Definitions

c1 TKN is reported as Organic Nitrogen in the Blank, LCS, DUP and MS.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

14-Jun-19 13:38 Page 9 of 9

Exxon Mobil

Special Handling:

		C-Assorbis Asia	Refield Eilbard 1=Na COO 2-UC1 3-U CO 4-UNO 5-NaOU 5-NaoU	E=Field Filtered 1
		P.O No.: 51341-337177 Quote #:		Project Mgr:
Katie Dwyer	Sampler(s): Katie		P:508-370-8256 / F: 508-628-1401	Telephone #: P:5
694 Main Street, Dennisport State: MA	Location: 694	AccountsPayableUS@kleinfelder.com	ryamell@kleinfelder.com	ryarnell@kl
ExxonMobil-Dennisport	Site Name: Exx	San Diego, CA 92101	Westborough, MA 01581	Westborou
		550 West C Street, Suite 1200	4 Technology Drive, Suite 110	4 Technolo
07	Project No: 1707	Invoice To: Kleinfelder	- Attn: Robin Yarnell	Report To: Kleinfelder - Attn: Robin Yarnell
All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 30 days unless otherwise instructed.		Page of		
☐ Rush TAT - Date Needed: 7 day TAT	RD	CHAIN OF CUSTODY RECO	Spectrum Analytical	euronns
Standard 1A1 - / to 10 business days				

			1							20220		-		_			- L		_
		and	MONDE	Relinqu				•		50310	Lab ID:	G=	XI=	0=0il S0 =Soil	DW=Drinking Water		F=Field Filtered 7=CH3OH 8=NaH		Telephone #: P
		Dec.	Ling	Relinquished by:		4				NPDES Receiving Water	- Sample ID:	G= Grab	X2=-	SL=Sludge A=Indoo	GW=Groundwater	,	F=Field Filtered 1=Na ₂ S2O ₃ 2=HCl 3=H ₂ SO ₄ 7=CH3OH 8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	000-010-02001F. 000-020-	P:508-370-8256 / F: 508-628-1401
			as so	Receiv		ξ _α				er 6/5/2019	Date:	C=Compsite	×	A=Indoor/Ambient Air SG	SW=Surface Water		4=HNO	10	401
	Gar-	7	De	Received by:						1200	Time: *	site	X3=	SG=Soil Gas	WW=Waste Water		11= unpres.	P.O No.:	
	7		6				-			G SW	Ty Ma				H	1	6=Ascorbic Acid	51341-337177	
		15/19	5-19	Date:						>	# of	VOA '	Vials r Glass				Acid	337177	
		1621	13.02	Time:			1			4		Clear (Containers			Quote #:	
O # CD'AII	Corregied (Corecction Factor	Observed 6	Temp °C					+	×	350.1		ia metl			3 4	1		
□ Ambient 💢 Iced	Condition upon receipt:		E-mail to:	EDD format:						×	200.7			200.7	Analysis	エニ	List Preservative Code below:	Sampler(s):	Commission (a)
ced Refrigerated	eipt: Custody Seals:	Jblumberg@kleinfelder.com	ryamell@kleinfelde	ĺ								3					de below:	Katie Dwyer	ていた フェーシュ
rated DI VOA Frozen Soil Jar Frozen	als: Present Intact Broken	nfelder.com	ryarnell@kleinfelder.com, msoule@kleinfelder.com	,						"***Sb, As, Cd, Cr3, Cr6, Cu, Fe, Pb, Hg	C State-specific reporting standards:	k if c	nlorina □ ASP A* □ ASP B*	CT DPH RCP Report? ☑ Standard □ No	Report? 🗵 Yes	* additional charges may appply	QA/QC Reporting Notes:		

Batch Summary

<u>1900777</u>

General Chemistry Parameters

1900777-BLK1

1900777-BS1

1900777-CCB1

1900777-CCB2

1900777-CCV1

1900777-CCV2

1700111-CC V 2

1900777-DUP1

1900777-MS1

1900777-MSD1

1900777-SRM1

SC55031-01 (NPDES Receiving Water)

482209A

Subcontracted Analyses

CD29056-BLK

CD29056-LCS

SC55031-01 (NPDES Receiving Water)

482247A

Subcontracted Analyses

CD27630-BLK

CD27630-LCS

SC55031-01 (NPDES Receiving Water)

482295A

Subcontracted Analyses

CD28124-BLK

CD28124-LCS

CD28124-LCSD

CE28124-BLK

SC55031-01 (NPDES Receiving Water)

SC55031-01RE1 (NPDES Receiving Water)

7	Final Report
	Revised Report
Re	port Date:

20-Jun-19 16:43

Laboratory Report SC55037

Kleinfelder, Inc. 4 Technology Drive, Suite 110 Westborough, MA 01851 Attn: Jeremy Blumberg

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project #: 1707

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Dawn Wojcik Laboratory Director

Eurofins Spectrum Analytical holds primary NELAC certification in the State of New York for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of New York does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 9 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC55037

Project: Exxon Mobil- 694 Main Street-Dennisport, MA

Project Number: 1707

Laboratory IDClient Sample IDMatrixDate SampledDate ReceivedSC55037-01NPDES Dewater SampleGround Water05-Jun-19 10:5505-Jun-19 16:22

MassDEP Analytical Protocol Certification Form

Labo	ratory Name: Eur	rofins Spectrum Analytic	al, Inc.	Project #: 1707					
		on Mobil- 694 Main Stre		RTN:					
This	form provides cer	tifications for the follow	ving data set:	6C55037-01					
Matr	ices: Ground Wa	ıter							
CAM	Protocol								
	260 VOC AM II A	7470/7471 Hg CAM III B	MassDEP VPH CAM IV A	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A			
	270 SVOC AM II B	7010 Metals CAM III C	MassDEP EPH CAM IV B	8151 Herbicides CAM V C	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B			
	010 Metals AM III A	6020 Metals CAM III D	8082 PCB CAM V A	9012 Total Cyanide/PAC CAM VI A	9014 Total Cyanide/PAC CAM VI A	6860 Perchlorate CAM VIII B			
		Affirmative response	s to questions A through	F are required for Presu					
A				cribed on the Chain of Cu repared/analyzed within m		✓ Yes No			
В	Were the analytic protocol(s) follow	* /	ociated QC requirements	specified in the selected (CAM	✓ Yes No			
C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ✓ Yes No									
D				ents specified in CAM VII Reporting of Analytical I		✓ Yes No			
E		-	as each method conducte e complete analyte list re	ed without significant mod ported for each method?	lification(s)?	Yes No Yes No			
F				non-conformances identification questions A through E)?		✓ Yes No			
		Responses to que	stions G, H and I below a	are required for P resump	tive Certainty'status				
G	Were the reporting	ng limits at or below all	CAM reporting limits spe	cified in the selected CAN	M protocol(s)?	✓ Yes No			
		at achieve Presumptive Cer a 310 CMR 40. 1056 (2)(k)		sarily meet the data usabilit	v and representativeness				
Н	Were all QC perf	formance standards speci	fied in the CAM protoco	l(s) achieved?		✓ Yes No			
I	Were results repo	orted for the complete an	alyte list specified in the	selected CAM protocol(s))?	Yes ✓ No			
All ne	gative responses are	e addressed in a case narra	tive on the cover page of th	is report.		_			
	~ .			pon my personal inquiry of v knowledge and belief, accu	those responsible for obtain urate and complete.	ing the			
					Vaun &	Woscik			

Dawn E. Wojcik Laboratory Director Date: 6/20/2019

CASE NARRATIVE:

Data has been reported to the RDL. This report excludes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the reporting limit are reported as "<" (less than) the reporting limit in this report.

The samples were received 1.6 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of \pm 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group. If method or program required MS/MSD/Dup were not performed, sufficient sample was not provided to the laboratory.

MADEP has published a list of analytical methods (CAM) which provides a series of recommended protocols for the acquisition, analysis and reporting of analytical data in support of MCP decisions. "Presumptive Certainty" can be established only for those methods published by the MADEP in the MCP CAM. The compounds and/or elements reported were specifically requested by the client on the Chain of Custody and in some cases may not include the full analyte list as defined in the method. Regulatory limits may not be achieved if specific method and/or technique was not requested on the Chain of Custody.

According to WSC-CAM 5/2009 Rev.1, Table 11 A-1, recovery for some VOC analytes have been deemed potentially difficult. Although they may still be within the recommended recovery range, a range has been set based on historical control limits.

Some target analytes which are not listed as exceptions in the Summary of CAM Reporting Limits may exceed the recommended RL based on sample initial volume or weight provided, % moisture content, or responsiveness of a particular analyte to purge and trap instrumentation.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.7/3005A/6010

Samples:

SC55037-01 NPDES Dewater Sample

Field filtered. Laboratory preserved.

Filtration

20-Jun-19 16:43 Page 4 of 9

Sample Acceptance Check Form

Kleinfelder, Inc. - Westborough, MA

Were samples properly labeled (labels affixed to sample containers and include sample ID, site

Does Chain of Custody document include proper, full, and complete documentation, which shall include sample ID, site location, and/or project number, date and time of collection, collector's name,

preservation type, sample matrix and any special remarks concerning the sample?

Did sample container labels agree with Chain of Custody document?

Were samples received within method-specific holding times?

location, and/or project number and the collection date)?
Were samples accompanied by a Chain of Custody document?

Project:	Exxon Mobil- 694 Main Street-Dennisport, MA / 1707			
Work Order:	SC55037			
Sample(s) received on:	6/5/2019			
The following outlines th	he condition of samples for the attached Chain of Custody upon receipt.			
,		<u>Yes</u>	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of \leq 6°C?	\checkmark		
Were samples co	ooled on ice upon transfer to laboratory representative?	\checkmark		
Were sample cor	ntainers received intact?	\checkmark		

This laboratory report is not valid without an authorized signature on the cover page.

