

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

19 April 2019 File No. 129204-009

US Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square – Suite 100 (OEP06-01) Boston, MA 02109-3912

Attention: Ms. Shelley Puleo; EPA/OEP RGP Applications Coordinator

Subject: NPDES RGP Permit Application - Temporary Construction Dewatering

125-131 Sumner Street East Boston, Massachusetts RTN 3-33981 and 3-34165

Dear Ms. Puleo:

On behalf of our client, WinnDevelopment, Haley & Aldrich, Inc. (Haley & Aldrich) has prepared this submission for a NPDES RGP temporary construction dewatering permit during building construction activities at the subject site located at the 125-131 Sumner Street property (hereafter referred to as the "Site") in East Boston, Massachusetts, as shown on Figure 1. The information presented herein has been prepared to follow requirements of the 2017 US Environmental Protection Agency (EPA) National Pollutant Discharge Elimination System (NPDES) General Remediation General Permit (RGP). A copy of the completed Notice of Intent (NOI) form is enclosed as Appendix A.

EXISTING SITE CONDITIONS

The Site is an approximately 42,000 square foot (sq ft) parcel of land developed with four 2-story brick, apartment buildings owned by the Boston Housing Authority (BHA) known as Heritage Apartments, located at 125-131 Sumner Street in East Boston, Massachusetts as shown on Figures 1 and 2. Exterior Site grades are approximately Elevation (El.) 17 to 20 Boston City Base Datum (BCB). Areas not occupied by apartment buildings are developed with asphalt paved driveways and parking areas as well as a small landscaped area in the middle of the Site between the four apartment buildings. The Site is bordered by Sumner Street and residential buildings to the north, Clipper Ship Lane and the Heritage Apartments to the east, Father Jacobbe Road to the south, and the Carlton Wharf Apartments to the west. The apartments are now vacant. Residents have been relocated to other apartments so that the Site can be prepared for redevelopment.

SITE HISTORY

Prior to the current Site use, the Site was part of the Boston Harbor until 1833 when the area was filled with material excavated from the nearby Smith Hill. The Site was used for industrial uses from 1888 and included use of the Site by National Tube Works Company for brass foundry, copper and iron storage, copper sawing and planning, pipe cutting and brass finishing, and by Merchants Wool Scouring Company for wool storage and scouring, wool warehouse, and wool drying. An auto-repair shop was also present at the Site from approximately 1950 to 1964 before being repurposed as a wool warehouse for Merchants Wool Scouring Company. The existing apartment buildings and associated improvements were constructed in 1975.

ENVIRONMENTAL CONDITIONS AND REGULATORY BACKGROUND

Two releases of oil or hazardous material are documented for the Site:

RTN 3-34165 (Historic Fill) - Benzo(a)pyrene, copper, lead and arsenic were detected in soil samples above the applicable RCS-1 Reportable Concentrations in Soil and constituted a 120-day reporting condition under the Massachusetts Contingency Plan (MCP). A Release Notification Form (RNF) was filed by BHA on 6 March 2017 and MassDEP assigned the Release Tracking Number (RTN) 3-34165 to the release. Based on the results of a March 2017 sampling and testing program, BHA submitted a revised RNF (BWSC103) on 12 July 2017 for the historic fill release to include the petroleum compounds that were not originally included as part of the release tracked by RTN 3-34165.

In addition, asbestos containing materials (ACM) were identified in the Historic Fill. The presence of ACM is not considered reportable under the MCP; however, the soils impacted with ACM are regulated by the Massachusetts Department of Environmental Protection (MassDEP) Bureau of Air and Waste under the Air Pollution Control Regulations (310 CMR 7.15). A Non-Traditional Asbestos Abatement Work Plan (NTWP) will be submitted to and approved by MassDEP prior to the start of work.

RTN 3-33981 (Main Site RTN) – This RTN originally was limited to the presence of trichloroethylene (TCE) detected in one well at the property above the applicable RCGW-2 Reportable Concentration. Monitoring well B101(MW) is located within 30 ft of an occupied residential dwelling and the depth to groundwater was observed at 8 ft below ground surface. In accordance with 310 CMR 40.0313(4)(f), the detection of TCE above RCGW-2 within 30 ft of an occupied residential dwelling was considered a Condition of Substantial Release Migration (SRM) and required notification to the MassDEP within 72-hours of the Potentially Responsible Party obtaining knowledge of the release.

The current property owner, BHA, provided verbal notification to MassDEP regarding the Condition of SRM on 9 December 2016. MassDEP assigned RTN 3-33981 to the release.

BHA conducted an assessment-only Immediate Response Action to evaluate the Condition of SRM. Immediate Response Actions included the collection of seven soil gas samples from newly installed soil gas sampling points inside the apartment buildings present at the property. The soil gas samples were analyzed for chlorinated volatile organic compounds (VOCs) by TO-15 SIM. Results of the soil gas sampling did not detect concentrations of chlorinated VOCs exceeding MassDEP residential sub-slab soil

gas screening values. Based on the results of the soil gas sampling, BHA concluded that conditions at the Site were stable, the vapor intrusion pathway was not likely to be of concern for the current Site conditions, and further testing, including indoor air testing, was not necessary. BHA filed a combined Release Notification and Immediate Response Action Completion Report for RTN 3-33981 to MassDEP on 7 February 2017.

An MCP Phase I and Tier II Classification submittal was made for RTN 3-33981 on 9 December 2017. In accordance with the MCP at 310 CMR 40.0502(4), RTN 3-34165 was linked to RTN 3-33981 and classified as Tier II. RTN 3-34165 is now closed on the MassDEP Database. Response actions at the Site related to Site development will be undertaken under the main Site RTN 3-33981 which now includes contaminates originally listed under RTN 3-34165.

Based on the results of a soil testing program conducted in July 2018, a revised RNF was submitted to MassDEP under RTN 3-33981 to report the detection of chlorinated solvents in soil above RCS-1.

PROPOSED CONSTRUCTION

Redevelopment plans for the Site include demolition of the existing buildings and construction of two new residential buildings as shown on Figure 2. No basements are planned. The new residential buildings will occupy approximately 21,000 sf of the 42,000 sq ft Site, with the majority of the exterior area planned as pavement or hardscape with minimal landscaped areas and tree pits. The first floor of the proposed buildings is planned to range from El. 20 to El. 22.75, approximately 2 to 4 ft above existing grades.

Historically, groundwater level measurements ranged from El. 10 to 12, corresponding to depths of approximately 8 to 10 ft below ground surface. Groundwater level measurements are heavily influenced by daily tidal action in Boston Harbor. Area groundwater levels are also influenced by numerous other factors including season, precipitation, construction activity in the area, below-grade structures, and leakage from utilities. As a result, groundwater levels observed during and following construction may vary from those observed in the observation wells.

CURRENT GROUNDWATER QUALITY INFORMATION

A total of thirteen groundwater samples have been collected at the Site over five separate sampling events (November 2016, March 2017, November 2017, February 2018 and April 2018). During the November 2016 subsurface exploration program, TCE was detected in a sample collected from a previously installed monitoring well at the property (B101(MW)) at 5.2 ug/l, which is slightly above the applicable RCGW-2 Reportable Concentration.

During each of the 2017 and 2018 sampling events, one groundwater sample was collected from monitoring wells B101(MW), A2(OW) and C2(OW). A total of twelve groundwater samples were submitted to Alpha Analytical Laboratory (Alpha) of Westborough, MA, for chemical analysis of VOCs. The groundwater samples did not detect VOCs above the applicable RCGW-2 Reportable Concentrations. The location of the observation wells are shown on Figure 2.

On 13 March 2019, one sample was collected from monitoring well B101(MW) and submitted to Alpha for chemical analysis of 2017 NPDES Remediation General Permit parameters including volatile organic compounds, semi-volatile organic compounds, polycyclic aromatic hydrocarbons, total metals, total petroleum hydrocarbons, polychlorinated biphenyls, total suspended solids, chloride, total cyanide, total phenolics, and total residual chlorine.

A summary of the groundwater quality data is provided in Table I. Copies of the laboratory data reports are included in Appendix B.

ETHANOL SAMPLING

Ethanol sampling was not conducted on the groundwater sample as Site history does not suggest that ethanol was stored at the property, nor that a petroleum product containing ethanol was released at the Site. Ethanol has been increasingly used in fuels since 2006 (according to the 2016 NOI Fact Sheet), and according to Site history, the Site has been a residential apartment building since 1975.

RECEIVING WATERS SAMPLING AND DILUTION FACTOR

On 13 March 2019, one sample was collected adjacent to the Site in Boston Harbor and submitted to Alpha Analytical to be analyzed for salinity, pH, and ammonia. The laboratory data report is included in Appendix B. The results of the surface water sampling program are provided in Table I.

The pH and temperature readings from the Site on the day of sampling were used to calculate the Site Water Quality Based Effluent Limitations (WQBELs). It is our understanding that since the receiving water is a saltwater body in Massachusetts, the dilution factor is assumed to be 1:1.

EFFLUENT CRITERIA DETERMINATION

Groundwater and Receiving Water data were input into the WQBEL Calculation spreadsheet and used to calculate the effluent criteria for the Site. Copies of the "EnterData" and "SaltwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix C. The effluent limitation calculations are included for reference in Table I.

DEWATERING SYSTEM AND OFF-SITE DISCHARGE

During construction of the building, it will be necessary to perform temporary dewatering to dewater the excavation, control surface water runoff from precipitation, groundwater seepage, and construction-generated water, and to enable construction to be completed in-the-dry. Construction and construction dewatering activities are currently anticipated to be required for a period of up to 18 months. On average, we estimate effluent discharge rates of about 50 to 75 gallons per minute (gpm) or less, with occasional peak flows of approximately 100 gpm during significant precipitation events. Temporary dewatering will be conducted from sumps located within the excavation.

Construction dewatering will include piping and discharging to a storm drain located near the Site that discharges into the Boston Harbor through an outfall south of the Site extending out from the corner of

Clippership Lane as shown on Figure 3. This outfall was recently constructed and doesn't have an official designation. For the purposes of this report, we will be designating the outfall as the "Clippership Lane Outfall". The proposed discharge route is shown on Figure 2 and 3. An effluent treatment system will be designed and implemented by the Contractor to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters (5-micron bag filters are anticipated to be required by the MassDEP-approved NTWP) to remove suspended solids and undissolved chemical constituents, as shown on Figure 4. Typical dewatering treatment system product documents are included in Appendix D. A Notice of Change (NOC) will be submitted to EPA if additional treatment components need to be mobilized at the Site.

DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT ELIGIBILITY REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the project Site, and discharges and discharge-related activities are not considered to have the potential to affect historic properties. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix F. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no listed species or critical habitat have been established to be present within the project action area. Additionally, a MassDEP Phase 1 Site Assessment Map is included in Appendix F, which confirms that no critical habitats are present at the Site.

