

November 7, 2019

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Fenway Theater 2701 Ipswich Street Boston, Massachusetts

Dear Sir/Madam:

On behalf of James W. Flett Co., Inc Company (Flett), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES RGP and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management groundwater that will be generated during dewatering activities associated with construction of the new Fenway Theater building located at 175 Ipswich Street in Boston, Massachusetts (the Site). This work will take place on the existing vacant "triangle lot" which is approximately 0.75 acres and is anticipated to be completed within twelve months. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The work includes the construction of the new Fenway Theater. To complete portions of the foundation and other miscellaneous excavations in the dry, dewatering will be required to lower the groundwater table as work is being performed. To do this, filtered sumps will be placed in low spots within the excavation. The water generated during dewatering (Source water) will be pumped to a treatment system prior to discharge to a storm drain with a final outfall in the Charles River. Drawings of the storm water drainage system, which depicts the path of water from the catch basin to the outfall in the Charles River, are provided in **Appendix A**. To characterize groundwater from the proposed excavation area, LRT collected representative groundwater samples from an onsite monitoring well on October 29, 2019

(**Figure 2**). A sample of the receiving water (The Charles river) was also collected on October 29, 2019. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. Concentrations of Acetone, and Iron were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, Source water will undergo treatment that includes bag filtration, carbon filtration prior to discharge. It is assumed that metal concentrations will be treated through settling and bag filtration. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to a treatment system with a design flow of up to 100 gallons per minute (gpm); the average effluent flow of the system is estimated to be 75 gpm, and the maximum flow will not exceed 100 gpm. Source water will enter one 18,000-gallon weir tank at the head of the system from the weir tank, the water will be pumped to a triple-bag filter skid (with three single bag filters), followed by two carbon vessels plumbed in series. Each carbon vessel will contain 2,000 pounds of reactivated liquid-phase carbon. Discharge from the carbon vessel will pass through a flow/totalizer meter prior to discharge into a storm drain with an outfall in the Charles River. The discharge will be at one location (Discharge Location 2) as depicted on **Figure 2**. Effluent sampling will correspond with this discharge location.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of James W. Flett Co., Inc., we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to the Charles River in support of construction dewatering activities that are to take place at 175 Ipswich Street.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, James W. Flett Inc., Co is considered the Operator.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Jacob Jennings

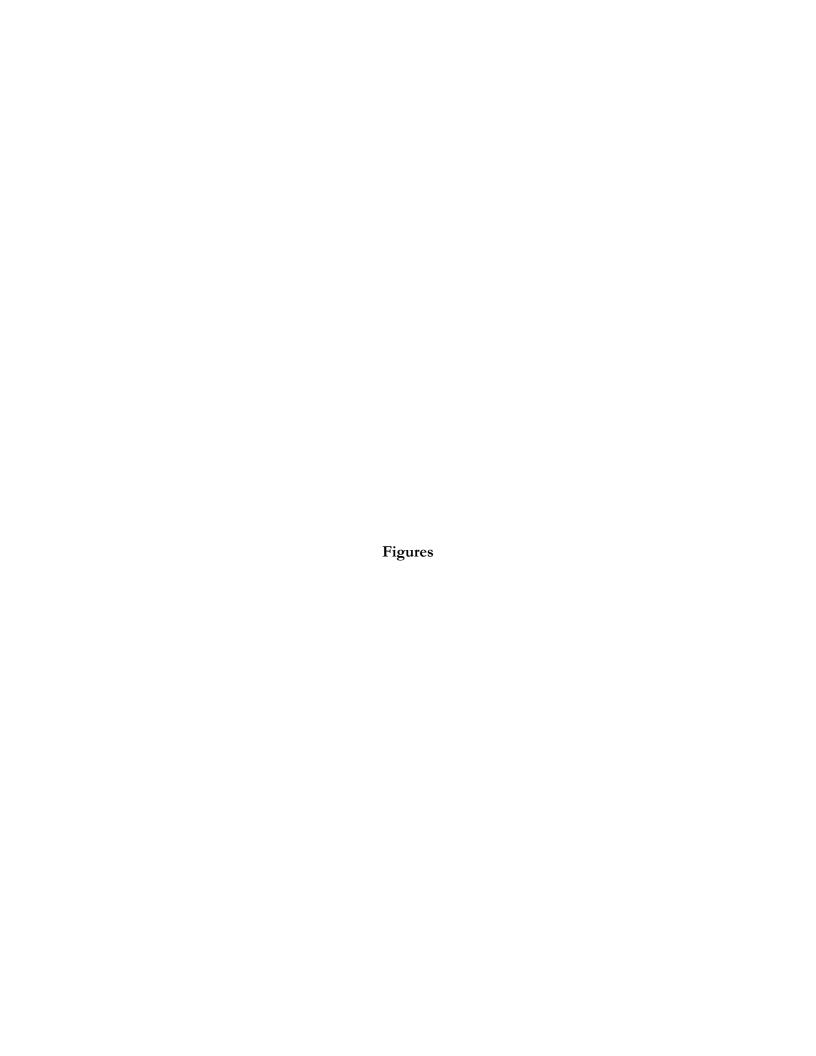
Jacob Jennings Staff Scientist Kim Gravelle
Kim Gravelle, P.G.

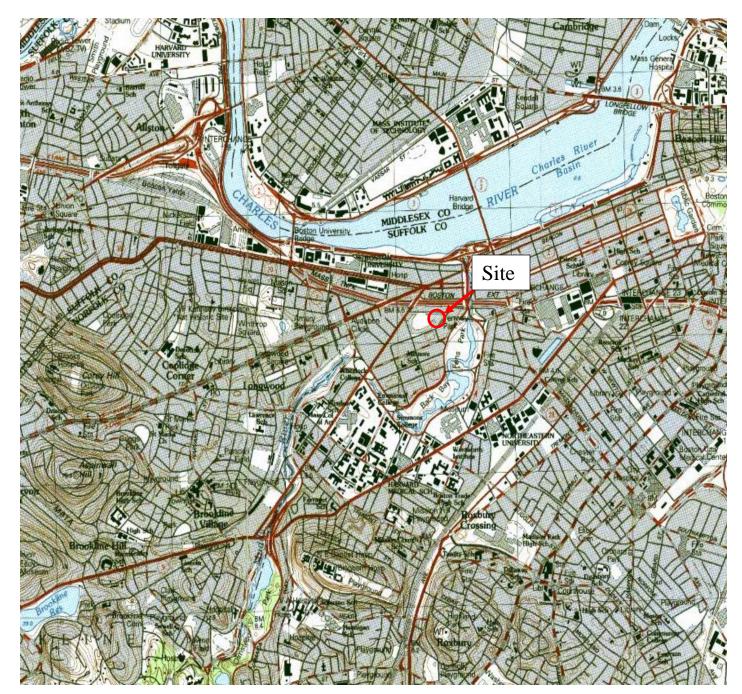
Senior Project Manager

Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic


Appendix A - NOI Form Appendix B - Laboratory Data


Appendix C - Water Treatment System Appendix D - Supplemental Information

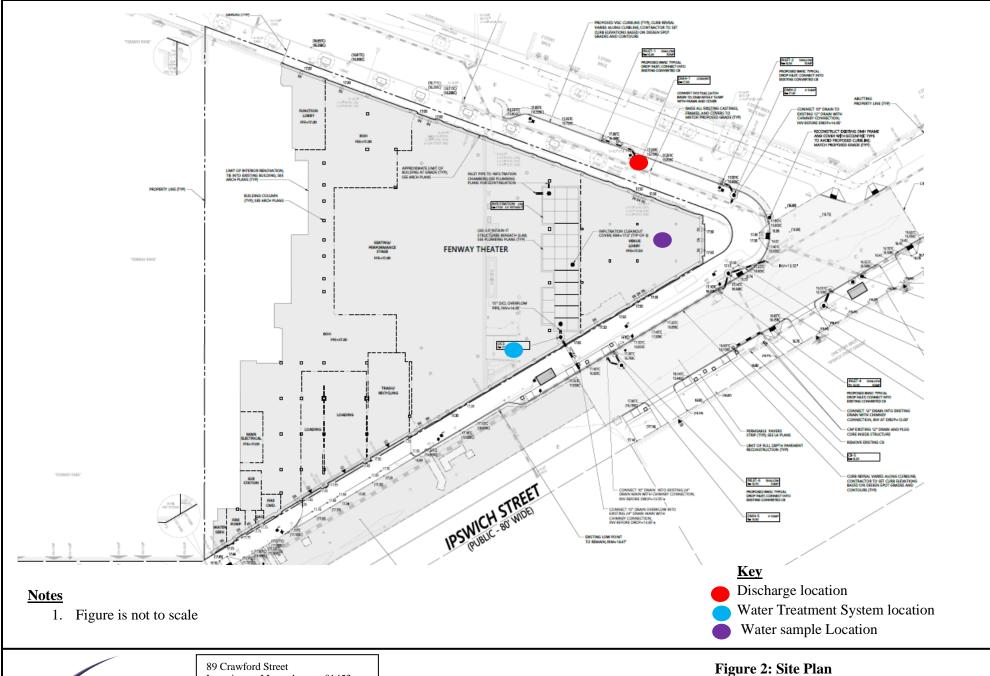
cc: Mark Jennings – James W. Flett Co., Inc.

Jonathan Lister – 175 Ipswich Street LLC

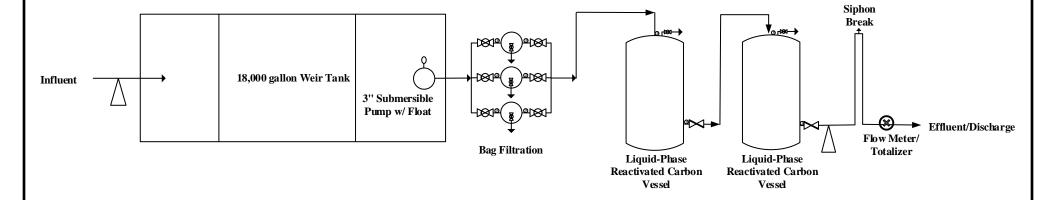
Cathy Vakalopoulos - Mass DEP

Source: MassGIS Oliver

Notes


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 1 – Locus Plan Fenway Theater 175 Ipswich St Boston, MA

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Fax: 888.835.0617 www.lrt-llc.net Fenway Theater 175 Ipswich Street Boston, MA

Notes:

- 1.) Figure is not to scale
- 2.) System rated for 100 GPM

Key:		
Piping/Hose		-
Sample Port	\triangleright	
Ball Valve	1831	
Butterfly Valve	\bowtie	
Pressure Gauge	Θ	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Leominster, MA 01453 Office: 774-450-7177

DESIGNED BY: LRT DRAWN BY: JHJ

CHECKED BY: DATE:

Figure 3 - Water Treatment System Schematic

Fenway Theater 175 Ipswich Street Boston, MA PROJECT No.
2-1956
FIGURE No.

Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s): ☐ CERC		CLA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		☐ CWA Section 404					

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classification of receiving water(s):							
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver					
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No						
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL in 4.6 of the RGP.								
	Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in opendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.							
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s								
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No					
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?					
(check one): ☐ Yes ☐ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:					
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other						
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
□ Yes □ No	□ Yes □ No							

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

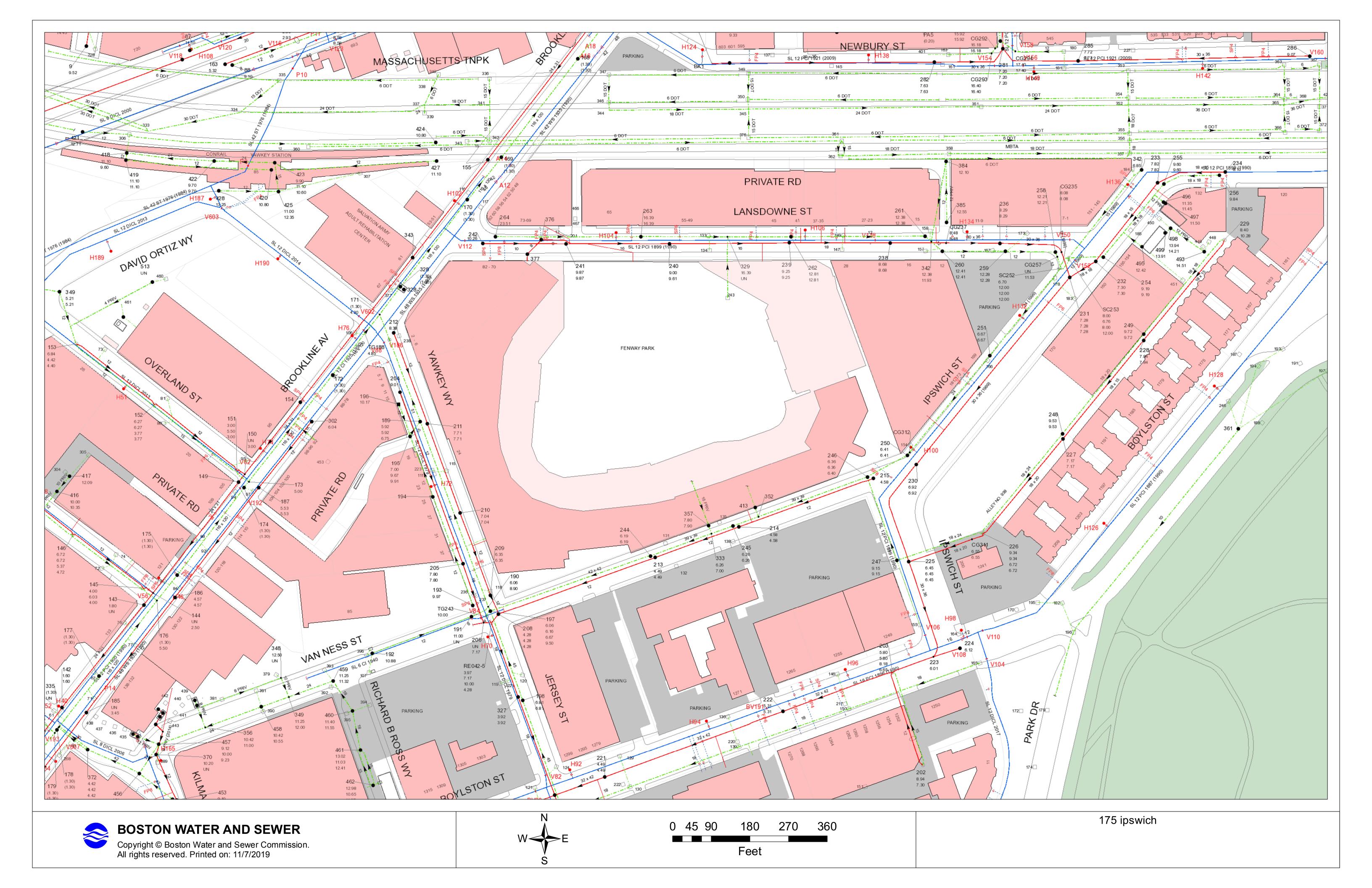
	Known	Known		75 5 4	Detection	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