Client:

Summary of Hits

Lab ID: SC55037-01

Client ID: NPDES Dewater Sample

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Arsenic (Dissolved)	0.021		0.004	mg/l	E200.7
Iron (Dissolved)	12.1		0.011	mg/l	E200.7
Zinc (Dissolved)	0.004		0.002	mg/l	E200.7

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

NPDES I	Sample Identification NPDES Dewater Sample SC55037-01		Client Project # 1707			<u>Matrix</u> Ground W		Collection Date/Time 05-Jun-19 10:55			Received 05-Jun-19		
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	etals by EPA 200/6000 Seri by method General Prep												
	Filtration	Field filtered. Laboratory preserved.		N/A			1	EPA 200.7/3005A/601 0	06-Jun-19 09:52		ABW	1900779	
Subcontra	cted Analyses												
Subcontra	acted Analyses												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, Inc.	* - MACT(007									
7440-38-2	Arsenic (Dissolved)	0.021		mg/l	0.004	0.004	1	E200.7	18-Jun-19	19-Jun-19 23:26	M-CT007	483871A	
7440-47-3	Chromium (Dissolved)	< 0.001		mg/l	0.001	0.001	1	"	"	"	"	"	
7439-89-6	Iron (Dissolved)	12.1		mg/l	0.011	0.011	1	"	"	"	"	"	
7439-92-1	Lead (Dissolved)	< 0.002		mg/l	0.002	0.002	1	"	"	"	"	"	
7440-66-6	Zinc (Dissolved)	0.004		mg/l	0.002	0.002	1	"	"	"	"	"	

20-Jun-19 16:43 Page 7 of 9

Subcontracted Analyses - Quality Control

Analyte(s) Result Flag Units *RDL Level Result *REC Limits RPD Limits R	-										
E200.7 Batch 483871A - SW3005A Blank (CD36727-BLK) Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Analyze	A 1.77	D 1	El	TT 14	*DDI	-		0/DEC		DDD	RPD
Batch 483871A - SW3005A Blank (CD36727-BLK) Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) < 0.002	Analyte(s)	Kesuit	Flag	Units	*KDL	Level	Result	%REC	Limits	KPD	Limit
Blank (CD36727-BLK) Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) < 0.002	<u>E200.7</u>										
Zinc (Dissolved) < 0.002 mg/l 0.002 BRL -	Batch 483871A - SW3005A										
Lead (Dissolved) < 0.002 mg/l 0.002 BRL - Iron (Dissolved) < 0.011	Blank (CD36727-BLK)					Pre	epared: 18-	Jun-19 An	alyzed: 19-J	<u>un-19</u>	
Iron (Dissolved) < 0.011 mg/l 0.011 BRL -	Zinc (Dissolved)	< 0.002		mg/l	0.002			BRL	-		
Chromium (Dissolved) < 0.001 mg/l 0.001 BRL - Arsenic (Dissolved) < 0.004 mg/l 0.004 BRL - LCS (CD36727-LCS) Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9412 mg/l 0.002 1.087 86.6 75-125 2 Lead (Dissolved) 1.876 mg/l 0.001 1.087 87.8 75-125 2 Iron (Dissolved) 0.9545 mg/l 0.001 1.087 87.8 75-125 2 Chromium (Dissolved) 0.9349 mg/l 0.001 1.087 86.0 75-125 2 Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 2 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.	Lead (Dissolved)	< 0.002		mg/l	0.002			BRL	-		
Arsenic (Dissolved) < 0.004 mg/l 0.004 BRL - CS (CD36727-LCS)	Iron (Dissolved)	< 0.011		mg/l	0.011			BRL	-		
LCS (CD36727-LCS) Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9412 mg/l 0.002 1.087 86.6 75-125 2.1 Lead (Dissolved) 1.876 mg/l 0.002 2.173 86.3 75-125 2.1 Iron (Dissolved) 0.9545 mg/l 0.011 1.087 87.8 75-125 2.2 Chromium (Dissolved) 0.9349 mg/l 0.001 1.087 86.0 75-125 2.2 Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2.2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1	Chromium (Dissolved)	< 0.001		mg/l	0.001			BRL	-		
Zinc (Dissolved) 0.9412 mg/l 0.002 1.087 86.6 75-125 2 Lead (Dissolved) 1.876 mg/l 0.002 2.173 86.3 75-125 2 Iron (Dissolved) 0.9545 mg/l 0.011 1.087 87.8 75-125 2 Chromium (Dissolved) 0.9349 mg/l 0.001 1.087 86.0 75-125 2 Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 2 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2	Arsenic (Dissolved)	< 0.004		mg/l	0.004			BRL	-		
Lead (Dissolved) 1.876 mg/l 0.002 2.173 86.3 75-125 2.1 Iron (Dissolved) 0.9545 mg/l 0.011 1.087 87.8 75-125 2.2 Chromium (Dissolved) 0.9349 mg/l 0.001 1.087 86.0 75-125 2.2 Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2.2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2.2 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2.2 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2.2 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2.2	LCS (CD36727-LCS)					Pre	epared: 18-	Jun-19 An	alyzed: 19-J	<u>un-19</u>	
Iron (Dissolved)	Zinc (Dissolved)	0.9412		mg/l	0.002	1.087		86.6	75-125		20
Chromium (Dissolved) 0.9349 mg/l 0.001 1.087 86.0 75-125 2 Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2	Lead (Dissolved)	1.876		mg/l	0.002	2.173		86.3	75-125		20
Arsenic (Dissolved) 1.846 mg/l 0.004 2.173 85.0 75-125 2 LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 2 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2	Iron (Dissolved)	0.9545		mg/l	0.011	1.087		87.8	75-125		20
LCS Dup (CD36727-LCSD) Source: CD36727-LCS Prepared: 18-Jun-19 Analyzed: 19-Jun-19 Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2.7 2.7 2.7 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 3.9 2.7 2.7 3.9 2.7 2.7 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2.7 2.7 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2.1 2.7	Chromium (Dissolved)	0.9349		mg/l	0.001	1.087		86.0	75-125		20
Zinc (Dissolved) 0.9578 mg/l 0.002 1.087 88.1 75-125 1.7 2.1 Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2.1 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2.1 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2.2	Arsenic (Dissolved)	1.846		mg/l	0.004	2.173		85.0	75-125		20
Lead (Dissolved) 1.949 mg/l 0.002 2.173 89.7 75-125 3.9 2.173 Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2.8 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2.1	LCS Dup (CD36727-LCSD)			Source: CI	036727-LCS	Pre	epared: 18-	Jun-19 An	alyzed: 19-J	<u>un-19</u>	
Iron (Dissolved) 0.9813 mg/l 0.011 1.087 90.3 75-125 2.8 2 Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2	Zinc (Dissolved)	0.9578		mg/l	0.002	1.087		88.1	75-125	1.7	20
Chromium (Dissolved) 0.9548 mg/l 0.001 1.087 87.8 75-125 2.1 2	Lead (Dissolved)	1.949		mg/l	0.002	2.173		89.7	75-125	3.9	20
	Iron (Dissolved)	0.9813		mg/l	0.011	1.087		90.3	75-125	2.8	20
Arsenic (Dissolved) 1.924 mg/l 0.004 2.173 88.5 75-125 4.0 2	Chromium (Dissolved)	0.9548		mg/l	0.001	1.087		87.8	75-125	2.1	20
	Arsenic (Dissolved)	1.924		mg/l	0.004	2.173		88.5	75-125	4.0	20

Notes and Definitions

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

20-Jun-19 16:43 Page 9 of 9

eurofins

Spectrum Analytical

CHAIN OF CUSTODY RECORD **Exxon Mobil**

	Č,
	C.
	5
	3
	Y
	1
Spec	
ia	~

9 2
70
0
0
-
_
1
\blacksquare
22
=
=
=
=
(TO

Standard	
TAT-7	
to	
10 business da	
ays	

The second	Sagra Co	poetra Dem	Relinquished by:								155,37 NPD	Lab ID:	G= Grab	= X	O=Oil SO=Soil SL=Sludge	DW=Drinking Water GW=		F=Field Filtered 1=Na ₂ S2O ₃ 7=CH3OH 8=NaHSO ₄ 9=De	Telephone #: P:508-370-8 Project Mgr:	ryarnell@kleinfelder.com	Westborough, MA 01581	4 Technology Drive, Suite 110	Report To: Kleinfelder - Attn: Robin Yarnell
	Dec	yen 4	\	ı		4					NPDES Dewater Sample	Sample ID:		X2= *	udge A=Indoor/Ambient Air	GW=Groundwater - SW=Su	*	red I=Na ₂ S2O ₃ 2 =HCl 3 =H ₂ SO ₄ 8 =NaHSO ₄ 9 =Deionized Water 10 =H ₃ PO ₄	P:508-370-8256 / F: 508-628-1401	com	1581	Suite 110	bin Yarnell
	M	o become	Received by:		8,	F _M		7			6/5/2019	Date:	C=Compsite	X3=	ent Air SG=Soil Gas	SW=Surface Water V		4=HNO ₃					
	3	Dec	d by:								1055	Time: ,			oil Gas	ww=Waste Water		5=NaOH 6=A unpres. 1	P.O No.: E	Acc	Sar	550	IIIVOICE LO. NIGILIIGIAGI
4	6	6									G GW		ype atrix					6=Ascorbic Acid	51341-337177	AccountsPayableUS@kleinfelder.com	San Diego, CA 92101	550 West C Street, Suite 1200	Higher
1 . ,	12	6-5-19	Date:											Vials				cid	1777	ableUS@	A 92101	Street, Su	
	10													er Glass		Containers			Quote #:	kleinfeld		ite 1200	
	161	3.02	Time:				1						Plast			iners			#:	er.com			
Corrected	2 Corporation Factor	- Conserved	Temp °C		2						×		al Met 7***	als via			4						
16 cc	Factor	6	A MILE			P												List P					
Condition upon receipt:		E-mail to:	EDD format:													Analysis		List Preservative Code below:	Sampler(s).	Location:		Site Name:	
ceipt: Custody Seals:	Jblumberg@kleinfelder.com	ryamell@kleinf	. /															de below:	Daue Dwyer	694 Main Street, Dennisport		ExxonMobil-Dennisport	
	leinfelder.	elder.com,										Ch	eck if	chlor	inated					t, Dennisp		nnisport	
□ Present □ Intact	com	ryamell@kleinfelder.com, msoule@kleinfelder.com						add HNO2!	filtered Sample	Have 1- inpresent	HOLD	State-specific reporting standards:	☐ Tier II*		☑ Standard ☐ DQA*	MA DEP MCP CAM Report? CT DPH RCP Report?		QA/QC Reporting Notes: * additional charges may appply					
ict 🗆 Broken						Tar.	9	.=	e. Picuse	Serve		ing standards;	□ Tier IV*	☐ ASP B*	□ No QC	TO Yes I No]	ing Notes: s may appply		State: MA			

