

# NOTICE OF INTENT FOR

# MASSACHUSETTS REMEDIATION GENERAL PERMIT

SHELL BRANDED SERVICE STATION
620 BELMONT STREET
BROCKTON, MA
RTN 4-16968

Prepared for: COLBEA ENTERPRISES LLC 2050 PLAINFIELD PIKE CRANSTON, RI 02921

June 2019

# **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION                                                                                                            | ERROR! BOOKMARK NOT DEFINED. |
|-----|-------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 2.0 | GENERAL FACILITY INFORMATION                                                                                            | ERROR! BOOKMARK NOT DEFINED. |
| 3.0 | DISCHARGE INFORMATION                                                                                                   | ERROR! BOOKMARK NOT DEFINED. |
|     | 3.1 Receiving Water 3.2 Dewatering Activity Description 3.3 Pre-Discharge Sampling                                      | Error! Bookmark not defined. |
| 4.0 | ENDANGERED SPECIES ACT, NATIONAL HISTORICAL PERROR! BOOKMARK NOT DEFINED.                                               | RESERVATION ACT REQUIREMENTS |
|     | <ul><li>4.1 Endangered Species Act Requirements</li><li>4.2 National Historical Preservation Act Requirements</li></ul> |                              |
| 5.0 | CONCLUSIONS                                                                                                             | ERROR! BOOKMARK NOT DEFINED. |

# **FIGURES**

| Figure i  | 211e rocns wab                              |
|-----------|---------------------------------------------|
| Figure 2  | Site Plan                                   |
| Figure 2A | Extended Site Plan                          |
| Figure 3  | Waterbody Assessment & TMDL Status          |
| Figure 4  | Areas of Environmental Concern              |
| Figure 5  | MassDEP Phase 1 Site Assessment Map         |
| Figure 6  | Groundwater Dewatering Installation Diagram |
|           |                                             |

# **TABLES**

Table 1 Summary of Groundwater Analytical Data

# **ATTACHMENTS**

| Attachment A | Notice of Intent                                              |
|--------------|---------------------------------------------------------------|
| Attachment B | StreamStats 7Q10 Data & MassDEP Correspondence                |
| Attachment C | Laboratory Analytical Reports                                 |
| Attachment D | Fish and Wildlife Service - New England Services Field Office |
|              | Correspondence                                                |
| Attachment E | MARCIS Inventory Results                                      |



#### 1.0 INTRODUCTION

Tg2 Solutions, LLC (Tg2) prepared Notice of Intent (NOI) for a Massachusetts Remediation General Permit (RGP) for construction dewatering at the Shell-branded gasoline station located at 620 Belmont Street, in Brockton, Massachusetts on behalf of the site owner, Colbea Enterprises LLC (Colbea). This NOI is being submitted to the United State Environmental Protection Agency (USEPA) in accordance with the requirements of the Massachusetts General Permit No. MAG070000. This site is identified by Massachusetts Department of Environmental Protection (MassDEP) as Release Tracking Number (RTN) 4-16968 and is regulated in accordance with Massachusetts Contingency Plan (MCP) 310 CMR 40.0000. The site is presently in Phase V Remedy Operation Status.

This NOI for an RGP is being submitted to account for site renovation activities being conducted at the facility. A portion of these activities include the dewatering of an excavation to allow for the removal and replacement of gasoline underground storage tanks (USTs). For the purpose of this NOI, the "facility" is defined as the area located within the property boundaries of 620 Belmont Street, in Brockton, Massachusetts. A Site Locus Map is presented as **Figure 1**. A Site Plan is presented as **Figure 2**. A copy of the NOI is included as **Attachment A**.

### 2.0 GENERAL FACILITY INFORMATION

General site information for which this Phase I applies includes the following:

Property Owner/Facility Operator: Thomas Breckel

Operator Colbea Enterprises LLC

2050 Plainfield Pike Cranston, RI 02920 Tel: (401) 943-0005

Owner/Facility Operator Contact: Eric D. Simpson, Environmental Program

Director

Esimpson@eastsodeenterprise.com

Tel: (401) 943-0005

USGS Quadrangle: Brockton, Massachusetts

Longitude, Latitude: - 71° 02' 36.66" W, 42° 04' 18.88" N

(approximate)

Site Zoning: General Commercial

County: Plymouth



# 2.1 Facility Description

The facility is a Shell-branded service station located at 620 Belmont Street in a commercial area of Brockton, Massachusetts. The property is improved with a single-story building, which includes a convenience store, a car service center, and gasoline dispensers. Subsurface structures include three 10,000-gallon underground storage tanks (USTs) and two 1,000-gallon double-walled steel USTs (one for waste oil and one for heating oil. The facility is located on a 0.251-acre parcel. Refer to **Figure 2** - Site Plan, for the location of existing UST systems, dispensers, sampling locations, and pertinent facility features.

## 2.2 Sensitive Environmental Receptors

The nearest surface water body is West Meadow Brook, located approximately 500 feet to the west of the facility. Depth to water at the site ranges from approximately six to eight feet below ground surface (bgs), depending on measurement location. Groundwater does not intersect surface water or wetland areas within the boundaries of the facility. There are no wetland areas located within 500 feet of the facility. A waterbody assessment and TMDL status relative to the facility location is provided in **Figure 3**.

The facility is not located within a Zone II area, Interim Wellhead Protection Area (IWPA), or a Zone A or a Potentially Productive Aquifer. Areas of Critical Environmental Concern are not located within 500 feet of the site. Areas of Priority Habitats of Rare Species, Habitats of Rare Wildlife, or Certified Vernal Pools are not located within 500 feet of the facility. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.

## 2.3 National Pollutant Discharge Elimination System (NPDES) Status

A NPDES permit was previously applied for in 2015 by Sovereign Consulting Inc. to address nuisance odors associated with petroleum impacted groundwater. However, based on the USEPA RGP NOI archive it does not appear that this RGP/NOI was granted for this site. Site redevelopment construction activities have not yet begun at the facility and are planned for mid to late summer 2019. The facility is not covered by an individual NPDES permit and there are no pending applications on file for any other permit with US EPA for this facility. As defined by 40 CFR Section 122.2, a new discharger means any building, structure, facility, or installation:

- A) From which there is or may be a "discharge of pollutants;"
- B) That did not commence the "discharge of pollutants" at a particular "site" prior to August 13, 1979;
- C) Which is not a "new source;" and,



D) Which has never received a finally effected NPDES permit for discharges at that "site."

Based on groundwater samples collected at the facility, this site is not considered a new discharge.

#### 3.0 DISCHARGE INFORMATION

This NOI for an RGP is being applied for groundwater discharge necessary during site redevelopment construction activities. These activities include the raze and rebuild of the facility building, and removal and replacement of the existing USTs and associated piping, and dispenser islands. The proposed discharge location for treated groundwater is a catch basin located on the southwestern portion of the property, as depicted on **Figure 2 and 2A**. This catch basin discharges to the West Meadow Brook (freshwater) located approximately 500 feet to the west of the site. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point:

Latitude: 42.071788 Longitude: -71.043785

Outfall (Broad Meadow Brook) Point:

Latitude: 42.070529 Longitude: -71.045429

The dewatering and treatment system anticipated for this work includes a 20,000-gallon baffled setting fractionation tank, sediment bag filters, a greensand filter vessel for iron removal, and two activated carbon filter vessels for remaining contaminant removal. This system is designed to meet the required effluent limits for this permit. A diagram of the treatment system is provided on **Figure 6**.

Only one discharge point, described above, will be necessary for dewatering activities. The estimated maximum daily flow is 40 gallons per minute (gpm), with a design flow of 60 gpm. These estimations are expected to decrease once the excavation has been dewatered, and do not include surface run-off following precipitation events. The pH of onsite groundwater was measured at 6.8 (s.u.) and site activities are not anticipated to alter this pH. Discharge activities will only occur during site redevelopment, which is expected to occur between July and September of 2019. The discharge point for these dewatering activities is a catch basin located on the western portion of the site along Forest Avenue. Areas of Concern in relation to the facility are located on **Figure 4**. **Figure 5** provides a Bureau of Waste Site Cleanup Receptor Map identifying potential environmental receptors within a 500 foot and ½ mile radius from the site.



If needed, modifications to the system will be made. Modifications to the system will be submitted for approval via a Notice of Change (NOC).

## 3.1 Receiving Water Information

The receiving water for the indirect discharge of groundwater from the facility is West Meadow Brook. StreamStats was consulted and it was determined based on a location on West Meadow Brook where the discharge outfall location is, that the 7Q10 is 0.022 cubic feet per second (cfs). The StreamStats Report is provided in **Attachment B**. Per the Waterbody Assessment and TMDL Status Map (**Figure 3**), West Meadow Brook does not have a TMDL assignment, but West Meadow Pond, which West Meadow Brook flows into, has been assigned a TMDL status of 4C – Impairment not Caused by a Pollutant.

# 3.2.1 Receiving Water Classification

Based on the MassDEP Division of Water Pollution Control the discharge (outfall) point is West Meadow Brook does not appear classified, and neither does downgradient West Meadow Brook Pond:

http://www.mass.gov/eea/docs/dep/water/laws/i-thru-z/tblfig.pdf

https://www.mass.gov/files/documents/2017/08/zu/16ilwplist.pdf

The West Meadow Brook Pond is identified as segment ID MA62208.

#### 4.0 CONATAMINANT INFORMATION

On March 20, 2019, groundwater samples were collected from on-site monitoring well MW-4 and the outfall discharge location at the West Meadow Brook outfall (Receiving Water). Groundwater samples collected from MW-4 during March 2019 were submitted to ESS Laboratory, Cranston, Rhode Island (ESS) for analysis of metals, hardness, ethanol, chloride, total cyanide, total petroleum hydrocarbons (TPH), total suspended solids (TSS), total residual chlorine (TRC), ammonia, hexavalent chromium, trivalent chromium, phenol, 1,4-dioxane, ethylene dibromide, volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PBCs), tert-butyl alcohol (TBA), and tert-amyl methyl ether (TAME). Surface water samples from the discharge location, Receiving Waters, during March 2019 were submitted to ESS for analysis of ammonia, hexavalent chromium, metals, iron, pH, hardness, and salinity.

Results from the groundwater sampling of MW-4 demonstrated concentrations of fluoranthene and pyrene above detected above Massachusetts Department of Environmental Protection (MassDEP) reportable concentrations for groundwater (RCGW-2) but below the technology-based effluent limitations (TBELs). The facility has previously been, and is currently, a gasoline and service station, and does not use any pH



neutralization or dechlorination chemicals. Based on the summarized groundwater sampling results there are potential water-quality issues in the vicinity of the discharge.

Results from the surface water sample (Receiving Water) did not demonstrate concentrations of potential contaminants of concern (pCOCs) exceeding TBELs or RCGW-2 standards. **Table 1** provides a summary of detected pCOCs from groundwater collected at the facility (influent) and the surface water sample. Groundwater and surface water laboratory analytical reports are provided in **Attachment C**.

### 5.0 DILUTION FACTOR

MassDEP was contacted on April 9, 2019 to confirm the 7Q10 flow and determine a dilution factor. Final correspondence received on April 11, 2019 confirmed a dilution factor of 1.1. The Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet was subsequently completed. Copies of the Dilution Factor and Effluent Limitation Calculations fillable electronic spreadsheet, StreamStats Report, and MassDEP correspondence are provided in **Attachment B**.

## 6.0 DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY (ESA)

The United States Department of the Interior Fish and Wildlife Service – New England Ecological Services Field Office was contacted regarding the determination of endangered species act eligibility (ESA). There are no endangered or candidate species and no critical habitats within the project area for this NOI. Therefore, this ESA determination is FWS Criterion C. Fish and Wildlife Service – New England Service Field Office Correspondence is provided as **Attachment D**.

# 7.0 DOCUMENTATION OF NATION HISTORIC PRESERVATION ACT (NHPA) REQUIREMENTS

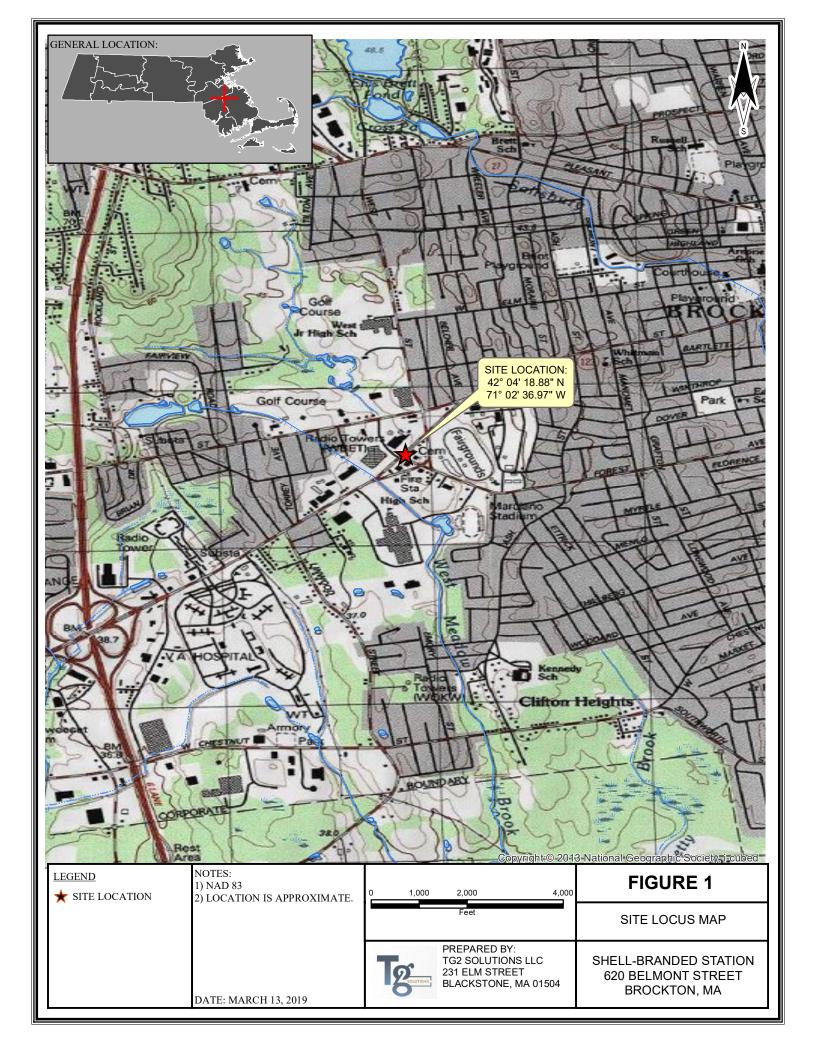
Listings of historic places within the City of Brockton were obtained from the Massachusetts Cultural Resources Information System (MARCIS) online database:

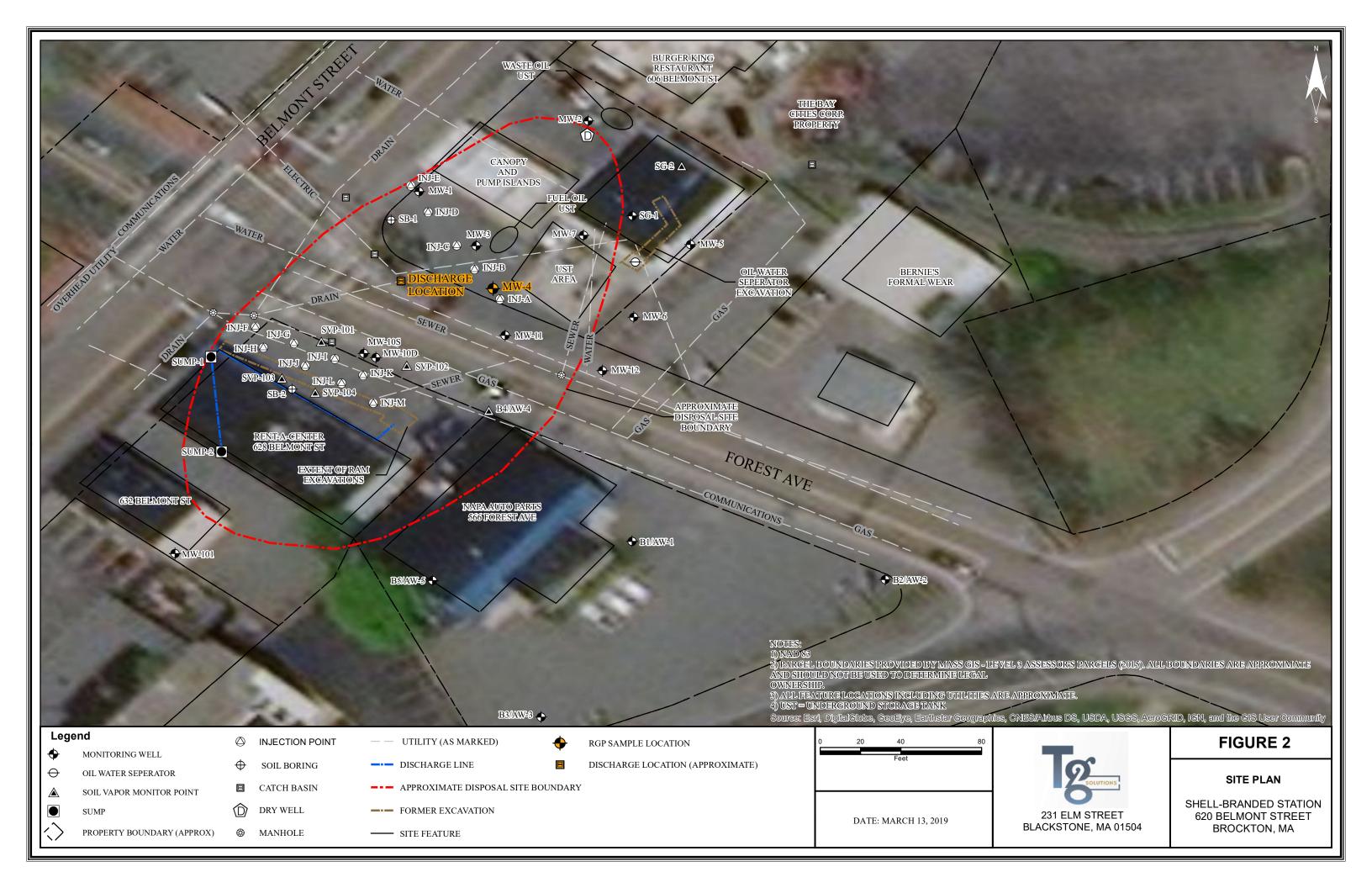
## http://mhc-macris.net/Towns.aspx?Page=towns.asp

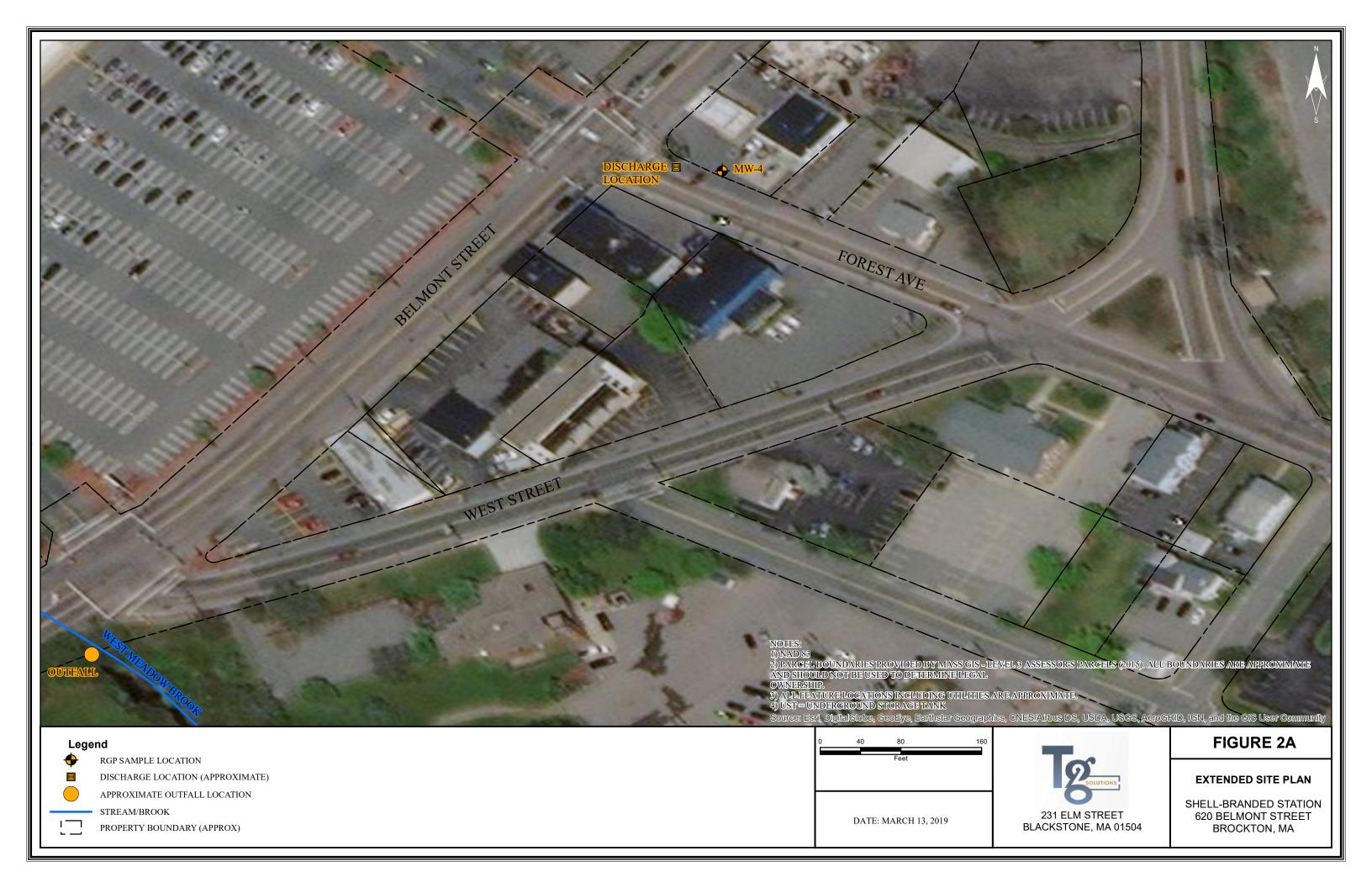
A site vicinity map showing historic places within a quarter mile of the facility and a table documenting the historic places is provided in **Attachment E**. No historic places are located within 500 feet of the facility. Based on the scope of this work, it is unlikely that dewatering activities associated with the redevelopment of this facility will adversely affect any historic places.

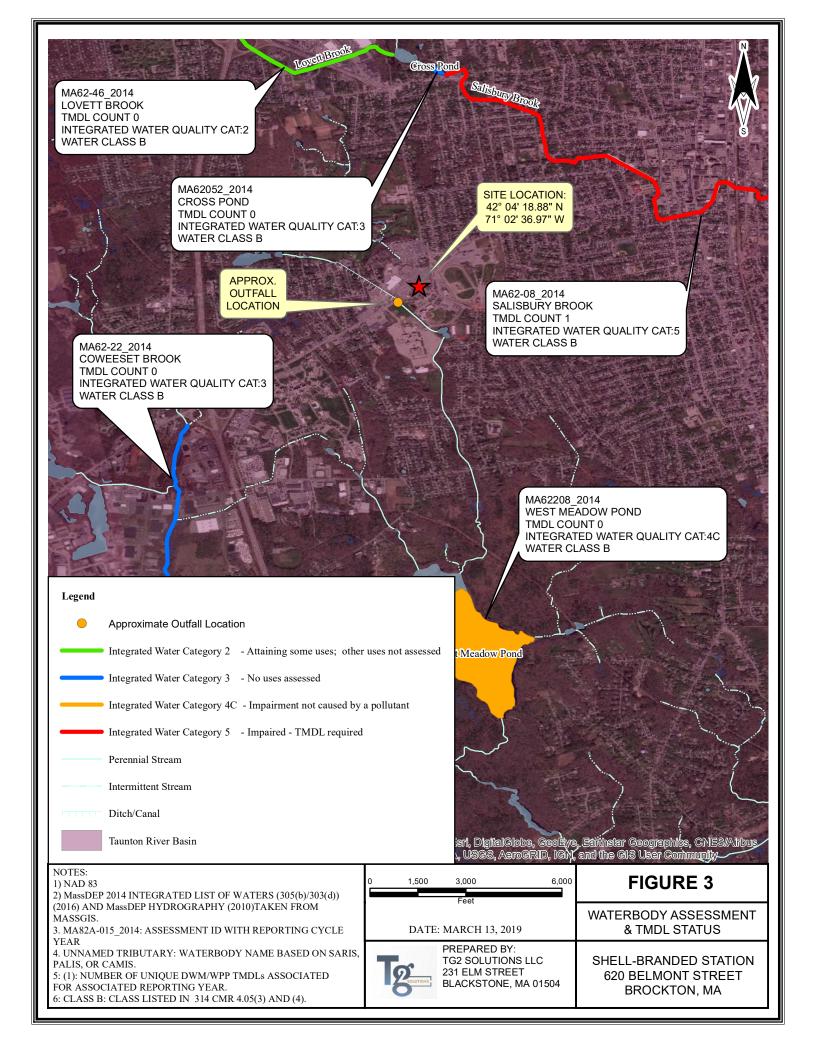
#### 8.0 SUPPLEMENTAL INFORMATION

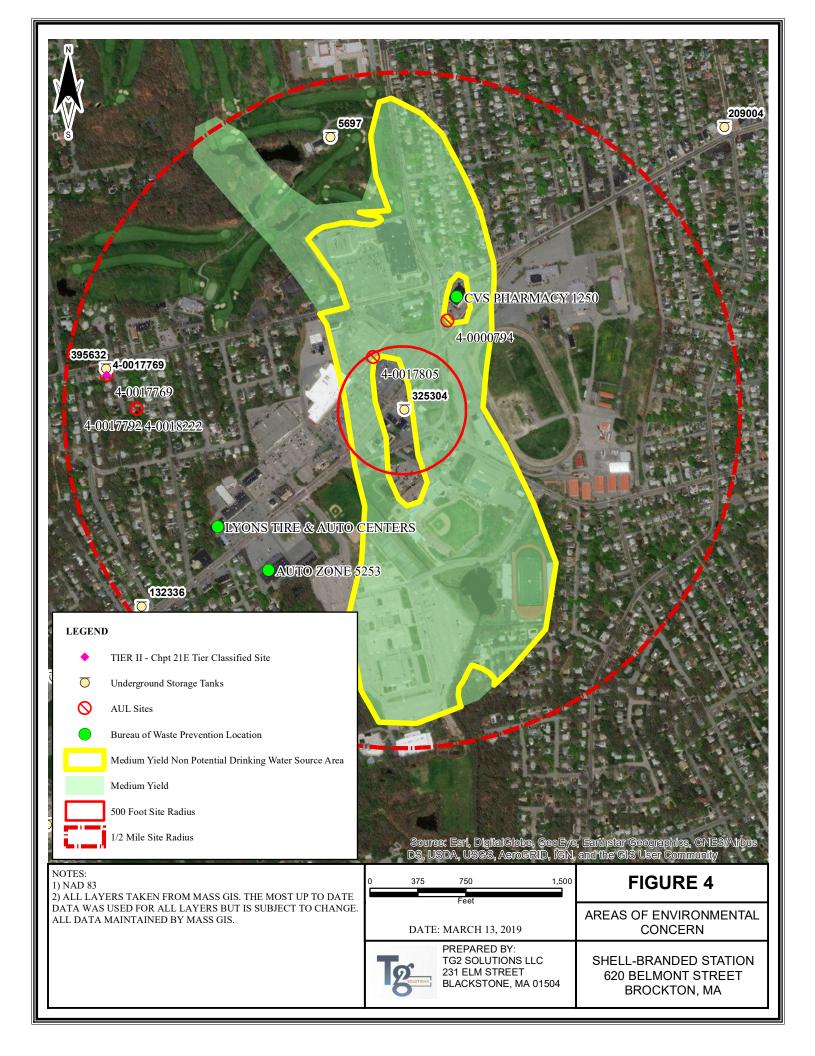
At this time no additional supplemental information is necessary to meet the requirements of the NOI for the RGP.





