

HALEY & ALDRICH, INC. 465 Medford Street, Suite 2200 Boston, MA 02129 (617) 886.7400

Revised 27 June 2019 6 June 2019 File No. 41486-204

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: EPA/OEP RGP Applications Coordinator

Subject: Notice of Intent (NOI)

Temporary Construction Dewatering Proposed Performing Arts Center

College of the Holy Cross One College Street

Worcester, Massachusetts

Dear Ms. Little:

On behalf of our client, The College of the Holy Cross, and in accordance with the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) in Massachusetts, MAG910000, this letter submits a Notice of Intent (NOI) and the applicable documentation as required by the US Environmental Protection Agency (EPA) for temporary construction site dewatering under the RGP. Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission to facilitate off-site discharge of temporary dewatering during construction activities at the proposed Performing Arts Center building, located in the Holy Cross campus in Worcester, Massachusetts.

Site Location and Historical Site Usage

The project site is located on the western side of The College of the Holy Cross campus in Worcester, Massachusetts (see Figure 1, Project Locus). The site is on the side of a hill and is bordered by Hogan Campus Center to the northwest, by an open grassed area to the south, by access roadways and parking to the east, and by parking fields to the west. The site is currently a paved parking field, paved roadways, and pedestrian paths. The surface grades range from approximately El. 648 to the north to El. 669 to the south.

Owner and Operator Information

Owner

College of the Holy Cross
One College Street
Worcester, MA 01610
Contact: Lenny Raymond
Director of Capital Construction

Proposed Activities

The proposed construction consists of a three-story, 40,000 sq. ft. cross-shaped footprint performing arts center, which will house a stage auditorium and orchestra, studio theater, media lab, scene shop, and other amenities. The following finish floor elevations are proposed: first floor El. 650 and the basement (middle and southern portions of the cross shape) El. 635.6. The approximate limits of the proposed performing arts center are shown on Figure 2, Boring Location Plan.

Dewatering System and Off-Site Discharge

During the development activities, it will be necessary to perform temporary construction dewatering to control surface water runoff from precipitation, groundwater seepage, and construction-generated water to enable excavations in-the-dry. Dewatering activities are anticipated to start in July 2019 and are anticipated to be required for up to 3 months. On average, we estimate effluent discharge rates of about 50 gallons per minute (gpm), with occasional peak flows of approximately 150 gpm during significant precipitation events. Temporary construction dewatering is anticipated to be conducted from sumps located in excavations or from dewatering wells installed at the Site.

Temporary construction dewatering includes piping and discharge to storm drains located on or near the Site that ultimately discharge to the Mill Brook, located east of the Site. The proposed discharge route and outfall are shown on Figure 4, Proposed Discharge Route.

An effluent treatment system will be designed by the Contractor to meet the 2017 NPDES RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter (and other treatment components, if needed) to remove suspended solids and undissolved chemical constituents, as shown on Figure 3, Proposed Treatment System Schematic.

Groundwater Quality Data

To assess groundwater quality to support this NOI, a groundwater sample was obtained from observation well HA16-B9-OW (see Figure 2) in May 2019. The collected sample was submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), polyaromatic hydrocarbons (PAHs), total metals, total petroleum hydrocarbons (TPH), pesticides, polychlorinated biphenyls (PCBs), total suspended solids (TSS), chloride, total cyanide, total phenolics, and total residual chlorine.

Refer to Table I for a summary of groundwater analytical data. The recent groundwater analyses detected concentrations of total copper, total suspended solids, and pH above the 2017 NPDES RGP Project-Specific Effluent Limits. No compounds were detected above the applicable MCP reportable concentrations (RCGW-2). The construction dewatering effluent at the Site will be managed under a Remediation General Permit. The location of the observation well HA16-B9-OW is shown on Figure 2.

Receiving Water Quality Information and Dilution Factor

On 3 May 2019, Haley & Aldrich collected a receiving water sample from the Mill Brook. The Mill Brook has been identified as the surface water to which dewatering effluent from the Site will eventually discharge. The surface water sample was collected and submitted to Alpha for chemical analysis of total metals and ammonia. Field parameters, including pH and temperature, were measured from surface water sample at the time of sampling. The results of water quality testing are summarized in Table I.

The pH and temperature readings collected in the field were used to calculate the Site Water Quality Based Effluent Limitations (WQBELs). The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by Massachusetts Department of Environmental Protection (MassDEP) on 23 May 2019. The effluent limitations calculated from the WQBEL spreadsheet are included for reference in Table I.

Effluent Criteria Determination

The EPA suggested WQBEL Calculation spreadsheet was used to calculate the effluent criteria for the Site. Groundwater and Receiving Water data were input, and the resulting criteria was tabulated in the attached Table I. As requested by EPA, the Microsoft Excel spreadsheet for the WQBEL calculation will be submitted to the EPA via email, for their review upon submission of this NOI.

Endangered Species Action Eligibility Determination

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix C. Based on the results of the determination, the project and action area are considered to meet FWS Criterion B. One listed species has been established to be present within the project action area, the Northern Long-eared Bat. Discharges and related activities are not likely to adversely affected this listed species.

Historic Property Review

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), the area of the existing parking lot (location of proposed work) and the adjacent Hogan Campus Center building are not listed as historic properties, although there are many buildings on the Holy Cross campus which are. Proposed discharges

and discharge-related activities are not considered to have the potential to cause effects on the historic properties. The discharge is considered to meet Criterion B. Documentation is included in Appendix B.

Ethanol Discussion

The Site history does not suggest that ethanol was stored at the Site, or that a petroleum product containing ethanol was released at the Site, therefore analysis for ethanol was not conducted. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to Site history, there are no known fuel-related storage or handling activities conducted at the site.

Appendices

The completed "Suggested Notice of Intent" (NOI) form as provided in the RGP is enclosed in Appendix A. The Site owner is the College of the Holy Cross, who will act as Owner and Operator. Haley & Aldrich is monitoring the dewatering activities on behalf of Holy Cross in accordance with the requirements for this NOI submission.

Appendices B and C include the National Register of Historic Places and Endangered Species Act Documentation, respectively. Copies of the groundwater testing laboratory data reports are provided in Appendix D. Since the Site Contractor's dewatering submittal is not yet available, Appendix E provides details of typical the dewatering system components used to remove suspended solids and undissolved chemical constituents. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI as requested by EPA.

Closing

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Kenneth N. Alepidis, P.G.

Senior Technical Specialist - Geology

my M him

Douglas M. Lindsay, P.G., LSP

Senior Project Manager

Attachments:

Table I – Summary of Groundwater Quality Data

Figure 1 - Site Locus

Figure 2 – Site and Groundwater Monitoring Well Location Plan

Figure 3 – Proposed Discharge Route

Appendix A – Notice of Intent (NOI) for Remediation General Permit (RGP)

Appendix B – National Register of Historic Places and Massachusetts **Historical Commission Documentation**

Appendix C – Endangered Species Act Documentation

Appendix D – Laboratory Data Reports

Appendix E – Contractor Dewatering Cut Sheets and SDSs

Performing NPDES RGP TextRev-F.docx

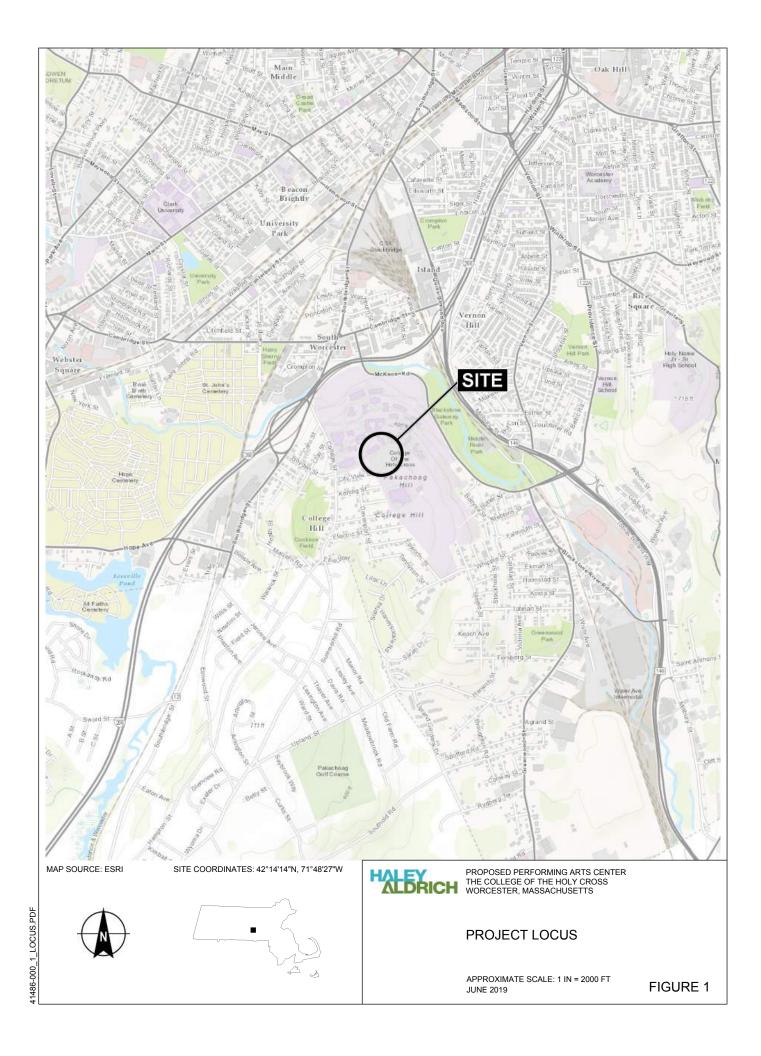
TABLE I SUMMARY OF WATER QUALITY DATA PROPOSED PERFORMING ARTS CENTER WORCERSTER, MA FILE NO. 41486-204

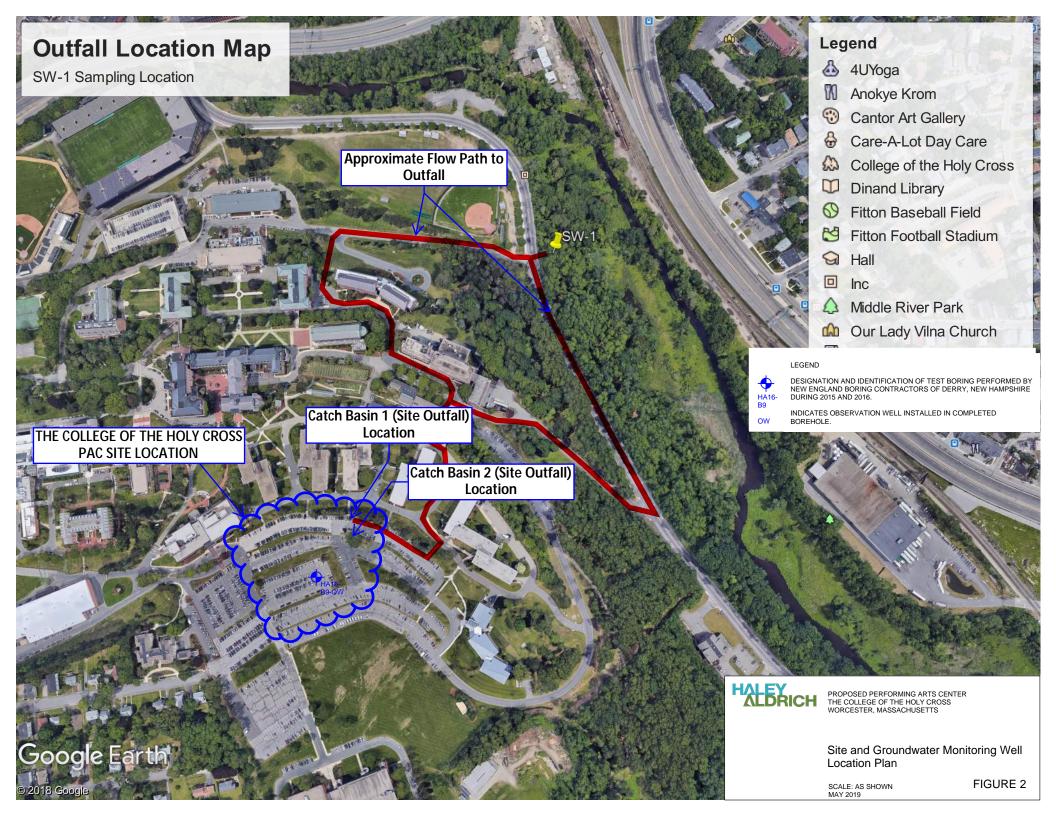
Location	MCP 2014	NPDES RGP	Site Source Water Sample	Receiving Water Sample
Sample Name	RCGW-2	Project Specific	HA16-B9-OW-1245	SW-1-1645
Sample Date	Reportable Concentrations	Criteria	5/3/2019	5/3/2019
Lab Sample ID	Concentrations		L1918597-01	L1918597-02
Volatile Organic Compounds (mg/L)				
1,1,1-Trichloroethane	0.2	0.2	ND(0.002)	
1,1,2-Trichloroethane	0.005	0.005	ND(0.0015)	-
1,1-Dichloroethane	0.07	0.07	ND(0.0015)	-
1,2-Dibromoethane	0.00002	0.00005	ND(0.001)	-
1,2-Dichlorobenzene	0.6	0.6	ND(0.005)	-
1,2-Dichloroethane	0.005	0.005	ND(0.0015)	-
1,3-Dichlorobenzene	0.1	0.32	ND(0.005)	-
1,4-Dichlorobenzene	0.005	0.005	ND(0.005)	-
Acetone	6.3	7.97	ND(0.01)	-
Benzene Carbon tetrachloride	0.005	0.005+ 0.0044	ND(0.001)	-
Ethylhenzene	0.002	0.0044	ND(0.001) ND(0.001)	-
Methyl tert butyl ether	0.07	0.07	ND(0.001)	
Methylene chloride	0.005	0.0046	ND(0.001)	-
Tert-Butyl Alcohol	NA	0.12	ND(0.1)	-
Tertiary-Amyl Methyl Ether	NA	0.09	ND(0.02)	-
Tetrachloroethene	0.005	0.005	ND(0.001)	-
Toluene	1	+	ND(0.001)	-
Trichloroethene	0.005	0.005	ND(0.001)	-
Vinyl chloride	0.002	0.002	ND(0.001)	-
Xylenes, Total	3	+	ND(0.001)	-
cis-1,2-Dichloroethene	0.02	0.07	ND(0.001)	-
o-Xylene	3	+	ND(0.001)	-
p/m-Xylene	3	+	ND(0.002)	-
1,4-Dioxane	0.0003	0.2	ND(0.05) ND	-
Total VOCs by GC/MS Total BTEX	NA NA	NA 0.1	ND ND	-
TOTAL DIES	190	0.1	ND	-
Semi-Volatile Organic Compounds (mg/L)	l			
Bis(2-ethylhexyl)phthalate	0.006	0.101++	ND(0.0022)	-
Butyl benzyl phthalate	1	++	ND(0.005)	-
Di-n-butylphthalate	0.5	++	ND(0.005)	-
Di-n-octylphthalate	10	++	ND(0.005)	-
Diethyl phthalate	2	++	ND(0.005)	-
Dimethyl phthalate	0.3	**	ND(0.005)	-
Acenaphthene	0.02	**	ND(0.0001)	-
Acenaphthylene Anthracene	0.03		ND(0.0001) ND(0.0001)	-
Benzo(a)anthracene	0.001	0.001*	ND(0.0001) ND(0.0001)	
Benzo(a)pyrene	0.0002	0.001*	ND(0.0001)	
Benzo(b)fluoranthene	0.001	0.001*	ND(0.0001)	
Benzo(ghi)perylene	0.02	**	ND(0.0001)	-
Benzo(k)fluoranthene	0.001	0.001*	ND(0.0001)	-
Chrysene	0.002	0.001*	ND(0.0001)	-
Dibenzo(a,h)anthracene	0.0005	0.001*	ND(0.0001)	-
Fluoranthene	0.09	**	ND(0.0001)	-
Fluorene	0.03	**	ND(0.0001)	-
Indeno(1,2,3-cd)pyrene	0.0005	0.001*	ND(0.0001)	-
Naphthalene Pentachlorophenol	0.14 0.001	0.02 0.001*	ND(0.0001)	-
Pentachiorophenoi Phenanthrene	0.001	0.001*	ND(0.001) ND(0.0001)	-
Phenanthrene Pyrene	0.04		ND(0.0001) ND(0.0001)	-
Total Phthalates	NA	0.19++	ND(0.0001)	-
Total Group I PAHs	NA NA	0.001*	ND ND	
Total Group II PAHs	NA NA	0.1*	ND	-
Total Petroleum Hydrocarbons (mg/L)	_	_	NID(4)	
TPH, SGT-HEM	5	5	ND(4)	-
Total Metals (mg/L)	l			
Antimony, Total	8	0.206	ND(0.004)	ND(0.004)
Arsenic, Total	0.9	0.104	0.0028	0.00299
Cadmium, Total	0.004	0.0102	0.00185	ND(0.0002)
Chromium, Total	0.3	0.323	0.00227	0.00143
Copper, Total	100	0.0138	0.01978	0.1012
Iron, Total	NA	5	0.98	0.414
Lead, Total	0.01	0.16	ND(0.001)	0.1066
Mercury, Total	0.02	0.000739	ND(0.0002)	ND(0.0002)
Nickel, Total	0.2	1.45	0.0396	0.00342
Selenium, Total	0.1	0.2358	0.01754	ND(0.005)
Silver, Total	0.007	0.0351	0.00859 0.04269	ND(0.0004)
Zinc, Total	0.9	0.42	0.04209	0.02654
PCBs (mg/L)	l			
Total PCBs	0.005	***	ND	-
	İ	I		
Other (mg/L)				
Chlorine, Total Residual	NA 0.0	0.106	ND(0.02)	-
Chromium, Hexavalent	0.3	0.323	ND(0.01)	-
Chromium, Trivalent	0.6	0.323	ND(0.01)	-
Cyanide, Total Nitrogen, Ammonia	0.03 NA	0.0138 Report	ND(0.005) 0.11	0.166
Phenolics, Total	NA NA	1.08	ND(0.03)	0.100
Temperature (°C)	NA NA	NA	12.6	12.2
	NA NA	6.5 - 8.5	5.64	7.24
pH				
pH Solids, Total Suspended	NA NA	30	32	
		30 Report	32 5060	

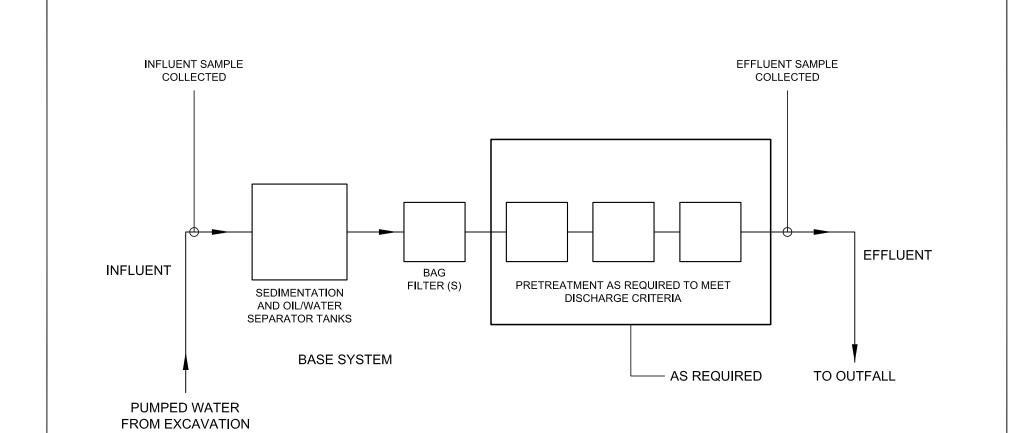
- :: Not analyzed
 mg/L: milligram per liter
 NN: Not Applicable
 ND (2.5): Result not detected above reporting limit (shown in parentheses)

- NOTES:

 1. Analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


 3. + Indicates effluent limit is limited as total BTEX of 0.1 mg/l.


 4. *: Indicates effluent limit is limited as total Group I PAHs of 0.001 mg/l.


 5. **: Indicates effluent limit is limited as total Group I PAHs of 0.1 mg/l.

 6. ***: Indicates compliance limits are equal to the minimum level (ML) of the test method

 7. pH and Temperature are collected in the field.

LEGEND:

→ DIRECTION OF FLOW

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

PROPOSED PERFORMAING ARTS CENTER THE COLEGE OF THE HOLY CROSS PHORCESTER, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE JUNE 2019

FIGURE 3

APPENDIX A

Notice of Intent (NOI) for Remediation General Permit (RGP)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:			Site address:					
	Proposed Performing Arts Center	Street:	1 College Street					
		City:	Worcester		State: MA	Zip: 01610		
2. Site owner The College of the Holy Cross		Contact Person:	Lenny Raymond					
		Telephone:	508-793-2438	Email: ra	aymond@	holycross.edu		
		Mailing address:	:					
Owner is (check one): ☐ Federal ☐ State/Tribal ▼ Private ☐ Other; if so, specify:		Street:	1 College Street					
		City:	Worcester Sta			Zip: 01610		
3. Site operator, i	f different than owner	Contact Person:						
		Telephone: Email:						
		Mailing address:						
		Street:						
		City:			State:	Zip:		
4. NPDES permit	number assigned by EPA: N/A	5. Other regulatory program(s) that apply to the site (check all that apply):						
		☐ MA Chapter	21e; list RTN(s):	□ CERCL	LΑ			
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:				□ UIC Pro	ogram			
			vater Management Permit or Release Detection Permit:	\square POTW	Pretreatment	i.		
		Groundwater	☐ CWA Section 404					

В.	Receiving	water	info	rmation:
₽.	11000111115	" att	111101	IIII

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classification of receiving water(s):					
Mill Brook / Middle River	MA51-02	В					
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River							
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one): X Yes \square	No					
Are sensitive receptors present near the site? (check one): □ Yes 🕱 No If yes, specify:							
3. Indicate if the receiving water(s) is listed in the State's Inpollutants indicated. Also, indicate if a final TMDL is avait 4.6 of the RGP.							
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire. 2.9 cfs							
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. DF 9.7							
6. Has the operator received confirmation from the appropriate yes, indicate date confirmation received: 5/23/2019							
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in acc	ordance with the instruction in Appendix VIII?					
(check one): X Yes □ No							

C. Source water information:

1. Source water(s) is (check any that apply):			
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one): ★ Yes □ No	RGP in accordance with the instruction in Appendix VIII? (check one): ☐ Yes ☐ No	than the receiving water; if so, indicate waterbody:	

2. Source water contaminants: None detected above RGP effluent	limits
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes 🔀 No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes 🕱 No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge 🗶 New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Outfall 001 (via 2 catch basin locations)	42.240252
	-71.803591
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water 🛛 Indirect discharge, if so, specify:
☐ A private storm sewer system 🕱 A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	
	·
	es No City of Worcester Sewer Department has been notified
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \Box Yes \Box No, if so, explain, with an estimated timeframe for N/A
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ▼ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): July 2019 - October 2019	
Indicate if the discharge is expected to occur over a duration of:	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): X Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 		d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		TD 4	D 4 41	Inf	Influent Effluent Limitation		nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		Χ	1 4	500NH3-BI	H 75	110	110	Report mg/L	
Chloride		Χ	1	300.0	25000	5,060,000	5,060,000	Report µg/l	
Total Residual Chlorine	Х		1	4500CL	20	ND	ND	0.2 mg/L	106 ug/L
Total Suspended Solids		Χ	1	2540D	5000	32,000	32,000	30 mg/L	_
Antimony Total	X		1	6020A	4	ND	ND	206 μg/L	6181
Arsenic Total		Χ	1	6020A	1	2.8	2.8	104 μg/L	71
Cadmium Total		Χ	1	6020A	0.2	1.85	1.85	10.2 μg/L	0.38
Chromium III	X		1	6020A	1	ND	ND	323 µg/L	1199
Chromium VI	Х		1	3500CR	10	ND	ND	323 μg/L	110.4
Copper Total		Χ	1	6020A	1	19.78	19.78	242 μg/L	13.8
Iron Total		Χ	1	200.7	50	980	980	5,000 μg/L	6073
Lead Total	Х		1	6020A	0.5	ND	ND	160 μg/L	5.7
Mercury Total	Х		1	245.1	0.2	ND	ND	0.739 μg/L	8.75
Nickel Total		Χ	1	6020A	2	39.6	39.6	$1,450~\mu g/L$	712.8
Selenium Total		Χ	1	6020A	5	17.54	17.54	$235.8 \mu g/L$	43.8
Silver Total		Χ	1	6020A	0.4	8.59	8.59	35.1 μg/L	80.4
Zinc Total		Χ	1	6020A	10	42.6	42.6	420 μg/L	1476.5
Cyanide Total	X		1	4500CN	5	ND	ND	178 mg/L	50.2
B. Non-Halogenated VOCs									
Total BTEX	Χ		1	8260C	NA	ND	ND	100 μg/L	
Benzene	Χ		1	8260C	1	ND	ND	5.0 μg/L	
1,4 Dioxane	Х		1	8260C-S	M 5	ND	ND	200 μg/L	
Acetone	Х		1	8260C	10	ND	ND	7.97 mg/L	
Phenol	Х		1	8270D	30	ND	ND	1,080 µg/L	2897