Special Handling:

Exxon Mobil CHAIN OF CUSTODY RECOR

eurofins

Spectrum Analytical

\cong	
П	S
Rush TAT - Date Needed:	Standard TAT - 7 to 10 business days
7 day TAT	days
	ed:

		Da.	1 Cets	Relino						7			A CONTRACTOR OF THE CONTRACTOR	18503701	Lab ID:	G-	XI a	0 01 00 001	0.03 60-6-3	DW=Drinking Water		F=Field Filtered 7=CH3OH 8=NaH	Project Mgr	yarnen		Westboro	4 Technol	Report To: Kleinfelder - Attn: Robin Yarnell
	(Sto Dea	Et a Duyen	Relinquished by:			ALL STATES	4						NPDES Dewater Sample	Sample ID:	G= Grab	X2=	OL minings	CI -Chalas A-In	GW=Groundwater	*	F=Field Filtered	T. 390 G. M. M. C. OT. L. SOOT GEO.	ryamen@wenner.com	Contrador como	Westborough, MA 01581	4 Technology Drive Suite 110	r - Attn: Robin Yarnell
		M	SERVERY.	Receiv										6/5/2019	Date:	C=Compsite	NJ.		A=Indoor/Ambient Air SC=	SW=Surface Water		3=H ₂ SO ₄ 4=HNO ₃ 10=H ₃ PO ₄ 11=		01				
		3	Dec	Received by:					1					1055	Time: •	ite			SC=Soil Gas	ww-Waste Water		5=NaOII unpres.	P.O No.:					Invoice To: Kleinfelder
														G		ype				der	4	6=Ascorbie Acid	51341		Accounts	San Diego, CA 92101	550 West C Street, Suite 1200	Kleinfeld
	-4	1/5	6-5-19	D ₀								15		GW		VOA	Via	ls				ie Acid	51341-337177		AccountsPayableUS@kleinfelder.com	10, CA 9	t C Stree	er
		611	10	Date:	-	-		_							-	Amb			100	0				k	JS@kleir	2101	t, Suite 1	
	١,		(V)							ì				-	# of	Clea	r Gla	ss		Containers			Quote #:_		nfelder.c		200	
		213	13:02	Time:											# of	Plast	ic	- 10		8	1				om			
S P	116	Consecutive Factor	- 1,6	Temp °C			-							×	200	1 Ale	Q	n 6	117 als	*	4		a de la companya de l					
DATE:	ritte Son Phys	*	0	11013		H	8.7							5	-			-		文 神法元		List Pres			1000			_
Ambient	lition upo		E-mail to:	EDD format																Analysis		ervative		Sampler(s):	Location	Site Name		Project No:
☐ Ambient ※ loed	Condition upon receipt:	Jblum		mat										1					038.5	sis		List Preservative Code below:			694 Ma			1707
□ Refrigerated	Custody Seals:	Jblumberg@kleinteider.com	ryamell@kleinfelder.com, msoule@kleinfelder.com										-	. 20								•		wyer	694 Main Street, Dennisport	Exxonwiodi-Dennispon		
	a	elder.com	com, msou					0	- W		o a	ロカ	H)	*	Ch	eck il				Z					nnisport	CR		
DI VOA Frozen	Present		ile@kleinf					20	KHS	>	add HNO3 !!	Altrad Scimpr	Have 1 L	×	State-spec	Offer II*	□ NJ Reduced*	A S S S S S S S S S S S S S S S S S S S	☑ Standard	MA DEP MCP CAM Report?		QA/QC Reporting Notes: * additional charges may appply						
	□ Intact		elder.com						5		103	Month	1 - unpreservad	HOLD	State-specific reporting standards:	Naudan 🗆				CAM Report		QA/QC Reporting Notes: additional charges may appply			S			
□ Soil Ja	О						Fr.	3	te,		-	Plrase	PRIVE		g standard	□ Tier IV*	ON Full*	NSO R*	□ No R			ng Notes			State: MA			
Soil Jar Froze	Broken						6/1	:	96			R			1					2 % 8 %	SERVING SE	Υ ΄		1	1	I		l

3

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC55037-01	NPDES Dewater Sample	Soluble Arsenic by ICP	6/17/2019
SC55037-01	NPDES Dewater Sample	Soluble Chromium by ICP	6/17/2019
SC55037-01	NPDES Dewater Sample	Soluble Iron by ICP	6/17/2019
SC55037-01	NPDES Dewater Sample	Soluble Lead by ICP	6/17/2019
SC55037-01	NPDES Dewater Sample	Soluble Zinc by ICP	6/17/2019

Batch Summary

<u>1900779</u>

Soluble Metals by EPA 200/6000 Series Methods

SC55037-01 (NPDES Dewater Sample)

483871A

Subcontracted Analyses

CD36727-BLK CD36727-LCS CD36727-LCSD SC55037-01 (NPDES Dewater Sample)

ANALYTICAL REPORT

Lab Number: L1930275

Client: Kleinfelder

One Beacon Street

Suite 8100

Boston, MA 02108

ATTN: Madeline Soule Phone: (617) 497-7800

Project Name: DENNISPORT, MA

Project Number: 01707 Report Date: 07/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number:

L1930275

Report Date:

07/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1930275-01	NPDES RECEIVING WATER- NS	SEAWATER	694 MAIN ST.	07/10/19 17:00	07/11/19

L1930275

Lab Number:

Project Name: DENNISPORT, MA

Project Number: 01707 Report Date: 07/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: DENNISPORT, MA Lab Number: L1930275

Project Number: 01707 Report Date: 07/15/19

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Sample Receipt

The analyses performed were specified by the client.

Total Metals

L1930275-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the high concentrations of non-target elements.

Dissolved Metals

L1930275-01: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by the high concentrations of non-target elements.

The WG1259863-3 MS recovery for antimony (154%), performed on L1930275-01, recovered outside the 70-130% acceptance criteria. The result for this analyte is considered suspect due to either the heterogeneous nature of the sample or matrix interference.

Hexavalent Chromium

L1930275-01 was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 07/15/19

Nails

ANALYTICAL

METALS

Project Name: Lab Number: DENNISPORT, MA L1930275

Project Number: Report Date: 01707 07/15/19

SAMPLE RESULTS

Lab ID: L1930275-01

Date Collected: 07/10/19 17:00 NPDES RECEIVING WATER-NS 07/11/19 Client ID: Date Received:

Sample Location: 694 MAIN ST. Field Prep: None

Sample Depth:

Matrix: Seawater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst		
Total Metals - Mansfield Lab													
Antimony, Total	0.02642	J	mg/l	0.08000	0.00858	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Arsenic, Total	ND		mg/l	0.02000	0.00330	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Beryllium, Total	ND		mg/l	0.02000	0.00214	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Cadmium, Total	ND		mg/l	0.00400	0.00119	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Chromium, Total	ND		mg/l	0.02000	0.00356	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Copper, Total	ND		mg/l	0.02000	0.00768	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Lead, Total	ND		mg/l	0.02000	0.00686	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Mercury, Total	ND		mg/l	0.00020	0.00009	1	07/12/19 12:51	07/12/19 21:18	EPA 7470A	1,7470A	GD		
Nickel, Total	ND		mg/l	0.04000	0.01112	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Selenium, Total	ND		mg/l	0.1000	0.03460	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Silver, Total	ND		mg/l	0.00800	0.00326	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Thallium, Total	ND		mg/l	0.02000	0.00286	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
Zinc, Total	ND		mg/l	0.2000	0.06820	20	07/13/19 11:00	07/15/19 14:53	EPA 3005A	3,200.8	AM		
General Chemistry	- Mansfiel	d Lab											
Chromium, Trivalent	ND		mg/l	0.020	0.020	1		07/15/19 14:53	NA	107,-			

Dissolved Metals -	Mansfield L	₋ab						
Antimony, Dissolved	0.0117	J	mg/l	0.0800	0.0086	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	00.8 AM
Arsenic, Dissolved	ND		mg/l	0.0200	0.0033	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00
Beryllium, Dissolved	ND		mg/l	0.0200	0.0021	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00
Cadmium, Dissolved	ND		mg/l	0.0040	0.0012	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00
Chromium, Dissolved	ND		mg/l	0.0200	0.0036	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	00.8 AM
Copper, Dissolved	ND		mg/l	0.0200	0.0077	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	00.8 AM
Lead, Dissolved	ND		mg/l	0.0200	0.0069	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00
Mercury, Dissolved	ND		mg/l	0.00020	0.00009	1	07/12/19 11:47 07/12/19 20:50 EPA 7470A 1,74	470A GD
Nickel, Dissolved	ND		mg/l	0.0400	0.0111	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	00.8 AM
Selenium, Dissolved	ND		mg/l	0.1000	0.0346	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00
Silver, Dissolved	ND		mg/l	0.0080	0.0033	20	07/15/19 08:24 07/15/19 13:44 EPA 3005A 3,2	MA 8.00

07/10/19 17:00

Date Collected:

Project Name: DENNISPORT, MA Lab Number: L1930275

Project Number: 01707 Report Date: 07/15/19

SAMPLE RESULTS

Lab ID: L1930275-01

Client ID: NPDES RECEIVING WATER-NS Date Received: 07/11/19
Sample Location: 694 MAIN ST. Field Prep: None

Sample Depth:

Matrix: Seawater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Thallium, Dissolved	ND		mg/l	0.0200	0.0029	20	07/15/19 08:2	4 07/15/19 13:44	EPA 3005A	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.2000	0.0682	20	07/15/19 08:2	4 07/15/19 13:44	EPA 3005A	3,200.8	AM

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number:

L1930275

Report Date:

07/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Dissolved Metals - Mar	nsfield Lab	for sample	e(s): 01	Batch: W	VG1259	196-1				
Mercury, Dissolved	ND		mg/l	0.00020	0.00009) 1	07/12/19 11:47	07/12/19 20:27	7 1,7470A	GD