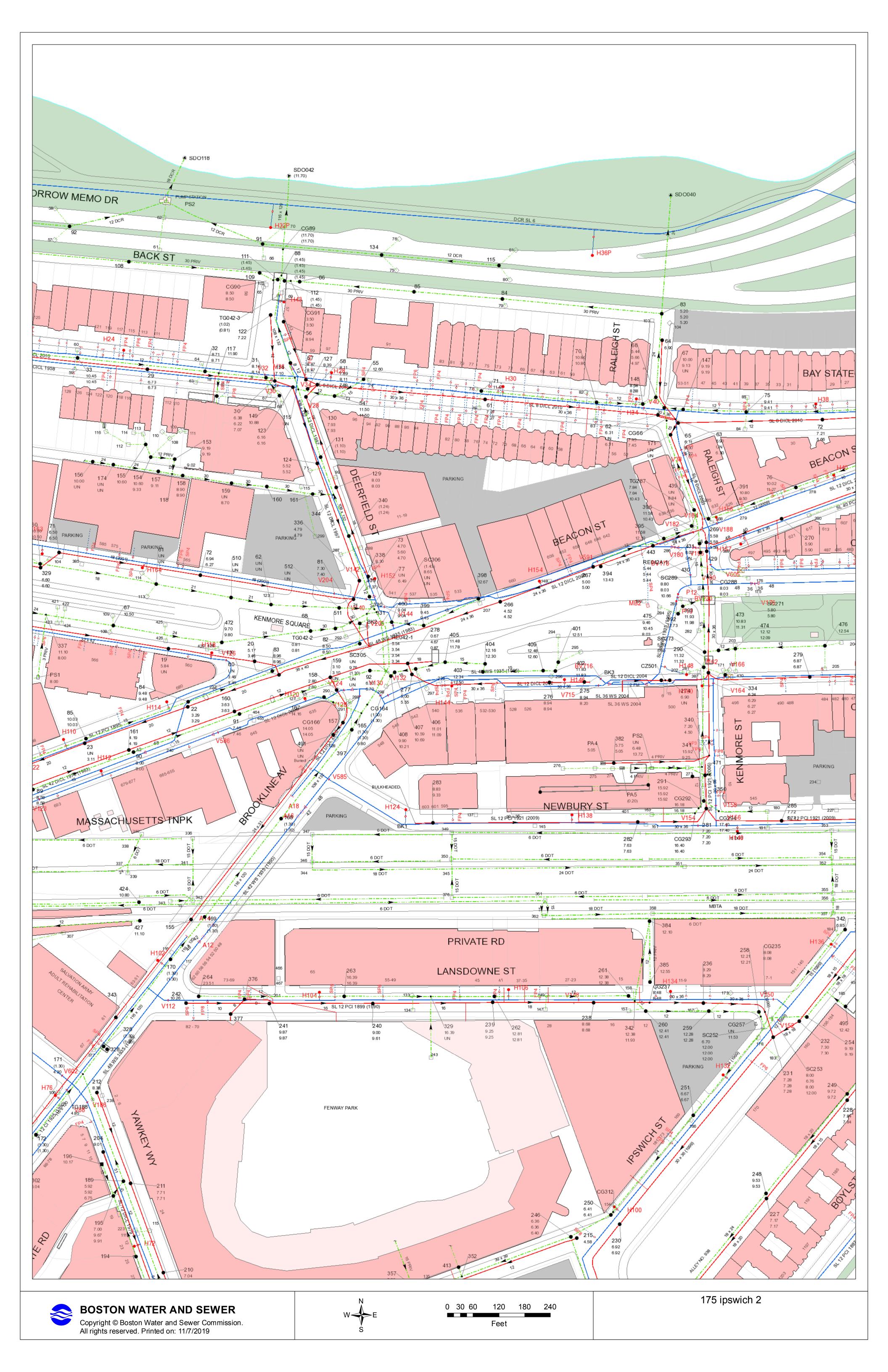
	Known	Known		_	_	Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	


F. Chemical and additive information


r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \Box Yes \Box No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

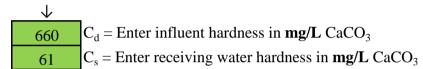
J. Certification requirement

J.	. Certification requirement		
	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage elief, true, accurate, a	the system, or those nd complete. I have
	A BMPP will be developed and maintained to meet the requirements BMPP certification statement: implemented on-site prior to the initiation of discharge	of this permit. Th	ne BMPP will be
	Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes	No □
	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■	No 🗆
	Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■	No□ NA□
	Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No □ NA ■
	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
	permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □	No 🗆 NA 🗏
	□ Other: if so, specify:		
Sig	nature: Dat	e: 11/7/20	0/9
Pri	nt Name and Title: MARK JENNINGS - PROJECT MANIAGER		

MA Limits

WQBEL

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
15.96	$Q_R = Enter upstream flow in MGD$
0.144	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	_
6.7	pH in Standard Units
15	Temperature in °C
0.206	Ammonia in mg/L
660	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
1.5	Chromium III in µg/L
0	Chromium VI in µg/L
4.7	Copper in µg/L
390	Iron in μg/L
1.8	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
11	Zinc in μg/L

Enter **influent** concentrations in the units specified

\perp	_
0	TRC in µg/L
0.855	Ammonia in mg/L
0	Antimony in μg/L
2.2	Arsenic in μg/L
0	Cadmium in µg/L
3.7	Chromium III in µg/L
0	Chromium VI in µg/L
12	Copper in µg/L
7100	Iron in μg/L
9.2	Lead in µg/L
0	Mercury in µg/L
8.5	Nickel in µg/L
2.4	Selenium in µg/L
0	Silver in µg/L
23	Zinc in µg/L
18	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μ g/L
0	Methyl-tert butyl ether in $\mu g/L$

A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	μg/L mg/L	1230	ug/I
Total Suspended Solids		•	1230	μg/L
-	30	mg/L	71572	or.
Antimony	206	μg/L	71573	μg/L
Arsenic	104	μg/L	1118	μg/L
Cadmium	10.2	$\mu g/L$	22.3341	$\mu g/L$
Chromium III	323	$\mu g/L$	6721.8	$\mu g/L$
Chromium VI	323	$\mu g/L$	1278.8	μg/L
Copper	242	μg/L	213.9	μg/L
Iron	5000	μg/L	68608	μg/L
Lead	160	μg/L	11.59	μg/L
Mercury	0.739	μg/L	101.31	μg/L
Nickel	1450		4123.3	
Selenium		μg/L	559.2	μg/L
	235.8	μg/L		μg/L
Silver	35.1	$\mu g/L$	209.0	μg/L
Zinc	420	μg/L	8246.9	μg/L
Cyanide	178	mg/L	581.5	$\mu g/L$
B. Non-Halogenated VOCs	100	~		
Total BTEX	100	μg/L		
Benzene	5.0 200	μg/L		
1,4 Dioxane Acetone	7970	μg/L μg/L		
Phenol	1,080	μg/L μg/L	33550	μg/L
C. Halogenated VOCs	1,000	μg/L	33330	μg/L
Carbon Tetrachloride	4.4	μg/L	178.9	μg/L
1,2 Dichlorobenzene	600	μg/L		, ,
1,3 Dichlorobenzene	320	μg/L		
1,4 Dichlorobenzene	5.0	$\mu g/L$		
Total dichlorobenzene		$\mu g/L$		
1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L		
1,1 Dichloroethylene	3.2	μg/L		
Ethylene Dibromide	0.05	μg/L		
Methylene Chloride 1,1,1 Trichloroethane	4.6 200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L μg/L		
Trichloroethylene	5.0	μg/L μg/L		
Tetrachloroethylene	5.0	μg/L μg/L	369.1	μg/L
cis-1,2 Dichloroethylene	70	μg/L		F-0/-
, , , , , , , , , , , , , , , , , , ,		1 3		

Vinyl Chloride	2.0	$\mu g/L$		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	246.0	μ g/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.4250	μ g/L
Benzo(a)pyrene	1.0	μg/L	0.4250	μ g/L
Benzo(b)fluoranthene	1.0	μg/L	0.4250	μ g/L
Benzo(k)fluoranthene	1.0	μg/L	0.4250	μ g/L
Chrysene	1.0	μg/L	0.4250	μ g/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.4250	μ g/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.4250	μ g/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	2237	μ g/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	$\mu g/L$		

Dilution Factor Confirmation, Stream Stats Report and Dilution Calculations

From: <u>Vakalopoulos, Catherine (DEP)</u>
To: <u>Jake Jennings; Ruan, Xiaodan (DEP)</u>

Subject: RE: Dilution Calcs 175 Ipswich Street Boston MA

Date: Thursday, November 7, 2019 12:08:50 PM

Hi Jake,

I can confirm that your dilution factor calculation of 111.83 for this 100 gpm proposed discharge to the Charles River via BWSC outfall SDO042 is correct.

As you know from your work on the Boston Arts Academy project, this segment of the Charles River is identified as MA72-38 and is classified as Class B. There are two approved TMDLs for this segment (phosphorus and pathogens) and this is not an Outstanding Resource Water. To see the causes of impairments, go to: https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf and search for "MA72-38".

Also as you know, in addition to submitting the EPA NOI for the RGP, if this is not a *current* MCP site, you will have to apply to MassDEP and submit a fee (unless fee exempt, e.g. a municipality). Instructions are located here: https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent.

Please let me know if you have any further questions.

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection

1 Winter St., Boston, MA 02108, 617-348-4026

Please consider the environment before printing this e-mail

From: Jake Jennings [mailto:JJennings@Irt-Ilc.net] Sent: Wednesday, November 06, 2019 2:39 PM

To: Vakalopoulos, Catherine (DEP); Ruan, Xiaodan (DEP) Subject: Dilution Calcs 175 Ipswich Street Boston MA

Hi Cathy,

As required in appendix V, please see attached StreamStats Report along with our dilution calcs for your review and conformation.

The project location:

Fenway Theater 175 Ipswich Street Boston MA

The 7 Day 10 Year Low Flow value from the StreamStats report is 24.7 cfs and the calculated dilution factor is 111.83.

Can you please confirm that these values are appropriate.

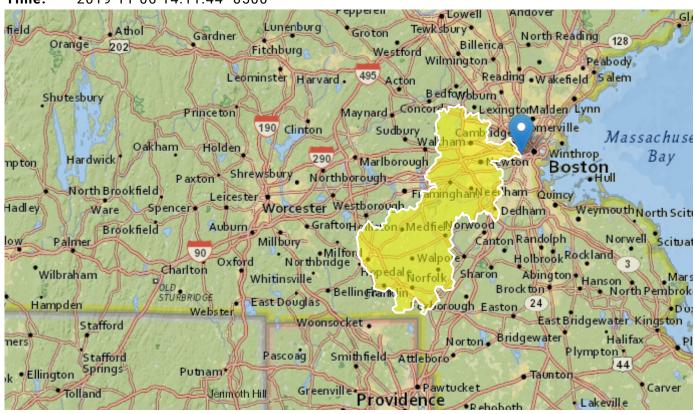
Thank you

Jake Jennings

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 M: 508.930.9812 jjennings@lrt-llc.net

11/6/2019 StreamStats


StreamStats Report

Region ID: MA

Workspace ID: MA20191106191126114000

Clicked Point (Latitude, Longitude): 42.35301, -71.09845

Time: 2019-11-06 14:11:44 -0500

Parameter	Barran Ara Barranin Alam	\/ - I	11
Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	283	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.327	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.23	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

11/6/2019 StreamStats

Low-Flow Statistics Parameters[Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	283	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.327	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.23	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers[Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	49.6	ft^3/s
7 Day 10 Year Low Flow	24.7	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

11/6/2019 StreamStats

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

DILUTION CALCULATIONS Fenway Theater Boston, MA

Calculate Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values

Calculate DF based on EPA formula $(Q_S + Q_D)/Q_D$, where Q_S is 7Q10 in million gallons per day (MGD) and Q_D is discharge flow in MGD

ASSUMPTIONS FOR 100 GPM SYSTEM

7Q10 is 24.7 cubic feet per second (cfs) - from StreamStats 4.0 A conversion of 7.48 is used to convert cubic feet to gallons A design flow rate of 100 gallons per minute (gpm) is assumed

CALCULATIONS

7q10 Low Flow Value (Q_s)

Appendix B

Laboratory Data

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

November 6, 2019

Jake Jennings Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Fenway Theater

Client Job Number: Project Number: 2-1956

Laboratory Work Order Number: 19J1915

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on October 30, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
19J1915-01	8
19J1915-02	17
Sample Preparation Information	20
QC Data	22
Volatile Organic Compounds by GC/MS	22
B245118	22
Semivolatile Organic Compounds by GC/MS	24
B244808	24
Semivolatile Organic Compounds by - GC/MS	25
B244701	25
Polychlorinated Biphenyls By GC/ECD	29
B244694	29
Metals Analyses (Total)	30
B244698	30
B244699	30
B244863	31
B245153	31
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	32
B244675	32
B244676	32
B244690	32
B244872	32

Table of Contents (continued)

B245016	33
Drinking Water Organics EPA 504.1	34
B244805	34
Dual Column RPD Report	35
Flag/Qualifier Summary	39
Certifications	40
Chain of Custody/Sample Receipt	44

REPORT DATE: 11/6/2019

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453

ATTN: Jake Jennings

PURCHASE ORDER NUMBER: 2-1956

PROJECT NUMBER: 2-1956

ANALYTICAL SUMMARY

19J1915 WORK ORDER NUMBER:

 $The \ results \ of \ analyses \ performed \ on \ the \ following \ samples \ submitted \ to \ the \ CON-TEST \ Analytical \ Laboratory \ are \ found \ in \ this \ report.$

PROJECT LOCATION: Fenway Theater

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Influent	19J1915-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 504.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Receiving Water (Charles)	19J1915-02	Ground Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

B-05

Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".