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	Х		1	8260C	0.5	ND	ND	4.4 μg/L	15.5
1,2 Dichlorobenzene	Χ		1	8260C	2.5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	Χ		1	8260C	2.5	ND	ND	320 μg/L	
1,4 Dichlorobenzene	Χ		1	8260C	2.5	ND	ND	5.0 μg/L	
Total dichlorobenzene	Χ		1	8260C	NA	NA	NA	763 µg/L in NH	
1,1 Dichloroethane	X		1	8260C	0.75	ND	ND	70 μg/L	
1,2 Dichloroethane	Χ		1	8260C	0.5	ND	ND	5.0 µg/L	
1,1 Dichloroethylene	X		1	8260C	0.5	ND	ND	3.2 μg/L	
Ethylene Dibromide	X		1	8260C	2.0	ND	ND	0.05 μg/L	
Methylene Chloride	Χ		1	8260C	3.0	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	Χ		1	8260C	0.5	ND	ND	200 μg/L	
1,1,2 Trichloroethane	Χ		1	8260C	0.75	ND	ND	5.0 μg/L	
Trichloroethylene	Χ		1	8260C	0.5	ND	ND	5.0 μg/L	
Tetrachloroethylene	Χ		1	8260C	0.5	ND	ND	5.0 μg/L	31.9
cis-1,2 Dichloroethylene	Χ		1	8260C	0.5	ND	ND	70 μg/L	
Vinyl Chloride	Х		1	8260C	1.0	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOCs	S								
Total Phthalates	Х		1	8270D	NA	ND	ND	190 μg/L	
Diethylhexyl phthalate	Х		1	8270D	3.0	ND	ND	101 μg/L	21.2
Total Group I PAHs	Х		1	8270D	NA	ND	ND	1.0 μg/L	
Benzo(a)anthracene	X		1	8270D	0.1	ND	ND		0.037
Benzo(a)pyrene	Х		1	8270D	0.1	ND	ND		0.037
Benzo(b)fluoranthene	X		1	8270D	0.1	ND	ND		0.037
Benzo(k)fluoranthene	Х		1	8270D	0.1	ND	ND	As Total PAHs	0.037
Chrysene	Х		1	8270D	0.1	ND	ND		0.037
Dibenzo(a,h)anthracene	Х		1	8270D	0.1	ND	ND		0.037
Indeno(1,2,3-cd)pyrene	Χ		1	8270D	0.1	ND	ND		0.037

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	X		1	8270D	NA	ND	ND	100 μg/L	
Naphthalene	X		1	8260C	2.5	ND	ND	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	Х		1	608	NA	ND	ND	0.000064 μg/L	
Pentachlorophenol	Х		1	8270D	0.8	ND	ND	1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	Х		1	1664A	NA	ND	ND	5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether	Χ		1	8260C	1.0	ND	ND	70 μg/L	
tert-Butyl Alcohol	Χ		1	8260C	10	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	Х		1	8260C	2	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperature	, hardness,	salinity, LC	50, addition	al pollutan	ts present);	if so, specify:			
Handras		V		000 7	0.000	200	000		
Hardness		X	1	200.7	0.660	298	298		
pH		Х	1			5.64	5.64		
See Attached Table 1									

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply) Following will be applied IF REQUIRED per effluent monitoring sampling							
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☒ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption							
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:							
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.							
Prior to discharge, collected water will be routed through a sedimentation tank and a bag filter and other necessary tr components (potentially: Ion exchange, GAC, oil/water seperator), to remove suspended solids and undissolved che constituents, as shown on Figure 3 of the NPDES permit application.							
Identify each major treatment component (check any that apply):							
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter							
☐ Chemical feed tank ☐ Air stripping unit ☒ Bag filter ☐ Other; if so, specify:							
Indicate if either of the following will occur (check any that apply):							
☐ Chlorination ☐ De-chlorination							
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.							
Indicate the most limiting component: 150 gpm							
Is use of a flow meter feasible? (check one): ☐ Yes ☐ No, if so, provide justification:							
Provide the proposed maximum effluent flow in gpm. 150 gpm							
Provide the average effluent flow in gpm. 50 gpm							
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:							
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): X Yes □ No							

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): $\mbox{\ensuremath{\mbox{N}}}$ Yes $\mbox{\ensuremath{\mbox{\mbox{\mbox{on}}}}}$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
X FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🕱 Yes 🗆 No
Find attached
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🛮 Yes 🗆 No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
🕅 Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☒ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes X N6A
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ▼ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☒ Yes □ No

J.	Cer	tific	ation	rea	uirement
----	-----	-------	-------	-----	----------

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in act that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
BMPP certification statement: A BMPP meeting the requirements of this general permit will be implemented upon initiat	ion of discharge.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □ N/A
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🏿 No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ☒ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ⊠ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □ No □ NA 🕱
☐ Other; if so, specify:	
Signature: Date	e: 6-13-2019
Print Name and Title: College of the Holy Cross	

APPENDIX B

National Register of Historic Places and Massachusetts Historical Commission Documentation Welcome to MACRIS http://mhc-macris.net/

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

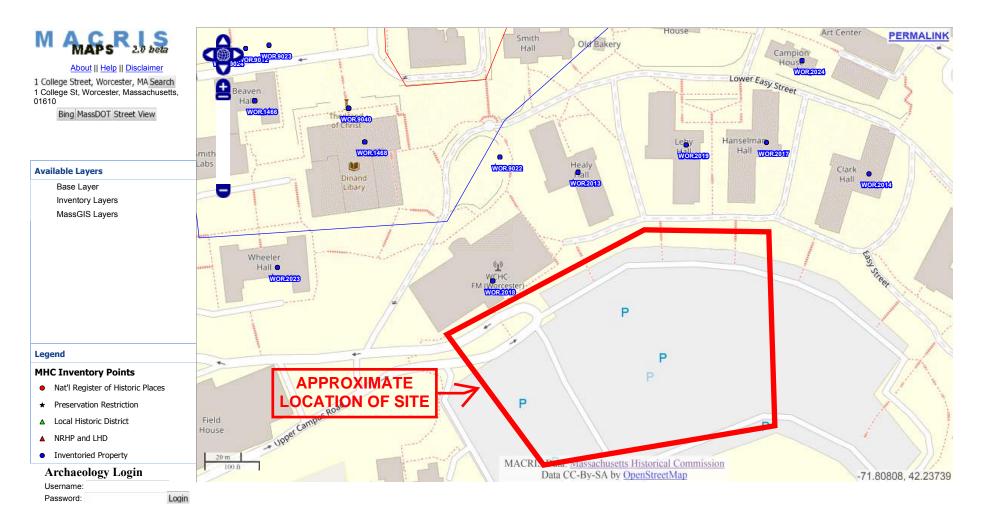
Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

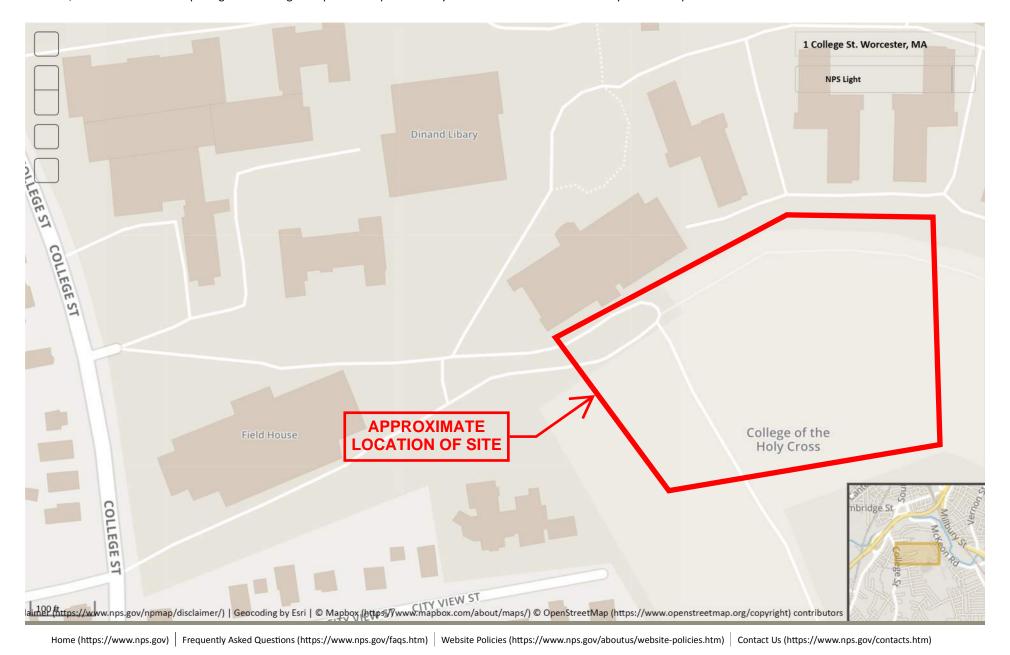
Click here to begin your search of the MACRIS database.



Home | Search | Index | Feedback | Contact

1 of 1 6/21/17, 2:46 PM

MHC MACRIS Maps 2.0 Beta http://maps.mhc-macris.net/


MACRIS Maps Last Updated 04/05/2019

1 of 1 5/14/2019, 1:04 PM

National Register of Historic Places

National Park Service
U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. Data last updat...

1 of 2 5/14/2019, 1:13 PM

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Worcester; Street Name: College; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
WOR.1462	Fenwick Hall - Holy Cross College	College St	Worcester	r 1840
WOR.1463	O'Kane Hall - Holy Cross College	College St	Worcester	1895
WOR.1464	Alumni Hall - Holy Cross College	College St	Worcester	1904
WOR.1465	Carlin Hall - Holy Cross College	College St	Worcester	1922
WOR.1466	Beaven Hall - Holy Cross College	College St	Worcester	c 1922
WOR.1467	Saint Joseph's Chapel - Holy Cross College	College St	Worcester	1923
WOR.1468	Dinand Library - Holy Cross College	College St	Worcester	1927
WOR.1469	Kimball Hall - Holy Cross College	College St	Worcester	1934
WOR.2013	Bishop Healy Hall - Holy Cross College	College St	Worcester	1962
WOR.2014	Clark Hall - Holy Cross College	College St	Worcester	1962
WOR.2015	Football Stadium - Holy Cross College	College St	Worcester	
WOR.2016	Haberlin Hall - Holy Cross College	College St	Worcester	1959
WOR.2017	Hanselman Hall - Holy Cross College	College St	Worcester	1954
WOR.2018	Hogan, Henry M. Campus Center - Holy Cross College	College St	Worcester	1967
WOR.2019	Lehy Hall - Holy Cross College	College St	Worcester	1954
WOR.2020	Loyola Hall - Holy Cross College	College St	Worcester	1965
WOR.2021	Mulledy Hall - Holy Cross College	College St	Worcester	1966
WOR.2022	O'Neil Memorial Hall - Holy Cross College	College St	Worcester	1951
WOR.2023	Wheeler Hall - Holy Cross College	College St	Worcester	1940
WOR.2024	Campion Hall - Holy Cross College	College St	Worcester	
WOR.9022	Isaiah Sculpture	1 College St	Worcester	1976
WOR.1441	McGauley, Michael Two-Decker	34 College St	Worcester	c 1892
WOR.1477	Williams, William A. Cottage	111 College St	Worcester	c 1860
WOR.1478	Dutton, George H. House	125 College St	Worcester	c 1888
WOR.9012	Die Nacht Sculpture	Linden Ln	Worcester	1930
WOR.9023	L'Arrivee Sculpture	Linden Ln	Worcester	1965

Tuesday, May 14, 2019 Page 1 of 2

Inv. No.	Property Name	Street	Town	Year
WOR.9024	L'Offrande Sculpture	Linden Ln	Worcester	1936
WOR.9040	The Hand of Christ Sculpture	Linden Ln	Worcester	1966

Tuesday, May 14, 2019 Page 2 of 2

Ref#	Property Name	State	City	Street & Number	Listed Date
80000595	Abbott Street School	MASSACHUSETTS	Worcester	36 Abbott St.	3/5/1980
30000584	Adams, Elwood, Store	MASSACHUSETTS	Worcester	156 Main St.	3/5/1980
0000483	Adriatic Mills	MASSACHUSETTS	Worcester	3-35 Armory St.	3/5/1980
9002392	Ahern, Catherine, Three-Decker	MASSACHUSETTS	Worcester	215 Cambridge St.	2/9/1990
0000544	Alexander, Arad, House	MASSACHUSETTS	Worcester	53 Waverly St.	3/5/1980
0000579	Allen, Charles, House	MASSACHUSETTS	Worcester	65 Elm St.	3/5/1980
8000018	American Antiquarian Society	MASSACHUSETTS	Worcester	185 Salisbury St.	11/24/196
9002355	Anderson, Ludwig, Three-Decker	MASSACHUSETTS	Worcester	4 Fairbanks St.	2/9/1990
30000598	Armsby Block	MASSACHUSETTS	Worcester	144-148 Main St.	3/5/1980
30000542	Ash Street School	MASSACHUSETTS	Worcester	Ash St.	3/5/1980
30000489	Ashworth and Jones Factory	MASSACHUSETTS	Worcester	1511 Main St.	3/5/1980
88000429	Aurora Hotel	MASSACHUSETTS	Worcester	652660 Main St.	4/28/1988
30000611	Babcock Block	MASSACHUSETTS	Worcester	600 Main St.	3/5/1980
39002445	Baker, Peter, Three-Decker	MASSACHUSETTS	Worcester	90 Vernon St.	2/9/1990
80000614	Bancroft Hotel	MASSACHUSETTS	Worcester	50 Franklin St.	3/5/1980
30000524	Bancroft Tower	MASSACHUSETTS	Worcester	Bancroft Tower Rd.	3/5/1980
30000569	Bannister, Emory, House	MASSACHUSETTS	Worcester	3 Harvard St.	3/5/1980
30000592	Barker, Richard, Octagon House	MASSACHUSETTS	Worcester	312 Plantation St.	3/5/1980
39002429	Battelle, Marion, Three-Decker	MASSACHUSETTS	Worcester	13 Preston St.	2/9/1990
30000538	Beacon Street Firehouse	MASSACHUSETTS	Worcester	108 Beacon St.	3/5/1980
9002377	Beaver Street Historic District	MASSACHUSETTS	Worcester	3139 Beaver St.	2/9/1990
0000560	Bentley, George, House	MASSACHUSETTS	Worcester	9 Earle St.	3/5/1980
0000300	Bliss Building	MASSACHUSETTS	Worcester	26 Old Lincoln St.	3/5/1980
39002417	Blodgett, Lydia, Three-Decker	MASSACHUSETTS	Worcester	167 Eastern Ave.	2/9/1990
30000593	Bloomingdale Firehouse	MASSACHUSETTS	Worcester	676 Franklin St.	3/5/1980
30000562	Bloomingdale School	MASSACHUSETTS	Worcester	327 Plantation St.	3/5/1980
30000590	Borden-Pond House	MASSACHUSETTS	Worcester	40 Laurel St.	3/5/1980
39002414	Bostrom, Eric, Three-Decker	MASSACHUSETTS	Worcester	152 Eastern Ave.	2/9/1990
00001394	Boulevard Diner	MASSACHUSETTS	Worcester	155 Shrewsbury St.	11/22/200
89002360	Bousquet, Henry, Three-Decker	MASSACHUSETTS	Worcester	8/10 Fairmont Ave.	2/9/1990
30002500	Boynton and Windsor	MASSACHUSETTS	Worcester	718 and 720 Main St.	3/5/1980
	•				
30000635	Brightside Apartments	MASSACHUSETTS	Worcester	2 King St.	3/5/1980
80000516	Brooks, John, House	MASSACHUSETTS	Worcester	12 Nelson Pl.	3/5/1980
30000487	Cambridge Street Firehouse	MASSACHUSETTS	Worcester	534 Cambridge St.	3/5/1980
30000484	Cambridge Street School	MASSACHUSETTS	Worcester	510 Cambridge St.	3/5/1980
39002415	Carlson, Eric, Three-Decker	MASSACHUSETTS	Worcester	154 Eastern Ave.	2/9/1990
80000625	Castle Street Row	MASSACHUSETTS	Worcester	4-18 Castle St.	3/5/1980
01000120	Castle Street RowBoundary Increase	MASSACHUSETTS	Worcester	20-24 Castle St.	2/16/2001
80000604	Cathedral of St. Paul	MASSACHUSETTS	Worcester	38 Chatham St.	3/5/1980
03001206	Chadwick Square Diner	MASSACHUSETTS	Worcester	95 rear Prescott St.	11/26/200
80000518	Chadwick-Brittan House	MASSACHUSETTS	Worcester	309 Lincoln St.	3/5/1980
80000596	Chamberlain, Charles, House	MASSACHUSETTS	Worcester	373 Pleasant St.	3/5/1980
80000530	Chamberlain-Flagg House	MASSACHUSETTS	Worcester	2 Brookshire Dr.	3/5/1980
30000547	Clark University	MASSACHUSETTS	Worcester	Clark University Campus	3/5/1980
80000571	Cobb, George, House	MASSACHUSETTS	Worcester	24 William St.	3/5/1980
80000610	Colton's Block	MASSACHUSETTS	Worcester	588 Main St.	3/5/1980
30000563	Copeland, Samuel, House	MASSACHUSETTS	Worcester	31 Harvard St.	3/5/1980
00001286	Corner Lunch	MASSACHUSETTS	Worcester	133 Lamartine St.	11/15/200
39002383	Crabtree, Thomas, Three-Decker	MASSACHUSETTS	Worcester	22 Haynes St.	2/9/1990
30000552	Crawford, Elias, House	MASSACHUSETTS	Worcester	3 Norwood St.	3/5/1980
30000532	Crompton Loom Works	MASSACHUSETTS	Worcester	132-142 Green St.	3/5/1980
	•				
39002379	Crystal Street Historic District	MASSACHUSETTS	Worcester	3034 Crystal St.	2/9/1990
30000526	Daniels, Frederick, House	MASSACHUSETTS	Worcester	148 Lincoln St.	3/5/1980
30000546	Dartmouth Street School	MASSACHUSETTS	Worcester	13 Dartmouth St.	3/5/1980
30000578	Davis, Isaac, House	MASSACHUSETTS	Worcester	1 Oak St.	3/5/1980
30000574	Davis, Joseph, House	MASSACHUSETTS	Worcester	41 Elm St.	3/5/1980
39002398	Davis, Rodney, Three-Decker	MASSACHUSETTS	Worcester	62 Catharine St.	2/9/1990
39002336	Davis, Wesley, Three-Decker	MASSACHUSETTS	Worcester	7 Albert St.	2/9/1990
		MASSACHUSETTS			
09000618	Day Building		Worcester	300-310 Main St.	9/13/1978
02001471	Dean, Frank L. and Mabel H., House	MASSACHUSETTS	Worcester	10 Cedar St.	12/5/2002
39002390	Dean, Mary, Three-Decker	MASSACHUSETTS	Worcester	130 Belmont St.	2/9/1990
39002396	Delsignore, Louis, Three-Decker	MASSACHUSETTS	Worcester	12 Imperial Rd.	2/9/1990
80000580	Dewey Francis, House Dodge Block and Sawyer Building, Bancroft	MASSACHUSETTS	Worcester	71 Elm St.	3/5/1980
22000455		A A A C C A C I I C C T T C	14/	CO Feed His Co	0.14=1
02000155	Trust Building	MASSACHUSETTS	Worcester	60 Franklin St.	3/15/2002
39002427	Dodge, Helen, Three-Decker	MASSACHUSETTS	Worcester	570 Pleasant St.	2/9/1990
39002406	Doran, Thomas F., Three-Decker	MASSACHUSETTS	Worcester	27 John St.	2/9/1990
30000627	Dowley-Taylor House	MASSACHUSETTS	Worcester	770 Main St.	3/5/1980
30000621	Downing Street School	MASSACHUSETTS	Worcester	92 Downing St.	3/5/1980
39002384	Drew, Elvira, Three-Decker	MASSACHUSETTS	Worcester	42 Abbott St.	2/9/1990
	Duke, Philip, Three-Decker	MASSACHUSETTS	Worcester	7 Maxwell St.	2/9/1990
39002425	Dworman, David, Three-Decker	MASSACHUSETTS	Worcester	159 Providence St.	2/9/1990
39002425 39002430			144	10 E. Worcester St.	3/5/1980
	East Worcester School-Norcross Factory	MASSACHUSETTS	Worcester	TO E. WOICESTE! St.	3/3/1300
9002430 0000618	East Worcester School-Norcross Factory Elizabeth Street School	MASSACHUSETTS MASSACHUSETTS	Worcester	31 Elizabeth St.	
9002430 0000618 0000589	Elizabeth Street School	MASSACHUSETTS	Worcester	31 Elizabeth St.	3/5/1980
9002430	•				3/5/1980 3/5/1980 7/1/1970 2/9/1990