It is our understanding that listed species under the jurisdiction of National Marine Fisheries Service (NMFS) are the Atlantic Sturgeon and the Shortnose Sturgeon, as well as two species of whales (North Atlantic Right Whale and Fin Whale) and four species of sea turtles (Loggerhead Sea Turtle, Kemp's Ridley Sea Turtle, Leatherback Sea Turtle, Green Sea Turtle) in the marine environment. Based upon our review of National Oceanic and Atmospheric Administration (NOAA) Protected Resources Section 7 Program Species Information, accessed by Haley & Aldrich on 30 January 2019, no listed species under the jurisdiction of NMFS have been established to be present within the project action area. Tables providing the regions and nearshore areas of importance for each of the NMFS listed species are provided in Appendix F.

SUPPLEMENTAL INFORMATION

An application for a temporary construction dewatering permit is being submitted to the City of Boston; a copy of the application is provided in Appendix G. Approval will be received prior to the start of discharge. A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site.

Owner and Operator Information

Owners:

Boston Housing Authority (BHA) 52 Chauncy Street Boston, MA 02111 Attn: William McGonagle

WinnDevelopment 6 Faneuil Hall Marketplace Boston, MA 02109 Attn: Christopher Fleming

Operator:

Cranshaw Construction 2310 Washington Street Newton Lower Falls, MA 02462 Attn: Travis Smith

CLOSING

Thank you for your consideration. Please feel free to contact us should you have any questions or require additional information.

Sincerely yours,

HALEY & ALDRICH, INC.

Samantha Butwill, EIT

Engineer

Michael J Cronan, LSP (MA)

Senior Project Manager | Associate

Attachments:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site and Subsurface Exploration Location Plan

Figure 3 – Proposed Discharge and Outfall Location Plan

Figure 4 – Proposed Treatment Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Laboratory Data Reports

Appendix C - Effluent Limit Calculations

Appendix D - Typical Treatment System Products

Appendix E – National Register of Historic Places Documentation

Appendix F – Endangered Species Act Documentation

Appendix G – Copy of City of Boston Dewatering Permit Application

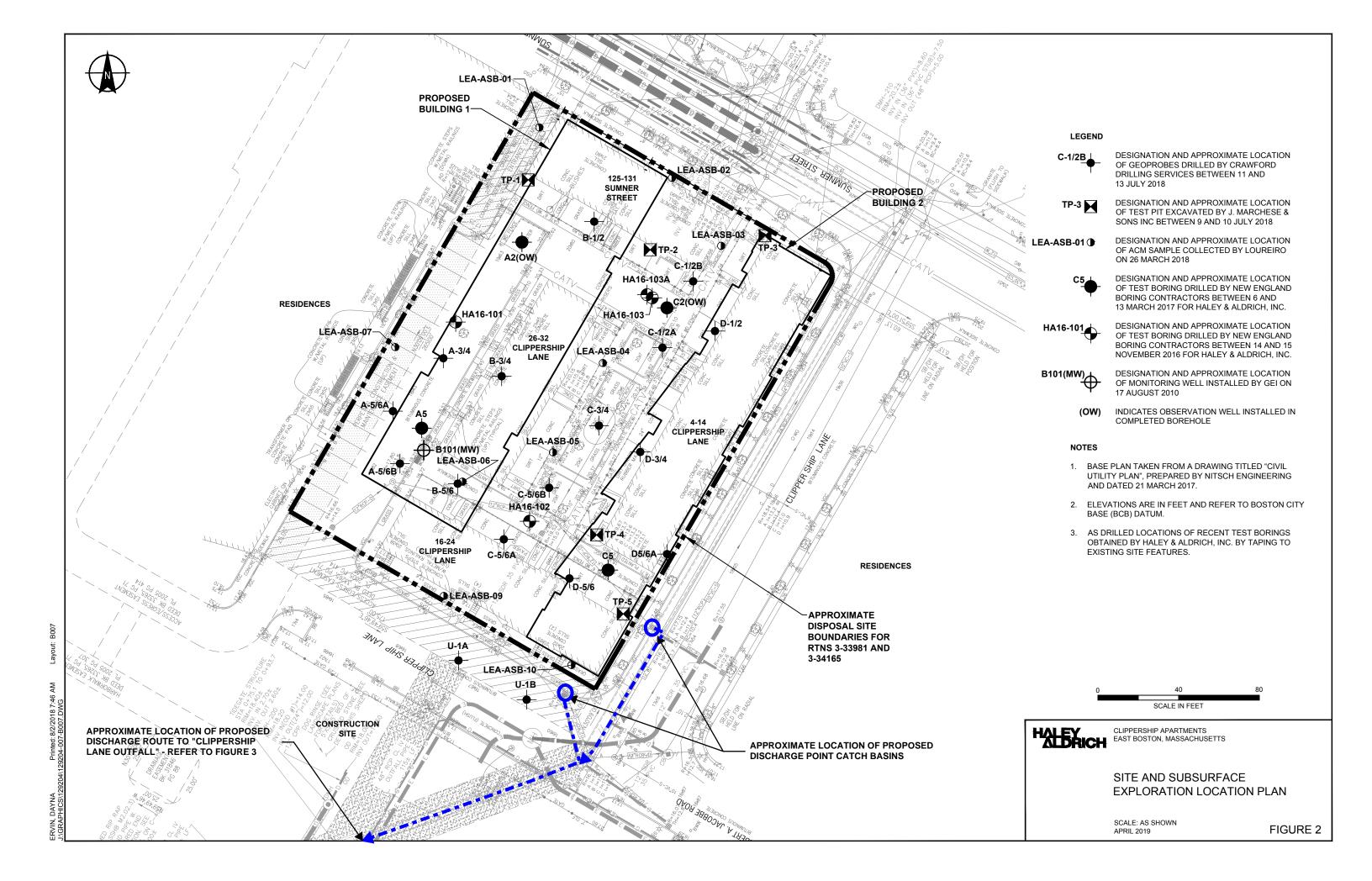
\haleyaldrich.com\share\bos_common\129204-ClippershipApartments\NPDES RGP\Text\2019-0419-HAI-ClippershipApt-NPDES RGP Application-F.docx

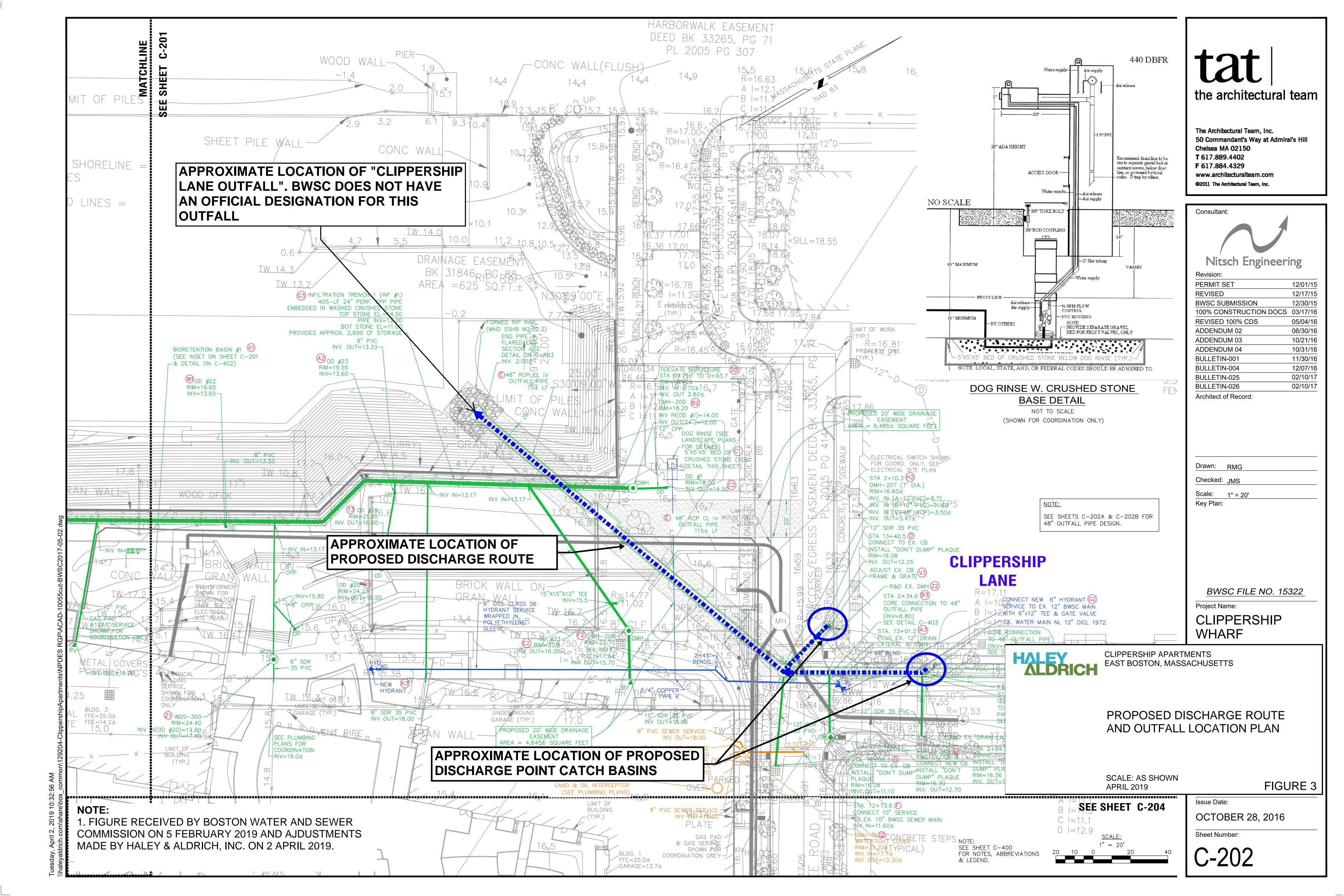
TABLE I SUMMARY OF WATER QUALITY DATA 125-131 SUMNER STREET BOSTON,MA FILE NO. 129204-009

