

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION
MANAGEMENT

249 Vanderbilt Avenue Norwood, MA 02062 T: 781.278.3700 F: 781.278.5701 F: 781.278.5702 www.gza.com

April 26, 2019 File No. 01.0173611.00

United States Environmental Protection Agency – Region 1 5 Post Office Square, Mail Code OEP06-4 Boston, Massachusetts 02109-3912

Re: Submittal of Notice of Intent (NOI)
Remedial General Permit (RGP)
College of the Holy Cross
1 College Street
Worcester, Massachusetts

To Whom it May Concern:

GZA GeoEnvironmental, Inc. (GZA), on behalf of The College of the Holy Cross, is submitting the attached Notice of Intent (NOI) form (Attachment 1) for the Remedial General Permit (RGP) for the renovation of the campus recreational center located at 1 College Street in Worcester, Massachusetts.

BACKGROUND

The existing recreation center (The Fieldhouse) is a rectangular-shaped structure that was constructed in 1947. The Fieldhouse is located approximately 1,600 feet south of the Middle River in Worcester, and is abutted to the west by College Street, to the south by Boyden Street, to the east by the campus of the College of the Holy Cross (Attachment 2). Existing ground surface at the Site ranges from approximately elevation 650 to 610 feet.

PROPOSED RENOVATIONS

The proposed renovations involve demolition of The Fieldhouse and construction of a new 2-to 3-story recreation and wellness complex located within the existing building's footprint and extending approximately 100 feet north. Based on the available plans, the proposed structure will have two slab levels separated by a foundation/retaining wall; the lower (north) and upper (south) slabs are proposed at approximately elevations 607 and 622 feet, respectively. The construction of the proposed lower walk-out basement level will require approximately 12 to 16 feet of excavation from existing grade.

During proposed development work, as necessary, excavations will be dewatered using dug sumps and submersible pumps. GZA is submitting this NOI to request authorization for discharge of generated and treated groundwater to the Middle River (Attachment 3). A Process Flow Diagram for the proposed treatment system is available in Attachment 4.

NOTICE OF INTENT

This NOI has included a review of literature pertaining to Areas of Critical Environmental Concern (ACEC), Endangered Species Act (ESA), and the National Historic Preservation Act (NHPA), as documented below:

- Review of Appendix I "Areas of Critical Environmental Concern" (June 2009) indicated that the proposed discharge is not to an ACEC.
- Review of Appendix II "Federally Listed Endangered and Threatened Species in Massachusetts" (January 2015) indicated that the Northern Long-eared Bat is located state-wide. However, this species is not likely to be present at the 1 College Street address located in the City of Worcester, Massachusetts, due to the densely developed nature of the Site and the surrounding area.
- A dilution factor for metals was calculated for the discharge. The documentation of this calculation can be found in Attachment 5.
- Review of the Massachusetts Geographic Information Systems (MassGIS) DEP Priority Resources Map of Worcester shows that there are no ACECs and no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site. Therefore, permit eligibility meets "Criterion A." As shown on the map generated by the MassGIS online viewer (Attachment 6), no ACECs or Estimated Habitats of Rare Wildlife areas are located within a half mile downstream of the discharge location.
- Review of the electronic Massachusetts Cultural Resource Information System database, made available through
 Massachusetts Historical Commission, found that there are no properties listed or eligible for listing on the National
 Registry of Historic Places under the National Historic Preservation Act. Therefore, there will be no impact associated
 with this discharge to such properties. The documentation of this review can be found in Attachment 7.
- Laboratory analytical results for groundwater and surface water are presented in Attachment 8 and summarized in Attachment 9. Groundwater was collected on February 12 and 14, 2019 and submitted to Alpha Analytical Laboratory for analysis. Groundwater samples were collected from monitoring well GZ-1 and the surface water sample was collected from the location of proposed discharge. See Figure 2 (Attachment 3) for locations of sample collection.

Please do not hesitate to contact the undersigned at (781) 278-3700 if you have any questions or require further information.

Sincerely,

GZA GEOENVIRONMENTAL, INC.

William A. Davis

Assistant Project Manager

John A. Colbert, P.E. Consultant/Reviewer

Bruce W. Fairless, P.E.

Principal

Attachments: Attachment 1: Notice of Intent Form

Attachment 2: Figure 1 – Site Locus Map

Attachment 3: Figure 2 – Site Plan and Discharge Outfall Location

Attachment 4: Figure 3 – Process Flow Diagram

Attachment 5: Dilution Factor Calculation

Attachment 6: MassGIS DEP Priority Resources Map and ACEC Documentation Attachment 7: Massachusetts Cultural Resource Information System Report

Attachment 8: Laboratory Analytical Results

Attachment 9: Summaries of Groundwater and Surface Water Analytical Results

Attachment 10: WM15 Fee Transmittal Form

cc: MassDEP – Central Region
Department of Public Works – City of Worcester
Jahan Khalili, GZA GeoEnvironmental, Inc.
Brad McCord, Cannon Design

J:\170,000-179,999\173611\173611-00.JAK\NPDES Permit\RGP\NOI cover letter April 2019.docx

NOTICE OF INTENT FORM

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	at apply):					
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	.A				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	D NII Consumbration Management Demoit on		☐ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment□ CWA Section 404					
		ection 404					

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	(s): Classific	cation of receiving water(s):					
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver				
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No					
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No						
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL it 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A		the instructions in					
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s							
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No				
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?				
(check one): ☐ Yes ☐ No							
C. Source water information:							
1. Source water(s) is (check any that apply):							
☐ Contaminated groundwater	☐ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, indimunicipality or origin:						
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other					
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:				
□ Yes □ No	□ Yes □ No						

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No						
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No						
D. Discharge information							
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source						
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:						
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:							
Has notification been provided to the owner of this system? (check one): ☐ Ye	•						
Has the operator has received permission from the owner to use such system for discharges? (check one): Yes No, if so, explain, with an estimated timeframe for obtaining permission:							
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ☐ No							
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: □ less than 12 months □ 12 months or more □ is an emergency discharge							
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ☐ Yes ☐ No							

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ II – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

Parameter b	Known	Known	Known			Infl	uent	Effluent Limitations	
	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	Parameter 0r 0r	# 01	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene] [
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

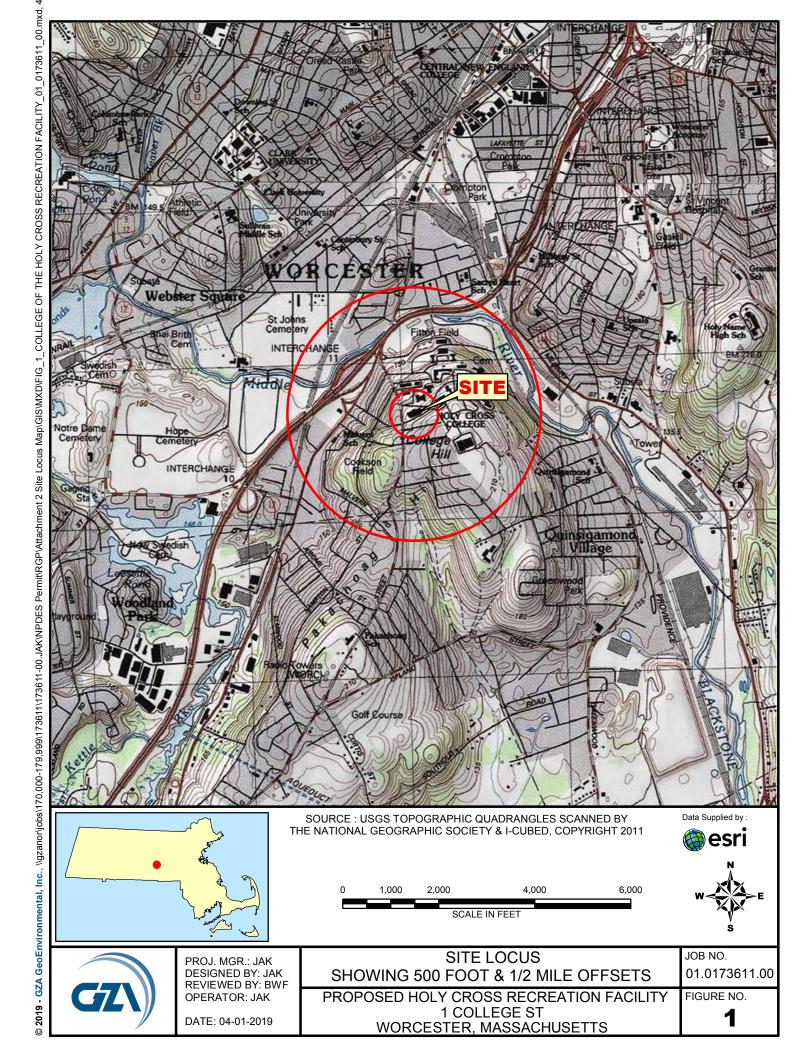
	Known	Known				Inf	luent	Effluent Limitations		
Parameter	or #of Test Detection		Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL				
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 µg/L		
Pentachlorophenol								1.0 μg/L		
	1			•						
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>		
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:					
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.					
Identify each major treatment component (check any that apply):					
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter					
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:					
Indicate if either of the following will occur (check any that apply):					
□ Chlorination □ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.					
Indicate the most limiting component:					
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:					
Provide the proposed maximum effluent flow in gpm.					
Trovide the proposed maximum errident now in gpin.					
Provide the average effluent flow in gpm.					
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No					

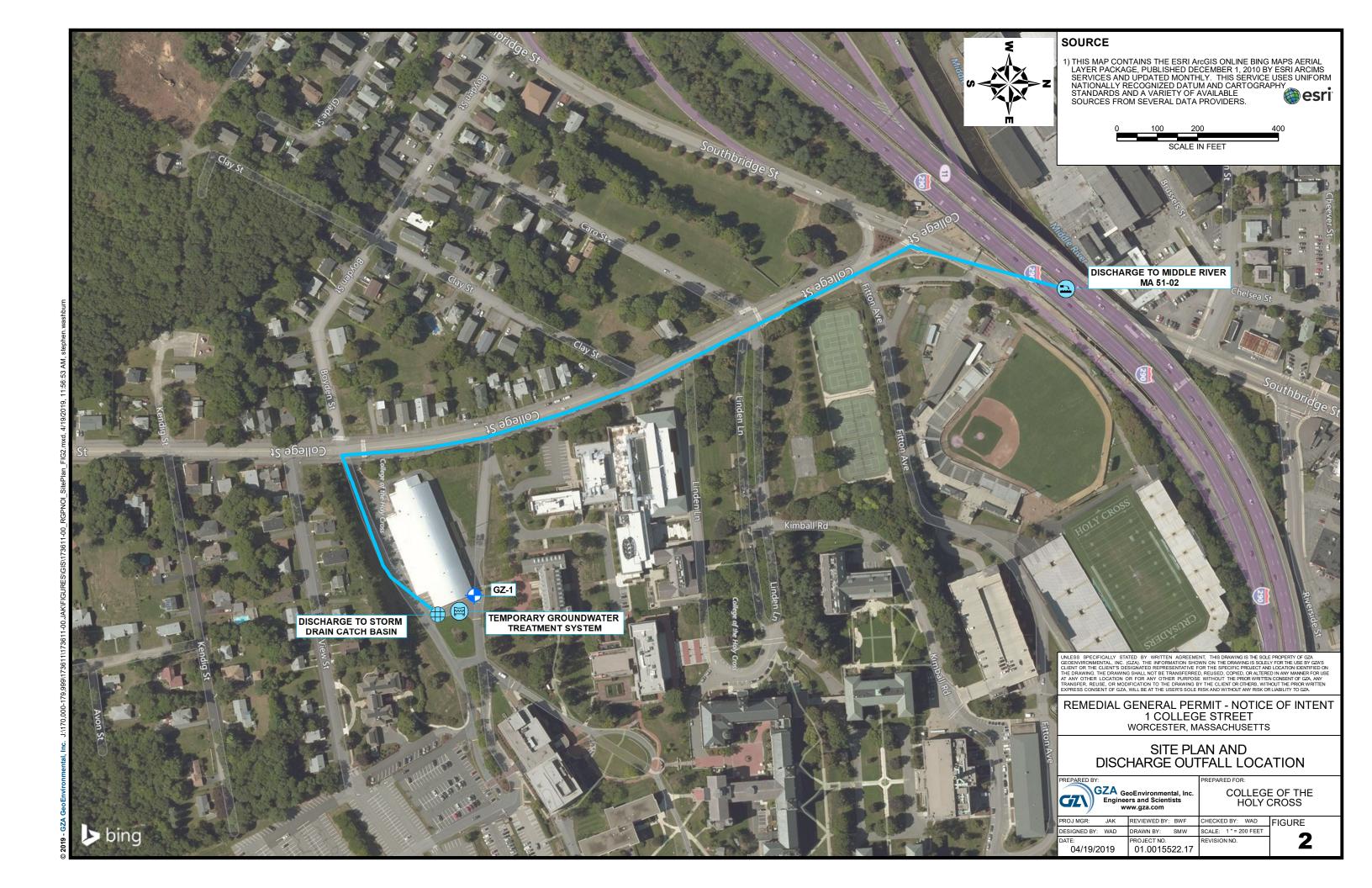
F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