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batc	h: WG12	.59209-	1				
Mercury, Total	ND	mg/l	0.00020	0.00009	1	07/12/19 12:51	07/12/19 20:52	1,7470A	GD

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sa	mple(s):	01 Bato	h: WG12	59493-1	1				
Antimony, Total	0.00093	J	mg/l	0.00400	0.00042	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100	0.00016	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Beryllium, Total	ND		mg/l	0.00100	0.00010	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020	0.00005	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100	0.00017	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Copper, Total	ND		mg/l	0.00100	0.00038	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Lead, Total	ND		mg/l	0.00100	0.00034	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Nickel, Total	ND		mg/l	0.00200	0.00055	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500	0.00173	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Silver, Total	ND		mg/l	0.00040	0.00016	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Thallium, Total	0.00034	J	mg/l	0.00100	0.00014	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000	0.00341	1	07/13/19 11:00	07/15/19 14:21	3,200.8	AM

Lab Number:

Project Name: DENNISPORT, MA

L1930275 **Project Number:** 01707 **Report Date:** 07/15/19

> **Method Blank Analysis Batch Quality Control**

> > **Prep Information**

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Dissolved Metals - Mans	sfield Lab fo	or sample	e(s): 01	Batch: W	/G12598	863-1				
Antimony, Dissolved	0.0016	J	mg/l	0.0040	0.0004	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Arsenic, Dissolved	ND		mg/l	0.0010	0.0002	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Beryllium, Dissolved	ND		mg/l	0.0010	0.0001	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Cadmium, Dissolved	ND		mg/l	0.0002	0.0001	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Chromium, Dissolved	ND		mg/l	0.0010	0.0002	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Copper, Dissolved	ND		mg/l	0.0010	0.0004	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Lead, Dissolved	ND		mg/l	0.0010	0.0003	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Nickel, Dissolved	ND		mg/l	0.0020	0.0006	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Selenium, Dissolved	ND		mg/l	0.0050	0.0017	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Silver, Dissolved	ND		mg/l	0.0004	0.0002	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Thallium, Dissolved	0.0003	J	mg/l	0.0010	0.0001	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM
Zinc, Dissolved	ND		mg/l	0.0100	0.0034	1	07/15/19 08:24	07/15/19 13:26	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number: L1930275

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sa	mple(s): 01 Ba	atch: WG1259196-2				
Mercury, Dissolved	90	-	80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1259209-2				
Mercury, Total	103	-	80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1259493-2				
Antimony, Total	93	_	85-115	_		
Arsenic, Total	105	-	85-115	-		
Beryllium, Total	104	-	85-115	-		
Cadmium, Total	110	-	85-115	-		
Chromium, Total	104	-	85-115	-		
Copper, Total	104	-	85-115	-		
Lead, Total	111	-	85-115	-		
Nickel, Total	104	-	85-115	-		
Selenium, Total	111	-	85-115	-		
Silver, Total	96	-	85-115	-		
Thallium, Total	107	-	85-115	-		
Zinc, Total	108	-	85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number: L1930275

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Dissolved Metals - Mansfield Lab Associated s	sample(s): 01 Batch: \	WG1259863-2			
Antimony, Dissolved	96	-	85-115	-	
Arsenic, Dissolved	98	-	85-115	-	
Beryllium, Dissolved	101	-	85-115	-	
Cadmium, Dissolved	101	-	85-115	-	
Chromium, Dissolved	98	-	85-115	-	
Copper, Dissolved	95	-	85-115	-	
Lead, Dissolved	108	-	85-115	-	
Nickel, Dissolved	97	-	85-115	-	
Selenium, Dissolved	101	-	85-115	-	
Silver, Dissolved	94	-	85-115	-	
Thallium, Dissolved	106	-	85-115	-	
Zinc, Dissolved	101	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number: L1930275

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit		RPD Qual Limits
Dissolved Metals - Mansfie	eld Lab Associated	sample(s)	: 01 QC Bat	ch ID: WG12	59196-3	3 QC Sam	ple: L1928797	7-01 Client ID): MS San	nple
Mercury, Dissolved	ND	0.005	0.00473	95		-	-	75-125	-	20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID	: WG125920	9-3 W	G1259209-4	QC Sample:	L1928870-06	Client ID	: MS Sample
Mercury, Total	ND	0.005	0.00481	96		0.00484	97	75-125	1	20
Total Metals - Mansfield La	ab Associated sam	ple(s): 01	QC Batch ID	: WG125949	3-3	QC Sample: I	L1930741-01	Client ID: MS	S Sample	
Antimony, Total	0.00546	0.5	0.7762	154	Q	-	-	70-130	-	20
Arsenic, Total	0.0017	0.12	0.1309	108		-	-	70-130	-	20
Beryllium, Total	ND	0.05	0.05212	104		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05678	111		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2051	102		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2510	100		-	-	70-130	-	20
Lead, Total	ND	0.51	0.6343	124		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5031	101		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1341	112		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04522	90		-	-	70-130	-	20
Thallium, Total	ND	0.12	0.1485	124		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5316	106		-	-	70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number: L1930275

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	/ RPD	RPD Limits
Dissolved Metals - Mansfield VATER-NS	Lab Associated	sample(s):	01 QC B	atch ID: WG12	59863-3	QC Sa	mple: L1930275-01	Client ID:	NPDES RI	ECEIVING
Antimony, Dissolved	0.0117J	0.5	0.7702	154	Q	-	-	70-130	-	20
Arsenic, Dissolved	ND	0.12	0.1408	117		-	-	70-130	-	20
Beryllium, Dissolved	ND	0.05	0.0542	108		-	-	70-130	-	20
Cadmium, Dissolved	ND	0.051	0.0646	127		-	-	70-130	-	20
Chromium, Dissolved	ND	0.2	0.2047	102		-	-	70-130	-	20
Copper, Dissolved	ND	0.25	0.2628	105		-	-	70-130	-	20
Lead, Dissolved	ND	0.51	0.6192	121		-	-	70-130	-	20
Nickel, Dissolved	ND	0.5	0.5315	106		-	-	70-130	-	20
Selenium, Dissolved	ND	0.12	0.1333	111		-	-	70-130	-	20
Silver, Dissolved	ND	0.05	0.0427	85		-	-	70-130	-	20
Thallium, Dissolved	ND	0.12	0.1290	108		-	-	70-130	-	20
Zinc, Dissolved	ND	0.5	0.5866	117		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number: L1930275

07/15/19 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Dissolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID: WG12	59196-4 QC Sample	e: L1928797-01	Client ID:	: DUP Sar	nple
Mercury, Dissolved	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG125949	3-4 QC Sample: L1	930741-01 Clie	ent ID: DU	IP Sample	
Antimony, Total	0.00546	0.01002	mg/l	59	Q	20
Beryllium, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number:

L1930275

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
issolved Metals - Mansfield Lab Associated sample(s):	01 QC Batch ID:	WG1259863-4 QC Sample:	L1930275-01	Client ID:	NPDES RECEIVING
Antimony, Dissolved	0.0117J	0.0241J	mg/l	NC	20
Arsenic, Dissolved	ND	ND	mg/l	NC	20
Beryllium, Dissolved	ND	ND	mg/l	NC	20
Cadmium, Dissolved	ND	ND	mg/l	NC	20
Chromium, Dissolved	ND	ND	mg/l	NC	20
Copper, Dissolved	ND	ND	mg/l	NC	20
Lead, Dissolved	ND	ND	mg/l	NC	20
Nickel, Dissolved	ND	ND	mg/l	NC	20
Selenium, Dissolved	ND	ND	mg/l	NC	20
Silver, Dissolved	ND	ND	mg/l	NC	20
Thallium, Dissolved	ND	0.0045J	mg/l	NC	20
Zinc, Dissolved	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Serial_No:07151918:59

Project Name: DENNISPORT, MA Lab Number: L1930275

Project Number: 01707 Report Date: 07/15/19

SAMPLE RESULTS

Lab ID: L1930275-01 Date Collected: 07/10/19 17:00

Client ID: NPDES RECEIVING WATER-NS Date Received: 07/11/19
Sample Location: 694 MAIN ST. Field Prep: None

Sample Depth:

Matrix: Seawater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab								
SALINITY	28		SU	2.0	2.0	1	-	07/12/19 08:07	121,2520B	MA
Nitrogen, Ammonia	0.070	J	mg/l	0.075	0.024	1	07/12/19 19:30	07/12/19 22:22	121,4500NH3-BH	l ML
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	07/12/19 04:00	07/12/19 05:51	1,7196A	EJ

Serial_No:07151918:59

L1930275

Project Name: DENNISPORT, MA

Project Number: 01707 **Report Date:** 07/15/19

Lab Number:

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG12	:58991-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	07/12/19 04:00	07/12/19 05:41	1,7196A	EJ
General Chemistry	- Westborough Lab	for sam	nple(s): 01	Batch:	WG12	259351-1				
Nitrogen, Ammonia	0.025	J	mg/l	0.075	0.024	1	07/12/19 19:30	07/12/19 22:15	121,4500NH3-I	BH ML

Lab Control Sample Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number:

L1930275

Report Date:

07/15/19

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1258991-2	2				
Chromium, Hexavalent	98	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1259070-	1				
SALINITY	100	-			-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1259351-2	2				
Nitrogen, Ammonia	97	-		80-120	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Lab Number:

L1930275

Report Date:

07/15/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Foun	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD _{Jal} Limits
General Chemistry - Westborou WATER-NS	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1258991-4	QC Sample: L19	930275-01 Client	ID: NPDE	S RECEIVING
Chromium, Hexavalent	ND	0.1	0.104	104	-	-	85-115	-	20
General Chemistry - Westborou	ıgh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	WG1259351-3	QC Sample: L19	929884-01 Client	ID: MS Sa	ample
Nitrogen, Ammonia	0.405	4	3.96	89	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: DENNISPORT, MA

Project Number: 01707

Quality Control

Lab Number: L1930275

Report Date: 07/15/19

Parameter	Nati	ve Sa	ample	Duplicate Sam	iple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab WATER-NS	Associated sample(s):	01	QC Batch ID:	WG1258991-3	QC Sample:	L1930275-01	Client ID:	NPDES RECEIVING
Chromium, Hexavalent		ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab WATER-NS	Associated sample(s):	01	QC Batch ID:	WG1259070-2	QC Sample:	L1930275-01	Client ID:	NPDES RECEIVING
SALINITY		28		28	SU	0		
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1259351-4	QC Sample:	L1929884-01	Client ID:	DUP Sample
Nitrogen, Ammonia		0.40	5	0.358	mg/l	12		20