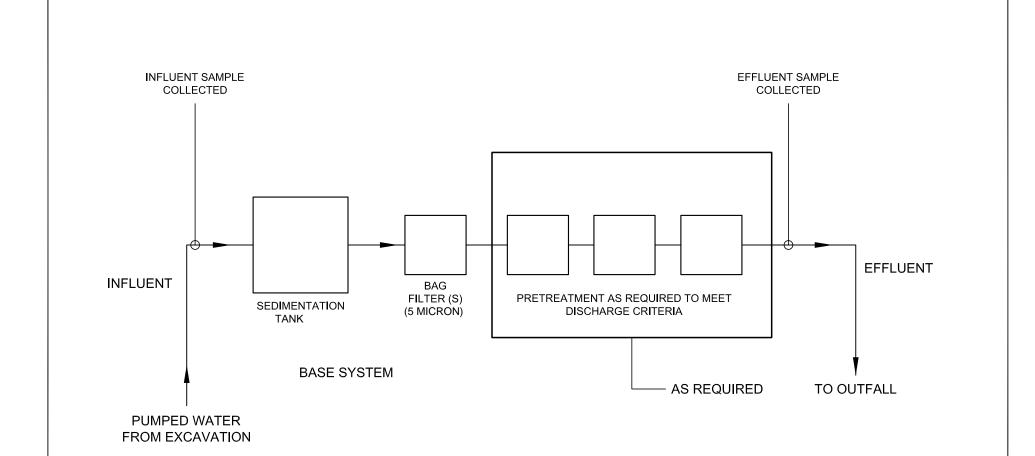
		Regulatory	Criteria	SOURCE WATER	RECEIVING WATER						PREVIOUSLY	COLLECTED SITE DATA						
	SAMPLE NAME	MCP 2014 REPORTABLE	2017 NPDES RGP Project-Specific	B101 (MW)	SURFACE WATER	A2(OW)_20171116	A2(OW)_20180206	A2(OW)_20180427	A2_31617	B101 (MW)_20180427	B101(MW)_20171116	B101(MW)_20180206	B101-(MW)	B101_31617	C2(OW)_20171116	C2(OW)_20180206	C2(OW)_20180427	C2_31617
	SAMPLING DATE	CONCENTRATION	Effluent	3/13/2019	3/13/2019	11/16/2017	2/6/2018	4/27/2018	3/16/2017	4/27/2018	11/16/2017	2/6/2018	11/15/2016	3/16/2017	11/16/2017	2/6/2018	4/27/2018	3/16/2017
	LAB SAMPLE ID	RCGW-2 2014	Limits	L1909859-01	L1909861-01	L1742436-02	L1804136-02	L1815179-02	L1708040-01	L1815179-01	L1742436-01	L1804136-01	L1637130-04	L1708040-02	L1742436-03	L1804136-03	L1815179-03	L1708040-0
olatile Organics Compounds (ug/l)																		
UM Of BTEX Compounds		NA	100	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
UM of Volatile Organic Compounds		NA	NA	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
ACP Volatile Organic Compounds (ug/L)																		
2-Butanone		50000	NA	=	-	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	ND(5)	12
Acetone cis-1,2-Dichloroethene		50000 20	NA NA	-	-	ND(5) ND(1)	ND(5) ND(1)	ND(5) ND(1)	23 ND(1)	ND(5) ND(1)	ND(5) ND(1)	ND(5) ND(1)	ND(5) 1.2	ND(5) ND(1)	ND(5) ND(1)	ND(5) ND(1)	ND(5) ND(1)	18 ND(1)
Tetrachloroethene		50	NA NA	-	-	ND(1) ND(1)	ND(1)	ND(1) ND(1)	1.4	ND(1)	ND(1) ND(1)	ND(1) ND(1)	ND(1)	ND(1) ND(1)	ND(1) ND(1)	ND(1) ND(1)	ND(1) ND(1)	1.9
Trichloroethene		5	NA NA	-	-	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)	5.2	ND(1)	ND(1)	ND(1)	ND(1)	ND(1)
Total MCP VOCs		NA	NA	-	-	ND	ND	ND	24.4	ND	ND	ND	7.6	ND	ND	ND	ND	31.9
Semivolatile Organics Compounds (ug/l)																		
SUM of Total Phthalates		NA	190	ND	-	=	-	=	-	-	-	-	-	-	-	=	=	-
SUM of Group II PAHs		NA	100	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	
SUM of Semi-Volatile Organic Compounds (S	SIM)	NA	NA	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MCP Semivolatile Organic Compounds (ug/	/L)																	
Naphthalene		700	NA	-	-	-	-	0.6	-	-	-	-	-	-	-	-	-	-
Total MCP SVOCs		NA	NA	-	-	-	-	0.6	-	-	-	-	-	-	-	-	-	
Total Petroleum Hydrocarbons (ug/l)																	1	
TPH, SGT-HEM		5000	5000	ND (4000)				-	<u> </u>	<u> </u>	-		-		<u> </u> -		<u> </u>	
Extractable Petroleum Hydrocarbons (ug/L))																	T
C11-C22 Aromatics	,	NA	NA	=	-	=	-	-	ND(100)	-	-	-	-	-	-	=	-	-
C11-C22 Aromatics, Adjusted		5000	NA	=	-	-	-	-	ND(100)	-	-	-	-	-	-	-	-	-
C19-C36 Aliphatics		50000	NA	=	-	=	-	=	ND(100)	-	=	-	-	-	-	=	-	-
C9-C18 Aliphatics		5000	NA	-	-	-	-	-	ND(100)	-	-	-	-	-	-	-	-	-
Volatile Petroleum Hydrocarbons (ug/L)																		
C5-C8 Aliphatics		NA	NA	=	-	=	-	-	ND(50)	-	-	-	-	-	-	-	-	-
C5-C8 Aliphatics, Adjusted		3000	NA	=	-	=	-	=	ND(50)	-	=	-	-	-	=	=	=	-
C9-C10 Aromatics		4000	NA	=	-	-	-	=	ND(50)	-	-	-	-	-	-	-	-	-
C9-C12 Aliphatics		NA	NA	-	-	-	-	-	ND(50)	-	-	-	-	-	-	-	-	-
C9-C12 Aliphatics, Adjusted		5000	NA	-	-	-	-	=	ND(50)	-	-	-	-	-	-	-	-	-
Total Metals (ug/l)																		
Antimony		8000	206	ND (4)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic Cadmium		900 4	104 10.2	1.77 ND (0.2)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium, Trivalent		600	323	ND (0.2)			-	-	_	-		-		-	-	-	-	_
Chromium, Hexavalent		300	323	ND (10)	-	=	-	=	-		_	-	-	-	-	-	-	-
Chromium		300	323	ND (1)	-	=	-	=	-	-	=	-	-	-	-	-	-	-
Copper		100000	3.7	8.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron		NA	5000	898	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead		10	160	2.69	-	=	-	=	-	-	-	-	-	-	-	=	=	-
Mercury Nickel		20 200	0.739 1450	ND (0.2) ND (2)			-	-		-		-	-	-				
Selenium		100	235.8	ND (2)			-	-	_	-		-		-	-	-	-	_
Silver		7	35.1	ND (0.4)	-	-	-	-	-	-	=	=	-	-	-	-	-	-
Zinc		900	420	ND (10)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
MCP Dissolved Metals (ug/L)		·															1	
Arsenic, Dissolved		900	NA	-	-	-	-	-	ND(5)	-	-	-	-	-	-	-	-	-
Barium, Dissolved		50000	NA	-	-	-	-	-	200	-	-	-	-	-	-	-	-	-
Cadmium, Dissolved		4	NA	-	-	-	-	-	ND(4)	-	-	-	-	-	-	-	-	-
Chromium, Dissolved		300 100000	NA NA	-	-	-	-	-	ND(10) ND(10)	-	-	-	-	-	-	=	-	-
Copper, Dissolved Lead, Dissolved		100000	NA NA	-			-	-	ND(10) ND(10)	-		-	-	-			1 -	
Mercury, Dissolved		20	NA NA	-		-	-	-	ND(10) ND(0.2)	-		-	-	-		-] -	
Selenium, Dissolved		100	NA	-	-	-	-	-	ND(10)	-	-	-	-	-	-	-	-	-
Silver, Dissolved		7	NA	-	-	-	-	-	ND(7)	-	-	-	-	-	-	-	-	-
Balanda de																	1	
Polychlorinated Biphenyls (ug/l) SUM of PCBs		5	0.000064	ND	<u> </u>	_	_	_	 		_		 					+
	+		5.555004				-		†	-		-						+
Other		NA	Donost	350000													1	
Chloride (ug/l) Total Residual Chloride (ug/l)		NA NA	Report 7.5	250000 ND (20)	_	-	-	_	· I	-	-	-	-	-	-	-	· -	-
Total Residual Chloride (ug/l) Total Cyanide (ug/l)		NA 30	7.5 178000	ND (20) ND (5)		-	-	-	-	-	-	-	-	-	-	-	1 -	-
Hardness (ug/I)		NA NA	NA NA	148000	-	=	-	-	-	-		-	-	-	-	-		=
Nitrogen, Ammonia (ug/I)		NA	Report	10100	489	-	-	-	- 1	-	-	-	-	-	-	-	-	-
Total Phenolics (ug/l)		NA	1080	ND (30)	-	=	-	=	-	=	=	=	-	-	-	=	-	=
Salinity (SU)		NA	NA	ND (2)	16	-	-	-	-	-	-	-	-	-	-	-	-	-
pH		NA	6.5 - 8.7	7.16	7.7	-	-	-	· I	-	-	-	-	-	-	-	-	-
Temperature (C) Total Suspended Solids (ug/I)		NA NA	NA 30000	10.5 ND (5000)	6.4	-	-	-	- I	-	-	-	-	-	-	-	-	-
		INA	30000	(טטטכ) טאו	_	1 -		-	1 -	-	-	-	1 -	-	į	-	1 -	

ABBREVIATIONS AND NOTES:
-: Not Analyzed
NA: Not Applicable
ND (2.5): Not detected, number in parentheses is the laboratory detection limit

- Volatile Organic, Semi-Volatile Organic, and Polychlorinated Biphenyl analytes detected in at least one sample are reported herein. For a complete list of analytes see the laboratory data sheets.


- Bold values indicate an exceedance of the RCGW-2 criteria. RCGW-2 for metals is based on dissolved concentrations.


- Underlined values indicate an exceedance of the NPDES RGP criteria.


- Bold underlined values indicate an exceedance of the RCGW-2 and NPDES RGP criteria. RCGW-2 for metals is based on dissolved concentrations.