Ref#	Property Name	State	City	Street & Number	Listed Date
0000601	English High School	MASSACHUSETTS	Worcester	20 Irving St.	3/5/1980
0000608	Enterprise Building	MASSACHUSETTS	Worcester	540 Main St.	3/5/1980
9002438	Erikson, Knut, Three-Decker Euclid AvenueMontrose Street Historic	MASSACHUSETTS	Worcester	19 Stanton St. Along Euclid Ave. and Montrose St., between Vernon St. and	2/9/1990
9002357	District	MASSACHUSETTS	Worcester	Perry Ave.	2/9/1990
0000594	Fairlawn	MASSACHUSETTS	Worcester	189 May St.	3/5/1980
002372	Fay Street Historic District	MASSACHUSETTS	Worcester	46 Fay St.	2/9/1990
000631	Fitch, C.H., House	MASSACHUSETTS	Worcester	15 Oread St.	3/5/1980
0000515	Flagg, Amos, House	MASSACHUSETTS	Worcester	246 Burncoat St.	3/5/1980
0000515	Flagg, Benjamin, House	MASSACHUSETTS	Worcester	136 Plantation St.	3/5/1980
0000362		MASSACHUSETTS	Worcester	79 Florence St.	2/9/1990
	Flagg, Levi, Three-Decker				
002447	Fontaine, George, Three-Decker	MASSACHUSETTS	Worcester	141 Vernon St.	2/9/1990
000636	Forbes, William Trowbridge, House	MASSACHUSETTS	Worcester	23 Trowbridge Rd.	3/5/1980
0000529	Forest Hill Cottage	MASSACHUSETTS	Worcester	22 Windsor St.	3/5/1980
0000482	Freeland Street School	MASSACHUSETTS	Worcester	12 Freeland St.	3/5/1980
002387	Friberg, Andrew, Three-Decker	MASSACHUSETTS	Worcester	26 Ames St.	2/9/1990
000303	G.A.R. Hall	MASSACHUSETTS	Worcester	55 Pearl St.	3/13/1975
000523	Gabriel, George, House	MASSACHUSETTS	Worcester	31 Lenox St.	3/5/1980
000561	Gale, George, House	MASSACHUSETTS	Worcester	15 Elizabeth St.	3/5/1980
002356	Giguere, Thomas, Three-Decker	MASSACHUSETTS	Worcester	18 Fairhaven Rd.	2/9/1990
001342	Gilman Block	MASSACHUSETTS	Worcester	207-219 Main St.	11/20/2000
000555	Goddard House	MASSACHUSETTS	Worcester	12 Catherine St.	3/5/1980
000525	Goddard, Harry, House	MASSACHUSETTS	Worcester	190 Salisbury St.	3/5/1980
001202	Goldberg Building	MASSACHUSETTS	Worcester	97-103 Water St.	11/19/2007
000564	Goulding, Henry, House	MASSACHUSETTS	Worcester	26 Harvard St.	3/5/1980
000566	Goulding, W.H., House	MASSACHUSETTS	Worcester	4 Dix St.	3/5/1980
000545	Grafton Street School	MASSACHUSETTS	Worcester	311 Grafton St.	3/5/1980
000543	Green Hill Park Shelter	MASSACHUSETTS	Worcester	Green Hill Parkway	3/5/1980
000522		MASSACHUSETTS	Worcester	470 W. Boylston St.	3/5/1980
000311	Greendale Branch Library Greendale Village Improvement Society	WASSACTIOSETTS	Workester	470 W. Boyiston St.	3/3/1980
000040	<i>o</i> , , , , , , , , , , , , , , , , , , ,	MARCOACHHICETTC	14/	400 M. Berleten Ct	44/7/4076
000949	Building	MASSACHUSETTS	Worcester	480 W. Boylston St.	11/7/1976
002388	Gullberg, Evert, Three-Decker	MASSACHUSETTS	Worcester	18 Ashton St.	2/9/1990
000068	Hadley Furniture Company Building	MASSACHUSETTS	Worcester	651-659 Main St	3/1/2011
002433	Hadley, Gilbert, Three-Decker	MASSACHUSETTS	Worcester	31 Russell St.	2/9/1990
0002423	Hall, Charles A., Three-Decker	MASSACHUSETTS	Worcester	68 Mason St.	2/9/1990
	· · · · ·			Properties along Germain, Haviland, Highland, and Westland	
0000531	Hammond Heights	MASSACHUSETTS	Worcester	Sts. and Institute Rd.	3/5/1980
000632	Hammond Organ Factory	MASSACHUSETTS	Worcester	9 May St.	3/5/1980
	Harding-Winter Street Manufacturing		Workeste.	3 may 30	3/3/1300
0000543	District	MASSACHUSETTS	Worcester	28-88 Winter St.	3/5/1980
0000543	Harris-Merrick House		Worcester	41 Fruit St.	3/5/1980
		MASSACHUSETTS			
0000572	Hastins, John, Cottage	MASSACHUSETTS	Worcester	31 William St.	3/5/1980
000514	Higgins Armory Museum	MASSACHUSETTS	Worcester	100 Barber Ave.	3/5/1980
000496	Higgins, Aldus Chapin, House	MASSACHUSETTS	Worcester	1 John Wing Rd.	3/5/1980
0002420	Hirst, Samuel, Three-Decker	MASSACHUSETTS	Worcester	90 Lovell St.	2/9/1990
000582	Hobbs, Marcus, House	MASSACHUSETTS	Worcester	16 William St.	3/5/1980
000576	Hogg, William, House	MASSACHUSETTS	Worcester	54 Elm St.	3/5/1980
000491	Holy Cross College	MASSACHUSETTS	Worcester	Holy Cross College Campus	3/5/1980
000721	Holy Name of Jesus Complex	MASSACHUSETTS	Worcester	Illinois St.	6/9/1988
001560	Hope Cemetery	MASSACHUSETTS	Worcester	119 Webster St.	12/22/1997
002371	Houghton Street Historic District	MASSACHUSETTS	Worcester	Houghton St. between Palm and Dorchester Sts.	2/9/1990
002451	Hunt, Daniel, Three-Decker	MASSACHUSETTS	Worcester	9 Wyman St.	2/9/1990
002412	Hunt, David, Three-Decker	MASSACHUSETTS	Worcester	26 Louise St.	2/9/1990
000535	100F Building	MASSACHUSETTS	Worcester	674 Main St.	3/5/1980
				properties along Ararat St. and Delaval, Heroult, Marconi,	-, -, 1500
000510	Indian Hill-North Village	MASSACHUSETTS	Worcester	Watt, and Westinghouse Rds.	3/5/1980
000310	Ingleside Avenue Historic District	MASSACHUSETTS	Worcester	218220 and 226228 Ingleside Ave.	2/9/1990
	_			~	
002363	Ingraham, Harry B., Three-Decker	MASSACHUSETTS	Worcester	19 Freeland St. Properties on Lincoln and Wheaton Squares and on Salishury	2/9/1990
000554	Institutional District	MARCACIUICETTO	Managete	Properties on Lincoln and Wheaton Squares and on Salisbury	3/5/4000
000554	Institutional District	MASSACHUSETTS	Worcester	and Tuckerman Sts.	3/5/1980
002389	Johnson, Edwin, Three-Decker	MASSACHUSETTS	Worcester	183 Austin St.	2/9/1990
002416	Johnson, John and Edward, Three-Decker	MASSACHUSETTS	Worcester	31 Louise St.	2/9/1990
002408	Johnson, John, Three-Decker	MASSACHUSETTS	Worcester	140 Eastern Ave.	2/9/1990
002437	Johnson, Paul, Three-Decker	MASSACHUSETTS	Worcester	7 Stanton St.	2/9/1990
000533	Junction Shop and Herman Street District	MASSACHUSETTS	Worcester	Properties on Jackson, Herman, and Beacon Sts.	3/5/1980
	•			·	
0002411	Kaller, Erick, Three-Decker	MASSACHUSETTS	Worcester	146 Eastern Ave.	2/9/1990
002413	Kaller, Erick, Three-Decker	MASSACHUSETTS	Worcester	148 Eastern Ave.	2/9/1990
000575	Katz and Leavitt Apartment House	MASSACHUSETTS	Worcester	53 Elm St.	3/5/1980
000520	Knollwood	MASSACHUSETTS	Worcester	425 Salisbury St.	3/5/1980
000628	Knowles, Lucius, House	MASSACHUSETTS	Worcester	838 Main St.	3/5/1980
000492	Larchmont	MASSACHUSETTS	Worcester	36 Butler St.	3/5/1980
002443	Larson, Swan, Three-Decker	MASSACHUSETTS	Worcester	12 Summerhill Ave.	2/9/1990
000623	Legg, John, House	MASSACHUSETTS	Worcester	5 Claremont St.	3/5/1980
				38 Plantation St.	2/9/1990
002446	Levenson, Morris, Three-Decker	MASSACHUSETTS	Worcester		//9/19911

Ref#	Property Name	State	City	Street & Number	Listed Date
				Properties along Cedar, Fruit, Oak, Sever, West, and William	
80000570	Lincoln Estate-Elm Park Historic District	MASSACHUSETTS	Worcester	Sts.	3/5/1980
80000573	Lincoln, Gov. Levi, House	MASSACHUSETTS	Worcester	4 Avalon Pl.	3/5/1980
80000613	Lower Pleasant Street District	MASSACHUSETTS	Worcester	418-426 Main St. and 9-49 Pleasant St.	3/5/1980
89002403	Lumb, Thomas, Three-Decker	MASSACHUSETTS	Worcester	80 Dewey St.	2/9/1990
89002448	Lumb, Thomas, Three-Decker	MASSACHUSETTS	Worcester	44 Winfield St.	2/9/1990
89002399	Lundberg, Charles, Three-Decker	MASSACHUSETTS	Worcester	67 Catharine St.	2/9/1990
89002434	Magnuson, Charles, Three-Decker	MASSACHUSETTS	Worcester	56/58 Olga Ave.	2/9/1990
84000096	Malvern Road School	MASSACHUSETTS	Worcester	Malvern Rd. and Southbridge St.	10/4/1984
80000567	Marble, Jerome, House	MASSACHUSETTS	Worcester	23 Harvard St.	3/5/1980
89002435	Mark, John, Three-Decker	MASSACHUSETTS	Worcester	24 Sigel St.	2/9/1990
80000583	Marsh, Alexander, House	MASSACHUSETTS	Worcester	57 Elm St.	3/5/1980
80000537	Masonic Temple	MASSACHUSETTS	Worcester	Ionic Ave.	3/5/1980
71000356	Massachusetts Avenue Historic District	MASSACHUSETTS	Worcester	Between Salisbury St. and Drury Lane	12/16/1971
89002380	Massad, Anthony, Three-Decker	MASSACHUSETTS	Worcester	14 Harlow St.	2/9/1990
80000622	May Street Historic District	MASSACHUSETTS	Worcester	Properties from 29 to 46 May St.	3/5/1980
89002395	McCafferty, Elizabeth, Three-Decker	MASSACHUSETTS	Worcester	45 Canterbury St.	2/9/1990
89002442	McCarron, Andrew, Three-Decker	MASSACHUSETTS	Worcester	3 Pitt St.	2/9/1990
89002366	McDermott, John B., Three-Decker	MASSACHUSETTS	Worcester	21 Freeland St.	2/9/1990
80000517	McFarland, William, House	MASSACHUSETTS	Worcester	525 Salisbury St.	3/5/1980
89002407	McGrath, Patrick, Three-Decker	MASSACHUSETTS	Worcester	50 Dorchester St.	2/9/1990
89002439	McGuinness, Patrick, Three-Decker	MASSACHUSETTS	Worcester	25 Suffield St.	2/9/1990
89002436	McPartland, Frank, Three-Decker	MASSACHUSETTS	Worcester	61 Paine St.	2/9/1990
89002428	McPartland, James, Three-Decker	MASSACHUSETTS	Worcester	17 Pond St.	2/9/1990
72000152	Mechanics Hall	MASSACHUSETTS	Worcester	321 Main St.	11/9/1972
	A L L LUI HOLLE				0/=/
80000577	Mechanics' Hall District	MASSACHUSETTS	Worcester	Properties between 282 and 343 Main St.	3/5/1980
80000581	Merrill Double House	MASSACHUSETTS	Worcester	18-20 West St.	3/5/1980
80000527	Miles, Charles, House	MASSACHUSETTS	Worcester	131 Lincoln St.	3/5/1980
03001178	Miss Worcester Diner	MASSACHUSETTS	Worcester	302 Southbridge St.	11/21/2003
80000616	Mission Chapel	MASSACHUSETTS	Worcester	205 Summer St.	3/5/1980
				Properties along Monadnock, Sagamore, Waconah, and	
80000521	Montvale	MASSACHUSETTS	Worcester	Whitman Rds., and Salisbury St.	3/5/1980
80000557	Moore, Jesse, House	MASSACHUSETTS	Worcester	25 Catherine St.	3/5/1980
89002432	Munroe, Sarah, Three-Decker	MASSACHUSETTS	Worcester	11 Rodney St.	2/9/1990
89002404	Murphy, Patrick, Three-Decker	MASSACHUSETTS	Worcester	31 Jefferson St.	2/9/1990
89002391	Nelson, Christina, Three-Decker	MASSACHUSETTS	Worcester	45 Butler St.	2/9/1990
80000508	Newton, Charles, House	MASSACHUSETTS	Worcester	24 Brattle St.	3/5/1980
09000142	Newton, S.D., House	MASSACHUSETTS	Worcester	8 Sycamore St.	3/5/1980
80000624	Norcross Brothers Houses	MASSACHUSETTS	Worcester	16, 18 Claremont St.	3/5/1980
80000512	North Worcester Aid Society	MASSACHUSETTS	Worcester	58 Holden St.	3/5/1980
89002441	O'Brien, Richard, Three-Decker	MASSACHUSETTS	Worcester	43 Suffolk St.	2/9/1990
89002419	O'Connor, James, Three-Decker	MASSACHUSETTS	Worcester	23 Endicott St.	2/9/1990
	O'Connor, JamesJohn Trybowski Three-				
89002393	Decker	MASSACHUSETTS	Worcester	21 Canton St.	2/9/1990
80000513	Odd Fellows' Home	MASSACHUSETTS	Worcester	40 Randolph Rd.	3/5/1980
80000585	Old State Mutual Building	MASSACHUSETTS	Worcester	240 Main St.	3/5/1980
100002161	Osgood Bradley Building	MASSACHUSETTS	Worcester	18 Grafton St.	3/5/2018
				Properties along Ashland, Austin, Chatham, Congress, Crown,	
80000605	Oxford-Crown Extension District	MASSACHUSETTS	Worcester	and Pleasant Sts.	3/5/1980
				Roughly bounded by Chatham, Congress, Crown, Pleasant,	
76000954	Oxford-Crown Historic District	MASSACHUSETTS	Worcester	Oxford Sts. and Oxford Pl.	5/6/1976
76000948	Paine, Timothy, House	MASSACHUSETTS	Worcester	140 Lincoln St.	4/30/1976
80000607	Park Building	MASSACHUSETTS	Worcester	507 Main St.	3/5/1980
89002367	Perry Avenue Historic District	MASSACHUSETTS	Worcester	4955 Perry Ave.	2/9/1990
	Petterson, LarsAdolph Carlson Three-				
89002358	Decker	MASSACHUSETTS	Worcester	76 Fairhaven Rd.	2/9/1990
89002368	Petterson, LarsFred Gurney Three-Decker	MASSACHUSETTS	Worcester	2 Harlow St.	2/9/1990
89002359	Petterson, LarsSilas Archer Three-Decker	MASSACHUSETTS	Worcester	80 Fairhaven Rd.	2/9/1990
89002376	Petterson,LarsJames Reidy Three-Decker	MASSACHUSETTS	Worcester	4 Harlow St.	2/9/1990
80000551	Pilgrim Congregational Church	MASSACHUSETTS	Worcester	909 Main St.	3/5/1980
80000597	Pleasant Street Firehouse	MASSACHUSETTS	Worcester	408 Pleasant St.	3/5/1980
10001122	Poli's Palace Theater	MASSACHUSETTS	Worcester	2 Southbridge St	1/10/2011
80000558	Prentiss, Addison, House	MASSACHUSETTS	Worcester	3 Channing Way	3/5/1980
80000553	Providence Street Firehouse	MASSACHUSETTS	Worcester	98 Providence St.	3/5/1980
89002381	Providence Street Historic District	MASSACHUSETTS	Worcester	127145 Providence St.	2/9/1990
89002444	Provost, Arthur, Three-Decker	MASSACHUSETTS	Worcester	30 Thorne St.	2/9/1990
80000565	Putnam, Otis, House	MASSACHUSETTS	Worcester	25 Harvard St.	3/5/1980
80000494	Quinsigamond Branch Library	MASSACHUSETTS	Worcester	812 Millbury St.	3/5/1980
80000495	Quinsigamond Firehouse	MASSACHUSETTS	Worcester	837 Millbury St.	3/5/1980
80000568	Raymond, Tilley, House	MASSACHUSETTS	Worcester	12 George St.	3/5/1980
89002422	Reed, Frank, Three-Decker	MASSACHUSETTS	Worcester	913/915 Main St.	2/9/1990
80000507	Rice, Ezra, House	MASSACHUSETTS	Worcester	1133 W. Boylston St.	3/5/1980
85002783	Richmond, Willard, Apartment Block	MASSACHUSETTS	Worcester	43 Austin St.	11/7/1985

tef#	Property Name	State	City	Street & Number	Listed Date
9002431	Ridyard, Albert, Three-Decker	MASSACHUSETTS	Worcester	5 Mount Pleasant St.	2/9/1990
9002402	Ridyard, B. E., Three-Decker	MASSACHUSETTS	Worcester	29 Dewey St.	2/9/1990
0002405	Riordan, John, Three-Decker	MASSACHUSETTS	Worcester	8 Dix St.	2/9/1990
9002397	Roynane, Catharine, Three-Decker	MASSACHUSETTS	Worcester	18 Ingalls St.	2/9/1990
000556	Ruggles, Draper, House	MASSACHUSETTS	Worcester	21 Catherine St.	3/5/1980
002782	Russell, The	MASSACHUSETTS	Worcester	49 Austin St.	11/7/1985
000587	Salisbury Factory Building	MASSACHUSETTS	Worcester	25 Union St.	3/5/1980
000588	Salisbury Factory Building	MASSACHUSETTS	Worcester	49-51 Union St.	3/5/1980
000837	Salisbury House	MASSACHUSETTS	Worcester	61 Harvard St.	6/10/1975
5000838	Salisbury Mansion and Store	MASSACHUSETTS	Worcester	30, 40 Highland St.	5/30/1975
0000634	Schofield, James, House	MASSACHUSETTS	Worcester	3 Mt. Pleasant St.	3/5/1980
000729	Shaarai Torah Synagogue	MASSACHUSETTS	Worcester	32 Providence St.	5/7/1990
000626	Shattuck, Moody, House	MASSACHUSETTS	Worcester	768 Main St.	3/5/1980
9002400	Shea, Bridget, Three-Decker	MASSACHUSETTS	Worcester	21 Jefferson St.	2/9/1990
002440	Simpson, Clara, Three-Decker	MASSACHUSETTS	Worcester	69 Piedmont St.	2/9/1990
000609	Slater Building	MASSACHUSETTS	Worcester	390 Main St.	3/5/1980
002409	Smith, Ellen M., Three-Decker	MASSACHUSETTS	Worcester	22 Kilby St.	2/9/1990
000629				•	
	Smith, Elliot, House	MASSACHUSETTS	Worcester	839 Main St.	3/5/1980
000509	Smith-Thaxter-Merrifield House	MASSACHUSETTS	Worcester	158 Holden St.	3/5/1980
000528	Soho Cottage	MASSACHUSETTS	Worcester	21 Windsor St.	3/5/1980
000550	South Unitarian	MASSACHUSETTS	Worcester	888 Main St.	3/5/1980
000486	South Worcester Branch Library	MASSACHUSETTS	Worcester	705 Southbridge St.	3/5/1980
000534	Southbridge-Sargent Manufacturing District	MASSACHUSETTS	Worcester	Southbridge, Sargent, and Gold Sts.	3/5/1980
000619	St. John's Catholic Church	MASSACHUSETTS	Worcester	40 Temple St.	3/5/1980
000481	St. Marks	MASSACHUSETTS	Worcester	Freeland St.	3/5/1980
000485	St. Matthews	MASSACHUSETTS	Worcester	693 Southbridge St.	3/5/1980
000548	St. Peters Catholic Church	MASSACHUSETTS	Worcester	935 Main St.	3/5/1980
000633	Stark, Edward, House	MASSACHUSETTS	Worcester	21 Oread St.	3/5/1980
000479	Stearns Tavern	MASSACHUSETTS	Worcester	651 Park Ave.	3/5/1980
000615	Stevens' Building	MASSACHUSETTS	Worcester	24-44 Southbridge St.	3/5/1980
000532	Stevens, Daniel, House	MASSACHUSETTS	Worcester	7 Sycamore St.	3/5/1980
002449	Stoliker, Edna, Three-Decker	MASSACHUSETTS	Worcester	41 Plantation St.	2/9/1990
002449	Stone, Edward, Three-Decker				2/9/1990
		MASSACHUSETTS	Worcester	8 Wyman St.	
000591	Sturtevant, Leonard, House	MASSACHUSETTS	Worcester	84 Mulberry St.	3/5/1980
000559	Swift, D. Wheeler, House	MASSACHUSETTS	Worcester	22 Oak Ave.	3/5/1980
.000019	ThulePlummer Buildings	MASSACHUSETTS	Worcester	180 and 184 Main St	2/18/2011
0000600	Tower, Horatio, House	MASSACHUSETTS	Worcester	71 Pleasant St.	3/5/1980
0002394	Troupes, John, Three-Decker	MASSACHUSETTS	Worcester	25 Canton St.	2/9/1990
.000161	U.S. Post Office and Courthouse	MASSACHUSETTS	Worcester	595 Main St	4/8/2011
000599	Union Congregational Church	MASSACHUSETTS	Worcester	5 Chestnut St.	3/5/1980
0000617	Union Station	MASSACHUSETTS	Worcester	Washington Sq.	3/5/1980
000493	Upsala Street School	MASSACHUSETTS	Worcester	36 Upsala St.	3/5/1980
002331	Vendome, The, and the St. Ives	MASSACHUSETTS	Worcester	1719 and 2123 Chandler St.	2/9/1990
002361	View Street Historic District	MASSACHUSETTS	Worcester	717 and 816 View Street	2/9/1990
000586	Waldo Street Police Station	MASSACHUSETTS	Worcester	Waldo St.	3/5/1980
000488	Ward Street School-Millbury Street	MASSACHUSETTS	Worcester	389 Millbury St.	3/5/1980
000439	Washburn and Moen North Works District	MASSACHUSETTS	Worcester	Properties on Grove St.	3/5/1980
000433	WCIS Bank	MASSACHUSETTS	Worcester	365 Main St.	3/5/1980
000480	Webster Street Firehouse	MASSACHUSETTS		40 Webster St.	3/5/1980
UUU46U	איפטגנפו אנופפנ רוופווטעגפ	IVIASSACTIUSE I IS	Worcester	אי שיבשאנפו אנ.	J/J/198U
000539	Wellington Street Apartment House District	MASSACHUSETTS	Worcester	Properties along Jacques Ave., and Wellington and Irving Sts.	3/5/1980
002426	Wescott, John, Three-Decker	MASSACHUSETTS	Worcester	454 Pleasant St.	2/9/1990
000603	Wesson, Franklin, House	MASSACHUSETTS	Worcester	8 Claremont St.	3/5/1980
000653	Whitcomb House	MASSACHUSETTS	Worcester	51 Harvard St.	11/9/1977
000499	Whitcomb Mansion	MASSACHUSETTS	Worcester	51 Harvard St.	3/5/1980
000490	Whittall Mills	MASSACHUSETTS	Worcester	properties off Brussels St.	3/5/1980
002365	Woodford Street Historic District	MASSACHUSETTS	Worcester	3539 and 3840 Woodford St.	2/9/1990
000630	Woodland Street Firehouse	MASSACHUSETTS	Worcester	36 Woodland St.	3/5/1980
000540	Woodland Street Historic District	MACCACHIICETTC	Worseste-	Properties along Hawthorne, Loudon, Norwood, and	2/5/1000
000549 000478	Woodland Street Historic District Worcester Academy	MASSACHUSETTS MASSACHUSETTS	Worcester Worcester	Woodland Sts. Worcester Academy Campus	3/5/1980 3/5/1980
	·				
000530	Worcester Asylum and related buildings	MASSACHUSETTS	Worcester	305 Belmont St.	3/5/1980
001343	Worcester Bleach and Dye Works	MASSACHUSETTS	Worcester	60 Fremont St.	11/8/2000
001405	Worcester City Hall and Common	MASSACHUSETTS	Worcester	455 Main St.	3/29/1978
000097	Worcester Corset Company Factory	MASSACHUSETTS	Worcester	30 Wyman St.	10/4/1984
000472	Worcester Five Cents Savings Bank	MASSACHUSETTS	Worcester	316 Main St.	9/13/1978
000612	Worcester Market Building	MASSACHUSETTS	Worcester	831 Main St.	3/5/1980
					4-4
0001262	Worcester State Hospital Farmhouse	MASSACHUSETTS	Worcester	361 Plantation St.	7/3/2017

APPENDIX C

Endangered Species Act Documentation

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as trust resources) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section. ONSUL

Location

Worcester County, Massachusetts

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

5/22/2019 IPaC: Explore Location

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Oct 15 to Aug 31

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

Breeds May 1 to Jul 31

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

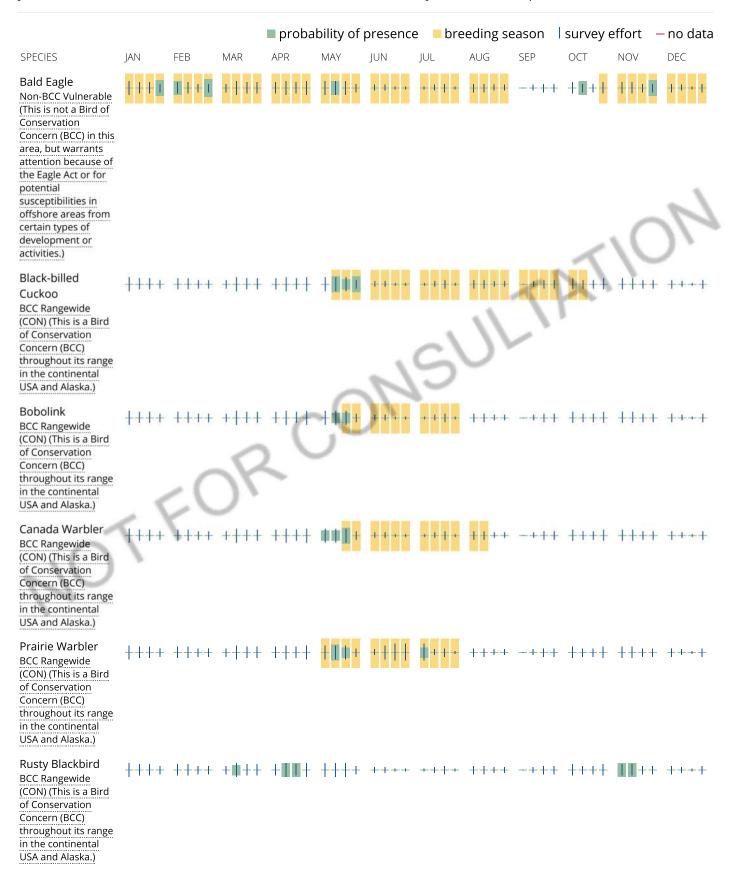
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (

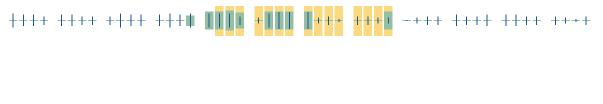
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (-)


A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Wood Thrush
BCC Rangewide
(CON) (This is a Bird
of Conservation
Concern (BCC)
throughout its range
in the continental
USA and Alaska.)