Serial_No:07151918:59

Project Name: DENNISPORT, MA Lab Number: L1930275

Project Number: 01707 Report Date: 07/15/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information		Initial	Final	Temp			Frozen				
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1930275-01A	Plastic 500ml HNO3 preserved	Α	<2	<2	2.4	Y	Absent		CD-2008T(180),NI-2008T(180),BE- 2008T(180),ZN-2008T(180),CU- 2008T(180),AG-2008T(180),AS-2008T(180),SE- 2008T(180),HG-T(28),CR-2008T(180),PB- 2008T(180),SB-2008T(180),TL-2008T(180)		
L1930275-01B	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.4	Υ	Absent		NH3-4500(28)		
L1930275-01C	Plastic 950ml unpreserved	Α	7	7	2.4	Υ	Absent		HEXCR-7196(1)		
L1930275-01D	Amber 1000ml unpreserved	Α	7	7	2.4	Υ	Absent		-		
L1930275-01E	Amber 1000ml unpreserved	Α	7	7	2.4	Υ	Absent		SALINITY(28)		
L1930275-01X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		2.4	Y	Absent		AG-2008S(180),CR-2008S(180),BE-2008S(180),AS-2008S(180),PB-2008S(180),ZN-2008S(180),NI-2008S(180),SE-2008S(180),TL-2008S(180),CD-2008S(180),CU-2008S(180),SB-2008S(180),HG-S(28)		

Project Name: DENNISPORT, MA Lab Number: L1930275

Project Number: 01707 Report Date: 07/15/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: DU Report with 'J' Qualifiers

Project Name:DENNISPORT, MALab Number:L1930275Project Number:01707Report Date:07/15/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- \boldsymbol{R} Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: DU Report with 'J' Qualifiers

Serial_No:07151918:59

Project Name:DENNISPORT, MALab Number:L1930275Project Number:01707Report Date:07/15/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07151918:59

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Z	CHAIN OF	CUSTO	DY	PAGE 1 OF	1	Date	Rec'd i	n Lab:		7/2	119		19.5	ALP	HA Jo	ob #:	1	1930275
ALPHA	4 L	Project Info	rmation			Rep		form	ation	Data ⊠ ⊟		erabl	es	-132000	ng Inf ame as	25.5.00	SWSTON	PO #: 51341-3376
World Class Chemist	<i>a</i>	LIGHT CO					ADEx			□ A	dd'i Deli	iverable	es					
TEL: 508-898-9220	Mansfield, MA FEL: 508-822-9300 FAX: 508-822-3288	Project Name:	Dennisport, N	MA		-		ry Re	quire	ment	s/Rep	ort L	imits	Criteri	ia			DAMES SERVICE
Client Information	A STATE OF THE PARTY OF THE PAR	Project Location	on: 694 Main S	St		EPA	77.60.17	rogram							SRGP			
Client: Kleinfelder		Project #: 017	07						2000	CEF		1000					NFID	ENCE PROTOCOLS
Address: One Beac	on St	Project Manag	-	umbera		Y			No No			7-7-1111			Confid		rotocols	s) Required?
Suite 8100		ALPHA Quote	Street Street			_	ALYS	~~	3 110		71100	11101	(11state	o i i di di di	Coming	41104	0.000	
Phone: 617-497-78	00	Turn-Aroun	No. of Concession, Name of Street, or other Publisher, Name of Street, Name of Street, or other Publisher, Name of Street, Name of		Troinis	-7.10												SAMPLE HANDLING T
Fax:		☐ Standard		sh (ONLY IF PR	E-APPROVED:			218.6)	via									□ Done
Email: msoule@kle	infelder.com:			-11 (-11-1				- S	(Cr6									☐ Not Needed ☐
222	been Previously analyzed by Alpha	Due Date: 7/1	5/19 Time	5				Cre	200.7									
	ecific Requirements/Comment	ts/Detection Lim	its:			0.1	8	Total metals* via 200.7 (Cr6 via	2									Preservation 0 Lab to do 7 (Please specify below) 5
Saltwater sample						a 35	2520	* × ×	metals*									5.
Dissolved metals sa	ample to be lab filtered					ia ×	via	etals	m pa									
THE STREET OF THE STREET OF THE STREET	T				1	Ammonia via 350.1	Salinity via 2520B	la l	Dissovled									
ALPHA Lab ID	Sample ID		ollection	Sample Matrix	Sampler's Initials	An	Sa	P	Sign									Sample Specific Comments
(Lab Use Only)		Date	Time	1100000000	Manager St.	573												CALTMATER
30275 -01	NPDES Receiving Water-NS	7/10/19	1700	SW	KMD	\boxtimes				П		ш	ш		ш			SALTWATER SAMPLE
																		* Sb, As, Cd, Cr3
																닏	닏	*Cr6, Cu, Fe, Pb
								닏		ᆜ	님	무	Ц		님	님	님	*Hg, Ni, Se, Ag
						님	님	님		ᆜ	님	블	닏	님	님	님	님	*Zn
			-			님	님	님	H	무		뷰	님	님	片	片	片	
						H	片	Η	H	Η	H	+	H	H	片	Η	片	
HORALINE SELOC		_	-			H	片	片	H	+	Η	+	片	님	H	님	片	
			+			H	H	H	H	님	금	一	H	H	片	남	H	
DI EASE ANSWED	QUESTIONS ABOVE!			-	ontainer Type	Р	A	P	Р			<u>.</u>	_		-	1.	-	SERICIESOVE
PLEASE ANSWER	QUESTIONS ABOVE!				Preservative	D	A	С	A	•								Please print clearly, legibly and completely. Samples can
IS YOUR	PROJECT		Relin	quished By:	. 1000/1011/0	D	ate/Tim	ie			Receiv	ed By:			1	Date/Ti	me	not be logged in and turnaround time clock will not
	or CT RCP?	K	un Di	Mar		7/11	119	0900	Bra	70 K	LFS			dae	7/11/		900	start until any ambiguities are resolved. All samples
FORM NO. 01-01(1) (190-5-0401-12)	UI UI KUF!	M	allen	9 Jel	(7/11/	191	160	1/	1	-/	TAI		7/11617 115				submitted are subject to Alpha's Payment Terms.
Page 27 of 27	4	1	LLA	177		7-11.1	18	14	U	in	- U	1	1		7/11	1910	314	

ATTACHMENT D

Safety Data Sheets

SAFETY DATA SHEET

1. Identification

Product identifier PetroFix
Other means of identification None.

Recommended use Remediation of contaminants in soil and groundwater.

Recommended restrictions None known.

Manufacturer/Importer/Supplier/Distributor information

Company Name Regenesis

Address 1011 Calle Sombra

San Clemente, CA 92673 USA

General information 949-366-8000

E-mail CustomerService@regenesis.com

Emergency phone number For Hazardous Materials Incidents ONLY (spill, leak, fire, exposure or accident), call

CHEMTREC 24/7 at:

USA, Canada, Mexico 1-800-424-9300 **International** 1-703-527-3887

2. Hazard(s) identification

Physical hazards Not classified.

Health hazards Not classified.

OSHA defined hazards Not classified.

Label elements

Hazard symbol None.
Signal word None.

Hazard statement The mixture does not meet the criteria for classification.

Precautionary statement

Prevention Observe good industrial hygiene practices.

Response Wash hands after handling.

Storage Store away from incompatible materials.

Disposal Dispose of waste and residues in accordance with local authority requirements.

Hazard(s) not otherwise

classified (HNOC)

None known.

Supplemental information None.

3. Composition/information on ingredients

Mixtures

Chemical name	CAS number	%
Activated carbon <10 μm	7440-44-0	>25
Calcium sulfate dihydrate	10101-41-4	<10
Additive	-	<2

Composition comments All concentrations are in percent by weight unless otherwise indicated.

Components not listed are either non-hazardous or are below reportable limits.

Chemical ingredient identity and/or concentration information withheld for some or all components present is confidential business information (trade secret), and is being withheld as permitted by

. 29 CFR 1910.1200(i).

PetroFix SDS US

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Skin contact Wash off with soap and water. Get medical attention if irritation develops and persists.

Eye contact Rinse with water. Get medical attention if irritation develops and persists.

Ingestion

Rinse mouth. Get medical attention if symptoms occur.

Most important

General information

symptoms/effects, acute and

delayed

Direct contact with eyes may cause temporary irritation.

Indication of immediate medical attention and special

Treat symptomatically.

treatment needed

Ensure that medical personnel are aware of the material(s) involved, and take precautions to

protect themselves.

5. Fire-fighting measures

Suitable extinguishing media

Water fog. Foam. Dry chemical powder. Carbon dioxide (CO2). None known.

Unsuitable extinguishing

media

NOTIC KHOWIT.

Specific hazards arising from the chemical

During fire, gases hazardous to health may be formed. Combustion products may include: carbon oxides, nitrogen oxides, sulfur oxides, calcium oxide.

Special protective equipment and precautions for firefighters

Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

Fire fighting

equipment/instructions

Move containers from fire area if you can do so without risk.

Specific methodsUse standard firefighting procedures and consider the hazards of other involved materials.

General fire hazards

This material will not burn until the water has evaporated. Residue can burn. When dry may form combustible dust concentrations in air.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures Keep unnecessary personnel away. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up

Large Spills: Stop the flow of material, if this is without risk. Dike the spilled material, where this is possible. Absorb in vermiculite, dry sand or earth and place into containers. Following product recovery, flush area with water.

Small Spills: Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Environmental precautions

Avoid discharge into drains, water courses or onto the ground.

7. Handling and storage

Precautions for safe handling

Avoid prolonged exposure. Observe good industrial hygiene practices.

Conditions for safe storage, including any incompatibilities

Store in original tightly closed container. Store away from incompatible materials (see Section 10

of the SDS).