Analyte & Samples(s) Qualified:

Bromomethane

B245118-BLK1

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.

Analyte & Samples(s) Qualified:

1.4-Dioxane

B245118-BS1, S042268-CCV1

625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Benzidine

19J1915-01[Influent], B244701-BLK1, B244701-BS1, B244701-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

2-Chloronaphthalene

B244701-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

19J1915-01[Influent], B244701-BLK1, B244701-BS1, B244701-BSD1, S042106-CCV1

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

Analyte & Samples(s) Qualified:

19J1915-01[Influent], B244701-BLK1, B244701-BS1, B244701-BSD1, S042106-CCV1

EPA 200.7

Qualifications:

В

Analyte is found in the associated laboratory blank as well as in the sample.

Analyte & Samples(s) Qualified:

Hardness

19J1915-01[Influent], 19J1915-02[Receiving Water (Charles)], B244699-BS1, B244699-BSD1

SM21-22 3500 Cr B

Qualifications:

R-05

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this

compound. Analyte & Samples(s) Qualified:

Hexavalent Chromium

B244676-BSD1

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

Sample Description: Work Order: 19J1915

Project Location: Fenway Theater
Date Received: 10/30/2019
Field Sample #: Influent

Sampled: 10/30/2019 08:30

98.8

70-130

Sample ID: 19J1915-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

Valatila	Ougania	Compounds by	CCME
voiame	Organic	Compounds by	CrC/VIS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	12.7	50.0	3.79	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.140	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Bromodichloromethane	< 2.00	2.00	0.160	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Bromoform	< 2.00	2.00	0.460	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Bromomethane	< 5.00	5.00	0.780	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
tert-Butyl Alcohol (TBA)	<20.0	20.0	4.17	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Carbon Tetrachloride	< 2.00	2.00	0.110	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Chlorobenzene	1.08	2.00	0.150	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
Chlorodibromomethane	< 2.00	2.00	0.210	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Chloroethane	<2.00	2.00	0.350	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Chloroform	<2.00	2.00	0.170	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Chloromethane	<2.00	2.00	0.450	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,2-Dichlorobenzene	0.470	2.00	0.160	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
1,3-Dichlorobenzene	<2.00	2.00	0.120	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,4-Dichlorobenzene	0.160	2.00	0.130	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
1,2-Dichloroethane	<2.00	2.00	0.410	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,1-Dichloroethane	<2.00	2.00	0.160	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,1-Dichloroethylene	<2.00	2.00	0.320	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
trans-1,2-Dichloroethylene	0.660	2.00	0.310	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
1,2-Dichloropropane	<2.00	2.00	0.200	μg/L	1	•	624.1	11/5/19	11/5/19 15:10	LBD
cis-1,3-Dichloropropene	<2.00	2.00	0.130	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,4-Dioxane	<50.0	50.0	22.5	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
trans-1,3-Dichloropropene	<2.00	2.00	0.230	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Ethanol	<100	100	10.5	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Ethylbenzene	<2.00	2.00	0.130	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Methyl tert-Butyl Ether (MTBE)	<2.00	2.00	0.250	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Methylene Chloride	<5.00	5.00	0.340	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
1,1,2,2-Tetrachloroethane	<2.00	2.00	0.220	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Tetrachloroethylene	<2.00	2.00	0.180	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Toluene	0.340	1.00	0.140		1	J	624.1	11/5/19	11/5/19 15:10	LBD
1,1,1-Trichloroethane	<2.00	2.00	0.140	μg/L	1	J	624.1	11/5/19	11/5/19 15:10	LBD
1,1,2-Trichloroethane	<2.00	2.00	0.200	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Trichloroethylene	<2.00	2.00	0.100	μg/L μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
Trichlorofluoromethane (Freon 11)										
Vinyl Chloride	<2.00	2.00	0.330	μg/L μg/I	1		624.1 624.1	11/5/19	11/5/19 15:10	LBD
m+p Xylene	<2.00	2.00	0.450	μg/L	1			11/5/19	11/5/19 15:10	LBD
m+p Aylene o-Xylene	<2.00	2.00	0.300	μg/L	1		624.1	11/5/19	11/5/19 15:10	LBD
	<2.00	2.00	0.170	μg/L	1	FI /C 1	624.1	11/5/19	11/5/19 15:10	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual			11/5/10 15:10	
1,2-Dichloroethane-d4 Toluene-d8		98.2 109		70-130 70-130					11/5/19 15:10 11/5/19 15:10	
		10)		,0150					11/5/17 15.10	

11/5/19 15:10

Sample Description: Work Order: 19J1915

Project Location: Fenway Theater
Date Received: 10/30/2019
Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds	by	GC/MS
--------------------------------	----	-------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzo(a)anthracene (SIM)	< 0.051	0.051	0.016	μg/L	1	-	625.1	10/31/19	11/1/19 11:53	IMR
Benzo(a)pyrene (SIM)	< 0.10	0.10	0.012	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Benzo(b)fluoranthene (SIM)	< 0.051	0.051	0.015	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Benzo(k)fluoranthene (SIM)	< 0.20	0.20	0.012	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Bis(2-ethylhexyl)phthalate (SIM)	<1.0	1.0	0.43	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Chrysene (SIM)	< 0.20	0.20	0.015	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Dibenz(a,h)anthracene (SIM)	< 0.10	0.10	0.017	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Indeno(1,2,3-cd)pyrene (SIM)	< 0.10	0.10	0.018	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Pentachlorophenol (SIM)	<1.0	1.0	0.34	μg/L	1		625.1	10/31/19	11/1/19 11:53	IMR
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		38.4		15-110					11/1/19 11:53	
Phenol-d6 (SIM)		31.8		15-110					11/1/19 11:53	
Nitrobenzene-d5		71.8		30-130					11/1/19 11:53	
2-Fluorobiphenyl		49.5		30-130					11/1/19 11:53	
2,4,6-Tribromophenol (SIM)		83.1		15-110					11/1/19 11:53	
p-Terphenyl-d14		57.8		30-130					11/1/19 11:53	

Project Location: Fenway Theater Sample Description: Work Order: 19J1915

Date Received: 10/30/2019

Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Acenaphthylene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Anthracene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Benzidine	<20.2	20.2	μg/L	1	V-04, L-04, V-35	625.1	10/31/19	11/1/19 13:20	KLB
Benzo(g,h,i)perylene	<5.05	5.05	μg/L	1	, , , , , , , , , , , , , , , , , , , ,	625.1	10/31/19	11/1/19 13:20	KLB
4-Bromophenylphenylether	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Butylbenzylphthalate	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
4-Chloro-3-methylphenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Bis(2-chloroethyl)ether	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Bis(2-chloroisopropyl)ether	<10.1	10.1	μg/L μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2-Chloronaphthalene	<10.1	10.1	μg/L μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2-Chlorophenol	<10.1	10.1		1		625.1	10/31/19	11/1/19 13:20	KLB
4-Chlorophenylphenylether	<10.1	10.1	μg/L μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Di-n-butylphthalate									
1,3-Dichlorobenzene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
1,4-Dichlorobenzene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
1,2-Dichlorobenzene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
3,3-Dichlorobenzidine	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,4-Dichlorophenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Diethylphthalate	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,4-Dimethylphenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Dimethylphthalate	<10.1	10.1	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
4,6-Dinitro-2-methylphenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,4-Dinitrophenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,4-Dinitrotoluene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,6-Dinitrotoluene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Di-n-octylphthalate	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
1,2-Diphenylhydrazine/Azobenzene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Fluoranthene	< 5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Fluorene	< 5.05	5.05	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
Hexachlorobenzene	<10.1	10.1	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
Hexachlorobutadiene	<10.1	10.1	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
Hexachlorocyclopentadiene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Hexachloroethane	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Isophorone	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Naphthalene	< 5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Nitrobenzene	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2-Nitrophenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
4-Nitrophenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
N-Nitrosodimethylamine	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
N-Nitrosodiphenylamine/Diphenylamine	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
N-Nitrosodi-n-propylamine	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2-Methylnaphthalene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Phenanthrene	<5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
	~5.05	5.05	μ <u>g</u> /L	1		023.1	10/31/19	Page 10	

Page 10 of 45

Project Location: Fenway Theater

Sample Description:

Work Order: 19J1915

Date Received: 10/30/2019 Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01 Sample Matrix: Ground Water

Semivolatile	Ougania	Commounda	L.	CCAME

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
2-Methylphenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Phenol	<10.1	10.1	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
3/4-Methylphenol	<10.1	10.1	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
Pyrene	< 5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
1,2,4-Trichlorobenzene	< 5.05	5.05	μg/L	1		625.1	10/31/19	11/1/19 13:20	KLB
2,4,6-Trichlorophenol	<10.1	10.1	$\mu g/L$	1		625.1	10/31/19	11/1/19 13:20	KLB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		42.7	15-110					11/1/19 13:20	
Phenol-d6		33.3	15-110					11/1/19 13:20	
Nitrobenzene-d5		64.4	30-130					11/1/19 13:20	
2-Fluorobiphenyl		64.7	30-130					11/1/19 13:20	
2,4,6-Tribromophenol		73.6	15-110					11/1/19 13:20	
p-Terphenyl-d14		72.9	30-130					11/1/19 13:20	

Work Order: 19J1915

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Fenway Theater Sample Description:

Date Received: 10/30/2019
Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.0980	0.0980	0.0902	μg/L	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1221 [1]	< 0.0980	0.0980	0.0789	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1232 [1]	< 0.0980	0.0980	0.0975	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1242 [1]	< 0.0980	0.0980	0.0848	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1248 [1]	< 0.0980	0.0980	0.0931	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1254 [1]	< 0.0980	0.0980	0.0515	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Aroclor-1260 [1]	< 0.0980	0.0980	0.0961	$\mu g/L$	1		608.3	10/31/19	11/5/19 16:25	JMB
Surrogates		% Reco	very	Recovery Limits	6	Flag/Qual				-

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	63.7	30-150		11/5/19 16:25
Decachlorobiphenyl [2]	62.8	30-150		11/5/19 16:25
Tetrachloro-m-xylene [1]	69.5	30-150		11/5/19 16:25
Tetrachloro-m-xylene [2]	70.0	30-150		11/5/19 16:25

Project Location: Fenway Theater

660

Sample Description:

Work Order: 19J1915

10/31/19 11/1/19 14:53

MJH

EPA 200.7

Date Received: 10/30/2019 Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01 Sample Matrix: Ground Water

Hardness

	Metals Analyses (Total)										
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Antimony	ND	1.0		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:04	МЈН	
Arsenic	2.2	0.80		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Chromium	3.7	1.0		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Chromium, Trivalent	0.0037			mg/L	1		Tri Chrome Calc.	10/31/19	11/4/19 17:10	MJH	
Copper	12	1.0		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Iron	7.1	0.050		mg/L	1		EPA 200.7	10/31/19	11/1/19 14:53	MJH	
Lead	9.2	0.50		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Mercury	ND	0.00010		mg/L	1		EPA 245.1	11/1/19	11/2/19 9:50	AJL	
Nickel	8.5	5.0		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Selenium	2.4	5.0	1.6	$\mu g/L$	1	J	EPA 200.8	10/31/19	11/4/19 17:04	MJH	
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	11/5/19	11/5/19 18:15	MJH	
Zinc	23	10		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:04	MJH	

mg/L

Project Location: Fenway Theater

Sample Description:

Work Order: 19J1915

Date Received: 10/30/2019 Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01 Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	1000	50		mg/L	50		EPA 300.0	11/2/19	11/2/19 17:53	IS
Chlorine, Residual	ND	0.020		mg/L	1		SM21-22 4500 CL G	10/30/19	10/30/19 20:30	MJG
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	10/30/19	10/30/19 22:15	MJG
Total Suspended Solids	12	0.71		mg/L	1		SM21-22 2540D	10/31/19	10/31/19 13:10	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	11/5/19	11/5/19 11:30	LL