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> and/or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to obtain a permit to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

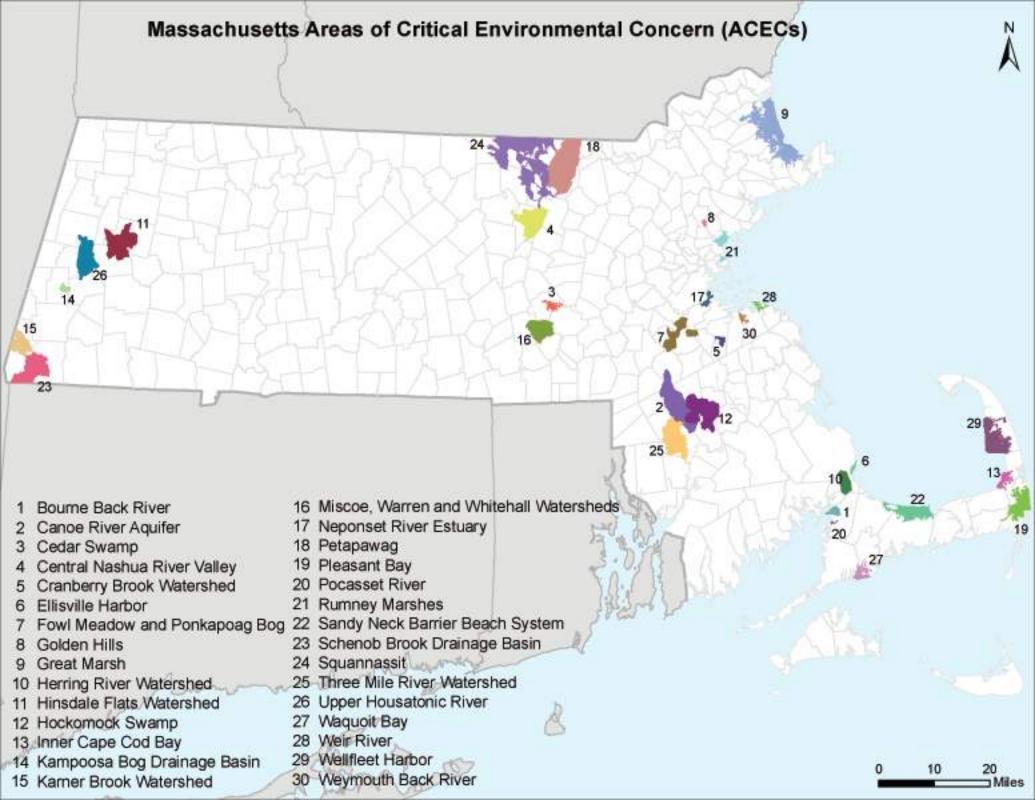
Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

OT FOR CONSULTATIO

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham	
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.	
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield	
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport	
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns	
	Piping Plover	Threatened	Coastal Beaches	All Towns	
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark	
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury	
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns	
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide	

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS


COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
Essex .	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

MASSACHUSETTS AREAS OF CRITICAL ENVIRONMENTAL CONCERN November 2010

Total Approximate Acreage: 268,000 acres

Approximate acreage and designation date follow ACEC names below.

Bourne Back River

(1,850 acres, 1989) Bourne

Canoe River Aquifer and Associated Areas (17,200 acres, 1991) Easton, Foxborough, Mansfield, Norton, Sharon, and Taunton

Cedar Swamp

(1,650 acres, 1975) Hopkinton and Westborough

Central Nashua River Valley

(12,900 acres, 1996) Bolton, Harvard, Lancaster, and Leominster

Cranberry Brook Watershed

(1,050 acres, 1983) Braintree and Holbrook

Ellisville Harbor

(600 acres, 1980) Plymouth

Fowl Meadow and Ponkapoag Bog

(8,350 acres, 1992) Boston, Canton, Dedham, Milton, Norwood, Randolph, Sharon, and Westwood

Golden Hills

(500 acres, 1987) Melrose, Saugus, and Wakefield

Great Marsh (originally designated as Parker River/Essex Bay)

(25,500 acres, 1979) Essex, Gloucester, Ipswich, Newbury, and Rowley

Herring River Watershed

(4,450 acres, 1991) Bourne and Plymouth

Hinsdale Flats Watershed

(14,500 acres, 1992) Dalton, Hinsdale, Peru, and Washington

Hockomock Swamp

(16,950 acres, 1990) Bridgewater, Easton, Norton, Raynham, Taunton, and West Bridgewater

Inner Cape Cod Bay

(2,600 acres, 1985) Brewster, Eastham, and Orleans

Kampoosa Bog Drainage Basin

(1,350 acres, 1995) Lee and Stockbridge

Karner Brook Watershed

(7,000 acres, 1992) Egremont and Mount Washington

Miscoe, Warren, and Whitehall Watersheds

(8,700 acres, 2000) Grafton, Hopkinton, and Upton

Neponset River Estuary

(1,300 acres, 1995) Boston, Milton, and Quincy

Petapawag

(25,680 acres, 2002) Ayer, Dunstable, Groton, Pepperell, and Tyngsborough

Pleasant Bay

(9,240 acres, 1987) Brewster, Chatham, Harwich, and Orleans

Pocasset River

(160 acres, 1980) Bourne

Rumney Marshes

(2,800 acres, 1988) Boston, Lynn, Revere, Saugus, and Winthrop

Sandy Neck Barrier Beach System

(9,130 acres, 1978) Barnstable and Sandwich

Schenob Brook Drainage Basin

(13,750 acres, 1990) Mount Washington and Sheffield

Squannassit

(37,420 acres, 2002) Ashby, Ayer, Groton, Harvard, Lancaster, Lunenburg, Pepperell, Shirley, and Townsend

Three Mile River Watershed

(14,280 acres, 2008) Dighton, Norton, Taunton

Upper Housatonic River

(12,280 acres, 2009) Lee, Lenox, Pittsfield, Washington

Waquoit Bay

(2,580 acres, 1979) Falmouth and Mashpee

Weir River

(950 acres, 1986) Cohasset, Hingham, and Hull

Wellfleet Harbor

(12,480 acres, 1989) Eastham, Truro, and Wellfleet

Weymouth Back River

(800 acres, 1982) Hingham and Weymouth

ACEC acreages above are based on MassGIS calculations and may differ from numbers originally presented in designation documents and other ACEC publications due to improvements in accuracy of GIS data and boundary clarifications. Listed acreages have been rounded to the nearest 50 or 10 depending on whether boundary clarification has occurred. For more information please see, http://www.mass.gov/dcr/stewardship/acec/aboutMaps.htm.

Towns with ACECs within their Boundaries

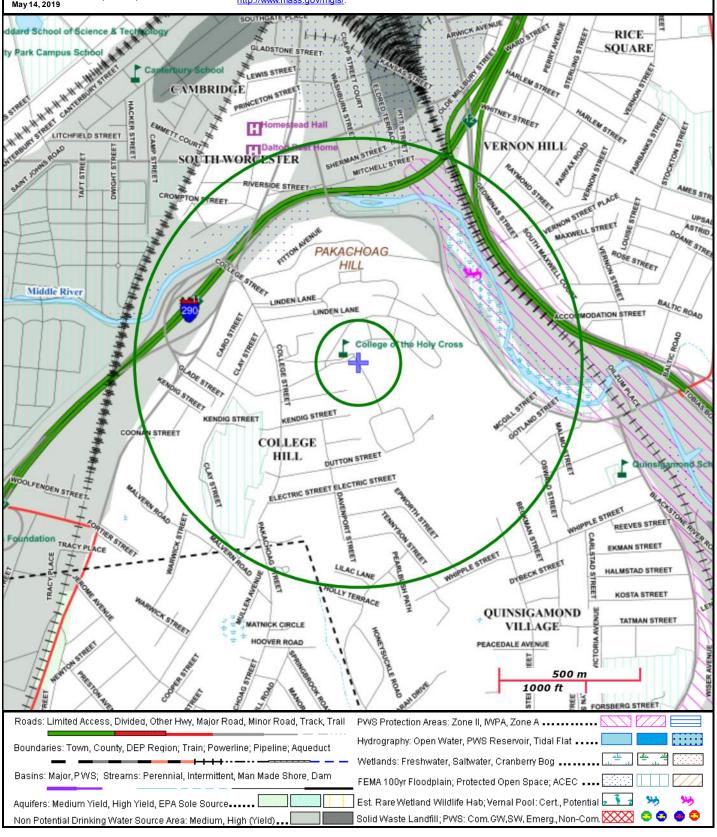
November 2010

TOWN	ACEC	TOWN	ACEC
Ashby	Squannassit	Mt. Washington	Karner Brook Watershed
Ayer	Petapawag		Schenob Brook
	Squannassit	Newbury	Great Marsh
Barnstable	Sandy Neck Barrier Beach System	Norton	Hockomock Swamp
Bolton	Central Nashua River Valley		Canoe River Aquifer
Boston	Rumney Marshes		Three Mile River Watershed
	Fowl Meadow and Ponkapoag Bog	Norwood	Fowl Meadow and Ponkapoag Bog
_	Neponset River Estuary	Orleans	Inner Cape Cod Bay
Bourne	Pocasset River	ъ "	Pleasant Bay
	Bourne Back River	Pepperell	Petapawag
Б : .	Herring River Watershed	D	Squannassit
Braintree	Cranberry Brook Watershed	Peru Pittsfield	Hinsdale Flats Watershed
Brewster	Pleasant Bay		Upper Housatonic River
Dridgowater	Inner Cape Cod Bay	Plymouth	Herring River Watershed Ellisville Harbor
Bridgewater	Hockomock Swamp	Quinov	
Canton Chatham	Fowl Meadow and Ponkapoag Bog	Quincy Randolph	Neponset River Estuary Fowl Meadow and Ponkapoag Bog
Cohasset	Pleasant Bay Weir River	Raynham	Hockomock Swamp
Dalton	Hinsdale Flats Watershed	Revere	Rumney Marshes
Dedham	Fowl Meadow and Ponkapoag Bog	Rowley	Great Marsh
Dighton	Three Mile River Watershed	Sandwich	Sandy Neck Barrier Beach System
Dunstable	Petapawag	Saugus	Rumney Marshes
Eastham	Inner Cape Cod Bay	Oddgao	Golden Hills
Laothain	Wellfleet Harbor	Sharon	Canoe River Aquifer
Easton	Canoe River Aquifer		Fowl Meadow and Ponkapoag Bog
	Hockomock Swamp	Sheffield	Schenob Brook
Egremont	Karner Brook Watershed	Shirley	Squannassit
Essex	Great Marsh	Stockbridge	Kampoosa Bog Drainage Basin
Falmouth	Waquoit Bay	Taunton	Hockomock Swamp
Foxborough	Canoe River Aquifer		Canoe River Aquifer
Gloucester	Great Marsh		Three Mile River Watershed
Grafton	Miscoe-Warren-Whitehall	Truro	Wellfleet Harbor
	Watersheds	Townsend	Squannassit
Groton	Petapawag	Tyngsborough	Petapawag
	Squannassit	Upton	Miscoe-Warren-Whitehall
Harvard	Central Nashua River Valley		Watersheds
	Squannassit	Wakefield	Golden Hills
Harwich	Pleasant Bay	Washington	Hinsdale Flats Watershed
Hingham	Weir River	Wellfleet	Upper Housatonic River
Llinadala	Weymouth Back River		Wellfleet Harbor
Hinsdale	Hinsdale Flats Watershed	W Bridgewater	Hockomock Swamp
Holbrook Hopkinton	Cranberry Brook Watershed Miscoe-Warren-Whitehall	Westborough Westwood	Cedar Swamp Fowl Meadow and Ponkapoag Bog
поркинон	Watersheds	Weymouth	Weymouth Back River
	Cedar Swamp	Winthrop	Rumney Marshes
Hull	Weir River	wintinop	Turriley Marshes
Ipswich	Great Marsh		
Lancaster	Central Nashua River Valley		
Landadioi	Squannassit		
Lee	Kampoosa Bog Drainage Basin		
	Upper Housatonic River		
Lenox	Upper Housatonic River		
Leominster	Central Nashua River Valley		
Lunenburg	Squannassit		
Lynn	Rumney Marshes		
Mansfield	Canoe River Aquifer		
Mashpee	Waquoit Bay		
Melrose	Golden Hills		
Milton	Foul Mondow and Dankanaga Pag		

Fowl Meadow and Ponkapoag Bog Neponset River Estuary

Milton

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

PROPOSED PERFORMING CENTER - HOLY CROSS 1 COLLEGE STREET WORCESTER, MA

1 COLLEGE STREET WORCESTER, MA

NAD83 UTM Meters: 4679916mN , 268331mE (Zone: 19) May 14, 2019 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/.

1 of 1 5/14/2019, 1:42 PM

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

May 22, 2019

In Reply Refer To:

Consultation Code: 05E1NE00-2019-SLI-1778

Event Code: 05E1NE00-2019-E-04369

Project Name: Holy Cross

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1778

Event Code: 05E1NE00-2019-E-04369

Project Name: Holy Cross

Project Type: DEVELOPMENT

Project Description: Temporary Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.23714833431903N71.80696863219183W

Counties: Worcester, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

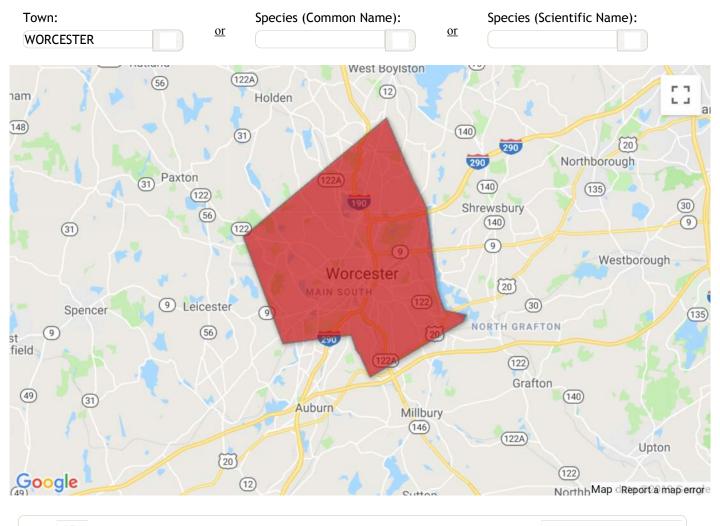
IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS


Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Show 10 entries		Search:				
Town	Taxonomic Group	Scientific Name				
WORCESTER	Vascular Plant	Adlumia fungosa				
WORCESTER	Amphibian	Ambystoma opacum				
WORCESTER	Bird	Ammodramus savannarum				
WORCESTER	Vascular Plant	Asclepias purpurascens				
WORCESTER	Bird	Bartramia longicauda				
WORCESTER	Vascular Plant	Boechera laevigata				
WORCESTER	Vascular Plant	Carex lenticularis				
WORCESTER	Beetle	Cicindela purpurea				
WORCESTER	Butterfly/Moth	Eacles imperialis				
WORCESTER	Vascular Plant	Elymus villosus				
Showing 1 to 10	of 21 entries					
		First Previous 1 2 3 Next Last				

1 of 1 5/14/2019, 1:55 PM

APPENDIX D

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1918597

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Douglas Lindsay Phone: (617) 886-7580

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Report Date: 05/24/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date: 05/24/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1918597-01	HA16-B9-OW-1245	WATER	1 COLLEGE ST., WORCESTER, MA	05/03/19 12:45	05/03/19
L1918597-02	SW-1-1645	WATER	1 COLLEGE ST., WORCESTER, MA	05/03/19 16:45	05/03/19

L1918597

Lab Number:

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 **Report Date:** 05/24/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:HOLY CROSS PERFORMING ARTS CTRLab Number:L1918597Project Number:41486-204Report Date:05/24/19

Case Narrative (continued)

Report Revision

May 24, 2019: The analysis of Hardness was performed on L1918597-01 (HA16-B9-OW-1245).

Chlorine, Total Residual

The WG1233569-4 MS recovery (124%), performed on L1918597-01 (HA16-B9-OW-1245), is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Season Kelly Stenstrom

Authorized Signature:

Title: Technical Director/Representative Date: 05/24/19

ORGANICS

VOLATILES

L1918597

05/24/19

05/03/19

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

SAMPLE RESULTS

Lab ID: L1918597-01 Date Collected: 05/03/19 12:45

Client ID: HA16-B9-OW-1245

Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

Lab Number:

Report Date:

Date Received:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/07/19 12:31

Analyst: GT

1.1 Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1,1-Dichloroethane	Volatile Organics by GC/MS - Wes	tborough Lab					
Carbon tetrachloride ND ug/l 1.0 1 L1,1,2-Trichloroethane ND ug/l 1.5 1 L1,2-Dichloroethane ND ug/l 1.0 1 L1,1-Trichloroethane ND ug/l 2.0 1 L1,1-Trichloroethane ND ug/l 1.0 1 Senzene ND ug/l 1.0 1 Senzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Setylbenzene ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 L1,1-Dichloroethene ND ug/l 1.0 1 L1,1-Dichloroethene ND ug/l 1.0 1 L1,2-Dichloroethene ND ug/l 5.0 1 L2,2-Dichlo	Methylene chloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	1,1-Dichloroethane	ND		ug/l	1.5		1
ND	Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloroethane ND ug/l 1.5 1 1 1 1 1 1 1 1	1,1,2-Trichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	Tetrachloroethene	ND		ug/l	1.0		1
Selenzene ND ug/l 1.0 1	1,2-Dichloroethane	ND		ug/l	1.5		1
Toluene ND	1,1,1-Trichloroethane	ND		ug/l	2.0		1
ND	Benzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 cis-1,2-Dichloroethene ND ug/l 1.0 1 Trichloroethene ND ug/l 1.0 1 1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 2.0 1 1,4-Dichlorobenzene ND ug/l 1.0 1 2-wylene ND ug/l 1.0 1 2-wylene ND ug/l 1.0 1 Acetone ND ug/l 1.0 1 Methyl ter	Toluene	ND		ug/l	1.0		1
1,1-Dichloroethene	Ethylbenzene	ND		ug/l	1.0		1
ND	Vinyl chloride	ND		ug/l	1.0		1
Trichloroethene ND ug/l 1.0 1 1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 0/m-Xylene ND ug/l 2.0 1 0-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,1-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene ND ug/l 5.0 1 1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 p/m-Xylene ND ug/l 2.0 1 p-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Wethyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,3-Dichlorobenzene ND ug/l 5.0 1 1,4-Dichlorobenzene ND ug/l 5.0 1 o/m-Xylene ND ug/l 2.0 1 o-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	Trichloroethene	ND		ug/l	1.0		1
1,4-Dichlorobenzene ND ug/l 5.0 1 p/m-Xylene ND ug/l 2.0 1 p-xylene ND ug/l 1.0 1 xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,2-Dichlorobenzene	ND		ug/l	5.0		1
Do/m-Xylene ND ug/l 2.0 1 Do-xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,3-Dichlorobenzene	ND		ug/l	5.0		1
Description ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	1,4-Dichlorobenzene	ND		ug/l	5.0		1
Xylenes, Total ND ug/l 1.0 1 Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	p/m-Xylene	ND		ug/l	2.0		1
Acetone ND ug/l 10 1 Methyl tert butyl ether ND ug/l 10 1 Tert-Butyl Alcohol ND ug/l 100 1	o-xylene	ND		ug/l	1.0		1
Methyl tert butyl ether ND ug/l 10 1 Fert-Butyl Alcohol ND ug/l 100 1	Xylenes, Total	ND		ug/l	1.0		1
Tert-Butyl Alcohol ND ug/l 100 1	Acetone	ND		ug/l	10		1
,	Methyl tert butyl ether	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether ND ug/l 20 1	Tert-Butyl Alcohol	ND		ug/l	100		1
	Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

05/24/19

Project Name: Lab Number: HOLY CROSS PERFORMING ARTS CTR L1918597

Project Number: 41486-204

SAMPLE RESULTS

Date Collected: 05/03/19 12:45

Report Date:

Lab ID: L1918597-01

Date Received: Client ID: 05/03/19 HA16-B9-OW-1245

Sample Location: Field Prep: 1 COLLEGE ST., WORCESTER, MA None

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	91		60-140	
Fluorobenzene	86		60-140	
4-Bromofluorobenzene	93		60-140	

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

SAMPLE RESULTS

Report Date:

05/24/19

Lab ID: L1918597-01 Client ID: HA16-B9-OW-1245

Sample Location: 1 COLLEGE ST., WORCESTER, MA Date Collected: 05/03/19 12:45 Date Received: Field Prep:

Lab Number:

05/03/19

None

L1918597

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/07/19 12:31

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbord	ough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Acceptance Qualifier Criteria		

,,,	Dioxano	110	ug/i			
	Surrogate		% Recovery	Qualifier	Acceptance Criteria	
	Fluorobenzene		100		60-140	
	4-Bromofluorobenzene		99		60-140	

05/24/19

Report Date:

Project Name: Lab Number: HOLY CROSS PERFORMING ARTS CTR L1918597

Project Number: 41486-204

SAMPLE RESULTS

Lab ID: L1918597-01 Date Collected: 05/03/19 12:45

Date Received: Client ID: HA16-B9-OW-1245 05/03/19 Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

05/07/19 16:10

Sample Depth:

Analytical Date:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 05/07/19 10:13 Analytical Method: 14,504.1

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

L1918597

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number:

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/07/19 11:16

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS - \	Westborough Lab	o for sample(s): 01	Batch:	WG1234348-8
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/07/19 11:16

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	thorough La	ab for sampl	e(s): 01	Batch:	WG1234348-8	

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
Pentafluorobenzene	91	60-140
Fluorobenzene	87	60-140
4-Bromofluorobenzene	93	60-140

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/07/19 14:22 Extraction Date: 05/07/19 10:13