8. Exposure controls/personal protection

Occupational exposure limits

US. OSHA Table Z-3 (29 CFR 1910.1000)

Components	Туре	Value	Form
Activated carbon <10 μm (CAS 7440-44-0)	TWA	5 mg/m3	Respirable fraction.
		15 mg/m3	Total dust.
US. ACGIH Threshold Limit Values			
Components	Туре	Value	Form
Activated carbon <10 μm (CAS 7440-44-0)	TWA	2 mg/m3	Respirable fraction.

PetroFix SDS US 942524 Version #: 01 Revision date: - Issue date: 15-February-2018 2 / 6

US. ACGIH Threshold Limit Values

Form Components Value Type Calcium sulfate dihydrate **TWA** 10 mg/m3 Inhalable fraction.

No biological exposure limits noted for the ingredient(s). **Biological limit values**

Appropriate engineering

(CAS 10101-41-4)

controls

Good general ventilation (typically 10 air changes per hour) should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level.

Individual protection measures, such as personal protective equipment

Wear safety glasses with side shields (or goggles). Eye/face protection

Skin protection

Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove **Hand protection**

supplier.

Skin protection

Other Wear suitable protective clothing.

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment.

Wear appropriate thermal protective clothing, when necessary. Thermal hazards

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective

equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Physical state Liquid.

Form Aqueous suspension.

Color Not available. Odor Not available. **Odor threshold** Not available.

8 - 10 pН

Melting point/freezing point Not available. 212 °F (100 °C) Initial boiling point and boiling

range

Flash point Not available. Not available. **Evaporation rate** Flammability (solid, gas) Not applicable.

Upper/lower flammability or explosive limits

Flammability limit - lower

(%)

Not available.

Flammability limit - upper

(%)

Not available.

Not available. Vapor pressure Not available. Vapor density Not available. Relative density

Solubility(ies)

Not available. Solubility (water) Not available. **Partition coefficient**

(n-octanol/water)

Not available. **Auto-ignition temperature Decomposition temperature** Not available. Not available. Viscosity

Other information

Explosive properties Not explosive.

PetroFix SDS US 3/6 Oxidizing properties Not oxidizing

10. Stability and reactivity

Reactivity The product is stable and non-reactive under normal conditions of use, storage and transport.

Chemical stability Material is stable under normal conditions.

Possibility of hazardous

Conditions to avoid

reactions

No dangerous reaction known under conditions of normal use.

Contact with incompatible materials. Avoid drying out product. May generate combustible dust if

material dries.

Incompatible materials Strong oxidizing agents. Acids.

Hazardous decomposition

products

No hazardous decomposition products are known.

11. Toxicological information

Information on likely routes of exposure

Inhalation Spray mist may irritate the respiratory system. For dry material: Dust may irritate respiratory

system.

Skin contact Prolonged or repeated exposure may cause minor irritation. Eye contact Direct contact with eyes may cause temporary irritation.

Ingestion May cause discomfort if swallowed.

Symptoms related to the physical, chemical and toxicological characteristics Direct contact with eyes may cause temporary irritation.

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic.

Components **Test Results Species**

Activated carbon <10 µm (CAS 7440-44-0)

Acute Oral

LD50 > 10000 mg/kg Rat

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation. Serious eye damage/eye Direct contact with eyes may cause temporary irritation.

irritation

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicity No data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Carcinogenicity Not classifiable as to carcinogenicity to humans.

IARC Monographs. Overall Evaluation of Carcinogenicity

Not listed.

NTP Report on Carcinogens

Not listed.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Reproductive toxicity This product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified.

Not classified.

Specific target organ toxicity -

repeated exposure **Aspiration hazard**

Not an aspiration hazard.

12. Ecological information

Ecotoxicity The product is not classified as environmentally hazardous. However, this does not exclude the possibility that large or frequent spills can have a harmful or damaging effect on the environment.

SDS US PetroFix

Persistence and degradability No data is available on the degradability of this product.

Bioaccumulative potential No data available. Mobility in soil No data available. Other adverse effects None known.

13. Disposal considerations

Collect and reclaim or dispose in sealed containers at licensed waste disposal site. **Disposal instructions**

Dispose in accordance with all applicable regulations. Local disposal regulations

Hazardous waste code The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Since emptied containers may retain product residue, follow label warnings even after container is Contaminated packaging

emptied. Empty containers should be taken to an approved waste handling site for recycling or

disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to

Not established.

Annex II of MARPOL 73/78 and

the IBC Code

15. Regulatory information

US federal regulations This product is not known to be a "Hazardous Chemical" as defined by the OSHA Hazard

Communication Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

Not listed.

SARA 304 Emergency release notification

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous

chemical

SARA 313 (TRI reporting)

Not regulated.

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act

Not regulated.

(SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Calcium sulfate dihydrate (CAS 10101-41-4)

PetroFix SDS US 942524 Version #: 01 Revision date: -Issue date: 15-February-2018

US. New Jersey Worker and Community Right-to-Know Act

Not listed

US. Pennsylvania Worker and Community Right-to-Know Law

Not listed.

US. Rhode Island RTK

Activated carbon <10 µm (CAS 7440-44-0) Calcium sulfate dihydrate (CAS 10101-41-4)

California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 2016 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins. For more information go to www.P65Warnings.ca.gov.

International Inventories

Inventory name	On inventory (yes/no)*
Australian Inventory of Chemical Substances (AICS)	Yes
Domestic Substances List (DSL)	No
Non-Domestic Substances List (NDSL)	No
Inventory of Existing Chemical Substances in China (IECSC)	Yes
European Inventory of Existing Commercial Chemical Substances (EINECS)	No
European List of Notified Chemical Substances (ELINCS)	No
Inventory of Existing and New Chemical Substances (ENCS)	No
Existing Chemicals List (ECL)	Yes
New Zealand Inventory	Yes
Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
Taiwan Chemical Substance Inventory (TCSI)	Yes
Toxic Substances Control Act (TSCA) Inventory	Yes
	Domestic Substances List (DSL) Non-Domestic Substances List (NDSL) Inventory of Existing Chemical Substances in China (IECSC) European Inventory of Existing Commercial Chemical Substances (EINECS) European List of Notified Chemical Substances (ELINCS) Inventory of Existing and New Chemical Substances (ENCS) Existing Chemicals List (ECL) New Zealand Inventory Philippine Inventory of Chemicals and Chemical Substances (PICCS) Taiwan Chemical Substance Inventory (TCSI)

^{*}A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date 15-February-2018

Revision date - 01

HMIS® ratings Health: 1

Flammability: 1 Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

PetroFix SDS US

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

SAFETY DATA SHEET

1. Identification

Product identifier PetroFix Electron Acceptor Blend

Other means of identification

Recommended use Remediation of soils and groundwater.

Recommended restrictions None known.

Manufacturer/Importer/Supplier/Distributor information

Company Name Regenesis

Address 1011 Calle Sombra

San Clemente, CA 92673 USA

General information 949-366-8000

E-mail CustomerService@regenesis.com

Emergency phone number For Hazardous Materials Incidents ONLY (spill, leak, fire, exposure or accident), call

CHEMTREC 24/7 at:

1-800-424-9300 USA, Canada, Mexico

1-703-527-3887 International

2. Hazard(s) identification

Physical hazards Not classified.

Health hazards Serious eye damage/eye irritation Category 2B

OSHA defined hazards Not classified.

Label elements

Hazard symbol None. Signal word Warning

Hazard statement Causes eye irritation.

Precautionary statement

Prevention Wash thoroughly after handling.

Response If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and

easy to do. Continue rinsing. If eye irritation persists: Get medical advice/attention.

Store away from incompatible materials. Storage

Dispose of waste and residues in accordance with local authority requirements. **Disposal**

Hazard(s) not otherwise

classified (HNOC)

None known.

Supplemental information None.

3. Composition/information on ingredients

Mixtures

Chemical name	CAS number	%
Ammonium sulfate	7783-20-2	40 - 60
Sodium nitrate	7631-99-4	40 - 60

Composition comments All concentrations are in percent by weight unless otherwise indicated.

4. First-aid measures

Inhalation Move to fresh air. Call a physician if symptoms develop or persist.

Skin contact Wash off with soap and water. Get medical attention if irritation develops and persists.

SDS US 1/6 944697 Version #: 01 Revision date: -Issue date: 15-August-2018

Do not rub eyes. Immediately flush eyes with plenty of water for at least 15 minutes. Remove Eye contact

contact lenses, if present and easy to do. Continue rinsing. Get medical attention if irritation

develops and persists.

Rinse mouth. Get medical attention if symptoms occur. Ingestion

Most important

symptoms/effects, acute and

Irritation of eyes. Exposed individuals may experience eye tearing, redness, and discomfort. Dusts may irritate the respiratory tract, skin and eyes.

delayed

Indication of immediate medical attention and special treatment needed

Provide general supportive measures and treat symptomatically. Keep victim under observation. Symptoms may be delayed.

General information

Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.

5. Fire-fighting measures

Suitable extinguishing media

Unsuitable extinguishing media

Use extinguishing agent suitable for type of surrounding fire.

Specific hazards arising from the chemical

During fire, gases hazardous to health may be formed. Combustion products may include: nitrogen oxides, sulfur oxides, ammonia.

Special protective equipment and precautions for firefighters Self-contained breathing apparatus and full protective clothing must be worn in case of fire.

Fire fighting equipment/instructions Use water spray to cool unopened containers.

Specific methods General fire hazards Use standard firefighting procedures and consider the hazards of other involved materials.

Material will not burn.

6. Accidental release measures

Personal precautions, protective equipment and emergency procedures

Keep unnecessary personnel away. Keep people away from and upwind of spill/leak. Wear appropriate protective equipment and clothing during clean-up. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Ensure adequate ventilation. Local authorities should be advised if significant spillages cannot be contained. For personal protection, see section 8 of the SDS.

Methods and materials for containment and cleaning up Avoid the generation of dusts during clean-up. Collect dust using a vacuum cleaner equipped with HEPA filter. Stop the flow of material, if this is without risk.

Large Spills: Wet down with water and dike for later disposal. Absorb in vermiculite, dry sand or earth and place into containers. Shovel the material into waste container. Following product recovery, flush area with water.

Small Spills: Sweep up or vacuum up spillage and collect in suitable container for disposal. Wipe up with absorbent material (e.g. cloth, fleece). Clean surface thoroughly to remove residual contamination.