Project Location: Fenway Theater Sample Desc

Sample Description: Work Order: 19J1915

Date Received: 10/30/2019

Field Sample #: Influent

Sampled: 10/30/2019 08:30

Sample ID: 19J1915-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 504.1

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.019	$\mu g/L$	1		EPA 504.1	11/1/19	11/1/19 16:08	JMB
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,3-Dibromopropane (1)		98.3	70-130		-			11/1/19 16:08	

Work Order: 19J1915

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description:

Project Location: Fenway Theater Date Received: 10/30/2019

Field Sample #: Influent Sample ID: 19J1915-01 Sample Matrix: Ground Water Sampled: 10/30/2019 08:30

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.855	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		11/4/19 21:46	AAL
Cyanide	0.018	0.005	0.001	mg/L	1		SM21-22 4500 CN E		11/4/19 13:04	AAL

Project Location: Fenway Theater Sample Description: Work Order: 19J1915

Date Received: 10/30/2019

Field Sample #: Receiving Water (Charles) Sampled: 10/30/2019 09:00

Sample ID: 19J1915-02
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	МЈН
Arsenic	ND	0.80		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Chromium	1.5	1.0		$\mu g/L$	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Chromium, Trivalent	0.0015			mg/L	1		Tri Chrome Calc.	10/31/19	11/4/19 17:10	MJH
Copper	4.7	1.0		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Iron	0.39	0.050		mg/L	1		EPA 200.7	10/31/19	11/1/19 14:58	MJH
Lead	1.8	0.50		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	11/1/19	11/2/19 9:52	AJL
Nickel	ND	5.0		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Selenium	ND	5.0	1.6	μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Silver	ND	0.20		μg/L	1		EPA 200.8	11/5/19	11/5/19 18:17	MJH
Zinc	11	10		μg/L	1		EPA 200.8	10/31/19	11/4/19 17:07	MJH
Hardness	61			mg/L	1	В	EPA 200.7	10/31/19	11/1/19 14:58	tbc

Project Location: Fenway Theater Sample Description: Work Order: 19J1915

Date Received: 10/30/2019

Field Sample #: Receiving Water (Charles)

Sampled: 10/30/2019 09:00

Sample ID: 19J1915-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	10/30/19	10/30/19 22:15	MJG
Total Suspended Solids	4.3	0.75		mg/L	1		SM21-22 2540D	10/31/19	10/31/19 13:10	LL

Project Location: Fenway Theater Sample Description: Work Order: 19J1915

Date Received: 10/30/2019

Field Sample #: Receiving Water (Charles)

Sampled: 10/30/2019 09:00

Sample ID: 19J1915-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.206	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		11/4/19 21:47	AAL

Sample Extraction Data

Prep Method:	SW-846 3510C-608.3	

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244694	1020	5.00	10/31/19

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B245118	5	5.00	11/05/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244701	990	1.00	10/31/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244808	990	1.00	10/31/19

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J1915-01 [Influent]	B245016	1000	11/05/19

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J1915-01 [Influent]	B244699	50.0	50.0	10/31/19	
19J1915-01 [Influent]	B244699	50.0		10/31/19	
19J1915-02 [Receiving Water (Charles)]	B244699	50.0	50.0	10/31/19	
19J1915-02 [Receiving Water (Charles)]	B244699	50.0		10/31/19	

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244698	50.0	50.0	10/31/19
19J1915-02 [Receiving Water (Charles)]	B244698	50.0	50.0	10/31/19

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01RE1 [Influent]	B245153	50.0	50.0	11/05/19
19J1915-02RE1 [Receiving Water (Charles)]	B245153	50.0	50.0	11/05/19

Prep Method: EPA 245.1-EPA 245.1

	Lab Number [Field ID	D Batch	Initial [mL]	Final [mL	Date
--	----------------------	---------	--------------	-----------	------

Sample Extraction Data

Prep	Method:	EPA 245.1-EPA 245.1	

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244863	6.00	6.00	11/01/19
19J1915-02 [Receiving Water (Charles)]	B244863	6.00	6.00	11/01/19

Prep Method: EPA 300.0-EPA 300.0

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244872	10.0	10.0	11/02/19

Prep Method: EPA 504 water-EPA 504.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244805	36.0	35.0	11/01/19

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J1915-01 [Influent]	B244690	700	10/31/19
19J1915-02 [Receiving Water (Charles)]	B244690	670	10/31/19

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19J1915-01 [Influent]	B244676	50.0	50.0	10/30/19	
19J1915-02 [Receiving Water (Charles)]	B244676	50.0	50.0	10/30/19	

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19J1915-01 [Influent]	B244675	100	100	10/30/19

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
19J1915-01 [Influent]	B244698	50.0	10/31/19
19J1915-02 [Receiving Water (Charles)]	B244698	50.0	10/31/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B245118 - SW-846 5030B										
Blank (B245118-BLK1)				Prepared & A	Analyzed: 11	/05/19				
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	μg/L							
Benzene	ND	1.00	μg/L							
Bromodichloromethane	ND	2.00	μg/L							
Bromoform	ND	2.00	μg/L							
Bromomethane	1.08	2.00	μg/L							J, B-05
ert-Butyl Alcohol (TBA)	ND	20.0	$\mu g/L$							
Carbon Tetrachloride	ND	2.00	μg/L							
Chlorobenzene	ND	2.00	μg/L							
Chlorodibromomethane	ND	2.00	μg/L							
Chloroethane	ND	2.00	$\mu g/L$							
Chloroform	ND	2.00	$\mu g/L$							
Chloromethane	ND	2.00	$\mu g/L$							
,2-Dichlorobenzene	ND	2.00	$\mu g\!/\!L$							
,3-Dichlorobenzene	ND	2.00	$\mu g\!/\!L$							
,4-Dichlorobenzene	ND	2.00	μg/L							
,2-Dichloroethane	ND	2.00	$\mu g\!/\!L$							
,1-Dichloroethane	ND	2.00	$\mu g\!/\!L$							
,1-Dichloroethylene	ND	2.00	$\mu g\!/\!L$							
rans-1,2-Dichloroethylene	ND	2.00	$\mu g \! / \! L$							
,2-Dichloropropane	ND	2.00	$\mu g \! / \! L$							
is-1,3-Dichloropropene	ND	2.00	$\mu g/L$							
,4-Dioxane	ND	50.0	μg/L							
rans-1,3-Dichloropropene	ND	2.00	μg/L							
Ethanol	ND	50.0	μg/L							
thylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
,1,2,2-Tetrachloroethane	ND	2.00	μg/L							
etrachloroethylene	ND	2.00	μg/L							
Toluene	ND	1.00	μg/L							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
Frichloroethylene	ND	2.00	μg/L							
Trichlorofluoromethane (Freon 11)	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
-Xylene	ND	2.00	μg/L							
surrogate: 1,2-Dichloroethane-d4	23.9		$\mu g/L$	25.0		95.5	70-130			
Surrogate: Toluene-d8	27.4		$\mu g/L$	25.0		109	70-130			
urrogate: 4-Bromofluorobenzene	24.9		$\mu g/L$	25.0		99.8	70-130			
.CS (B245118-BS1)				Prepared & A	Analyzed: 11	/05/19				
acetone	220	50.0	μg/L	200		108	70-160			
ert-Amyl Methyl Ether (TAME)	21	0.500	$\mu g/L$	20.0		106	70-130			
Benzene	22	1.00	$\mu g/L$	20.0		110	65-135			
Bromodichloromethane	21	2.00	$\mu g/L$	20.0		103	65-135			
Bromoform	19	2.00	$\mu g/L$	20.0		94.3	70-130			
Bromomethane	8.4	2.00	$\mu g/L$	20.0		42.0	15-185			
ert-Butyl Alcohol (TBA)	250	20.0	$\mu g/L$	200		123	40-160			
Carbon Tetrachloride	19	2.00	$\mu g\!/\!L$	20.0		97.3	70-130			
Chlorobenzene	20	2.00	μg/L	20.0		102	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B245118 - SW-846 5030B										
LCS (B245118-BS1)				Prepared &	Analyzed: 11	/05/19				
Chlorodibromomethane	22	2.00	μg/L	20.0		108	70-135			
Chloroethane	24	2.00	$\mu g/L$	20.0		120	40-160			
Chloroform	20	2.00	$\mu g/L$	20.0		100	70-135			
Chloromethane	13	2.00	$\mu g/L$	20.0		64.4	20-205			
1,2-Dichlorobenzene	20	2.00	$\mu g/L$	20.0		99.2	65-135			
1,3-Dichlorobenzene	19	2.00	μg/L	20.0		97.3	70-130			
1,4-Dichlorobenzene	20	2.00	$\mu g/L$	20.0		98.0	65-135			
1,2-Dichloroethane	21	2.00	$\mu g/L$	20.0		105	70-130			
1,1-Dichloroethane	22	2.00	$\mu g/L$	20.0		112	70-130			
1,1-Dichloroethylene	23	2.00	μg/L	20.0		113	50-150			
trans-1,2-Dichloroethylene	23	2.00	μg/L	20.0		116	70-130			
1,2-Dichloropropane	24	2.00	μg/L	20.0		119	35-165			
cis-1,3-Dichloropropene	21	2.00	μg/L	20.0		105	25-175			
1,4-Dioxane	340	50.0	$\mu g/L$	200		169 *	40-130			L-01
trans-1,3-Dichloropropene	20	2.00	$\mu g/L$	20.0		101	50-150			
Ethanol	320	50.0	$\mu g/L$	200		158	40-160			
Ethylbenzene	20	2.00	μg/L	20.0		97.6	60-140			
Methyl tert-Butyl Ether (MTBE)	22	2.00	μg/L	20.0		109	70-130			
Methylene Chloride	21	5.00	μg/L	20.0		104	60-140			
1,1,2,2-Tetrachloroethane	23	2.00	μg/L	20.0		116	60-140			
Tetrachloroethylene	23	2.00	μg/L	20.0		114	70-130			
Toluene	22	1.00	$\mu g/L$	20.0		108	70-130			
1,1,1-Trichloroethane	20	2.00	$\mu g/L$	20.0		98.0	70-130			
1,1,2-Trichloroethane	23	2.00	$\mu g/L$	20.0		117	70-130			
Trichloroethylene	22	2.00	$\mu g/L$	20.0		109	65-135			
Trichlorofluoromethane (Freon 11)	17	2.00	μg/L	20.0		84.2	50-150			
Vinyl Chloride	21	2.00	μg/L	20.0		104	5-195			
m+p Xylene	39	2.00	μg/L	40.0		96.4	70-130			
o-Xylene	19	2.00	μg/L	20.0		96.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	23.1	<u> </u>	μg/L	25.0		92.6	70-130	<u> </u>	<u> </u>	<u></u>
Surrogate: Toluene-d8	27.7		$\mu g/L$	25.0		111	70-130			
Surrogate: 4-Bromofluorobenzene	25.0		$\mu g/L$	25.0		99.9	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244808 - SW-846 3510C										
Blank (B244808-BLK1)				Prepared: 10	/31/19 Anal	yzed: 11/01/1	9			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.10	$\mu g/L$							
indeno(1,2,3-cd)pyrene (SIM)	ND	0.10	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol (SIM)	84.2		μg/L	200		42.1	15-110			
Surrogate: Phenol-d6 (SIM)	65.8		μg/L	200		32.9	15-110			
Surrogate: Nitrobenzene-d5	75.0		μg/L	100		75.0	30-130			
Surrogate: 2-Fluorobiphenyl	49.2		μg/L	100		49.2	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	166		μg/L	200		83.0	15-110			
Surrogate: p-Terphenyl-d14	71.6		μg/L	100		71.6	30-130			
LCS (B244808-BS1)				Prepared: 10	/31/19 Anal	yzed: 11/01/1	19			
Benzo(a)anthracene (SIM)	39.7	1.0	μg/L	50.0	<u> </u>	79.4	33-143			
Benzo(a)pyrene (SIM)	37.2	2.0	μg/L	50.0		74.4	17-163			
Benzo(b)fluoranthene (SIM)	41.6	1.0	μg/L	50.0		83.2	24-159			
Benzo(k)fluoranthene (SIM)	44.3	4.0	μg/L	50.0		88.7	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	49.9	20	μg/L	50.0		99.8	8-158			
Chrysene (SIM)	31.4	4.0	μg/L	50.0		62.8	17-168			
Dibenz(a,h)anthracene (SIM)	44.3	2.0	μg/L	50.0		88.5	10-227			
indeno(1,2,3-cd)pyrene (SIM)	48.4	2.0	μg/L	50.0		96.7	10-171			
Pentachlorophenol (SIM)	31.6	20	μg/L	50.0		63.1	14-176			
Surrogate: 2-Fluorophenol (SIM)	89.3		μg/L	200		44.7	15-110			
Surrogate: Phenol-d6 (SIM)	68.1		μg/L μg/L	200		34.1	15-110			
Surrogate: Nitrobenzene-d5	75.5		μg/L μg/L	100		75.5	30-130			
Surrogate: 2-Fluorobiphenyl	59.3		μg/L μg/L	100		59.3	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	176		μg/L μg/L	200		88.2	15-110			
Surrogate: p-Terphenyl-d14	53.7		μg/L μg/L	100		53.7	30-130			
	33.7		μ5/12		/21/10 4 1					
LCS Dup (B244808-BSD1)		1.0	/T	Prepared: 10	/31/19 Allai			4.17		
Benzo(a)anthracene (SIM)	38.1	1.0	μg/L	50.0		76.1	33-143	4.17	53	
Benzo(a)pyrene (SIM)	35.0	2.0	μg/L	50.0		70.1	17-163	6.03	72	
Benzo(b)fluoranthene (SIM)	39.2	1.0	μg/L	50.0		78.3	24-159	6.09	71 62	
Benzo(k)fluoranthene (SIM) Bis(2-ethylhexyl)phthalate (SIM)	41.7	4.0	μg/L μg/I	50.0		83.4	11-162	6.14	63	
	47.4	20	μg/L	50.0		94.8	8-158	5.18	82	
Chrysene (SIM)	30.1	4.0	μg/L	50.0		60.2	17-168	4.36	87	
Dibenz(a,h)anthracene (SIM)	42.0	2.0	μg/L	50.0		84.1	10-227	5.14	126	
Indeno(1,2,3-cd)pyrene (SIM)	45.9	2.0	μg/L	50.0		91.8	10-171	5.22	99	
Pentachlorophenol (SIM)	30.6	20	μg/L	50.0		61.3	14-176	2.96	86	
Surrogate: 2-Fluorophenol (SIM)	79.0		$\mu g/L$	200		39.5	15-110			
Surrogate: Phenol-d6 (SIM)	62.1		μg/L	200		31.1	15-110			
Surrogate: Nitrobenzene-d5	71.8		μg/L	100		71.8	30-130			
Surrogate: 2-Fluorobiphenyl	52.6		μg/L	100		52.6	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	164		μg/L	200		81.9	15-110			
Surrogate: p-Terphenyl-d14	50.3		μg/L	100		50.3	30-130			