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westboro	ough Lab for	r sample(s):	: 01	Batch: WG1234	1353-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/07/19 11:16

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1234899-4	
1,4-Dioxane	ND		ug/l		50		

	Acceptane				
Surrogate	%Recovery Qualifie	er Criteria			
Fluorobenzene	100	60-140			
4-Bromofluorobenzene	101	60-140			

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number: L1918597

Report Date: 05/24/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	1234348-7					
Methylene chloride	85		-		60-140	-		28	
1,1-Dichloroethane	85		-		50-150	-		49	
Carbon tetrachloride	105		-		70-130	-		41	
1,1,2-Trichloroethane	115		-		70-130	-		45	
Tetrachloroethene	125		-		70-130	-		39	
1,2-Dichloroethane	95		-		70-130	-		49	
1,1,1-Trichloroethane	100		-		70-130	-		36	
Benzene	90		-		65-135	-		61	
Toluene	110		-		70-130	-		41	
Ethylbenzene	95		-		60-140	-		63	
Vinyl chloride	85		-		5-195	-		66	
1,1-Dichloroethene	90		-		50-150	-		32	
cis-1,2-Dichloroethene	85		-		60-140	-		30	
Trichloroethene	110		-		65-135	-		48	
1,2-Dichlorobenzene	105		-		65-135	-		57	
1,3-Dichlorobenzene	100		-		70-130	-		43	
1,4-Dichlorobenzene	105		-		65-135	-		57	
p/m-Xylene	100		-		60-140	-		30	
o-xylene	90		-		60-140	-		30	
Acetone	96		-		40-160	-		30	
Methyl tert butyl ether	80		-		60-140	-		30	
Tert-Butyl Alcohol	88		-		60-140	-		30	
Tertiary-Amyl Methyl Ether	80		-		60-140	-		30	

Lab Control Sample Analysis Batch Quality Control

HOLY CROSS PERFORMING ARTS CTR

Lab Number: L1918597

Project Number: 41486-204

Project Name:

Report Date:

05/24/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1234348-7

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qua	Acceptance al Criteria
Pentafluorobenzene	98		60-140
Fluorobenzene	91		60-140
4-Bromofluorobenzene	93		60-140

Lab Control Sample Analysis Batch Quality Control

HOLY CROSS PERFORMING ARTS CTR

Lab Number:

L1918597

Project Number: 41486-204

Project Name:

Report Date:

05/24/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1234	4353-2					
1,2-Dibromoethane	97		-		80-120	-			Α

Lab Number:

Lab Control Sample Analysis Batch Quality Control

Project Number: 41486-204 Report Date: 05/24/19

HOLY CROSS PERFORMING ARTS CTR

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1234899-	-3				
1,4-Dioxane	86		-		60-140	-		20	

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Acceptan Qual Criteria	
Fluorobenzene 4-Bromofluorobenzene	101 101		60-140 60-140	

Project Name:

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date:

05/24/19

Parameter	Native Sample	MS Added	MS Found %	MS	Qual	MSD Found	MSD %Recovery	R Qual	Recovery Limits	RPD	=	RPD .imits	Column
Parameter	Gampie	Audeu	r ourid /	orrecovery	Quai	r ourid	78Necovery	Quai	Lilling	KFU	Quai L	iiiiii	Column
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG12	34353-3	QC Sample: I	L1917791	1-04 Clie	nt ID: N	/IS Sample	е	
1,2-Dibromoethane	ND	0.251	0.253	101		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.251	0.262	104		-	-		80-120	-		20	Α

SEMIVOLATILES

05/24/19

Report Date:

Project Name: Lab Number: HOLY CROSS PERFORMING ARTS CTR L1918597

Project Number: 41486-204

SAMPLE RESULTS

Lab ID: L1918597-01 Date Collected: 05/03/19 12:45

Date Received: Client ID: HA16-B9-OW-1245 05/03/19 Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

Sample Depth:

Analytical Date:

Extraction Method: EPA 625.1 Matrix: Water **Extraction Date:** 05/06/19 16:31 Analytical Method: 129,625.1

Analyst: SZ

05/10/19 07:38

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Wes	tborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	92	42-122	
2-Fluorobiphenyl	93	46-121	
4-Terphenyl-d14	121	47-138	

05/24/19

05/03/19 12:45

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204

SAMPLE RESULTS

Report Date:

Date Collected:

SAMPLE RESULT

Lab ID: L1918597-01 Client ID: HA16-B9-OW-1245

Client ID: HA16-B9-OW-1245 Date Received: 05/03/19 Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 05/10/19 16:25
Analytical Date: 05/11/19 14:50

Analyst: ALS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-	SIM - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	56	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	88	46-121	
2,4,6-Tribromophenol	86	45-128	
4-Terphenyl-d14	93	47-138	

Lab Number:

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis Batch Quality Control

 Analytical Method:
 129,625.1
 Extraction Method:
 EPA 625.1

 Analytical Date:
 05/10/19 06:15
 Extraction Date:
 05/06/19 16:31

Analyst: SZ

Parameter	Result C	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/N	/IS - Westborough L	ab for sample(s):	01 Batch:	WG1234094-1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	2.2		
Butyl benzyl phthalate	ND	ug/l	5.0		
Di-n-butylphthalate	ND	ug/l	5.0		
Di-n-octylphthalate	ND	ug/l	5.0		
Diethyl phthalate	ND	ug/l	5.0		
Dimethyl phthalate	ND	ug/l	5.0		

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
Nitrobenzene-d5	58		42-122		
2-Fluorobiphenyl	60		46-121		
4-Terphenyl-d14	78		47-138		

Lab Number:

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 **Report Date:** 05/24/19

Method Blank Analysis

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 05/11/19 14:23

Analyst: ALS

Extraction Method: EPA 625.1
Extraction Date: 05/10/19 16:25

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	orough Lab	for sample((s): 01	Batch: WG1235919	9-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

%Recovery	Qualifier	Acceptance Criteria	
59		25-87	
37		16-65	
92		42-122	
89		46-121	
81		45-128	
89		47-138	
	59 37 92 89 81	%Recovery Qualifier 59 37 92 89 81	59 25-87 37 16-65 92 42-122 89 46-121 81 45-128

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Quality Control Lab Number:

Project Number: 41486-204

Report Date: 05/24/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	igh Lab Associa	ated sample(s)	: 01 Batch:	WG123409	4-2				
Bis(2-ethylhexyl)phthalate	85		-		29-137	-		82	
Butyl benzyl phthalate	95		-		1-140	-		60	
Di-n-butylphthalate	90		-		8-120	-		47	
Di-n-octylphthalate	95		-		19-132	-		69	
Diethyl phthalate	74		-		1-120	-		100	
Dimethyl phthalate	85		-		1-120	-		183	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	69		42-122
2-Fluorobiphenyl	68		46-121
4-Terphenyl-d14	78		47-138

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number: L1918597

Report Date: 05/24/19

rameter	LCS %Recovery Qua	LCSD %Recovery Q	%Recovery ual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - We	estborough Lab Associate	d sample(s): 01 Batch: \	VG1235919-2		
Acenaphthene	103	-	60-132	-	30
Fluoranthene	107	-	43-121	-	30
Naphthalene	95	-	36-120	-	30
Benzo(a)anthracene	106	-	42-133	-	30
Benzo(a)pyrene	105	-	32-148	-	30
Benzo(b)fluoranthene	106	•	42-140	-	30
Benzo(k)fluoranthene	105	•	25-146	-	30
Chrysene	103	-	44-140	-	30
Acenaphthylene	101	-	54-126	-	30
Anthracene	106	-	43-120	-	30
Benzo(ghi)perylene	107	•	1-195	-	30
Fluorene	106	•	70-120	-	30
Phenanthrene	105	•	65-120	-	30
Dibenzo(a,h)anthracene	105	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	109	-	1-151	-	30
Pyrene	107	-	70-120	-	30
Pentachlorophenol	119	-	38-152	-	30

Lab Control Sample Analysis Batch Quality Control

HOLY CROSS PERFORMING ARTS CTR

Lab Number:

L1918597 05/24/19

Project Number: 41486-204

Project Name:

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1235919-2

Surrogate	LCS LCS %Recovery Qual %Recov	
2-Fluorophenol	62	25-87
Phenol-d6	40	16-65
Nitrobenzene-d5	98	42-122
2-Fluorobiphenyl	97	46-121
2,4,6-Tribromophenol	86	45-128
4-Terphenyl-d14	91	47-138

PCBS

Project Name: Lab Number: HOLY CROSS PERFORMING ARTS CTR L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/19 12:45 L1918597-01

Date Received: Client ID: 05/03/19 HA16-B9-OW-1245 Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

Sample Depth:

Extraction Method: EPA 608.3 Matrix: Water **Extraction Date:** 05/05/19 13:49 Analytical Method: 127,608.3

Cleanup Method: EPA 3665A Analytical Date: 05/07/19 23:20 Cleanup Date: 05/05/19 Analyst: HT

Cleanup Method: EPA 3660B Cleanup Date: 05/06/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column			
Polychlorinated Biphenyls by GC - Westborough Lab										
Aroclor 1016	ND		ug/l	0.250		1	А			
Aroclor 1221	ND		ug/l	0.250		1	Α			
Aroclor 1232	ND		ug/l	0.250		1	Α			
Aroclor 1242	ND		ug/l	0.250		1	Α			
Aroclor 1248	ND		ug/l	0.250		1	Α			
Aroclor 1254	ND		ug/l	0.250		1	Α			
Aroclor 1260	ND		ug/l	0.200		1	Α			

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	64		37-123	В		
Decachlorobiphenyl	62		38-114	В		
2,4,5,6-Tetrachloro-m-xylene	60		37-123	Α		
Decachlorobiphenyl	56		38-114	Α		

Lab Number:

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 **Report Date:** 05/24/19

Tojour Hamber: 41400-204

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 05/08/19 00:11

Analyst: HT

Extraction Method: EPA 608.3
Extraction Date: 05/05/19 13:49
Cleanup Method: EPA 3665A
Cleanup Date: 05/05/19
Cleanup Method: EPA 3660B
Cleanup Date: 05/06/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - \	Vestboroug	h Lab for s	ample(s):	01 Batch:	WG1233789	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

	Acceptance						
Surrogate	%Recovery	Qualifier	Criteria	Column			
0.450 Tetrachlara manda a	75		07.400				
2,4,5,6-Tetrachloro-m-xylene	75		37-123	В			
Decachlorobiphenyl	80		38-114	В			
2,4,5,6-Tetrachloro-m-xylene	70		37-123	Α			
Decachlorobiphenyl	75		38-114	Α			

Lab Control Sample Analysis Batch Quality Control

HOLY CROSS PERFORMING ARTS CTR

Lab Number:

L1918597

Project Number: 41486-204

Project Name:

Report Date: 05/24/19

	LCS		LCSD		%Recovery		RPD		
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	stborough Lab Associa	ted sample(s):	01 Batch:	WG1233789-2	2				
Aroclor 1016	68		-		50-140	-		36	А
Aroclor 1260	65		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	75		37-123 B
Decachlorobiphenyl	82		38-114 B
2,4,5,6-Tetrachloro-m-xylene	72		37-123 A
Decachlorobiphenyl	78		38-114 A

METALS

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 Lab Number:

L1918597

Report Date:

05/24/19

SAMPLE RESULTS

Lab ID: Client ID: L1918597-01

Date Collected:

05/03/19 12:45

Sample Location:

HA16-B9-OW-1245

Date Received:

05/03/19

1 COLLEGE ST., WORCESTER, MA

Field Prep:

None

Sample Depth:

Matrix:

Water

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst	
Total Metals - Mansfield Lab											
ND		mg/l	0.00400		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.00280		mg/l	0.00100		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.00185		mg/l	0.00020		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.00227		mg/l	0.00100		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.01978		mg/l	0.00100		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.980		mg/l	0.050		1	05/07/19 18:3	5 05/08/19 02:27	EPA 3005A	19,200.7	AB	
ND		mg/l	0.00100		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
ND		mg/l	0.00020		1	05/06/19 16:4	5 05/07/19 11:23	EPA 245.1	3,245.1	GD	
0.03960		mg/l	0.00200		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.01754		mg/l	0.00500		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.00859		mg/l	0.00040		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
0.04269		mg/l	0.01000		1	05/07/19 18:3	5 05/08/19 11:19	EPA 3005A	3,200.8	AM	
SM 2340B	- Mansfield	d Lab									
298		mg/l	0.660	NA	1	05/07/19 18:3	5 05/08/19 02:27	EPA 3005A	19,200.7	AB	
- Mansfiel	d Lab										
ND		mg/l	0.010		1		05/08/19 11:19	NA	107,-		
	Sfield Lab ND 0.00280 0.00185 0.00227 0.01978 0.980 ND ND 0.03960 0.01754 0.00859 0.04269 SM 2340B 298	Sfield Lab ND 0.00280 0.00185 0.00227 0.01978 0.980 ND ND 0.03960 0.01754 0.00859 0.04269 SM 2340B - Mansfield 298	Sfield Lab ND mg/l 0.00280 mg/l 0.00185 mg/l 0.00227 mg/l 0.01978 mg/l 0.980 mg/l ND mg/l ND mg/l 0.03960 mg/l 0.01754 mg/l 0.00859 mg/l 0.04269 mg/l SM 2340B - Mansfield Lab 298 mg/l	Sfield Lab ND mg/l 0.00400 0.00280 mg/l 0.00100 0.00185 mg/l 0.00020 0.00227 mg/l 0.00100 0.01978 mg/l 0.00100 0.980 mg/l 0.050 ND mg/l 0.00100 ND mg/l 0.00020 0.03960 mg/l 0.00200 0.01754 mg/l 0.00500 0.01754 mg/l 0.00500 0.00859 mg/l 0.00500 0.04269 mg/l 0.01000 SM 2340B - Mansfield Lab 298 mg/l 0.660	Sfield Lab ND mg/l 0.00400 0.00280 mg/l 0.00100 0.00185 mg/l 0.00020 0.00227 mg/l 0.00100 0.01978 mg/l 0.00100 0.980 mg/l 0.050 ND mg/l 0.00100 ND mg/l 0.00020 0.03960 mg/l 0.00200 0.01754 mg/l 0.00500 0.00859 mg/l 0.00040 0.004269 mg/l 0.01000 SM 2340B - Mansfield Lab 298 mg/l 0.660 NA	Result Qualifier Units RL MDL Factor Sfield Lab ND mg/l 0.00400 1 0.00280 mg/l 0.00100 1 0.00185 mg/l 0.00020 1 0.00227 mg/l 0.00100 1 0.01978 mg/l 0.00100 1 0.980 mg/l 0.050 1 ND mg/l 0.00100 1 ND mg/l 0.00020 1 0.03960 mg/l 0.00200 1 0.01754 mg/l 0.00500 1 0.04269 mg/l 0.00040 1 SM 2340B - Mansfield Lab 298 mg/l 0.660 NA 1	Result Qualifier Units RL MDL Factor Prepared Sfield Lab ND mg/l 0.00400 1 05/07/19 18:3 0.00280 mg/l 0.00100 1 05/07/19 18:3 0.00185 mg/l 0.00020 1 05/07/19 18:3 0.00227 mg/l 0.00100 1 05/07/19 18:3 0.980 mg/l 0.050 1 05/07/19 18:3 ND mg/l 0.00100 1 05/07/19 18:3 ND mg/l 0.00020 1 05/07/19 18:3 0.03960 mg/l 0.00200 1 05/07/19 18:3 0.01754 mg/l 0.00500 1 05/07/19 18:3 0.04269 mg/l 0.00040 1 05/07/19 18:3 SM 2340B - Mansfield Lab 298 mg/l 0.660 NA 1 05/07/19 18:3 <t< td=""><td>Result Qualifier Units RL MDL Factor Prepared Analyzed Sfield Lab ND mg/l 0.00400 1 05/07/19 18:35 05/08/19 11:19 0.00280 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.00185 mg/l 0.00020 1 05/07/19 18:35 05/08/19 11:19 0.00227 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.01978 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.980 mg/l 0.050 1 05/07/19 18:35 05/08/19 11:19 ND mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 ND mg/l 0.00020 1 05/07/19 18:35 05/08/19 11:19 0.03960 mg/l 0.00200 1 05/07/19 18:35 05/08/19 11:19 0.004269 mg/l 0.00040 1 05/07/19 18:35 05/08/19 11:19 <td co<="" td=""><td> ND</td><td> ND</td></td></td></t<>	Result Qualifier Units RL MDL Factor Prepared Analyzed Sfield Lab ND mg/l 0.00400 1 05/07/19 18:35 05/08/19 11:19 0.00280 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.00185 mg/l 0.00020 1 05/07/19 18:35 05/08/19 11:19 0.00227 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.01978 mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 0.980 mg/l 0.050 1 05/07/19 18:35 05/08/19 11:19 ND mg/l 0.00100 1 05/07/19 18:35 05/08/19 11:19 ND mg/l 0.00020 1 05/07/19 18:35 05/08/19 11:19 0.03960 mg/l 0.00200 1 05/07/19 18:35 05/08/19 11:19 0.004269 mg/l 0.00040 1 05/07/19 18:35 05/08/19 11:19 <td co<="" td=""><td> ND</td><td> ND</td></td>	<td> ND</td> <td> ND</td>	ND	ND

05/03/19 16:45

Project Name: HOLY CROSS PERFORMING ARTS CTR **Lab Number:** L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

SAMPLE RESULTS

Lab ID: L1918597-02 Date Collected: Client ID: SW-1-1645 Date Received:

Client ID: SW-1-1645 Date Received: 05/03/19
Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/l	0.00400		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00299		mg/l	0.00100		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Chromium, Total	0.00143		mg/l	0.00100		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Copper, Total	0.1012		mg/l	0.00100		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Iron, Total	0.414		mg/l	0.050		1	05/07/19 18:35	05/08/19 00:12	EPA 3005A	19,200.7	AB
Lead, Total	0.1066		mg/l	0.00100		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	05/06/19 16:45	05/07/19 11:25	EPA 245.1	3,245.1	GD
Nickel, Total	0.00342		mg/l	0.00200		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Zinc, Total	0.02654		mg/l	0.01000		1	05/07/19 18:35	05/08/19 11:23	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	142		mg/l	0.660	NA	1	05/07/19 18:35	05/08/19 00:12	EPA 3005A	19,200.7	AB
i lai ai looo	174		9/1	0.000	1 47 1		00/01/10 10.00	33,30,10 00.12	L. /\ 0000/	. 0,200.7	,,,,

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date: 05/24/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 E	Batch: Wo	G12340)87-1				
Mercury, Total	ND	mg/l	0.00020		1	05/06/19 16:45	05/07/19 10:31	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	Analyst
Total Metals - Mansfiel	ld Lab for sample(s):	01-02	Batch: WO	G12345	74-1				
Antimony, Total	ND	mg/l	0.00400		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/07/19 18:35	05/08/19 10:58	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	nsfield Lab for sample(s):	01-02 i	Batch: W	/G12345	578-1				
Iron, Total	ND	mg/l	0.050		1	05/07/19 18:35	05/08/19 00:32	2 19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

L1918597

Project Name: HOLY CROSS PERFORMING ARTS CTR

Lab Number:

Project Number: Report Date: 41486-204 05/24/19

> **Method Blank Analysis Batch Quality Control**

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed Units Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01-02 Batch: WG1234578-1 Hardness ND mg/l 0.660 NA 05/08/19 00:32 19,200.7 ΑB 05/07/19 18:35

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204 Lab Number:

L1918597

Report Date: 05/24/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1234087-2				
Mercury, Total	105	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1234574-2				
Antimony, Total	98	-	85-115	-		
Arsenic, Total	98	-	85-115	-		
Cadmium, Total	111	-	85-115	-		
Chromium, Total	99	-	85-115	-		
Copper, Total	100	-	85-115	-		
Lead, Total	107	-	85-115	-		
Nickel, Total	105	-	85-115	-		
Selenium, Total	104	-	85-115	-		
Silver, Total	105	-	85-115	-		
Zinc, Total	108	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	(s): 01-02 Bato	ch: WG1234578-2				
Iron, Total	101	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-02 Batch: WG123	34578-2			
Hardness	102	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date: 05/24/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bat	tch ID: WG123	4087-3	QC Sam	ple: L1917584-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.00513	103		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bat	tch ID: WG123	4574-3	QC Sam	ple: L1918505-02	Client ID: MS	Sample	
Antimony, Total	0.07032	0.5	0.7070	127		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1282	107		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05147	101		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2180	109		-	-	70-130	-	20
Copper, Total	0.02037	0.25	0.2599	96		-	-	70-130	-	20
Lead, Total	0.03823	0.51	0.5793	106		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4998	100		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1126	94		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05552	111		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.4864	97		-	-	70-130	-	20
Γotal Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bat	tch ID: WG123	4578-3	QC Sam	ple: L1918505-02	Client ID: MS	Sample	
Iron, Total	3.56	1	4.45	89		-	-	75-125	-	20
Total Hardness by SM 2	2340B - Mansfield Lal	Associated	sample(s): 01-02 QC	Batch ID): WG1234	578-3 QC Samp	le: L1918505-02	2 Client ID:	MS Samp
Hardness	2700	66.2	2650	0	Q	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01-02	QC Bat	tch ID: WG123	4578-7	QC Sam	ple: L1918194-01	Client ID: MS	Sample	
Iron, Total	0.081	1	1.12	104		-	-	75-125	-	20
Total Hardness by SM 2	2340B - Mansfield Lal	o Associated	sample(s): 01-02 QC	Batch ID): WG1234	578-7 QC Samp	le: L1918194-01	Client ID:	MS Samp
Hardness	279	66.2	332	80		-	-	75-125	-	20
										diama

Lab Duplicate Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date:

05/24/19

Parameter		N	ative Sample	Duplica	te Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sample(s):	01-02	QC Batch ID:	WG1234087-4	QC Sample:	L1917584-01	Client ID:	DUP Sampl	e
Mercury, Total			ND		ND	mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s):	01-02	QC Batch ID:	WG1234574-4	QC Sample:	L1918505-02	Client ID:	DUP Sampl	е
Antimony, Total			0.07032	0.	07199	mg/l	2		20
Arsenic, Total			ND		ND	mg/l	NC		20
Cadmium, Total			ND		ND	mg/l	NC		20
Chromium, Total			ND		ND	mg/l	NC		20
Copper, Total			0.02037	0.	02069	mg/l	2		20
Lead, Total			0.03823	0.	03745	mg/l	2		20
Nickel, Total			ND		ND	mg/l	NC		20
Selenium, Total			ND		ND	mg/l	NC		20
Silver, Total			ND		ND	mg/l	NC		20
Zinc, Total			ND		ND	mg/l	NC		20
Total Metals - Mansfield Lab	Associated sample(s):	01-02	QC Batch ID:	WG1234578-4	QC Sample:	L1918505-02	Client ID:	DUP Sampl	е
Iron, Total			3.56		3.57	mg/l	0		20
Total Metals - Mansfield Lab	Associated sample(s):	01-02	QC Batch ID:	WG1234578-8	QC Sample:	L1918194-01	Client ID:	DUP Sampl	е
Iron, Total			0.081	(0.081	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

SAMPLE RESULTS

Lab ID: L1918597-01 Date Collected: 05/03/19 12:45

Client ID: HA16-B9-OW-1245 Date Received: 05/03/19 Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: None

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal)								
Solids, Total Suspended	32.		mg/l	5.0	NA	1	-	05/06/19 11:30	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	05/05/19 16:10	05/06/19 10:39	121,4500CN-CE	ML
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/03/19 23:25	121,4500CL-D	JW
Nitrogen, Ammonia	0.110		mg/l	0.075		1	05/04/19 20:59	05/08/19 20:52	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	05/06/19 16:20	05/06/19 21:20	74,1664A	MM
Phenolics, Total	ND		mg/l	0.030		1	05/06/19 05:20	05/07/19 07:41	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	05/03/19 23:15	05/03/19 23:43	1,7196A	AS
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	5060		mg/l	125		250	-	05/08/19 01:42	44,300.0	AU