# 9.0 REDEVELOPMENT CONSTRUCTION SCHEDULE


Redevelopment construction activities requiring dewatering are anticipated to begin in July 2019 and are anticipated to be complete by September 2019.





# **FIGURES**



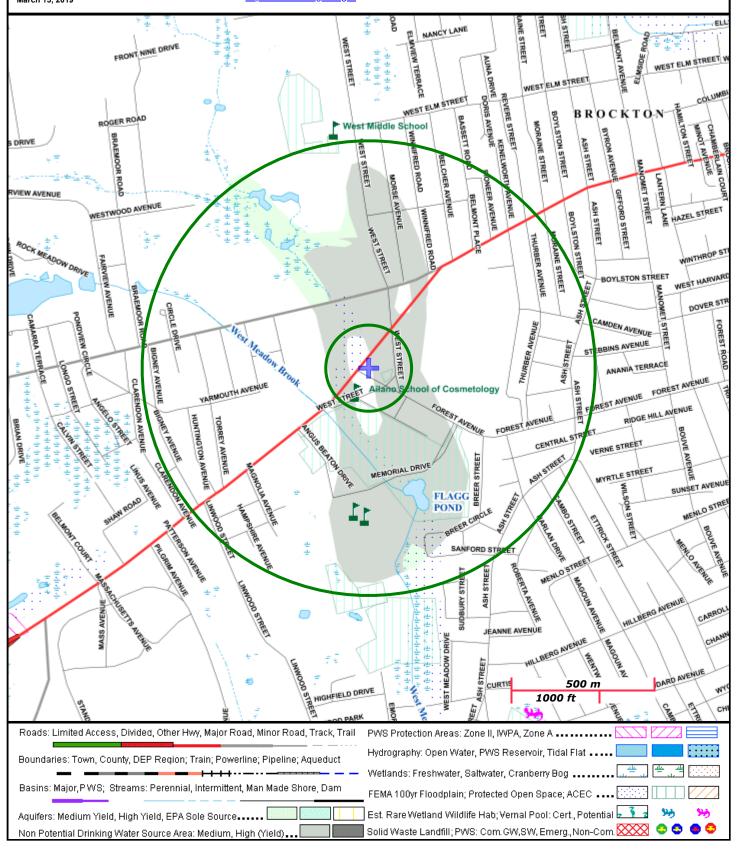


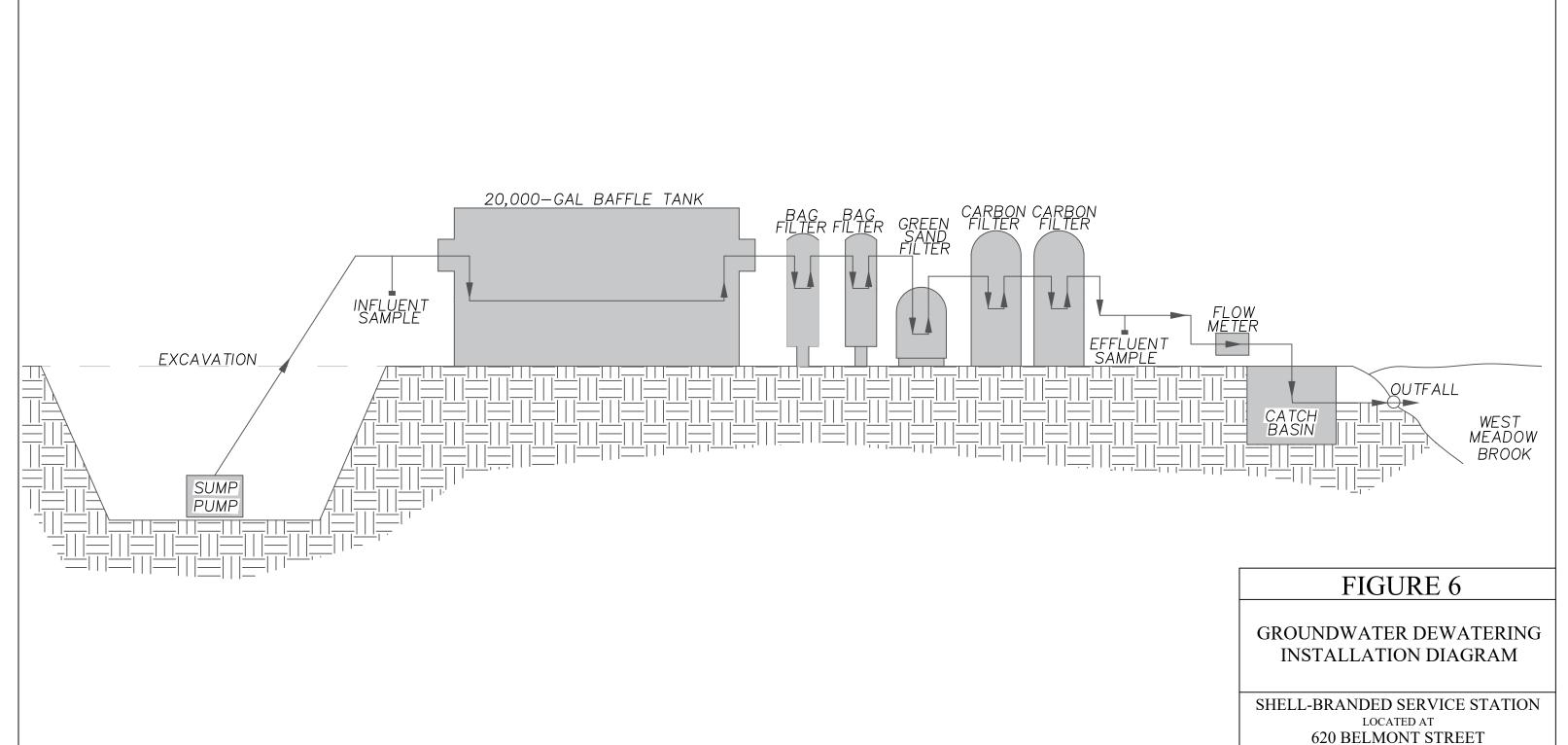






# MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

SHELL BRANDED SERVICE STATION 620 BELMONT STREET BROCKTON, MA 4-000016968 NAD83 UTM Meters: 4659780mN, 330944mE (Zone: 19) March 13, 2019 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.







### NOTES:

1) NOT TO SCALE.

2) THE DISTANCE FROM THE CATCH BASIN/DISCHARGE LOCATION TO THE WEST MEADOW BROOK OUTFALL IS APPROXIMATELY 650 FEET.

620 BELMONT STREE BROCKTON, MA

PREPARED FOR

COLBEA ENTERPRISES LLC



TG2 SOLUTIONS, LLC 231 ELM STREET BLACKSTONE, MA 0154

DATE: MARCH 13, 2019

REVISED:



# **TABLES**

#### TABLE 1

#### **SUMMARY OF WATER MONITORING DATA**

### Shell-Branded Service Station 620 Belmont Street Brockton, Massachusetts

|                                            |             | Copper<br>(µg/L) | lron<br>(μg/L) | Lead<br>(µg/L) | Zinc<br>(µg/L) | Benzene<br>(µg/L) | Fluoranthene <sup>b</sup><br>(µg/L) | Pyrene <sup>b</sup><br>(µg/L) | Chloride<br>(mg/L) | Total<br>Suspended<br>Solids<br>(mg/L) | Hardness<br>(mg/L) | рН   |
|--------------------------------------------|-------------|------------------|----------------|----------------|----------------|-------------------|-------------------------------------|-------------------------------|--------------------|----------------------------------------|--------------------|------|
| MassDEP Reportable Concentrations (RCGW-2) |             | 100,000          | NA             | 1,000          | 900            | 1,000             | 0.2                                 | 0.02                          | NA                 | NA                                     | NA                 | NA   |
| Effluent Limitations - TBEL                |             | 242              | 5,000          | 160            | 420            | 5.0               | 100                                 | 100                           | Report             | 30                                     | NA                 | NA   |
| Well ID                                    | Sample Date |                  |                |                |                |                   |                                     |                               |                    |                                        |                    |      |
| Receiving Water - West<br>Meadow Brook     | 03/20/19    | 4.2              | 275            | ND             | 18.8           |                   |                                     | -                             |                    | -                                      | 46.10              | 6.41 |
| MW-4                                       | 03/20/19    | 4.5              | 661            | 3.0            | 13.2           | 1.9               | 0.24                                | 0.19                          | 340                | 8                                      | 67.8               | 6.80 |

#### Notes:

µg/L - micrograms per liter

mg/L - milligram per liter

MassDEP - Massachusetts Department of Envnironmental Protection

NA - not available

TBEL - Technology-Based Effluent Limitations

"-" - not sampled

MTBE - Methyl tert-Butyl Ether

**Bold** - above method detection limits

**Bold & Shaded** - above RCGW-2 and/or TBEL Effluent Limitations

<sup>&</sup>lt;sup>a</sup> - Total Group I PAHs is the sum of: benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene. The compliance level for each individual PAH is 0.1 µg/L.

b - Total Group II PAHs is the sum of: acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)perylene, fluoranthene, fluorene, naphthalene, phenanthrene, and pyrene. The total compliance level for Group II PAHs is 100 µg/L.



# **ATTACHMENT A**

# II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

# A. General site information:

| 1. Name of site:                                                                                                                                                                                                                                                                                | Site address:                                                                  |               |              |                      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------|--------------|----------------------|--|--|--|--|
| Colbea Shell-Branded Gasoline Station 620 Belmont Street, Brockton, MA  2. Site owner  Colbea Enterprises, LLC 2050 Plainfield Pike Cranston, RI 02921  Owner is (check one):  Federal  State/Tribal  Private  Other; if so, specify:  3. Site operator, if different than owner  Same as owner | Street: 620 Belmont Street                                                     |               |              |                      |  |  |  |  |
| 620 Belmont Street, Brockton, MA                                                                                                                                                                                                                                                                | City: Brockton State: MA Zip: 02301                                            |               |              |                      |  |  |  |  |
| 2. Site owner                                                                                                                                                                                                                                                                                   | Contact Person: Eric Simpson                                                   |               |              |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | Telephone: 401-943-0005                                                        | Email: E      | simpson@eas  | stsodeenterprise.com |  |  |  |  |
| Cranston, RI 02921                                                                                                                                                                                                                                                                              | Mailing address: Street: 2050 Plainfield Pike                                  |               |              |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | City: Cranston                                                                 |               | State: RI    | Zip: 02920           |  |  |  |  |
| 3. Site operator, if different than owner                                                                                                                                                                                                                                                       | Contact Person: Same as above                                                  |               |              |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | Telephone:                                                                     | Email:        |              |                      |  |  |  |  |
| Same as owner                                                                                                                                                                                                                                                                                   | Mailing address:                                                               |               |              |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | Street:                                                                        |               | 1            |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | City:                                                                          |               | State:       | Zip:                 |  |  |  |  |
| 4. NPDES permit number assigned by EPA:                                                                                                                                                                                                                                                         | 5. Other regulatory program(s) that apply to the site                          | (check all th | at apply):   |                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                 | ☑ MA Chapter 21e; list RTN(s): 4-16968                                         | □ CERCL       | LΑ           |                      |  |  |  |  |
| NPDES permit is (check all that apply: ☑ RGP □ DGP □ CGP                                                                                                                                                                                                                                        | D. NII Connect Daniel                                                          | □ UIC Pro     | ogram        |                      |  |  |  |  |
| ☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:                                                                                                                                                                                                                                       | ☐ NH Groundwater Management Permit or<br>Groundwater Release Detection Permit: |               | Pretreatment | t                    |  |  |  |  |
| 2 11301 2 marriada 111 220 permit 2 omer, il 30, specify.                                                                                                                                                                                                                                       |                                                                                | □ CWA S       | ection 404   |                      |  |  |  |  |

| B. Receiving water information:  1. Name of receiving water(s):                                                                                                  | Waterbody identification of receiving water(s):                               | Classification of receiving water(s):            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------|
| Catch basin to West Meadow Brook                                                                                                                                 | MA62208                                                                       | Unclassified                                     |
| Receiving water is (check any that apply): □ Outstanding                                                                                                         | Resource Water $\square$ Ocean Sanctuary $\square$ territorial sea $\square$  | Wild and Scenic River                            |
| 2. Has the operator attached a location map in accordance Are sensitive receptors present near the site? (check one): If yes, specify:                           |                                                                               | ] No                                             |
| 3. Indicate if the receiving water(s) is listed in the State's pollutants indicated. Also, indicate if a final TMDL is ava 4.6 of the RGP. Not listed/classified |                                                                               |                                                  |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Appen                                                |                                                                               | uctions in 0.022 cfs                             |
| 5. Indicate the requested dilution factor for the calculation accordance with the instructions in Appendix V for sites it                                        |                                                                               |                                                  |
| 6. Has the operator received confirmation from the appropriate of the property of the property of the confirmation received:                                     | oriate State for the 7Q10and dilution factor indicated? (ch<br>April 10, 2019 | neck one): ☑ Yes □ No                            |
| 7. Has the operator attached a summary of receiving water                                                                                                        | sampling results as required in Part 4.2 of the RGP in ac                     | ccordance with the instruction in Appendix VIII? |
| (check one): ☑ Yes □ No                                                                                                                                          |                                                                               |                                                  |
| C. Source water information:                                                                                                                                     |                                                                               |                                                  |

| 1. Source water(s) is (check any that apply):                                                       |                                                                                                 |                                                      |                                                          |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|
| ☑ Contaminated groundwater                                                                          | ☐ Contaminated surface water                                                                    | ☐ The receiving water                                | ☐ Potable water; if so, indicate municipality or origin: |
| Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the | ☐ A surface water other                              |                                                          |
| in accordance with the instruction in Appendix VIII? (check one):                                   | RGP in accordance with the instruction in Appendix VIII? (check one):                           | than the receiving water; if so, indicate waterbody: | ☐ Other; if so, specify:                                 |
| ☑ Yes □ No                                                                                          | □ Yes □ No                                                                                      |                                                      |                                                          |

| 2. Source water contaminants:                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in             |                                                                                                                                                    | source water that is a surface water other than the receiving water, potable water, indicate any contaminants present at the maximum concentration in accordance |  |  |  |
| the RGP? (check one): ☐ Yes ☑ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII. | with the                                                                                                                                           | e instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                         |  |  |  |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                  | dual chlori                                                                                                                                        | rine? (check one): □ Yes ☑ No                                                                                                                                    |  |  |  |
| D. Discharge information                                                                                                                                         |                                                                                                                                                    |                                                                                                                                                                  |  |  |  |
| 1. The discharge(s) is $a(n)$ (check any that apply): $\square$ Existing discharge $\square$ New                                                                 | v discharg                                                                                                                                         | ge □ New source                                                                                                                                                  |  |  |  |
| Outfall(s): The proposed discharge location for treated groundwater is a catch basin located                                                                     | Oı                                                                                                                                                 | outfall location(s): (Latitude, Longitude)                                                                                                                       |  |  |  |
| on the western corner of the site, which discharges to West Meadow Brook.                                                                                        | Catch Basin Discharge Point: Latitude: 42.071788, Longitude:-71.043785 Outfall (West Meadow Brook) Point: Latitude: 42.070629, Longitude: -71.0454 |                                                                                                                                                                  |  |  |  |
| Discharges enter the receiving water(s) via (check any that apply): □ Direct di                                                                                  | scharge to                                                                                                                                         | o the receiving water \( \square\) Indirect discharge, if so, specify:                                                                                           |  |  |  |
| ☐ A private storm sewer system ☑ A municipal storm sewer system  If the discharge enters the receiving water via a private or municipal storm sew                | ver system                                                                                                                                         | ı:                                                                                                                                                               |  |  |  |
| Has notification been provided to the owner of this system? (check one): ☑ Ye                                                                                    | es 🗆 No                                                                                                                                            |                                                                                                                                                                  |  |  |  |
| Has the operator has received permission from the owner to use such system for obtaining permission:                                                             | or discharg                                                                                                                                        | ges? (check one): ☑ Yes □ No, if so, explain, with an estimated timeframe for                                                                                    |  |  |  |
| Has the operator attached a summary of any additional requirements the owner                                                                                     | of this sy                                                                                                                                         | ystem has specified? (check one): ☐ Yes ☑ No                                                                                                                     |  |  |  |
| Provide the expected start and end dates of discharge(s) (month/year):                                                                                           |                                                                                                                                                    |                                                                                                                                                                  |  |  |  |
| May to August 2019 for construction, dewatering expect Indicate if the discharge is expected to occur over a duration of: ☑ less than 1                          |                                                                                                                                                    |                                                                                                                                                                  |  |  |  |
| Has the operator attached a site plan in accordance with the instructions in D                                                                                   |                                                                                                                                                    | <u> </u>                                                                                                                                                         |  |  |  |

| 2. Activity Category: (check all that apply)                                                                                                                                                                        | 3. Contamination Type Category: (check                                                                                                                                                                                                                                                                                                       | 3. Contamination Type Category: (check all that apply)                                                 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                     | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                      |                                                                                                        |  |  |  |  |
| <ul> <li>☑ I – Petroleum-Related Site Remediation</li> <li>☐ II – Non-Petroleum-Related Site Remediation</li> <li>☐ III – Contaminated Site Dewatering</li> <li>☐ IV – Dewatering of Pipelines and Tanks</li> </ul> | <ul> <li>☑ A. Inorganics</li> <li>☑ B. Non-Halogenated Volatile Organic</li> <li>☑ C. Halogenated Volatile Organic Cor</li> <li>☑ D. Non-Halogenated Semi-Volatile Organic</li> <li>☑ E. Halogenated Semi-Volatile Organic</li> <li>☑ F. Fuels Parameters</li> </ul>                                                                         | mpounds Organic Compounds                                                                              |  |  |  |  |
|                                                                                                                                                                                                                     | b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)                                                                                                                                                                                                                                                                   |                                                                                                        |  |  |  |  |
|                                                                                                                                                                                                                     | ☐ G. Sites with Known Contamination                                                                                                                                                                                                                                                                                                          | ☐ H. Sites with Unknown Contamination                                                                  |  |  |  |  |
| <ul> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> </ul>                                                         | c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)                                                                                                                                                                                                                                                               |                                                                                                        |  |  |  |  |
| □ VIII – Dredge-Related Dewatering                                                                                                                                                                                  | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile</li> <li>Organic Compounds</li> <li>□ C. Halogenated Volatile Organic</li> <li>Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ F. Fuels Parameters</li> </ul> | d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |  |

## 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 | <b>75</b> 0 (         |                              | Infl                       | uent                       | Effluent Limitations |       |
|-------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(μg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |
| A. Inorganics           |                          |                           |                 |                       |                              |                            |                            |                      |       |
| Ammonia                 | х                        |                           | 1               | 350.1                 | 0.10                         | <0.10                      | 0.0                        | Report mg/L          |       |
| Chloride                | х                        |                           | 1               | 300.0                 | 50,000                       | 340,000                    | 340,000                    | Report μg/l          |       |
| Total Residual Chlorine | х                        |                           | 1               | 4500CID               | 0.02                         | <0.02                      | 0.0                        | 0.2 mg/L             | 13    |
| Total Suspended Solids  |                          | х                         | 1               | 2340D                 | 5                            | 8                          | 8                          | 30 mg/L              | _     |
| Antimony                | х                        |                           | 1               | 200.8                 | 5                            | <5                         | 0.0                        | 206 μg/L             | _     |
| Arsenic                 | х                        |                           | 1               | 3113B                 | 5                            | <5                         | 0.0                        | 104 μg/L             | _     |
| Cadmium                 | х                        |                           | 1               | 200.8                 | 5                            | <5                         | 0.0                        | 10.2 μg/L            | _     |
| Chromium III            | х                        |                           | 1               | 200.7                 | 10                           | <10                        | 0.0                        | 323 μg/L             | _     |
| Chromium VI             | х                        |                           | 1               | 3500Cr                | 10                           | <10                        | 0.0                        | 323 μg/L             | _     |
| Copper                  |                          | х                         | 1               | 200.7                 | 2.0                          | 4.5                        | 4.5                        | 242 μg/L             | _     |
| Iron                    |                          | х                         | 1               | 200.7                 | 10                           | 661                        | 661                        | 5,000 μg/L           | _     |
| Lead                    |                          | х                         | 1               | 200.7                 | 0.5                          | 3                          | 3                          | 160 μg/L             | 1.46  |
| Mercury                 | х                        |                           | 1               | 245.1                 | 0.2                          | <0.2                       | 0.0                        | 0.739 μg/L           | _     |
| Nickel                  | х                        |                           | 1               | 200.7                 | 0.2                          | <0.2                       | 0.0                        | 1,450 μg/L           | _     |
| Selenium                | х                        |                           | 1               | 200.7                 | 5                            | <5                         | 0.0                        | 235.8 μg/L           | _     |
| Silver                  | х                        |                           | 1               | 200.7                 | 0.5                          | <0.5                       | 0.0                        | 35.1 μg/L            | _     |
| Zinc                    |                          | х                         | 1               | 200.7                 | 5                            | 13.2                       | 13.2                       | 420 μg/L             | _     |
| Cyanide                 | х                        |                           | 1               | 4500CN CE             | 5                            | <5                         | 0.0                        | 178 mg/L             | _     |
| B. Non-Halogenated VOC  | 's                       |                           |                 | •                     |                              |                            |                            | -                    |       |
| Total BTEX              |                          | х                         | 1               | 524.2                 | 0.5                          | 1.9                        | 1.9                        | 100 μg/L             |       |
| Benzene                 |                          | х                         | 1               | 524.2                 | 0.5                          | 1.9                        | 1.9                        | 5.0 μg/L             |       |
| 1,4 Dioxane             | х                        |                           | 1               | 8270 D SIM            | 0.250                        | <0.250                     | 0.0                        | 200 μg/L             |       |
| Acetone                 | х                        |                           | 1               | 524.2                 | 5.0                          | <5.0                       | 0.0                        | 7.97 mg/L            |       |
| Phenol                  | х                        |                           | 1               | 420.1                 | 100                          | <100                       | 0.0                        | 1,080 μg/L           | _     |