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B244701 - SW-846 3510C										
Blank (B244701-BLK1)				Prepared: 10	0/31/19 Anal	yzed: 11/01/1	19			
Acenaphthene	ND	5.00	$\mu g/L$							
Acenaphthylene	ND	5.00	μg/L							
Anthracene	ND	5.00	μg/L							
Benzidine	ND	20.0	μg/L							L-04, V-04, V-35
Benzo(g,h,i)perylene	ND	5.00	$\mu g/L$							
4-Bromophenylphenylether	ND	10.0	$\mu g/L$							
Butylbenzylphthalate	ND	10.0	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10.0	$\mu g/L$							
Bis(2-chloroethyl)ether	ND	10.0	$\mu g/L$							
Bis(2-chloroisopropyl)ether	ND	10.0	μg/L							
2-Chloronaphthalene	ND	10.0	μg/L							
2-Chlorophenol	ND	10.0	μg/L							
4-Chlorophenylphenylether	ND	10.0	$\mu g/L$							
Di-n-butylphthalate	ND	10.0	$\mu g/L$							
1,3-Dichlorobenzene	ND	5.00	μg/L							
1,4-Dichlorobenzene	ND	5.00	μg/L							
1,2-Dichlorobenzene	ND	5.00	μg/L							
3,3-Dichlorobenzidine	ND	10.0	μg/L							
2,4-Dichlorophenol	ND	10.0	μg/L							
Diethylphthalate	ND ND	10.0	μg/L							
2,4-Dimethylphenol		10.0	μg/L μg/L							
Dimethylphthalate	ND ND	10.0	μg/L μg/L							
4,6-Dinitro-2-methylphenol	ND	10.0	μg/L μg/L							
2,4-Dinitrophenol	ND	10.0	μg/L μg/L							
2,4-Dinitrotoluene	ND	10.0								
2,6-Dinitrotoluene	ND		μg/L							
	ND	10.0	μg/L							
Di-n-octylphthalate	ND	10.0	μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND	10.0	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10.0	μg/L							
Fluoranthene	ND	5.00	μg/L							
Fluorene	ND	5.00	μg/L							
Hexachlorobenzene	ND	10.0	μg/L							
Hexachlorobutadiene	ND	10.0	μg/L							
Hexachlorocyclopentadiene	ND	10.0	μg/L							
Hexachloroethane	ND	10.0	μg/L							
Isophorone	ND	10.0	μg/L							
Naphthalene	ND	5.00	μg/L							
Nitrobenzene	ND	10.0	μg/L							
2-Nitrophenol	ND	10.0	$\mu \text{g/L}$							
4-Nitrophenol	ND	10.0	$\mu g/L$							
N-Nitrosodimethylamine	ND	10.0	$\mu g/L$							
N-Nitrosodiphenylamine/Diphenylamine	ND	10.0	μg/L							
N-Nitrosodi-n-propylamine	ND	10.0	μg/L							
2-Methylnaphthalene	ND	5.00	$\mu \text{g/L}$							
Phenanthrene	ND	5.00	$\mu g/L$							
2-Methylphenol	ND	10.0	μg/L							
Phenol	ND	10.0	μg/L							
3/4-Methylphenol	ND	10.0	μg/L							
Pyrene	ND ND	5.00	μg/L							
1,2,4-Trichlorobenzene	ND ND	5.00	μg/L							
2,4,6-Trichlorophenol	ND ND	10.0	μg/L							
<u></u>		10.0								
Surrogate: 2-Fluorophenol	92.6		$\mu g/L$	200		46.3	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244701 - SW-846 3510C										
Blank (B244701-BLK1)				Prepared: 10)/31/19 Analy	zed: 11/01/1	9			
Surrogate: Phenol-d6	69.4		μg/L	200		34.7	15-110			
Surrogate: Nitrobenzene-d5	67.2		$\mu g/L$	100		67.2	30-130			
Surrogate: 2-Fluorobiphenyl	65.1		$\mu g/L$	100		65.1	30-130			
Surrogate: 2,4,6-Tribromophenol	162		$\mu g/L$	200		80.9	15-110			
Surrogate: p-Terphenyl-d14	80.7		μg/L	100		80.7	30-130			
LCS (B244701-BS1)				Prepared: 10)/31/19 Analy	zed: 11/01/1	9			
Acenaphthene	35.6	5.00	$\mu \text{g/L}$	50.0		71.3	47-145			
Acenaphthylene	35.6	5.00	$\mu \text{g/L}$	50.0		71.2	33-145			
Anthracene	37.2	5.00	$\mu \text{g/L}$	50.0		74.5	27-133			
Benzidine	13.4	20.0	μg/L	50.0		26.9 *	40-140			V-04, L-04, V-35
Benzo(g,h,i)perylene	35.7	5.00	$\mu g\!/\!L$	50.0		71.4	10-219			
4-Bromophenylphenylether	32.4	10.0	μg/L	50.0		64.9	53-127			
Butylbenzylphthalate	37.0	10.0	μg/L	50.0		74.0	10-152			
4-Chloro-3-methylphenol	36.9	10.0	μg/L	50.0		73.7	22-147			
Bis(2-chloroethyl)ether	34.6	10.0	μg/L	50.0		69.1	12-158			
Bis(2-chloroisopropyl)ether	38.3	10.0	μg/L	50.0		76.6	36-166			
2-Chloronaphthalene	30.4	10.0	μg/L	50.0		60.7	60-120			
2-Chlorophenol	33.3	10.0	μg/L	50.0		66.7	23-134			
4-Chlorophenylphenylether	33.6	10.0	μg/L	50.0		67.1	25-158			
Di-n-butylphthalate	37.0	10.0	μg/L	50.0		73.9	10-120			
1,3-Dichlorobenzene	28.1	5.00	μg/L	50.0		56.3	10-172			
1,4-Dichlorobenzene	28.6	5.00	μg/L	50.0		57.1	20-124			
1,2-Dichlorobenzene	29.4	5.00	μg/L	50.0		58.8	32-129			
3,3-Dichlorobenzidine	39.5	10.0	μg/L	50.0		79.1	10-262			
2,4-Dichlorophenol	33.8	10.0	μg/L	50.0		67.6	39-135			
Diethylphthalate	35.6	10.0	μg/L	50.0		71.3	10-120			
2,4-Dimethylphenol	34.0	10.0	μg/L	50.0		67.9	32-120			
Dimethylphthalate	35.9	10.0	μg/L	50.0		71.7	10-120			
4,6-Dinitro-2-methylphenol	41.5	10.0	μg/L	50.0		82.9	10-181			
2,4-Dinitrophenol	43.3	10.0	μg/L	50.0		86.6	10-191			
2,4-Dinitrotoluene	39.6	10.0	μg/L	50.0		79.3	39-139			
2,6-Dinitrotoluene	40.4	10.0	μg/L	50.0		80.8	50-158			
Di-n-octylphthalate	38.7	10.0	μg/L	50.0		77.4	4-146			
1,2-Diphenylhydrazine/Azobenzene	38.6	10.0	μg/L	50.0		77.2	40-140			
Bis(2-Ethylhexyl)phthalate Fluoranthene	38.7	10.0	μg/L	50.0		77.5	8-158			
Fluorantiene	36.5	5.00	μg/L	50.0		73.0	26-137			
Hexachlorobenzene	36.0	5.00 10.0	μg/L μg/I	50.0		72.0	59-121			
Hexachlorobutadiene	34.6	10.0	μg/L μg/L	50.0		69.2	10-152			
Hexachlorocyclopentadiene	27.4	10.0	μg/L μg/L	50.0		54.8	24-120			
Hexachloroethane	31.6	10.0	μg/L μg/L	50.0 50.0		63.3 59.0	40-140 40-120			
Isophorone	29.5	10.0	μg/L μg/L							
Naphthalene	38.4	5.00	μg/L μg/L	50.0 50.0		76.9 66.7	21-196 21-133			
Nitrobenzene	33.4 36.2	10.0	μg/L μg/L	50.0		72.3	35-180			
2-Nitrophenol	38.3	10.0	μg/L μg/L	50.0		72.3 76.6	29-182			
4-Nitrophenol	38.3 22.7	10.0	μg/L μg/L	50.0		45.4	10-132			
N-Nitrosodimethylamine	24.8	10.0	μg/L μg/L	50.0		49.6	40-140			
N-Nitrosodiphenylamine/Diphenylamine	24.8 37.3	10.0	μg/L μg/L	50.0		74.7	40-140			
N-Nitrosodi-n-propylamine		10.0	μg/L μg/L	50.0		74.7	10-230			
2-Methylnaphthalene	37.3	5.00	μg/L μg/L	50.0		73.0	40-140			
Phenanthrene	36.5 36.5	5.00	μg/L μg/L	50.0		73.0	54-120			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244701 - SW-846 3510C										
LCS (B244701-BS1)				Prepared: 10)/31/19 Analy	/zed: 11/01/	19			
2-Methylphenol	32.1	10.0	μg/L	50.0		64.2	40-140			
Phenol	18.4	10.0	$\mu \text{g/L}$	50.0		36.7	5-120			
3/4-Methylphenol	31.2	10.0	$\mu g/L$	50.0		62.4	40-140			
Pyrene	34.9	5.00	$\mu g/L$	50.0		69.8	52-120			
1,2,4-Trichlorobenzene	29.6	5.00	$\mu g/L$	50.0		59.3	44-142			
2,4,6-Trichlorophenol	35.7	10.0	$\mu \text{g/L}$	50.0		71.3	37-144			
Surrogate: 2-Fluorophenol	107		μg/L	200		53.6	15-110			
Surrogate: Phenol-d6	75.2		$\mu g/L$	200		37.6	15-110			
Surrogate: Nitrobenzene-d5	78.4		$\mu g/L$	100		78.4	30-130			
Surrogate: 2-Fluorobiphenyl	75.0		$\mu g/L$	100		75.0	30-130			
Surrogate: 2,4,6-Tribromophenol	176		$\mu g/L$	200		87.9	15-110			
Surrogate: p-Terphenyl-d14	78.8		$\mu g/L$	100		78.8	30-130			
LCS Dup (B244701-BSD1)				Prepared: 10)/31/19 Analy	zed: 11/01/	19			
Acenaphthene	35.9	5.00	μg/L	50.0		71.7	47-145	0.643	48	
Acenaphthylene	34.9	5.00	μg/L	50.0		69.9	33-145	1.93	74	
Anthracene	37.1	5.00	μg/L	50.0		74.2	27-133	0.350	66	
Benzidine	14.4	20.0	μg/L	50.0		28.9 *	40-140	7.10	30	L-04, V-04, V-35
Benzo(g,h,i)perylene	35.6	5.00	μg/L	50.0		71.3	10-219	0.196	97	
4-Bromophenylphenylether	33.4	10.0	μg/L	50.0		66.9	53-127	3.10	43	
Butylbenzylphthalate	37.6	10.0	μg/L	50.0		75.2	10-152	1.55	60	
4-Chloro-3-methylphenol	36.6	10.0	μg/L	50.0		73.2	22-147	0.680	73	
Bis(2-chloroethyl)ether	34.6	10.0	μg/L	50.0		69.1	12-158	0.0289	108	
Bis(2-chloroisopropyl)ether	38.0	10.0	μg/L	50.0		76.0	36-166	0.734	76	
2-Chloronaphthalene	29.4	10.0	μg/L	50.0		58.9 *	60-120	3.11	24	L-07
2-Chlorophenol	33.0	10.0	μg/L	50.0		66.1	23-134	0.904	61	
4-Chlorophenylphenylether	33.4	10.0	μg/L	50.0		66.8	25-158	0.508	61	
Di-n-butylphthalate	36.5	10.0	μg/L	50.0		72.9	10-120	1.36	47	
1,3-Dichlorobenzene	27.7	5.00	μg/L	50.0		55.4	10-172	1.47	30	
1,4-Dichlorobenzene	28.4	5.00	μg/L	50.0		56.7	20-124	0.738	30	
1,2-Dichlorobenzene	29.3	5.00	μg/L	50.0		58.6	32-129	0.409	30	
3,3-Dichlorobenzidine	38.9	10.0	μg/L	50.0		77.8	10-262	1.58	108	
2,4-Dichlorophenol	34.7	10.0	μg/L	50.0		69.3	39-135	2.51	50	
Diethylphthalate	35.4	10.0	μg/L	50.0		70.8	10-120	0.675	100	
2,4-Dimethylphenol	34.6	10.0	μg/L	50.0		69.1	32-120	1.72	58	
Dimethylphthalate	35.1	10.0	$\mu g/L$	50.0		70.2	10-120	2.20	183	
4,6-Dinitro-2-methylphenol	41.8	10.0	$\mu \text{g/L}$	50.0		83.5	10-181	0.673	203	
2,4-Dinitrophenol	43.2	10.0	$\mu \text{g/L}$	50.0		86.3	10-191	0.324	132	
2,4-Dinitrotoluene	39.7	10.0	$\mu g/L$	50.0		79.4	39-139	0.176	42	
2,6-Dinitrotoluene	39.3	10.0	$\mu \text{g/L}$	50.0		78.5	50-158	2.84	48	
Di-n-octylphthalate	37.8	10.0	$\mu \text{g/L}$	50.0		75.6	4-146	2.27	69	
1,2-Diphenylhydrazine/Azobenzene	38.8	10.0	$\mu g/L$	50.0		77.7	40-140	0.568	30	
Bis(2-Ethylhexyl)phthalate	37.2	10.0	$\mu g/L$	50.0		74.5	8-158	3.92	82	
Fluoranthene	37.0	5.00	$\mu g/L$	50.0		74.1	26-137	1.55	66	
Fluorene	35.9	5.00	$\mu g/L$	50.0		71.7	59-121	0.334	38	
Hexachlorobenzene	34.9	10.0	$\mu g/L$	50.0		69.7	10-152	0.806	55	
Hexachlorobutadiene	27.8	10.0	$\mu \text{g/L}$	50.0		55.5	24-120	1.34	62	
Hexachlorocyclopentadiene	30.6	10.0	$\mu \text{g/L}$	50.0		61.2	40-140	3.31	30	
Hexachloroethane	28.8	10.0	$\mu \text{g/L}$	50.0		57.6	40-120	2.47	52	
Isophorone	38.8	10.0	$\mu \text{g/L}$	50.0		77.6	21-196	0.984	93	
Naphthalene	33.6	5.00	μg/L	50.0		67.2	21-133	0.717	65	
Nitrobenzene	36.0	10.0	μg/L	50.0		72.0	35-180	0.471	62	