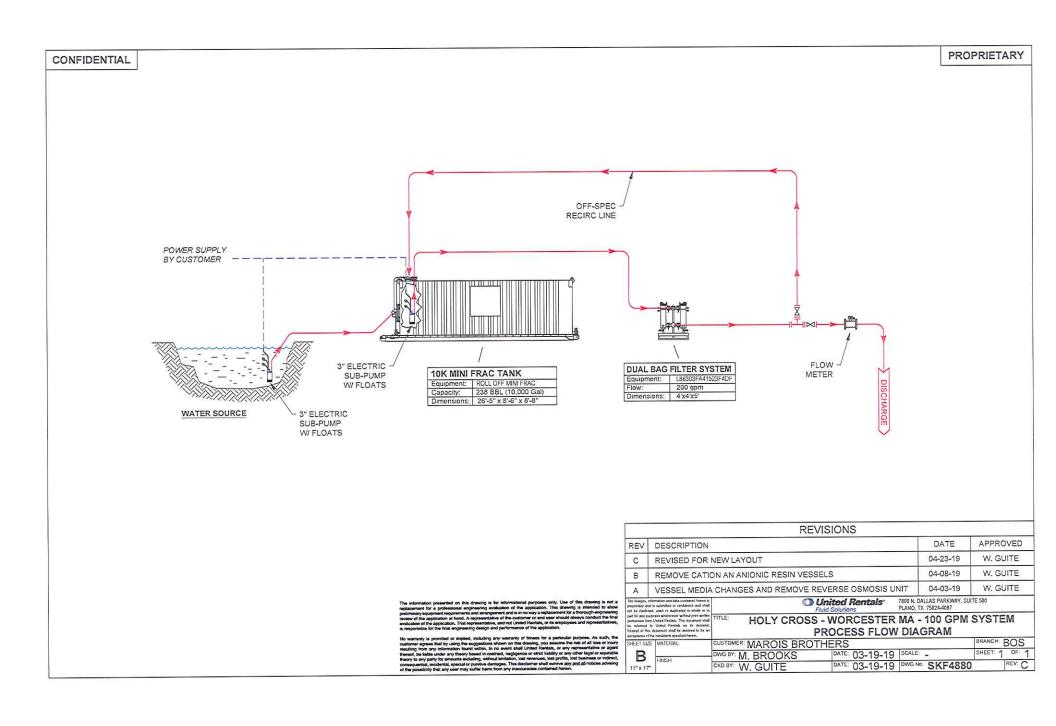

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge.	emented upon initiation of the
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ No □ NA □ Check one: Yes ■ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP ■ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	Check one: Yes ■ No □ NA □
Signature: They C NOT 1	te: 4/25/19
Print Name and Title: JEFFREY & WHITE JR / Supervisor	

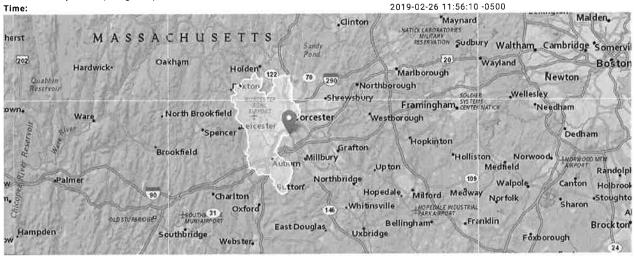


SITE LOCUS MAP



SITE PLAN AND DISCHARGE OUTFALL LOCATION

PROCESS FLOW DIAGRAM



DILUTION FACTOR CALCULATION

StreamStats Report

Region ID: Workspace ID: Clicked Point (Latitude, Longitude): MA MA20190226165555938000 42,23573, -71,79746 2019-02-26 11:56:10 -0500

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	62.6	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	4.384	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	0.0832	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless

Parameter Code	Parameter Name		Value	Units		Min Limit	Max Limit
DRNAREA	Drainage Area		62.6	square miles		1.61	149
BSLDEM250	Mean Basin Slope from 250K DE	М	4.384	percent		0.32	24.6
ORFTPERSTR	Stratified Drift per Stream Leng	th	0.0832	square mile per m	ile	0	1.29
MAREGION	Massachusetts Region		0	dimensionless		0	1
II: Prediction Interval- Statistic	Lower, Plu: Prediction Interval-Upper, SEp:	Standard Error	of Prediction, S Unit	SE: Standard Error (other	er see rep Plu	ort) SE	SEp
7 Day 2 Year Low Fl	ow	6.46	ft^3/s	1.86	21.6	49.5	49.5
7 Day 10 Year Low I	Flow	2.92	ft^3/s	0.69	11.5	70.8	70.8

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

DILUTION FACTOR CALCULATIONS

NOTICE OF INTENT FOR THE REMEDIATION GENERAL PERMIT College of the Holy Cross, Worcester, Massachusetts

$$DF = \frac{Q_d + Q_s}{Q_d}$$

Where.

DF = Dilution Factor

 Q_d = Maximum Flow Rate of the Discharge in million gallons per day (MGD)

 Q_s = Receiving Water 7Q10 Flow (MGD) where,

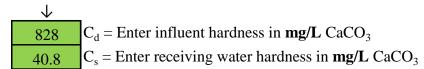
7Q10 = Minimum Flow (MGD) for 7 Consecutive Days with a Recurrence Interval of 10 Years.

 $Q_d = 100 \text{ gpm} = 0.144 \text{ MGD}$

 $Q_s = 2.92 \text{ cfs} = 1.89 \text{ MGD}$ (7Q10 on attached USGS Streamstats Report)

$$\therefore DF = \frac{Q_d + Q_s}{Q_d} = \frac{0.144 + 1.89}{0.144} = 14.125$$

Enter number values in green boxes below


Enter values in the units specified

$_$	
1.89	$Q_R = Enter upstream flow in MGD$
0.144	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
7.14	pH in Standard Units
10.9	Temperature in °C
0.114	Ammonia in mg/L
40.8	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in µg/L
2.51	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.76	Copper in µg/L
581	Iron in μg/L
1.21	Lead in µg/L
0	Mercury in µg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
14.9	Zinc in µg/L

Enter influent concentrations in the units specified

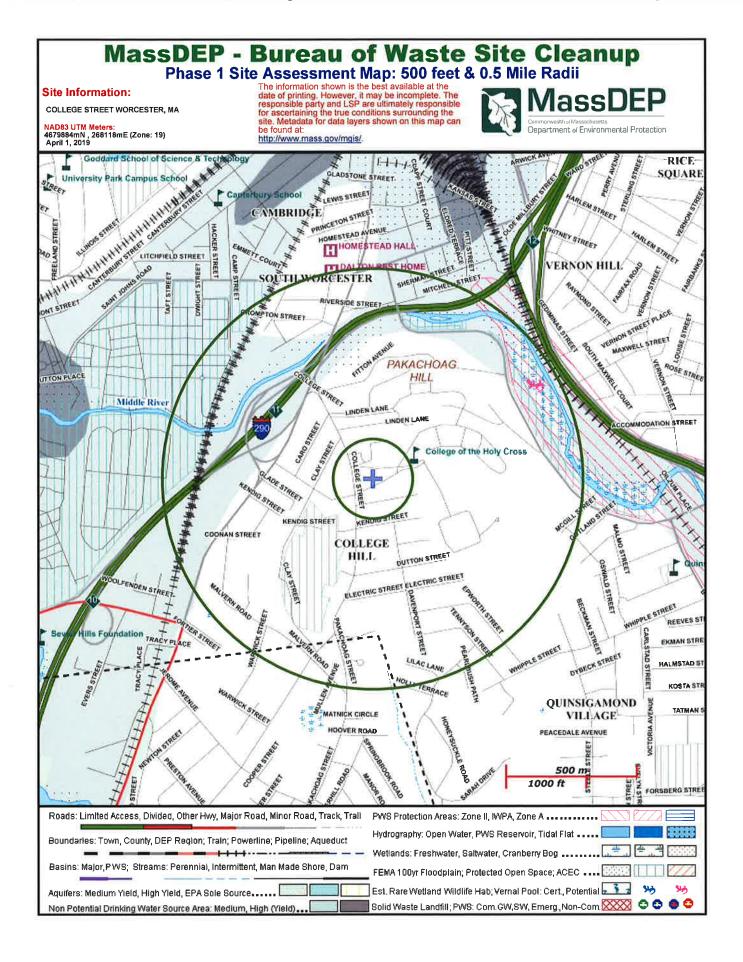
$\overline{}$	_
0	TRC in µg/L
0	Ammonia in mg/L
0	Antimony in μg/L
6.02	Arsenic in μg/L
1.77	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
5.55	Copper in µg/L
5460	Iron in μg/L
2.68	Lead in µg/L
0	Mercury in µg/L
25.74	Nickel in µg/L
0	Selenium in µg/L
5.48	Silver in µg/L
15.7	Zinc in µg/L
6	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
2.3	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0.94	Benzo(a)anthracene in µg/L
0.46	Benzo(a)pyrene in µg/L
1.3	Benzo(b)fluoranthene in µg/L
0.45	Benzo(k)fluoranthene in µg/L
1	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: critical low flow equal to the 7Q10; enter alternate low flow if approved by the State Saltwater (estuarine and marine): enter critical low flow if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Optional entry for Q_r ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required


if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

	22				
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolde		
Ammonia	Report	mg/L			
Chloride	Report	μg/L			
Total Residual Chlorine	0.2	mg/L	155	μg/L	
Total Suspended Solids	30	mg/L		μg/L	
Antimony	206	-	9040	ug/I	
Arsenic		μg/L	108	μg/L	
	104	μg/L		μg/L	
Cadmium	10.2	μg/L	0.2636	μg/L	
Chromium III	323	μg/L	1182.6	μg/L	
Chromium VI	323	μg/L	161.5	μg/L	
Copper	242	$\mu g/L$	91.6	$\mu g/L$	
Iron	5000	$\mu g/L$	6499	$\mu g/L$	
Lead	160	μg/L	27.08	μg/L	
Mercury	0.739	μg/L	12.80	μg/L	
Nickel	1450	μg/L	715.1	μg/L	
Selenium	235.8	μg/L	70.6	μg/L	
Silver	35.1	μg/L μg/L	50.3	μg/L μg/L	
Zinc	420		1447.0		
Cyanide		μg/L		μg/L	
B. Non-Halogenated VOCs	178	mg/L	73.5	μg/L	
Total BTEX	100	μg/L			
Benzene	5.0	μg/L μg/L			
1,4 Dioxane	200	μg/L			
Acetone	7970	μg/L			
Phenol	1,080	$\mu g/L$	4238	$\mu g/L$	
C. Halogenated VOCs					
Carbon Tetrachloride	4.4	μg/L	22.6	$\mu g/L$	
1,2 Dichlorobenzene	600	μg/L			
1,3 Dichlorobenzene	320	μg/L			
1,4 Dichlorobenzene	5.0	μg/L			
Total dichlorobenzene	70	μg/L			
1,1 Dichloroethane1,2 Dichloroethane	70 5.0	μg/L			
1,1 Dichloroethylene	3.2	μg/L μg/L			
Ethylene Dibromide	0.05	μg/L μg/L			
Methylene Chloride	4.6	μg/L μg/L			
1,1,1 Trichloroethane	200	μg/L			
1,1,2 Trichloroethane	5.0	μg/L			
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	μg/L	46.6	$\mu g/L$	
cis-1,2 Dichloroethylene	70	$\mu g/L$			

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	31.1	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0537	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0537	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0537	$\mu g/L$
Benzo(k)fluoranthene	1.0	μg/L	0.0537	μg/L
Chrysene	1.0	μg/L	0.0537	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0537	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0537	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	283	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		
•				

MASSGIS DEP PRIORITY RESOURCES MAP AND ACEC DOCUMENTATION

Evaluation of Long-Eared Bat Habitat

1 College Street

Worcester, Massachusetts

The northern long-eared bat (*Myotis septentrionalis*) has a federal status of Threatened and a state status of Endangered within Massachusetts.