Haley & Aldrich, Inc.
\haleyaldrich.com\share\bos_common\129204-ClippershipApartments\NPDES RGP\Tables\Table I-Summary of Groundwater Quality Data.xlsx

DIRECTION OF FLOW

NOTE:

1. DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

CLIPPERSHIP APARTMENTS CLIPPERSHIP APAKIMENTS
125-131 SUMNER STREET
EAST BOSTON, MASSACHUSETTS

> **PROPOSED** TREATMENT SYSTEM **SCHEMATIC**

SCALE: NONE APRIL 2019

FIGURE 3

APPENDIX A

Notice of Intent (NOI)

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 125-131 Sumner Street							
Clippership Apartments	Street:							
	City: East Boston		State: MA	Zip: 02128				
Site owner Boston Housing Authority	Contact Person: William McGonagle							
Boston Flousing Additiontly	Telephone: (617) 988-4000							
	Mailing address: 52 Chauncy Street	Mailing address: 52 Chauncy Street						
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify: Municipality	City: Boston		State: MA	Zip: 02111				
3. Site operator, if different than owner	Contact Person: Travis Smith							
Cranshaw Construction	Telephone: 617-559-5216	smith@cranshaw.com						
	Mailing address:							
	Street: 2310 Washington Street							
	City: Newton Lower Falls		State: MA	Zip: 02462				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
not applicable	■ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ					
NEDEC STATE OF THE	3-33981 and 3-34165	☐ UIC Program						
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	□ POTW Pretreatment						
\square MSGP \square Individual NPDES permit \square Other; if so, specify:	Ordinawater Release Detection refillit.	☐ CWA Section 404						

B. Receiving water information:

b. Receiving water information:									
1. Name of receiving water(s):	ication of receiving water(s):								
Boston Inner Harbor MA70-02 Clippership Lane Outfall (refer to text for d									
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accorda	ance with the instructions in B, above? (check one):	: ■ Yes □ No							
Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:									
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Impaired; Cause - Entercoccus, Fecal Colliform, Dissolved Oxygen, PCB in Fish Tissue; No final TMDL; Impaired Designated Uses - aquatic life, primary and secondary contact, fish consumption, and shellfish harvesting.									
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving version of the confirmation of the confirmation of the confirmation from the approximation of the confirmation from the approximation of the confirmation from the approximation from the approximation									
(check one): ■ Yes □ No	vacer sampling results as required in 1 art 1.2 of the	Not in accordance with the	msudedon in Appendix VIII.						
C. Source water information:									
1. Source water(s) is (check any that apply):									
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other than the receiving water; i							
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	☐ Other; if so, specify:						
■ Yes □ No	□ Yes ■ No								

2. Source water contaminants: As, Cu, Fe, Pb, VOCs, Napthalene, Ba (diss	solved)
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s): "Clippership Lane Outfall"	Outfall location(s): (Latitude, Longitude) 42.368596, -71.042200
Discharges enter the receiving water(s) via (check any that apply): □ Direct dis	scharge to the receiving water ■ Indirect discharge, if so, specify:
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es □ No
Has the operator has received permission from the owner to use such system for obtaining permission: BWSC permit is being simultaneously submitted. A	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for Anticipate obtaining permission from BWSC within 4-6 weeks.
Has the operator attached a summary of any additional requirements the owner	r of this system has specified? (check one): ■ Yes □ No
Provide the expected start and end dates of discharge(s) (month/year): May 20	019 to November 2020
Indicate if the discharge is expected to occur over a duration of: ☐ less than 1:	2 months ■ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)			
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
☐ I – Petroleum-Related Site Remediation☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 III – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds ■ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	1	4500NH3	0.075	10.1	10.1	Report mg/L	
Chloride		~	1	300.0	25000	250000	250000	Report μg/l	
Total Residual Chlorine	V		1	4500CL-D	0.02	ND	ND	0.2 mg/L	7.5
Total Suspended Solids	V		1	2540D	5	ND	ND	30 mg/L	
Antimony *	~		1	200.8	4	ND	ND	206 μg/L	640
Arsenic *		~	1	200.8	1	1.77	1.77	104 μg/L	36
Cadmium *	~		1	200.8	0.2	ND	ND	10.2 μg/L	8.9
Chromium III*	~		1	200.8	10	ND	ND	323 μg/L	100
Chromium VI	V		1	7196A	10	ND	ND	323 µg/L	50
Copper *		~	1	200.8	10	8.5	8.5	242 μg/L	3.7
Iron		~	1	200.7	50	898	898	5,000 μg/L	
Lead *		~	1	200.8	1	2.69	2.69	160 μg/L	8.5
Mercury *	~		1	245.1	0.2	ND	ND	0.739 μg/L	1.11
Nickel *	~		1	200.8	2	ND	ND	1,450 µg/L	8.3
Selenium *	~		1	200.8	5	ND	ND	235.8 μg/L	71
Silver *	~		1	200.8	0.4	ND	ND	35.1 μg/L	2.2
Zinc *	~		1	200.8	10	ND	ND	420 μg/L	86
Cyanide	~		1	4500CN	5000	ND	ND	178 mg/L	1.0
B. Non-Halogenated VOCs									
Total BTEX *	~		1	624.1	1 - 2	ND	ND	100 μg/L	
Benzene	~		1	624.1	1	ND	ND	5.0 μg/L	
1,4 Dioxane	~		1	624.1	50	ND	ND	200 μg/L	
Acetone		~	1	624.1	10	23	20.5	7.97 mg/L	
Phenol *	~		1	624.1	30	ND	ND	1,080 µg/L	300

^{*}compound detected in soil only

	Known	Known				Int	luent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		1	624.1	1	ND	ND	4.4 μg/L	1.6
1,2 Dichlorobenzene	~		1	624.1	5	ND	ND	600 μg/L	
1,3 Dichlorobenzene	~		1	624.1	5	ND	ND	320 µg/L	
1,4 Dichlorobenzene	~		1	624.1	5	ND	ND	5.0 μg/L	
Total dichlorobenzene	~		1	624.1	1	ND	ND	763 µg/L in NH	
1,1 Dichloroethane	~		1	624.1	1.5	ND	ND	70 μg/L	
1,2 Dichloroethane	~		1	624.1	1.5	ND	ND	5.0 μg/L	
1,1 Dichloroethylene	~		1	624.1	1	ND	ND	3.2 μg/L	
Ethylene Dibromide	~		1	624.1	2	ND	ND	0.05 μg/L	
Methylene Chloride	~		1	624.1	2	ND	ND	4.6 μg/L	
1,1,1 Trichloroethane	~		1	624.1	2	ND	ND	200 μg/L	
1,1,2 Trichloroethane	~		1	624.1	1.5	ND	ND	5.0 μg/L	
Trichloroethylene *		~	1	624.1	1	5.2	5.2	5.0 μg/L	
Tetrachloroethylene *		~	1	624.1	1	1.9	1.65	5.0 μg/L	3.3
cis-1,2 Dichloroethylene*	~		1	624.1	1	ND	ND	70 μg/L	
Vinyl Chloride	~		1	624.1	1	ND	ND	2.0 μg/L	
D. Non-Halogenated SVOC	s								
Total Phthalates*	~		1	625.1	0.1 - 5	ND	ND	190 µg/L	
Diethylhexyl phthalate	~		1	625.1	2.2	ND	ND	101 μg/L	2.2
Total Group I PAHs *	~		1	625.1	0.1	ND	ND	1.0 μg/L	
Benzo(a)anthracene *	~		1	625.1	0.1	ND	ND		0.0038
Benzo(a)pyrene*	~		1	625.1	0.1	ND	ND		0.0038
Benzo(b)fluoranthene *	~		1	625.1	0.1	ND	ND		0.0038
Benzo(k)fluoranthene *	~		1	625.1	0.1	ND	ND	As Total PAHs	0.0038
Chrysene *	~		1	625.1	0.1	ND	ND		0.0038
Dibenzo(a,h)anthracene *	~		1	625.1	0.1	ND	ND		0.0038
Indeno(1,2,3-cd)pyrene *	~		1	625.1	0.1	ND	ND		0.0038

^{*}compound detected in soil only

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs *	~		1	625.1	0.1	ND	ND	100 μg/L	
Naphthalene *		~	1	625.1	0.1	0.6	0.6	20 μg/L	
E. Halogenated SVOCs									
Total PCBs *	V		1	608.3	0.2 - 0.25	ND	ND	0.000064 μg/L	
Pentachlorophenol	~		1	625.1-SIM	1	ND	ND	1.0 μg/L	
F. Fuels Parameters Total Petroleum *			1	1664A		ND	ND	5.0 mg/L	
Hydrocarbons			1		4				
Ethanol	<i>'</i>		0	1671	NA	NA	NA	Report mg/L	
Methyl-tert-Butyl Ether	<i>'</i>		1	624.1	10	ND	ND	70 μg/L	20
tert-Butyl Alcohol	~		1	624.1	100	ND	ND	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		1	624.1	20	ND	ND	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C50, addition	nal pollutan	ts present);	if so, specify:			
рН		~	1	121,400H+	NA	7.16	7.16		
Silver, Dissolved	~		1	6010	7 ug/L	ND	ND		
Barium, dissolved		✓	1	6010	10	200	200		
Lead, Dissolved	~		1	6010	10 ug/L	ND	ND		
Mercury, Dissolved	V		1	6010	0.2 ug/L	ND	ND		
Selenium. Dissolved	~		1	6010	10 ug/L	ND	ND		
2-butanone		~	1	8260	1	12	12		
EPH*	~		1	EPH-04-1.	100	ND	ND		
VPH	~		1	VPH-04-1.	50	ND	ND		
Arsenic. dissolved	~		1	6010	5 ug/L	ND	ND		
Cadmium. dissolved	~		1	6010	4 ug/L	ND	ND		
Chromium. dissolved	V		1	6010	10 ug/L	ND	ND		
Copper, dissolved	~		1	6010	10 ug/L	ND	ND		

^{*}compound detected in soil only

Compounds detected in soil (**indicates concentrations above RCS-1 Reportable Concentrations)

Volatile Organic Compounds

2-Butanone (Methyl Ethyl Ketone)

Acetone

Carbon disulfide

cis-1,2-Dichloroethene**

Cymene (p-Isopropyltoluene)

Naphthalene

Tetrachloroethene

Toluene

Trichloroethene**

Semi-Volatile Organic Compounds

2-Methylnaphthalene**

3-Methylphenol

Acenaphthene

Acenaphthylene

Anthracene

Benzo(a)anthracene**

Benzo(a)pyrene**

Benzo(b)fluoranthene**

Benzo(g,h,i)perylene

Benzo(k)fluoranthene

bis(2-Ethylhexyl)phthalate

Chrysene

Dibenz(a,h)anthracene**

Dibenzofuran

Di-n-butylphthalate

Fluoranthene

Fluorene

Indeno(1,2,3-cd)pyrene**

Naphthalene

Phenanthrene**

Phenol

Pyrene

Extractable Petroleum Hydrocarbons

MADEP C11-C22 Aromatic Hydrocarbons, Adjusted

MADEP C19-C36 Aliphatic Hydrocarbons

MADEP C9-C18 Aliphatic Hydrocarbons

Inorganic Compounds

Antimony

Arsenic**

Barium

Beryllium

Cadmium

Chromium

Copper**

Lead**

Mercury

Nickel

Selenium

Silver

Vanadium

Zinc

Polychlorinated Biphenyls

Asbestos

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:					
Granulated Activated Carbon (GAC), Ion Exchange, and/or pH adjustment may be added to meet necessary effluent limits. A Notice of Change (NOC) will be submitted to additional treatment components need to be mobilized at the site.	o EPA if				
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.					
Prior to discharge, collected water is routed through a sedimentation tank and bag filters (5-micron bag filter are required by the Non-Traditional Work Plan to remove suspended solids and undissolved chemical constituents). Additional treatment may include granulated activated carbon (GAC), ion exchange, and/or pH adjustment, as needed to meet necessary effluent limits. A Notice of Change (NOC) will be submitted to EPA if additional treatment components need to be mobilized at the site.					
Identify each major treatment component (check any that apply):					
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter					
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ☐ Other; if so, specify:					
Indicate if either of the following will occur (check any that apply):					
☐ Chlorination ☐ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.					
Indicate the most limiting component: Flowmeter	100 gpm				
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	-				
Provide the proposed maximum effluent flow in gpm.	100 gpm				
Provide the average effluent flow in gpm.	50 gpm				
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA				
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No					

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine ■ Other; if so, specify:
Flocculants and pH conditioners may be added if necessary to meet permit limits. An NOC will be submitted to EPA if additional treatment components need to be mobilized at the site
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): ☐ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ■ No Not applicable - See above
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the
"action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)
or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
☐ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical
habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and
related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Deserte sussessing de sussessing in the decrease with a second second second delivery of the decrease of the d
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Refer to attached Haley & Aldrich, Inc. letter
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No
This the operator attached the certification requirement for the Best Management Flactices Fran (BMFF). (check one).