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 Report Date: 05/24/19

SAMPLE RESULTS

Lab ID: L1918597-02 Date Collected: 05/03/19 16:45

Client ID: SW-1-1645 Date Received: 05/03/19
Sample Location: 1 COLLEGE ST., WORCESTER, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab)								
Nitrogen, Ammonia	0.166		mg/l	0.075		1	05/07/19 16:45	05/07/19 23:52	121,4500NH3-BI	H AT

05/24/19

Lab Number:

Project Name: HOLY CROSS PERFORMING ARTS C

Project Number: 41486-204

Method Blank Analysis Batch Quality Control

Report Date: ethod Blank Analysis

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233528-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	05/03/19 23:15	05/03/19 23:42	1,7196A	AS
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233569-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/03/19 23:25	121,4500CL-D	JW
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233700-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/04/19 20:59	05/08/19 20:46	121,4500NH3-BI	H AT
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233797-1				
Cyanide, Total	ND		mg/l	0.005		1	05/05/19 16:10	05/06/19 10:10	121,4500CN-CE	ML
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233879-1				
Phenolics, Total	ND		mg/l	0.030		1	05/06/19 05:20	05/07/19 07:36	4,420.1	GD
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	233904-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/06/19 11:30	121,2540D	DR
General Chemistry - We	estborough Lab fo	or sam	ple(s): 01	Batch:	WG12	234062-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	05/06/19 16:20	05/06/19 21:20	74,1664A	MM
General Chemistry - We	estborough Lab fo	or sam	ple(s): 02	Batch:	WG12	234471-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/07/19 16:45	05/07/19 23:46	121,4500NH3-BI	H AT
Anions by Ion Chromato	ography - Westbo	rough l	Lab for sar	nple(s):	01 E	Batch: WG1	235051-1			
Chloride	ND		mg/l	0.500		1	-	05/07/19 17:54	44,300.0	AU

Lab Control Sample Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number: L1918597

Report Date: 05/24/19

Parameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1233528-	2		
Chromium, Hexavalent	96	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1233569-	2		
Chlorine, Total Residual	92	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1233700-	2		
Nitrogen, Ammonia	98	-	80-120	-	20
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1233797-	2		
Cyanide, Total	91	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1233879-	2		
Phenolics, Total	108	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): (01 Batch: WG1234062-	2		
ТРН	72	-	64-132		34
General Chemistry - Westborough Lab	Associated sample(s): (02 Batch: WG1234471-	2		
Nitrogen, Ammonia	99	-	80-120		20

Lab Control Sample Analysis Batch Quality Control

HOLY CROSS PERFORMING ARTS CTR

Lab Number: L1918597

Project Number: 41486-204 **Report Date:** 05/24/19

Parameter	LCS %Recovery	LCS %Reco		%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westborou	gh Lab Associated sam	nple(s): 01 E	Batch: WG1235051	-2		
Chloride	98	-		90-110	-	

Project Name:

Matrix Spike Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number:

L1918597

Report Date: 05/24/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits R		RPD Limits
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1233528-4	QC Sample: L1918597-	01 Client ID:	HA16-B9-0)W-1245
Chromium, Hexavalent	ND	0.1	0.091	91	-	-	85-115	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1233569-4	QC Sample: L1918597-	01 Client ID:	HA16-B9-0)W-1245
Chlorine, Total Residual	ND	0.25	0.31	124	Q -	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1233700-4	QC Sample: L1918202-	01 Client ID:	MS Sample)
Nitrogen, Ammonia	ND	4	3.70	92		-	80-120	-	20
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1233797-4	QC Sample: L1918117-	02 Client ID:	MS Sample)
Cyanide, Total	ND	0.2	0.185	92	-	-	90-110	-	30
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1233879-4	QC Sample: L1918597-	01 Client ID:	HA16-B9-0)W-1245
Phenolics, Total	ND	0.4	0.39	98	-	-	70-130	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	le(s): 01	QC Batch ID: \	WG1234062-4	QC Sample: L1918597-	01 Client ID:	HA16-B9-0)W-1245
TPH	ND	21.1	14.8	70		-	64-132	-	34
General Chemistry - Westborou	ugh Lab Assoc	iated samp	le(s): 02	QC Batch ID: \	WG1234471-4	QC Sample: L1918597-	02 Client ID:	SW-1-1645	5
Nitrogen, Ammonia	0.166	4	3.67	88	-	-	80-120	-	20
Anions by Ion Chromatography Sample	· - Westboroug	h Lab Asso	ciated san	nple(s): 01 Q0	C Batch ID: WG1	235051-3 QC Sample	: L1918830-01	Client ID:	MS
Chloride	35.8	4	38.7	72	Q -	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: HOLY CROSS PERFORMING ARTS CTR

41486-204

Project Number:

Lab Number:

L1918597

Report Date: 05/24/19

Parameter	Nati	ve S	ample	Duplicate Sam	nple Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233528-3	QC Sample:	L1918597-01	Client ID:	HA16-B9-OW-1245	
Chromium, Hexavalent		ND		ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233569-3	QC Sample:	L1918597-01	Client ID:	HA16-B9-OW-1245	
Chlorine, Total Residual		ND		ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233700-3	QC Sample:	L1918202-01	Client ID:	DUP Sample	
Nitrogen, Ammonia		ND		ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233797-3	QC Sample:	L1918117-01	Client ID:	DUP Sample	
Cyanide, Total		ND)	ND	mg/l	NC		30	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233879-3	QC Sample:	L1918597-01	Client ID:	HA16-B9-OW-1245	
Phenolics, Total		ND		ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1233904-2	QC Sample:	L1918140-02	Client ID:	DUP Sample	
Solids, Total Suspended		890)	850	mg/l	5		29	
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1234062-3	QC Sample:	L1918505-01	Client ID:	DUP Sample	
TPH		ND	1	ND	mg/l	NC		34	
General Chemistry - Westborough Lab	Associated sample(s):	02	QC Batch ID:	WG1234471-3	QC Sample:	L1918597-02	Client ID:	SW-1-1645	
Nitrogen, Ammonia		0.16	6	0.193	mg/l	15		20	
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1235051-4 QC Sample: L1918830-01 Client ID: DUP Sample									
Chloride		35.8	3	35.9	mg/l	0		18	

Project Name: HOLY CROSS PERFORMING ARTS CTR

Project Number: 41486-204

Lab Number: L1918597
Report Date: 05/24/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Container Information

Cooler Custody Seal

A Absent

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1918597-01A	Plastic 250ml HNO3 preserved	А	<2	<2	3.4	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),HARDU(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),TRICR-CALC(1),CR-2008T(180),PB-2008T(180),SB-2008T(180)
L1918597-01B	Plastic 250ml unpreserved split	Α	7	7	3.4	Υ	Absent		-
L1918597-01C	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		PCB-608.3(7)
L1918597-01D	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		PCB-608.3(7)
L1918597-01E	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1-SIM-RGP(7)
L1918597-01F	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1-SIM-RGP(7)
L1918597-01G	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1-RGP(7)
L1918597-01H	Amber 1000ml Na2S2O3	Α	7	7	3.4	Υ	Absent		625.1-RGP(7)
L1918597-01I	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		504(14)
L1918597-01J	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		504(14)
L1918597-01K	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-RGP(7)
L1918597-01L	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-RGP(7)
L1918597-01M	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-RGP(7)
L1918597-01N	Plastic 250ml NaOH preserved	Α	>12	>12	3.4	Υ	Absent		HOLD-WETCHEM()
L1918597-01O	Plastic 950ml unpreserved	Α	7	7	3.4	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1918597-01P	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.4	Υ	Absent		NH3-4500(28)
L1918597-01Q	Plastic 250ml NaOH preserved	Α	>12	>12	3.4	Υ	Absent		TCN-4500(14)
L1918597-01R	Amber 950ml H2SO4 preserved	Α	<2	<2	3.4	Υ	Absent		TPHENOL-420(28)
L1918597-01S	Plastic 950ml unpreserved	Α	7	7	3.4	Υ	Absent		TSS-2540(7)
L1918597-01T	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-SIM-RGP(7)
L1918597-01U	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-SIM-RGP(7)

Lab Number: L1918597

HOLY CROSS PERFORMING ARTS CTR

Project Name:

Report Date: 05/24/19 Project Number: 41486-204

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1918597-01V	Vial Na2S2O3 preserved	Α	NA		3.4	Υ	Absent		624.1-SIM-RGP(7)	
L1918597-01X	Plastic 120ml HNO3 preserved Filtrates	Α	NA		3.4	Υ	Absent		HOLD-METAL-DISSOLVED(180)	
L1918597-01Y	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		TPH-1664(28)	
L1918597-01Z	Amber 1000ml HCl preserved	Α	NA		3.4	Υ	Absent		TPH-1664(28)	
L1918597-02A	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.4	Υ	Absent		NH3-4500(28)	
L1918597-02B	Plastic 250ml HNO3 preserved	A	<2	<2	3.4	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)	

Project Name: HOLY CROSS PERFORMING ARTS CTR Lab Number: L1918597

Project Number: 41486-204 Report Date: 05/24/19

GLOSSARY

Acronyms

EMPC

LOD

MSD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

- Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:HOLY CROSS PERFORMING ARTS CTRLab Number:L1918597Project Number:41486-204Report Date:05/24/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- ${\bf A} \qquad \text{-Spectra identified as "Aldol Condensation Product"}.$
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:HOLY CROSS PERFORMING ARTS CTRLab Number:L1918597Project Number:41486-204Report Date:05/24/19

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05241916:26

ID No.:17873 Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Published Date: 10/9/2018 4:58:19 PM Title: Certificate/Approval Program Summary Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

																	-				
Дена	CHA	AIN OF C	USTO	DY ,	PAGE_ \	OF	Date	e Rec'	d in L	ab:		5	13	10	,	ALI	РНА	Job#	:L	191859	7
8 Walkup Driv	220 5 4 - 20	Proj	ect Informa	tion	100	PIRTIE	Re	port l	nforn	nation	- Dat	ta De	liver	rable	s	Bill	ling l	nforma	ation	W. 1	
Westboro, MA Tel: 508-898-	01581 Mansfield, MA		ct Name: Hol	y Cvoss	Art Ce	nter	0	ADEx	Š.		EMAIL					□ Sa	ame a	s Client	info	PO#:	
Client Informati	on	The second secon	ct Location: \				Re	gulate	ory R	equire	men	ts &	& F	Proje	ct Ir	form	nation	Requ	ıireme	ents	
Client: Haley	Aldrich		ct#: 414			141				MCP					DG2				CT RC	P Analytical Meth	hods
	d ford Farms		ct Manager: T			1	□ Y	es 🗆 l	No GV	V1 Star	dards	1000				1.000			(argets)	G-11-0-1-0-W-1-1	
Bedfi	rd NH		HA Quote #:	- 0	1110	1				DES R							Cr	iteria			
Phone: 603	625-5353	Tur	n-Around Ti	me		17 1/4			7	7	2/2	,/,	1.	1	139	7	7	1 1	7	7 /	0.0
Email: Dunds	say@ naleyaldri	ch. com	REVOIDANCUM 22		A A MA	Aberta	١.	1	/	180	PP	1000	10	/	Pir	/	/_/		11	/ /	
Additional I	Project Informa	ALC:	te Due:	⊒ RUSH (only	r confirmed if pre-a	pproved)	ANALVE	E 624 D 524 75	AH.	MCP 14	RCR48	C Range	The Parison		"Berprint	ر /	<u>J</u>	//	//	SAMPLE IN	FO A
inst tield	l Metal allo I fittered)	ated to TSJ	Contai	ner.				2 4260 BK	LS: DIMC	LS: DRCRAS PAGE 14 L	VACCO STATES DPP1	G PCB	D PEST	T.D.: Ouant Only Deir	TOOL	TSC TRC-4C	Mai	3 246		Filtration Field Lab to do Preservation Lab to do	B 0 T
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Coll	lection Time	Sample Matrix	Sampler Initials	8	8000	配	METALS:	TO TO	T A	HE	12	1	K	(E)	K#3	Ź <u>/</u>	Sample Commer	E
1859701	HA16-B9-0	W-1245	5/3/19	1245	water	SLG	X	X		X	1	X	X	×	X	×	4-	HA	1		a3
02	5W-1-1645		5/3/19			SiG			X					\vdash				X	1		2
	1.0			1.0	100	300	\Box			+	1	1		\vdash		\forall	T'		+		
							\forall		+	+	+	-		-			+	+	+		+
									+	+	+	-	H	\vdash	H	+	+	+	+		-
			+	-	-		H	-	-	+	-	-	-	-		-	+	+	+-		+
				-	-		H	-	+	+	-	-		-		_	-	+	+-		_
				-				-	4	-	-	-		-		-	-	+	+		-
			-					-	+	-	-	-		H		-	-	+	+		_
					-			_	_	-	_			L				_			
								_			_										
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCI				Conta	ainer Type															
V= Vial G≃ Glass			Pr	eservative																	
B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle	E= NaOH F= MeOH G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₂ Cl	Maiiva A	nquished By:			e/Time	1		Rec	eived E	ly:	\$3	13	-	Date S8	Time		Alpha's		ubmitted are sub s and Conditions side.	
age 54 of 54	K= Zn Acetate O= Other						-										- 2	FORM N	O: 01-01	(rev. 12-Mar-2012)	

APPENDIX E

Contractor Dewatering Cut Sheets and SDSs

Lockwood Remediation Technologies, LLC

700 Series Floc Logs

Polyacrylamide Sediment and Turbidity Control Applicator Logs

700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Applied Polymer Systems, Inc. or your local distributor for free testing and site-specific application information.

Primary Applications

- · Mine tailings and waste pile ditches
- · Stormwater drainage from construction and building sites
- · Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- · Dredging operations as a flocculent

Features and Benefits

- · Removes solubilized soils and clay from water
- · Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (D. magna or O. mykiss)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

Packaging

700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block
Biodegradable internal coconut skeleton
Percent Moisture - 40% maximum
pH 0.5% Solution - 6-8
Shelf Life – up to 5 years when stored out of UV rays

Office: 774-450-7177 • Fax: 888-835-0617

89 Crawford Street • Leominster, MA 01453

Lockwood Remediation Technologies, LLC

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

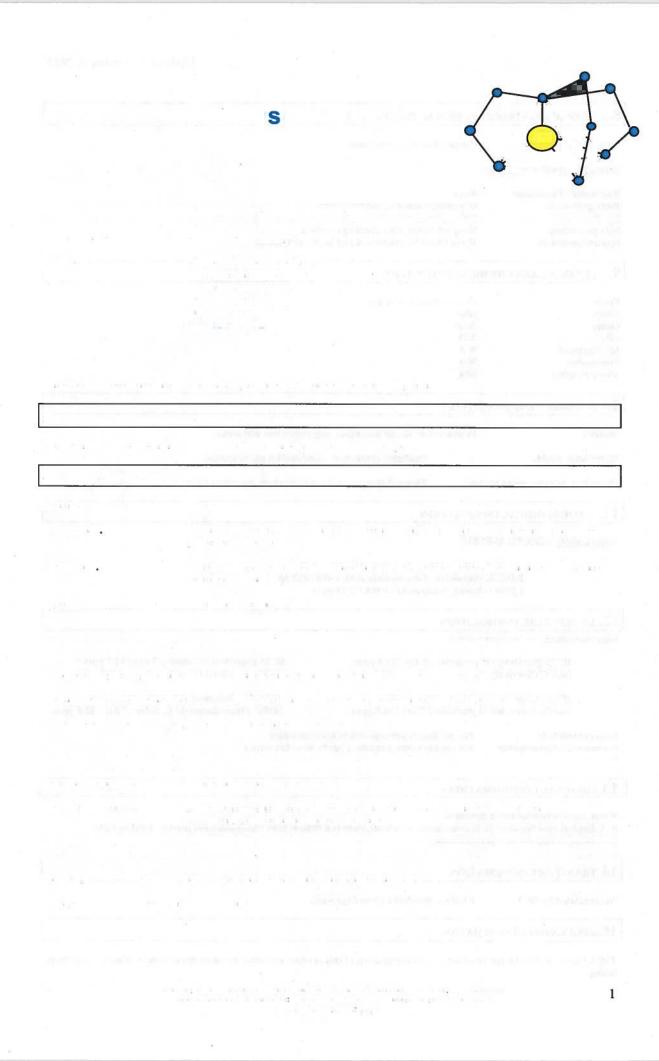
Directions for Use

(Water and Floc Log Mixing is Very Important!)

700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.


Cleanup:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

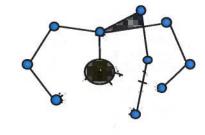
Precautions / Limitations

- 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- Floc Log will remain viable for up to 5 years when stored out of UV rays.
- 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.

URE

TE AL

HEMI


IVITY

AL INF

AE /

INF

www.

NT

CONTRACTOR OF THE PROPERTY OF THE REAL PROPERTY.

NT

AID ME

topic or the control of the section of the section of

The state of the s

The state of the s

нт

RE RE

The state of the s

THE RESERVE OF THE PERSON OF T

AND RA

Denning to the transport of the second of th

The second secon

harac Draina

	10 1 10		* : E	11 8 2 -1 - 1	
CALMERY TO BY BY BY					
	2 72 0 12 12				
31					
	R A F F	4 - 1 1 1			
	1 1 2 7				
4.7					
A 003					
		a 7 7 7			
tic Kil K		PER EXPER			
	2 2 3		2 28		
3					
3 +11			1.1		
0 202 5 5 18 1 3 14		a dva			
*					
H H H H H H H		a 1580 8		X 17 19	2 1 20 7
		I DATE I C			
	41	F-1 17 - C10 17			

INF RMA RE UL

INF HMI

mma

HMI

TE ,

Dredg

The state of the s

Antaramenta arrotay on A. A. S. M. T. G. Vallandaria

a september our control 2 f

URE NT

THE RESIDENCE OF THE RE

HEMI

RE

RM

dizin

INF RMA

ig/L

(R)

RA :

Charac

Apprent Foryings singles inc.

Santa to a Databack

Consideration and the property and the control of t

make the property of the contract of the contr

See Heart

1

and removed the

provide and

CONTRACTOR OF STREET

conjugate action of the contract of part where we would appropriate the second and the contract of the contrac

Continue of the action of the continue of the

wastenskingen togethere til marketer til

contract of the first

Charles to the control of the contro

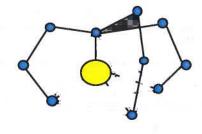
Company of the Compan

the calmid to get an indicate in an account where the country of the artifactor is sufficiently and the calmid to
the beginning a blanch of

CAMPBOOL THE SPECIAL CONTRACTOR

AND THE RESIDENCE OF THE PARTY
ryment to difference programment. Appropriation is provided that concept on the later of these dates to be digreg

had pur reading taking at the market and the quiper a card


Billion also the most book for SPS corrects.

3

the manufacture of the property of the property of the second property of the second s

The state of the Paris and the Trail

National Annual Angle Committee and Secretary South from Secretary County and Committee and Secretary Committee

CONTRACT THE PROPERTY OF STATE

ID ANY

www.

NTIFI

ME URE

AN

ADDRESS A SINCE THE RESIDENCE OF THE PARTY O

MP

A STREET OF THE RESERVE OF THE STREET OF THE

The state of the state of the same of the

RE HT ASURE

The second of th

I have a second of the second

RE JURE

The same of the sa

and the second of the second o

the figure of the annual content of the content of

The state of the s

Charac

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use local exhaust if dusting occurs. Natural ventilation is adequate in absence of dust.

Personal protection equipment

Respiratory Protection:

Dust safety masks are recommended where dusting may occur.

Hand protection: Eye Protection:

Dry cloth, leather or ruhher gloves.

Safety glasses with side shields or face masks. Do not wear contact lenses.

Skin protection: Hygiene measures: No special protective clothing required.

Wash hands before breaks and at end of work day.

PHYSICAL AND CHEMICAL PROPERTIES

Form:

Granular solid

Color: Odor:

White None

pH: Melting point: Flash point: Vapor density:

7-8 N/A N/A

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carbon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity:

(EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg LC 50 / Oncorhynchus mykiss / 96h / 530 mg/L LC 50 / Daphnia magna / 48h / >420mg/L

EC 50 / Selenastrum capricornutum / 96h / >500mg/L

12. ECOLOGICAL INFORMATION

Chronic Toxicity: (EPA/600/R-98/182)

IC25 (Survival) / P. promelas / 7 day / 358 ppm NOEC (Survival) / P. promelas / 7 day / 840 ppm IC₂₅ (Survival) / C. dubia / 7 day / 157.5 ppm NOEC (Survival) / C. dubia / 7 day / 105 ppm

IC25 (Growth) / P. promelas / 7 day / 94 ppm NOEC (Growth) / P. promelas / 7 day / 105 ppm

IC25 (Reproduction) / C. dubia / 7 day / 27.7 ppm NOEC (Reproduction) / C. dubia / 7 day / 26.25 ppm

Inhalation:

The product is not expected to he toxic hy inhalation.

Dermal:

The results of testing on rahhits showed no toxicity even at high dose levels.

Bioaccumulation:

The product is not expected to hioaccumulate.

Persistence / degradahility:

Not readily hiodegradable: (~40% after 28 days).

Chronic toxicity:

A 2 yr feeding study on rats did not reveal adverse health effects.

13. DISPOSAL CONSIDERATIONS

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class:

RCRA Status:

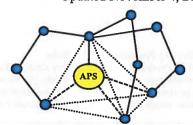
Not concerned Not RCRA hazardous

16. TRANSPORT AND REGULATORY INFORMATION

NFPA and HMIS ratings:

NFPA Health: 1 HMIS Health 1 Flammability: Flammability

1


1

Reactivity: Reactivity 0

DATE EDITED: Oct. 29th 2015

Applied Polymer Systems, Inc.

Safety Data Sheet

1. IDENTIFICATION OF THE PRODUCT AND THE COMPANY

Product Name:

APS 703d Floc Log®

Supplied:

Applied Polymer Systems, Inc.

519 Industrial Drive Woodstock, GA 30189 Tel. 678-494-5998 Fax. 678-494-5298 www.siltstop.com

2. HAZARD IDENTIFICATION

Placement of these materials on wet walking surface will create extreme slipping hazard.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Identification of the preparation:

Anionic water-soluble Co-polymer gel

4. FIRST AID MEASURES

Inhalation:

None

Skin contact:

Contact with wet skin could cause dryness and chapping. Wash with water and soap.

Eye contact:

Rinse thoroughly with plenty of water, also under the eyelids, seek medical attention in case of persistent

irritation

Ingestion:

Consult a physician

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media:

Water, water spray, foam, carhon dioxide, dry powder.

Special fire-fighting precautions:

Floc Logs that hecome wet render surfaces extremely slippery.

Protective equipment for firefighters:

No special equipment required.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions:

No special precautions required.

Methods for cleaning up:

Dry wipe as well as possible. Keep in suitable and closed containers for disposal.

After cleaning, flush away traces with water.

7. HANDLING AND STORAGE

Handling:

Avoid contact with skin and eyes. Wash hands after handling.

Storage:

Keep in a cool, dry place.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

Engineering controls:

Use dry handling areas only.

Personal protection equipment

Respiratory Protection:

None

Hand protection:

Dry cloth, leather or ruhber gloves.

Eye Protection:

Safety glasses with side shields. Do not wear contact lenses.

Skin protection: Hygiene measures: No special protective clothing required. Wash hands before breaks and at end of work day.

PHYSICAL AND CHEMICAL PROPERTIES

Form: Color: Granular semi-solid gel Blue

Odor:

None 7.37

pH: Melting point:

N/A N/A

Flash point: Vapor density:

N/A

10. STABILITY AND REACTIVITY

Stability:

Product is stable, no hazardous polymerization will occur.

Materials to avoid:

Oxidizing agents may cause exothermic reactions.

Hazardous decomposition products:

Thermal decomposition may produce nitrogen oxides (NOx), carhon oxides.