The northern long-eared bat is a migratory species which utilizes a variety of habitats during the year depending on the season. Between early November and April, this species hibernates in crevices in portions of caves and abandoned mine shafts which have high humidity, constant temperatures, and little air flow. Individuals tend to return to the same hibernaculum from year to year although they are also known to sometimes use other hibernacula. Hibernacula are generally located within approximately 35 miles of summer foraging habitat. Between April and October, northern long-eared bats roost and forage in forested areas. Preferred roost sites include clusters of large, live or dead, hardwood trees with cavities or peeling bark. Preferred foraging sites include wooded areas around vernal pools or small ponds or along streams. Thus, transitional zones between forested uplands and wetlands represent prime summer roosting and foraging habitat.

The parcel at 1 College Street, Worcester, Massachusetts is located within a busy and densely developed area. The Site is a predominantly open area with trees and no ponds, vernal pools, caves, or mine shafts. Additionally, there are active city streets along the boundaries of the Site. The lack of forested areas for roosting and the regular disturbances from noise from traffic along city streets make this area a poor habitat for northern long-eared bats. It is unlikely that this species utilizes this area.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 679-16175186 April 12, 2019

Subject: Consistency letter for the 'College of the Holy Cross' project indicating that any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR

§17.40(o).

Dear Bill Davis:

The U.S. Fish and Wildlife Service (Service) received on April 12, 2019 your effects determination for the 'College of the Holy Cross' (the Action) using the northern long-eared bat (*Myotis septentrionalis*) key within the Information for Planning and Consultation (IPaC) system. You indicated that no Federal agencies are involved in funding or authorizing this Action. This IPaC key assists users in determining whether a non-Federal action may cause "take" of the northern long-eared bat that is prohibited under the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 et seq.).

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o). Unless the Service advises you within 30 days of the date of this letter that your IPaC-assisted determination was incorrect, this letter verifies that the Action is not likely to result in unauthorized take of the northern long-eared bat.

Please report to our office any changes to the information about the Action that you entered into IPaC, the results of any bat surveys conducted in the Action area, and any dead, injured, or sick northern long-eared bats that are found during Action implementation.

If your Action proceeds as described and no additional information about the Action's effects on species protected under the ESA becomes available, no further coordination with the Service is required with respect to the northern long-eared bat.

[1] Take means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct [ESA Section 3(19)].

Action Description

You provided to IPaC the following name and description for the subject Action.

1. Name

College of the Holy Cross

2. Description

The following description was provided for the project 'College of the Holy Cross':

Renovation of the existing field house. Species list required for Remedial General Permit, Notice of Intent for construction site dewatering of excavation.

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.236783937600904N71.81014293192118W

Determination Key Result

This non-Federal Action may affect the northern long-eared bat; however, any take of this species that may occur incidental to this Action is not prohibited under the final 4(d) rule at 50 CFR §17.40(o).

Determination Key Description: Northern Long-eared Bat 4(d) Rule

This key was last updated in IPaC on May 15, 2017. Keys are subject to periodic revision.

This key is intended for actions that may affect the threatened northern long-eared bat.

The purpose of the key for non-Federal actions is to assist determinations as to whether proposed actions are excepted from take prohibitions under the northern long-eared bat 4(d) rule.

If a non-Federal action may cause prohibited take of northern long-eared bats or other ESA-listed animal species, we recommend that you coordinate with the Service.

Determination Key Result

Based upon your IPaC submission, any take of the northern long-eared bat that may occur as a result of the Action is not prohibited under the ESA Section 4(d) rule adopted for this species at 50 CFR §17.40(o).

Qualification Interview

- 1. Is the action authorized, funded, or being carried out by a Federal agency? *No*
- 2. Will your activity purposefully **Take** northern long-eared bats? *No*
- Is the project action area located wholly outside the White-nose Syndrome Zone?
 Automatically answered
 No
- 4. Have you contacted the appropriate agency to determine if your project is near a known hibernaculum or maternity roost tree?

Location information for northern long-eared bat hibernacula is generally kept in state Natural Heritage Inventory databases – the availability of this data varies state-by-state. Many states provide online access to their data, either directly by providing maps or by providing the opportunity to make a data request. In some cases, to protect those resources, access to the information may be limited. A web page with links to state Natural Heritage Inventory databases is available at www.fws.gov/midwest/endangered/mammals/nleb/nhisites.html.

Yes

5. Will the action affect a cave or mine where northern long-eared bats are known to hibernate (i.e., hibernaculum) or could it alter the entrance or the environment (physical or other alteration) of a hibernaculum?

No

6. Will the action involve Tree Removal?

No

0

0

Project Questionnaire

If the project includes forest conversion, report the appropriate acreages below. Otherwise, type '0' in questions 1-3.

1. Estimated total acres of forest conversion: 0 2. If known, estimated acres of forest conversion from April 1 to October 31 0 3. If known, estimated acres of forest conversion from June 1 to July 31 If the project includes timber harvest, report the appropriate acreages below. Otherwise, type '0' in questions 4-6. 4. Estimated total acres of timber harvest 0 5. If known, estimated acres of timber harvest from April 1 to October 31 0 6. If known, estimated acres of timber harvest from June 1 to July 31 If the project includes prescribed fire, report the appropriate acreages below. Otherwise, type '0' in questions 7-9. 7. Estimated total acres of prescribed fire 0

If the project includes new wind turbines, report the megawatts of wind capacity below. Otherwise, type '0' in question 10.

8. If known, estimated acres of prescribed fire from April 1 to October 31

9. If known, estimated acres of prescribed fire from June 1 to July 31

10. What is the estimated wind capacity (in megawatts) of the new turbine(s)? θ

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

November 2010

TOWIIS WILL	II ACECS WILLIIII LITERI DOUTIGATIES		Novellibel 2010
TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River		Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
	Herring River Watershed	_	Squannassit
Braintree	Cranberry Brook Watershed	Peru	Hinsdale Flats Watershed
Brewster	Pleasant Bay	Pittsfield	Upper Housatonic River
	Inner Cape Cod Bay	Plymouth	Herring River Watershed
Bridgewater	Hockomock Swamp	0 :	Ellisville Harbor
Canton	Fowl Meadow and Ponkapoag Bog	Quincy	Neponset River Estuary
Chatham	Pleasant Bay	Randolph	Fowl Meadow and Ponkapoag Bog
Cohasset	Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	01	Golden Hills
C	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer	Chaff; ald	Fowl Meadow and Ponkapoag Bog
Causes a sat	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley Stockbridge	Squannassit Kampoosa Bog Drainage Basin
Essex	Great Marsh	Taunton	Hockomock Swamp
Falmouth	Waquoit Bay Canoe River Aquifer	raunton	Canoe River Aquifer
Foxborough Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
Ciaitori	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
aroton	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley	Opton	Watersheds
riarvara	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	g.	Upper Housatonic River
rinigriani	Weymouth Back River	Wellfleet	Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook	Cranberry Brook Watershed	Westborough	Cedar Swamp
Hopkinton	Miscoe-Warren-Whitehall	Westwood	Fowl Meadow and Ponkapoag Bog
	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River		
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Fowl Meadow and Ponkapoag Bog		
	Neponset River Estuary		

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Berkshire Northern Long- eared Bat		Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹ T		Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

ATTACHMENT 7

MASSACHUSETTS CULTURAL RESOURCE INFORMATION SYSTEM REPORT

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Worcester; Street No: 1; Street Name: college St; Resource Type(s): Area;

Inv. No. Property Name Street Town Year

Monday, April 1, 2019 Page 1 of 1

ATTACHMENT 8

LABORATORY ANALYTICAL RESULTS GROUNDWATER AND SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1905575

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HOLY CROSS

Project Number: 01.0173611.00

Report Date: 02/19/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HOLY CROSS **Project Number:** 01.0173611.00

Lab Number: L1905575 **Report Date:** 02/19/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1905575-01	SW-1	WATER	WORCESTER, MA	02/12/19 10:55	02/12/19
L1905575-02	GZ-1	WATER	WORCESTER, MA	02/12/19 10:00	02/12/19

Project Name:HOLY CROSSLab Number:L1905575Project Number:01.0173611.00Report Date:02/19/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905575

 Project Number:
 01.0173611.00
 Report Date:
 02/19/19

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

Chlorine, Total Residual

The WG1206221-4 MS recovery (0%), performed on L1905575-02, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/19/19

Custen Walker Cristin Walker

ORGANICS

VOLATILES

Project Name: Lab Number: **HOLY CROSS** L1905575

Project Number: Report Date: 01.0173611.00 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-02 Date Collected: 02/12/19 10:00

Client ID: Date Received: GZ-1

02/12/19 Sample Location: Field Prep: WORCESTER, MA Not Specified

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 02/14/19 19:42

Analyst: NLK

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab				
Methylene chloride	ND	ug/l	1.0		1
1,1-Dichloroethane	ND	ug/l	1.5		1
Carbon tetrachloride	ND	ug/l	1.0		1
1,1,2-Trichloroethane	ND	ug/l	1.5		1
Tetrachloroethene	ND	ug/l	1.0		1
1,2-Dichloroethane	ND	ug/l	1.5		1
1,1,1-Trichloroethane	ND	ug/l	2.0		1
Benzene	ND	ug/l	1.0		1
Toluene	ND	ug/l	1.0		1
Ethylbenzene	ND	ug/l	1.0		1
Vinyl chloride	ND	ug/l	1.0		1
1,1-Dichloroethene	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
Trichloroethene	ND	ug/l	1.0		1
1,2-Dichlorobenzene	ND	ug/l	5.0		1
1,3-Dichlorobenzene	ND	ug/l	5.0		1
1,4-Dichlorobenzene	ND	ug/l	5.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-xylene	ND	ug/l	1.0		1
Xylenes, Total	ND	ug/l	1.0		1
Acetone	ND	ug/l	10		1
Methyl tert butyl ether	ND	ug/l	10		1
Tert-Butyl Alcohol	ND	ug/l	100		1
Tertiary-Amyl Methyl Ether	ND	ug/l	20		1

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-02 Date Collected: 02/12/19 10:00

Client ID: GZ-1 Date Received: 02/12/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	98		60-140	
4-Bromofluorobenzene	103		60-140	

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-02 Date Collected: 02/12/19 10:00

Client ID: GZ-1 Date Received: 02/12/19

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/14/19 19:42

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SII	M - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance iteria
Fluorobenzene			113		(60-140
4-Bromofluorobenzene			76		(60-140

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-02 Date Collected: 02/12/19 10:00

Client ID: GZ-1 Date Received: 02/12/19

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14.504.1 Extraction Date: 02/18/19 15:24

Analytical Method: 14,504.1 Extraction Date: 02/18/19 15:24

Analytical Date: 02/18/19 18:54

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab	ı						
1,2-Dibromoethane	ND		ug/l	0.010		1	А
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905575

 Project Number:
 01.0173611.00
 Report Date:
 02/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/14/19 13:38