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the pers persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that the information, including the possibility of fine and imprisonment for knowing violations.	on or persons who manage and belief, true, accurate, a	the system, or those and complete. I have
A BMPP meeting the requirements of this general permit will be imple	emented at the site.	
BMPP certification statement:	·	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □	No ■
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requeste	d. Check one: Yes ■	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes	
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	BWSC PERMIT IS BEING SUBM PERMISSION FROM BWSC IS A	
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □	No ■ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES per	rmit Check one: Yes □	No □ NA ■
☐ Other; if so, specify:		
Signature:	Date: 4/4/19	:
Print Name and Title: Travis Smith, Cranshaw Construction		

APPENDIX B

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1742436

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Mike Cronan Phone: (617) 886-7477

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Report Date: 11/22/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1742436 **Report Date:** 11/22/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1742436-01	B101(MW)_20171116	WATER	EAST BOSTON, MA	11/16/17 11:41	11/17/17
L1742436-02	A2(OW)_20171116	WATER	EAST BOSTON, MA	11/16/17 15:35	11/17/17
L1742436-03	C2(OW)_20171116	WATER	EAST BOSTON, MA	11/16/17 14:35	11/17/17

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES				
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO				
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES				

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services a	at 800-624	-9220 v	vith anv	questions.
	ooniaaa	0110110	00111000		U	Titil ally	quoditiono.

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1742436-01, -02 and -03 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0012), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1742436-01, -02 and -03 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Cripps Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 11/22/17

ORGANICS

VOLATILES

L1742436

11/22/17

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

...____

Lab Number:

Report Date:

Date Collected: 11/16/17 11:41

Date Received: 11/17/17
Field Prep: Not Specified

Lab ID: L1742436-01 Client ID: B101(MW) 2

Client ID: B101(MW)_20171116
Sample Location: EAST BOSTON, MA

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 11/21/17 21:48

Analyst: NL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1742436

11/22/17

Project Name: 125-131 SUMNER STREET

L1742436-01

B101(MW)_20171116

Project Number: 129204-005

Lab ID:

Client ID:

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 11/16/17 11:41

Date Received: 11/17/17 Field Prep: Not Specified

Sample Location:	EAST BOSTON, MA				Field Pre		Not Specified	
	LAGI BOOTON, MA	D 14	0	1116-		•		
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organ	nics - Westborough Lab							
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	1	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 11/16/17 11:41

Client ID: B101(MW)_20171116 Date Received: 11/17/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	122	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	107	70-130	

L1742436

11/22/17

Project Name: 125-131 SUMNER STREET

L1742436-02

Project Number: 129204-005

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 11/16/17 15:35

Date Received: 11/17/17 Field Prep: Not Specified

Client ID: A2(OW)_20171116 Sample Location: EAST BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 11/21/17 22:14

Analyst: NL

Lab ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	h Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	1.0		1	
						WA.	

L1742436

Project Name: Lab Number: 125-131 SUMNER STREET

Project Number: Report Date: 129204-005 11/22/17

SAMPLE RESULTS

Lab ID: L1742436-02 Date Collected: 11/16/17 15:35

A2(OW)_20171116 Client ID: Date Received: 11/17/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Dample Location. LAGI D	OSTON, IVIA			i ieid i iep	·•	Not Specified
Parameter	Result	Qualifier (Units	RL	MDL	Dilution Factor
MCP Volatile Organics - West	tborough Lab					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1
			-			

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 11/16/17 15:35

Client ID: A2(OW)_20171116 Date Received: 11/17/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	jh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	116	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	104	70-130	

L1742436

11/22/17

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 11/16/17 14:35

Lab Number:

Report Date:

Date Received: 11/17/17 Field Prep: Not Specified

Lab ID: L1742436-03 Client ID: C2(OW)_20171116 Sample Location: EAST BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 11/21/17 22:39

Analyst: NL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

SAMPLE RESULTS

Lab ID: L1742436-03 Date Collected: 11/16/17 14:35

Client ID: C2(OW)_20171116 Date Received: 11/17/17
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

campio zocalioni. zito i zoc				1 1014 1 10	ρ.	riot opoomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westbor	ough Lab					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

SAMPLE RESULTS

Lab ID: L1742436-03 Date Collected: 11/16/17 14:35

Client ID: C2(OW)_20171116 Date Received: 11/17/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbord	ough Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

Project Name: 125-131 SUMNER STREET **Lab Number:** L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/21/17 19:43

Analyst: AD

MCP Volatile Organics - Westborough Lab for sample(s): 01-03 Batch: WG1065601-5 Methylene chloride ND ug/l 1.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND	Parameter	Result	Qualifier	Units	RI	L MDL
1,1-Dichloroethane	MCP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1065601-5
1,1-Dichloroethane	Methylene chloride	ND		ua/l	2.0)
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l						
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 sis-1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
1,2-Dichloropropane ND						
Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene, Total ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1-2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l <td>1,2-Dichloropropane</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloropropane					
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroftuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0		ND			1.0)
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0	1,1,2-Trichloroethane	ND		ug/l	1.0)
Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.50 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0		ND			1.0)
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0	Chlorobenzene	ND			1.0)
1,1,1-Trichloroethane	Trichlorofluoromethane	ND			2.0)
1,1,1-Trichloroethane	1,2-Dichloroethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene ND ug/l 0.50 cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	1.0)
cis-1,3-Dichloropropene ND ug/l 0.50 1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0)
1,3-Dichloropropene, Total ND ug/l 0.50 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	0.5	
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	0.5	
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,3-Dichloropropene, Total	ND		ug/l	0.5	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1-Dichloropropene	ND		ug/l	2.0)
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromoform	ND		ug/l	2.0)
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0)
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0)
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0)
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0)
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0)
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0)
<u> </u>	1,1-Dichloroethene	ND		ug/l	1.0)
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0)
	Trichloroethene	ND		ug/l	1.0)

Project Name: 125-131 SUMNER STREET **Lab Number:** L1742436

Project Number: 129204-005 **Report Date:** 11/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/21/17 19:43

Analyst: AD

arameter	Result	Qualifier	Units	RI	L MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1065601-5
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

L1742436

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005 **Report Date:** 11/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 11/21/17 19:43

Analyst: AD

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	01-03	Batch: WG1	065601-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-lsopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

		Acceptance
Surrogate	%Recovery (Qualifier Criteria
1,2-Dichloroethane-d4	120	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	104	70-130
Dibromofluoromethane	104	70-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1742436

Report Date: 11/22/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG106	5601-3	WG1065601-4			
Methylene chloride	91		92		70-130	1	20	
1,1-Dichloroethane	91		94		70-130	3	20	
Chloroform	96		92		70-130	4	20	
Carbon tetrachloride	93		94		70-130	1	20	
1,2-Dichloropropane	88		92		70-130	4	20	
Dibromochloromethane	82		86		70-130	5	20	
1,1,2-Trichloroethane	85		85		70-130	0	20	
Tetrachloroethene	88		87		70-130	1	20	
Chlorobenzene	83		87		70-130	5	20	
Trichlorofluoromethane	89		84		70-130	6	20	
1,2-Dichloroethane	100		110		70-130	10	20	
1,1,1-Trichloroethane	96		98		70-130	2	20	
Bromodichloromethane	90		88		70-130	2	20	
trans-1,3-Dichloropropene	88		88		70-130	0	20	
cis-1,3-Dichloropropene	94		92		70-130	2	20	
1,1-Dichloropropene	95		100		70-130	5	20	
Bromoform	88		81		70-130	8	20	
1,1,2,2-Tetrachloroethane	85		82		70-130	4	20	
Benzene	89		90		70-130	1	20	
Toluene	84		87		70-130	4	20	
Ethylbenzene	87		90		70-130	3	20	
Chloromethane	81		86		70-130	6	20	
Bromomethane	100		95		70-130	5	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1742436

Report Date: 11/22/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG106	5601-3	WG1065601-4			
Vinyl chloride	90		88		70-130	2	20	
Chloroethane	95		90		70-130	5	20	
1,1-Dichloroethene	77		72		70-130	7	20	
trans-1,2-Dichloroethene	90		89		70-130	1	20	
Trichloroethene	93		92		70-130	1	20	
1,2-Dichlorobenzene	85		80		70-130	6	20	
1,3-Dichlorobenzene	86		85		70-130	1	20	
1,4-Dichlorobenzene	84		82		70-130	2	20	
Methyl tert butyl ether	97		98		70-130	1	20	
p/m-Xylene	90		90		70-130	0	20	
o-Xylene	90		90		70-130	0	20	
cis-1,2-Dichloroethene	92		93		70-130	1	20	
Dibromomethane	91		89		70-130	2	20	
1,2,3-Trichloropropane	90		84		70-130	7	20	
Styrene	85		85		70-130	0	20	
Dichlorodifluoromethane	91		95		70-130	4	20	
Acetone	110		93		70-130	17	20	
Carbon disulfide	68	Q	68	Q	70-130	0	20	
2-Butanone	97		89		70-130	9	20	
4-Methyl-2-pentanone	80		82		70-130	2	20	
2-Hexanone	72		70		70-130	3	20	
Bromochloromethane	97		90		70-130	7	20	
Tetrahydrofuran	89		100		70-130	12	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1742436

Report Date: 11/22/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated sam	ple(s): 01-03	Batch: WG106	5601-3	WG1065601-4				
2,2-Dichloropropane	100		100		70-130	0		20	
1,2-Dibromoethane	90		85		70-130	6		20	
1,3-Dichloropropane	84		84		70-130	0		20	
1,1,1,2-Tetrachloroethane	86		89		70-130	3		20	
Bromobenzene	82		85		70-130	4		20	
n-Butylbenzene	91		94		70-130	3		20	
sec-Butylbenzene	89		110		70-130	21	Q	20	
tert-Butylbenzene	82		85		70-130	4		20	
o-Chlorotoluene	88		87		70-130	1		20	
p-Chlorotoluene	88		87		70-130	1		20	
1,2-Dibromo-3-chloropropane	84		73		70-130	14		20	
Hexachlorobutadiene	86		93		70-130	8		20	
Isopropylbenzene	88		90		70-130	2		20	
p-Isopropyltoluene	89		91		70-130	2		20	
Naphthalene	87		84		70-130	4		20	
n-Propylbenzene	90		87		70-130	3		20	
1,2,3-Trichlorobenzene	87		84		70-130	4		20	
1,2,4-Trichlorobenzene	87		85		70-130	2		20	
1,3,5-Trimethylbenzene	90		88		70-130	2		20	
1,2,4-Trimethylbenzene	89		87		70-130	2		20	
Ethyl ether	79		74		70-130	7		20	
Isopropyl Ether	91		90		70-130	1		20	
Ethyl-Tert-Butyl-Ether	99		97		70-130	2		20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number:

L1742436

Report Date:

11/22/17

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-03	Batch: WG106	65601-3 W	VG1065601-4				
Tertiary-Amyl Methyl Ether	99		100		70-130	1		20	
1,4-Dioxane	78		80		70-130	3		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	103	70-130
Toluene-d8	97	96	70-130
4-Bromofluorobenzene	103	101	70-130
Dibromofluoromethane	105	102	70-130

Serial_No:11221715:56 *Lab Number:* L1742436

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005 **Report Date:** 11/22/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation			Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1742436-01A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-01B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-01C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-02A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-02B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-02C	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-03A	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-03B	Vial HCl preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)
L1742436-03C	Vial HCI preserved	Α	NA		2.6	Υ	Absent		MCP-8260-10(14)

Project Name:125-131 SUMNER STREETLab Number:L1742436Project Number:129204-005Report Date:11/22/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:125-131 SUMNER STREETLab Number:L1742436Project Number:129204-005Report Date:11/22/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:125-131 SUMNER STREETLab Number:L1742436Project Number:129204-005Report Date:11/22/17

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Alpha Analytical, Inc. Facility: Company-wide

Title: Certificate/Approval Program Summary

Revision 10 Department: Quality Assurance Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581	CHAIN OF CUSTODY	Albany, NY 12205 Tonawanda, NY 14150 Holmes	GREETSTON:	shwah, NJ 07430	Pag	e of	-		b'	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	-17	1-201	PALPHA Job# L174	12
8 Walkup Dr.	320 Forbes Blvd	Project Information		THE ST			Contract of the local	erables			-		Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	125-131 Sur							-	Fax		Same as Client Info	
Marie III	21 ANNO SERVER CHESTA	Project Location:	East Boston	, MA				EQuIS (1	File)	1	EQuis	(4 File)	PO#	
&A Information		Project #	129204-005					Other:						
I&A Client: WinnDevel	opment	(Use Project name as Pro	Project name as Project #)				Regu	ılatory Requ	liremen	ts (Pro	gram/0	Criteria)	Disposal Site Information	
I&A Address: 465 Medfor	rd Street	Project Manager:	T. Cooper, N	like Cronan									Please identify below location	of
uite 2200		ALPHAQuote #:					7						applicable disposal facilities.	
&A Phone: 617-886-73	358	Turn-Around Time				1516							Disposal Facility:	
I&A Fax:		Standard	V	Due Date	:		1						M NJ MY	
I&A Email: tcooper@h	aleyaldrich.com	Rush (only if pre approved)		# of Days	: 5 Day		Note:	Select State	from me	nu & id	entify cr	iteria.	Other:	
hese samples have been p	reviously analyzed by A	Alpha			Managana		-	LYSIS					Sample Filtration	
lease specify Metals or T.	AL.						1. VOCs						Lab to do Preservation Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	Sa	mple ID		ection	Sample Matrix	Sampler's Initials	1							
LIMITATION CONTRACTOR AND			Date	Time	poorenes.		_		\vdash				Sample Specific Comments	- 255
THE RESERVE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDR	B101(MW)_20171116		11/16/2017	1141	GW	553	Х							3
-02	A2(OW)_20171116		11/16/2017	1535	GW	SIB	Х							3
-03	C2(OW)_20171116		11/16/2017	1435	GW	228	Х				\exists			3
														\pm
r = Plastic			Westboro: Certification No: MA935 Mansfield: Certification No: MA015 Preservative			v				1		Please print clearly, legibly an completely. Samples can not logged in and turnaround tim will not start until any ambigu are resolved. Alpha Analytical	t be ne cloc uities	
NaHSO ₄	B = Bacteria Cup C = Cube O = Other	Relinquished B		Date/	Time	,	Receiv	ed By:	Н		Date/T	ime	services under this Chain of Cu shall be performed in accordan- terms and conditions within Bla	ustody nce with
11020203	E = Encore D = BOD Bottle	JANUA.	~ 11(1	7/17	7131196	Dani	المل	Matt	11/	7)1	7 111	:13	Service Agreement# 2015-18-A Analytical by and between Hale Aldrich, Inc., its subsidiaries an affiliates and Alpha Analytical.	Alpha ey &

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1742436
Project Name : 125-131 SUMNER STREET Project Number : 129204-005
Lab Sample ID : WG1065601-5 Lab File ID : V16171121P05

Instrument ID : VOA116

Matrix : WATER Analysis Date : 11/21/17 19:43

Client Sample No.	Lab Sample ID	Analysis Date
WG1065601-3LCS	WG1065601-3	11/21/17 18:02
WG1065601-4LCSD	WG1065601-4	11/21/17 18:52
B101(MW)_20171116	L1742436-01	11/21/17 21:48
A2(OW)_20171116	L1742436-02	11/21/17 22:14
C2(OW)_20171116	L1742436-03	11/21/17 22:39

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1742436
Project Name : 125-131 SUMNER STREET Project Number : 129204-005
Instrument ID : VOA116 Calibration Date : 11/21/17 18:02

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min
Fluorobenzene	1	1	-	0	20	103	0
Dichlorodifluoromethane	0.33	0.3	-	9.1	20	100	0
Chloromethane	0.311	0.253	-	18.6	20	84	0
Vinyl chloride	0.253	0.228	-	9.9	20	95	0
Bromomethane	0.131	0.135	-	-3.1	20	110	0
Chloroethane	10	9.511	-	4.9	20	95	.01
Trichlorofluoromethane	0.446	0.399	-	10.5	20	95	0
Ethyl ether	0.094	0.074	-	21.3*	20	86	.01
1,1-Dichloroethene	0.239	0.184	-	23*	20	80	.01
Carbon disulfide	0.684	0.467	-	31.7*	20	70	0
Methylene chloride	0.275	0.25	-	9.1	20	96	0
Acetone	10	10.913	-	-9.1	20	111	0
trans-1,2-Dichloroethene	0.284	0.257	-	9.5	20	97	0
Methyl tert-butyl ether	0.562	0.547	-	2.7	20	105	0
Diisopropyl ether	0.81	0.735	-	9.3	20	100	0
1,1-Dichloroethane	0.513	0.466	-	9.2	20	95	0
Ethyl tert-butyl ether	0.675	0.669	-	0.9	20	109	0
cis-1,2-Dichloroethene	0.3	0.275	-	8.3	20	100	0
2,2-Dichloropropane	0.428	0.441	-	-3	20	111	0
Bromochloromethane	0.135	0.131	-	3	20	95	0
Chloroform	0.531	0.51	-	4	20	104	0
Carbon tetrachloride	0.469	0.437	-	6.8	20	110	.01
Tetrahydrofuran	10	8.903	-	11	20	96	.01
Dibromofluoromethane	0.288	0.301	-	-4.5	20	107	0
1,1,1-Trichloroethane	0.483	0.463	-	4.1	20	105	0
2-Butanone	10	9.68	-	3.2	20	100	.01
1,1-Dichloropropene	0.367	0.349	-	4.9	20	105	.01
Benzene	1.092	0.969	-	11.3	20	94	0
tert-Amyl methyl ether	0.583	0.578	-	0.9	20	99	0
1,2-Dichloroethane-d4	0.293	0.304	-	-3.8	20	118	0
1,2-Dichloroethane	0.277	0.278		-0.4	20	110	.01
Trichloroethene	0.311	0.289	-	7.1	20	105	0
Dibromomethane	0.162	0.148	-	8.6	20	97	0
1,2-Dichloropropane	0.259	0.227		12.4	20	95	0
Bromodichloromethane	0.389	0.349		10.3	20	101	0
1,4-Dioxane	0.00131	0.00102*		22.1*	20	92	0
cis-1,3-Dichloropropene	0.386	0.364	<u> </u>	5.7	20	105	0
Chlorobenzene-d5	1	1	<u> </u>	0	20	109	0
Toluene-d8	1.202	1.161	<u> </u>	3.4	20	109	0
Toluene	0.843	0.705		16.4	20	95	0
4-Methyl-2-pentanone	10	7.993	-	20.1*	20	92	0
Tetrachloroethene	0.394	0.349	<u> </u>	11.4	20	101	0
trans-1,3-Dichloropropene	0.469	0.414		11.7	20	101	
1,1,2-Trichloroethane	0.222	0.414	-	14.9	20	92	0
			-				0
Chlorodibromomethane	0.356	0.291	-	18.3	20	91	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1742436

Project Name : 125-131 SUMNER STREET Project Number : 129204-005

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min
1,3-Dichloropropane	0.441	0.369	-	16.3	20	97	0
1,2-Dibromoethane	0.255	0.229	-	10.2	20	98	0
2-Hexanone	10	7.233	-	27.7*	20	91	0
Chlorobenzene	0.935	0.773	-	17.3	20	92	0
Ethylbenzene	1.746	1.523	-	12.8	20	96	0
1,1,1,2-Tetrachloroethane	0.421	0.362	-	14	20	92	0
p/m Xylene	0.596	0.536	-	10.1	20	96	0
o Xylene	0.553	0.488	-	11.8	20	97	0
Styrene	20	17.081	-	14.6	20	93	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	110	0
Bromoform	0.389	0.342	-	12.1	20	93	0
Isopropylbenzene	3.019	2.649	-	12.3	20	100	0
4-Bromofluorobenzene	0.885	0.916	-	-3.5	20	119	0
Bromobenzene	0.746	0.615	-	17.6	20	88	0
n-Propylbenzene	3.671	3.287	-	10.5	20	100	0
1,1,2,2-Tetrachloroethane	0.552	0.471	-	14.7	20	87	0
2-Chlorotoluene	2.47	2.179	-	11.8	20	96	01
1,3,5-Trimethylbenzene	2.539	2.273	-	10.5	20	98	0
1,2,3-Trichloropropane	10	9.015	-	9.8	20	90	0
4-Chlorotoluene	2.206	1.942	-	12	20	96	0
tert-Butylbenzene	10	8.201	-	18	20	98	0
1,2,4-Trimethylbenzene	2.503	2.22	-	11.3	20	97	0
sec-Butylbenzene	1.21	1.074	-	11.2	20	94	0
p-Isopropyltoluene	2.583	2.298	-	11	20	101	0
1,3-Dichlorobenzene	1.464	1.264	-	13.7	20	93	0
1,4-Dichlorobenzene	1.482	1.251	-	15.6	20	91	0
n-Butylbenzene	2.356	2.134	-	9.4	20	104	0
1,2-Dichlorobenzene	1.303	1.104	-	15.3	20	91	0
1,2-Dibromo-3-chloropropan	0.086	0.072	-	16.3	20	91	0
Hexachlorobutadiene	0.338	0.293	-	13.3	20	109	0
1,2,4-Trichlorobenzene	0.731	0.635	-	13.1	20	91	0
Naphthalene	1.492	1.298	-	13	20	98	0
1,2,3-Trichlorobenzene	0.623	0.543	-	12.8	20	94	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1804136

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Mike Cronan
Phone: (617) 886-7477

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Report Date: 02/08/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

 Lab Number:
 L1804136

 Report Date:
 02/08/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1804136-01	B101(MW)_20180206	WATER	EAST BOSTON, MA	02/06/18 13:30	02/06/18
L1804136-02	A2(OW)_20180206	WATER	EAST BOSTON, MA	02/06/18 11:05	02/06/18
L1804136-03	C2(OW)_20180206	WATER	EAST BOSTON, MA	02/06/18 12:00	02/06/18
L1804136-04	TRIP BLANK	WATER	EAST BOSTON, MA	02/06/18 00:00	02/06/18

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status								
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES							
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO							
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES							

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

L1804136

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005 **Report Date:** 02/08/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1804136-01 through -04 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for acetone (0.0849), 2-butanone (0.0991), 4-methyl-2-pentanone (0.0811), and 1,4-dioxane (0.0016), as well as the average response factor for acetone, 4-methyl-2-pentanone, and 1,4-dioxane.