Never return spills to original containers for re-use. For waste disposal, see section 13 of the SDS.

Environmental precautions

Avoid discharge into drains, water courses or onto the ground.

7. Handling and storage

Precautions for safe handling

Minimize dust generation and accumulation. Provide appropriate exhaust ventilation at places where dust is formed. Avoid contact with eyes. Wear appropriate personal protective equipment. Observe good industrial hygiene practices.

Conditions for safe storage, including any incompatibilities Store in tightly closed container. Store in a well-ventilated place. Store away from incompatible materials (see Section 10 of the SDS).

8. Exposure controls/personal protection

Occupational exposure limits

No exposure limits noted for ingredient(s).

Biological limit values

No biological exposure limits noted for the ingredient(s).

PetroFix Electron Acceptor Blend

Appropriate engineering controls

Good general ventilation should be used. Ventilation rates should be matched to conditions. If applicable, use process enclosures, local exhaust ventilation, or other engineering controls to maintain airborne levels below recommended exposure limits. If exposure limits have not been established, maintain airborne levels to an acceptable level. If engineering measures are not sufficient to maintain concentrations of dust particulates below the Occupational Exposure Limit (OEL), suitable respiratory protection must be worn. If material is ground, cut, or used in any operation which may generate dusts, use appropriate local exhaust ventilation to keep exposures below the recommended exposure limits. Provide eyewash station.

Individual protection measures, such as personal protective equipment

Eye/face protection Unvented, tight fitting goggles should be worn in dusty areas.

Skin protection

Wear appropriate chemical resistant gloves. Suitable gloves can be recommended by the glove Hand protection

supplier.

Skin protection

Wear suitable protective clothing. Other

Respiratory protection In case of insufficient ventilation, wear suitable respiratory equipment. Wear NIOSH approved

respirator appropriate for airborne exposure at the point of use. Appropriate respirator selection should be made by a qualified professional. Recommended use: Wear respirator with dust filter.

Thermal hazards Wear appropriate thermal protective clothing, when necessary.

General hygiene considerations

Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective

equipment to remove contaminants.

9. Physical and chemical properties

Appearance

Solid. Physical state **Form** Powder. White. Color

Odor Not available. **Odor threshold** Not available. pН Not available. Not available. Melting point/freezing point Initial boiling point and boiling Not available.

range

Flash point Not available. **Evaporation rate** Not available.

Flammability (solid, gas) This material will not burn.

Upper/lower flammability or explosive limits

Flammability limit - lower

Not available.

(%)

Flammability limit - upper

Not available

(%)

Vapor pressure Not available. Vapor density Not available. Relative density Not available.

Solubility(ies)

Not available. Solubility (water) Partition coefficient Not available.

(n-octanol/water)

Auto-ignition temperature Not available. **Decomposition temperature** Not available. **Viscosity** Not available.

Other information

Not explosive. **Explosive properties Oxidizing properties** Not oxidizing.

PetroFix Electron Acceptor Blend SDS US 3/6

944697 Version #: 01 Revision date: -Issue date: 15-August-2018

10. Stability and reactivity

ReactivityThe product is stable and non-reactive under normal conditions of use, storage and transport.

Chemical stability Material is stable under normal conditions.

Possibility of hazardous

reactions

No dangerous reaction known under conditions of normal use.

Conditions to avoid Contact with incompatible materials. Heat.

Incompatible materials Strong reducing agents. Strong acids.

Hazardous decomposition

products

No hazardous decomposition products are known.

11. Toxicological information

Information on likely routes of exposure

InhalationDust may irritate respiratory system.Skin contactDust or powder may irritate the skin.

Eye contact Causes eye irritation.

Ingestion May cause discomfort if swallowed.

Symptoms related to the physical, chemical and toxicological characteristics

Irritation of eyes. Exposed individuals may experience eye tearing, redness, and discomfort. Dusts

may irritate the respiratory tract, skin and eyes.

Information on toxicological effects

Acute toxicity Not expected to be acutely toxic.

Skin corrosion/irritation Prolonged skin contact may cause temporary irritation.

Serious eye damage/eye

irritation

Causes eye irritation.

Respiratory or skin sensitization

Respiratory sensitization Not a respiratory sensitizer.

Skin sensitization This product is not expected to cause skin sensitization.

Germ cell mutagenicityNo data available to indicate product or any components present at greater than 0.1% are

mutagenic or genotoxic.

Carcinogenicity Not classifiable as to carcinogenicity to humans.

IARC Monographs. Overall Evaluation of Carcinogenicity

Not listed.

NTP Report on Carcinogens

Not listed.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Reproductive toxicity

This product is not expected to cause reproductive or developmental effects.

Specific target organ toxicity -

single exposure

Not classified.

Specific target organ toxicity -

repeated exposure

Not classified.

Aspiration hazard Not an aspiration hazard.

Further information Nitrate poisoning resulting in methemoglobinemia manifested as cyanosis is rare, but possible for

people with specific susceptibility traits.

12. Ecological information

Ecotoxicity The product is not classified as environmentally hazardous. However, this does not exclude the

possibility that large or frequent spills can have a harmful or damaging effect on the environment.

Persistence and degradability The product solely consists of inorganic compounds which are not biodegradable.

Bioaccumulative potential No data available.

Mobility in soil No data available.

Other adverse effects None known.

PetroFix Electron Acceptor Blend

13. Disposal considerations

Collect and reclaim or dispose in sealed containers at licensed waste disposal site. Dispose of **Disposal instructions**

contents/container in accordance with local/regional/national/international regulations.

Local disposal regulations

Dispose in accordance with all applicable regulations.

Hazardous waste code The waste code should be assigned in discussion between the user, the producer and the waste

disposal company.

Waste from residues / unused

products

Dispose of in accordance with local regulations. Empty containers or liners may retain some product residues. This material and its container must be disposed of in a safe manner (see:

Disposal instructions).

Contaminated packaging Since emptied containers may retain product residue, follow label warnings even after container is

emptied. Empty containers should be taken to an approved waste handling site for recycling or

disposal.

14. Transport information

DOT

Not regulated as dangerous goods.

IATA

Not regulated as dangerous goods.

IMDG

Not regulated as dangerous goods.

Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

Not applicable.

15. Regulatory information

US federal regulations This product is a "Hazardous Chemical" as defined by the OSHA Hazard Communication

Standard, 29 CFR 1910.1200.

TSCA Section 12(b) Export Notification (40 CFR 707, Subpt. D)

Not regulated.

CERCLA Hazardous Substance List (40 CFR 302.4)

SARA 304 Emergency release notification

Not regulated.

OSHA Specifically Regulated Substances (29 CFR 1910.1001-1053)

Not regulated.

Superfund Amendments and Reauthorization Act of 1986 (SARA)

SARA 302 Extremely hazardous substance

Not listed.

SARA 311/312 Hazardous Yes

chemical

Classified hazard categories

Serious eye damage or eye irritation

SARA 313 (TRI reporting)

Chemical name CAS number % by wt. Ammonium sulfate 7783-20-2 40 - 60 Sodium nitrate 7631-99-4 40 - 60

Other federal regulations

Clean Air Act (CAA) Section 112 Hazardous Air Pollutants (HAPs) List

Not regulated.

Clean Air Act (CAA) Section 112(r) Accidental Release Prevention (40 CFR 68.130)

Not regulated.

Safe Drinking Water Act Not regulated.

(SDWA)

US state regulations

US. Massachusetts RTK - Substance List

Ammonium sulfate (CAS 7783-20-2) Sodium nitrate (CAS 7631-99-4)

PetroFix Electron Acceptor Blend 5/6

944697 Version #: 01 Revision date: -Issue date: 15-August-2018

US. New Jersey Worker and Community Right-to-Know Act

Sodium nitrate (CAS 7631-99-4)

US. Pennsylvania Worker and Community Right-to-Know Law

Ammonium sulfate (CAS 7783-20-2) Sodium nitrate (CAS 7631-99-4)

US. Rhode Island RTK

Ammonium sulfate (CAS 7783-20-2) Sodium nitrate (CAS 7631-99-4)

California Proposition 65

California Safe Drinking Water and Toxic Enforcement Act of 2016 (Proposition 65): This material is not known to contain any chemicals currently listed as carcinogens or reproductive toxins. For more information go to www.P65Warnings.ca.gov.

International Inventories

Country(s) or region	Inventory name	On inventory (yes/no)*
Australia	Australian Inventory of Chemical Substances (AICS)	Yes
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
China	Inventory of Existing Chemical Substances in China (IECSC)	Yes
Europe	European Inventory of Existing Commercial Chemical Substances (EINECS)	Yes
Europe	European List of Notified Chemical Substances (ELINCS)	No
Japan	Inventory of Existing and New Chemical Substances (ENCS)	Yes
Korea	Existing Chemicals List (ECL)	Yes
New Zealand	New Zealand Inventory	Yes
Philippines	Philippine Inventory of Chemicals and Chemical Substances (PICCS)	Yes
Taiwan	Taiwan Chemical Substance Inventory (TCSI)	Yes
United States & Puerto Rico	Toxic Substances Control Act (TSCA) Inventory	Yes

^{*}A "Yes" indicates this product complies with the inventory requirements administered by the governing country(s).

16. Other information, including date of preparation or last revision

Issue date 15-August-2018

Revision date Version # 01
HMIS® ratings Health: 1

Flammability: 0

Physical hazard: 0

NFPA ratings

Disclaimer

Regenesis cannot anticipate all conditions under which this information and its product, or the products of other manufacturers in combination with its product, may be used. It is the user's responsibility to ensure safe conditions for handling, storage and disposal of the product, and to assume liability for loss, injury, damage or expense due to improper use. The information in the sheet was written based on the best knowledge and experience currently available.

PetroFix Electron Acceptor Blend SDS US

A "No" indicates that one or more components of the product are not listed or exempt from listing on the inventory administered by the governing country(s).

ATTACHMENT E

Fish and Wildlife Consistency Letter

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: May 28, 2019

Consultation Code: 05E1NE00-2019-TA-1805

Event Code: 05E1NE00-2019-E-04458

Project Name: Dennisport, MA

Subject: Verification letter for the 'Dennisport, MA' project under the January 5, 2016,

Programmatic Biological Opinion on Final 4(d) Rule for the Northern Long-eared Bat

and Activities Excepted from Take Prohibitions.