11. TOXICOLOGICAL INFORMATION

Acute toxicity (EPA/600/4-90/027F)

LD 50 / Rattus norvegicus / oral / > 5000 mg/kg

LC 50 / Daphnia magna / 48h / >383mg/L

LC 50 / Oncorhynchus mykiss / 96h / 1900 mg/L

Chronic toxicity (EPA/600/4-91/002)

IC 25 (Survival) / P. promelas / 7 day / 110 ppm

NOEC (Survival) / P. prometas / 7 day/ 105 ppm

IC 25 (Survival) / C. dubia / 7 day / 99.8 ppm NOEC (Survival) / C. dubia / 7 day/ 52.5 ppm

IC 25 (Growth) / P. promelas / 7 day / 130 ppm

NOEC (Growth) / P. prometas / 7 day / 150 ppm

IC 25 (Reproduction) / C. dubia / 7 day / 58.2 ppm NOEC (Reproduction) / C. dubia / 7 day / 105 ppm

12. ECOLOGICAL INFORMATION

Fish: LC 50 / Pimephales promelas / 96h / >1000 mg/l

Water Flea: LC 50 / Daphnia magna / 48h / 383mg/l Algae: EC 50 / Selenastrum capricornutum / 96h / >500mg/l

Bioaccumulation: The product is not expected to bioaccumulate.

Persistence / degradability: Not readily hiodegradable: (~85% after 180 days).

13. DISPOSAL INFORMATION

Waste from residues/unused products.

Any disposal practice must be in compliance with local, state and federal laws and regulations (contact local or state environmental agency for specific rules).

14. TRANSPORT INFORMATION

Not regulated by DOT,

RCRA status-Not a hazardous waste

15. REGULATORY INFORMATION

TSCA Chemical Substances Inventory: All components of this product are either listed on the inventory or are exempt from listing.

SARA Section 311 / 312 Hazard Class:

RCRA Status:

Not concerned Not RCRA hazardous

16. OTHER INFORMATION

NFPA and HMIS ratings:

NFPA Health:

Flammability:

0 Reactivity:

0

HMIS Health

Flammability

0

Reactivity

0

DATE EDITED: Nov 4th 2015

Technical Guidance for the Use of Polyacrylamides (PAM) and PAM Blends for Soil Erosion Control and Storm Water clarification

(Courtesy of Applied Polymer Systems, Inc.)

Practice Description

PAM is a water-soluble anionic polyacrylamide product used to minimize soil erosion caused by water and wind to decrease soil sealing by binding soil particles, especially clays, to hold them on site. In addition, these types of materials may also be used as a water treatment additive to remove suspended particles from runoff. When PAM is used on construction sites in the Southeast it is typically applied with temporary seeding and or mulching on areas where the timely establishment of temporary erosion control is so critical that seedings and mulching need additional reinforcement. It may be used alone on sites where no disturbances will occur until site work is continued and channel erosion is not a significant potential problem. Permanent grassing applications can be better established using PAM as a tackifier and soil conditioner.

PAMs are manufactured in various forms to be used on specific soil types, and are generally applied at a rate of up to 25 pounds/acre for dry products and 2 ½ gallons/acre of emulsion-liquid products. Using the wrong form of a PAM on a soil will result in some degree of performance failure, and increase the potential for this material to enter surface waters. PAM used alone may not reduce NTU values resulting in non-compliance water quality discharges or poor soil binding conditions. Site-specific soil-PAM testing must be performed. Exceeding the maximum application rates for this product does not increase the effectiveness of the product.

Block or Log forms of PAM and PAM blends are manufactured for specific use in drainage waterways to remove suspended particulates from runoff.

General Components of the Practice

Prior to the start of construction, a qualified professional should design the application of PAM and plans and specifications should be available to field personnel.

The application should conform to the design and specifications provided in the plans. Typical applications include the following components.

- Site Preparation
- Equipment Preparation
- PAM Application

Application

Site Preparation

Prepare site following design and specifications.

Equipment Preparation

If using a liquid application system, pump a surfactant through the injection system before and after injecting concentrated liquid PAM into sprinkler irrigation systems to help prevent valves and tubing from clogging.

PAM used in hydroseeding applications should be added as the last additive to the mix.

After their use, rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues. Rinse residue should be applied to soil areas to create binding to the soil structure and increase erosion reduction.

PAM Application- Criteria for Land applied PAM Specifications

PAM shall be mixed and/or applied in accordance with all Occupational Safety and Health Administration (OSHA) Material Safety Data Sheet (MSDS) requirements and the manufacturer's recommendations for the specified use conforming to all federal, state and local laws, rules and regulations.

1.) Toxicity

All venders and suppliers of PAM, PAM mix or blends shall present or supply a written toxicity report which verifies that the PAM, PAM mix or blend exhibits acceptable toxicity parameters which meet or exceed the EPA requirements for the state and federal water quality standards. Whole effluent testing does not meet this requirement as primary reactions have occurred and toxic potentials have been reduced. Cationic forms of PAM, polymers and chitosan are not allowed for use under this guideline due to their high levels of toxicity to aquatic organisms. Emulsions shall never be applied directly to stormwater runoff or riparian waters due to surfactant toxicity.

2.) Performance

All venders and suppliers of PAM, PAM mix or blends shall supply written "site specific" testing results demonstrating that a performance of 95% or greater reduction of NTU or TSS from stormwater discharges.

Emulsion batches shall be mixed following recommendations of a testing laboratory that determines the proper product and rate to meet site requirements. Application method shall insure uniform coverage to the target area. (Emulsions shall never be applied directly to stormwater runoff or riparian waters)

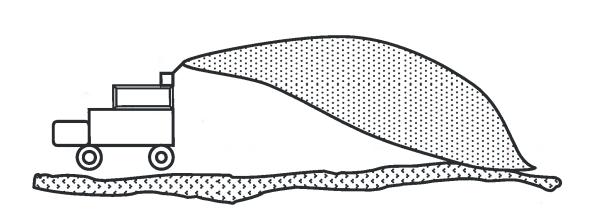
Dry form (powder) may be applied by hand spreader or a mechanical spreader. Mixing with dry silica sand will aid in spreading. Pre-mixing of dry form PAM into fertilizer, seed or other soil amendments is allowed when specified in the design plan. Application method shall insure uniform coverage to the target area.

Block or Log forms shall be applied following site testing results to assure proper placement and performance and shall meet or exceed state and federal water quality requirements.

Common Problems

Consult with a registered design professional for assistance if any of the following occur:

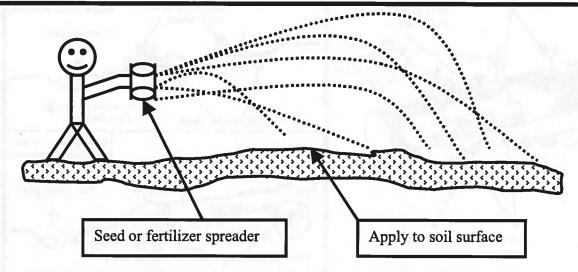
- Problems with application equipment clogging.
- PAM alone may not meet testing requirements for NTU reduction and soil stabilization. Site specific "blends" may be needed to meet these requirements.
- Application specifications for PAM cannot be met; alternatives may be required. Unapproved application techniques could lead to failure.
- Visible erosion occurs after application.


Maintenance

An operation and maintenance plan must be prepared for use by the operator responsible for PAM application. Plan items should include the following items.

- Reapply PAM to disturbed or tilled areas that require continued erosion control.
- Maintain equipment to provide uniform application rates.
- Rinse all PAM mixing and application equipment thoroughly with water to avoid formation of PAM residues and discharge rinse water to soil areas where PAM stabilization may be helpful.
- Downstream deposition from the use of PAM may require periodic sediment removal to maintain normal functions.

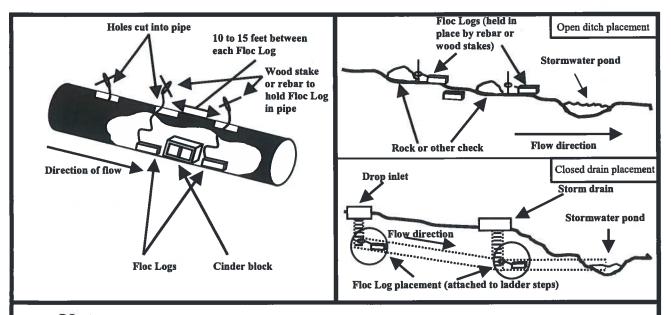
(Silt Stop Application of Temporary and Permanent Grassing)



Notes:

- 1) For use on all slope conditions which are not matted.
- 2) Application rate shall be 1.5 gallons of Silt Stop emulsion/acre or 10 pounds of Silt Stop powder/acre.
- 3) Silt Stop emulsion or powder shall be added to all hydroseeding mixes at a rate of 3000 gallons of mix/acre.
- 4) Silt Stop shall be the final additive to the hydroseeding mix.
- 5) Straw cover may be applied over the hydroseeded application.

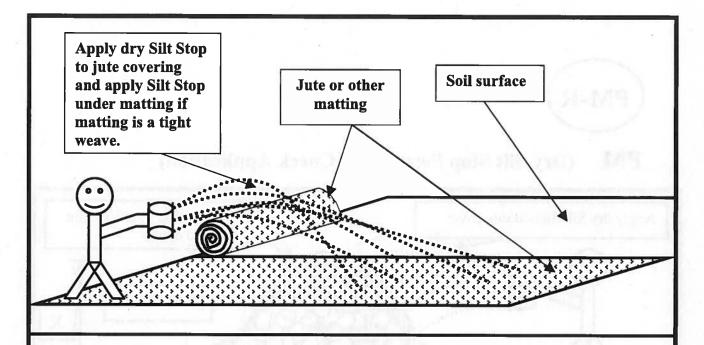
PM (Dry Silt Stop Form)



Notes:

- 1) Dry Silt Stop shall be applied using a seed or fertilizer spreader or may be mixed with other dry spread additives.
- 2) Dry Silt Stop shall be covered with straw, mulch, matting or jute.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.
- 4) For use on all slope conditions.

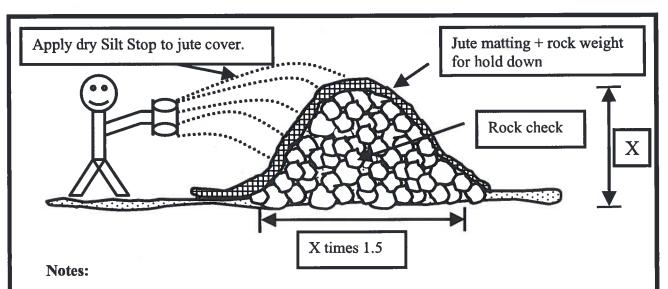
(Floc Log placement for pipes, ditch and storm drains)



Notes:

- 1) Place Floc Logs far enough upstream in turbid flows to allow adequate mixing time. (Mixing time and Floc Log type are determined from the sample analysis.)
- 2) Floc Logs should be placed 10 to 15 feet apart in a row or at points of highest water velocity; whichever is most convenient.
- 3) The number of Floc Logs placed on the site is based on results from the sample analysis. Floc Logs shall be placed in <u>all</u> catch basins and after <u>all</u> downsides of rock checks.

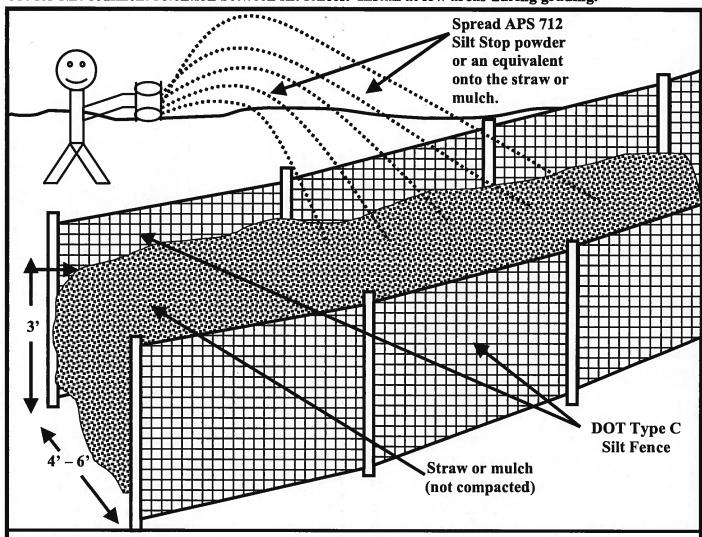
(Dry Silt Stop Form Soft Armoring Technique for Matting)



Notes:

- 1) For use on all slope conditions.
- 2) One layer of jute or other matting shall be applied to the surface of all exposed soil on 1:1 slopes.
- 3) Dry Silt Stop shall be applied to the soil if tight weave matting is used and also to the jute or burlap matting cover using a seed or fertilizer spreader.
- 4) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

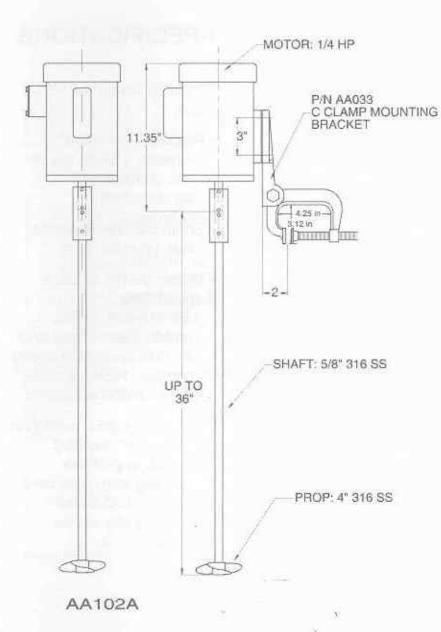
PM (Dry Silt Stop Form Rock Check Application)



- 1) One layer of jute matting shall be applied to the surface of all rock checks.
- 2) Dry Silt Stop shall be applied to the jute cover using a seed or fertilizer spreader.
- 3) Application rate shall be 10 pounds/acre but not greater than 25 pounds/acre.

(SRB) Sediment Retention Barrier

Use for fine sediment retention between silt fences. Install at low areas during grading.



- 1) Use in all low areas during the grading phase.
- 2) Place 2 rows of DOT type C silt fence 4 to 6 feet apart. Place straw or mulch 3 feet deep between the silt fences.
- 3) Dry Silt Stop powder or an equivalent should be spread throughout the straw or mulch using a seed or fertilizer spreader.

pH System Components

MADDEN

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

pulsafeeder.com

The Pulsatron Series E Plus offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Twenty distinct models are available, having pressure capabilities to 300 PSIG (21 BAR) @ 3 GPD (0.5 lph), and flow capacities to 600 GPD (94.6 lph) @ 30 PSIG (2 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within \pm 2% of maximum capacity. Please refer to the reverse side for Series E PLUS specifications.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

• Turn-Down Ratio 10:1

4-20mADC Direct or External Pacing with Stop

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

PULSAfron[®] Series E Plus Electronic Metering Pumps

PULSAtron[®] Series E Plus

Specifications and Model Selection

MODEL		LPK2	LPB2	LPA2	LPD3	LPB3	LPA3	LPK3	LPF4	LPD4	LPB4	LPH4	LPG4	LPE4	LPK5	LPH5	LPH6	LPK7	LPH7	LPJ7	LPH8
Capacity	GPH	0.13	0.21	0.25	0.5	0.50	0.50	0.60	0.85	0.90	1.00	1.70	1.75	1.85	2.50	3.15	5.00	8.00	10.00	10.00	25.00
nominal	GPD	3	5	6	12	12	12	14	20	22	24	41	42	44	60	76	120	192	240	240	600
(max.)	LPH	0.5	0.8	0.9	1.9	1.9	1.9	2.3	3.2	3.4	3.8	6.4	6.6	7	9.5	11.9	18.9	30.3	37.9	37.9	94.6
Pressure	PSIG	300	250	150	250	150	100	100	250	150	100	250	150	100	150	150	100	50	35	80	30
(max.)	BAR	21	17	10	17	10	7	7	17	10	7	17	10	7	10	10	7	3.3	2.4	5.5	2
Connections	Tubing						1/4"	ID X 3/8	" OD						3/8" ID X 1/2" OD						
			3/8" ID X 1/2" OD						1/2" ID X 3/4" OD (LPH8 ONLY)												
	Piping		1/4" FNPT									1	/4" FNF	PT							
5:	(0) (1)(5)											1	/2" FNF	T							

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE

316 SS Alloy C **GFPPL**

Fittings Materials Available: PVC

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Same as fitting and check valve Injection Valve & Foot Valve Assy:

selected

Clear PVC Tubing:

White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS:

For viscosity up to 3000 CPS, select connection size 3, 4, B or C with 316SS ball material. Flow rate will determine connection/ball size. Greater than 3000 CPS require spring loaded ball checks. See Selection Guide for proper connection.

Stroke Frequency Max SPM: 125 Stroke Frequency Turn-Down Ratio: 10:1 Stroke Length Turn-Down Ratio: 10:1

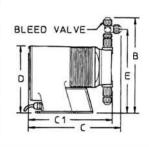
Power Input: 115 VAC/50-60 HZ/1 ph

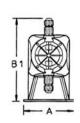
230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 1.0 Amps @ 230 VAC; Amps: 0.5 Amps Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

Custom Engineered Designs – Pre-Engineered Systems




Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UVstabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

	_		_		_	_	Seri	es E Plus [imensions	(inch	es)		_	_	_		
Model No.	Α	В	В1	С	C1	D	Ε	Shpg Wt	Model No.	Α	В	В1	С	C1	D	Ε	Shpg Wt
LPA2	5.4	10.3		10.8	-	7.5	8.9	13	LPH4	6.2	10.9	0.00	11.2	-	8.2	9.5	21
LPA3	5.4	10.6	-	10.7		7.5	9.2	13	LPH5	6.2	11.3	-	11.2	-	8.2	9.9	21
LPB2	5.4	10.3		10.8	-	7.5	8.9	13	LPH6	6.2	11.3		11.9		8.2	9.9	21
LPB3	5.4	10.6		10.7	10	7.5	9.2	13	LPH7	6.1	11.7		11.9		8.2	10.3	21
LPB4	5.4	10.6		10.7	-	7.5	9.2	13	LPH8*	6.1		10.9	150	11.3	8.2	-	26
LPD3	5.4	10.6		11.2		7.5	9.2	15	LPK2	5.4	10.3		10.8		7.5	8.9	13
LPD4	5.4	10.6		11.2	10	7.5	9.2	15	LPK3	5.4	10.6		10.7		7.5	9.2	13
LPE4	5.4	10.6	-	11.2		7.5	9.2	15	LPK5	5.4	10.9		11.7		7.5	9.5	18
LPF4	5.4	10.6	-	11.7	-	7.5	9.2	18	LPK7	6.1	11.7		11.2	- 3	8.2	10.3	21
LPG4	5.4	10.6		11.7	7.	7.5	9.2	18	LPJ7	6.1	10	-	10.7				21

NOTE: Inches X 2.54 = cm /* the LPH8 is designed without a bleed valve available

pH Control

+GF+® Signet pH/ORP Controllers

Versatile mounting options allow you to customize the installation for particular applications

- Large, scratch-resistant, self-healing display
- +GF+ Signet controllers are designed for broad application and ease of setup and operation. Multiple mounting options allow for installation best suited to your particular application. Intuitive software and four-button keypad arrangement make it easy to access important information such as measurement values, calibration data, relay setup menus, and more.

Optional universal mounting kit allows for mounting of field-mount units on pipes, tanks, and walls. RC filter kit prevents premature wearing of the relay outputs by providing protection from electrical noise. Order separately below.

Required System Components

- 1 Controller
- Preamplifier
- Electrode

Field-mount controller 56560-20

Specification	ons		CERTIFIED SUPPLIER	s (
Model		+GF+ Signet 8750-1	+GF+ Signet 8750-2	+GF+ Signet 8750-3		
	рH	0.00 to 14.00	0.00 to 14.00	0.00 to 14.00		
Range	mV	-1000 to 2000 mV	-1000 to 2000 mV	-1000 to 2000 mV		
	Temperature	-13 to 248°F (-25 to 120°C)	-13 to 248°F (-25 to 120°C)	-13 to 248°F (-25 to 120°C)		
	pН	0.01	0.01	0.01		
Resolution	mV	1 mV	1 mV	1 mV		
	Temperature	0.1°C (0.1°F)	0.1°C (0.1°F)	0.1°C (0.1°F)		
	pН	±0.03	±0.03	±0.03		
Accuracy	mV	±2 mV	±2 mV	±2 mV		
	Temperature	±0.5°C (±1°F)	±0.5°C (±1°F)	±0.5°C (±1°F)		
Temperature	compensation	Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco	Automatic, 3 kΩ Balco		
Control type		On/off (limit) or proportional	On/off (limit) or proportional	On/off (limit) or proportional		
Number of se	et points	Two (low, high)	Two (low, high)	Two (low, high)		
	Relay	_	Two SPDT relays, 5 A at 30 VDC or 250 VAC resistive load maximum	_		
Output	Current	One 4 to 20 mA, isolated, fully adjustable and reversible	One 4 to 20 mA, isolated, fully adjustable and reversible	Two 4 to 20 mA, isolated, fully adjustable and reversible		
	Open collector	One open-collector, optically isolated, 50 mA max	_	Two open-collector, optically isolated, 50 mA max		
Dead band		User adjustable	User adjustable	User adjustable		
Housing		NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel	NEMA 4X (IP65) front panel		
Display		2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD	2 x 16 alphanumeric LCD		
Dimensions (imensions (W x H x D) Field-mount: 31 ³ / ₅ e" x 31 ³ / ₅ e" x 31 ³ / ₅ e" x 95 x 106 mm) Panel-mount: 31 ³ / ₅ e" x 31 ³ / ₅ e" x 31 ³ / ₅ e" (96 x 96 x 106 mm)					

12 to 24 VDC 12 to 24 VDC 12 to 24 VDC Power

Signet pH/ORP Transmitter

Panel-mount controller 56560-30

DryLoc® pH and **ORP** electrodes

Controllers

Catalog number	Model	Mounting style	Price
S-56560-18	+GF+ Signet 8750-1	Field mount	
S-56560-28	+GF+ Signet 8750-1P	Panel mount, ¼ DIN	
S-56560-20	+GF+ Signet 8750-2	Field mount	
S-56560-30	+GF+ Signet 8750-2P	Panel mount, ¼ DIN	
S-56560-22	+GF+ Signet 8750-3	Field mount	
S-56560-32	+GF+ Signet 8750-3P	Panel mount, ¼ DIN	

S-05631-50 Universal mounting kit for field-mount units

S-17106-20 NIST-traceable calibration

Preamplifiers

Preamplifiers protect the relatively weak output signal of the pH or ORP electrode from electrical interferences common in industrial environments and are required for initial system installation. Unique DryLoc® connectors allow you to quickly form robust assemblies for submersible and in-line applications.

Catalog number	Thread size	Price
S-56560-03 S-56560-04	¾" NPT(M) ISO 7-1 R¾"	
	1001111111	

Electrodes

Feature-packed pH and ORP electrodes feature unique DryLoc connectors which offer resistance to intrusion from dirt and moisture. Extended reference path length extends electrode life over traditional combination electrodes. Electrode bodies are Ryton® PPS for added chemical resistance and feature a 3/4" NPT(M) or ISO 7-1 R3/4" threads for in-line installation. Flatsurface electrodes minimize abrasion and breakage problems by allowing sediment to sweep past the measurement surface. Bulb-style electrodes feature quick response and are well-suited to general-purpose applications. HF-resistant electrodes resist hydrofluoric acid in concentration less than 2%. LC-bulb electrodes are designed for ultrapure, low-conductivity water applications. All have a 3 k Ω Balco ATC element and measure 0 to 14 pH.