The continuing calibration standard, associated with L1804136-01 through -04 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/08/18

Curley Walker Cristin Walker

ORGANICS

VOLATILES

L1804136

02/08/18

Not Specified

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 02/06/18 13:30

Date Received: 02/06/18

Lab Number:

Report Date:

Field Prep:

Lab ID: L1804136-01

Client ID: B101(MW)_20180206 Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water 97,8260C Analytical Method: Analytical Date: 02/07/18 10:15

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1

L1804136

02/08/18

Project Name: 125-131 SUMNER STREET

L1804136-01

B101(MW)_20180206

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 02/06/18 13:30

Lab Number:

Report Date:

Date Received: 02/06/18 Field Prep: Not Specified

Sample Location: Sample Depth:

Lab ID:

Client ID:

Sample Deptil.							
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ıgh Lab						
1,2-Dichlorobenzene	ND		ug/l	1.0		1	
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/06/18 13:30

Client ID: B101(MW)_20180206 Date Received: 02/06/18 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab	ı						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	111	70-130	
Dibromofluoromethane	105	70-130	

L1804136

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Report Date: 02/08/18

Lab Number:

Lab ID: L1804136-02 A2(OW)_20180206 Client ID: Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 02/07/18 10:40

Analyst: PΚ

Date Collected:	02/06/18 11:05
Date Received:	02/06/18
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1

L1804136

02/08/18

Project Name: 125-131 SUMNER STREET

L1804136-02

A2(OW)_20180206

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 02/06/18 11:05

Lab Number:

Report Date:

Date Received: 02/06/18

Field Prep: Not Specified

Sample Location: Sample Depth:

Lab ID:

Client ID:

Sample Deptil.							
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ıgh Lab						
1,2-Dichlorobenzene	ND		ug/l	1.0		1	
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/06/18 11:05

Client ID: A2(OW)_20180206 Date Received: 02/06/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough Lab)						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	115	70-130	
Dibromofluoromethane	103	70-130	

L1804136

02/08/18

Dilution Footon

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 02/06/18 12:00

Date Received: 02/06/18 Field Prep: Not Specified

Lab ID: L1804136-03 Client ID: C2(OW)_20180206 Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 02/07/18 11:06

Analyst: PΚ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.40		1	
cis-1,3-Dichloropropene	ND		ug/l	0.40		1	
1,3-Dichloropropene, Total	ND		ug/l	0.40		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	

11:::4:

O......

L1804136

02/08/18

Project Name: 125-131 SUMNER STREET

L1804136-03

C2(OW)_20180206

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 02/06/18 12:00

Date Received: 02/06/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Location: Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough L	_ab					
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

SAMPLE RESULTS

Lab ID: L1804136-03 Date Collected: 02/06/18 12:00

Client ID: C2(OW)_20180206 Date Received: 02/06/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	n Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	113	70-130	
Dibromofluoromethane	104	70-130	

L1804136

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Report Date: 02/08/18

Lab Number:

Lab ID: L1804136-04
Client ID: TRIP BLANK

Sample Location: EAST BO

Sample Depth:

EAST BOSTON, MA

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 02/07/18 08:34

Analyst: MM

Date Collected: 02/06/18 00:00
Date Received: 02/06/18
Field Prep: Not Specified

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,1-Dichloroethane	MCP Volatile Organics - Westborough	ı Lab						
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1.2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,2-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 <tr< td=""><td>Methylene chloride</td><td>ND</td><td></td><td>ug/l</td><td>2.0</td><td></td><td>1</td><td></td></tr<>	Methylene chloride	ND		ug/l	2.0		1	
Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofubrane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 Bromodichloropropene ND ug/l 0.40 1 tars-1,3-Dichloropropene ND ug/l 0.40 1	1,1-Dichloroethane	ND		ug/l	1.0		1	
1,2-Dichloropropane ND ug/l 1.0 - 1	Chloroform	ND		ug/l	1.0		1	
Dibromochioromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 ttrans-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 0.40 1 Bromoform ND ug/l 0.40 1	Carbon tetrachloride	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0		1	
Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloropropene ND ug/l 0.40 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 sis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 <td< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td></td><td>1</td><td></td></td<>	Dibromochloromethane	ND		ug/l	1.0		1	
Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 dis-1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 0.40 1 Bromoform ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 1.0 1	1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Trichlorofluoromethane ND ug/l 2.0 1 1.2-Dichloroethane ND ug/l 1.0 1 1.1,1-Trichloroethane ND ug/l 1.0 1 1.1,1-Trichloroethane ND ug/l 1.0 1 Efromodichloromethane ND ug/l 1.0 1 Efromodichloromethane ND ug/l 1.0 1 Efromodichloropropene ND ug/l 0.40 1 1.3-Dichloropropene ND ug/l 0.40 1 1.3-Dichloropropene ND ug/l 0.40 1 1.3-Dichloropropene ND ug/l 0.40 1 1.1-Dichloropropene ND ug/l 2.0 1 1.1-Dichloropropene ND ug/l 2.0 1 1.1-Lockloropropene ND ug/l 1.0 1 1.1-Lockloropropene ND ug/l 1.0 1 Efromoform ND ug/l 1.0 1 Efromoform ND ug/l 1.0 1 Eftylbenzene ND ug/l 2.0 1	Tetrachloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Benzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1	Chlorobenzene	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1	
Bromodichloromethane ND ug/l 1.0 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Winyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 Chloroethene	1,2-Dichloroethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 2.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichl	1,1,1-Trichloroethane	ND		ug/l	1.0		1	
cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 1,1-Dichloroethe	Bromodichloromethane	ND		ug/l	1.0		1	
1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	trans-1,3-Dichloropropene	ND		ug/l	0.40		1	
1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	cis-1,3-Dichloropropene	ND		ug/l	0.40		1	
Bromoform ND ug/l 2.0 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 1 1 1 1 1 1 1	1,3-Dichloropropene, Total	ND		ug/l	0.40		1	
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1	
Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromoform	ND		ug/l	2.0		1	
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Benzene	ND		ug/l	0.50		1	
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Toluene	ND		ug/l	1.0		1	
Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1	
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1	
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1	
1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Vinyl chloride	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloroethane	ND		ug/l	2.0		1	
	1,1-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene ND ug/l 1.0 1	trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
	Trichloroethene	ND		ug/l	1.0		1	

L1804136

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: Report Date: 129204-005 02/08/18

SAMPLE RESULTS

L1804136-04 Date Collected: 02/06/18 00:00

Lab ID: Client ID: TRIP BLANK Date Received: 02/06/18 Sample Location: Field Prep: EAST BOSTON, MA Not Specified

Sample Depth:

Sample Deptil.							
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	ugh Lab						
1,2-Dichlorobenzene	ND		ug/l	1.0		1	
1,3-Dichlorobenzene	ND		ug/l	1.0		1	
1,4-Dichlorobenzene	ND		ug/l	1.0		1	
Methyl tert butyl ether	ND		ug/l	2.0		1	
p/m-Xylene	ND		ug/l	2.0		1	
o-Xylene	ND		ug/l	1.0		1	
Xylene (Total)	ND		ug/l	1.0		1	
cis-1,2-Dichloroethene	ND		ug/l	1.0		1	
1,2-Dichloroethene (total)	ND		ug/l	1.0		1	
Dibromomethane	ND		ug/l	2.0		1	
1,2,3-Trichloropropane	ND		ug/l	2.0		1	
Styrene	ND		ug/l	1.0		1	
Dichlorodifluoromethane	ND		ug/l	2.0		1	
Acetone	ND		ug/l	5.0		1	
Carbon disulfide	ND		ug/l	2.0		1	
2-Butanone	ND		ug/l	5.0		1	
4-Methyl-2-pentanone	ND		ug/l	5.0		1	
2-Hexanone	ND		ug/l	5.0		1	
Bromochloromethane	ND		ug/l	2.0		1	
Tetrahydrofuran	ND		ug/l	2.0		1	
2,2-Dichloropropane	ND		ug/l	2.0		1	
1,2-Dibromoethane	ND		ug/l	2.0		1	
1,3-Dichloropropane	ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1	
Bromobenzene	ND		ug/l	2.0		1	
n-Butylbenzene	ND		ug/l	2.0		1	
sec-Butylbenzene	ND		ug/l	2.0		1	
tert-Butylbenzene	ND		ug/l	2.0		1	
o-Chlorotoluene	ND		ug/l	2.0		1	
p-Chlorotoluene	ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1	
Hexachlorobutadiene	ND		ug/l	0.60		1	
Isopropylbenzene	ND		ug/l	2.0		1	
p-Isopropyltoluene	ND		ug/l	2.0		1	
Naphthalene	ND		ug/l	2.0		1	
n-Propylbenzene	ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	

Project Name: 125-131 SUMNER STREET Lab Number: L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

SAMPLE RESULTS

Lab ID: Date Collected: 02/06/18 00:00

Client ID: TRIP BLANK Date Received: 02/06/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbor	ough Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	102	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	105	70-130	

Project Name: 125-131 SUMNER STREET **Lab Number:** L1804136

Project Number: 129204-005 **Report Date:** 02/08/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 02/07/18 06:28