Dear Madeline Soule:

The U.S. Fish and Wildlife Service (Service) received on May 28, 2019 your effects determination for the 'Dennisport, MA' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. This IPaC key assists users in determining whether a Federal action is consistent with the activities analyzed in the Service's January 5, 2016, Programmatic Biological Opinion (PBO). The PBO addresses activities excepted from "take" prohibitions applicable to the northern long-eared bat under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, the Action is consistent with activities analyzed in the PBO. The Action may affect the northern long-eared bat; however, any take that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the PBO satisfies and concludes your responsibilities for this Action under ESA Section 7(a)(2) with respect to the northern long-eared bat.

Please report to our office any changes to the information about the Action that you submitted in IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation. If the Action is not completed within one year of the date of this letter, you must update and resubmit the information required in the IPaC key.

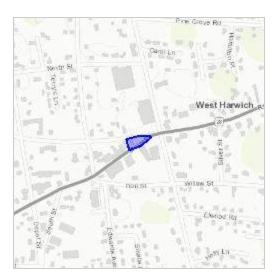
If the Action may affect other federally listed species besides the northern long-eared bat, a proposed species, and/or designated critical habitat, additional consultation between you and this Service office is required. If the Action may disturb bald or golden eagles, additional coordination with the Service under the Bald and Golden Eagle Protection Act is recommended.

[1] Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name


Dennisport, MA

2. Description

The following description was provided for the project 'Dennisport, MA':

Dewatering and treatment of groundwater, to be discharged to existing municipal stormwater system under an EPA NPDES Remediation General Permit.

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/41.6685921650352N70.12288686389572W

Determination Key Result

This Federal Action may affect the northern long-eared bat in a manner consistent with the description of activities addressed by the Service's PBO dated January 5, 2016. Any taking that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o). Therefore, the PBO satisfies your responsibilities for this Action under ESA Section 7(a)(2) relative to the northern long-eared bat.

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on May 15, 2017. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for Federal actions is to assist determinations as to whether proposed actions are consistent with those analyzed in the Service's PBO dated January 5, 2016.

Federal actions that may cause prohibited take of northern long-eared bats, affect ESA-listed species other than the northern long-eared bat, or affect any designated critical habitat, require ESA Section 7(a)(2) consultation in addition to the use of this key. Federal actions that may affect species proposed for listing or critical habitat proposed for designation may require a conference under ESA Section 7(a)(4).

Determination Key Result

This project may affect the threatened Northern long-eared bat; therefore, consultation with the Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.) is required. However, based on the information you provided, this project may rely on the Service's January 5, 2016, *Programmatic Biological Opinion on Final 4(d) Rule for the Northern Long-Eared Bat and Activities Excepted from Take Prohibitions* to fulfill its Section 7(a)(2) consultation obligation.

Qualification Interview

- 1. Is the action authorized, funded, or being carried out by a Federal agency? *Yes*
- 2. Have you determined that the proposed action will have "no effect" on the northern long-eared bat? (If you are unsure select "No")

 No
- 3. Will your activity purposefully **Take** northern long-eared bats? *No*
- 4. Is the project action area located wholly outside the White-nose Syndrome Zone? Automatically answered No
- 5. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

6. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

7. Will the action involve Tree Removal? *No*

05/28/2019

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

- Estimated total acres of forest conversion:
 If known, estimated acres of forest conversion from April 1 to October 31
 If known, estimated acres of forest conversion from June 1 to July 31
 If the project includes timber harvest, report the appropriate acreages below.
 Otherwise, type '0' in questions 4-6.
- 4. Estimated total acres of timber harvest

0

5. If known, estimated acres of timber harvest from April 1 to October 31

0

6. If known, estimated acres of timber harvest from June 1 to July 31 0

If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9.

7. Estimated total acres of prescribed fire

0

 $8. \ If known, estimated acres of prescribed fire from April 1 to October 31\\$

0

9. If known, estimated acres of prescribed fire from June 1 to July 31 0

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)? θ

ATTACHMENT F

Massachusetts Cultural Resources in Vicinity of Site

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Dennis; Place: Dennis Port; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
DEN.374	Ellis, Ross G Hopkins, Capt. Reuben House	11 Center St	Dennis	1830
DEN.375	Capron, Luther House	53 Center St	Dennis	r 1870
DEN.376	Capron, Alonzo Everett House	59 Center St	Dennis	c 1875
DEN.378	Ocean, Old Seminary	83 Center St	Dennis	1855
DEN.377	Kelley, Capt. Fernandes Geoffrey House	89 Center St	Dennis	1847
DEN.379	Peterson, Isaac Warsaw House	122 Center St	Dennis	1879
DEN.347	Sears, Bartlett House	187 Center St	Dennis	c 1750
DEN.356	Small, Augusta P. House	2 Chase Ave	Dennis	c 1910
DEN.355	Small, Augusta P. House	6 Chase Ave	Dennis	1910
DEN.354	Swift, Dr. Alfred House	45 Chase Ave	Dennis	c 1800
DEN.330	Hedge, Capt. John - Hedge, Dr. John House	46 Chase Ave	Dennis	1721
DEN.352	Kelley, Edward B. House	57 Chase Ave	Dennis	r 1915
DEN.357	Chase, Job Ship Chandler Shop	5 Depot St	Dennis	1842
DEN.358	Small, Augusta P. House	6 Depot St	Dennis -	1910
DEN.359	Small, Augusta P. House	25 Depot St	Dennis -	1915
DEN.340	Chase, Freeman House	28 Depot St	Dennis	1836
DEN.360 DEN.309	Thompson, Capt. Martin E. House Nazarene Church	114 Depot St	Dennis Dennis	c 1880 1968
DEN.309 DEN.371	Rogers, Darius Bakery - Dennis Port Bakery	143 Depot St 173 Depot St	Dennis	c 1882
DEN.361	Capron, Alonzo Shingle Shed - Capron Lumber Yard	173 Depot St	Dennis	1883
DEN.362	Rogers, Foster Wheelwright Shop	174 Depot St 178 Depot St	Dennis	r 1868
DEN.372	Wixon, Joshua House	181 Depot St	Dennis	r 1820
DEN.334	Wixon, Freeman R. House	282 Depot St	Dennis	c 1873
DEN.335	Kelley, Adelbert House	287 Depot St	Dennis	c 1873
DEN.336	Chase, Capt. Freeman Davis House	298 Depot St	Dennis	c 1870
DEN.337	Whittemore, Nathan C. House	304 Depot St	Dennis	c 1870
DEN.338	Chase, Elias W. House	310 Depot St	Dennis	c 1870
DEN.339	Kelley, Capt. Stephen C. House	360 Depot St	Dennis	1858
DEN.351	Kelley, Ahira House and Grocery Store	113 Division St	Dennis	c 1870
DEN.342	Chase, Capt. Henry Harrison House	225 Division St	Dennis	c 1870
DEN.341	Ellis, Capt. Luther Lincoln House	263 Division St	Dennis	r 1850
DEN.349	Wixon, Capt. Nehemiah House	1 Gages Ln	Dennis	1823
DEN.324		Hall St	Dennis	c 1840
DEN.348	Wixon, Capt. Remark House	387 Lower County Rd	Dennis	c 1845
DEN.315	Wixon, Capt. John House	397 Lower County Rd	Dennis	1838
DEN.350	Wixon, Capt. Heman House	444 Lower County Rd	Dennis	1814
DEN.381	Terry, Ezekiel House	103 Main St	Dennis -	c 1855
DEN.382	Terry, Maria Gustie - Cahoon, Wilson C. House	143 Main St	Dennis	c 1875
DEN.380	Joy, John House	195 Main St	Dennis	1760
DEN.367 DEN.368	Kelley, Valentine House	280 Main St 319 Main St	Dennis Dennis	c 1835 c 1850
DEN.343	Baker, Silvester Jr. House Kelly, Capt. Cyrus Hall House	12 North St	Dennis	r 1870
DEN.369	Howes, Loring E. House	397 Rt 28	Dennis	1860
DEN.370	Edward, Capt. Jonathan Phillips House	411 Rt 28	Dennis	1883
DEN.239	Lawara, Oupt. Condition 1 Timpo Floude	466 Rt 28	Dennis	c 1850
DEN.240	Nickerson, Browning K. House	528 Rt 28	Dennis	c 1875
DEN.346	Small, Thomas F. House	645 Rt 28	Dennis	r 1870
DEN.363	Wixon, Capt. Ira House	109 Sea St	Dennis	1865
DEN.364	Sternberg, Dr. Joseph E. House	110 Sea St	Dennis	1913
DEN.365	Rogers, Elisha House	115 Sea St	Dennis	1876
DEN.366	Wixon, Remark E. House	119 Sea St	Dennis	1860
DEN.304	Church of Jesus Christ of Latter Day Saints	185 Sea St	Dennis	1877
DEN.373	Robbins, Elisha Farren House	254 Sea St	Dennis	1873
DEN.326	Wixon, Heman House	17 Summer St	Dennis	1814
DEN.810	Wixon Family Burying Ground	62 Summer St	Dennis	r 1765
DEN.344	Chapman, Fred Hardware Store	17 Telegraph Rd	Dennis	r 1870
DEN.319	Kelley, Joseph House	43 Telegraph Rd	Dennis	1776
DEN.333	Kelley, Nehemiah House	48 Telegraph Rd	Dennis	c 1805
DEN.320		126 Telegraph Rd	Dennis	c 1880
DEN.196	Kallay Samuel Hause	132 Upper County Rd	Dennis	c 1750
DEN.197	Kelley, Samuel House	153 Upper County Rd	Dennis	1811
DEN.198 DEN.199	Kelley, David House Our Lady of the Assumption Roman Catholic Church	158 Upper County Rd 187 Upper County Rd	Dennis Dennis	1777 c 1950
DEN. 199 DEN. 200	Our Lady of the Assumption Rollian Catholic Church	202 Upper County Rd	Dennis	c 1800
DEN.200 DEN.201		202 Opper County Rd 222 Upper County Rd	Dennis	c 1870
DEN.202	Dennis Schoolhouse	246 Upper County Rd	Dennis	1802
22202		2.0 Spps. Sound its	25/11/10	1002