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source	WREE	%REC	222	RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B244701 - SW-846 3510C										
LCS Dup (B244701-BSD1)				Prepared: 10	/31/19 Anal	yzed: 11/01/1	9			
2-Nitrophenol	39.6	10.0	μg/L	50.0		79.1	29-182	3.24	55	
4-Nitrophenol	21.6	10.0	$\mu g/L$	50.0		43.2	10-132	4.83	131	
N-Nitrosodimethylamine	22.2	10.0	$\mu g/L$	50.0		44.5	40-140	10.9	30	
N-Nitrosodiphenylamine/Diphenylamine	37.4	10.0	$\mu g/L$	50.0		74.8	40-140	0.161	30	
N-Nitrosodi-n-propylamine	37.2	10.0	$\mu g/L$	50.0		74.4	10-230	0.215	87	
2-Methylnaphthalene	37.2	5.00	$\mu g/L$	50.0		74.3	40-140	1.74	30	
Phenanthrene	36.7	5.00	$\mu g/L$	50.0		73.3	54-120	0.383	39	
2-Methylphenol	31.6	10.0	$\mu g/L$	50.0		63.1	40-140	1.70	30	
Phenol	17.7	10.0	$\mu g/L$	50.0		35.5	5-120	3.38	64	
3/4-Methylphenol	30.1	10.0	$\mu g/L$	50.0		60.2	40-140	3.52	30	
Pyrene	36.2	5.00	$\mu g/L$	50.0		72.3	52-120	3.57	49	
1,2,4-Trichlorobenzene	30.1	5.00	$\mu g/L$	50.0		60.1	44-142	1.41	50	
2,4,6-Trichlorophenol	34.3	10.0	$\mu g/L$	50.0		68.5	37-144	4.03	58	
Surrogate: 2-Fluorophenol	99.3		μg/L	200		49.7	15-110			
Surrogate: Phenol-d6	73.1		μg/L	200		36.6	15-110			
Surrogate: Nitrobenzene-d5	76.9		μg/L	100		76.9	30-130			
Surrogate: 2-Fluorobiphenyl	72.2		μg/L	100		72.2	30-130			
Surrogate: 2,4,6-Tribromophenol	177		μg/L	200		88.3	15-110			
Surrogate: p-Terphenyl-d14	80.7		μg/L	100		80.7	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244694 - SW-846 3510C										
Blank (B244694-BLK1)				Prepared: 10)/31/19 Anal	yzed: 11/05/1	19			
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g \! / \! L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g \! / \! L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1260	ND	0.100	μg/L							
Aroclor-1260 [2C]	ND	0.100	$\mu \text{g/L}$							
Surrogate: Decachlorobiphenyl	1.00		μg/L	1.00		100	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.933		$\mu g/L$	1.00		93.3	30-150			
Surrogate: Tetrachloro-m-xylene	0.779		$\mu g/L$	1.00		77.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.763		$\mu g/L$	1.00		76.3	30-150			
LCS (B244694-BS1)				Prepared: 10	0/31/19 Anal	yzed: 11/05/1	9			
Aroclor-1016	0.421	0.200	μg/L	0.500		84.1	50-140			
Aroclor-1016 [2C]	0.416	0.200	$\mu g\!/\!L$	0.500		83.3	50-140			
Aroclor-1260	0.413	0.200	$\mu g/L$	0.500		82.6	8-140			
Aroclor-1260 [2C]	0.423	0.200	$\mu g/L$	0.500		84.6	8-140			
Surrogate: Decachlorobiphenyl	1.83		μg/L	2.00		91.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.73		$\mu g/L$	2.00		86.7	30-150			
Surrogate: Tetrachloro-m-xylene	1.44		$\mu g/L$	2.00		72.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.43		$\mu g/L$	2.00		71.3	30-150			
LCS Dup (B244694-BSD1)				Prepared: 10	0/31/19 Anal	yzed: 11/05/1	9			
Aroclor-1016	0.405	0.200	μg/L	0.500		80.9	50-140	3.84		
Aroclor-1016 [2C]	0.409	0.200	μg/L	0.500		81.8	50-140	1.82		
Aroclor-1260	0.407	0.200	$\mu g/L$	0.500		81.5	8-140	1.34		
Aroclor-1260 [2C]	0.422	0.200	$\mu g/L$	0.500		84.3	8-140	0.294		
Surrogate: Decachlorobiphenyl	1.84		μg/L	2.00		92.0	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.76		μg/L	2.00		88.0	30-150			
Surrogate: Tetrachloro-m-xylene	1.40		μg/L	2.00		70.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.40		μg/L	2.00		70.0	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	Result	Linit	Cinto	Level	Resurt	70KEC	Limits	МЪ	Lillit	110103
Batch B244698 - EPA 200.8										
Blank (B244698-BLK1)				Prepared: 10	0/31/19 Anal	yzed: 11/04/	19			
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	μg/L							
Selenium	ND	5.0	μg/L							
Zinc	ND	10	μg/L							
LCS (B244698-BS1)				Prepared: 10	0/31/19 Anal	yzed: 11/04/	19			
Antimony	493	10	μg/L	500		98.6	85-115			
Arsenic	484	8.0	$\mu g/L$	500		96.8	85-115			
Cadmium	488	2.0	$\mu g/L$	500		97.6	85-115			
Chromium	491	10	$\mu g/L$	500		98.2	85-115			
Copper	983	10	$\mu g/L$	1000		98.3	85-115			
Lead	487	5.0	$\mu g/L$	500		97.4	85-115			
Nickel	499	50	$\mu g/L$	500		99.8	85-115			
Selenium	486	50	$\mu g/L$	500		97.2	85-115			
Zinc	982	100	$\mu g/L$	1000		98.2	85-115			
LCS Dup (B244698-BSD1)				Prepared: 10	0/31/19 Anal	yzed: 11/04/	19			
Antimony	498	10	μg/L	500		99.6	85-115	0.935	20	
Arsenic	490	8.0	μg/L	500		98.0	85-115	1.22	20	
Cadmium	492	2.0	μg/L	500		98.4	85-115	0.785	20	
Chromium	496	10	μg/L	500		99.2	85-115	1.08	20	
Copper	980	10	μg/L	1000		98.0	85-115	0.330	20	
Lead	492	5.0	μg/L	500		98.4	85-115	0.959	20	
Nickel	502	50	μg/L	500		100	85-115	0.630	20	
Selenium	488	50	μg/L	500		97.6	85-115	0.494	20	
Zinc	989	100	μg/L	1000		98.9	85-115	0.631	20	
Batch B244699 - EPA 200.7										
Blank (B244699-BLK1)				Prepared: 10)/31/19 Anal	yzed: 11/01/	19			
ron	ND	0.050	mg/L	-	·	-				
Hardness	0.22		mg/L							
LCS (B244699-BS1)				Prepared: 10	0/31/19 Anal	yzed: 11/01/	19			
Iron	4.04	0.050	mg/L	4.00		101	85-115			
Hardness	26		mg/L	26.5		100	85-115			В

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B244699 - EPA 200.7										
LCS Dup (B244699-BSD1)				Prepared: 10)/31/19 Anal	yzed: 11/01/	19			
Iron	4.05	0.050	mg/L	4.00		101	85-115	0.154	20	
Hardness	26		mg/L	26.5		99.9	85-115	0.249	20	В
Batch B244863 - EPA 245.1										
Blank (B244863-BLK1)				Prepared: 11	/01/19 Anal	yzed: 11/02/	19			
Mercury	ND	0.00010	mg/L							
LCS (B244863-BS1)				Prepared: 11	/01/19 Anal	yzed: 11/02/	19			
Mercury	0.00391	0.00010	mg/L	0.00400		97.6	85-115			
LCS Dup (B244863-BSD1)				Prepared: 11	/01/19 Anal	yzed: 11/02/	19			
Mercury	0.00391	0.00010	mg/L	0.00400		97.9	85-115	0.240	20	
Batch B245153 - EPA 200.8										
Blank (B245153-BLK1)				Prepared &	Analyzed: 11	/05/19				
Silver	ND	0.20	μg/L							
LCS (B245153-BS1)				Prepared &	Analyzed: 11	/05/19				
Silver	517	2.0	μg/L	500		103	85-115			
LCS Dup (B245153-BSD1)				Prepared &	Analyzed: 11	/05/19				
Silver	528	2.0	μg/L	500		106	85-115	1.93	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Result	Dimit	Cinto	Level	resurt	/UKLC	Limits	МЪ	Ziiiit	110103
Batch B244675 - SM21-22 4500 CL G						10.014.5				
Blank (B244675-BLK1)		0.020	/1	Prepared & A	Analyzed: 10	/30/19				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B244675-BS1)				Prepared & A	Analyzed: 10	/30/19				
Chlorine, Residual	1.5	0.020	mg/L	1.34		109	66.3-134			
LCS Dup (B244675-BSD1)				Prepared & A	Analyzed: 10	/30/19				
Chlorine, Residual	1.6	0.020	mg/L	1.34		117	66.3-134	7.20	9.96	
Duplicate (B244675-DUP1)	Sou	rce: 19J1915-()1	Prepared & A	Analyzed: 10	/30/19				
Chlorine, Residual	ND	0.020	mg/L		ND)		NC	32.5	
Matrix Spike (B244675-MS1)	Sou	rce: 19J1915-()1	Prepared & A	Analyzed: 10	/30/19				
Chlorine, Residual	2.3	0.10	mg/L	10.0	ND		10-167			
Batch B244676 - SM21-22 3500 Cr B										
Blank (B244676-BLK1)				Prepared & A	Analyzed: 10	/30/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B244676-BS1)				Prepared & A	Analyzed: 10	/30/19				
Hexavalent Chromium	0.096	0.0040	mg/L	0.100		96.0	83.9-121			
LCS Dup (B244676-BSD1)				Prepared & A	Analyzed: 10	/30/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		108	83.9-121	11.3	* 10	R-05
Duplicate (B244676-DUP1)	Sou	rce: 19J1915-()2	Prepared & A	Analyzed: 10	/30/19				
Hexavalent Chromium	ND	0.0040	mg/L		ND)		NC	45.7	
Matrix Spike (B244676-MS1)	Sou	rce: 19J1915-()2	Prepared & A	Analyzed: 10	/30/19				
Hexavalent Chromium	0.088	0.0040	mg/L	0.100	ND	88.3	25.5-193			
Batch B244690 - SM21-22 2540D										
Blank (B244690-BLK1)				Prepared & A	Analyzed: 10	/31/19				
Total Suspended Solids	ND	2.5	mg/L		<u> </u>					
LCS (B244690-BS1)				Prepared & A	Analyzed: 10	/31/19				
Total Suspended Solids	164	10	mg/L	200	<u> </u>	82.0	57.6-118			
Batch B244872 - EPA 300.0										
Blank (B244872-BLK1)				Prepared & A	Analyzed: 11	/02/19				
Chloride	ND	1.0	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244872 - EPA 300.0										
LCS (B244872-BS1)				Prepared & A	Analyzed: 11	/02/19				
Chloride	5.2	1.0	mg/L	5.00		104	90-110			
LCS Dup (B244872-BSD1)				Prepared & A	Analyzed: 11	/02/19				
Chloride	5.2	1.0	mg/L	5.00		104	90-110	0.109	20	
Batch B245016 - EPA 1664B										
Blank (B245016-BLK1)				Prepared & A	Analyzed: 11	/05/19				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B245016-BS1)				Prepared & A	Analyzed: 11	/05/19				
Silica Gel Treated HEM (SGT-HEM)	12		mg/L	10.0		115	64-132			
MRL Check (B245016-MRL1)				Prepared & A	Analyzed: 11	/05/19				
Silica Gel Treated HEM (SGT-HEM)	1.80	1.4	mg/L	1.40		128	0-200			