Catalog number	Туре	Thread size	Price
S-56561-02 S-56561-03	pH, flat surface	¾" NPT(M) ISO 7-1 R¾"	
S-56561-10 S-56561-11	pH, bulb style	¾" NPT(M) ISO 7-1 R¾"	
S-56561-06 S-56561-07	pH, HF-resistant bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-14 S-56561-15	pH, LC bulb	¾" NPT(M) ISO 7-1 R¾"	
S-56561-16 S-56561-17	ORP, flat surface	¾" NPT(M) ISO 7-1 R¾"	

Material Safety Data Sheet

77% - 100% SULFURIC ACID

SECTION 1. PRODUCT IDENTIFICATION

Trade Name

77 % - 100 % Sulfuric Acid

Product Code

Manufacturers/Distributors

Information Contact

None NorFalco Inc., 6000 Lombardo Center, The Genesis Blg, suite 650 Seven Hills, OH 44131

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

André Auger, Administration Assistant

Canada 1-877-ERP-ACID (377-2243) U.S.A. 1-800-424-9300 CHEMTREC

Product Information 1-905-542-6901 (Mississauga)

Phone Number (Transportation Emergency)

Phone Number (Transportation Emergency)

Phone Number (Medical Emergency)

Phone Number (Emergency)

Name / Chemical Formula

Synonyms

CANUTEC 1-613-996-6666

Dihydrogen Sulfate; Oil of Vitriol; Vitriol Brown Oil; Sulphuric Acid.

Acide sulfurique (French) Sulfuric Acid / H₂SO₄

1-418-656-8090

Acid

Chemical Family Utilization

Chemical industries; Water treatment; Fertilizer; Pulp and Paper.

Manufacturers CEZinc on behalf of Noranda Income Limited Partnership, Salaberry-de-Valleyfield (Quebec) Canada J6T 6L4

Xstrata Copper, Horne Smelter, Rouyn-Noranda (Quebec) J9X 5B6
Xstrata Zinc, Brunswick Smelting, Belledune, New Brunswick E0B 1G0
Xstrata Copper, Kidd Metallurgical Division, Timmins, Ontario P4N 7K1
Xstrata Nickel, Sudbury Operations, Falconbridge, Ontario P0M 1S0

SECTION 2. HAZARDS IDENTIFICATION

WHMIS (Canada)

CLASS D-1A: Very toxic material causing immediate and serious effects

CLASS E: Corrosive material

Labeling (EEC)

C Corrosive

SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS

Name	CAS#	Percentage (%)	# CE	R Phrases ¹
Sulfuric (Acid)	7664-93-9	77 % to 100 %	231-639-5	R35
60 Deg Technical		77.7		
66 Deg Technical		93.2		
1.835 Electrolyte	102-00 - 00-004-10 - 000	93.2		
98 % Technical		98		389
99 % Technical		99	-000	
100 % Technical		100		
Water	7732-18-5	0-22		

Note 1: See section 15 for the complete wording of risk phrases.

SECTION 4. FIRST-AID MEASURES

Eye Contact

Remove contact lenses if present. Immediately flush eyes with plenty of water, holding eyelids open for at least 15 minutes. Consult a physician. Possibility of conjonctivitis, severe irritation, severe burns, permanent eye damage.

Skin Contact

Remove contaminated clothing and shoes as quickly as possible protecting your hands and body. Place under a deluge shower for 15 minutes. Flush exposed skin gently and thoroughly with running water (Pay particular attention to: Folds, crevices, creases, groin). Call a physician if irritation persists. May irritate skin, cause burns (Highly corrosive) and possibility of some scarring.

Wash contaminated clothing before reusing. While the patient is being transported to a medical facility, continue the application of cold, wet compresses. If medical treatment must be delayed, repeat the flushing with cold water or soak the affected area with cold water to help remove the last traces of sulfuric acid. Creams or ointments SHOULD NOT be applied before or during the washing phase of treatment.

Inhalation Take precautions to avoid so

Take precautions to avoid secondary contamination by residual acids. Remove the person to fresh air. If not breathing, give artificial respiration. Difficult breathing: Give oxygen. Get immediate medical attention. Possibility of damage to the upper respiratory tract and lung tissues. Maintain observation of the patient for delayed onset of pulmonary oedema. May cause irritation to the upper respiratory tract: Coughing, sore throat, shortness of breath.

Ingestion

DO NOT INDUCE VOMITING. Conscious and alert person: Rinse mouth with water and give ½ to 1 cup of water or milk to dilute material. Spontaneous vomiting: Keep head below hips to prevent aspiration; Rinse mouth and give ½ to 1 cup of water or milk. UNCONSCIOUS person: DO NOT induce vomiting or give any liquid. Immediately obtain medical attention.

2009

1/6

77% - 100% SULFURIC ACID

Notes to Physicians

Continued washing of the affected area with cold or iced water will be helpful in removing the last traces of sulfuric acid. Creams or ointments should not be applied before or during the washing phase of the treatment.

SECTION 5. FIRE-FIGHTING MEASURES

Flash Point

Not available Not available

Auto-Ignition Temperature

Not available

Products of Combustion Fire Hazard

Flammable Limits

Releases of sulfur dioxide at extremely high temperatures. Not flammable

Explosion Hazard

Reacts with most metals, especially when dilute: Hydrogen gas release (Extremely flammable, explosive). Risk of explosion if acid combined with water, organic materials or base solutions in enclosed spaces (Vaccum trucks, tanks). Mixing acids of different strengths/concentrations can also pose an explosive risk in an enclosed space/container.

Extinguishing media

ERG (Emergency Response Guidebook): Guide 137

When material is not involved in fire, do not use water on material itself.

Small fire: Dry chemical or CO₂. Move containers from fire area if you can do it without risk.

Large fire: Flood fire area with large quantities of water, while knocking down vapors with water fog. If

insufficient water supply: knock down vapors only.

Fire involving Tanks or Car/Trailer Loads: Cool containers with flooding quantities of water until well after fire is out. Do not get water inside containers. Withdraw immediately in case of rising sound from venting safety devices

or discoloration of tank. ALWAYS stay away from tanks engulfed in fire.

Protective equipment

Evacuate personnel to a safe area. Keep personnel removed and upwind of fire. Generates heat upon addition of water, with possibility of spattering. Wear full protective clothing. Runoff from fire control may cause pollution. Neutralize run-off with lime, soda ash, etc., to prevent corrosion of metals and formation of hydrogen gas. Wear self-contained breathing apparatus if fumes or mists are present.

SECTION 6. ACCIDENTAL RELEASE MEASURES

Spill

Review Fire and Explosion Hazards and Safety Precautions before proceeding with clean up. Stop flow if possible. Soak up small spills with dry sand, clay or diatomaceous earth.

Methods

Dike large spills, and cautiously dilute and neutralize with lime or soda ash, and transfer to waste water treatment

system. Prevent liquid from entering sewers, waterways, or low areas.

If this product is spilled and not recovered, or is recovered as a waste for treatment or disposal, the Reportable Quantity (U.S. DOT) is 1 000 lbs (Based on the sulfuric acid content of the solution spilled). Comply with Federal, State, and local regulations on reporting releases.

Protective equipment

Review Fire Fighting Measures and Handling (Personnel Protection) sections before proceeding with cleanup. Use appropriate PERSONAL PROTECTIVE EQUIPMENT during clean-up.

SECTION 7. HANDLING AND STORAGE

Handling

Do not get in eyes, on skin, or on clothing. Avoid breathing vapours or mist. Wear approved respirators if adequate ventilation cannot be provided. Wash thoroughly after handling. Ingestion or inhalation: Seek medical advice **immediately** and provide medical personnel with a copy of this MSDS.

Conditions for storage

Sulfuric acid must be stored in containers or tanks that have been specially designed for use with sulfuric acid. **DO NOT** add water or other products to contents in containers as violent reactions will result with resulting high heat, pressure and/or generation of hazardous acid mists.

Keep containers away from heat, sparks, and flame. All closed containers must be safely vented before each opening. For more information on sulfuric acid tanks, truck tanks and tank cars including safe unloading information go to www.norfalco.com.

SECTION 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

		ACGIH (U.S.A.) 2008	USHA (U.S.A.)
Name	# CAS	TLV-TWA (mg/m³)	PEL - TWA (mg/m³)
Sulfuric (Acid)	7664-93-9	0.2 (thoracic fr.)	1
60 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
66 Deg Technical	7664-93-9	0.2 (thoracic fr.)	1
1.835 Electrolyte	7664-93-9	0.2 (thoracic fr.)	1
98 % Technical	7664-93-9	0.2 (thoracic fr.)	1
99 % Technical	7664-93-9	0.2 (thoracic fr.)	1
100 % Technical	7664-93-9	0.2 (thoracic fr.)	1
Water	7732-18-5	Not established	Not established

ACGIH: American Conference of Governmental Industrial Hygienists. OSHA: Occupational Safety and Health Administration.

77% - 100% SULFURIC ACID

Note: Sulfuric (Acid): Exposure limits may be different in other jurisdictions. NIOSH REL-TWA (≤10 hours): 1 mg/m³; IDLH: 15 mg/m³.

Consult local authorities for acceptable exposure limits.

Engineering Controls Individual protection Good general ventilation should be provided to keep vapour and mist concentrations below the exposure limits. Chemical splash goggles; Full-length face shield/chemical splash goggles combination; Acid-proof gauntlet gloves, apron, and boots; Long sleeve wool, acrylic, or polyester clothing; Acid proof suit and hood; Appropriate NIOSH respiratory protection.

< 0.6 mm Hg @ 38°C (100 °F)

In case of emergency or where there is a strong possibility of considerable exposure, wear a complete acid suit with hood, boots, and gloves. If acid vapour or mist are present and exposure limits may be exceeded, wear appropriate NIOSH respiratory protection.

SECTION 9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State and Appearance Liquid (Oily; Clear to turbid) Odour Odourless Molecular Weight Colour Colourless to light grey Volatility < 1 (Butyl Acetate = 1.0) pH (1% soln/water) **Boiling Point** 193°C to 327 °C (379°F to 621°F) @ 760 mm Hg Vapour Density 3.4 **Melting Point** -35°C to 11°C (-31°F to 52°F) Dispersion Yes (Water) < 0.3 mm Hg @ 25°C (77 °F) Solubility Yes (Water) Vapour Pressure

GRADE	Boilin	g Point	Freezin	Specific Gravit	
	DEG °C	DEG °F	DEG °C	DEG °F	1980 - 1880 - 1880 - 1880
60 DEG TECHNICAL	193	380	- 12	10	1.706
66 DEG TECHNICAL	279	535	- 35	- 31	1.835
1.835 ELECTROLYTE	279	535	- 35	- 31	1.835
98 % TECHNICAL	327	621	- 2	29	1.844
99 % TECHNICAL	310	590	4	40	1.842
100 % TECHNICAL	274	526	11	51	1.839

SECTION 10. STABILITY AND REACTIVITY

Stability Yes (Under normal conditions of ambiant temperature)

Reactivity Reacts violently with water, organic substances and base solutions with evolution of heat and hazardous mists.

Conditions to avoid

Heat: Possibility of decomposition. Release of dangerous gases (Sulfur oxides SO2, SO3)

Polymerization

Polymerization will not occur.

Incompatibilities

Vigorous reactions with: Water; alkaline solutions; Metals, metal powder; Carbides; Chlorates; Fulminates; nitrates; Picrates; Strong oxidizing, reducing, or combustible organic materials. Hazardous gases are evolved on

contact with chemicals such as cyanides, sulfides, and carbides.

Corrosivity Yes

SECTION 11. TOXICOLOGICAL INFORMATION

Routes of Entry Ingestion. Inhalation. Skin and eye contacts.

Carcinogenicity Strong inorganic acid mists containing sulfuric acid (Occupational exposures): PROVEN (Human, Group 1,

IARC); SUSPECTED (Human, Group A2, ACGIH); Group X (NTP); Classification not applicable to sulfuric

acid and sulfuric acid solutions.

Mutagenicity Teratogenicity Not applicable. Not applicable.

Acute toxicity

ORAL (LD50): 2 140 mg/kg (Rat); INHALATION (LC50, 2 hours): 510 mg/m³ (Rat); 320 mg/m³ (Mouse).

(RTECS)

Acute Effects

Chronic Effects

May be fatal if inhaled or ingested in large quantity. Liquids or acid mists: May produce tissue damage: Mucous membranes (Eyes, mouth, respiratory tract). Extremely dangerous by eyes and skin contact (Corrosive). Severe irritant for eyes: Inflammation (Redness, watering, itching). Very dangerous in case of inhalation (Mists) at high

concentrations: May produce severe irritation of respiratory tract (Coughing, shortness of breath, choking). Target organs for acute and chronic overexposure (NIOSH 90-117): Respiratory system, eyes, skin, teeth.

Acid mists: Overexposure to strong inorganic mists containing sulfuric acid: Possibility of laryngeal cancer (HSBD, IARC). Possibility of irritation of the nose and throat with sneezing, sore throat or runny nose. Headache, nausea and weakness. Gross overexposure: Possibility of irritation of nose, throat, and lungs with cough, difficulty breathing or shortness of breath. Pulmonary edema with cough, wheezing, abnormal lung sounds, possibly progressing to severe shortness of breath and bluish discoloration of the skin. Symptoms may be delayed. Repeated or prolonged exposure to mists may cause: Corrosion of teeth.

Toxicity

Contact (Skin): Possibility of corrosion, burns or ulcers. Contact with a 1 % solution: Possibility of slight irritation with itching, redness or swelling. Repeated or prolonged exposure (Mist): Possibility of irritation with itching, burning, redness, swelling or rash.

Contact (Eye): Possibility of corrosion or ulceration (Blindness may result). Repeated or prolonged exposure

(Mist): Possibility of eye irritation with tearing, pain or blurred vision.

Ingestion: Immediate effects of overexposure: Burns of the mouth, throat, esophagus and stomach, with severe pain, bleeding, vomiting, diarrhea and collapse of blood pressure. Damage may appear days after exposure.

Persons with the following pre-existing conditions warrant particular attention:

Sulfuric (Acid): Laryngeal irritation.

Eating, drinking and smoking must be prohibited in areas where this material is handled and processed. Wash hands and face before eating, drinking and smoking.

SECTION 12. ECOLOGICAL INFORMATION

Aquatic toxicity: Slightly to moderately toxic. Ecotoxicity

Bluegill Sunfish (LC50; 48 hours): 49 mg/l (Tap water, 20 °C, conditions of bioessay not specified).

(HSBD).

Flounder (LC50; 48 hours): 100-330 mg/l (Aerated water, conditions of bioessay not specified). (HSBD).

EYE: Concentrated compound is corrosive. 10 % solution: Moderate eye irritant. Toxicity to Animals SKIN : Concentrated compound is corrosive. 10 % solution : Slight skin irritant.

Single and repeated exposure: Irritation of the respiratory tract; Corrosion of the respiratory tract; Lung damage; Labored breathing; Altered respiratory rate; Pulmonary oedema. Repeated exposure: Altered

red blood cell count.

Easy soil seeping under rain action Mobility (Soil)

Persistence and degradability

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants. Bioaccumulation

Sulfate ion: Ubiquitous in the environment. Metabolized by micro-organisms and plants whitout

bioaccumulation. Not available

Biodegradation Products

Not applicable Biodegradation Products (Toxicity)

Due to the product's composition, particular attention must be taken for transportation and storage. Protect Remarks on Environment

from rain because the run-off water will become acidic and may be harmful to flora and fauna.

Not available **BOD5 and COD**

SECTION 13. DISPOSAL CONSIDERATIONS

Cleaned-up material may be an hazardous waste on Resource Conservation and Recovery Act (RCRA) on Disposal methods

disposal due to the corrosivity characteristic. DO NOT flush to surface water or sanitary sewer system. Comply with Federal, State, and local regulations. If approved, neutralize and transfer to waste treatment

SECTION 14. TRANSPORT INFORMATION

CLASS 8 Corrosives TDG (Canada)

PG II UN1830 SULFURIC ACID PIN

Special Provisions (Transport)

SULFURIC ACID Proper Shipping Name DOT (U.S.A.)/IMO (Maritime)

Hazard Class 8 1830 UN Nº CORROSIVE DOT/IMO Label

Packing Group 1000 lbs (454 kg) Reportable Quantity

Tank Cars, Tank Trucks, Vessel Shipping Containers

Guide 137

SECTION 15 REGULATORY INFORMATION

EU (Directive 67/548/EEC): Labeling (EEC)

Sulfuric (Acid): C Corrosive (Pictogram)

Annex I Index number: 016-020-00-8; EU Consolidated Inventories: EC Number 231-639-5

 $C \ge 15\%$ C; R35; S2, 26, 30, 45.

R35- Causes severe burns Risk Phrases (EEC)

S26- In case of contact with eyes, rinse immediately with plenty of water and seek medical advice Safety Phrases (EEC)

S30- Nerver add water to this product

S36/37/39- Wear suitable protective clothing, gloves and eye/face protection

S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where

possible).

ERG

77% - 100% SULFURIC ACID

CEPA DSL (CANADA) CANADIAN ENVIRONMENTAL PROTECTION ACT (CEPA) : On the Domestic Substances List

(DSL); Acceptable for use under the provisions of CEPA.

Sulfuric Acid is a Class B Drug Precursor under <u>Health Canada's Controlled Drugs and Substances Act</u>

and Precursor Control Regulations.

Regulations (U.S.A.) CERCLA Section 103 Hazardous substances (40 CFR 302.4); SARA Section 302 Extremely Hazardous

Substances (40 CFR 355): Yes; SARA Section 313, Toxic Chemicals (40 CFR 372.65); US: TSCA

Inventory : Listed :

Sulfuric (Acid) (Final RQ): 1 000 pounds (454 kg)

Sulfuric Acid is subject to reporting requirements of Section 313, <u>Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA)</u>, 40 CFR Part 372.

Certain companies must report emissions of Sulfuric Acid as required under <u>The Comprehensive</u> <u>Environmental Response, Compensation and Liability Act of 1980 (CERCLA)</u>, 40 CFR Part 302

For more information call the <u>SARA Hotline</u> 800-424-9346.

Strong Inorganic Acid Mists Containing Sulfuric Acid: Chemical listed effective March 14, 2003 to the State of California, Proposal 65.

<u>U.S. FDA Food Bioterrorism Regulations</u>: These regulations apply to Sulfuric Acid when being distributed, stored or used for Food or Food Processing.

Classifications HCS (U.S.A.)

Corrosive liquid

NFPA (National Fire Protection Association) (U.S.A.)

Fire Hazard 0 Reactivity 2 Health 3 Special Hazard ACID

NPCA- HMIS Rating
Fire Hazard 0 Reactivity 2 Health

SECTION 16. OTHER INFORMATION

References

- TLVs and BEIs (2008). Based on the Documentation of the Threshold Limit Values for Chemical Substances and Physical Agents & Biological Exposure Indices. ACGIH, Cincinnati, OH – http://www.acgih.org
- CCOHS (2008) Canadian Centre for Occupational Health and Safety http://www.ccohs.ca/
- CSST (2008) Commission de la Santé et de la Sécurité du Travail (Québec). Service du répertoire toxicologique http://www.reptox.csst.qc.ca/
- ERG (2008). Emergency Response Guidebook, Developed by the U.S. Department of Transportation, Transport Canada, and the Secretariat of Communications and Transportation of Mexico
- HSDB (2008) Hazardous Substances Data Bank. TOXNET® Network of databases on toxicology, hazardous chemicals, and environmental health. NLM Databases & Electronic Resources, U.S. National Library of Medicine, NHI, 8600 Rockville Pike, Bethesda, MD 20894 http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?HSDB
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans (collection) http://www-cie.iarc.fr/
- Merck Index (1999). Merck & CO., Inc, 12th edition
- NIOSH U.S. (2008) Pocket Guide to Chemical Hazards http://www.cdc.gov/niosh/npg/
- Patty's Industrial Hygiene and Toxicology, 3rd Revised Edition
- Règlement sur les produits contrôlés (Canada)
- RTECS (2008). Registry of Toxic Effects of Chemical Substances, NIOSH, CDC
- Toxicologie industrielle & intoxication professionnelle, 3e édition, Lauwerys

Glossary

CSST : Commission de la Santé et de la Sécurité du Travail (Québec).

HSDB : Hazardous Substances Data Bank.

IARC : International Agency for Research on Cancer.NIOSH : National Institute of Occupational Safety and Health.

NTP : U.S. National Toxicology Program.

RTECS: Registry of Toxic Effects of Chemical Substances

Note

For further information, see NorFalco Inc. Sulfuric Acid « Storage and Handling Bulletin ».

Because of its corrosive characteristics and inherent hazards, Sulfuric Acid should not be used in sewer or drain cleaners or any similar application; regardless of whether they are formulated for residential, commercial or industrial use. NorFalco will not knowingly sell sulfuric acid to individuals or companies who repackage the product for sale as sewer or drain cleaners, or any other similar use.

The data in this Material Safety Data Sheet relates only to the specific material designated herein and does not relate to use in combination with any other material or in any process.

For additional information, please visited our website: www.norfalco.com

Written by: Groupe STEM Consultants / NorFalco Sales Inc.

Complete revision: 2009-01-24 Partial review: None Previous complete revision: 2008-01-24

77% - 100% SULFURIC ACID

Verified by: Guy Desgagnés and Eric Kuraitis, Technical Representative - Sulfuric Acid

Request to: André Auger, Administration Assistant Tel.: (905) 542-6901 extension 0 Fax: (905) 542-6914 / 6924

NorFalco Sales Inc., 6755 Mississauga Road, Suite 304, Mississauga, Ontario L5N 7Y2

Notice to Reader

Although reasonable precautions have been taken in the preparation of the data contained herein, it is offered solely for your information, consideration and investigation. NorFalco Sales Inc. extends no warranty and assumes no responsibility for the accuracy of the content and expressly disclaims all liability for reliance thereon. This material safety data sheet provides guidelines for the safe handling and processing of this product: it does not and cannot advise on all possible situations, therefore, your specific use of this product should be evaluated to determine if additional precautions are required. Individuals exposed to this product should read and understand this information and be provided pertinent training prior to working with this product.

B: 35.9"

D: 3.5"

C: 6.0"

E: 2.0"

TYP.

30 40 50 60 70 80 90 100 110 120 130 140 150

Flow, gpm

02/18/09

DRAWN BY: AAV

GROUND/WATER TREATMENT & TECHNOLOGY, INC

DWG SIZE: A SHEET: 1 OF 1 DRAWING NUMBER: ST-0002-SPC

Mirafi[®] 140N

Mirafi[®] 140N is a needlepunched nonwoven geotextile composed of polypropylene fibers, which are formed into a stable network such that the fibers retain their relative position. Mirafi[®] 140N is inert to biological degradation and resists naturally encountered chemicals, alkalis, and acids. Mirafi[®] 140N meets Aashto M288-06 Class 3 for elongation > 50%.

Mechanical Properties	Test Method	Unit		n Average Value
-			MD	CD
Grab Tensile Strength	ASTM D4632	lbs (N)	120 (534)	120 (534)
Grab Tensile Elongation	ASTM D4632	%	50	50
Trapezoid Tear Strength	ASTM D4533	lbs (N)	50 (223)	50 (223)
CBR Puncture Strength	ASTM D6241	lbs (N)	310 (1380)
Apparent Opening Size (AOS) ¹	ASTM D4751	U.S. Sieve (mm)	70 (0).212)
Permittivity	ASTM D4491	sec ⁻¹	1	.7
Flow Rate	ASTM D4491	gal/min/ft ² (l/min/m ²)	135 (5500)
UV Resistance (at 500 hours)	ASTM D4355	% strength retained	7	70

¹ ASTM D4751: AOS is a Maximum Opening Diameter Value

Physical Properties	Unit	Typical Value	
Roll Dimensions (width x length)	ft (m)	12.5 x 360 (3.8 x 110)	15 x 360 (4.5 x 110)
Roll Area	$yd^2 (m^2)$	500 (418)	600 (502)
Estimated Roll Weight	lb (kg)	133 (60)	160 (72)

Disclaimer: TenCate assumes no liability for the accuracy or completeness of this information or for the ultimate use by the purchaser. TenCate disclaims any and all express, implied, or statutory standards, warranties or guarantees, including without limitation any implied warranty as to merchantability or fitness for a particular purpose or arising from a course of dealing or usage of trade as to any equipment, materials, or information furnished herewith. This document should not be construed as engineering advice.

© 2012 TenCate Geosynthetics Americas Mirafi[®] is a registered trademark of Nicolon Corporation