Analyst: GT

Methylene chloride ND ug/l 1.0 1,1-Dichloroethane ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 1,1-Dichloroethane ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Toluene ND ug/l 1.0 Li,1-Dichloroethene ND ug/l 1.0 </th <th>Parameter</th> <th>Result</th> <th>Qualifier Units</th> <th>RL</th> <th>MDL</th>	Parameter	Result	Qualifier Units	RL	MDL
1,1-Dichloroethane ND	Volatile Organics by GC/MS - W	estborough Lab	for sample(s): 02	Batch:	WG1207046-4
Carbon tetrachloride ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 2.0 1,1,1-Trichloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0	Methylene chloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	1,1-Dichloroethane	ND	ug/l	1.5	
Tetrachloroethene ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 5.0 xylenes, Total ND ug/l 1.0	Carbon tetrachloride	ND	ug/l	1.0	
1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 2.0 0-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0	1,1,2-Trichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	Tetrachloroethene	ND	ug/l	1.0	
Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 5.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,2-Dichloroethane	ND	ug/l	1.5	
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 5.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,1,1-Trichloroethane	ND	ug/l	2.0	
Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 5.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 0-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Benzene	ND	ug/l	1.0	
Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Toluene	ND	ug/l	1.0	
1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Ethylbenzene	ND	ug/l	1.0	
cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Vinyl chloride	ND	ug/l	1.0	
Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,1-Dichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	cis-1,2-Dichloroethene	ND	ug/l	1.0	
1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Trichloroethene	ND	ug/l	1.0	
1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,2-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,3-Dichlorobenzene	ND	ug/l	5.0	
o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,4-Dichlorobenzene	ND	ug/l	5.0	
Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	p/m-Xylene	ND	ug/l	2.0	
Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	o-xylene	ND	ug/l	1.0	
Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Xylenes, Total	ND	ug/l	1.0	
Tert-Butyl Alcohol ND ug/l 100	Acetone	ND	ug/l	10	
<u> </u>	Methyl tert butyl ether	ND	ug/l	10	
Tertiary-Amyl Methyl Ether ND ug/l 20	Tert-Butyl Alcohol	ND	ug/l	100	
	Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/14/19 13:38

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	tborough La	ab for sampl	e(s): 02	Batch:	WG1207046-4	

		Acceptance				
Surrogate	%Recovery Q	ualifier Criteria				
Pentafluorobenzene	96	60-140				
Fluorobenzene	99	60-140				
4-Bromofluorobenzene	99	60-140				

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/14/19 13:38

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	02	Batch:	WG1207097-4	
1,4-Dioxane	ND		ug/l		50		

	Acceptance							
Surrogate	%Recovery Qualifi	er Criteria						
Fluorobenzene	115	60-140						
4-Bromofluorobenzene	76	60-140						

Project Name: HOLY CROSS Lab Number: L1905575

Project Number: 01.0173611.00 **Report Date:** 02/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 02/18/19 18:26 Extraction Date: 02/18/19 15:24

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbore	ough Lab fo	r sample(s)	: 02	Batch: WG120	7852-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

L1905575

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number:

Report Date: 02/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (02 Batch: WG	1207046-3					
Methylene chloride	90		-		60-140	-		28	
1,1-Dichloroethane	85		-		50-150	-		49	
Carbon tetrachloride	85		-		70-130	-		41	
1,1,2-Trichloroethane	90		-		70-130	-		45	
Tetrachloroethene	90		-		70-130	-		39	
1,2-Dichloroethane	85		-		70-130	-		49	
1,1,1-Trichloroethane	90		-		70-130	-		36	
Benzene	90		-		65-135	-		61	
Toluene	95		-		70-130	-		41	
Ethylbenzene	100		-		60-140	-		63	
Vinyl chloride	100		-		5-195	-		66	
1,1-Dichloroethene	90		-		50-150	-		32	
cis-1,2-Dichloroethene	80		-		60-140	-		30	
Trichloroethene	85		-		65-135	-		48	
1,2-Dichlorobenzene	95		-		65-135	-		57	
1,3-Dichlorobenzene	95		-		70-130	-		43	
1,4-Dichlorobenzene	100		-		65-135	-		57	
p/m-Xylene	95		-		60-140	-		30	
o-xylene	95		-		60-140	-		30	
Acetone	88		-		40-160	-		30	
Methyl tert butyl ether	85		-		60-140	-		30	
Tert-Butyl Alcohol	85		-		60-140	-		30	
Tertiary-Amyl Methyl Ether	85		-		60-140	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS

Lab Number:

L1905575

Project Number: 01.0173611.00

Report Date:

02/19/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 02 Batch: WG1207046-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	96			60-140
Fluorobenzene	98			60-140
4-Bromofluorobenzene	103			60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS

Lab Number:

L1905575

Project Number: 01.0173611.00

Report Date:

02/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 02 Batch:	WG1207097-	3			
1,4-Dioxane	85		-		60-140	-		20

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	99 76				60-140 60-140

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 02	Batch: WG1207	852-2					
1,2-Dibromoethane	93		-		80-120	-			А
1,2-Dibromo-3-chloropropane	92		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name:HOLY CROSSProject Number:01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

Parameter	Native Sample	MS Added	MS Found %	MS 6Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - \	Westborough Lab	Associate	ed sample(s): 02	QC Batch	ID: WG12	07852-3	QC Sample:	_190557	5-02 Clier	nt ID: G	9Z-1		
1,2-Dibromoethane	ND	0.249	0.283	114		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.260	104		-	-		80-120	-		20	Α

METALS

02/12/19 10:55

Date Collected:

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905575

 Project Number:
 01.0173611.00
 Report Date:
 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-01

Client ID: SW-1 Date Received: 02/12/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Hardness by S	SM 2340B	- Mansfield	d Lab								
Hardness	40.8		mg/l	0.660	NA	1	02/13/19 13:2	0 02/14/19 01:05	EPA 3005A	19,200.7	AB

02/12/19 10:00

Date Collected:

Project Name: Lab Number: **HOLY CROSS** L1905575 **Project Number:** Report Date: 01.0173611.00 02/19/19

SAMPLE RESULTS

Lab ID: L1905575-02

Client ID: GZ-1

Date Received: 02/12/19 Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00602		mg/l	0.00100		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00177		mg/l	0.00020		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Chromium, Total	0.00988		mg/l	0.00100		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Copper, Total	0.00555		mg/l	0.00100		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Iron, Total	5.46		mg/l	0.050		1	02/13/19 13:20	02/14/19 01:10	EPA 3005A	19,200.7	AB
Lead, Total	0.00268		mg/l	0.00100		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/13/19 14:17	02/13/19 20:06	EPA 245.1	3,245.1	EA
Nickel, Total	0.02574		mg/l	0.00200		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Silver, Total	0.00548		mg/l	0.00040		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
Zinc, Total	0.01570		mg/l	0.01000		1	02/13/19 13:20	02/14/19 16:15	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/14/19 16:15	NA	107,-	

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number: L1905575

Report Date: 02/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: W	G12063	317-1				
Iron, Total	ND	mg/l	0.050		1	02/13/19 13:20	02/14/19 00:08	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): (01-02 l	Batch: WG1	1206317-1			
Hardness	ND	mg/l	0.660	NA	1	02/13/19 13:20	02/14/19 00:08	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	02 Bato	h: WG12	206320-	·1				
Antimony, Total	ND	mg/l	0.00400		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	02/13/19 13:20	02/14/19 14:04	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: Lab Number: **HOLY CROSS** L1905575 **Project Number:** 01.0173611.00 **Report Date:**

02/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mansfield Lab for sample(s): 02 Batch: WG1206346-1									
Mercury, Total	ND	mg/l	0.0002		1	02/13/19 14:17	02/13/19 19:55	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number: L1905575

Report Date: 02/19/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01-02 Batch	n: WG1206317-2					
Iron, Total	97	-		85-115	-		
otal Hardness by SM 2340B - Mansfield Lab	Associated sample((s): 01-02 Batch: WG120	6317-2				
Hardness	98	-		85-115	-		
otal Metals - Mansfield Lab Associated samp	ole(s): 02 Batch: W	/G1206320-2					
Antimony, Total	92	-		85-115	-		
Arsenic, Total	96	-		85-115	-		
Cadmium, Total	102	-		85-115	-		
Chromium, Total	96	-		85-115	-		
Copper, Total	91	-		85-115	-		
Lead, Total	102	-		85-115	-		
Nickel, Total	95	-		85-115	-		
Selenium, Total	110	-		85-115	-		
Silver, Total	96	-		85-115	-		
Zinc, Total	101	-		85-115	-		
otal Metals - Mansfield Lab Associated samp	ele(s): 02 Batch: W	/G1206346-2					
Mercury, Total	102	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
Γotal Metals - Mansfield	Lab Associated sam	nple(s): 01-0	2 QC Batcl	h ID: WG120	6317-3	QC Samp	le: L1905505-0	01 Client ID: MS	Sample	
Iron, Total	2.43	2	4.29	93		-	-	75-125	-	20
Fotal Hardness by SM 23	340B - Mansfield La	b Associated	d sample(s):	01-02 QC I	Batch ID): WG12063	17-3 QC Sa	mple: L1905505-01	Client ID:	MS Sample
Hardness	150	132	245	72	Q	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01-0	2 QC Batcl	h ID: WG120	6317-7	QC Samp	le: L1905586-0	01 Client ID: MS	Sample	
Iron, Total	4.89	1	5.84	95		-	-	75-125	-	20
Total Hardness by SM 23	340B - Mansfield La	b Associated	d sample(s):	01-02 QC I	Batch ID): WG12063	17-7 QC Sa	mple: L1905586-01	Client ID:	MS Sample
Hardness	202	66.2	264	94		-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 02	QC Batch ID): WG120632	20-3 C	QC Sample:	L1905586-01	Client ID: MS Sa	mple	
Antimony, Total	ND	0.5	0.5694	114		-	-	70-130	-	20
Arsenic, Total	0.00224	0.12	0.1194	98		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05242	103		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1897	95		-	-	70-130	-	20
Copper, Total	0.00155	0.25	0.2334	93		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5171	101		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4742	95		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1169	97		-	-	70-130	-	20
Silver, Total	ND	0.05	0.04796	96		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.4992	100		-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 02	QC Batch ID): WG120634	6-3 C	QC Sample:	L1905526-01	Client ID: MS Sa	mple	

Lab Duplicate Analysis Batch Quality Control

Project Name: HOLY CROSS **Project Number:** 01.0173611.00

Lab Number: L1905575

Report Date: 02/19/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 0	11-02 QC Batch ID: WG12	06317-8 QC Sample	e: L1905586-01	1 Client ID:	: DUP Samp	le
Iron, Total	4.89	5.10	mg/l	4		20
Fotal Metals - Mansfield Lab Associated sample(s): 0	2 QC Batch ID: WG12063	20-4 QC Sample: L	_1905586-01 C	lient ID: D	UP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00224	0.00230	mg/l	3		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00155	0.00171	mg/l	10		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 0	2 QC Batch ID: WG12063	46-4 QC Sample: L	_1905526-01 C	lient ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: **HOLY CROSS** L1905575 Project Number: 01.0173611.00

Report Date: 02/19/19

SAMPLE RESULTS

Lab ID: Date Collected: L1905575-01 02/12/19 10:55

Client ID: SW-1 Date Received: 02/12/19

Not Specified Sample Location: WORCESTER, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lat)								
Nitrogen, Ammonia	0.114		mg/l	0.075		1	02/13/19 14:25	02/13/19 21:07	121,4500NH3-BH	AT
Nitrogen, Nitrate/Nitrite	0.45		mg/l	0.10		1	-	02/13/19 23:17	121,4500NO3-F	MR
Total Nitrogen	0.86		mg/l	0.30		1	-	02/19/19 11:54	107,-	JO
Nitrogen, Total Kjeldahl	0.408		mg/l	0.300		1	02/14/19 15:15	02/15/19 21:31	121,4500NH3-H	AT

Project Name: Lab Number: **HOLY CROSS** L1905575 Report Date: Project Number: 02/19/19 01.0173611.00

SAMPLE RESULTS

Lab ID: Date Collected: L1905575-02 02/12/19 10:00

Client ID: GZ-1 Date Received: 02/12/19

Not Specified Sample Location: WORCESTER, MA Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	tborough La	b								
Solids, Total Suspended	310		mg/l	20	NA	4	-	02/13/19 13:40	121,2540D	DR
Cyanide, Total	0.006		mg/l	0.005		1	02/13/19 02:32	02/13/19 11:12	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/13/19 08:30	121,4500CL-D	MA
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/13/19 14:25	02/13/19 21:06	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.40		1.1	02/14/19 16:30	02/14/19 22:16	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	02/15/19 06:00	02/19/19 12:59	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	02/13/19 07:30	02/13/19 08:16	1,7196A	MA
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	5260		mg/l	250		500	-	02/13/19 22:19	44,300.0	AU