|                          | Known                    | Known                     |                 |                       |                              | Inf                        | luent                      | Effluent Limitations |       |  |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------------|-------|--|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(μg/l) | Daily<br>average<br>(µg/l) | TBEL                 | WQBEL |  |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                      |       |  |
| Carbon Tetrachloride     | Х                        |                           | 1               | 524.2                 | 0.3                          | <0.3                       | 0.0                        | 4.4 μg/L             | _     |  |
| 1,2 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 600 μg/L             |       |  |
| 1,3 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 320 μg/L             |       |  |
| 1,4 Dichlorobenzene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Total dichlorobenzene    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 763 μg/L in NH       |       |  |
| 1,1 Dichloroethane       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 70 μg/L              |       |  |
| 1,2 Dichloroethane       | x                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| 1,1 Dichloroethylene     | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 3.2 μg/L             |       |  |
| Ethylene Dibromide       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | $0.05~\mu g/L$       |       |  |
| Methylene Chloride       | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 4.6 μg/L             |       |  |
| 1,1,1 Trichloroethane    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 200 μg/L             |       |  |
| 1,1,2 Trichloroethane    | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Trichloroethylene        | x                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             |       |  |
| Tetrachloroethylene      | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 5.0 μg/L             | _     |  |
| cis-1,2 Dichloroethylene | х                        |                           | 1               | 524.2                 | 0.5                          | <0.5                       | 0.0                        | 70 μg/L              |       |  |
| Vinyl Chloride           | х                        |                           | 1               | 524.2                 | 0.2                          | <0.2                       | 0.0                        | 2.0 μg/L             |       |  |
| D. Non-Halogenated SVOC  | Cs .                     |                           |                 |                       |                              |                            |                            |                      |       |  |
| Total Phthalates         | Х                        |                           | 1               | 625.1 SIM             | 2.34                         | <2.34                      | 0.0                        | 190 μg/L             | _     |  |
| Diethylhexyl phthalate   | ×                        |                           | 1               | 625.1 SIM             | 2.34                         | <2.34                      | 0.0                        | 101 μg/L             | _     |  |
| Total Group I PAHs       | x                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | 1.0 μg/L             |       |  |
| Benzo(a)anthracene       | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Benzo(a)pyrene           | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Benzo(b)fluoranthene     | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | ]                    | _     |  |
| Benzo(k)fluoranthene     | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | As Total PAHs        | _     |  |
| Chrysene                 | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        | ]                    | _     |  |
| Dibenzo(a,h)anthracene   | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |
| Indeno(1,2,3-cd)pyrene   | х                        |                           | 1               | 625.1 SIM             | 0.05                         | <0.05                      | 0.0                        |                      | _     |  |

|                                     | Known                    | Known                     |                 | method      | ethod limit  | Inf                        | luent                      | Effluent Limitations            |       |  |
|-------------------------------------|--------------------------|---------------------------|-----------------|-------------|--------------|----------------------------|----------------------------|---------------------------------|-------|--|
| Parameter                           | or<br>believed<br>absent | or<br>believed<br>present | or # of samples |             |              | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(μg/l) | TBEL                            | WQBEL |  |
| Total Group II PAHs                 |                          | х                         | 1               | 625.1 SIM   | 0.19         | 0.43                       | 0.43                       | 100 μg/L                        |       |  |
| Naphthalene                         | х                        |                           | 1               | 625.1 SIM   | 0.19         | <0.19                      | 0.0                        | 20 μg/L                         |       |  |
| E. Halogenated SVOCs                |                          |                           |                 |             |              |                            |                            |                                 |       |  |
| Total PCBs                          | х                        |                           | 1               | 608.3       | 0.09         | <0.09                      | 0.0                        | 0.000064 μg/L                   |       |  |
| Pentachlorophenol                   | х                        |                           | 1               | 625.1 SIM   | 0.84         | <0.84                      | 0.0                        | 1.0 μg/L                        |       |  |
| F. Fuels Parameters Total Petroleum |                          |                           |                 | 10011       |              | <5.0                       | 0.0                        | 5.0 mg/J                        |       |  |
| Hydrocarbons                        | х                        |                           | 1               | 1664A       | 5            |                            | 0.0                        | 5.0 mg/L                        |       |  |
| Ethanol                             | х                        |                           | 1               | D3695       | 10           | <10                        | 0.0                        | Report mg/L                     |       |  |
| Methyl-tert-Butyl Ether             | х                        |                           | 1               | 524.2       | 0.5          | 3.7                        | 3.7                        | 70 μg/L                         |       |  |
| tert-Butyl Alcohol                  | x                        |                           | 1               | 524.2       | 25.0         | 124                        | 124                        | 120 μg/L in MA<br>40 μg/L in NH |       |  |
| tert-Amyl Methyl Ether              | х                        |                           | 1               | 524.2       | 1.0          | <1.0                       | 0.0                        | 90 μg/L in MA<br>140 μg/L in NH |       |  |
| Other (i.e., pH, temperature        | re, hardness,            | salinity, LC              | 50, addition    | al pollutan | ts present); | if so, specify:            | 67,800                     |                                 |       |  |
| pH                                  |                          | х                         | 1               | 9040        | _            | 6.41                       | ·                          |                                 |       |  |
| '                                   |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |
|                                     |                          |                           |                 |             |              |                            |                            |                                 |       |  |

# E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                                                                                                                                     |          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|--|
| □ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ☑ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ☑ Separation/Filtration □ Other; if so, specify: |          |  |  |  |  |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.                                                                                                                    |          |  |  |  |  |
| See NOI RGP Report Section 3.0, and Figure 6                                                                                                                                                                                                         |          |  |  |  |  |
| Identify each major treatment component (check any that apply):                                                                                                                                                                                      |          |  |  |  |  |
| ☑ Fractionation tanks□ Equalization tank □ Oil/water separator ☑ Mechanical filter ☑ Media filter                                                                                                                                                    |          |  |  |  |  |
| ☐ Chemical feed tank ☐ Air stripping unit ☑ Bag filter ☐ Other; if so, specify:                                                                                                                                                                      |          |  |  |  |  |
| Indicate if either of the following will occur (check any that apply):                                                                                                                                                                               |          |  |  |  |  |
| □ Chlorination □ De-chlorination                                                                                                                                                                                                                     |          |  |  |  |  |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.  Indicate the most limiting component:  Is use of a flow meter feasible? (check one): ☑ Yes □ No, if so, provide justification:               | 60 gpm   |  |  |  |  |
| Provide the proposed maximum effluent flow in gpm.                                                                                                                                                                                                   | 40 gpm   |  |  |  |  |
| Provide the average effluent flow in gpm.                                                                                                                                                                                                            | < 40 gpm |  |  |  |  |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                                                                                                                               |          |  |  |  |  |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No                                                                                                                            |          |  |  |  |  |

# F. Chemical and additive information

| r. Chemical and additive information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                      |
| (check one): □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion A</b> : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □                                                                                                                                                                             |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the                                                                                                                                                                              |
| FWS. This determination was made by: (check one) $\square$ the operator $\square$ EPA $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of                                                                  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ☑ Yes ☐ No                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one):   Yes  No; if yes, attach.                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
| ☑ <b>Criterion A</b> : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                                                                                      |  |  |  |  |  |  |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| ☐ <b>Criterion C</b> : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                                                                             |  |  |  |  |  |  |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):   Yes  No                                                   |  |  |  |  |  |  |
| I. Supplemental information                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| Please refer to the NOI RGP Report, attached. This report includes a site map with discharge and outfall locations, water classifications, potential environmental receptors, groundwater analytical tables and laboratory analytical reports, and supporting documentation for the ESA determination and historic sites within the vicinity of the facility this NOI RGP is being applied for. |  |  |  |  |  |  |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☑ Yes □ No                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☑ Yes □ No                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |

# J. Certification requirement

|                                                            | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. |                              |           |  |  |  |  |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|--|--|--|--|
|                                                            | BMPP certification statement: A BMPP meeting the requirements of this general permit will be developed and implement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ented upon initiation of dis | charge.   |  |  |  |  |
|                                                            | Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Check one: Yes ☑             | No 🗆      |  |  |  |  |
|                                                            | Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes ☑             | No □      |  |  |  |  |
|                                                            | Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Check one: Yes 🛮             | No □ NA □ |  |  |  |  |
|                                                            | Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Check one: Yes 🛭             | No 🗆 NA 🗆 |  |  |  |  |
|                                                            | Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): $\square$ RGP $\square$ DGP $\square$ CGP $\square$ MSGP $\square$ Individual NPDES permit Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nit Check one: Yes □         | No □ NA ☑ |  |  |  |  |
| Sign                                                       | nature: Eee S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 6(34(19                |           |  |  |  |  |
| Print Name and Title: Eric Simpson - Environmental Manager |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |           |  |  |  |  |



# **ATTACHMENT B**

#### Enter number values in green boxes below

Enter values in the units specified

 $\begin{array}{c|c} & & & \\ \hline \textbf{0.0124} & & \\ \hline \textbf{0.0864} & & \\ \hline \textbf{0} & & \\ \hline \textbf{Downstream 7Q10} \end{array}$  Q<sub>R</sub> = Enter upstream flow in **MGD** 

Enter a dilution factor, if other than zero



Enter values in the units specified

46.1  $C_d$  = Enter influent hardness in **mg/L** CaCO<sub>3</sub>

67.8  $C_s$  = Enter receiving water hardness in **mg/L** CaCO<sub>3</sub>

Enter receiving water concentrations in the units specified

| 4    |                                    |
|------|------------------------------------|
| 6.41 | pH in Standard Units               |
| 17.5 | Temperature in °C                  |
| 0    | Ammonia in mg/L                    |
| 46.1 | Hardness in mg/L CaCO <sub>3</sub> |
| 0.3  | Salinity in ppt                    |
| 0    | Antimony in μg/L                   |
| 0    | Arsenic in μg/L                    |
| 0    | Cadmium in µg/L                    |
| 0    | Chromium III in μg/L               |
| 0    | Chromium VI in μg/L                |
| 4.2  | Copper in µg/L                     |
| 275  | Iron in μg/L                       |
| 0    | Lead in μg/L                       |
| 0    | Mercury in μg/L                    |
| 0    | Nickel in μg/L                     |
| 0    | Selenium in μg/L                   |
| 0    | Silver in μg/L                     |
| 18.8 | Zinc in μg/L                       |
|      |                                    |

Enter influent concentrations in the units specified

| $\downarrow$ | _                                    |
|--------------|--------------------------------------|
| 0            | TRC in µg/L                          |
| 0            | Ammonia in mg/L                      |
| 0            | Antimony in μg/L                     |
| 0            | Arsenic in μg/L                      |
| 0            | Cadmium in μg/L                      |
| 0            | Chromium III in μg/L                 |
| 0            | Chromium VI in µg/L                  |
| 4.5          | Copper in µg/L                       |
| 661          | Iron in μg/L                         |
| 3            | Lead in μg/L                         |
| 0            | Mercury in μg/L                      |
| 0            | Nickel in μg/L                       |
| 0            | Selenium in μg/L                     |
| 0            | Silver in µg/L                       |
| 13.2         | Zinc in μg/L                         |
| 0            | Cyanide in µg/L                      |
| 0            | Phenol in μg/L                       |
| 0            | Carbon Tetrachloride in µg/L         |
| 0            | Tetrachloroethylene in μg/L          |
| 0            | Total Phthalates in μg/L             |
| 0            | Diethylhexylphthalate in μg/L        |
| 0            | Benzo(a)anthracene in μg/L           |
| 0            | Benzo(a)pyrene in μg/L               |
| 0            | Benzo(b)fluoranthene in μg/L         |
| 0            | Benzo(k)fluoranthene in μg/L         |
| 0            | Chrysene in µg/L                     |
| 0            | Dibenzo(a,h)anthracene in μg/L       |
| 0            | Indeno(1,2,3-cd)pyrene in μg/L       |
| 0            | Methyl-tert butyl ether in $\mu g/L$ |
|              |                                      |

#### Notes:

Freshwater:  $Q_R$  equal to the 7Q10; enter alternate  $Q_R$  if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter  $Q_R$  if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for  $Q_R$ ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater  $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$  Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

#### **I. Dilution Factor Calculation Method**

#### A. 7010

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

#### **B.** Dilution Factor

Calculated as follows:

$$Df = O_R + O_R$$

 $Q_R = 7Q10$  in MGD

 $Q_p = Discharge flow, in MGD$ 

## II. Effluent Limitation Calculation Method

#### A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 $C_r$  = Downstream hardness in mg/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Discharge hardness in mg/L

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s = Upstream$  (receiving water) hardness in mg/L

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria =  $\exp\{m_c [ln(h)] + b_c\}$ 

 $m_c$  = Pollutant-specific coefficient ( $m_a$  for silver)

 $b_c$  = Pollutant-specific coefficient ( $b_a$  for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in 
$$\mu$$
g/L = dissolved WQC in  $\mu$ g/L

dissolved to total recoverable factor

#### **B. Calculate WQBEL:**

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_d = \underline{O_r C_r - O_s C_s}$$

 $C_r$  = Water quality criterion in  $\mu$ g/L

 $Q_d = Discharge flow in MGD$ 

 $C_d = WQBEL \text{ in } \mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s = Ustream$  (receiving water) concentration in  $\mu g/L$ 

 $Q_r$  = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 $C_r$  = Water quality criterion in  $\mu g/L$ 

 $Q_d$  = Discharge flow in MGD

 $Q_r$  = Downstream receiving water flow in MGD

#### C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \frac{Q_d C_d + Q_s C_s}{Q_r}$$

 $C_r$  = Downstream concentration in  $\mu$ g/L

 $Q_d$  = Discharge flow in MGD

 $C_d$  = Influent concentration in  $\mu g/L$ 

 $Q_s = Upstream flow (7Q10) in MGD$ 

 $C_s = Upstream$  (receiving water) concentration in  $\mu g/L$ 

 $Q_r$  = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

#### AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

#### AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

| Dilution Factor                          | 1.1             |              |                  |              |                                   |      |  |
|------------------------------------------|-----------------|--------------|------------------|--------------|-----------------------------------|------|--|
| A. Inorganics                            | TBEL applies if | bolded       | WQBEL applies is | f bolded     | Compliance Level applies if shown |      |  |
| Ammonia                                  | Report          | mg/L         |                  |              |                                   |      |  |
| Chloride                                 | Report          | μg/L         |                  |              |                                   |      |  |
| Total Residual Chlorine                  | 0.2             | mg/L         | 13               | μg/L         | 50                                | μg/L |  |
| Total Suspended Solids                   | 30              | mg/L         |                  |              |                                   |      |  |
| Antimony                                 | 206             | μg/L         | 732              | μg/L         |                                   |      |  |
| Arsenic                                  | 104             | μg/L         | 11               | μg/L         |                                   |      |  |
| Cadmium                                  | 10.2            | μg/L         | 0.1819           | μg/L         |                                   |      |  |
| Chromium III                             | 323             | μg/L         | 54.8             | μg/L         |                                   |      |  |
| Chromium VI                              | 323             | μg/L         | 13.1             | μg/L         |                                   |      |  |
| Copper                                   | 242             | μg/L         | 5.2              | μg/L         |                                   |      |  |
| Iron                                     | 5000            | μg/L         | 1104             | μg/L         |                                   |      |  |
| Lead                                     | 160             | μg/L         | 1.46             | μg/L         |                                   |      |  |
| Mercury                                  | 0.739           | μg/L<br>μg/L | 1.04             | μg/L         |                                   |      |  |
| Nickel                                   | 1450            | μg/L<br>μg/L | 32.5             | μg/L<br>μg/L |                                   |      |  |
| Selenium                                 | 235.8           |              | 5.7              |              |                                   |      |  |
|                                          |                 | μg/L         |                  | μg/L         |                                   |      |  |
| Silver                                   | 35.1            | μg/L         | 1.3              | μg/L         |                                   |      |  |
| Zinc                                     | 420             | μg/L         | 71.9             | μg/L         |                                   | -    |  |
| Cyanide                                  | 178             | mg/L         | 5.9              | μg/L         |                                   | μg/L |  |
| B. Non-Halogenated VOCs                  | 100             | ша/Т         |                  |              |                                   |      |  |
| Total BTEX Benzene                       | 5.0             | μg/L<br>μg/L |                  |              |                                   |      |  |
| 1,4 Dioxane                              | 200             | μg/L<br>μg/L |                  |              |                                   |      |  |
| Acetone                                  | 7970            | μg/L<br>μg/L |                  |              |                                   |      |  |
| Phenol                                   | 1,080           | μg/L         | 343              | μg/L         |                                   |      |  |
| C. Halogenated VOCs                      | ,               |              |                  |              |                                   |      |  |
| Carbon Tetrachloride                     | 4.4             | μg/L         | 1.8              | μg/L         |                                   |      |  |
| 1,2 Dichlorobenzene                      | 600             | μg/L         |                  |              |                                   |      |  |
| 1,3 Dichlorobenzene                      | 320             | μg/L         |                  |              |                                   |      |  |
| 1,4 Dichlorobenzene                      | 5.0             | μg/L         |                  |              |                                   |      |  |
| Total dichlorobenzene                    |                 | μg/L         |                  |              |                                   |      |  |
| 1,1 Dichloroethane                       | 70<br>7.0       | μg/L         |                  |              |                                   |      |  |
| 1,2 Dichloroethane                       | 5.0             | μg/L         |                  |              |                                   |      |  |
| 1,1 Dichloroethylene                     | 3.2<br>0.05     | μg/L         |                  |              |                                   |      |  |
| Ethylene Dibromide<br>Methylene Chloride | 4.6             | μg/L<br>μg/L |                  |              |                                   |      |  |
| 1,1,1 Trichloroethane                    | 200             | μg/L<br>μg/L |                  |              |                                   |      |  |
| 1,1,2 Trichloroethane                    | 5.0             | μg/L<br>μg/L |                  |              |                                   |      |  |
| Trichloroethylene                        | 5.0             | μg/L<br>μg/L |                  |              |                                   |      |  |
| Tetrachloroethylene                      | 5.0             | μg/L         | 3.8              | μg/L         |                                   |      |  |
| cis-1,2 Dichloroethylene                 | 70              | μg/L         |                  |              |                                   |      |  |
| Vinyl Chloride                           | 2.0             | μg/L         |                  |              |                                   |      |  |
|                                          |                 |              |                  |              |                                   |      |  |

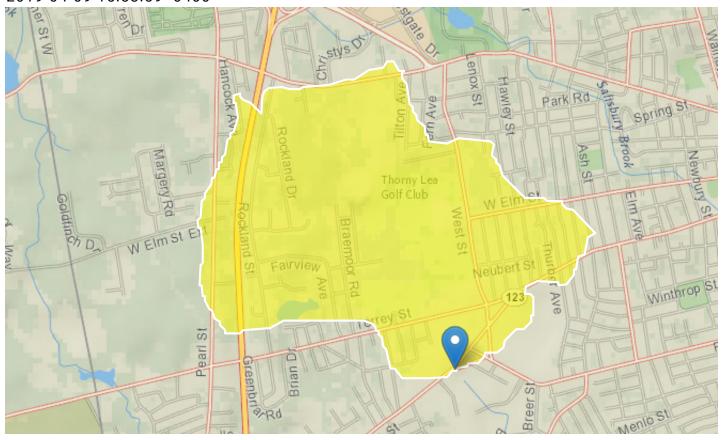
| D. Non-Halogenated SVOCs        |          |           |        |      |     |           |
|---------------------------------|----------|-----------|--------|------|-----|-----------|
| Total Phthalates                | 190      | μg/L      |        | μg/L |     |           |
| Diethylhexyl phthalate          | 101      | μg/L      | 2.5    | μg/L |     |           |
| Total Group I Polycyclic        |          |           |        |      |     |           |
| Aromatic Hydrocarbons           | 1.0      | μg/L      |        |      |     |           |
| Benzo(a)anthracene              | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Benzo(a)pyrene                  | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Benzo(b)fluoranthene            | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Benzo(k)fluoranthene            | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Chrysene                        | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Dibenzo(a,h)anthracene          | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Indeno(1,2,3-cd)pyrene          | 1.0      | μg/L      | 0.0043 | μg/L |     | μg/L      |
| Total Group II Polycyclic       |          |           |        |      |     |           |
| Aromatic Hydrocarbons           | 100      | μg/L      |        |      |     |           |
| Naphthalene                     | 20       | μg/L      |        |      |     |           |
| E. Halogenated SVOCs            |          |           |        |      |     |           |
| Total Polychlorinated Biphenyls | 0.000064 | μg/L      |        |      | 0.5 | $\mu g/L$ |
| Pentachlorophenol               | 1.0      | $\mu g/L$ |        |      |     |           |
| F. Fuels Parameters             |          |           |        |      |     |           |
| Total Petroleum Hydrocarbons    | 5.0      | mg/L      |        |      |     |           |
| Ethanol                         | Report   | mg/L      |        |      |     |           |
| Methyl-tert-Butyl Ether         | 70       | $\mu g/L$ | 23     | μg/L |     |           |
| tert-Butyl Alcohol              | 120      | μg/L      |        |      |     |           |
| tert-Amyl Methyl Ether          | 90       | $\mu g/L$ |        |      |     |           |

# 620 Belmont Street, Brockton, MA

Region ID:

MA

Workspace ID:


MA20190409195844678000

Clicked Point (Latitude, Longitude):

42.07053, -71.04543

Time:

2019-04-09 15:58:59 -0400



### **Basin Characteristics**

| Parameter<br>Code | Parameter Description                                                 | Value | Unit                    |
|-------------------|-----------------------------------------------------------------------|-------|-------------------------|
| DRNAREA           | Area that drains to a point on a stream                               | 1.32  | square miles            |
| ELEV              | Mean Basin Elevation                                                  | 161   | feet                    |
| LC06STOR          | Percentage of water bodies and wetlands determined from the NLCD 2006 | 2.5   | percent                 |
| DRFTPERSTR        | Area of stratified drift per unit of stream length                    | 0.15  | square mile<br>per mile |
| MAREGION          | Region of Massachusetts 0 for Eastern 1 for<br>Western                | 0     | dimensionless           |
| BSLDEM250         | Mean basin slope computed from 1:250K DEM                             | 1.037 | percent                 |
| BSLDEM10M         | Mean basin slope computed from 10 m DEM                               | 2.848 | percent                 |
| PCTSNDGRV         | Percentage of land surface underlain by sand and gravel deposits      | 35.15 | percent                 |
| FOREST            | Percentage of area covered by forest                                  | 15.75 | percent                 |

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

| Parameter<br>Code | Parameter Name                | Value | Units           | Min<br>Limit | Max<br>Limit |
|-------------------|-------------------------------|-------|-----------------|--------------|--------------|
| DRNAREA           | Drainage Area                 | 1.32  | square<br>miles | 0.16         | 512          |
| ELEV              | Mean Basin Elevation          | 161   | feet            | 80.6         | 1948         |
| LC06STOR          | Percent Storage from NLCD2006 | 2.5   | percent         | 0            | 32.3         |

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic           | Value | Unit   | PII  | Plu | SEp  |
|---------------------|-------|--------|------|-----|------|
| 2 Year Peak Flood   | 53.5  | ft^3/s | 27.1 | 105 | 42.3 |
| 5 Year Peak Flood   | 89    | ft^3/s | 44.4 | 178 | 43.4 |
| 10 Year Peak Flood  | 117   | ft^3/s | 57.1 | 240 | 44.7 |
| 25 Year Peak Flood  | 158   | ft^3/s | 74.4 | 336 | 47.1 |
| 50 Year Peak Flood  | 192   | ft^3/s | 87.5 | 422 | 49.4 |
| 100 Year Peak Flood | 228   | ft^3/s | 101  | 518 | 51.8 |
| 200 Year Peak Flood | 268   | ft^3/s | 115  | 627 | 54.1 |
| 500 Year Peak Flood | 325   | ft^3/s | 146  | 723 | 57.6 |

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|-------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 1.32  | square miles            | 1.61         | 149          |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.15  | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0     | dimensionless           | 0            | 1            |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 1.037 | percent                 | 0.32         | 24.6         |

Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic           | Value  | Unit   |
|---------------------|--------|--------|
| 50 Percent Duration | 1.27   | ft^3/s |
| 60 Percent Duration | 0.861  | ft^3/s |
| 70 Percent Duration | 0.498  | ft^3/s |
| 75 Percent Duration | 0.377  | ft^3/s |
| 80 Percent Duration | 0.262  | ft^3/s |
| 85 Percent Duration | 0.177  | ft^3/s |
| 90 Percent Duration | 0.115  | ft^3/s |
| 95 Percent Duration | 0.0594 | ft^3/s |
| 98 Percent Duration | 0.0386 | ft^3/s |
| 99 Percent Duration | 0.0268 | ft^3/s |

Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|-------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 1.32  | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 1.037 | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.15  | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0     | dimensionless           | 0            | 1            |

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic              | Value  | Unit   |
|------------------------|--------|--------|
| 7 Day 2 Year Low Flow  | 0.0728 | ft^3/s |
| 7 Day 10 Year Low Flow | 0.022  | ft^3/s |

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

| Parameter<br>Code | Parameter Name                        | Value | Units                   | Min<br>Limit | Max<br>Limit |
|-------------------|---------------------------------------|-------|-------------------------|--------------|--------------|
| DRNAREA           | Drainage Area                         | 1.32  | square miles            | 1.61         | 149          |
| BSLDEM250         | Mean Basin Slope from 250K<br>DEM     | 1.037 | percent                 | 0.32         | 24.6         |
| DRFTPERSTR        | Stratified Drift per Stream<br>Length | 0.15  | square mile per<br>mile | 0            | 1.29         |
| MAREGION          | Massachusetts Region                  | 0     | dimensionless           | 0            | 1            |

August Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

| Statistic                  | Value | Unit   |
|----------------------------|-------|--------|
| August 50 Percent Duration | 0.202 | ft^3/s |

August Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Bankfull Statistics Parameters [Bankfull Statewide SIR2013 5155]

| Parameter<br>Code | Parameter Name                   | Value Units       | Min<br>Limit | Max<br>Limit |
|-------------------|----------------------------------|-------------------|--------------|--------------|
| DRNAREA           | Drainage Area                    | 1.32 square miles | 0.6          | 329          |
| BSLDEM10M         | Mean Basin Slope from 10m<br>DEM | 2.848 percent     | 2.2          | 23.9         |

Bankfull Statistics Flow Report [Bankfull Statewide SIR2013 5155]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic           | Value | Unit   | SEp  |
|---------------------|-------|--------|------|
| Bankfull Width      | 14.3  | ft     | 21.3 |
| Bankfull Depth      | 0.91  | ft     | 19.8 |
| Bankfull Area       | 12.8  | ft^2   | 29   |
| Bankfull Streamflow | 22.7  | ft^3/s | 55   |

#### Bankfull Statistics Citations

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Probability Statistics Parameters [Perennial Flow Probability]

| Parameter<br>Code | Parameter Name                          | Value | Units         | Min<br>Limit | Max<br>Limit |
|-------------------|-----------------------------------------|-------|---------------|--------------|--------------|
| DRNAREA           | Drainage Area                           | 1.32  | square miles  | 0.01         | 1.99         |
| PCTSNDGRV         | Percent Underlain By Sand And<br>Gravel | 35.15 | percent       | 0            | 100          |
| FOREST            | Percent Forest                          | 15.75 | percent       | 0            | 100          |
| MAREGION          | Massachusetts Region                    | 0     | dimensionless | 0            | 1            |

Probability Statistics Flow Report [Perennial Flow Probability]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

| Statistic                              | Value | Unit | PC |
|----------------------------------------|-------|------|----|
| Probability Stream Flowing Perennially | 0.957 | dim  | 71 |

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR\_2006-5031rev.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Subject: RE: 629 Belmont Street, Brockton - RGP

Date: Thursday, April 11, 2019 at 11:01:33 AM Eastern Daylight Time

From: Ruan, Xiaodan (DEP)

To: Leah Smith

**CC:** Vakalopoulos, Catherine (DEP)

Thank you Leah for the clarification. That's fine.