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B244805 - EPA 504 water										
Blank (B244805-BLK1)				Prepared &	Analyzed: 11	/01/19				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
Surrogate: 1,3-Dibromopropane	1.06		μg/L	1.04		102	70-130			
LCS (B244805-BS1)				Prepared &	Analyzed: 11	/01/19				
1,2-Dibromoethane (EDB)	0.187	0.021	μg/L	0.180		103	70-130			
Surrogate: 1,3-Dibromopropane	1.09		μg/L	1.03		105	70-130			
LCS Dup (B244805-BSD1)	Prepared & Analyzed: 11/01/19									
1,2-Dibromoethane (EDB)	0.190	0.021	μg/L	0.179		106	70-130	1.69		
Surrogate: 1,3-Dibromopropane	1.05		μg/L	1.03		102	70-130			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

|--|

608.3

Lab Sample ID:	B244694-BS1		Date(s) Analyzed:	11/05/2019	11/05/2	019
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW FROM TO		CONCENTRATION	%RPD	
AWALITE	OOL	111			OONOLIVITON	701 TI	
Aroclor-1016	1	0.000	0.000	0.000	0.421		
	2	0.000	0.000	0.000	0.416	1.0	
Aroclor-1260	1	0.000	0.000	0.000	0.413		
	2	0.000	0.000	0.000	0.423	3.1	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

	_	
LCS	Dup	

608.3

Lab Sample ID:	B244694-BSD1		Date(s) Analyzed:	11/05/2019	11/05	/2019
Instrument ID (1):			Instrument ID (2):			
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12.112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.405	
	2	0.000	0.000	0.000	0.409	0.2
Aroclor-1260	1	0.000	0.000	0.000	0.407	
	2	0.000	0.000	0.000	0.422	2.9

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

EPA 504.1

Lab Sample ID: B244		44805-BS1			ate(s) Analy	zed: 11/01/2019	11/01/2019	
Ins	strument ID (1):			In	strument ID	(2):		
GC Column (1):		ID:	(m	nm) G	C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO			
Ī	1,2-Dibromoethane (EDB)	1	3 223	0.000	0.000	0 187		

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup	

EPA 504.1

Lab Sample ID: B244805-B		1805-BSD	1	Da	ate(s) Analy	zed: 11/01/2019	11/0	1/2019
Ins	strument ID (1):			In	strument ID	(2):		
GC Column (1):		ID:	(mm)		C Column (2	2):	ID:	(mm
	ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD	
				FROM	TO			
	1.2-Dibromoethane (EDB)	1	3 223	0.000	0.000	0.190		

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
В	Analyte is found in the associated laboratory blank as well as in the sample.
B-05	Data is not affected by elevated level in laboratory blank since sample(s) result is "Not Detected".
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-35	Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
Bromodichloromethane	CT,NY,MA,NH,RI,NC,ME,VA
Bromoform	CT,NY,MA,NH,RI,NC,ME,VA
Bromomethane	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
Chlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
Chlorodibromomethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Chloroform	CT,NY,MA,NH,RI,NC,ME,VA
Chloromethane	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
trans-1,2-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloropropane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
trans-1,3-Dichloropropene	CT,NY,MA,NH,RI,NC,ME,VA
Ethanol	NY,MA,NH
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
Naphthalene	NY,MA,NC
1,1,2,2-Tetrachloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Certified Analyses included in this Report		
Analyte	Certifications	
624.1 in Water		
Toluene	CT,NY,MA,NH,RI,NC,ME,VA	
1,2,4-Trichlorobenzene	MA,NC	
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA	
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA	
Trichlorofluoromethane (Freon 11)	CT,NY,MA,NH,RI,NC,ME,VA	
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA	
m+p Xylene	CT,NY,MA,NH,RI,NC	
o-Xylene	CT,NY,MA,NH,RI,NC	
625.1 in Water		
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA	
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA	
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA	
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA	
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA	
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA	
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA	
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA	
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA	
2-Chloronaphthalene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA	
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
1,3-Dichlorobenzene	MA,NC	
1,4-Dichlorobenzene	MA,NC	
1,2-Dichlorobenzene	MA,NC	
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA	
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA	
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA	
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA	
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA	
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
1,2-Diphenylhydrazine/Azobenzene	NC	
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA	
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA	
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA	
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA	
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA	
•		

CERTIFICATIONS

Certified Analyses included in this Report

SM21-22 4500 CN E in Water

Analyte	Certifications	
625.1 in Water		
	CTMA MILNIVAG BIME VA	
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA	
4-Nitrophenol N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA	
·	CT,MA,NH,NY,NC,RI,ME,VA	
N-Nitrosodi-n-propylamine 2-Methylnaphthalene	CT,MA,NH,NY,NC,RI,ME,VA NC	
Phenanthrene		
	CT,MA,NH,NY,NC,RI,ME,VA	
2-Methylphenol Phenol	NY,NC CT,MA,NH,NY,NC,RI,ME,VA	
3/4-Methylphenol	NY,NC	
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA	
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA	
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA	
2-Fluorophenol	NC	
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Hardness	CT,MA,NH,NY,RI,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
SM19-22 4500 NH3 C in Water		
Ammonia as N	NY,MA,CT,RI,VA,NC,ME	
SM21-22 2540D in Water		
	CTMA NILNIVINI NICME VA	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA	
SM21-22 3500 Cr B in Water		
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC	
SM21-22 4500 CL G in Water		
Chlorine, Residual	CT,MA,RI,ME	
CLEAT AS LESS CALE !		

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CN E in Water

Cyanide

CT,MA,NH,NY,RI,NC,ME,VA

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2021
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2020
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Phone: 413-525-2332

COT-KSK

Page __1___ of __1__

Doc # 381 Rev 1_03242017

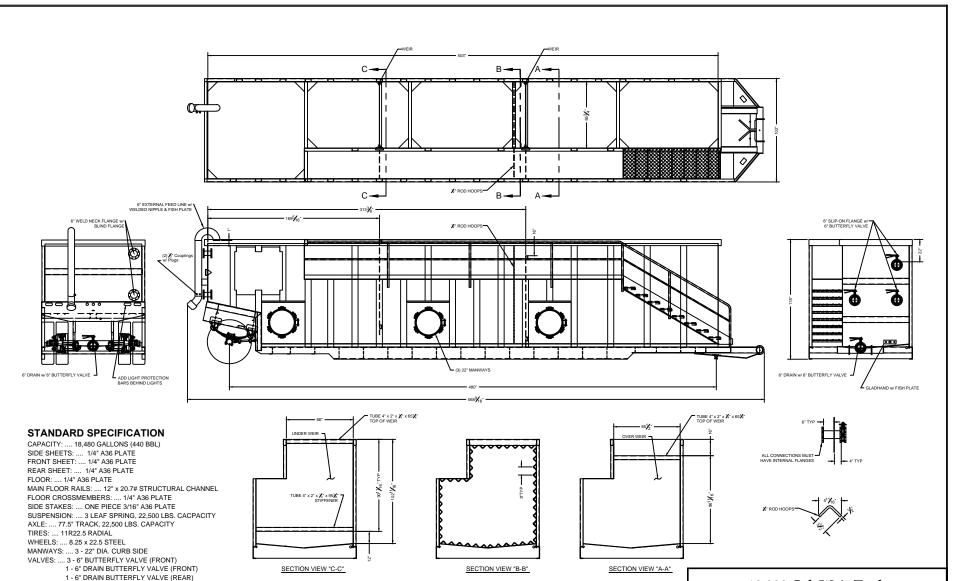
http://www.contestlabs.com

CHAIN OF CUSTODY RECORD

Preservation Codes:
1 = Iced = Sodium Hydroxide ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water = Sodium Bisulfate 5 = Summa Canister SL = Sludge SOL = Solid O = Other (please ³ Container Codes: 0 = Other (please O = Other (please Non Soxhlet A = Amber Glass G = Glass PCB ONLY = Sulfuric Acid H = HCL M = Methanol N = Nitric Acid Soxhlet ² Preservation Code = Tedlar Bag O Field Filtered O Field Filtered O Lab to Filter P = Plastic ST = Sterile O Lab to Filter ³ Container Code = Sodium **Thiosulfate** # of Containers V = Vial A = Air S = Soil define) define) Please use the following codes to indicate possible sample concentration within the Conc Code IV muimonD × Hardness EDB NELAC and AMA-LAP, LLC Accred H - High; M - Medium; L - Low; C - Clean; U - Unknown × SSJ Chromatogram AIHA-LAP,LLC www.contestlabs.com 39 Spruce Street East Longmeadow, MA 01028 ⋖ × HGT ⋖ bCB,2 ANALYSIS REQUESTED ⋖ × Semi-Voc's column above Cyanide × Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn) WRTA Fotal Metals (Sb, As, Cd, Cr III, Ω TRC MA MCP Required MCP Certification Form Required CT RCP Required RCP Certification Form Required Chloride MWRA School MBTA MA State DW Required Special Requirements ainomm≜ # 8 0 G \Box \supset ijennings@irt-IIc.net Turnaraund 1 me . Code > _გ § Municipality Brownfield # CISMd 10-Day EXCEL 3-Day 4-Day Grab CLP Like Data Pkg Required: × Composite PDF Government Ending Date/Time 9:00 Email To: 4.30 Due Date: Format: Fax To #: Federal Other: -Day 2-Day City Project Entity 10/30 (6/2C) 3 (-11) קפרנוויש השלפין ארבין אפעניין אפרנוויש (פרל Samples are for NPDES RGP Parameters. Lockwood Remediation Technologies Email: info@contestlabs.com 760 Client Sample ID / Description Receiving Water (Charles) Date/Time; Date/Time: Address: 89 Crawford Street, Leominster, MA 01453 Date/Time: Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: Relinquished by: (signature) W/30 [K] 10(30/19 10 20 10 Comments: 6.9 Project Manager: Jacob Jennings Projest Name Tennay Theate Con-Test Quote Name/Number: uished by: (signature) Phone: (774) 450-7177 signer(ure) Project Number: 2-1956 ved by: (signature) Work Order# Con-Test Invoice Recipient: Project Location: Sampled By: Page 44 of 45

Table of Contents

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____


Doc# 277 Rev 5 2017

Login Sample F	Receipt Checklist -	(Rejection C	riteria Listing	j - Using /	Acceptance I	Policy) Any F	alse
State	ement will be brou	ght to the at	tention of the	Client - S	State True or	False	

Received By	SL		Date	10/30/19		Time	1700	
How were the samples	In Cooler	7	No Cooler		On Ice	7	No Ice	
received?	Direct from Samp	pling	•		Ambient		 Melted Ice	
Were samples within		By Gun #	5		Actual Ten	np - 47		
Temperature? 2-6°C	\mathcal{T}				Actual Ten			_
Was Custody S		NIA		re Sample	s Tampered		MA	<u></u>
Was COC Reli		70177	-		ree With Sa		<u> </u>	•
	leaking/loose caps	on any sam		<i>j</i> =	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	impies:		-
Is COC in ink/ Legible?		on any sam	-	····	- ived within h	olding time?	~	
Did COC include all	Client		Analysis	,		ler Name		-
pertinent Information?			ID's	7		Dates/Times	- 	-
Are Sample labels fille	•					Dates, Fine.	3	-
Are there Lab to Filters	_			Who wa	s notified?			
Are there Rushes?	,				s notified?	∞ 4 =	No. 32	s. @
Are there Short Holds?					s notified?	white	um du, Millo	Flory Cr
s there enough Volume	27			vviio wa	s nouneu r	1. MANIE		-
s there Headspace who		- F (F (F)		MS/MSD?	(-			
Proper Media/Containe	• •	<u> </u>			samples red	- nuinado	E	
Were trip blanks receive				On COC?		quirea?	<u> </u>	-
Do all samples have the		1				- Poss	TIL	
			Acid	T	•	Base	1716	
Vir #	Containers:	#			#			#
Jnp-	1 Liter Amb.		1 Liter		۵	···	z Amb.	
HCL-	500 mL Amb.		500 mL	****			nb/Clear	
Meoh-	250 mL Amb.		250 mL		اهـــــــ		nb/Clear	
Bisulfate- DI-	Flashpoint		Col./Ba				nb/Clear	
	Other Glass		Other F	****			core	
Thiosulfate- Sulfuric-	SOC Kit Perchlorate		Plastic		W110	Frozen:		
Sullutio-	Perchiorate		Ziplo	OCK				
			Unused N	/ledia				
/ials #	Containers:	#			#			#
Jnp-	1 Liter Amb.		1 Liter I	Plastic			z Amb.	
ICL-	500 mL Amb.		500 mL	·			nb/Clear	
/leoh-	250 mL Amb.		250 mL				nb/Clear	
Bisulfate-	Col./Bacteria		Flash				nb/Clear	
OI-	Other Plastic		Other (·····			core	
	SOC Kit		Plastic	· · · · · · · · · · · · · · · · · · ·	***************************************	Frozen:		
hiosulfate-		1	フinle	nek l				
Comments:	Perchlorate		Ziplo	JUN I				

Appendix C

Water Treatment System Cutsheets

2 - 6" BLIND FLANGE CONNECTION (REAR)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)
PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.
(EXTERIOR) FINISH COAT POLURETHANE 4.0 TO 5.0 D.F.T.