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number: L1905575 **Report Date:** 02/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qı	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab	for sam	ple(s): 02	Batch:	WG12	206104-1				
Cyanide, Total	ND		mg/l	0.005		1	02/13/19 02:32	02/13/19 11:08	121,4500CN-CE	E LH
General Chemistry - V	Vestborough Lab	for sam	ple(s): 02	Batch:	WG1	206176-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/13/19 07:30	02/13/19 08:12	1,7196A	MA
General Chemistry - V	Vestborough Lab	for sam	ple(s): 02	Batch:	WG1	206179-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/13/19 13:40	121,2540D	DR
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01-	02 Bat	ch: W	G1206182-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/13/19 14:25	02/13/19 20:46	121,4500NH3-B	H AT
General Chemistry - W	Vestborough Lab	for sam	ple(s): 02	Batch:	WG12	206221-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/13/19 08:30	121,4500CL-D	MA
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG12	206446-1				
Nitrogen, Nitrate/Nitrite	ND		mg/l	0.10		1	-	02/13/19 21:11	121,4500NO3-F	MR
General Chemistry - W	Vestborough Lab	for sam	ple(s): 01	Batch:	WG1	206759-1				
Nitrogen, Total Kjeldahl	ND		mg/l	0.300		1	02/14/19 15:15	02/15/19 21:22	121,4500NH3-H	H AT
General Chemistry - W	Vestborough Lab	for sam	ple(s): 02	Batch:	WG1	206829-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	02/14/19 16:30	02/14/19 22:16	74,1664A	ML
Anions by Ion Chroma	itography - Westb	orough	Lab for sai	mple(s):	02 E	Batch: WG1	206866-1			
Chloride	ND ND	3	mg/l	0.500		1	-	02/13/19 17:43	44,300.0	AU
General Chemistry - W	Vestborough Lab	for sam	ple(s): 02	Batch:	WG1:	206962-1				
Phenolics, Total	ND		mg/l	0.030		1	02/15/19 06:00	02/19/19 12:57	4,420.1	BR

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

	1.00	1.000		0/ 🗖			
Parameter	LCS %Recovery C	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 0	2 Batch: WG1206104	2				
Cyanide, Total	94	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	2 Batch: WG1206176	i-2				
Chromium, Hexavalent	95	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	11-02 Batch: WG1206	182-2				
Nitrogen, Ammonia	102			80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	2 Batch: WG1206221	-2				
Chlorine, Total Residual	96	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1206446	i-2				
Nitrogen, Nitrate/Nitrite	102	-		90-110	-		20
General Chemistry - Westborough Lab	Associated sample(s): 0	1 Batch: WG1206759	-2				
Nitrogen, Total Kjeldahl	96	-		78-122	-		
General Chemistry - Westborough Lab	Associated sample(s): 0	2 Batch: WG1206829	-2				
ТРН	90	-		64-132	-		34

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westbe	orough Lab Associated san	nple(s): 02 Batch: WG120	06866-2		
Chloride	100	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 02	Batch: WG1206962-2			
Phenolics, Total	94	-	70-130	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS Project Number:

Lab Number: L1905575

Report Date: 02/19/19 01.0173611.00

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 02	QC Batch ID: \	NG1206104-4	QC Sample: L1905586	-02 Client II	D: MS Samp	ole
Cyanide, Total	ND	0.2	0.203	102	-	-	90-110	-	30
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 02	QC Batch ID: \	NG1206176-4	QC Sample: L1905575	-02 Client II	D: GZ-1	
Chromium, Hexavalent	ND	0.1	0.097	97	-	-	85-115	-	20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01-0	2 QC Batch II	D: WG1206182-	4 QC Sample: L1905	563-01 Clier	nt ID: MS Sa	ımple
Nitrogen, Ammonia	0.818	4	4.47	91	-		80-120	-	20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 02	QC Batch ID: \	NG1206221-4	QC Sample: L1905575	-02 Client IE	D: GZ-1	
Chlorine, Total Residual	ND	0.25	ND	0	Q -	-	80-120	-	20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG1206446-4	QC Sample: L1905740	-01 Client II	D: MS Samp	le
Nitrogen, Nitrate/Nitrite	0.18	4	4.3	103	-	-	80-120	-	20
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: \	NG1206759-4	QC Sample: L1905740	-01 Client IE	D: MS Samp	ole
Nitrogen, Total Kjeldahl	ND	8	7.19	90	-	-	77-111	-	24
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 02	QC Batch ID: \	NG1206829-4	QC Sample: L1900002	-58 Client II	D: MS Samp	ole
TPH	ND	20	16.2	81	-	-	64-132	-	34
Anions by Ion Chromatograp Sample	ohy - Westboroug	gh Lab Asso	ociated sar	nple(s): 02 Q0	C Batch ID: WG	1206866-3 QC Sample	e: L1905680-0	02 Client II	D: MS
Chloride	54.0	20	75.7	109	-	-	90-110	-	18
General Chemistry - Westbo	rough Lab Asso	ciated samp	ole(s): 02	QC Batch ID: \	NG1206962-4	QC Sample: L1906007	-01 Client II	D: MS Samp	le
Phenolics, Total	ND	0.4	0.40	100	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HOLY CROSS **Project Number:** 01.0173611.00

Lab Number:

L1905575

Report Date:

02/19/19

Parameter	Nati	ve Sample	Duplicate Sam	ole Units	RPD Qu		ual RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1206104-3	QC Sample: L190	5586-01	Client ID:	DUP Sample	
Cyanide, Total		ND	ND	mg/l	NC		30	
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1206176-3	QC Sample: L190	5575-02	Client ID:	GZ-1	
Chromium, Hexavalent		ND	ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1206179-2	QC Sample: L190	5575-02	Client ID:	GZ-1	
Solids, Total Suspended		310	340	mg/l	9		29	
General Chemistry - Westborough Lab	Associated sample(s):	01-02 QC Batch	ID: WG1206182-	3 QC Sample: L	1905563-	01 Client II	D: DUP Sample	
Nitrogen, Ammonia		0.818	0.855	mg/l	4		20	
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1206221-3	QC Sample: L190	5614-02	Client ID:	DUP Sample	
Chlorine, Total Residual		ND	ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1206446-3	QC Sample: L190	5740-01	Client ID:	DUP Sample	
Nitrogen, Nitrate/Nitrite		0.18	0.19	mg/l	5		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1206759-3	QC Sample: L190	5740-01	Client ID:	DUP Sample	
Nitrogen, Total Kjeldahl	, , ,	ND	ND	mg/l	NC		24	
General Chemistry - Westborough Lab	Associated sample(s):	02 QC Batch ID:	WG1206829-3	QC Sample: L190	0002-58	Client ID:	DUP Sample	
TPH		ND	ND	mg/l	NC		34	
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sample(s): 02 C	QC Batch ID: WG1		ample: L1	1905680-02	? Client ID: DUP	
Chloride		54.0	54.0	mg/l	0		18	

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1905575

Report Date:

02/19/19

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	RPD Limits
General Chemistry - Westborough Lab Associated	sample(s): 02 QC Batch ID:	WG1206962-3	QC Sample: L1906	6007-01 Clier	nt ID: DUP Sample
Phenolics, Total	ND	ND	mg/l	NC	20

Project Name:

Project Number:

HOLY CROSS

01.0173611.00

Project Name: HOLY CROSS
Project Number: 01.0173611.00

YES

Lab Number: L1905575 **Report Date:** 02/19/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1905575-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	3.0	Υ	Absent		HARDU(180)
L1905575-01B	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		TKN-4500(28),NO3/NO2- 4500(28),TNITROGEN(28),NH3-4500(28)
L1905575-02A	Plastic 250ml HNO3 preserved	Α	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1905575-02B	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02C	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02D	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02E	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02F	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02G	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1905575-02H	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1905575-02I	Vial Na2S2O3 preserved	Α	NA		3.0	Υ	Absent		504(14)
L1905575-02J	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1905575-02K	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L1905575-02L	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L1905575-02M	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1905575-02N	Amber 1000ml HCl preserved	Α	NA		3.0	Υ	Absent		TPH-1664(28)
L1905575-02O	Amber 950ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		TPHENOL-420(28)
L1905575-02P	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)
L1905575-02X	Vial HCl preserved	Α	NA		3.0	Υ	Absent		ARCHIVE()
L1905575-02Y	Vial HCl preserved	Α	NA		3.0	Υ	Absent		ARCHIVE()
L1905575-02Z	Vial HCl preserved	Α	NA		3.0	Υ	Absent		ARCHIVE()

Lab Number: L1905575

Report Date: 02/19/19

Container Information Initial Final Temp Frozen

Container ID Container Type Cooler pH pH deg C Pres Seal Date/Time Analysis(*)

Project Name:

HOLY CROSS

Project Number: 01.0173611.00

Project Name:HOLY CROSSLab Number:L1905575Project Number:01.0173611.00Report Date:02/19/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

adjustments from unutions, concentrations of moisture content, where applicable

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:HOLY CROSSLab Number:L1905575Project Number:01.0173611.00Report Date:02/19/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:HOLY CROSSLab Number:L1905575Project Number:01.0173611.00Report Date:02/19/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