I used the coordinates you provided to check the 7Q10 so I can confirm that the 7Q10 and the DF are the same and correct.

Since this is a current MCP site, you do not need to apply or submit a fee to MassDEP.

#### Thanks, Xiaodan

From: Leah Smith [mailto:lsmith@tg2solutions.com]

Sent: Wednesday, April 10, 2019 6:04 PM

To: Ruan, Xiaodan (DEP)

Subject: Re: 629 Belmont Street, Brockton - RGP

Hi Xiaodan,

I apologize for the confusion, but this site is actually at 620 Belmont Street, not 629, and it does have an active RTN of 4-16968. The wrong address was a typo in the email title. However, as the discharge location on-site and at the outfall location are the same coordinates I believe the information provided for the discharge should be the same (i.e. dilution factor, etc.). Can you please re-confirm. Again, apologies for the confusion.

Thanks, Leah

From: "Ruan, Xiaodan (DEP)" <xiaodan.ruan@state.ma.us>

**Date:** Wednesday, April 10, 2019 at 12:09 PM **To:** Leah Smith <lsmith@tg2solutions.com>

Cc: "Vakalopoulos, Catherine (DEP)" <catherine.vakalopoulos@state.ma.us>

Subject: RE: 629 Belmont Street, Brockton - RGP

Hi Leah,

I checked the 7Q10 and dilution factor calculation (DF = 1.1) for this proposed discharge to the West Meadow Brook in Brockton and they are correct. This discharge is not to an Outstanding Resource Water so no additional MassDEP review is needed.

The water quality information for the West Meadow Brook Pond in the attachment (Figure 3) was also correct.

In addition to submitting the EPA NOI for the RGP, since this is a closed MCP site and is not an active one currently, you will have to apply to MassDEP and submit a fee (unless fee exempt, e.g. a municipality). Instructions are located here: <a href="https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent">https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</a>.

Please let me know if you have any questions.

Thanks, Xiaodan

**From:** Vakalopoulos, Catherine (DEP) **Sent:** Tuesday, April 09, 2019 5:59 PM

To: Ruan, Xiaodan (DEP)

Cc: Leah Smith

Subject: FW: 629 Belmont Street, Brockton - RGP

Hi Xiaodan,

Do you have time to look at this?

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

**From:** Leah Smith [mailto:lsmith@tg2solutions.com]

**Sent:** Tuesday, April 09, 2019 5:42 PM **To:** Vakalopoulos, Catherine (DEP)

**Cc:** Jason Sherburne; Eric Simpson; Raquel Vella **Subject:** 629 Belmont Street, Brockton - RGP

Good evening,

I'm working on a RGP on behalf of a client to complete a NOI for a RGP for redevelopment activities at 620 Belmont Street, Brocktono. This facility is an active gasoline station with a closed RTN (4-16968) and is being redeveloped into an updated gasoline station facility with new tanks, etc.

Attached please find the dilution factor spreadsheet and effluent limit calculations, as well as the StreamStats output. The discharge location is a catch basin located on the western portion of the site property, which discharges to West Meadow Brook located west of the site – see Figure 2A. The discharge flow was calculated based on the design flow: (60 gpm x 60 mph x 24h) / 1 million = 0.0864 mgd. The latitude and longitude of the catch basin discharge and outfall point are:

Catch Basin Discharge Point: Latitude: 42.071788 Longitude: -71.043785

Outfall (Broad Meadow Brook) Point:

Latitude: 42.070529 Longitude: -71.045429

The outfall is West Meadow Brook which appears to flow to West Meadow Brook Pond, ID MA62208. I've also attached a table with the summary of contaminants detected in the influent sample (site groundwater) and the outfall surface water sample.

Could you verify the 7Q10 information and dilution factor? Please let me know if you require any additional

information.

Thanks for your help.

Leah

Application Version: 4.3.0



### ATTACHMENT C



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Brockton 620 (N/A)

ESS Laboratory Work Order Number: 1903539

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director **REVIEWED** 

By ESS Laboratory at 2:30 pm, Mar 27, 2019

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

ESS Laboratory Work Order: 1903539

### **SAMPLE RECEIPT**

The following samples were received on March 20, 2019 for the analyses specified on the enclosed Chain of Custody Record.

**Lab Number** 1903539-01

Sample Name Receiving Water 1 **Matrix** Ground Water

Analysis

2520B, 350.1, 6010C, 6020A, 7010, 7196A, 7470A,

9040



The Microbiology Division of Thielsch Engineering, Inc.



CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

ESS Laboratory Work Order: 1903539

### **PROJECT NARRATIVE**

**Total Metals** CC92044-BSD1

Antimony (127% @ 80-120%)

No other observations noted.

**End of Project Narrative.** 

#### **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.



185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1903539



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

#### **Analytical Methods**

1010A - Flashpoint 6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

#### **Prep Methods**

**CURRENT SW-846 METHODOLOGY VERSIONS** 

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620 Client Sample ID: Receiving Water 1 Date Sampled: 03/20/19 11:45

Percent Solids: N/A

ESS Laboratory Work Order: 1903539 ESS Laboratory Sample ID: 1903539-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

| <b>Analyte</b> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst |                | <u>I/V</u> | <u>F/V</u> | <b>Batch</b> |
|----------------|---------------------|------------|--------|--------------|-----------|---------|----------------|------------|------------|--------------|
| Antimony       | ND(0.2)             |            | 6020A  |              | 1         | KJK     | 03/22/19 19:00 | 100        | 10         | CC92044      |
| Arsenic        | ND (0.5)            |            | 7010   |              | 1         | KJK     | 03/26/19 21:26 | 100        | 10         | CC92044      |
| Beryllium      | ND (0.1)            |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Cadmium        | ND (0.1)            |            | 6020A  |              | 1         | KJK     | 03/22/19 13:54 | 100        | 10         | CC92044      |
| Chromium       | ND (2.0)            |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Copper         | <b>4.2</b> (2.0)    |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Hardness       | <b>46100</b> (82.4) |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 1          | 1          | [CALC]       |
| Iron           | <b>275</b> (10.0)   |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Lead           | ND (2.0)            |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Mercury        | ND (0.20)           |            | 7470A  |              | 1         | MKS     | 03/22/19 16:06 | 20         | 40         | CC92162      |
| Nickel         | ND (5.0)            |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Selenium       | ND (1.0)            |            | 7010   |              | 1         | KJK     | 03/27/19 6:31  | 100        | 10         | CC92044      |
| Silver         | ND (1.0)            |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |
| Thallium       | ND (0.1)            |            | 6020A  |              | 1         | KJK     | 03/22/19 19:00 | 100        | 10         | CC92044      |
| Zinc           | <b>18.8</b> (5.0)   |            | 6010C  |              | 1         | KJK     | 03/22/19 12:32 | 100        | 10         | CC92044      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620 Client Sample ID: Receiving Water 1 Date Sampled: 03/20/19 11:45

Percent Solids: N/A

ESS Laboratory Work Order: 1903539 ESS Laboratory Sample ID: 1903539-01

Sample Matrix: Ground Water

### **Classical Chemistry**

| <b>Analyte</b>      | Results (MRL)      | MDL Metho              | od <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | <u>Units</u> | <b>Batch</b> |
|---------------------|--------------------|------------------------|-----------------|-----------|---------|-----------------|--------------|--------------|
| Ammonia as N        | ND (0.10)          | 350.1                  |                 | 1         | JLK     | 03/26/19 17:28  | mg/L         | CC92556      |
| Hexavalent Chromium | ND (10)            | 7196A                  |                 | 1         | JLK     | 03/20/19 21:16  | ug/L         | CC92031      |
| pH                  | <b>6.41</b> (N/A)  | 9040                   |                 | 1         | JLK     | 03/20/19 21:55  | S.U.         | CC92029      |
| pH Sample Temp      | Aqueous pH measure | d in water at 17.5 °C. | (N/A)           |           |         |                 |              |              |
| Salinity            | <b>0.3</b> (0.1)   | 2520B                  |                 | 1         | EEM     | 03/21/19 16:00  | ppt          | CC92125      |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

Batch CC92044 - 3005A/200.7

ESS Laboratory Work Order: 1903539

### **Quality Control Data**

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| Total Metal | ls |
|-------------|----|
|-------------|----|

| Blank              |               |             |              |                |           |                  |          |          |    |
|--------------------|---------------|-------------|--------------|----------------|-----------|------------------|----------|----------|----|
| Antimony           | ND            | 0.2         | ug/L         |                |           |                  |          |          |    |
| Arsenic            | ND            | 0.5         | ug/L         |                |           |                  |          |          |    |
| Beryllium          | ND            | 0.1         | ug/L         |                |           |                  |          |          |    |
| Cadmium            | ND            | 0.1         | ug/L         |                |           |                  |          |          |    |
| Calcium            | ND            | 0.020       | mg/L         |                |           |                  |          |          |    |
| Chromium           | ND            | 2.0         | ug/L         |                |           |                  |          |          |    |
| Copper             | ND            | 2.0         | ug/L         |                |           |                  |          |          |    |
| íron               | ND            | 10.0        | ug/L         |                |           |                  |          |          |    |
| _ead               | ND            | 2.0         | ug/L         |                |           |                  |          |          |    |
| Magnesium          | ND            | 0.020       | mg/L         |                |           |                  |          |          |    |
| Nickel             | ND            | 5.0         | ug/L         |                |           |                  |          |          |    |
| Selenium           | ND            | 1.0         | ug/L         |                |           |                  |          |          |    |
| Silver             | ND            | 1.0         | ug/L         |                |           |                  |          |          |    |
| Thallium           | ND            | 0.1         | ug/L         |                |           |                  |          |          |    |
| Zinc               | ND            | 5.0         | ug/L         |                |           |                  |          |          |    |
| LCS                |               |             |              |                |           |                  |          |          |    |
| Antimony           | 58.1          | 1.0         | ug/L         | 50.00          | 116       | 80-120           |          |          |    |
| Arsenic            | 53.6          | 12.5        | ug/L         | 50.00          | 107       | 80-120           |          |          |    |
| Beryllium          | 4.9           | 0.1         |              | 5.000          | 97        | 80-120           |          |          |    |
|                    | 25.7          | 0.5         | ug/L         | 25.00          |           | 80-120           |          |          |    |
| Cadmium            |               |             | ug/L         |                | 103       |                  |          |          |    |
| Calcium            | 0.497         | 0.020       | mg/L         | 0.5000         | 99        | 80-120           |          |          |    |
| Chromium           | 48.4          | 2.0         | ug/L         | 50.00          | 97        | 80-120           |          |          |    |
| Copper             | 52.1          | 2.0         | ug/L         | 50.00          | 104       | 80-120           |          |          |    |
| ron                | 246           | 10.0        | ug/L         | 250.0          | 99        | 80-120           |          |          |    |
| ead                | 50.4          | 2.0         | ug/L         | 50.00          | 101       | 80-120           |          |          |    |
| 1agnesium          | 0.495         | 0.020       | mg/L         | 0.5000         | 99        | 80-120           |          |          |    |
| lickel             | 48.1          | 5.0         | ug/L         | 50.00          | 96        | 80-120           |          |          |    |
| Selenium           | 99.7          | 25.0        | ug/L         | 100.0          | 100       | 80-120           |          |          |    |
| ilver              | 24.3          | 1.0         | ug/L         | 25.00          | 97        | 80-120           |          |          |    |
| Thallium Thallium  | 47.8          | 0.5         | ug/L         | 50.00          | 96        | 80-120           |          |          |    |
| Zinc               | 50.6          | 5.0         | ug/L         | 50.00          | 101       | 80-120           |          |          |    |
| .CS Dup            |               |             |              |                |           |                  |          |          |    |
| Antimony           | 63.4          | 1.0         | ug/L         | 50.00          | 127       | 80-120           | 9        | 20       | B+ |
| Arsenic            | 55.2          | 12.5        | ug/L         | 50.00          | 110       | 80-120           | 3        | 20       |    |
| eryllium           | 4.8           | 0.1         | ug/L         | 5.000          | 97        | 80-120           | 0.6      | 20       |    |
| Cadmium            | 24.7          | 0.5         | ug/L         | 25.00          | 99        | 80-120           | 4        | 20       |    |
| Calcium            | 0.483         | 0.020       | mg/L         | 0.5000         | 97        | 80-120           | 3        | 20       |    |
| Chromium           | 48.2          | 2.0         | ug/L         | 50.00          | 96        | 80-120           | 0.4      | 20       |    |
| Copper             | 52.0          | 2.0         | ug/L         | 50.00          | 104       | 80-120           | 0.4      | 20       |    |
| ron                | 239           | 10.0        | ug/L         | 250.0          | 96        | 80-120           | 3        | 20       |    |
|                    |               |             |              |                |           |                  |          |          |    |
| Lead<br>Magnesium  | 48.2<br>0.480 | 2.0         | ug/L         | 50.00          | 96        | 80-120           | 5        | 20       |    |
| (ACIDESIUM         | 0.480         | 0.020       | mg/L         | 0.5000         | 96        | 80-120           | 3        | 20       |    |
| =                  |               |             | . "          | E0.00          | 25        | 00 100           | 0 -      | 20       |    |
| vickel<br>Selenium | 47.9<br>104   | 5.0<br>25.0 | ug/L<br>ug/L | 50.00<br>100.0 | 96<br>104 | 80-120<br>80-120 | 0.5<br>4 | 20<br>20 |    |

Page 7 of 12



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

ESS Laboratory Work Order: 1903539

### **Quality Control Data**

| MRL  | Units                                          | Spike<br>Level                                                                                    | Source<br>Result | %REC                                                                                                                                              | %REC<br>Limits | RPD | RPD   |                                                                                                                            |
|------|------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------|----------------------------------------------------------------------------------------------------------------------------|
| MRL  | Units                                          | Level                                                                                             | Result           | %RFC                                                                                                                                              | Limite         | חחח |       |                                                                                                                            |
|      |                                                |                                                                                                   | resuit           | 70IKEC                                                                                                                                            | Lillius        | KPD | Limit | Qualifier                                                                                                                  |
|      | Total Meta                                     | als                                                                                               |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 1.0  | ug/L                                           | 25.00                                                                                             |                  | 97                                                                                                                                                | 80-120         | 0.7 | 20    |                                                                                                                            |
| 0.5  | ug/L                                           | 50.00                                                                                             |                  | 97                                                                                                                                                | 80-120         | 2   | 20    |                                                                                                                            |
| 5.0  | ug/L                                           | 50.00                                                                                             |                  | 100                                                                                                                                               | 80-120         | 1   | 20    |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 0.20 | ug/L                                           |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 0.20 | ug/L                                           | 6.042                                                                                             |                  | 102                                                                                                                                               | 80-120         |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 0.20 | ug/L                                           | 6.042                                                                                             |                  | 104                                                                                                                                               | 80-120         | 2   | 20    |                                                                                                                            |
| C    | Classical Cher                                 | nistry                                                                                            |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 10   | ug/L                                           |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 10   | ug/L                                           | 499.8                                                                                             |                  | 100                                                                                                                                               | 90-110         |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 10   | ug/L                                           | 499.8                                                                                             |                  | 99                                                                                                                                                | 90-110         | 0.6 | 20    |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      | ppt                                            | 1.000                                                                                             |                  | 96                                                                                                                                                | 85-115         |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 0.10 | mg/L                                           |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
| 0.10 | mg/L                                           | 0.09994                                                                                           |                  | 119                                                                                                                                               | 80-120         |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      |                                                |                                                                                                   |                  |                                                                                                                                                   |                |     |       |                                                                                                                            |
|      | 0.5<br>5.0<br>0.20<br>0.20<br>0.20<br>10<br>10 | 1.0 ug/L 0.5 ug/L 0.20 ug/L 0.20 ug/L 0.20 ug/L 0.20 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L 10 ug/L | 0.5              | 1.0 ug/L 25.00 0.5 ug/L 50.00 5.0 ug/L 50.00  0.20 ug/L  0.20 ug/L 6.042  Classical Chemistry  10 ug/L 499.8  10 ug/L 499.8  ppt 1.000  0.10 mg/L | 1.0            | 1.0 | 1.0   | 1.0 ug/L 25.00 97 80-120 0.7 20 0.5 ug/L 50.00 97 80-120 2 20 5.0 ug/L 50.00 100 80-120 1 20 1 20 1 20 1 20 1 20 1 20 1 20 |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

ESS Laboratory Work Order: 1903539

#### **Notes and Definitions**

| Z16 | Aqueous pH measured in water at 17.5 °C.           |
|-----|----------------------------------------------------|
| U   | Analyte included in the analysis, but not detected |
| D   | Diluted.                                           |

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

Relative Percent Difference **RPD MDL** Method Detection Limit MRL Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DLInitial Volume I/V F/V Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.

ESS Laboratory Work Order: 1903539



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions Client Project ID: Brockton 620

### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 <a href="http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx">http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx</a>

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

# ESS Laboratory Sample and Cooler Receipt Checklist

| Client:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                          |                        |                          | -           | •                                  | ESS Project    | ID:             | 1903539              |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|------------------------|--------------------------|-------------|------------------------------------|----------------|-----------------|----------------------|------------------------------|
| Singpet/Delivered Visit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Client:                     |                          | Tg2 TB                 | /DS                      |             |                                    | Date Receive   | ed:             |                      | <del></del>                  |
| Air bill manifest present?  Air No:  NA  2. Were custody seals present?  No  7. Is COC complete and correct?  Yes  8. Were samples received intact?  Yes  9. Were labs informed about short holds & rushles?  Yes  10. Were any analyses received outside of hold time?  Yes (No)  11. Any Subcontracting needed?  ESS Sample file:  13. Are the samples property preserved?  8. If metals preserved quon recept:  15. Low Level VOA vidals frozen:  16. Low Level VOA vidals frozen:  17. In metals preserved upon recept:  18. Low Level VOA vidals frozen:  19. Date:  Time:  By:  14. Was there a need to contact Project Manager?  2. Wes No  Date:  Time:  By:  Sample Container  Proper Air Bubbles  Sufficient  No  Date:  Time:  By:  Sample Container  Proper Air Bubbles  Sufficient  No Time:  Date:  Date:  Time:  By:  Sample Container  Proper Air Bubbles  Sufficient  Nounteer  Date:  Date:  Date:  Date:  Sample Container  Proper Air Bubbles  Sufficient  Nounteer  Date:  Date:  Date:  Sample Container  Proper Air Bubbles  Sufficient  Nounteer  Nounteer  Proper Air Bubbles  Sufficient  Nounteer  Nounteer  Proper Air Bubbles  Sufficient  Nounteer  Nounteer  Proper Air Bubbles  Nounteer  Nounteer  Proper Air Bubbles  No | Shinned/Deliv               | vered Via:               | E                      | SS Courier               |             | F                                  |                |                 |                      | <del></del>                  |
| Air bill manifest present?   No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Stubbearpen                 |                          |                        |                          |             |                                    | Days for Proje | ect:            | 5 Day                |                              |
| 2. Were custody seals present?  No 7. Is COC complete and correct?  Yes 3. Is radiation count <100 CPM? Yes 4. Is a Cooler Present? Temp: 1.1   Icod with:   Ico Temp: 1.1   Icod with:   Ico S. Was COC signed and dated by client?  Yes 10. Were any analyses received outside of hold size rushes?  11. Any Subcontracting needed? Yes S. Who   Icod with:   Icod | 1. Air bill mar<br>Air No.: | nifest present           | ?<br>NA                |                          | No          | 6. Doe                             | s COC match    | bottles?        |                      | Yes                          |
| 3. Is radiation count <100 CPM?  4. Is a Cooler Present?  Temp: 1.1   Loed with:   Loe    5. Was COC signed and dated by client?  Yes   10. Were any analyses received outside of hold time?  11. Any Subconfracting needed?  Yes   No    12. Were VOAs received?  a. Air bubbles in aqueous VOAs?  b. Does methanol cover soil completely?  13. Are the samples properly preserved?  a. If metals preserved upon receipt:  b. Low Level VOA visits frozen:  14. Was there a need to contact Project Manager?  a. Was there a need to contact Project Manager?  a. Was there a need to contact Project Manager?  a. Was there a need to contact the client?  Yes   No    Date:   Time:   By:    Time:   By:    Sample   Container   Proper   Air Bubbles   Sufficient   Volume    Sample   Container   Proper   Air Bubbles   Sufficient   Volume    Sample   Container   Proper   Air Bubbles   Sufficient   Volume    Sample   Container   Proper   Air Bubbles   Sufficient   Volume   Container   Type   Preservative   Record pH (Cyanide and 608.3    Pesticides)  14. Was there a need to contact the client?  Yes   No    Date:   Time:   By:    Time:   By:    Air Bubbles   Proper   Air Bubbles   Sufficient   Volume   Container   Type   Preservative   Record pH (Cyanide and 608.3    Pesticides)  15. Were vona static phore   Proper   Air Bubbles   Sufficient   Volume   Container   Type   Preservative   Record pH (Cyanide and 608.3    Pesticides)  16. Ves   No   No   No   No   No   No   No   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                          |                        |                          | No          |                                    |                |                 |                      |                              |
| 4. Is a Cooler Present?  Temp:1.1   Iced with:ice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3. Is radiation             | n count <100             | CPM?                   |                          | Yes         |                                    |                |                 | state 8 mobac2       |                              |
| 11. Arry Subcontracting needed? Yes /(No)  12. Were VOAs received?  a. Air bubbles in aqueous VOAs? Yes / No / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4. Is a Coole               | r Present?               | Iced with:             | lce                      | Yes         |                                    |                |                 |                      |                              |
| 11. Any Subcontracting needed?  ESS Sample IDS:  Analysis:  TAT:  13. Are the samples properly preserved? Analysis:  Date:  Time:  By:  Sample Receiving Notes:  14. Was there a need to contact Project Manager? All Was there a need to contact the client?  Sample Container Proper Air Bubbles Number ID Container Present Volume  O1 325629 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 HNO3 HNO3 HNO3 Date & Time:  Completed By:  Completed By:  Completed By:  Date & Time:  Date & Tim |                             |                          |                        |                          | Yes         | 10. W                              | ere any analy  | ses received ou | iside of floid time. |                              |
| 11. Any Subcontracting needed?  ESS Sample IDS:  Analysis:  TAT:  13. Are the samples properly preserved? Analysis:  Date:  Time:  By:  Sample Receiving Notes:  14. Was there a need to contact Project Manager? All Was there a need to contact the client?  Sample Container Proper Air Bubbles Number ID Container Present Volume  O1 325629 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 500 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - Unpres NP O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 HNO3 HNO3 HNO3 Date & Time:  Completed By:  Completed By:  Completed By:  Date & Time:  Date & Tim |                             |                          | _ <del></del>          |                          |             |                                    |                |                 |                      | Yes (Na                      |
| 13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen:  14. VVas there a need to contact Project Manager? a. Was there a need to contact the client?  15. Was there a need to contact the client?  16. VVas there a need to contact the client?  17. VVas there a need to contact the client?  18. VVas there a need to contact the client?  19. Date:  19. Time:  19. By:  10. Time:  10. Date:  11. VVas there a need to contact the client?  10. Date:  11. VVas there a need to contact the client?  12. Vas there a need to contact the client?  13. Are there a need to contact the client?  14. VVas there a need to contact the client?  15. Date:  16. Time:  17. Date:  17. Date:  18. Date:  19. Date:  19. Date:  19. Date:  19. Date:  19. Date:  10.  | 11. Any Subo<br>ESS S       | sample IDs:<br>Analysis: |                        |                          |             | a. Aiı                             | bubbles in aq  | jueous VOAs?    | etely?               |                              |
| Sample   Container   Proper   Air Bubbles   Sufficient   Number   ID   Container   Present   Volume    |                             | TAT:_                    |                        |                          | ~`          |                                    |                |                 |                      |                              |
| Sample Receiving Notes:  14. Was there a need to contact Project Manager? a. Was there a need to contact the client?  Who was contacted?  Sample Container Proper Air Bubbles Sufficient Volume Unmber ID Container Present Volume Container Type Preservative Pesticides)  14. Was there a need to contact the client?  Date: Time: By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a. If metals                | preserved up             | on receipt:            | /ed? (                   | ─∕Date: _   |                                    | Time:          | <del>_</del>    | By:                  |                              |
| 14. Was there a need to contact Project Manager?  a. Was there a need to contact the client?  Date: Time: By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                          |                        |                          |             |                                    |                |                 |                      |                              |
| A. Was there a need to contact the client?  Who was contacted?  Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume  O1 325829 Yes NA Yes 1L Poly - Unpres NP O1 325830 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325832 Yes NA Yes 500 mL Poly - Unpres NP O1 325832 Yes NA Yes 250 mL Poly - Unpres NP O1 325832 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325836 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample Neo                  | civing moles.            |                        |                          |             |                                    |                |                 |                      |                              |
| A. Was there a need to contact the client?  Who was contacted?  Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume  O1 325829 Yes NA Yes 1L Poly - Unpres NP O1 325830 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325831 Yes NA Yes 500 mL Poly - Unpres NP O1 325832 Yes NA Yes 500 mL Poly - Unpres NP O1 325832 Yes NA Yes 250 mL Poly - Unpres NP O1 325832 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325836 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3 O1 325837 Yes NA Yes 250 mL Poly - HNO3 HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                          |                        |                          | <del></del> |                                    |                |                 |                      |                              |
| Sample Number ID Container Proper All Bubles Suitcent Container Type Preservative Pesticides)  1 325829 Yes NA Yes 1L Poly - Unpres NP 1 325830 Yes NA Yes 500 mL Poly - Unpres NP 1 325831 Yes NA Yes 250 mL Poly - Unpres NP 1 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 2 Initials: Yes / No 2 Yes / No 3 Yes / No 4 Yes / No 4 Yes / No 5 Yes / No 5 Yes / No 6 Yes / No 7 Yes / No 7 Yes / No 7 Yes / No 8 Yes / No 9 Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a. Was the                  | re a need to             | contact Procontact the | oject Manager<br>client? |             | Yes / No                           | Time:          | - <del></del> - | Ву:                  | <del></del>                  |
| Sample Number ID Container Proper All Bubles Suitcent Container Type Preservative Pesticides)  1 325829 Yes NA Yes 1L Poly - Unpres NP 1 325830 Yes NA Yes 500 mL Poly - Unpres NP 1 325831 Yes NA Yes 250 mL Poly - Unpres NP 1 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 2 Initials: Yes / No 2 Yes / No 3 Yes / No 4 Yes / No 4 Yes / No 5 Yes / No 5 Yes / No 6 Yes / No 7 Yes / No 7 Yes / No 7 Yes / No 8 Yes / No 9 Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                          |                        |                          |             |                                    |                |                 |                      |                              |
| Sample Number ID Container Proper All Bubles Suitcent Container Type Preservative Pesticides)  1 325829 Yes NA Yes 1L Poly - Unpres NP 1 325830 Yes NA Yes 500 mL Poly - Unpres NP 1 325831 Yes NA Yes 250 mL Poly - Unpres NP 1 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3 2 Initials: Yes / No 2 Yes / No 3 Yes / No 4 Yes / No 4 Yes / No 5 Yes / No 5 Yes / No 6 Yes / No 7 Yes / No 7 Yes / No 7 Yes / No 8 Yes / No 9 Yes / No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | <del>_</del>             |                        |                          |             |                                    |                |                 |                      |                              |
| 01 325829 Yes NA Yes 1L Poly - Unpres NP 01 325830 Yes NA Yes 500 mL Poly - Unpres NP 01 325831 Yes NA Yes 250 mL Poly - Unpres NP 01 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3  2nd Review All containers scanned into storage/lab Are barcode labels on correct containers? Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  Date & Time: 32049 2409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                          |                        |                          |             | Container Ty                       | pe             | Preservative    | Record pH (          | Cyanide and 608.3 esticides) |
| 01 325830 Yes NA Yes 500 mL Poly - Unpres NP 01 325831 Yes NA Yes 250 mL Poly - Unpres NP 01 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3  2nd Review All containers scanned into storage/lab Are barcode labels on correct containers? Are all necessary stickers attached?  Completed By: Reviewed By: Reviewed By: Delivered  Date & Time: 32019 2109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 325820                   | Yes                    | NA                       | Yes         | 1L Poly - Unp                      | res            |                 |                      |                              |
| O1 325831 Yes NA Yes 500 mL Poly - Unpres NHO3 HNO3 O1 325832 Yes NA Yes 500 mL Poly - HNO3 HNO3 O1 325833 Yes NA Yes 250 mL Poly - HNO3 HNO3  2nd Review All containers scanned into storage/lab Are barcode labels on correct containers? Are all necessary stickers attached?  Completed By: Reviewed By: Delivered Date & Time: 3209 3109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                          |                        |                          | Yes         | 500 mL Poly - U                    | npres          |                 |                      |                              |
| 2nd Review All containers scanned into storage/lab Are barcode labels on correct containers? Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  NA  Yes  250 mL Poly - HNO3  HNO3  Initials: Yes / No Yes / No  Yes / No  Yes / No  Date & Time:  300,9  2109  Date & Time: 300,9  2109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01                          | 325831                   |                        |                          |             | 250 mL Poly - U<br>500 ml Poly - h | npres<br>INO3  |                 |                      |                              |
| All containers scanned into storage/lab  Are barcode labels on correct containers?  Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  Date & Time:  Date & Time:  3009  Date & Time:  3209  Date & Time:  3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                          |                        |                          |             | 250 mL Poly - F                    | INO3           | HNO3            |                      |                              |
| All containers scanned into storage/lab  Are barcode labels on correct containers?  Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  Date & Time:  Date & Time:  3009  Date & Time:  3209  Date & Time:  3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                          |                        |                          |             |                                    |                |                 |                      |                              |
| Are barcode labels on correct containers? Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  Date & Time:  3009 2109 3209 3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ∠⊓a Kevie                   | w<br>ners scanne         | d into stora           | ge/lab                   |             |                                    | W              |                 |                      |                              |
| Are all necessary stickers attached?  Completed By: Reviewed By: Delivered  Date & Time:  3009 2109 3209 3209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Are barcoo                  | de labels on c           | correct conta          | ainers?                  |             |                                    |                |                 |                      |                              |
| By: Reviewed By: Delivered  Date & Time: 3/20/9 2/09  3/20/9 3/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Are all nec                 | essary sticke            | ers attached           | ?                        |             | tes / NO                           |                |                 |                      |                              |
| By: Delivered  Date & Time: 3/0/9 2/09  Date & Time: 3/0/9 2/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | · <                      | -LS                    | *                        |             | _ Date & Time:                     | 3/02           | د وا            | (08                  |                              |
| Delivered 3/2019 7/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reviewed                    |                          | (III                   |                          | 1           | _                                  | 3/20/          | 9 21            | <u>09</u>            | <del></del>                  |
| Dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Delivered                   |                          |                        |                          |             |                                    | 3/20/9         | 710             | 9                    |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ву:                         |                          |                        |                          | 1           |                                    |                |                 |                      |                              |