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

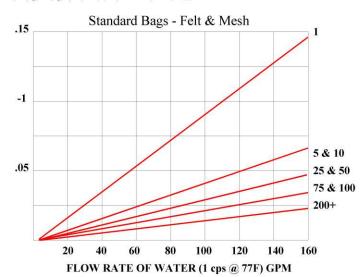
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

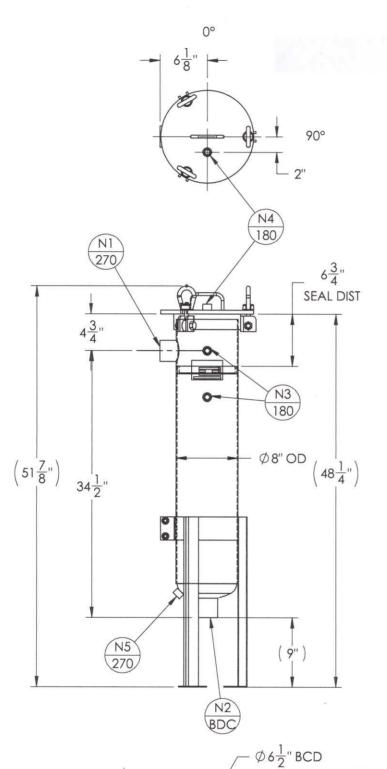
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media

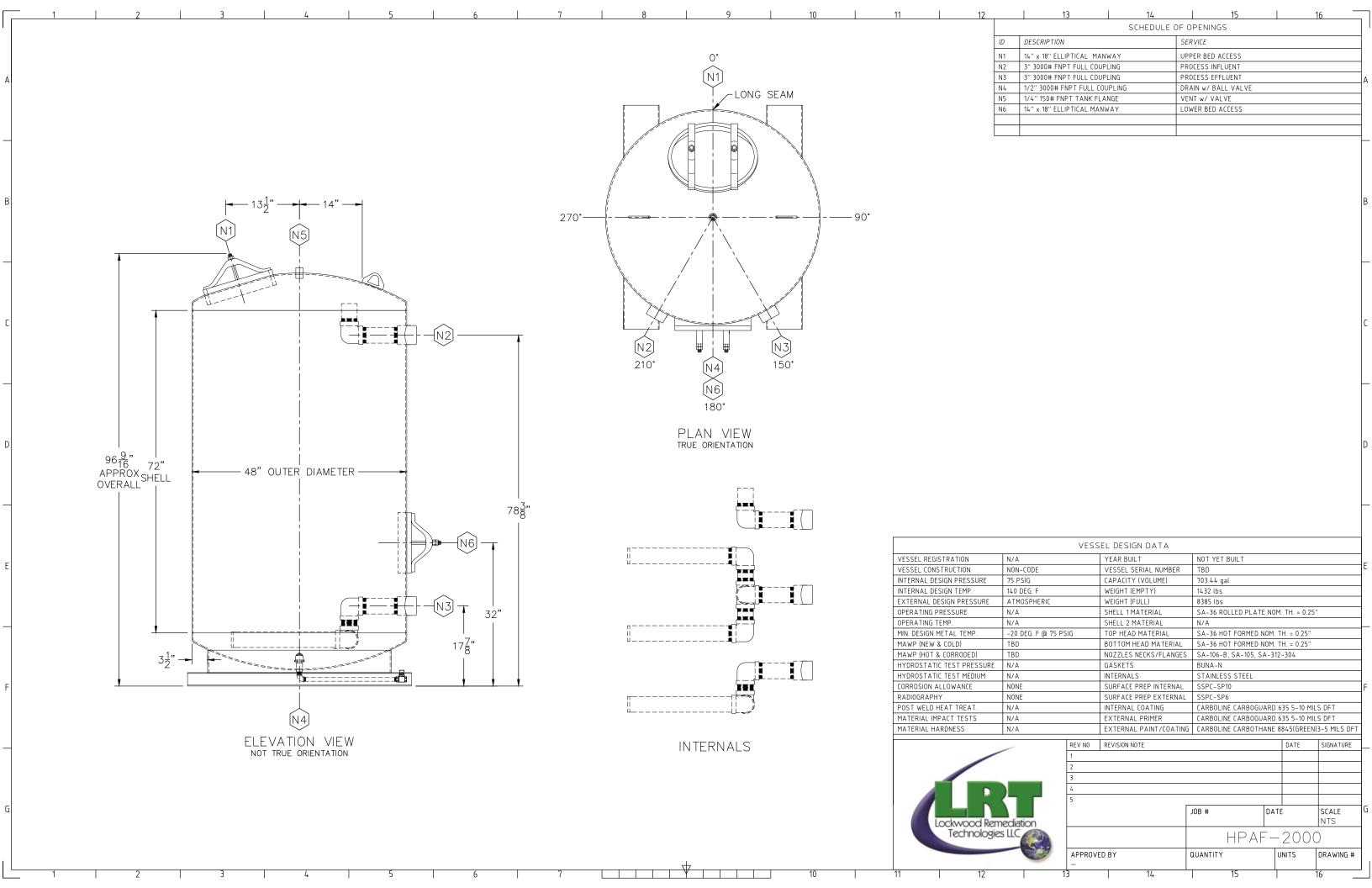

Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

		NOZZLE	SCHEDULE			
MARK	QTY	SIZE	/ RATING	DESCI	RIPTION	
N1	1	2" 150	# NPT	IN	LET	
N2	1	2" 150)# NPT	OU.	TLET	
N3	2	1/2" 30	00# NPT	PRES	SS GA	
N4	1	1/2" 30	00# NPT	VE	NT	
N5	1	1/2" 30	00# NPT	CLEAN	DRAIN	
N6	-		-	DIRT	DIRTY DRAIN	
	VESS	SEL DESIG	N CONDITION	S		
CODE:	BES	Т СОММЕ	RCIAL PRACT	ICE		
M.A.W.P.:	150 PSI @	250°F	M.D.M.T.:	-20° F	@ 150 PSI	
M.A.E.P.:	15 PSI @	250°F				
CORROSION	ALLOWANCE	: NONE	HYDROTEST	PRESS:	195 PSI	
STAMP:	'NC'		SERVICE:	NON I	ETHAL	
PWHT:	N/A		RADIOGRAP	HY:	N/A	
MATERIAL:	SS 304/	L	GASKET:	BUN	IA-N	


DRY WEIGHT: 77.62 #'s FLOODED WEIGHT: 140 #'s SHIPPING WEIGHT: 100 #'s VESSEL VOLUME: 1.0 C.F.

1:1

 $otin \frac{1}{2}$ " TYP.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better.

RANGE: (see dimensions chart below)

HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

160°F constant

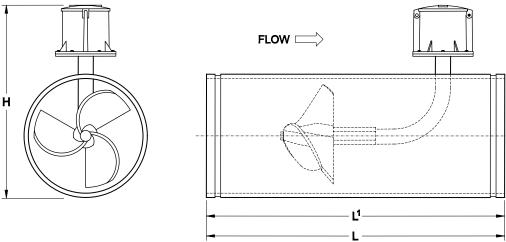
PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.

Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- Straightening vanes and register extensions available
- · Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.

MG100 / MS100	DIMENSIONS												
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L ¹ (inches) MS100	N	ote	13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

Appendix D

Supplemental Information

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible Site Information: FENWAY THEATER 4 JERSEY STREET BOSTON, MA CAMBRIDGE PORT CAMBRIDGE PORT CAMBRIDGE PORT for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can NAD83 UTM Meters: 4690437mN , 327442mE (Zone: 19) October 29, 2019 be found at: Department of Environmental Protection https://www.mass.gov/orgs/massgis-bureau-of-MATEHOCOTT ST CHARLES RIVER New England College of Optometry PUBLIC ALLEY NO 427 PUBLIC ALLEY NO Boston Univers BACK STREET BAY STATE ROAD Kipaslev BAY STATE ROAD BAY STATE ROA BABBITT STREET BACK B Boston University BOYLSTON STREET PUBLIC ALLEY! 2 Boston Architectural College TON STREET NEWBURY STREET BURY STREE H PSWICH STREETH IT THE HEALTH IN Berklee College of Arts Academy Bosto he Boston Conserv ory at Berklee ιŞ LS BURBANK STREET PETERBOROUGH STREET PUBLIC ALLEY NO WEST RUTLAND QUEENSBERRY STREET YMPHONY ROAL PUBLIC ALLEY, Wheelock Coll Simmons College College New England Conservatory of Mu Carter Development Insor School Northeastern Umarsity Beth Israel Deacone SONER STREET Simmons College 10 00 P School of the um of Fine Arts TELD STREET 500 m worth Institute 1000 ft Brigham and Women's Hosp Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A ... Hydrography: Open Water, PWS Reservoir, Tidal Flat Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog .. Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC . Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source.... Solid Waste Landfill; PWS: Com. GW, SW, Emerg., Non-Com. Non Potential Drinking Water Source Area: Medium, High (Yield).

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix II of the NPDES RGP, the project located at 175 Ipswich Street, Boston, MA is eligible for coverage under this general permit under FWS Criterion A. This project is located in Suffolk County. No designated critical habitats were listed in the project area. An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

No Endangered species found at this location.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: October 29, 2019

Consultation Code: 05E1NE00-2020-SLI-0297

Event Code: 05E1NE00-2020-E-00844

Project Name: Fenway Theater

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2020-SLI-0297

Event Code: 05E1NE00-2020-E-00844

Project Name: Fenway Theater

Project Type: Water Withdrawal / Depletion

Project Description: Construction dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34685596898674N71.09498016536237W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

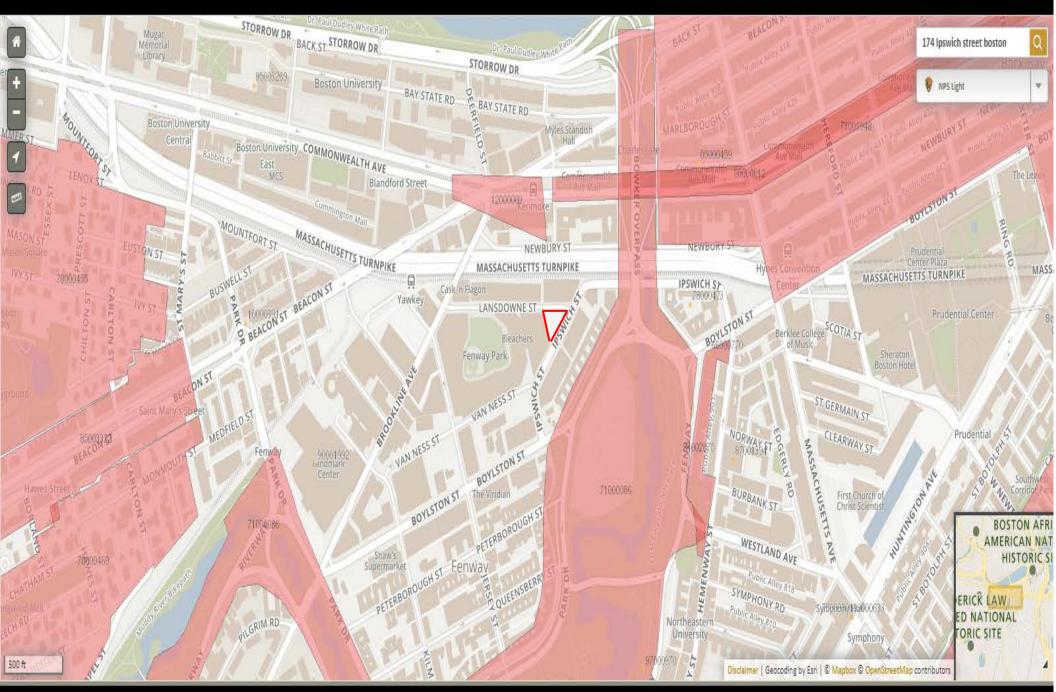
THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

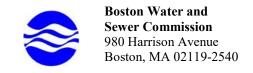
As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database and the National Register of Historic Places did not list any potential historic properties on or near the project site in the databases. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results


Search Criteria: Town(s): Boston; Street No: 175; Street Name: Ipswich St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year


Wednesday, November 6, 2019 Page 1 of 1

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updated in April, 2014.

 ${\bf Appendix \ E} \\ {\bf BWSC \ Discharge \ Pemit}$

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE:

Company Name:	Address:	
Phone Number:	Fax number:	
Contact person name:	Title:	
Cell number:	Email address:	
Permit Request (check one): □ No	ew Application □ Permit Extension □ Other (S	Specify):
Owner's Information (if different	from above):	
Owner of property being dewatered	l:	
	Pł	
Location of Discharge & Propose	d Treatment System(s):	
Street number and name:	Neighborhood	1
	er □ Combined Sewer □ Storm Drain □ Othe	
Describe Proposed Pre-Treatment S	System(s):	
	Receiving Waters	
	nticipated Dates of Discharge): From	To □ Foundation Excavation □ Trench Excavation □ Other
number, size, make and start reading. 2. If discharging to a sanitary or combine 3. If discharging to a separate storm drain as other relevant information. 4. Dewatering Drainage Permit will be de Submit Completed Application to:	of the discharge and the location of the point of discharge (i.e. th Note. All discharges to the Commission's sewer system will be ed sewer, attach a copy of MWRA's Sewer Use Discharge permit n, attach a copy of EPA's NPDES Permit or NOI application, or Nenied or revoked if applicant fails to obtain the necessary permits Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716	e sewer pipe or catch basin). Include meter type, meter assessed current sewer charges. or application. NPDES Permit exclusion letter for the discharge, as well from MWRA or EPA.
Signature of Authorized Representative for	or Property Owner:	