CHAIN OF CUSTODY PAGE OF Date Rec'd in Lab: 2/2/9 Date Rec'd in Lab: 2/2/9 ALPHA Job #: L1905575 Report Information - Data Deliverables Billing Information Project Information - Data Deliverables Billing Information Project Name: 0						TX	Kef	u	to	0	9	Hac	40	1	K	6	P	S	erial	No	:02191914:31	
Sample ID	Διρна	CHA	IN OF CL	ISTO	DY P	AGE	OF															75
Client information Project Location Market Me. Client (2A Project Requirements Project Information Requirements) Project Requirements Project Information Requirements Project Requirements Project Information Requirements Information Requirements Project Information Requirements Address: 94G Van Alvh [f Ac Project Requirements Project Information Requirements Information Informati	8 Walkup Drive	320 Forbes Blvd		Section Section 11	ion			Re	port	Infor			a De	liver	able	s	Bi	lling	Info	rmat	tion	
Client C 2 A Price to the control of	Westboro, MA 01 Tel: 508-898-922	1581 Mansfield, MA 0 20 Tel: 508-822-93			oly C	1055		X	ADEX)_	(EMAIL	2				o s	ame	as CI	lient i	nfo PO#:	
Client: (=24 Address: 24G Van Arh 1 Amongan 1 Amo	Client Information	n	Project	Location:	Varcest	er N	15.	-	Designation of the last of the	THE RESIDENCE	NOTICE COMMANDE	THE REAL PROPERTY.	Street, or other Desirements	_	Name and Address of the Owner, where the Owner, which is the Ow	ct In		_	_	and the same of	DESCRIPTION OF THE PERSON OF T	
Email: Wolavis@g2a. (Image) Additional Project Information: Date Due: Sec = Heaches Ref 1.5t. Surface washer author in Malele River Alpha Lab In In In In In In In I			Project													OG?						ethods
Email: Wolavis@gea. (Image) Additional Project Information: Date Due: Sec effected Ref. 1.5t. 2.5	Address: 249	Vanduh. It	Ac Project	Manager:	JAK			100000					(Info	Requ	ired f	for Me	etals	8 E	PH wi	ith Ta	rgets)	
Container Type P=Please V= Vial glass V= Via	Normed	Me. OZ	062 ALPH	A Quote #:																ia		
Container Type P=Please V= Vial glass V= Via				Around Ti	ne					500		27 2	1/2	1	10	100	1	1	8	1.	.///	
Container Type P=Please V= Vial glass V= Via	Email: Wdav.	j@ 929,00	lu Nistar	ndard	I RUSH	and the same		1	0	155	2	P. C.	les Or	No Sa	100	1	/	12	/ /	2		
Container Type P=Please V= Vial grass V= Via					2 (VOOI I Jany)	житин г рго-ц	provegry	3	18/	1	12	[4]	Rang	Rang	4	1/	/	5	/	2	' / /	T
Container Type P=Please V= Vial grass V= Via			ion:					\$	1		DMC	not	9/	0/0	0/	1	1-	\$	15	7	/ /	INFO A
Container Type P= Plastic A= Amberd glass B= Blacter acup C= Carbon B= Blacter acup C= Container Type D= Container Type P= Plastic A= None B= Blacter acup C= Carbon B= Blacte	(1) See et	Yacheel RG	Plist.	1.1				4	624		2	Tara Tara	Taro.	15	1	15	13	/	2	1		
Container Type P= Plastic A= Amberd glass B= Blacter acup C= Carbon B= Blacter acup C= Container Type D= Container Type P= Plastic A= None B= Blacter acup C= Carbon B= Blacte	2) Surface	where a	thell in A	relette	River	•			R	1	D 4	Pes &	Pes ce		1	100	5	de	5	0	/ Dab to d	В
Container Type P= Plastic A= Amberd glass B= Bacteria cup C= Bob Bob Bottle B	3 HexCr b	nes short	hold time	+:				1/4		is	8	Ram	Rang		F	*/	100	1	1	2/2		Te
Container Type P= Plastic A= Amberd glass B= Bacteria cup C= Bob Bob Bottle B		San	nple ID	1,000,000	GERESEN .	Commence of the control of the contr		8		ETAL	SETAL	Ha		JE .	3/6	1/3	1	3/2	La	1/2	<i>)</i>	E
Container Type Preservative A Norm A Norm B B Bacteria cup B B Bacteria cup B B Bacteria cup Container Type Preservative A Norm A Norm B HCl Container Type Container Type Container Type Container Type Preservative A Norm B HCl Preservative Sign #532 #532 # HM;								/-	**	/ = /	4/	4/3	/ 44	6	V	7		100	1			
Container Type Preservative A None B + NCI Container Type Preservative A None B + NCI A None A None B + NCI A None A None A None B + NCI A None B + NCI A None A None A None A None B + NCI A None A None B + NCI A None A None A None B + NCI A None						Section 1	1.75-1.75.0	V	V			-	V	V	Λ	^	V	11	1/	V		
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle	00	6-2-1		2/11/19	1000an	6-4	UU	Å	\wedge	/	Λ.	_	A	X			_	X	X	1	(I)	13
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other D= BOD Bottle D= BOD Bottle D= BOD Bottle D= Received By: D= Received By: Date/Time Container type V # T																						
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle																						
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle															- 9							
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle	STELLED THUS										7											
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle																						
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other D= BOD Bottle D= BOD Bottle D= BOD Bottle D= Received D= Recei																						
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle											1											
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle					_			-		-	+							-				
P= Plastic A= Amber glass V= Visi G= Glass B= Bacteria cup C= Cube O= Other C= Encore D= BOD Bottle D= BOD Bottle D= SOD Bottle	Container Type	Preservative			Г			11			D	-		Λ	P	n	n	a	Λ	0		_
G= Glass B= Bacteria cup C= Cube O= Other D= BOD Bottle D= BOD Bottle D= Received By: D= H_SO ₄ E= NaOH Relinquished By: Date/Time Received By: Date/Time All samples submitted are subject to All samples submitted are subject to Alpha's Terms and Conditions. See reverse side.	P= Plastic A= Amber glass	A= None B= HCI			- 1	57		140	#.50			-	V	-	ILIA	14,50	1	1	1150			
C= Cube O= Other E= Encore D= BOD Bottle C= Cube O= Other D= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl E= Ascorbic Acid J = NH ₄ Cl E= Ascorbic Acid J = NH ₄ Cl E= Ascorbic Acid D= NH ₄ Cl E= Ascorbic Ac	G= Glass B= Bacteria cup	D= H ₂ SO ₄ E= NaOH	Deline	wished By:				525	PEST		- 1	4.Dec	(ICC	TILL	,		Tim	/	lifie	4		
J = NH ₄ Cl	O≈ Other	F= MeOH G= NaHSO ₄	Bul A	bisned by:				T	7. 6.				/1_/	, 2	/3	yaie/	1 (17)6	d				
	D= BOD Bottle	I= Ascorbic Àcid J = NH₄CI K= Zn Acetate	TX 6m	2.12	19			0	1		-		2	_	2/1	1/19	16	4	Se	e rev	verse side.	

ANALYTICAL REPORT

Lab Number: L1905960

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769

Project Name: HOLY CROSS

Project Number: 01.0173611.00

Report Date: 02/21/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HOLY CROSS **Project Number:** 01.0173611.00

Lab Number: L1905960 **Report Date:** 02/21/19

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1905960-01 GZ-1 WATER WORCESTER, MA 02/14/19 09:30 02/14/19

Serial No:02211914:08

Project Name:HOLY CROSSLab Number:L1905960Project Number:01.0173611.00Report Date:02/21/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

lease contact i roject management at 000-024-3220 with any questions.	

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/21/19

Custen Walker Cristin Walker

ALPHA

ORGANICS

SEMIVOLATILES

Project Name: HOLY CROSS Lab Number: L1905960

Project Number: 01.0173611.00 **Report Date:** 02/21/19

SAMPLE RESULTS

Lab ID: L1905960-01 Date Collected: 02/14/19 09:30

Client ID: GZ-1 Date Received: 02/14/19
Sample Location: WORCESTER MA

Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/17/19 12:18

Analytical Date: 02/19/19 12:32

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Bis(2-ethylhexyl)phthalate	2.3		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	65	42-122	
2-Fluorobiphenyl	62	46-121	
4-Terphenyl-d14	62	47-138	

Project Name: Lab Number: **HOLY CROSS** L1905960

Project Number: Report Date: 01.0173611.00 02/21/19

SAMPLE RESULTS

Lab ID: L1905960-01 Date Collected: 02/14/19 09:30

Client ID: Date Received: 02/14/19 GZ-1 Sample Location: WORCESTER, MA Field Prep: Not Specified

02/20/19 16:58

Sample Depth:

Extraction Method: EPA 625.1 Matrix: Water

Extraction Date: 02/17/19 12:20 Analytical Method: 129,625.1-SIM Analytical Date:

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	0.10		ug/l	0.10		1	
Fluoranthene	1.5		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	0.94		ug/l	0.10		1	
Benzo(a)pyrene	0.46		ug/l	0.10		1	
Benzo(b)fluoranthene	1.3		ug/l	0.10		1	
Benzo(k)fluoranthene	0.45		ug/l	0.10		1	
Chrysene	1.0		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	0.33		ug/l	0.10		1	
Benzo(ghi)perylene	0.16		ug/l	0.10		1	
Fluorene	0.54		ug/l	0.10		1	
Phenanthrene	1.3		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.20		ug/l	0.10		1	
Pyrene	1.0		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	42	25-87	
Phenol-d6	29	16-65	
Nitrobenzene-d5	83	42-122	
2-Fluorobiphenyl	61	46-121	
2,4,6-Tribromophenol	66	45-128	
4-Terphenyl-d14	59	47-138	

Project Name: HOLY CROSS Lab Number: L1905960

Project Number: 01.0173611.00 **Report Date:** 02/21/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/19/19 08:20

Analyst: SZ

Extraction Method: EPA 625.1
Extraction Date: 02/17/19 12:18

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01 Batch	: WG1207584-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		
Butyl benzyl phthalate	ND		ug/l	5.0		
Di-n-butylphthalate	ND		ug/l	5.0		
Di-n-octylphthalate	ND		ug/l	5.0		
Diethyl phthalate	ND		ug/l	5.0		
Dimethyl phthalate	ND		ug/l	5.0		

Surrogate	%Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5	69	42-122
2-Fluorobiphenyl	67	46-121
4-Terphenyl-d14	71	47-138

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905960

 Project Number:
 01.0173611.00
 Report Date:
 02/21/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 02/19/19 12:46

Analyst: DV

Extraction Method: EPA 625.1
Extraction Date: 02/17/19 12:20

arameter	Result	Qualifier Units	RL	MDL	
emivolatile Organics by GC/I	MS-SIM - Westbo	rough Lab for sample	e(s): 01	Batch: WG1207585	-1
Acenaphthene	ND	ug/l	0.10		
Fluoranthene	ND	ug/l	0.10		
Naphthalene	ND	ug/l	0.10		
Benzo(a)anthracene	ND	ug/l	0.10		
Benzo(a)pyrene	ND	ug/l	0.10		
Benzo(b)fluoranthene	ND	ug/l	0.10		
Benzo(k)fluoranthene	ND	ug/l	0.10		
Chrysene	ND	ug/l	0.10		
Acenaphthylene	ND	ug/l	0.10		
Anthracene	ND	ug/l	0.10		
Benzo(ghi)perylene	ND	ug/l	0.10		
Fluorene	ND	ug/l	0.10		
Phenanthrene	ND	ug/l	0.10		
Dibenzo(a,h)anthracene	ND	ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10		
Pyrene	ND	ug/l	0.10		
Pentachlorophenol	ND	ug/l	1.0		

	Acceptance
%Recovery	Qualifier Criteria
49	25-87
34	16-65
92	42-122
68	46-121
79	45-128
74	47-138
-	49 34 92 68 79

Project Name: HOLY CROSS

Lab Number:

L1905960 02/21/19

Report Date:

Project Number:	01.0173611.00

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associ	ated sample(s)	: 01 Batch:	WG1207584	-3				
Bis(2-ethylhexyl)phthalate	94		-		29-137	-		30	
Butyl benzyl phthalate	106		-		1-140	-		30	
Di-n-butylphthalate	96		-		8-120	-		30	
Di-n-octylphthalate	107		-		19-132	-		30	
Diethyl phthalate	82		-		1-120	-		30	
Dimethyl phthalate	89		-		1-120	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Acceptance Qual Criteria
Nitrobenzene-d5	81		42-122
2-Fluorobiphenyl	85		46-121
4-Terphenyl-d14	86		47-138

Project Name: HOLY CROSS
Project Number: 01.0173611.00

Lab Number: L1905960

Report Date: 02/21/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab Asso	ociated sample(s): 01 Batch	: WG1207585-2		
Acenaphthene	74	-	60-132	-	30
Fluoranthene	73	-	43-121	-	30
Naphthalene	66	-	36-120	-	30
Benzo(a)anthracene	77	-	42-133	-	30
Benzo(a)pyrene	79	-	32-148	-	30
Benzo(b)fluoranthene	80	-	42-140	-	30
Benzo(k)fluoranthene	79	•	25-146	-	30
Chrysene	76	-	44-140	-	30
Acenaphthylene	73	-	54-126	-	30
Anthracene	72	-	43-120	-	30
Benzo(ghi)perylene	61	-	1-195	-	30
Fluorene	78	-	70-120	-	30
Phenanthrene	68	-	65-120	-	30
Dibenzo(a,h)anthracene	67	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	68	-	1-151	-	30
Pyrene	72	-	70-120	-	30
Pentachlorophenol	66	-	38-152	-	30

Project Name: HOLY CROSS

Lab Number:

L1905960

Project Number: 01.0173611.00

Report Date:

02/21/19

	LCS		LCSD	CSD %Recovery				RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1207585-2

Surrogate	LCS LC %Recovery Qual %Reco	CSD overy Qual	Acceptance Criteria
2-Fluorophenol	45		25-87
Phenol-d6	31		16-65
Nitrobenzene-d5	80		42-122
2-Fluorobiphenyl	61		46-121
2,4,6-Tribromophenol	70		45-128
4-Terphenyl-d14	66		47-138

PCBS

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905960

 Project Number:
 01.0173611.00
 Report Date:
 02/21/19

SAMPLE RESULTS

Lab ID: L1905960-01 Date Collected: 02/14/19 09:30

Client ID: GZ-1 Date Received: 02/14/19
Sample Location: WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/16/19 17:07
Analytical Date: 02/20/19 19:24 Cleanup Method: EPA 3665A

Analyst: WR Cleanup Date: 02/16/19

Cleanup Method: EPA 3660B Cleanup Date: 02/17/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	А
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88		37-123	В
Decachlorobiphenyl	66		38-114	В
2,4,5,6-Tetrachloro-m-xylene	91		37-123	Α
Decachlorobiphenyl	60		38-114	Α