|            |                    |                     |                  |                   |                                |                      | -                                     |                                         |               |                  |                |             |                                          |                                                  | 3                                                |                |
|------------|--------------------|---------------------|------------------|-------------------|--------------------------------|----------------------|---------------------------------------|-----------------------------------------|---------------|------------------|----------------|-------------|------------------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|
| ESS La     | aborator           | У                   |                  | •                 | CHAIN OF CUSTO                 | )DY                  | ESS La                                | h#                                      |               | 100              | 7 🖘            |             |                                          |                                                  |                                                  |                |
| ivision of | Thielsch Eng       | gineering, Inc.     |                  | Turn Time:        |                                |                      |                                       |                                         |               | 90               | 350            |             | <u> 9035</u>                             | SY                                               | A YAMACY A                                       |                |
| 85 France  | es Avenue, C       | ranston RI 0291     | 0                | Regulatory State: |                                | a:                   | Report                                |                                         | •             |                  |                |             |                                          |                                                  |                                                  |                |
|            |                    | ex (401) 461-448    | 36               |                   | is project for any of the foll | owing?               | <del></del>                           |                                         |               |                  |                |             |                                          |                                                  | Se        | :              |
| www.essla  | boratory.com       |                     |                  | MA-MCP            | CT-RCP RGP                     | Remediation          | Electo                                |                                         | i rim         | it Che           | cker           |             | :el                                      |                                                  |                                                  | :              |
| 7          |                    | ompany Name<br>مارس |                  | Project#          | Project b                      | lame                 | Delivera                              | nies [                                  |               | Pleas            | se Speci       | fly) →      | <del></del>                              | <del>                                     </del> | 1 .                                              | ·              |
|            | 7 6                | ontact Person       | <del></del>      | <del> </del>      | BROCK 700 62                   | 2                    | _}                                    |                                         |               | 1 1              |                | 1           |                                          |                                                  |                                                  |                |
|            | <u> </u>           | SHERBIRE            |                  |                   | Address                        |                      | - <del>S</del>                        | 1 1                                     | ı             | 1 1              | ا الآ          |             | ]   !                                    |                                                  |                                                  |                |
|            | City               |                     | S                | fate              | Zip Code                       | PO#                  | Analysis                              |                                         | $\mathcal{A}$ |                  | 5              |             |                                          |                                                  |                                                  |                |
| T          | elephone N         | umber               | FAX I            | Vumber            | Email Ad                       | dress                | ₹                                     | S                                       | 3 1           | †                | 10 F           |             |                                          |                                                  | AL CANADA                                        |                |
| ESS Lab    | Collection<br>Date | Collection<br>Time  | Sample Type      | Sample Matrix     | Sa                             | imple ID             | <u>:</u>                              | ARD                                     | 1747641       | $\sum_{i=1}^{6}$ |                |             |                                          |                                                  | WE THE SAME                                      |                |
|            | 3/20/19            | 11:45               | 6                | (つい               | Pro 1                          |                      |                                       |                                         | 77            |                  | 14             |             |                                          |                                                  | <u> </u>                                         |                |
|            | 17                 |                     | —— <del>V</del>  |                   | RECIOIS WA                     | 762)                 |                                       |                                         | 4             | <u> </u>         | 17             |             |                                          |                                                  |                                                  |                |
|            | · ·                |                     |                  |                   |                                | ·                    | ····                                  | -                                       |               |                  | -  -           |             |                                          |                                                  |                                                  |                |
|            |                    |                     |                  |                   |                                |                      |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  |                |
|            |                    |                     |                  |                   |                                |                      |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  |                |
|            | <del></del>        | -                   |                  |                   |                                |                      |                                       |                                         |               |                  | 1 1            | +           | <del>, -   -  </del> -                   | +   -                                            | <del>                                     </del> | +              |
|            |                    |                     |                  |                   |                                |                      |                                       |                                         |               |                  | ╀╌┼            |             | ╼┾╌┼                                     | ++-                                              | #                                                | -              |
|            |                    |                     |                  |                   |                                |                      |                                       |                                         |               |                  | +              |             |                                          | <del>:    </del>                                 | <del> </del>                                     | <u> </u>       |
|            |                    |                     |                  |                   |                                |                      |                                       |                                         |               |                  |                | -           | $-\!\!\downarrow\!\!\perp\!\!\downarrow$ |                                                  | 4-1-                                             |                |
|            |                    |                     |                  |                   | ·                              |                      |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  |                |
|            |                    |                     |                  |                   | ·                              |                      |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  |                |
| Con        | itainer Type       | -!                  | AG-Amber Glass   | 55055             |                                |                      | . }                                   | }                                       | 1             | - }              | 1 1            | 77          |                                          |                                                  |                                                  |                |
|            |                    | 1-Non Preserved     |                  |                   | -Glass P-Poly S-Sterile        | V-Vial O-Other       | ·                                     | ag a                                    |               |                  | ╂╼╂╴           |             |                                          |                                                  | }}                                               |                |
| -          |                    |                     | 21101 3-112804 4 | HNO3 5-NaOH 6-Me  | ethanol 7-Na2S2O3 8-ZnAce Na   | OH 9-NH4CI 10-DI H2C | ) 11-Other*                           |                                         |               |                  | ╂═╌╂═          |             |                                          |                                                  | <del>}}</del>                                    | <u> </u>       |
|            |                    | ····                |                  |                   |                                | Number of Co         | ontainers:                            | . 1                                     | _             |                  | <del>   </del> |             |                                          | 11                                               | <del>}                                    </del> | <u> </u>       |
|            | - <u> </u>         |                     |                  |                   |                                |                      | ·                                     | <u></u>                                 |               |                  | <u>U</u>       |             |                                          | 44                                               | <u> </u>                                         | <u> </u>       |
|            | 11                 | Laboratory          | Use Only         |                   | Sampled by:                    |                      | •                                     |                                         |               |                  |                | <del></del> |                                          | أجسبا                                            | <del></del>                                      |                |
| Cooler F   | Present:           |                     |                  | ·                 | Comments:                      |                      |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  | •              |
| Seals      | Intact:            | 7/                  |                  |                   | John John J.                   | Please spe           | eny "Othe                             | r" pres                                 | ervativ       | e and c          | ontaine        | rs type     | s in this s                              | pace                                             | 1                                                |                |
| coler Ten  | nperature:         | 4//                 | CTCEDO           | _                 | , , , , , , ,                  | \د_                  |                                       |                                         |               |                  |                |             |                                          |                                                  |                                                  |                |
|            | <u> </u>           | (Signature, Date    |                  |                   | \                              |                      |                                       |                                         |               |                  | ٨              |             |                                          |                                                  | į                                                |                |
|            |                    | Y7-Sugme, Date      | z a mile)        | Received By: (S   | Signature, Date & Time)        | Relinquished By:     | (Signature,                           | Date &                                  | Time)         | $\neg$           | / Tree         | ceived F    | 3v: (Signat                              | ure F                                            | ate & Time                                       | <u> </u>       |
| 1 1        |                    |                     | 3:00             | 5/20/19 70.0.     | S 3/20/19 1605                 | 2000                 | . 1 1                                 |                                         |               | , 1              | XIX            |             | Zhato                                    |                                                  |                                                  | 4              |
| Relii      | nquished by:       | (Signature, Date    | & Time)          |                   | Signature, Date & Time)        | Relinquished By:     | (Signature.                           | <u>역</u><br>Date 호                      | 82            | 4                | AM             | Cohrad I    | 1000                                     | Æ                                                | y<br>ate & Time                                  |                |
|            |                    |                     |                  |                   |                                |                      | , , , , , , , , , , , , , , , , , , , | _ ===================================== |               | _                | 1              | Served E    | yy. (Signat                              | ure, L                                           | ale & Time                                       | <del>)</del> ; |
|            | フ III              | <del></del>         |                  | •                 |                                | <u> </u>             |                                       |                                         |               |                  |                |             | <del></del>                              |                                                  |                                                  | i              |

2 0 = 2 Page 12 of 12



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Eric D. Simpson Tg2 Solutions 231 Elm Street Blackstone, MA 01504

RE: Brockton 620 - RGP (N/A)

ESS Laboratory Work Order Number: 1903538

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard
Laboratory Director

#### **Analytical Summary**

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

#### SAMPLE RECEIPT

The following samples were received on March 20, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1903538-01

Sample Name MW-4

Matrix Ground Water Analysis

1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, **ASTM D3695** 



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

### **PROJECT NARRATIVE**

| 625.1(SIM) Semi- | Volatile Organic Compounds                                                                |
|------------------|-------------------------------------------------------------------------------------------|
| 1903538-01       |                                                                                           |
|                  | 2,4,6-Tribromophenol (116% @ 15-110%)                                                     |
| C9C0342-CCV1     |                                                                                           |
|                  | 2,4,6-Tribromophenol (154% @ 20%)                                                         |
| CC92108-BLK1     |                                                                                           |
|                  | 2,4,6-Tribromophenol (229% @ 15-110%)                                                     |
| CC92108-BS1      |                                                                                           |
|                  | 2,4,6-Tribromophenol (224% @ 15-110%)                                                     |
| CC92108-BSD1     |                                                                                           |
|                  | Benzo(b)fluoranthene (22% @ 20%), Butylbenzylphthalate (23% @ 20%), Chrysene (22% @ 20%), |
|                  | Pyrene (25% @ 20%)                                                                        |
| CC92108-BSD1     |                                                                                           |
|                  | 2,4,6-Tribromophenol (198% @ 15-110%)                                                     |
|                  |                                                                                           |

**Classical Chemistry** 

1903538-01

No other observations noted.

End of Project Narrative.

### **DATA USABILITY LINKS**

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

#### **CURRENT SW-846 METHODOLOGY VERSIONS**

#### **Analytical Methods**

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH

MADEP 18-2.1 - VPH

#### **Prep Methods**

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

### **Dissolved Metals**

| <b>Analyte</b> | Results (MRL)     | <b>MDL</b> | Method | <u>Limit</u> | DF | Analyst |                | I/V | F/V | <b>Batch</b> |
|----------------|-------------------|------------|--------|--------------|----|---------|----------------|-----|-----|--------------|
| Antimony       | ND (5.0)          |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Arsenic        | ND (0.5)          |            | 3113B  |              | 1  | KJK     | 03/26/19 22:13 | 100 | 10  | CC92044      |
| Cadmium        | ND (0.5)          |            | 200.8  |              | 5  | KJK     | 03/22/19 19:24 | 100 | 10  | CC92044      |
| Chromium       | ND (2.0)          |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Copper         | <b>2.2</b> (2.0)  |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Iron           | <b>599</b> (10.0) |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Lead           | <b>2.2</b> (0.1)  |            | 200.8  |              | 5  | KJK     | 03/22/19 19:24 | 100 | 10  | CC92044      |
| Mercury        | ND (0.20)         |            | 245.1  |              | 1  | MKS     | 03/22/19 15:58 | 20  | 40  | CC92162      |
| Nickel         | ND (5.0)          |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Selenium       | ND (5.0)          |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Silver         | ND (1.0)          |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |
| Zinc           | <b>13.2</b> (5.0) |            | 200.7  |              | 1  | KJK     | 03/22/19 12:44 | 100 | 10  | CC92044      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

#### **Total Metals**

| <b>Analyte</b> | Results (MRL)       | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | Analyst | <b>Analyzed</b> | <u>I/V</u> | F/V | <b>Batch</b> |
|----------------|---------------------|------------|--------|--------------|-----------|---------|-----------------|------------|-----|--------------|
| Antimony       | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Arsenic        | ND (0.5)            |            | 3113B  |              | 1         | KJK     | 03/26/19 20:58  | 100        | 10  | CC92044      |
| Cadmium        | ND (0.500)          |            | 200.8  |              | 5         | KJK     | 03/22/19 18:45  | 100        | 10  | CC92044      |
| Chromium       | ND (2.0)            |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Chromium III   | ND (10.0)           |            | 200.7  |              | 1         | JLK     | 03/22/19 12:19  | 1          | 1   | [CALC]       |
| Copper         | <b>4.5</b> (2.0)    |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Hardness       | <b>67800</b> (82.4) |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 1          | 1   | [CALC]       |
| Iron           | <b>661</b> (10.0)   |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Lead           | <b>3.0</b> (0.5)    | 0.1        | 200.8  |              | 5         | KJK     | 03/22/19 18:45  | 100        | 10  | CC92044      |
| Mercury        | ND (0.2)            |            | 245.1  |              | 1         | MKS     | 03/22/19 15:58  | 20         | 40  | CC92162      |
| Nickel         | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Selenium       | ND (5.0)            |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Silver         | ND (0.5)            |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |
| Zinc           | <b>13.1</b> (5.0)   |            | 200.7  |              | 1         | KJK     | 03/22/19 12:19  | 100        | 10  | CC92044      |



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

### **524.2 Volatile Organic Compounds**

| <b>Analyte</b>             | Results (MRL)    | <b>MDL</b> | Method | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | Sequence | <b>Batch</b> |
|----------------------------|------------------|------------|--------|--------------|-----------|-----------------|----------|--------------|
| 1,1,1-Trichloroethane      | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,1,2-Trichloroethane      | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,1-Dichloroethane         | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,1-Dichloroethene         | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,2-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,2-Dichloroethane         | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,3-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| 1,4-Dichlorobenzene        | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Acetone                    | ND (5.0)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Benzene                    | <b>1.9</b> (0.5) |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Carbon Tetrachloride       | ND (0.3)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| cis-1,2-Dichloroethene     | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Ethylbenzene               | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Methyl tert-Butyl Ether    | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Methylene Chloride         | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Naphthalene                | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Tertiary-amyl methyl ether | ND (1.0)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Tertiary-butyl Alcohol     | ND (25.0)        |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Tetrachloroethene          | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Toluene                    | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Trichloroethene            | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Vinyl Chloride             | ND (0.2)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Xylene O                   | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |
| Xylene P,M                 | ND (0.5)         |            | 524.2  |              | 1         | 03/21/19 15:24  | C9C0328  | CC92140      |

%Recovery Qualifier Limits

Surrogate: 1,2-Dichlorobenzene-d4
Surrogate: 4-Bromofluorobenzene

94 % 98 % 80-120 80-120



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L Analyst: MJV

Prepared: 3/21/19 9:27

### 608.3 Polychlorinated Biphenyls (PCB)

| Analyte                              | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | $\frac{\mathbf{DF}}{\mathbf{I}}$ |                | <b>Sequence</b> | Batch   |
|--------------------------------------|---------------|------------|-----------|--------------|----------------------------------|----------------|-----------------|---------|
| Aroclor 1016                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1221                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1232                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1242                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1248                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1254                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1260                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1262                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
| Aroclor 1268                         | ND (0.09)     |            | 608.3     |              | 1                                | 03/21/19 12:12 |                 | CC92001 |
|                                      |               | %Recovery  | Qualifier | Limits       |                                  |                |                 |         |
| Surrogate: Decachlorobiphenyl        |               | 86 %       |           | 30-150       |                                  |                |                 |         |
| Surrogate: Decachlorobiphenyl [2C]   |               | 74 %       |           | 30-150       |                                  |                |                 |         |
| Surrogate: Tetrachloro-m-xylene      |               | 61 %       |           | 30-150       |                                  |                |                 |         |
| Surrogate: Tetrachloro-m-xylene [2C] |               | 64 %       |           | 30-150       |                                  |                |                 |         |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 3/21/19 15:21

### 625.1(SIM) Semi-Volatile Organic Compounds

| Analyte Acenaphthene                | Results (MRL) ND (0.19) | <b>MDL</b> | Method<br>625.1 SIM | <u>Limit</u> | <u><b>DF</b></u> | <u>Analyzed</u> 03/23/19 23:10 | Sequence<br>C9C0362 | Batch<br>CC92108 |
|-------------------------------------|-------------------------|------------|---------------------|--------------|------------------|--------------------------------|---------------------|------------------|
| Acenaphthylene                      | ND (0.19)<br>ND (0.19)  |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Anthracene                          | ND (0.19)<br>ND (0.19)  |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Benzo(a)anthracene                  | ND (0.19)<br>ND (0.05)  |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| . ,                                 | ,                       |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Benzo(a)pyrene Benzo(b)fluoranthene | ND (0.05)               |            | 625.1 SIM           |              | _                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| · /                                 | ND (0.05)               |            |                     |              | 1                |                                |                     |                  |
| Benzo(g,h,i)perylene                | ND (0.19)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Benzo(k)fluoranthene                | ND (0.05)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| bis(2-Ethylhexyl)phthalate          | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Butylbenzylphthalate                | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Chrysene                            | ND (0.05)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Dibenzo(a,h)Anthracene              | ND (0.05)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Diethylphthalate                    | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Dimethylphthalate                   | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Di-n-butylphthalate                 | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Di-n-octylphthalate                 | ND (2.34)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Fluoranthene                        | <b>0.24</b> (0.19)      |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Fluorene                            | ND (0.19)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Indeno(1,2,3-cd)Pyrene              | ND (0.05)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Naphthalene                         | ND (0.19)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Pentachlorophenol                   | ND (0.84)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Phenanthrene                        | ND (0.19)               |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
| Pyrene                              | <b>0.19</b> (0.19)      |            | 625.1 SIM           |              | 1                | 03/23/19 23:10                 | C9C0362             | CC92108          |
|                                     |                         | %Recovery  | Qualifier           | Limits       |                  |                                |                     |                  |
| Surrogate: 1,2-Dichlorobenzene-d4   |                         | 52 %       |                     | 30-130       |                  |                                |                     |                  |
| Surrogate: 2,4,6-Tribromophenol     |                         | 116 %      | S+                  | 15-110       |                  |                                |                     |                  |
| Surrogate: 2-Fluorobiphenyl         |                         | 66 %       |                     | 30-130       |                  |                                |                     |                  |

185 Frances Avenue, Cranston, RI 02910-2211

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

Tel: 401-461-7181

64 %

73 %

Fax: 401-461-4486

30-130

30-130

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 3/25/19 16:13

### 8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

| Analyte<br>1,4-Dioxane    | Results (MRL)<br>ND (0.250) | <u>MDL</u> | Method<br>8270D SIM | <u>Limit</u> | <u><b>DF</b></u> | <b>Analyzed</b> 03/26/19 3:33 | Sequence<br>C9C0402 | <u>Batch</u><br>CC92577 |
|---------------------------|-----------------------------|------------|---------------------|--------------|------------------|-------------------------------|---------------------|-------------------------|
|                           | %                           | Recovery   | Qualifier           | Limits       |                  |                               |                     |                         |
| Surrogate: 1,4-Dioxane-d8 |                             | 62 %       |                     | 15-115       |                  |                               |                     |                         |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

http://www.ESSLaboratory.com



The Microbiology Division of Thielsch Engineering, Inc.



### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

### **Classical Chemistry**

| Analyte<br>Ammonia as N       | Results (MRL) ND (0.10) | <b>MDL Method</b> 350.1 | <u>Limit</u> | <u><b>DF</b></u> | Analyst<br>JLK | Analyzed 03/26/19 17:19 | Units<br>mg/L | Batch<br>CC92556 |
|-------------------------------|-------------------------|-------------------------|--------------|------------------|----------------|-------------------------|---------------|------------------|
| Chloride                      | <b>340000</b> (50000)   | 300.0                   |              | 100              | EEM            | 03/21/19 15:17          | ug/L          | CC92119          |
| Hexavalent Chromium           | ND (10.0)               | 3500Cr B-2009           |              | 1                | JLK            | 03/20/19 21:16          | ug/L          | CC92031          |
| Phenols                       | ND (100)                | 420.1                   |              | 1                | JLK            | 03/26/19 17:04          | ug/L          | CC92653          |
| Total Cyanide                 | ND (5.00)               | 4500 CN CE              |              | 1                | EEM            | 03/21/19 14:00          | ug/L          | CC92120          |
| Total Petroleum Hydrocarbon   | ND (5)                  | 1664A                   |              | 1                | LAB            | 03/27/19 16:49          | mg/L          | CC92632          |
| Total Residual Chlorine       | ND (20.0)               | 4500Cl D                |              | 1                | CCP            | 03/20/19 21:15          | ug/L          | CC92032          |
| <b>Total Suspended Solids</b> | 8 (5)                   | 2540D                   |              | 1                | CCP            | 03/21/19 17:00          | mg/L          | CC92149          |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: ug/L Analyst: CAD

Prepared: 3/26/19 11:15

### 504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

| <b>Analyte</b>                    | Results (MRL) | <b>MDL</b> | Method    | <u>Limit</u> | <u>DF</u> | <b>Analyzed</b> | <b>Sequence</b> | <b>Batch</b> |
|-----------------------------------|---------------|------------|-----------|--------------|-----------|-----------------|-----------------|--------------|
| 1,2,3-Trichloropropane            | ND (0.025)    |            | 504.1     |              | 1         | 03/26/19 15:40  |                 | CC92639      |
| 1,2-Dibromo-3-Chloropropane       | ND (0.015)    |            | 504.1     |              | 1         | 03/26/19 15:40  |                 | CC92639      |
| 1,2-Dibromoethane                 | ND (0.015)    |            | 504.1     |              | 1         | 03/26/19 15:40  |                 | CC92639      |
|                                   |               | %Recovery  | Qualifier | Limits       |           |                 |                 |              |
|                                   |               | Mecovery   | Qualifiei | LIIIILS      |           |                 |                 |              |
| Surrogate: Pentachloroethane      |               | 86 %       |           | 30-150       |           |                 |                 |              |
| Surrogate: Pentachloroethane [2C] |               | 92 %       |           | 30-150       |           |                 |                 |              |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP

Client Sample ID: MW-4 Date Sampled: 03/20/19 11:00

Percent Solids: N/A Initial Volume: 1 Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1903538 ESS Laboratory Sample ID: 1903538-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 3/25/19 10:47

### Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC03/25/1912:01CC92531

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

| Analyte                     | Result | MRL   | Units       | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-----------------------------|--------|-------|-------------|----------------|------------------|------|----------------|-----|--------------|-----------|
|                             |        | Γ     | Dissolved M | etals          |                  |      |                |     |              |           |
| Batch CC92044 - 3005A/200.7 |        |       |             |                |                  |      |                |     |              |           |
| Blank                       |        |       |             |                |                  |      |                |     |              |           |
| Antimony                    | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |
| Arsenic                     | ND     | 0.5   | ug/L        |                |                  |      |                |     |              |           |
| Cadmium                     | ND     | 0.5   | ug/L        |                |                  |      |                |     |              |           |
| Chromium                    | ND     | 2.0   | ug/L        |                |                  |      |                |     |              |           |
| Copper                      | ND     | 2.0   | ug/L        |                |                  |      |                |     |              |           |
| Iron                        | ND     | 10.0  | ug/L        |                |                  |      |                |     |              |           |
| Lead                        | ND     | 0.1   | ug/L        |                |                  |      |                |     |              |           |
| Nickel                      | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |
| Selenium                    | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |
| Silver                      | ND     | 1.0   | ug/L        |                |                  |      |                |     |              |           |
| Zinc                        | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |
| LCS                         |        |       |             |                |                  |      |                |     |              | <u></u>   |
| Antimony                    | 50.3   | 5.0   | ug/L        | 50.00          |                  | 101  | 85-115         |     |              | <u></u>   |
| Arsenic                     | 53.6   | 12.5  | ug/L        | 50.00          |                  | 107  | 85-115         |     |              |           |
| Cadmium                     | 25.7   | 2.5   | ug/L        | 25.00          |                  | 103  | 85-115         |     |              |           |
| Chromium                    | 48.4   | 2.0   | ug/L        | 50.00          |                  | 97   | 85-115         |     |              |           |
| Copper                      | 52.1   | 2.0   | ug/L        | 50.00          |                  | 104  | 85-115         |     |              |           |
| Iron                        | 246    | 10.0  | ug/L        | 250.0          |                  | 99   | 85-115         |     |              |           |
| Lead                        | 51.5   | 0.5   | ug/L        | 50.00          |                  | 103  | 85-115         |     |              |           |
| Nickel                      | 48.1   | 5.0   | ug/L        | 50.00          |                  | 96   | 85-115         |     |              |           |
| Selenium                    | 94.8   | 5.0   | ug/L        | 100.0          |                  | 95   | 80-120         |     |              |           |
| Silver                      | 24.3   | 1.0   | ug/L        | 25.00          |                  | 97   | 85-115         |     |              |           |
| Zinc                        | 50.6   | 5.0   | ug/L        | 50.00          |                  | 101  | 85-115         |     |              |           |
| Batch CC92162 - 245.1/7470A |        |       |             |                |                  |      |                |     |              |           |
| Blank                       |        |       |             |                |                  |      |                |     |              |           |
| Mercury                     | ND     | 0.20  | ug/L        |                |                  |      |                |     |              |           |
| LCS                         |        |       |             |                |                  |      |                |     |              |           |
| Mercury                     | 6.18   | 0.20  | ug/L        | 6.042          |                  | 102  | 85-115         |     |              |           |
| LCS Dup                     |        |       |             |                |                  |      |                |     |              |           |
| Mercury                     | 6.29   | 0.20  | ug/L        | 6.042          |                  | 104  | 85-115         | 2   | 20           |           |
|                             |        |       | Total Met   | als            |                  |      |                |     |              |           |
| Batch CC92044 - 3005A/200.7 |        |       |             |                |                  |      |                |     |              |           |
| Blank                       |        |       |             |                |                  |      |                |     |              |           |
| Antimony                    | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |
| Arsenic                     | ND     | 0.5   | ug/L        |                |                  |      |                |     |              |           |
| Cadmium                     | ND     | 0.500 | ug/L        |                |                  |      |                |     |              |           |
| Chromium                    | ND     | 2.0   | ug/L        |                |                  |      |                |     |              |           |
| Copper                      | ND     | 2.0   | ug/L        |                |                  |      |                |     |              |           |
| Iron                        | ND     | 10.0  | ug/L        |                |                  |      |                |     |              |           |
| Lead                        | ND     | 0.5   | ug/L        |                |                  |      |                |     |              |           |
| Nickel                      | ND     | 5.0   | ug/L        |                |                  |      |                |     |              |           |



# **BAL Laboratory**

The Microbiology Division of Thielsch Engineering, Inc.

%REC



RPD

#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

### **Quality Control Data**

Spike

Source

| Analyte                                                                                                                                                                                                                                                                                                               | Result                                   | MRL                                                         | Units                                                | Level     | Result | %REC | %REC<br>Limits | RPD | Limit | Qualifier |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|-----------|--------|------|----------------|-----|-------|-----------|
|                                                                                                                                                                                                                                                                                                                       |                                          |                                                             | Total Met                                            | als       |        |      |                |     |       |           |
| atch CC92044 - 3005A/2                                                                                                                                                                                                                                                                                                | 200.7                                    |                                                             |                                                      |           |        |      |                |     |       |           |
| elenium                                                                                                                                                                                                                                                                                                               | ND                                       | 5.0                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| lver                                                                                                                                                                                                                                                                                                                  | ND                                       | 0.5                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| nc                                                                                                                                                                                                                                                                                                                    | ND                                       | 5.0                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| cs                                                                                                                                                                                                                                                                                                                    |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
| ntimony                                                                                                                                                                                                                                                                                                               | 50.3                                     | 5.0                                                         | ug/L                                                 | 50.00     |        | 101  | 85-115         |     |       |           |
| rsenic                                                                                                                                                                                                                                                                                                                | 53.6                                     | 12.5                                                        | ug/L                                                 | 50.00     |        | 107  | 85-115         |     |       |           |
| admium                                                                                                                                                                                                                                                                                                                | 25.7                                     | 2.50                                                        | ug/L                                                 | 25.00     |        | 103  | 85-115         |     |       |           |
| nromium                                                                                                                                                                                                                                                                                                               | 48.4                                     | 2.0                                                         | ug/L                                                 | 50.00     |        | 97   | 85-115         |     |       |           |
| opper                                                                                                                                                                                                                                                                                                                 | 52.1                                     | 2.0                                                         | ug/L                                                 | 50.00     |        | 104  | 85-115         |     |       |           |
| on                                                                                                                                                                                                                                                                                                                    | 246                                      | 10.0                                                        | ug/L                                                 | 250.0     |        | 99   | 85-115         |     |       |           |
| ad                                                                                                                                                                                                                                                                                                                    | 51.5                                     | 2.5                                                         | ug/L                                                 | 50.00     |        | 103  | 85-115         |     |       |           |
| ickel                                                                                                                                                                                                                                                                                                                 | 48.1                                     | 5.0                                                         | ug/L                                                 | 50.00     |        | 96   | 85-115         |     |       |           |
| elenium                                                                                                                                                                                                                                                                                                               | 94.8                                     | 5.0                                                         | ug/L                                                 | 100.0     |        | 95   | 85-115         |     |       |           |
| lver                                                                                                                                                                                                                                                                                                                  | 24.3                                     | 0.5                                                         | ug/L                                                 | 25.00     |        | 97   | 85-115         |     |       |           |
| nc                                                                                                                                                                                                                                                                                                                    | 50.6                                     | 5.0                                                         | ug/L                                                 | 50.00     |        | 101  | 85-115         |     |       |           |
| atch CC92162 - 245.1/7                                                                                                                                                                                                                                                                                                |                                          |                                                             | <u>-</u>                                             |           |        |      |                |     |       |           |
| ank                                                                                                                                                                                                                                                                                                                   |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
| ercury                                                                                                                                                                                                                                                                                                                | ND                                       | 0.2                                                         | ug/L                                                 |           |        |      |                |     |       |           |
|                                                                                                                                                                                                                                                                                                                       | 110                                      | 0.2                                                         | ug/ L                                                |           |        |      |                |     |       |           |
| cs                                                                                                                                                                                                                                                                                                                    |                                          |                                                             |                                                      |           |        | 100  | 05.445         |     |       |           |
| ercury                                                                                                                                                                                                                                                                                                                | 6.2                                      | 0.2                                                         | ug/L                                                 | 6.042     |        | 102  | 85-115         |     |       |           |
| CS Dup                                                                                                                                                                                                                                                                                                                |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
| lercury                                                                                                                                                                                                                                                                                                               | 6.3                                      | 0.2                                                         | ug/L                                                 | 6.042     |        | 104  | 85-115         | 2   | 20    |           |
|                                                                                                                                                                                                                                                                                                                       |                                          | 524.2 Vo                                                    | latile Organi                                        | ic Compou | unds   |      |                |     |       |           |
|                                                                                                                                                                                                                                                                                                                       |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
| atch CC92140 - 524.2                                                                                                                                                                                                                                                                                                  |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
|                                                                                                                                                                                                                                                                                                                       |                                          |                                                             |                                                      |           |        |      |                |     |       |           |
| lank                                                                                                                                                                                                                                                                                                                  | ND                                       | 0.5                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| lank<br>1,1-Trichloroethane                                                                                                                                                                                                                                                                                           | ND ND                                    | 0.5                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| lank<br>1,1-Trichloroethane<br>1,2-Trichloroethane                                                                                                                                                                                                                                                                    | ND                                       | 0.5                                                         | ug/L                                                 |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane                                                                                                                                                                                                                                                              | ND<br>ND                                 | 0.5<br>0.5                                                  | ug/L<br>ug/L                                         |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene                                                                                                                                                                                                                                             | ND<br>ND<br>ND                           | 0.5<br>0.5<br>0.5                                           | ug/L<br>ug/L<br>ug/L                                 |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichlorobenzene                                                                                                                                                                                                                           | ND<br>ND<br>ND<br>ND                     | 0.5<br>0.5<br>0.5                                           | ug/L<br>ug/L<br>ug/L<br>ug/L                         |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichlorobenzene 2-Dichloroethane                                                                                                                                                                                                          | ND<br>ND<br>ND<br>ND                     | 0.5<br>0.5<br>0.5<br>0.5                                    | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 |           |        |      |                |     |       |           |
| Iank 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichlorobenzene 2-Dichloroethane 3-Dichlorobenzene                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND               | 0.5<br>0.5<br>0.5<br>0.5<br>0.5                             | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 |           |        |      |                |     |       |           |
| Iank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichlorobenzene 2-Dichloroethane 3-Dichlorobenzene 4-Dichlorobenzene                                                                                                                                                                | ND ND ND ND ND ND ND ND                  | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                      | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene                                                                                                                                                                     | ND         | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>5.0               | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |           |        |      |                |     |       |           |
| Iank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene etetone                                                                                                                                                       | ND      | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5               | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| ank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichlorobenzene 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene etetone enzene arbon Tetrachloride                                                                                                                             | ND N | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>5.0<br>0.5 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| ank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethene 2-Dichloroethane 3-Dichloroethane 3-Dichlorobenzene 4-Dichlorobenzene ettone enzene arbon Tetrachloride 5-1,2-Dichloroethene                                                                                                           | ND N | 0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>5.0<br>0.5<br>5.0 | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| 1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 2-Dichloroethane 3-Dichloroethane 4-Dichlorobenzene 4-Dichlorobenzene enzene enzene erbon Tetrachloride 5-1,2-Dichloroethene hylbenzene                                                                                    | ND N | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 5.0 0.5 0.5             | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| Iank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 3-Dichloroethane 3-Dichloroethane 4-Dichlorobenzene 4-Dichlorobenzene ethon Tetrachloride s-1,2-Dichloroethene ethylbenzene ethyl tert-Butyl Ether                                                                   | ND N | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                     | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| lank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 3-Dichloroethane 3-Dichloroethane 4-Dichlorobenzene 4-Dichlorobenzene enzene enzene arbon Tetrachloride s-1,2-Dichloroethene ethylbenzene ethyl tert-Butyl Ether ethylene Chloride                                   | ND N | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                     | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| Iank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 2-Dichloroethane 3-Dichloroethane 3-Dichlorobenzene 4-Dichlorobenzene enzene enzene enzene erbon Tetrachloride s-1,2-Dichloroethene thylbenzene ethyl tert-Butyl Ether ethylene Chloride aphthalene | ND N | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                     | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |
| Iank  1,1-Trichloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethane 2-Dichloroethane 2-Dichloroethane 3-Dichloroethane 3-Dichloroethane 4-Dichlorobenzene 4-Dichlorobenzene extense enzene arbon Tetrachloride s-1,2-Dichloroethene ethylbenzene ethyl tert-Butyl Ether ethylene Chloride                 | ND N | 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                     | ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L              |           |        |      |                |     |       |           |

Quality

Dependability

Service



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

| Analyte                           | Result | MRL       | Units        | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-----------------------------------|--------|-----------|--------------|----------------|------------------|------|----------------|-----|--------------|-----------|
| · ····· / ···                     | resure |           | atile Organi |                |                  |      | 2110           |     | 2            |           |
|                                   |        | JZT.Z VUI | adie Organi  | c Compot       | ai luo           |      |                |     |              |           |
| Batch CC92140 - 524.2             |        |           |              |                |                  |      |                |     |              |           |
| Tetrachloroethene                 | ND     | 0.5       | ug/L         |                |                  |      |                |     |              |           |
| Toluene                           | ND     | 0.5       | ug/L         |                |                  |      |                |     |              |           |
| Trichloroethene                   | ND     | 0.5       | ug/L         |                |                  |      |                |     |              |           |
| /inyl Chloride                    | ND     | 0.2       | ug/L         |                |                  |      |                |     |              |           |
| (ylene O                          | ND     | 0.5       | ug/L         |                |                  |      |                |     |              |           |
| Kylene P,M                        | ND     | 0.5       | ug/L         |                |                  |      |                |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 4.70   |           | ug/L         | 5.000          |                  | 94   | 80-120         |     |              |           |
| Surrogate: 4-Bromofluorobenzene   | 4.83   |           | ug/L         | 5.000          |                  | 97   | 80-120         |     |              |           |
| .cs                               |        |           |              |                |                  |      |                |     |              |           |
| 1,1,1-Trichloroethane             | 10.0   |           | ug/L         | 10.00          |                  | 100  | 70-130         |     |              |           |
| 1,1,2-Trichloroethane             | 10.5   |           | ug/L         | 10.00          |                  | 105  | 70-130         |     |              |           |
| 1,1-Dichloroethane                | 10.1   |           | ug/L         | 10.00          |                  | 101  | 70-130         |     |              |           |
| 1,1-Dichloroethene                | 9.8    |           | ug/L         | 10.00          |                  | 98   | 70-130         |     |              |           |
| 1,2-Dichlorobenzene               | 9.4    |           | ug/L         | 10.00          |                  | 94   | 70-130         |     |              |           |
| 1,2-Dichloroethane                | 10.1   |           | ug/L         | 10.00          |                  | 101  | 70-130         |     |              |           |
| 1,3-Dichlorobenzene               | 9.7    |           | ug/L         | 10.00          |                  | 97   | 70-130         |     |              |           |
| ,4-Dichlorobenzene                | 9.5    |           | ug/L         | 10.00          |                  | 95   | 70-130         |     |              |           |
| Acetone                           | 43.3   |           | ug/L         | 50.00          |                  | 87   | 70-130         |     |              |           |
| Benzene                           | 10.5   |           | ug/L         | 10.00          |                  | 105  | 70-130         |     |              |           |
| Carbon Tetrachloride              | 9.8    |           | ug/L         | 10.00          |                  | 98   | 70-130         |     |              |           |
| cis-1,2-Dichloroethene            | 10.2   |           | ug/L         | 10.00          |                  | 102  | 70-130         |     |              |           |
| Ethylbenzene                      | 9.9    |           | ug/L         | 10.00          |                  | 99   | 70-130         |     |              |           |
| Methyl tert-Butyl Ether           | 9.6    |           | ug/L         | 10.00          |                  | 96   | 70-130         |     |              |           |
| Methylene Chloride                | 9.6    |           | ug/L         | 10.00          |                  | 96   | 70-130         |     |              |           |
| Naphthalene                       | 9.6    |           | ug/L         | 10.00          |                  | 96   | 70-130         |     |              |           |
| Fertiary-amyl methyl ether        | 9.7    |           | ug/L         | 10.00          |                  | 97   | 70-130         |     |              |           |
| Tertiary-butyl Alcohol            | 50.0   |           | ug/L         | 50.00          |                  | 100  | 70-130         |     |              |           |
| Tetrachloroethene                 | 9.7    |           | ug/L         | 10.00          |                  | 97   | 70-130         |     |              |           |
| Toluene                           | 9.9    |           | ug/L         | 10.00          |                  | 99   | 70-130         |     |              |           |
| Frichloroethene                   | 9.8    |           | ug/L         | 10.00          |                  | 98   | 70-130         |     |              |           |
| /inyl Chloride                    | 9.5    |           | ug/L         | 10.00          |                  | 95   | 70-130         |     |              |           |
| Kylene O                          | 10.1   |           | ug/L         | 10.00          |                  | 101  | 70-130         |     |              |           |
| Kylene P,M                        | 19.6   |           | ug/L         | 20.00          |                  | 98   | 70-130         |     |              |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 4.93   |           | ug/L         | 5.000          |                  | 99   | 80-120         |     |              |           |
| Surrogate: 4-Bromofluorobenzene   | 4.76   |           | ug/L         | 5.000          |                  | 95   | 80-120         |     |              |           |
| LCS Dup                           |        |           |              |                |                  |      |                |     |              |           |
| 1,1,1-Trichloroethane             | 9.4    |           | ug/L         | 10.00          |                  | 94   | 70-130         | 7   | 20           |           |
| ,1,2-Trichloroethane              | 11.1   |           | ug/L         | 10.00          |                  | 111  | 70-130         | 5   | 20           |           |
| ,1-Dichloroethane                 | 9.9    |           | ug/L         | 10.00          |                  | 99   | 70-130         | 1   | 20           |           |
| 1,1-Dichloroethene                | 9.0    |           | ug/L         | 10.00          |                  | 90   | 70-130         | 9   | 20           |           |
| ,2-Dichlorobenzene                | 9.7    |           | ug/L         | 10.00          |                  | 97   | 70-130         | 2   | 20           |           |
| 1,2-Dichloroethane                | 9.9    |           | ug/L         | 10.00          |                  | 99   | 70-130         | 2   | 20           |           |
| 1,3-Dichlorobenzene               | 9.1    |           | ug/L         | 10.00          |                  | 91   | 70-130         | 6   | 20           |           |
| ,4-Dichlorobenzene                | 9.4    |           | ug/L         | 10.00          |                  | 94   | 70-130         | 2   | 20           |           |
| Acetone                           | 44.2   |           | ug/L         | 50.00          |                  | 88   | 70-130         | 2   | 20           |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

|         | - "    |            |              | Spike    | Source | 0/850 | %REC   |     | RPD   |           |
|---------|--------|------------|--------------|----------|--------|-------|--------|-----|-------|-----------|
| Analyte | Result | MRL        | Units        | Level    | Result | %REC  | Limits | RPD | Limit | Qualifier |
|         |        | 524.2 Vola | atile Organi | c Compoi | ınds   |       |        |     |       |           |

| Batch CC92140 - 524.2             |      |      |       |     |        |    |    |
|-----------------------------------|------|------|-------|-----|--------|----|----|
| Benzene                           | 9.9  | ug/L | 10.00 | 99  | 70-130 | 5  | 20 |
| Carbon Tetrachloride              | 9.5  | ug/L | 10.00 | 95  | 70-130 | 3  | 20 |
| cis-1,2-Dichloroethene            | 10.1 | ug/L | 10.00 | 101 | 70-130 | 1  | 20 |
| Ethylbenzene                      | 9.6  | ug/L | 10.00 | 96  | 70-130 | 3  | 20 |
| Methyl tert-Butyl Ether           | 10.0 | ug/L | 10.00 | 100 | 70-130 | 4  | 20 |
| Methylene Chloride                | 9.7  | ug/L | 10.00 | 97  | 70-130 | 1  | 20 |
| Naphthalene                       | 10.2 | ug/L | 10.00 | 102 | 70-130 | 6  | 20 |
| Fertiary-amyl methyl ether        | 10.2 | ug/L | 10.00 | 102 | 70-130 | 4  | 20 |
| Fertiary-butyl Alcohol            | 49.2 | ug/L | 50.00 | 98  | 70-130 | 2  | 25 |
| Fetrachloroethene                 | 8.9  | ug/L | 10.00 | 89  | 70-130 | 8  | 20 |
| Foluene                           | 9.7  | ug/L | 10.00 | 97  | 70-130 | 2  | 20 |
| Frichloroethene                   | 9.5  | ug/L | 10.00 | 95  | 70-130 | 3  | 20 |
| /inyl Chloride                    | 8.5  | ug/L | 10.00 | 85  | 70-130 | 12 | 20 |
| Kylene O                          | 9.9  | ug/L | 10.00 | 99  | 70-130 | 2  | 20 |
| Kylene P,M                        | 18.8 | ug/L | 20.00 | 94  | 70-130 | 4  | 20 |
| Surrogate: 1,2-Dichlorobenzene-d4 | 5.06 | ug/L | 5.000 | 101 | 80-120 |    |    |
| Surrogate: 4-Bromofluorobenzene   | 4.96 | ug/L | 5.000 | 99  | 80-120 |    |    |

608.3 Polychlorinated Biphenyls (PCB)

| Batch CC92001 - 3510C                |        |      |      |         |           |        |  |
|--------------------------------------|--------|------|------|---------|-----------|--------|--|
| Blank                                |        |      |      |         |           |        |  |
| Aroclor 1016                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1016 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1221                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1221 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1232                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1232 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1242                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1242 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1248                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1248 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1254                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1254 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1260                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1260 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1262                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1262 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1268                         | ND     | 0.10 | ug/L |         |           |        |  |
| Aroclor 1268 [2C]                    | ND     | 0.10 | ug/L |         |           |        |  |
| Surrogate: Decachlorobiphenyl        | 0.0417 |      | ug/L | 0.05000 | 83        | 30-150 |  |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0443 |      | ug/L | 0.05000 | 89        | 30-150 |  |
| Surrogate: Tetrachloro-m-xylene      | 0.0360 |      | ug/L | 0.05000 | <i>72</i> | 30-150 |  |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0364 |      | ug/L | 0.05000 | 73        | 30-150 |  |
| LCS                                  |        |      |      |         |           |        |  |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

### **Quality Control Data**

|                                      |        |             |              | Spike     | Source |      | %REC   |     | RPD   |          |
|--------------------------------------|--------|-------------|--------------|-----------|--------|------|--------|-----|-------|----------|
| Analyte                              | Result | MRL         | Units        | Level     | Result | %REC | Limits | RPD | Limit | Qualifie |
|                                      |        | 608.3 Polyc | hlorinated I | Biphenyls | (PCB)  |      |        |     |       |          |
| Batch CC92001 - 3510C                |        |             |              |           |        |      |        |     |       |          |
| Aroclor 1016                         | 0.89   | 0.10        | ug/L         | 1.000     |        | 89   | 50-140 |     |       |          |
| Aroclor 1016 [2C]                    | 0.92   | 0.10        | ug/L         | 1.000     |        | 92   | 50-140 |     |       |          |
| Aroclor 1260                         | 0.95   | 0.10        | ug/L         | 1.000     |        | 95   | 1-164  |     |       |          |
| Aroclor 1260 [2C]                    | 0.98   | 0.10        | ug/L         | 1.000     |        | 98   | 1-164  |     |       |          |
| Surrogate: Decachlorobiphenyl        | 0.0486 |             | ug/L         | 0.05000   |        | 97   | 30-150 |     |       |          |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0506 |             | ug/L         | 0.05000   |        | 101  | 30-150 |     |       |          |
| Surrogate: Tetrachloro-m-xylene      | 0.0352 |             | ug/L         | 0.05000   |        | 70   | 30-150 |     |       |          |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0331 |             | ug/L         | 0.05000   |        | 66   | 30-150 |     |       |          |
| LCS Dup                              |        |             |              |           |        |      |        |     |       |          |
| Aroclor 1016                         | 0.88   | 0.10        | ug/L         | 1.000     |        | 88   | 50-140 | 0.9 | 36    |          |
| Aroclor 1016 [2C]                    | 0.91   | 0.10        | ug/L         | 1.000     |        | 91   | 50-140 | 0.8 | 36    |          |
| Aroclor 1260                         | 0.95   | 0.10        | ug/L         | 1.000     |        | 95   | 1-164  | 0.4 | 38    |          |
| Aroclor 1260 [2C]                    | 0.97   | 0.10        | ug/L         | 1.000     |        | 97   | 1-164  | 1   | 38    |          |
| Surrogate: Decachlorobiphenyl        | 0.0457 |             | ug/L         | 0.05000   |        | 91   | 30-150 |     |       |          |
| Surrogate: Decachlorobiphenyl [2C]   | 0.0493 |             | ug/L         | 0.05000   |        | 99   | 30-150 |     |       |          |
| Surrogate: Tetrachloro-m-xylene      | 0.0339 |             | ug/L         | 0.05000   |        | 68   | 30-150 |     |       |          |
| Surrogate: Tetrachloro-m-xylene [2C] | 0.0321 |             | ug/L         | 0.05000   |        | 64   | 30-150 |     |       |          |

#### 625.1(SIM) Semi-Volatile Organic Compounds

| atch | CC92108 | - | 3510C |
|------|---------|---|-------|
|      |         |   |       |

| Blank                      |    |      |      |
|----------------------------|----|------|------|
| Acenaphthene               | ND | 0.20 | ug/L |
| Acenaphthylene             | ND | 0.20 | ug/L |
| Anthracene                 | ND | 0.20 | ug/L |
| Benzo(a)anthracene         | ND | 0.05 | ug/L |
| Benzo(a)pyrene             | ND | 0.05 | ug/L |
| Benzo(b)fluoranthene       | ND | 0.05 | ug/L |
| Benzo(g,h,i)perylene       | ND | 0.20 | ug/L |
| Benzo(k)fluoranthene       | ND | 0.05 | ug/L |
| bis(2-Ethylhexyl)phthalate | ND | 2.50 | ug/L |
| Butylbenzylphthalate       | ND | 2.50 | ug/L |
| Chrysene                   | ND | 0.05 | ug/L |
| Dibenzo(a,h)Anthracene     | ND | 0.05 | ug/L |
| Diethylphthalate           | ND | 2.50 | ug/L |
| Dimethylphthalate          | ND | 2.50 | ug/L |
| Di-n-butylphthalate        | ND | 2.50 | ug/L |
| Di-n-octylphthalate        | ND | 2.50 | ug/L |
| Fluoranthene               | ND | 0.20 | ug/L |
| Fluorene                   | ND | 0.20 | ug/L |
| Indeno(1,2,3-cd)Pyrene     | ND | 0.05 | ug/L |
| Naphthalene                | ND | 0.20 | ug/L |
| Pentachlorophenol          | ND | 0.90 | ug/L |
| Phenanthrene               | ND | 0.20 | ug/L |

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

|         |        |     |       | Spike | Source |      | %REC   |     | RPD   |           |
|---------|--------|-----|-------|-------|--------|------|--------|-----|-------|-----------|
| Analyte | Result | MRL | Units | Level | Result | %REC | Limits | RPD | Limit | Qualifier |

| 625.1(SIM) | Semi-Volatile | Organic | Compound | S |
|------------|---------------|---------|----------|---|
|------------|---------------|---------|----------|---|

| Batch CC92108 - 3510C             |      |      |      |       |     |               |    |    |           |
|-----------------------------------|------|------|------|-------|-----|---------------|----|----|-----------|
| Pyrene                            | ND   | 0.20 | ug/L |       |     |               |    |    |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.27 |      | ug/L | 2.500 | 51  | 30-130        |    |    |           |
| Surrogate: 2,4,6-Tribromophenol   | 8.57 |      | ug/L | 3.750 | 229 | <i>15-110</i> |    |    | S+        |
| Surrogate: 2-Fluorobiphenyl       | 1.55 |      | ug/L | 2.500 | 62  | 30-130        |    |    |           |
| Surrogate: Nitrobenzene-d5        | 1.68 |      | ug/L | 2.500 | 67  | 30-130        |    |    |           |
| Surrogate: p-Terphenyl-d14        | 1.78 |      | ug/L | 2.500 | 71  | 30-130        |    |    |           |
| LCS                               |      |      |      |       |     |               |    |    |           |
| Acenaphthene                      | 2.52 | 0.20 | ug/L | 4.000 | 63  | 40-140        |    |    |           |
| Acenaphthylene                    | 2.68 | 0.20 | ug/L | 4.000 | 67  | 40-140        |    |    |           |
| Anthracene                        | 2.92 | 0.20 | ug/L | 4.000 | 73  | 40-140        |    |    |           |
| Benzo(a)anthracene                | 2.96 | 0.05 | ug/L | 4.000 | 74  | 40-140        |    |    |           |
| Benzo(a)pyrene                    | 2.87 | 0.05 | ug/L | 4.000 | 72  | 40-140        |    |    |           |
| Benzo(b)fluoranthene              | 3.08 | 0.05 | ug/L | 4.000 | 77  | 40-140        |    |    |           |
| Benzo(g,h,i)perylene              | 3.05 | 0.20 | ug/L | 4.000 | 76  | 40-140        |    |    |           |
| Benzo(k)fluoranthene              | 2.87 | 0.05 | ug/L | 4.000 | 72  | 40-140        |    |    |           |
| bis(2-Ethylhexyl)phthalate        | 3.61 | 2.50 | ug/L | 4.000 | 90  | 40-140        |    |    |           |
| Butylbenzylphthalate              | 3.62 | 2.50 | ug/L | 4.000 | 91  | 40-140        |    |    |           |
| Chrysene                          | 2.92 | 0.05 | ug/L | 4.000 | 73  | 40-140        |    |    |           |
| Dibenzo(a,h)Anthracene            | 2.89 | 0.05 | ug/L | 4.000 | 72  | 40-140        |    |    |           |
| Diethylphthalate                  | 3.38 | 2.50 | ug/L | 4.000 | 84  | 40-140        |    |    |           |
| Dimethylphthalate                 | 3.23 | 2.50 | ug/L | 4.000 | 81  | 40-140        |    |    |           |
| Di-n-butylphthalate               | 3.75 | 2.50 | ug/L | 4.000 | 94  | 40-140        |    |    |           |
| Di-n-octylphthalate               | 3.66 | 2.50 | ug/L | 4.000 | 92  | 40-140        |    |    |           |
| Fluoranthene                      | 3.28 | 0.20 | ug/L | 4.000 | 82  | 40-140        |    |    |           |
| Fluorene                          | 2.90 | 0.20 | ug/L | 4.000 | 72  | 40-140        |    |    |           |
| indeno(1,2,3-cd)Pyrene            | 3.24 | 0.05 | ug/L | 4.000 | 81  | 40-140        |    |    |           |
| Naphthalene                       | 2.24 | 0.20 | ug/L | 4.000 | 56  | 40-140        |    |    |           |
| Pentachlorophenol                 | 4.39 | 0.90 |      | 4.000 | 110 | 30-130        |    |    |           |
| Phenanthrene                      |      | 0.90 | ug/L | 4.000 | 72  | 40-140        |    |    |           |
|                                   | 2.90 |      | ug/L |       |     |               |    |    |           |
| Pyrene                            | 3.08 | 0.20 | ug/L | 4.000 | 77  | 40-140        |    |    |           |
| Surrogate: 1,2-Dichlorobenzene-d4 | 1.08 |      | ug/L | 2.500 | 43  | 30-130        |    |    |           |
| Surrogate: 2,4,6-Tribromophenol   | 8.41 |      | ug/L | 3.750 | 224 | 15-110        |    |    | <i>S+</i> |
| Surrogate: 2-Fluorobiphenyl       | 1.46 |      | ug/L | 2.500 | 59  | 30-130        |    |    |           |
| Surrogate: Nitrobenzene-d5        | 1.59 |      | ug/L | 2.500 | 64  | 30-130        |    |    |           |
| Surrogate: p-Terphenyl-d14        | 1.74 |      | ug/L | 2.500 | 70  | 30-130        |    |    |           |
| LCS Dup                           |      |      |      |       |     |               |    |    |           |
| Acenaphthene                      | 2.71 | 0.20 | ug/L | 4.000 | 68  | 40-140        | 7  | 20 |           |
| Acenaphthylene                    | 2.86 | 0.20 | ug/L | 4.000 | 72  | 40-140        | 7  | 20 |           |
| Anthracene                        | 3.06 | 0.20 | ug/L | 4.000 | 77  | 40-140        | 5  | 20 |           |
| Benzo(a)anthracene                | 3.62 | 0.05 | ug/L | 4.000 | 91  | 40-140        | 20 | 20 |           |
| Benzo(a)pyrene                    | 3.49 | 0.05 | ug/L | 4.000 | 87  | 40-140        | 20 | 20 |           |
| Benzo(b)fluoranthene              | 3.83 | 0.05 | ug/L | 4.000 | 96  | 40-140        | 22 | 20 | D+        |
| Benzo(g,h,i)perylene              | 3.67 | 0.20 | ug/L | 4.000 | 92  | 40-140        | 18 | 20 |           |
| Benzo(k)fluoranthene              | 3.46 | 0.05 | ug/L | 4.000 | 87  | 40-140        | 19 | 20 |           |
| bis(2-Ethylhexyl)phthalate        | 4.41 | 2.50 | ug/L | 4.000 | 110 | 40-140        | 20 | 20 |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

### **Quality Control Data**

|                                                        | <u>.</u> |              |               | Spike      | Source   | 0/5       | %REC          | <b>D</b> F | RPD   |           |
|--------------------------------------------------------|----------|--------------|---------------|------------|----------|-----------|---------------|------------|-------|-----------|
| Analyte                                                | Result   | MRL          | Units         | Level      | Result   | %REC      | Limits        | RPD        | Limit | Qualifie  |
|                                                        | 62       | 5.1(SIM) Sen | ni-Volatile ( | Organic Co | ompounds | S         |               |            |       |           |
| Batch CC92108 - 3510C                                  |          |              |               |            |          |           |               |            |       |           |
| Butylbenzylphthalate                                   | 4.57     | 2.50         | ug/L          | 4.000      |          | 114       | 40-140        | 23         | 20    | D+        |
| Chrysene                                               | 3.65     | 0.05         | ug/L          | 4.000      |          | 91        | 40-140        | 22         | 20    | D+        |
| Dibenzo(a,h)Anthracene                                 | 3.52     | 0.05         | ug/L          | 4.000      |          | 88        | 40-140        | 19         | 20    |           |
| Diethylphthalate                                       | 3.60     | 2.50         | ug/L          | 4.000      |          | 90        | 40-140        | 6          | 20    |           |
| Dimethylphthalate                                      | 3.44     | 2.50         | ug/L          | 4.000      |          | 86        | 40-140        | 6          | 20    |           |
| Di-n-butylphthalate                                    | 3.97     | 2.50         | ug/L          | 4.000      |          | 99        | 40-140        | 6          | 20    |           |
| Di-n-octylphthalate                                    | 4.45     | 2.50         | ug/L          | 4.000      |          | 111       | 40-140        | 19         | 20    |           |
| Fluoranthene                                           | 3.54     | 0.20         | ug/L          | 4.000      |          | 89        | 40-140        | 8          | 20    |           |
| Fluorene                                               | 3.11     | 0.20         | ug/L          | 4.000      |          | 78        | 40-140        | 7          | 20    |           |
| Indeno(1,2,3-cd)Pyrene                                 | 3.78     | 0.05         | ug/L          | 4.000      |          | 94        | 40-140        | 15         | 20    |           |
| Naphthalene                                            | 2.18     | 0.20         | ug/L          | 4.000      |          | 55        | 40-140        | 3          | 20    |           |
| Pentachlorophenol                                      | 4.54     | 0.90         | ug/L          | 4.000      |          | 113       | 30-130        | 3          | 20    |           |
| Phenanthrene                                           | 3.04     | 0.20         | ug/L          | 4.000      |          | 76        | 40-140        | 5          | 20    |           |
| Pyrene                                                 | 3.95     | 0.20         | ug/L          | 4.000      |          | 99        | 40-140        | 25         | 20    | D+        |
| Surrogate: 1,2-Dichlorobenzene-d4                      | 0.779    |              | ug/L          | 2.500      |          | 31        | 30-130        |            |       |           |
| Surrogate: 2,4,6-Tribromophenol                        | 7.43     |              | ug/L          | 3.750      |          | 198       | 15-110        |            |       | <i>S+</i> |
| Surrogate: 2-Fluorobiphenyl                            | 1.28     |              | ug/L          | 2.500      |          | 51        | 30-130        |            |       |           |
| Surrogate: Nitrobenzene-d5                             | 1.46     |              | ug/L          | 2.500      |          | 59        | 30-130        |            |       |           |
| Surrogate: p-Terphenyl-d14                             | 2.13     |              | ug/L          | 2.500      |          | <i>85</i> | 30-130        |            |       |           |
| Batch CC92577 - 3535A<br>Blank                         |          |              |               |            |          |           |               |            |       |           |
| 1,4-Dioxane                                            | ND       | 0.250        | ug/L          |            |          |           |               |            |       |           |
|                                                        | 3.23     | 0.230        | ug/L          | 5.000      |          | 65        | 15-115        |            |       |           |
| Surrogate: 1,4-Dioxane-d8                              | 5.25     |              | ug/L          | 5.000      |          |           | 15 115        |            |       |           |
| LCS                                                    |          |              |               |            |          |           |               |            |       |           |
| 1,4-Dioxane                                            | 9.02     | 0.250        | ug/L          | 10.00      |          | 90        | 40-140        |            |       |           |
| Surrogate: 1,4-Dioxane-d8                              | 3.11     |              | ug/L          | 5.000      |          | 62        | 15-115        |            |       |           |
| LCS Dup                                                |          |              |               |            |          |           |               |            |       |           |
| 1,4-Dioxane                                            | 8.59     | 0.250        | ug/L          | 10.00      |          | 86        | 40-140        | 5          | 20    |           |
| Surrogate: 1,4-Dioxane-d8                              | 3.64     |              | ug/L          | 5.000      |          | <i>73</i> | <i>15-115</i> |            |       |           |
|                                                        |          | Cl           | assical Che   | mistry     |          |           |               |            |       |           |
| Batch CC92031 - General Preparation                    |          |              |               |            |          |           |               |            |       |           |
| Blank                                                  |          |              |               |            |          |           |               |            |       |           |
| Hexavalent Chromium                                    | ND       | 10.0         | ug/L          |            |          |           |               |            |       |           |
| LCS                                                    |          |              |               |            |          |           |               |            |       |           |
| Hexavalent Chromium                                    | 500      | 10.0         | ug/L          | 499.8      |          | 100       | 90-110        |            |       |           |
|                                                        |          |              |               |            |          |           |               |            |       |           |
| LCS Dup                                                | 407      | 10.0         | um ft         | 400.0      |          | 00        | 00 110        | 0.6        | 30    |           |
| Hexavalent Chromium  Patch CC02022 Conoral Propagation | 497      | 10.0         | ug/L          | 499.8      |          | 99        | 90-110        | 0.6        | 20    |           |
| Batch CC92032 - General Preparation                    |          |              |               |            |          |           |               |            |       |           |
| Blank                                                  |          |              |               |            |          |           |               |            |       |           |

Total Residual Chlorine

ug/L



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

| Analyte                             | Result | MRL  | Units                                        | Spike<br>Level | Source<br>Result | %REC | %REC<br>Limits | RPD | RPD<br>Limit | Qualifier |
|-------------------------------------|--------|------|----------------------------------------------|----------------|------------------|------|----------------|-----|--------------|-----------|
| - ,                                 |        |      | assical Che                                  |                |                  |      |                |     |              |           |
|                                     |        |      |                                              |                |                  |      |                |     |              |           |
| Batch CC92032 - General Preparation |        |      |                                              |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Total Residual Chlorine             | 0.73   |      | mg/L                                         | 0.7320         |                  | 100  | 85-115         |     |              |           |
| Batch CC92119 - General Preparation |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Chloride                            | ND     | 500  | ug/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Chloride                            | 2      |      | mg/L                                         | 2.500          |                  | 97   | 90-110         |     |              |           |
| Batch CC92120 - TCN Prep            |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Total Cyanide                       | ND     | 5.00 | ug/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Total Cyanide                       | 20.7   | 5.00 | ug/L                                         | 20.06          |                  | 103  | 90-110         |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Total Cyanide                       | 150    | 5.00 | ug/L                                         | 150.4          |                  | 100  | 90-110         |     |              |           |
| LCS Dup                             |        |      |                                              |                |                  |      |                |     |              |           |
| Total Cyanide                       | 151    | 5.00 | ug/L                                         | 150.4          |                  | 100  | 90-110         | 0.9 | 20           |           |
| Batch CC92149 - General Preparation |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Total Suspended Solids              | ND     | 5    | mg/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Total Suspended Solids              | 84     |      | mg/L                                         | 85.00          |                  | 99   | 80-120         |     |              |           |
| Batch CC92556 - NH4 Prep            |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Ammonia as N                        | ND     | 0.10 | mg/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Ammonia as N                        | 0.12   | 0.10 | mg/L                                         | 0.09994        |                  | 119  | 80-120         |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Ammonia as N                        | 0.95   | 0.10 | mg/L                                         | 0.9994         |                  | 95   | 80-120         |     |              |           |
| Batch CC92632 - General Preparation |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Total Petroleum Hydrocarbon         | ND     | 5    | mg/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      |                                              |                |                  |      |                |     |              |           |
| Total Petroleum Hydrocarbon         | 16     | 5    | mg/L                                         | 19.38          |                  | 80   | 66-114         |     |              |           |
| Batch CC92653 - General Preparation |        |      |                                              |                |                  |      |                |     |              |           |
| Blank                               |        |      |                                              |                |                  |      |                |     |              |           |
| Phenols                             | ND     | 100  | ug/L                                         |                |                  |      |                |     |              |           |
| LCS                                 |        |      | <u></u> -                                    |                |                  |      |                |     |              |           |
| Phenols                             | 92     | 100  | ug/L                                         | 100.0          |                  | 92   | 80-120         |     |              |           |
| LCS                                 |        |      | <u>.                                    </u> |                |                  |      |                |     |              |           |
|                                     | 1010   | 100  | ug/L                                         | 1000           |                  | 101  | 80-120         |     |              |           |



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

### **Quality Control Data**

| Analyte                           | Result    | MRL          | Units        | Spike<br>Level | Source<br>Result | %REC      | %REC<br>Limits   | RPD | RPD<br>Limit | Qualifier |
|-----------------------------------|-----------|--------------|--------------|----------------|------------------|-----------|------------------|-----|--------------|-----------|
|                                   | 504.1 1,2 | 2-Dibromoeth | nane / 1,2-  | Dibromo-3      | 3-chloropi       | ropane    |                  |     |              |           |
| Batch CC92639 - 504/8011          |           |              |              |                |                  |           |                  |     |              |           |
| Blank                             |           |              |              |                |                  |           |                  |     |              |           |
| 1,2,3-Trichloropropane            | ND        | 0.025        | ug/L         |                |                  |           |                  |     |              |           |
| 1,2,3-Trichloropropane [2C]       | ND        | 0.025        | ug/L         |                |                  |           |                  |     |              |           |
| 1,2-Dibromo-3-Chloropropane       | ND        | 0.015        | ug/L         |                |                  |           |                  |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]  | ND        | 0.015        | ug/L         |                |                  |           |                  |     |              |           |
| 1,2-Dibromoethane                 | ND        | 0.015        | ug/L         |                |                  |           |                  |     |              |           |
| 1,2-Dibromoethane [2C]            | ND        | 0.015        | ug/L         |                |                  |           |                  |     |              |           |
| Surrogate: Pentachloroethane      | 0.134     |              | ug/L         | 0.2000         |                  | 67        | 30-150           |     |              |           |
| Surrogate: Pentachloroethane [2C] | 0.147     |              | ug/L         | 0.2000         |                  | <i>73</i> | 30-150           |     |              |           |
| LCS                               |           |              |              |                |                  |           |                  |     |              |           |
| 1,2,3-Trichloropropane            | 0.059     | 0.025        | ug/L         | 0.08000        |                  | 73        | 70-130           |     |              |           |
| 1,2,3-Trichloropropane [2C]       | 0.079     | 0.025        | ug/L         | 0.08000        |                  | 99        | 70-130           |     |              |           |
| 1,2-Dibromo-3-Chloropropane       | 0.059     | 0.015        | ug/L         | 0.08000        |                  | 74        | 70-130           |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]  | 0.065     | 0.015        | ug/L         | 0.08000        |                  | 81        | 70-130           |     |              |           |
| 1,2-Dibromoethane                 | 0.080     | 0.015        | ug/L         | 0.08000        |                  | 100       | 70-130           |     |              |           |
| 1,2-Dibromoethane [2C]            | 0.086     | 0.015        | ug/L         | 0.08000        |                  | 108       | 70-130           |     |              |           |
| tra pistomocalane [20]            | 0.000     | 0.015        | 49/-         |                |                  |           | 70 100           |     |              |           |
| Surrogate: Pentachloroethane      | 0.0750    |              | ug/L         | 0.08000        |                  | 94        | 30-150           |     |              |           |
| Surrogate: Pentachloroethane [2C] | 0.0869    |              | ug/L         | 0.08000        |                  | 109       | 30-150           |     |              |           |
| LCS                               |           |              |              |                |                  |           |                  |     |              |           |
| 1,2,3-Trichloropropane            | 0.173     | 0.025        | ug/L         | 0.2000         |                  | 87        | 70-130           |     |              |           |
| 1,2,3-Trichloropropane [2C]       | 0.182     | 0.025        | ug/L         | 0.2000         |                  | 91        | 70-130           |     |              |           |
| 1,2-Dibromo-3-Chloropropane       | 0.168     | 0.015        | ug/L         | 0.2000         |                  | 84        | 70-130           |     |              |           |
| 1,2-Dibromo-3-Chloropropane [2C]  | 0.187     | 0.015        | ug/L         | 0.2000         |                  | 94        | 70-130           |     |              |           |
| 1,2-Dibromoethane                 | 0.194     | 0.015        | ug/L         | 0.2000         |                  | 97        | 70-130           |     |              |           |
| 1,2-Dibromoethane [2C]            | 0.214     | 0.015        | ug/L         | 0.2000         |                  | 107       | 70-130           |     |              |           |
|                                   | 0.168     |              | ug/L         | 0.2000         |                  | 84        | 30-150           |     |              |           |
| Surrogate: Pentachloroethane      | 0.165     |              | ug/L<br>ug/L | 0.2000         |                  | 83        | 30-150<br>30-150 |     |              |           |
| Surrogate: Pentachloroethane [2C] | 0.103     |              |              |                |                  | دن        | JU-1JU           |     |              |           |
|                                   |           | Alco         | hol Scan by  | y GC/FID       |                  |           |                  |     |              |           |
| Batch CC92531 - No Prep           |           |              |              |                |                  |           |                  |     |              |           |
| Blank                             |           |              |              |                |                  |           |                  |     |              |           |
| Ethanol                           | ND        | 10           | mg/L         |                |                  |           |                  |     |              |           |
| LCS                               |           |              |              |                |                  |           |                  |     |              |           |
| Ethanol                           | 816       | 10           | mg/L         | 1134           |                  | 72        | 60-140           |     |              |           |
| LCS Dup                           |           |              |              |                |                  |           |                  |     |              |           |
| Februari I                        | 000       |              | ,,           | 4424           |                  | 76        | 50.110           |     |              |           |

860

Ethanol

mg/L

5

30

60-140

10

1134



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

#### **Notes and Definitions**

| U  | Analyte included in the analysis, but not detected      |
|----|---------------------------------------------------------|
| S+ | Surrogate recovery(ies) above upper control limit (S+). |

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D+ Relative percent difference for duplicate is outside of criteria (D+).

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume

Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

F/V

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit
MF Membrane Filtration
MPN Most Probably Number
TNTC Too numerous to Count
CFU Colony Forming Units

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486



The Microbiology Division of Thielsch Engineering, Inc.