 Project Name:
 HOLY CROSS
 Lab Number:
 L1905960

 Project Number:
 01.0173611.00
 Report Date:
 02/21/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 02/18/19 10:45

Analyst: HT

Extraction Method: EPA 608.3

Extraction Date: 02/16/19 00:16

Cleanup Method: EPA 3665A

Cleanup Date: 02/16/19

Cleanup Method: EPA 3660B

Cleanup Date: 02/16/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch	: WG1207301-	·1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptano	ce
Surrogate	%Recovery Qualifi	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	88	37-123	В
Decachlorobiphenyl	80	38-114	В
2,4,5,6-Tetrachloro-m-xylene	96	37-123	Α
Decachlorobiphenyl	111	38-114	Α

Project Name: HOLY CROSS

Lab Number:

L1905960

Project Number: 01.0173611.00

Report Date:

02/21/19

		LCS		LCSD		%Recovery			RPD	
Parameter		%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated E	Siphenyls by GC - Westborou	ıgh Lab Associ	ated sample(s)	: 01 Batch	WG1207301	-2				
Aroclor 1016		106		-		50-140	-		36	Α
Aroclor 1260		108		-		8-140	-		38	Α

Surrogate	LCS %Recovery Q	LCSD ual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	90			37-123	В
Decachlorobiphenyl	82			38-114	В
2,4,5,6-Tetrachloro-m-xylene	95			37-123	Α
Decachlorobiphenyl	110			38-114	Α

Lab Number: L1905960

Report Date: 02/21/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

HOLY CROSS

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 01.0173611.00

Container Information		Initial	Final	inal Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1905960-01A	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		PCB-608.3(7)
L1905960-01B	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		PCB-608.3(7)
L1905960-01C	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1905960-01D	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1905960-01E	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1905960-01F	Amber 1000ml Na2S2O3	Α	7	7	3.8	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1905960-01G	Amber 1000ml HCI preserved	Α	<2	<2	3.8	Υ	Absent		HOLD-WETCHEM()
L1905960-01H	Amber 1000ml HCI preserved	Α	<2	<2	3.8	Υ	Absent		HOLD-WETCHEM()

Project Name:HOLY CROSSLab Number:L1905960Project Number:01.0173611.00Report Date:02/21/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Mark Coll Co. 1 A. 1 11 11 1

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:HOLY CROSSLab Number:L1905960Project Number:01.0173611.00Report Date:02/21/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:02211914:08

Project Name:HOLY CROSSLab Number:L1905960Project Number:01.0173611.00Report Date:02/21/19

REFERENCES

Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.

Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:02211914:08

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

						ØK.	e Eu		to		RG	P	1.	st	5	·bm.	Seria	al No	0:02211914:08	
Ацэна	CHAIN C	F CUS	TODY	Y PA	GE	of	72-25/2	COLOR	'd in L										L190596	STATE
8 Walkup Drive	e 320 Forbes Blvd	Project Inf	formation				Re	port l	Inforr	natio	n - Da	ita De	eliver	able	s	Billing	g Info	rmat	tion	PAR
Westboro, MA Tel: 508-898-	01581 Mansfield, MA 02048	Project Name	: Hol	, (ross		A	ADEX	>	1	'EMAI	\triangleright				□ Same	as C	lient ir	nfo PO#:	
Client Informati	on	Project Locat				la.	Re	gulat	ory R	equi	remer	nts	& F	roje	ct Inf	formati	on R	equir	rements	
Client: G2/									Analy				DG?				CT RCP Analytical M Inorganics)	lethods		
Address: 249						☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics) ☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets)														
	Varward Ma, 02062 ALPHA Quote #:					☐ Yes ☐ No NPDES RGP ☐ Other State /Fed Program Criteria														
Phone: 78/ -	-983 -1357	Turn-Arou	ınd Time						/ /		15	9/2	./.	/	/	/ /2	25	1	IIII	100
Additional I	Project Information: TPH Plast Submitted 2	Date Due:	***********	ISH (only co	entimed if pre-app	interest)		SVOC: D 624 D 524	METALS: DIM D PAH	LS: C RCP 13 CMCP 14	EPH: DRanges & Tan	Thi Changes & Tarn	B Ranges O Ranges O	TOIL ONLY DELLO 8	H -1664 0	3/3/	REP		SAMPLE Filtration ☐ Field ☐ Lab to co	do B
ALPHA Lab ID (Lab Use Only)	Sample ID		Collectio	n Time	Sample Matrix	Sampler Initials	00,	SVOC	METAL	META	Ha	Ha	The state of	1	13	//				L
05960-61	62-1			30gm	_	BD						X		X	1				Sample Comm	8
Container Type P= Plastic A= Amber glass	Preservative A= None				Conta	iner Type						A		A	A					
A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 22 of 22	B# HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Relinquished	ву:	2	Date	Time 17 1245 pt	3		Rec	ceived	By: AAL	H	2 2/	19/	H Date/	Time 14'13	Alp Se	pha's Teve	ples submitted are s Terms and Conditio erse side. : 01-01 (rev. 12-Mar-2012	ons.

ANALYTICAL REPORT

Lab Number: L1908303

Client: GZA GeoEnvironmental, Inc.

249 Vanderbilt Ave Norwood, MA 02062

ATTN: Bill Davis

Phone: (781) 278-5769
Project Name: HOLY CROSS

Project Number: 173611.00

Report Date: 03/07/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HOLY CROSS Project Number:

173611.00

Lab Number: L1908303 Report Date: 03/07/19

Alpha Sample ID Sample Location Collection Date/Time **Receive Date Client ID** Matrix SW-1_3-14-19 WATER WORCESTER, MA 03/04/19 14:41 03/04/19 L1908303-01

Project Name:HOLY CROSSLab Number:L1908303Project Number:173611.00Report Date:03/07/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/07/19

600, Sharow Kelly Stenstrom

ALPHA

METALS

Project Name:HOLY CROSSLab Number:L1908303Project Number:173611.00Report Date:03/07/19

SAMPLE RESULTS

Lab ID:L1908303-01Date Collected:03/04/19 14:41Client ID:SW-1_3-14-19Date Received:03/04/19Sample Location:WORCESTER, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Arsenic, Total	0.00251		mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Cadmium, Total	ND		mg/l	0.00020		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Chromium, Total	ND		mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Copper, Total	0.00276		mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Iron, Total	0.581		mg/l	0.050		1	03/05/19 12:18	03/05/19 18:29	EPA 3005A	19,200.7	МС
Lead, Total	0.00121		mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Mercury, Total	ND		mg/l	0.00020		1	03/05/19 09:30	03/05/19 22:43	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Selenium, Total	ND		mg/l	0.00500		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Silver, Total	ND		mg/l	0.00040		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
Zinc, Total	0.01490		mg/l	0.01000		1	03/05/19 12:18	03/06/19 00:50	EPA 3005A	3,200.8	MG
General Chemistry	- Mansfiel	d Lab	J J								
Chromium, Trivalent	ND		mg/l	0.010		1		03/06/19 00:50	NA	107,-	

Project Name: HOLY CROSS
Project Number: 173611.00

Lab Number: L1908303 **Report Date:** 03/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG12	212351-	-1				
Iron, Total	ND	mg/l	0.050		1	03/05/19 12:18	03/05/19 17:11	19,200.7	MC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s)	: 01 Batc	h: WG12	12352	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Arsenic, Total	ND	mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Cadmium, Total	ND	mg/l	0.00020		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Chromium, Total	ND	mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Copper, Total	ND	mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Lead, Total	ND	mg/l	0.00100		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Nickel, Total	ND	mg/l	0.00200		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Selenium, Total	ND	mg/l	0.00500		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Silver, Total	ND	mg/l	0.00040		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG
Zinc, Total	ND	mg/l	0.01000		1	03/05/19 12:18	03/06/19 00:34	3,200.8	MG

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Batcl	h: WG12	212504-	1				
Mercury, Total	ND	mg/l	0.00020		1	03/05/19 09:30	03/05/19 22:04	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS

Project Number: 173611.00

Lab Number: L1908303

Report Date: 03/07/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1212351-2				
Iron, Total	100	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1212352-2				
Antimony, Total	99	-	85-115	-		
Arsenic, Total	105	-	85-115	-		
Cadmium, Total	105	-	85-115	-		
Chromium, Total	101	-	85-115	-		
Copper, Total	99	-	85-115	-		
Lead, Total	106	-	85-115	-		
Nickel, Total	104	-	85-115	-		
Selenium, Total	112	-	85-115	-		
Silver, Total	108	-	85-115	-		
Zinc, Total	112	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1212504-2				
Mercury, Total	111	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS
Project Number: 173611.00

Lab Number:

L1908303

Report Date:

03/07/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qua	RPD Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG1212351-	3 QC Sampl	e: L1908303-01	Client ID: SW-1	_3-14-19	
Iron, Total	0.581	1	1.56	98	-	-	75-125	-	20
Γotal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG1212352-	3 QC Sampl	e: L1908303-01	Client ID: SW-1	_3-14-19	
Antimony, Total	ND	0.5	0.5481	110	-	-	70-130	-	20
Arsenic, Total	0.00251	0.12	0.1316	108	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05468	107	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1940	97	-	-	70-130	-	20
Copper, Total	0.00276	0.25	0.2364	93	-	-	70-130	-	20
Lead, Total	0.00121	0.51	0.5516	108	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4866	97	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1357	113	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05103	102	-	-	70-130	-	20
Zinc, Total	0.01490	0.5	0.5464	106	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG1212504-	3 QC Sampl	e: L1907771-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00602	120	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG1212504-	5 QC Sampl	e: L1907727-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00518	104	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HOLY CROSS **Project Number:** 173611.00

Lab Number:

L1908303

Report Date:

03/07/19

Parameter	Native Sample Du	ıplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1212351-	4 QC Sample:	L1908303-01	Client ID:	SW-1_3-14-19	9
Iron, Total	0.581	0.556	mg/l	4		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1212352-	4 QC Sample:	L1908303-01	Client ID:	SW-1_3-14-19	9
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00251	0.00242	mg/l	4		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00276	0.00248	mg/l	11		20
Lead, Total	0.00121	0.00109	mg/l	10		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01490	0.01391	mg/l	7		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1212504-	4 QC Sample:	L1907771-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1212504-	6 QC Sample:	L1907727-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: HOLY CROSS Lab Number: L1908303

Project Number: 173611.00 **Report Date:** 03/07/19

SAMPLE RESULTS

 Lab ID:
 L1908303-01
 Date Collected:
 03/04/19 14:41

 Client ID:
 SW-1_3-14-19
 Date Received:
 03/04/19

 Sample Location:
 WORCESTER, MA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Chromium, Hexavalent	ND		mg/l	0.010		1	03/04/19 18:55	03/04/19 19:11	1,7196A	AS

Project Name: HOLY CROSS

Project Number: 173611.00

Lab Number:

L1908303

Report Date:

03/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	/estborough Lab for s	ample(s): 01	Batch	: WG12	212364-1				
Chromium, Hexavalent	ND	mg/l	0.010		1	03/04/19 18:55	03/04/19 19:10	1,7196A	AS

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS Lab Number:

L1908303

Project Number: 173611.00

Report Date:	03/07/19

Parameter	LCS %Recovery Qı	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1212364	-2					
Chromium, Hexavalent	103	-		85-115	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS
Project Number: 173611.00

Lab Number:

L1908303

Report Date:

03/07/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD (RPD Qual Limits
General Chemistry - Westborou	igh Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	VG1212364-4	QC Sample: L190830	3-01 Client	ID: SW-	-1_3-14-19
Chromium, Hexavalent	ND	0.1	0.093	93	-	-	85-115	-	20

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1908303

Report Date:

03/07/19

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual F	RPD Limits
General Chemistry - Westborough Lab Associated sam	pple(s): 01 QC Batch ID	: WG1212364-3 Q0	C Sample: L19083	303-01 CI	ient ID: SW-1	I_3-14-19
Chromium, Hexavalent	ND	ND	mg/l	NC		20

Project Name:

Project Number: 173611.00

HOLY CROSS

Lab Number: L1908303

Report Date: 03/07/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

HOLY CROSS

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 173611.00

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1908303-01A	Plastic 250ml unpreserved	Α	7	7	2.8	Υ	Absent		HEXCR-7196(1)
L1908303-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	2.8	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)