#### CERTIFICATE OF ANALYSIS

Client Name: Tg2 Solutions

Client Project ID: Brockton 620 - RGP ESS Laboratory Work Order: 1903538

#### ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

#### **ENVIRONMENTAL**

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 <a href="http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf">http://www.ct.gov/dph/lib/dph/environmental\_health/environmental\_laboratories/pdf/OutofStateCommercialLaboratories.pdf</a>

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 <a href="http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml">http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml</a>

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 <a href="http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm">http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm</a>

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 <a href="http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715">http://datamine2.state.nj.us/DEP\_OPRA/OpraMain/pi\_main?mode=pi\_by\_site&sort\_order=PI\_NAMEA&Select+a+Site:=58715</a>

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

## **ESS Laboratory Sample and Cooler Receipt Checklist**

| Obi. "                                                                     |                                                                                                                                                    |                                         | TB/DS                                                                                                |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                              | Project ID:                                                                  | 1903538                  |                  |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------|------------------|
| - Spinned/                                                                 | Delivered Via                                                                                                                                      | •                                       | ESS Courie                                                                                           | ır                                                             | Date                                                                                                                                                                                                                                                                                                                                                                                                                         | Received:                                                                    | 3/20/2019                |                  |
| Omppeu                                                                     | Denvered Via                                                                                                                                       |                                         | ESS COURS                                                                                            | <u> </u>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                              | t Due Date:<br>for Project:                                                  | 3/27/2019                | <del></del>      |
|                                                                            |                                                                                                                                                    |                                         |                                                                                                      |                                                                | Days                                                                                                                                                                                                                                                                                                                                                                                                                         | ioi Pioject:                                                                 | 5 Day                    | <del></del>      |
|                                                                            | manifest pres                                                                                                                                      |                                         |                                                                                                      | No                                                             | 6. Does COC                                                                                                                                                                                                                                                                                                                                                                                                                  | match bottles?                                                               |                          | Ye               |
| 2. Were                                                                    | custody seals                                                                                                                                      | present?                                |                                                                                                      | No                                                             | 7. Is COC co                                                                                                                                                                                                                                                                                                                                                                                                                 | mplete and correct?                                                          |                          | Ye               |
| 3. Is radia                                                                | ation count <1                                                                                                                                     | 00 CPM?                                 |                                                                                                      | Yes                                                            | 8. Were sam                                                                                                                                                                                                                                                                                                                                                                                                                  | ples received intact?                                                        |                          | Ye               |
|                                                                            | oler Present?<br>o:1.1                                                                                                                             |                                         | ı:_ lce                                                                                              | Yes                                                            | 9. Were labs                                                                                                                                                                                                                                                                                                                                                                                                                 | informed about <u>shor</u>                                                   | t holds & rushes?        | Yes/ N           |
| 5. Was C                                                                   | OC signed an                                                                                                                                       | d dated by                              | client?                                                                                              | Yes                                                            | 10. Were any                                                                                                                                                                                                                                                                                                                                                                                                                 | y analyses received ou                                                       | itside of hold time?     | Yes (/ No        |
|                                                                            | ubcontracting<br>S Sample IDs:<br>Analysis:<br>TAT:                                                                                                |                                         |                                                                                                      | No                                                             | a. Air bubble                                                                                                                                                                                                                                                                                                                                                                                                                | As received?<br>es in aqueous VOAs?<br>hanol cover soil comple               | etely?                   | Yes /<br>Yes / N |
| a. If metal<br>c. Low Le                                                   | e samples pro<br>ls preserved u<br>vel VOA vials<br>eceiving Note                                                                                  | ipon receipt<br>frozen:                 |                                                                                                      | Yes No<br>Date:<br>Date:                                       |                                                                                                                                                                                                                                                                                                                                                                                                                              | E                                                                            | Ву:                      | _ <del>_</del>   |
| vvas ini<br>Vho was d                                                      | ere a need to                                                                                                                                      | contact the                             | client?                                                                                              |                                                                | Vec / No                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                          |                  |
|                                                                            |                                                                                                                                                    |                                         |                                                                                                      | Date:                                                          | Yes / No Time:                                                                                                                                                                                                                                                                                                                                                                                                               | E                                                                            | By:                      |                  |
|                                                                            |                                                                                                                                                    |                                         |                                                                                                      | Date:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                              | e                                                                            | By:                      |                  |
| Sample<br>Number                                                           | Container<br>ID                                                                                                                                    | Proper<br>Container                     | Air Bubbles<br>Present                                                                               | Date:                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                              | Preservative                                                                 | Record pH (Cya<br>Pestic | nide and 608     |
|                                                                            | Container                                                                                                                                          | Proper<br>Container<br>Yes              | Air Bubbles                                                                                          | Sufficient                                                     | Time: Container Type                                                                                                                                                                                                                                                                                                                                                                                                         | Preservative                                                                 | Record pH (Cya           | nide and 608     |
| Number<br>01<br>01                                                         | Container<br>ID<br>325794<br>325795                                                                                                                | Container<br>Yes<br>Yes                 | Air Bubbles<br>Present<br>No<br>No                                                                   | Sufficient<br>Volume<br>Yes<br>Yes                             | Time: _                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01                                                       | Container ID 325794 325795 325796                                                                                                                  | Yes<br>Yes<br>Yes<br>Yes                | Air Bubbles<br>Present<br>No<br>No<br>No                                                             | Sufficient<br>Volume<br>Yes<br>Yes<br>Yes                      | Container Type  VOA Vial - HCI VOA Vial - HCI VOA Vial - HCI                                                                                                                                                                                                                                                                                                                                                                 | Preservative HCI HCI HCI                                                     | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01                                                 | Container<br>ID<br>325794<br>325795<br>325796<br>325797                                                                                            | Yes<br>Yes<br>Yes<br>Yes<br>Yes         | Air Bubbles<br>Present<br>No<br>No<br>No<br>No                                                       | Sufficient<br>Volume<br>Yes<br>Yes<br>Yes<br>Yes               | Container Type  VOA Vial - HCI                                                                                                                                                                                                                                                                                                                                   | Preservative HCI HCI HCI HCI                                                 | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01                                                       | Container ID 325794 325795 325796                                                                                                                  | Yes<br>Yes<br>Yes<br>Yes                | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No                                                 | Sufficient<br>Volume<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | Container Type  VOA Vial - HCI                                                                                                                                                                                                                                                                                                                    | Preservative HCI HCI HCI HCI HCI                                             | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01                                     | Container<br>ID<br>325794<br>325795<br>325796<br>325797<br>325798<br>325799<br>325800                                                              | Yes Yes Yes Yes Yes Yes Yes Yes         | Air Bubbles<br>Present<br>No<br>No<br>No<br>No                                                       | Sufficient<br>Volume<br>Yes<br>Yes<br>Yes<br>Yes               | Container Type  VOA Vial - HCI                                                                                                                                                                                                                                                                                      | Preservative  HCI HCI HCI HCI HCI HCI                                        | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                               | Container<br>ID<br>325794<br>325795<br>325796<br>325797<br>325798<br>325799<br>325800<br>325801                                                    | Yes | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No                               | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI                                                                                                                                                                                                                                                                                                                    | Preservative HCI HCI HCI HCI HCI                                             | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                         | Container<br>ID<br>325794<br>325795<br>325796<br>325797<br>325798<br>325799<br>325800<br>325801<br>325802                                          | Yes | Air Bubbles Present  No                                          | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres 1L Amber - Unpres                                                                                                                                                                                                                                               | Preservative  HCI HCI HCI HCI HCI NP NP NP                                   | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803                                                                | Yes | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No       | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres 1L Amber - Unpres                                                                                                                                                                                                                                                              | Preservative  HCI HCI HCI HCI HCI NP NP NP NP                                | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01             | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804                                                         | Yes | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres 1L Amber - Unpres                                                                                                                                                                                                                          | Preservative  HCI HCI HCI HCI HCI NP NP NP NP NP                             | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805                                                  | Yes | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres                                                                                                                                                                    | Preservative  HCI HCI HCI HCI NP NP NP NP NP NP                              | Record pH (Cya           | nide and 608     |
| Number  01 01 01 01 01 01 01 01 01 01 01 01 01                             | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804                                                         | Yes | Air Bubbles<br>Present<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No<br>No | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres                                                                                                                                | Preservative  HCI HCI HCI HCI HCI NP NP NP NP NP NP NP NP                    | Record pH (Cya           | nide and 608     |
| Number  01 01 01 01 01 01 01 01 01 01 01 01 01                             | Container<br>ID<br>325794<br>325795<br>325796<br>325797<br>325798<br>325800<br>325801<br>325802<br>325803<br>325804<br>325805<br>325806<br>325807  | Yes | Air Bubbles<br>Present  No                                       | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres                                                                                                              | Preservative  HCI HCI HCI HCI HCI NP              | Record pH (Cya           | nide and 608     |
| 01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01 | Container<br>ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805 325806 325807 325808                          | Yes | Air Bubbles Present  No NA NA NA NA NA NA NA NA                           | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres                                                                                                                                | Preservative  HCI HCI HCI HCI HCI NP NP NP NP NP NP NP NP                    | Record pH (Cya           | nide and 608     |
| 01 01 01 01 01 01 01 01 01 01 01 01 01 0                                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325804 325805 325806 325807 325808 325808                             | Yes | Air Bubbles Present  No No No No No No No No No NA               | Sufficient<br>Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y    | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Unpres 1L Poly - Unpres                                                                              | Preservative  HCI HCI HCI HCI HCI NP              | Record pH (Cya           | nide and 608     |
| 01 01 01 01 01 01 01 01 01 01 01 01 01 0                                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805 325806 325807 325808 325809 325810               | Yes | Air Bubbles Present  No No No No No No No No NA                  | Sufficient Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y       | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Holy - Unpres 1L Amber - H2SO4 1L Amber - H2SO4                                       | Preservative  HCI HCI HCI HCI HCI NP     | Record pH (Cya           | nide and 608     |
| Number  01 01 01 01 01 01 01 01 01 01 01 01 01                             | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325806 325806 325808 325808 325809 325810 325811        | Yes | Air Bubbles Present  No No No No No No No No NA                  | Sufficient Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y       | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Holy - Unpres 1L Amber - H2SO4 1L Amber - H2SO4 500 mL Poly - H2SO4                                  | Preservative  HCI HCI HCI HCI HCI HCI NP | Record pH (Cya           | nide and 608     |
| 01 01 01 01 01 01 01 01 01 01 01 01 01 0                                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805 325806 325807 325808 325809 325810 325811 325812 | Yes | Air Bubbles Present  No No No No No No No NA                     | Sufficient Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y       | Container Type  VOA Vial - HCI L Amber - Unpres L Amber - Holy - Unpres L Amber - Holy - Unpres L Amber - H2SO4 L Amber - H2SO4 500 mL Poly - HNO3                          | Preservative  HCI HCI HCI HCI HCI HCI NP | Record pH (Cya           | nide and 608     |
| Number  01 01 01 01 01 01 01 01 01 01 01 01 01                             | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805 325806 325807 325808 325810 325811 325812 325814 | Yes | Air Bubbles Present  No No No No No No No NA                     | Sufficient Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y       | Container Type  VOA Vial - HCI VOA Vial - Unpres 1L Amber - Holy - Unpres 1L Poly - Unpres 1L Poly - Unpres 1L Amber - H2SO4 500 mL Poly - H2SO4 500 mL Poly - HNO3 | Preservative  HCI HCI HCI HCI HCI HCI NP | Record pH (Cya           | nide and 608     |
| 01 01 01 01 01 01 01 01 01 01 01 01 01 0                                   | Container ID  325794 325795 325796 325797 325798 325799 325800 325801 325802 325803 325804 325805 325806 325807 325808 325809 325810 325811 325812 | Yes | Air Bubbles Present  No No No No No No No NA                     | Sufficient Volume  Yes Yes Yes Yes Yes Yes Yes Yes Yes Y       | Container Type  VOA Vial - HCI L Amber - Unpres L Amber - Holy - Unpres L Amber - Holy - Unpres L Amber - H2SO4 L Amber - H2SO4 500 mL Poly - HNO3                          | Preservative  HCI HCI HCI HCI HCI HCI NP | Record pH (Cya           | unide and 608    |

### **ESS Laboratory Sample and Cooler Receipt Checklist**

| Client:                |                                                  | Tg2 T         | B/DS |          | ESS Pro              | ject ID: | 1903538                        |  |
|------------------------|--------------------------------------------------|---------------|------|----------|----------------------|----------|--------------------------------|--|
| •                      |                                                  |               |      |          | Date Re              | ceived:  | 3/20/2019                      |  |
|                        | - 325817 -                                       | - Yes         | NA   | Yes      | 250 mL Poly - HNO3   | HNO3     |                                |  |
| ice 01                 | 325818                                           | Yes           | NA   | Yes      | 250 mL Poly - NaOH   | NaOH     | · 961 >12                      |  |
| 3 <del>/≥4/</del> ≈ 01 | 325819                                           | Yes           | NA   | Yes      | 250 mL Poly - Unpres | NP       | •                              |  |
| -01                    | <del>- 325820 -</del>                            | -Yes          | NA   | Yes      | 500 mL Poly - H2SO4  | H2SO4    |                                |  |
| Are barcode            | ers scanned<br>e labels on co<br>essary stickers | rrect contair |      | <u>-</u> | Date & Time:         | 0/19     | ) <del>}</del><br>}033<br>}077 |  |

| ESS Laboratory                                                      |                                                             | CHAIN OF CUSTODY                                           |                                    |                      |                        |                    |           |          |                                        | ESS LAB PROJECT ID |            |                               |              |                       |                 |              |                       |                 |          |         |  |
|---------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------|------------------------------------|----------------------|------------------------|--------------------|-----------|----------|----------------------------------------|--------------------|------------|-------------------------------|--------------|-----------------------|-----------------|--------------|-----------------------|-----------------|----------|---------|--|
| Division of Thielsch Engineering, Inc.                              | Turn Time                                                   | Standard Ru                                                | shApprove                          | d By:                |                        |                    |           |          |                                        | epor               |            |                               |              |                       |                 |              |                       |                 |          |         |  |
| 185 Frances Avenue, Cranston, RI 02910-2211                         | State wher                                                  | e samples were collected.                                  | MA NH                              |                      |                        |                    |           |          | Discharge into: Fresh Water Salt Water |                    |            |                               |              |                       |                 |              |                       |                 |          |         |  |
| Tel. (401) 461-7181 Fax (401) 461-449 www.esslaboratory.com         | Electonic Deliverable Yes No Format: Excel Access PDF Other |                                                            |                                    |                      |                        |                    |           |          | -<br>·                                 |                    |            |                               |              |                       |                 |              |                       |                 |          |         |  |
| Project Manager: Jago is Sue<br>Company: Ig 2 Solutions<br>Address: | ChiriE                                                      | Analysis                                                   | RGP Metals Total                   | RGP Metals Dissolved | Hardness (Calculation) | Ethanol ASTM D3695 | de 300.0* | TPH 1664 | TSS 2540D*                             | 4800-CL D*         | onia 350.1 | Tri Cr (Calc. MUST run T. Cr) | Phenol 420.1 | RGP VOC Long List 524 | ioxane 8270-SIM | EDB 504.1    | SVOC Log List 625-SIM | 608<br>Comment# |          |         |  |
| ESS Lab Date Collection Grab Sample ID Time Compos                  |                                                             | Sample Identif                                             | fication                           | # of<br>Containers   | RGP N                  | RGP N              | Hard      | Etha     | Chlor                                  | TPH                | TSS        | TRC                           | Amm          | D F                   | Phen            | RGP          | 1,4-D                 | EDB             | RGP      | PCB 608 |  |
| Sumple 12                                                           |                                                             | MW-4                                                       |                                    | 22                   | X                      | ×                  | Х         |          |                                        |                    |            |                               |              |                       |                 | X            |                       |                 |          | X 1,2   |  |
| 3/20/19 11:00 Gas                                                   | 7 00                                                        | 710                                                        |                                    |                      |                        |                    |           |          |                                        |                    |            |                               |              |                       |                 | ,            | Γ                     |                 |          |         |  |
|                                                                     |                                                             |                                                            |                                    |                      | T                      | $\vdash$           | -         | H        | 1                                      | <del> </del>       | T          |                               |              | $\top$                |                 | 1            | T                     |                 |          | $\top$  |  |
| <u> </u>                                                            |                                                             |                                                            | <u> </u>                           | 1.                   | $\vdash$               |                    | $\vdash$  | $\vdash$ | +                                      | +                  | ╁          | -                             |              | $\dashv$              | $\dagger$       | †            | $\dagger$             |                 | $\Box$   | +       |  |
|                                                                     |                                                             |                                                            |                                    |                      | ├                      | -                  |           |          | +                                      | ╁                  | ╁          | -                             | $\vdash$     | +                     | +               | +            | +                     | $\vdash$        |          | 十       |  |
|                                                                     |                                                             |                                                            |                                    |                      | -                      | -                  |           |          | ╬                                      | +                  | -          | -                             | H            |                       | +               | +-           | ╀                     | $\vdash$        | $\vdash$ | +       |  |
|                                                                     |                                                             |                                                            |                                    |                      | <u> </u>               | ļ                  |           |          | $\downarrow$                           | +                  | -          | _                             | _            |                       |                 | +            | -                     | -               |          | +       |  |
|                                                                     |                                                             |                                                            |                                    | <u> </u>             |                        | _                  |           |          | _                                      |                    |            | L                             |              |                       | 1               | $\downarrow$ | ļ                     | ╙               |          | $\perp$ |  |
|                                                                     |                                                             |                                                            |                                    |                      |                        |                    |           |          |                                        | l                  |            | <u> </u>                      |              |                       |                 | ┸            |                       |                 |          |         |  |
|                                                                     |                                                             | ·                                                          |                                    |                      |                        |                    |           | 1        |                                        |                    |            |                               |              |                       | Ì               |              |                       |                 |          |         |  |
|                                                                     |                                                             |                                                            |                                    |                      | 1                      | 1                  |           | П        | 1                                      |                    |            | Г                             |              |                       |                 | T            |                       |                 |          |         |  |
| Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNC                      | 3. 5-NaOH, 6-Me0                                            | LOH. 7-Asorbic Acid, 8-ZnAct, 9-                           |                                    |                      | 4                      | 4                  | 4         | 1        | 1                                      | 5 3                | 1          | 1                             | 3            | -                     | 1 3             | 3 2          | 2 1                   | 2               | 1        | 1       |  |
| Container Type: P-Poly G-Glass AG-Amber Glass                       |                                                             |                                                            |                                    |                      | Р                      | Р                  | Р         | V        | Р                                      | P A                | G P        | P                             | Р            | -                     | PΑ              | G V          | / A(                  | 3 V             | AG       | AG      |  |
| Matrix: S-Soil SD-Solid D-Studge WW-Wastewat                        | er GW-Groundwa                                              | ter SW-Surface Water DW-Drinl                              |                                    | pes F-Filter         |                        |                    |           | <u> </u> |                                        |                    |            |                               |              |                       |                 | -            | :                     | ٠               |          |         |  |
| Cooler PresentYes                                                   | o Sampled                                                   | by: JASON SUERBY                                           | exe                                |                      |                        |                    | _         | ١ ۵      | 00.5                                   | ./2.1.1            | LOD.       |                               | ΙΊΙο         | . lass f              | 245             | 1            |                       | _               |          |         |  |
| Seals Intact Yes No NA:                                             | Commen                                                      | ts: 1) RGP Metals include Seters in <b>BOLD</b> have Short | Sb, As, Cd, Cu, Fe, P<br>hold-time | PER                  | MI                     | TA                 | тт        | 'A (^)   | HEI                                    | )                  |            |                               |              |                       |                 | 1            |                       |                 |          |         |  |
| Cooler Temperature: 1.1 ICF 72                                      | -  ∗ TSS, T                                                 | RC and Cl taken from the                                   | e same container                   |                      | 55                     | ţ                  | 105       | 6        | 408                                    | <u> </u>           | 2/1/2      | ⁄-رٰ<                         | 74           | ょ〉                    | . 4             | koz          |                       | - N             | -        |         |  |
| Relinquished by: (Signature) Date                                   |                                                             | (Signature) 3 20 (9 16 0 5                                 | Relinquished by: (Signature)       | <u>)</u>             |                        |                    | Pate      | e/Time   |                                        |                    | _(         |                               | <u>_</u>     | Rece                  | D               |              |                       | 1947            |          |         |  |
| Relinquished by: (Signature) Date                                   |                                                             |                                                            | Relinquished by: (Signature        |                      |                        | 1                  | Date      | e/Time   | ·                                      |                    |            | 1                             |              | Recei                 | ived by         | y. (Siç      | gnatui                |                 | -        |         |  |
|                                                                     | I                                                           | Please E-mail all change                                   | es to Chain of Custo               | dy in writ           | ir                     |                    |           |          |                                        |                    | -          |                               |              |                       | Pa              | ge           | l                     | _ c             | of       | 2_      |  |



### ATTACHMENT D



### United States Department of the Interior

#### FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland



April 09, 2019

In Reply Refer To:

Consultation Code: 05E1NE00-2019-SLI-1368

Event Code: 05E1NE00-2019-E-03236

Project Name: Shell-Branded Service Station - 620 Belmont Street, Brockton

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

#### To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle\_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

#### Attachment(s):

Official Species List

## **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

### **Project Summary**

Consultation Code: 05E1NE00-2019-SLI-1368

Event Code: 05E1NE00-2019-E-03236

Project Name: Shell-Branded Service Station - 620 Belmont Street, Brockton

Project Type: DEVELOPMENT

Project Description: This facility has historically been an active gasoline station with

underground storage tanks (USTs) and dispenser islands. Plans to upgrade the facility, including the USTs and dispenser islands are anticipated under a National Pollutant Discharge Elimination System (NPDES). Therefore, a determination of endangered species act eligibility is

required.

#### **Project Location:**

Approximate location of the project can be viewed in Google Maps: <a href="https://www.google.com/maps/place/42.07188274800639N71.04358230238313W">https://www.google.com/maps/place/42.07188274800639N71.04358230238313W</a>



Counties: Plymouth, MA

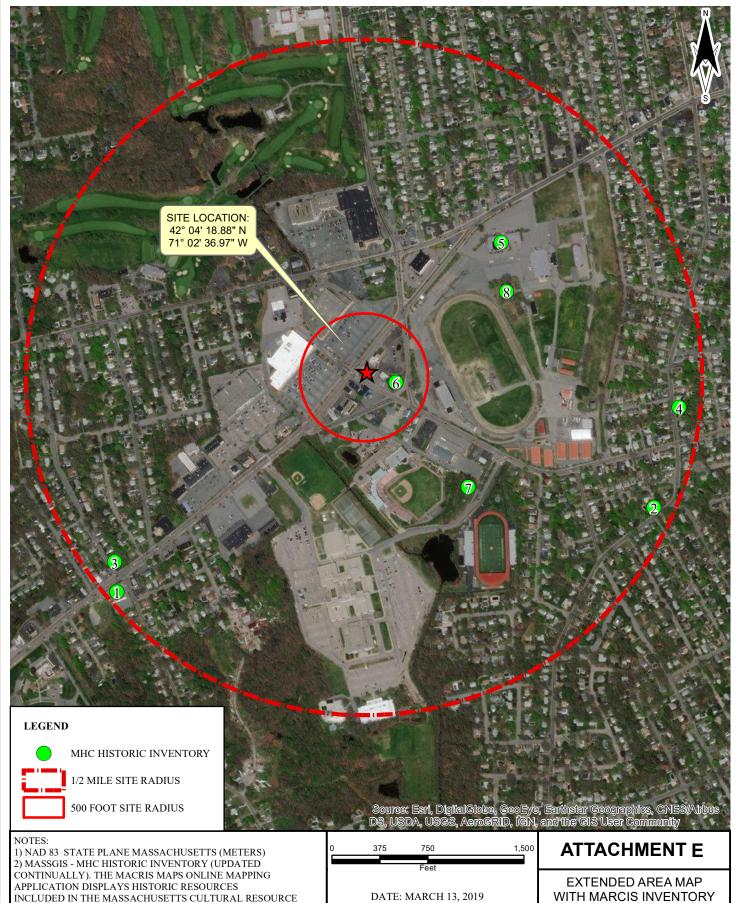
### **Endangered Species Act Species**

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.


1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.



### **ATTACHMENT E**



INCLUDED IN THE MASSACHUSETTS CULTURAL RESOURCE INFORMATION SYSTEM MAINTAINED BY THE MASSACHUSETTS HISTORICAL COMMISSION.

3) NUMBERS SHOWN ON MAP CORRESPOND TO "OBJECTID" IN TABLE. ALL NUMBERS MAY NOT BE SHOWN. PLEASE SEE TABLE FOR COMPLETE LIST.



PREPARED BY: TG2 SOLUTIONS LLC 231 ELM STREET BLACKSTONE, MA 01504

SHELL-BRANDED STATION 620 BELMONT STREET BROCKTON, MA

| OBJECTID MHCN | DEMOLISHI TYPE | DESIGNATI( D_DATE | HISTORIC_N COMMON_         | _ADDRESS TO      | WN_NAPCONS | TRUC' ARCHITECT  MAKER        | USE_TYPE SIGNIFICAN                                           |
|---------------|----------------|-------------------|----------------------------|------------------|------------|-------------------------------|---------------------------------------------------------------|
| 1 BRO.205     | y Building     |                   | Minor, Wes                 | 826 Belmoi Bro   | ockton :   | 1870 Italianate;              | Single Fami Architecture;                                     |
| 2 BRO.188     | y Building     |                   | Perkins, Jes               | 585 Ash St Bro   | ockton :   | 1825 Colonial; N              | Single Fami Architecture;                                     |
| 3 BRO.159     | Building       |                   | Bryant, Wil Ames, Fiske    | e 815 Belmoi Bri | ockton :   | L810 Federal;                 | Single Fami Architecture; Literature;                         |
| 4 BRO.5       | Building       |                   | Robinson, I                | 514 Ash St Bro   | ockton :   | L747 Cape; Color              | Single Fami Architecture;                                     |
| 5 BRO.187     | Building       |                   | Brockton F; Brockton A     | A Belmont St Bro | ockton :   | 1876 Stick Style;             | Business Of Agriculture; Architecture; Education; Recreation; |
| 6 BRO.804     | Burial Gro     | ou                | Snell Cemet                | Belmont St Bro   | ockton :   | L747                          | Burial Grou Community Planning; Religion;                     |
| 7 BRO.133     | Building       | NRIND 07/15/19    | 8 Little Red S Forest Aver | n Concord Av Br  | ockton :   | L875 Greek Reviv              | Abandoned Architecture; Education;                            |
| 8 BRO.14      | Building       |                   | Brockton F: Massachus      | Thurber Avi Bri  | ockton :   | L931 Colonial Re Ritchie, Jar | Other Educ Agriculture; Architecture; Education;              |