Project Name: HOLY CROSS Lab Number: L1908303
Project Number: 173611.00 Report Date: 03/07/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

adjustments from unutions, concentrations of moisture content, where applicable

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:HOLY CROSSLab Number:L1908303Project Number:173611.00Report Date:03/07/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detectable concentrations of the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: HOLY CROSS Lab Number: L1908303
Project Number: 173611.00 Report Date: 03/07/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 10/9/2018 4:58:19 PM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd	2048 Project	JSTO	25 3 10 10 10 10	AGE_\	OF_	-	Rec'd in ort Info	rmati		ata D		rable		Billi	ng Ir	Job #:	tion	9083 Po#:	03
Phone: 781-2 Email: william. de Additional P	ANDERBILT A ANDERBILT A DD. MA ORD 18-5945 ANDERBILT A ORD 18-5945 ANDERBILT ANDERBI	Project VE. Project VE. Project ALPH Turn Asta On: AUENIL, CAMIN VEL, API ZINC.	Manager: A Quote #: -Around Ti ndard C Due:	BILL D	AVIS	700,000	Yes Yes Yes Oth	Shoo: D ABN D Saa 2 State	MA MO Matrix GW1 S NPDE /Fed	CP Anal Spike R Standard S RGP Prograi	ytical f equire ds (Info	Method ed on to Requ	ds his S uired	DG? for M	(Requ	Yes J ired fo EPH	Mo (CT RCF	SAMPI Filtratic Lab	d to do vation
ALPHA Lab ID (Lab Use Only)		nple ID	Coll	ection Time	Sample Matrix	Sampler Initials	NOC:	SVOC.	METALS	EPH: OF	NO HELD	TPH.	100		/	//		<u>s</u>	☐ Lab	
08303-01	SW-1_	3-4-19	3/4/19	144/	5W	VAFT		X					*	*				b	2.	2.
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle age 21 of 21	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= N8OH F= MeOH G= N8HSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Sol 2 9	quished By		Pro	eservative e/Time	-4,	P		ed By:	3/	4/19	-	Date/	Time	-	Alpha's See rev	Terms verse s	and Cond	

ATTACHMENT 9

SUMMARIES OF GROUNDWATER AND SURFACE WATER ANALYTICAL RESULTS

Page 1 of 2

Summary of Groundwater Analytical Data

College of the Holy Cross College Street, Worcester, Massachusetts

Sample ID	Chemical Name	Concentration	Units
GZ-1	Chlorine, Total Residual	<0.02	mg/L
GZ-1	Chloride	5260	mg/L
GZ-1	Iron, Total	5.46	mg/L
GZ-1	Nitrogen, Ammonia	<0.075	mg/L
GZ-1	Phenolics, Total	< 0.03	mg/L
GZ-1	1,2-Dibromoethane	<0.01	ug/L
GZ-1	1,2-Dibromo-3-chloropropane	<0.01	ug/L
GZ-1	Antimony, Total	< 0.004	mg/L
GZ-1	Arsenic, Total	0.00602	mg/L
GZ-1	Cadmium, Total	0.00177	mg/L
GZ-1	Chromium, Total	0.00988	mg/L
GZ-1	Copper, Total	0.00555	mg/L
GZ-1	Lead, Total	0.00268	mg/L
GZ-1	Nickel, Total	0.02574	mg/L
GZ-1	Selenium, Total	<0.005	mg/L
GZ-1	Silver, Total	0.00548	mg/L
GZ-1	Zinc, Total	0.0157	mg/L
GZ-1	Mercury, Total	<0.0002	mg/L
GZ-1	Chromium, Hexavalent	<0.01	mg/L
GZ-1	Chromium, Trivalent	<0.01	mg/L
GZ-1	1,4-Dioxane	<50	ug/L
GZ-1	Methylene chloride	<1	ug/L
GZ-1	1,1-Dichloroethane	<1.5	ug/L
GZ-1	Carbon tetrachloride	<1	ug/L
GZ-1	1,1,2-Trichloroethane	<1.5	ug/L
GZ-1	Tetrachloroethene	<1	ug/L
GZ-1	1,2-Dichloroethane	<1.5	ug/L
GZ-1	1,1,1-Trichloroethane	<2	ug/L
GZ-1	Benzene	<1	ug/L
GZ-1	Toluene	<1	ug/L
GZ-1	Ethylbenzene	<1	ug/L
GZ-1	Vinyl chloride	<1	ug/L
GZ-1	1,1-Dichloroethene	<1	ug/L
GZ-1	cis-1,2-Dichloroethene	<1	ug/L
GZ-1	Trichloroethene	<1	ug/L
GZ-1	1,2-Dichlorobenzene	<5	ug/L
GZ-1	1,3-Dichlorobenzene	<5	ug/L
GZ-1	1,4-Dichlorobenzene	<5	ug/L
GZ-1	p/m-Xylene	<2	ug/L
GZ-1	o-xylene	<1	ug/L
GZ-1	Xylenes, Total	<1	ug/L

Page 2 of 2

Summary of Groundwater Analytical Data

College of the Holy Cross College Street, Worcester, Massachusetts

Sample ID	Chemical Name	Concentration	Units
GZ-1	Acetone	<10	ug/L
GZ-1	Methyl tert butyl ether	<10	ug/L
GZ-1	Tert-Butyl Alcohol	<100	ug/L
GZ-1	Tertiary-Amyl Methyl Ether	<20	ug/L
GZ-1	TPH, SGT-HEM	<4.4	mg/L
GZ-1	Solids, Total Suspended	310	mg/L
GZ-1	Cyanide, Total	0.006	mg/L
GZ-1	Bis(2-ethylhexyl)phthalate	2.3	ug/L
GZ-1	Butyl benzyl phthalate	<5	ug/L
GZ-1	Di-n-butylphthalate	<5	ug/L
GZ-1	Di-n-octylphthalate	<5	ug/L
GZ-1	Diethyl phthalate	<5	ug/L
GZ-1	Dimethyl phthalate	<5	ug/L
GZ-1	Acenaphthene	0.1	ug/L
GZ-1	Fluoranthene	1.5	ug/L
GZ-1	Naphthalene	<0.1	ug/L
GZ-1	Benzo(a)anthracene	0.94	ug/L
GZ-1	Benzo(a)pyrene	0.46	ug/L
GZ-1	Benzo(b)fluoranthene	1.3	ug/L
GZ-1	Benzo(k)fluoranthene	0.45	ug/L
GZ-1	Chrysene	1	ug/L
GZ-1	Acenaphthylene	<0.1	ug/L
GZ-1	Anthracene	0.33	ug/L
GZ-1	Benzo(ghi)perylene	0.16	ug/L
GZ-1	Fluorene	0.54	ug/L
GZ-1	Phenanthrene	1.3	ug/L
GZ-1	Dibenzo(a,h)anthracene	<0.1	ug/L
GZ-1	Indeno(1,2,3-cd)pyrene	0.2	ug/L
GZ-1	Pyrene	1	ug/L
GZ-1	Pentachlorophenol	<1	ug/L
GZ-1	Aroclor 1016	<0.25	ug/L
GZ-1	Aroclor 1221	<0.25	ug/L
GZ-1	Aroclor 1232	<0.25	ug/L
GZ-1	Aroclor 1242	<0.25	ug/L
GZ-1	Aroclor 1248	<0.25	ug/L
GZ-1	Aroclor 1254	<0.25	ug/L
GZ-1	Aroclor 1260	<0.2	ug/L

APPENDIX VIII

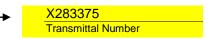
Summary of Surface Water Analytical Data

Page 1 of 1

File No. 01.0173611.00

College of the Holy Cross College Street, Worcester, Massachusetts

Sample ID	Chemical Name	Concentration	Units
SW-1	Total Nitrogen	0.86	mg/L
SW-1	Nitrogen, Ammonia	0.114	mg/L
SW-1	Nitrogen, Total Kjeldahl	0.408	mg/L
SW-1	Nitrogen, Nitrate/Nitrite	0.45	mg/L
SW-1	Hardness	40.8	mg/L
SW-1	Chromium, Hexavalent	<0.01	mg/L
SW-1	Chromium, Trivalent	<0.01	mg/L
SW-1	Iron, Total	0.581	mg/L
SW-1	Antimony, Total	<0.004	mg/L
SW-1	Arsenic, Total	0.00251	mg/L
SW-1	Cadmium, Total	<0.0002	mg/L
SW-1	Chromium, Total	<0.001	mg/L
SW-1	Copper, Total	0.00276	mg/L
SW-1	Lead, Total	0.00121	mg/L
SW-1	Nickel, Total	<0.002	mg/L
SW-1	Selenium, Total	<0.005	mg/L
SW-1	Silver, Total	< 0.0004	mg/L
SW-1	Zinc, Total	0.0149	mg/L
SW-1	Mercury, Total	<0.0002	mg/L



ATTACHMENT 10

WM15 FEE TRANSMITTAL FORM

Enter your transmittal number

Your unique Transmittal Number can be accessed online:

http://www.mass.gov/eea/agencies/massdep/service/approvals/transmittal-form-for-payment.html

Massachusetts Department of Environmental Protection Transmittal Form for Permit Application and Payment

1. Please type or print. A separate	A.	Permit Information												
Transmittal Form		WM15	NPDES Remedi	emediation General Permit										
must be completed		1. Permit Code: 4 to 7 character code from peri		Name of Permit Category										
for each permit		Temporary Construction Site Dewatering												
application.		3. Type of Project or Activity												
2. Make your														
check payable to the Commonwealth	В.	B. Applicant Information – Firm or Individual												
of Massachusetts	College of the Holy Cross													
and mail it with a		Name of Firm - Or, if party needing this approval is an individual enter name below:												
copy of this form to:		Raymond Leonard												
MassDEP, P.O. Box 4062, Boston,		2. Last Name of Individual		t Name of Individual		4. MI								
MA 02211.		1 College Street												
		5. Street Address												
3. Three copies of		Worcester	MA	01610	508-793-2483									
this form will be needed.		6. City/Town	7. State	8. Zip Code	9. Telephone #	10. Ext. #								
		Leonard Raymond		Iraymond@holy										
Copy 1 - the original must		11. Contact Person		12. e-mail address										
accompany your														
permit application. Copy 2 must	C.	Facility, Site or Individual Re	equiring App	roval										
accompany your		College of the Holy Cross												
fee payment.		Name of Facility, Site Or Individual												
Copy 3 should be		1 College Street												
retained for your		2. Street Address												
records		Worcester	MA	01610	508-793-2483									
4. Both fee-paying and exempt		3. City/Town	4. State	5. Zip Code	6. Telephone #	7. Ext. #								
applicants must mail a copy of this		8. DEP Facility Number (if Known) 9. Federal I.D. Number (if Known) 10. BWSC Tracking												
transmittal form to:	D.	D. Application Prepared by (if different from Section B)*												
MassDEP		GZA GeoEnvironmental Inc.												
P.O. Box 4062 Boston, MA		1. Name of Firm Or Individual												
02211		249 Vanderbilt Avenue												
		2. Address												
***		Norwood	MA	02062	781-278-3700									
* Note: For BWSC Permits,		3. City/Town	4. State	5. Zip Code	6. Telephone #	7. Ext. #								
enter the LSP.	'	Jahan Khalili												
		8. Contact Person 9. LSP Number (BWSC Permits only)												
	E. Permit - Project Coordination													
	1.	Is this project subject to MEPA review? If yes, enter the project's EOEA file num Environmental Notification Form is subr	nber - assigned wh											
		Zimioimona realization on le cabi			File Number									
	F.	Amount Due												
DEP Use Only	Sp	ecial Provisions:												
Permit No:	1.	☐ Fee Exempt (city, town or municipal hous There are no fee exemptions for BWSC perm			or less).									
	2.	Hardship Request - payment extensions												
Rec'd Date:	3. 4.	☐ Alternative Schedule Project (according to Homeowner (according to 310 CMR 4.02	o 310 CMR 4.05 and	\ /\ /										
Reviewer:		273550	500.00		4/26/2019									
			Dollar Amount		Date									