Analyst: MM

MCP Volatile Organics - Westborough Lab for sample(s): 01-04 Batch: WG1087214-5 Methylene chloride ND ug/l 2.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroffluoromethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene, Total <t< th=""><th>Parameter</th><th>Result</th><th>Qualifier</th><th>Units</th><th>RI</th><th>L MDL</th></t<>	Parameter	Result	Qualifier	Units	RI	L MDL
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-Trichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l	MCP Volatile Organics -	- Westborough Lab for	sample(s):	01-04	Batch:	WG1087214-5
1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 1,1-Trichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l	Methylene chloride	ND		ug/l	2.0)
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 Bromodichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 sis-1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l		ND			1.0)
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l						
1,2-Dichloropropane ND	Carbon tetrachloride	ND			1.0)
1,1,2-Trichloroethane ND	1,2-Dichloropropane	ND		ug/l	1.0)
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0	Dibromochloromethane	ND		ug/l	1.0)
Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene, Total ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0	1,1,2-Trichloroethane	ND		ug/l	1.0)
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 2.0	Tetrachloroethene	ND		ug/l	1.0)
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	1.0)
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0)
Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 2.0 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0	1,2-Dichloroethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	1.0)
cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0)
1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	0.4	0
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	0.4	0
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,3-Dichloropropene, Total	ND		ug/l	0.4	0
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1-Dichloropropene	ND		ug/l	2.0)
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromoform	ND		ug/l	2.0)
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0)
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0)
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0)
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0)
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0)
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0)
<u> </u>	1,1-Dichloroethene	ND		ug/l	1.0)
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0)
	Trichloroethene	ND		ug/l	1.0)

L1804136

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-005 **Report Date:** 02/08/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 92/07/18 06:28

Analyst: MM

Parameter	Result	Qualifier	Units	RI	L MDL
MCP Volatile Organics -	Westborough Lab for	sample(s):	01-04	Batch:	WG1087214-5
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	2.0	
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
	ND			1.0	
cis-1,2-Dichloroethene			ug/l		
1,2-Dichloroethene (total)	ND		ug/l	1.0	
Dibromomethane	ND		ug/l	2.0	
1,2,3-Trichloropropane	ND		ug/l	2.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	O
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)
			-		

L1804136

02/08/18

Lab Number:

Report Date:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 02/07/18 06:28

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westbor	ough Lab for	sample(s):	01-04	Batch: WG1	087214-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	114	70-130	
Dibromofluoromethane	100	70-130	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1804136

Report Date: 02/08/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG108	7214-3	WG1087214-4			
Methylene chloride	97		93		70-130	4		20
1,1-Dichloroethane	100		100		70-130	0		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	97		90		70-130	7		20
1,2-Dichloropropane	100		98		70-130	2		20
Dibromochloromethane	84		86		70-130	2		20
1,1,2-Trichloroethane	94		94		70-130	0		20
Tetrachloroethene	84		85		70-130	1		20
Chlorobenzene	87		86		70-130	1		20
Trichlorofluoromethane	110		100		70-130	10		20
1,2-Dichloroethane	96		95		70-130	1		20
1,1,1-Trichloroethane	100		98		70-130	2		20
Bromodichloromethane	100		94		70-130	6		20
trans-1,3-Dichloropropene	95		92		70-130	3		20
cis-1,3-Dichloropropene	94		88		70-130	7		20
1,1-Dichloropropene	98		95		70-130	3		20
Bromoform	79		72		70-130	9		20
1,1,2,2-Tetrachloroethane	100		94		70-130	6		20
Benzene	95		93		70-130	2		20
Toluene	87		88		70-130	1		20
Ethylbenzene	87		87		70-130	0		20
Chloromethane	100		100		70-130	0		20
Bromomethane	120		97		70-130	21	Q	20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1804136

Report Date: 02/08/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG108	7214-3	WG1087214-4			
Vinyl chloride	120		110		70-130	9	20	
Chloroethane	100		100		70-130	0	20	
1,1-Dichloroethene	93		76		70-130	20	20	
trans-1,2-Dichloroethene	94		95		70-130	1	20	
Trichloroethene	92		88		70-130	4	20	
1,2-Dichlorobenzene	85		82		70-130	4	20	
1,3-Dichlorobenzene	85		86		70-130	1	20	
1,4-Dichlorobenzene	87		87		70-130	0	20	
Methyl tert butyl ether	97		91		70-130	6	20	
p/m-Xylene	85		80		70-130	6	20	
o-Xylene	85		80		70-130	6	20	
cis-1,2-Dichloroethene	94		93		70-130	1	20	
Dibromomethane	98		98		70-130	0	20	
1,2,3-Trichloropropane	99		97		70-130	2	20	
Styrene	80		75		70-130	6	20	
Dichlorodifluoromethane	100		95		70-130	5	20	
Acetone	80		72		70-130	11	20	
Carbon disulfide	96		89		70-130	8	20	
2-Butanone	96		81		70-130	17	20	
4-Methyl-2-pentanone	86		76		70-130	12	20	
2-Hexanone	89		85		70-130	5	20	
Bromochloromethane	91		85		70-130	7	20	
Tetrahydrofuran	110		100		70-130	10	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1804136

Report Date: 02/08/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG108	37214-3 W	G1087214-4			
2,2-Dichloropropane	100		100		70-130	0		20
1,2-Dibromoethane	89		90		70-130	1		20
1,3-Dichloropropane	97		96		70-130	1		20
1,1,1,2-Tetrachloroethane	84		86		70-130	2		20
Bromobenzene	88		86		70-130	2		20
n-Butylbenzene	95		94		70-130	1		20
sec-Butylbenzene	92		88		70-130	4		20
tert-Butylbenzene	76		74		70-130	3		20
o-Chlorotoluene	92		93		70-130	1		20
p-Chlorotoluene	92		90		70-130	2		20
1,2-Dibromo-3-chloropropane	96		78		70-130	21	Q	20
Hexachlorobutadiene	87		93		70-130	7		20
Isopropylbenzene	88		88		70-130	0		20
p-Isopropyltoluene	78		77		70-130	1		20
Naphthalene	84		82		70-130	2		20
n-Propylbenzene	93		88		70-130	6		20
1,2,3-Trichlorobenzene	80		80		70-130	0		20
1,2,4-Trichlorobenzene	82		82		70-130	0		20
1,3,5-Trimethylbenzene	89		86		70-130	3		20
1,2,4-Trimethylbenzene	88		87		70-130	1		20
Ethyl ether	95		90		70-130	5		20
Isopropyl Ether	100		100		70-130	0		20
Ethyl-Tert-Butyl-Ether	94		93		70-130	1		20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number:

L1804136

Report Date:

02/08/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits		
MCP Volatile Organics - Westborough Lab Associated sample(s): 01-04 Batch: WG1087214-3 WG1087214-4										
Tertiary-Amyl Methyl Ether	91		91		70-130	0		20		
1,4-Dioxane	114		112		70-130	2		20		

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	104	103	70-130
Toluene-d8	100	100	70-130
4-Bromofluorobenzene	111	106	70-130
Dibromofluoromethane	101	98	70-130

Project Name: 125-131 SUMNER STREET *Lab Number:* L1804136

Report Date: 02/08/18

Project Number: 129204-005

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

В Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1804136-01A	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-01B	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-01C	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-02A	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-02B	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-02C	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-03A	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-03B	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-03C	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-04A	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)
L1804136-04B	Vial HCl preserved	В	NA		2.8	Υ	Absent		MCP-8260-10(14)

Project Name:125-131 SUMNER STREETLab Number:L1804136Project Number:129204-005Report Date:02/08/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

 Project Name:
 125-131 SUMNER STREET
 Lab Number:
 L1804136

 Project Number:
 129204-005
 Report Date:
 02/08/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 125-131 SUMNER STREET
 Lab Number:
 L1804136

 Project Number:
 129204-005
 Report Date:
 02/08/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 11

Revision 11 Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

. (**C** - - (** - - - 1 - C - - - - - (* - - -

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: <u>DW:</u> Bromide EPA 6860: <u>SCM:</u> Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ΔιριΑ	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsmo Albany, NY 12205 Tonawanda, NY 14150 Holmes		ahwah, NJ 07430	Page of			te Rec'd n Lab	161)	8	ALPHA JOB# L1804136	
Westborough, MA 01581 8 Walkup Dr. TEL: 506-898-9220 FAX: 508-898-9193	Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Lecation:	125-131 Sur East Boston	, MA			☐ E	bles nail QuIS (1 File) her:	☐ Fa	ax QuIS (4 File)	Billing Information Same as Client Info	
H&A Information		Project #	129204-005				1	ory Requireme	ents (Prog	ram/Criteria)	Disposal Site Information	
H&A Client: WinnDevelo	pment	(Use Project name as Pr									Please identify below location of	
H&A Address: 465 Medford	d Street	Project Manager:	T. Cooper, N	Mike Cronan			1				applicable disposal facilities.	
Suite 2200		ALPHAQuote #:				1-15	10				Disposal Facility:	
H&A Phone: 617-886-73	58	Turn-Around Time									□ NJ □ NY	
H&A Fax:		Standard		Due Date:			Note: Sol	ect State from n	nenu & iden	ntify criteria.	Other:	
	aleyaldrich.com	Rush (only if pre approved	f) [# of Days:	5 Day		ANALY	mily and a second	iciio o ioei	,	Sample Filtration	T
These samples have been p	reviously analyzed by	/ Alpha					ANALT	1	Т		Done	- 0
Other project specific requ Please specify Metals or T		5:					1. VOCs				Lab to do Preservation Lab to do (Please Specify below)	a B o + +
	1		T Col	llection	Sample	Sampler's	1		1 1			e e
ALPHA Lab ID	s	ample ID	Date	Time	Matrix	Initials					Sample Specific Comments	
(Lab Use Only)			2/6/2018	1330	GW	on	x					3
04136 -01	B101(MW)_2018020	06	2/6/2018	1105	GW	Om	x					3
03	A2(OW)_20180206			1200	GW	Om	X					3
03	C2(OW)_20180206		2/6/2018	100	GW	1000	X					
04	TRIP BLANK		2/6/2018	-	GVV	+	1	-				
			-	-	-	-	+	\rightarrow	+			
			-		_		+		+	-		
			-	-	-		+		+			
				-	-	-	++	+	+			
				-	-	-	+	-	+	-		
Preservative Code: Container Code A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vial D = H SO G = Glass		Westboro: Certification No: MA935 Container To Mansfield: Certification No: MA015 Preserva			ntainer Type	111				Please print clearly, legibly and completely. Samples can not be logged in and turnaround time cloci will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody		
$D = H_2SO_4$ E = NaOH	B = Bacteria Cup		W200		TT	1	Paccius	et By:	$\overline{}$	Date/Time	shall be performed in accordant	ice with
F = MeOH	C = Cube O = Other	Relinquished	d By:	-	7Time	II A 相	Receive	d by.	_	16:50	terms and conditions within Bla Service Agreement# 2015-18-7	anket
G = NaHSO ₄	E = Encore	Carolin M	,	2/4/1	Υ	M. ato	tels	AN	- /	1 11	Analytical by and between Hale	ey &
$H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	Houte about	ARL	216/18	1742	100		MAAL	2/4/	the same of the sa	Aldrich, Inc., its subsidiaries ar affiliates and Alpha Analytical.	nd
Document ID: 20455 Rev 1 (1/2	28/2016)											

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1804136
Project Name : 125-131 SUMNER STREET Project Number : 129204-005
Lab Sample ID : WG1087214-5 Lab File ID : V16180207A09

Instrument ID : VOA116

Matrix : WATER Analysis Date : 02/07/18 06:28

Client Sample No.	Lab Sample ID	Analysis Date
WG1087214-3LCS	WG1087214-3	02/07/18 04:22
WG1087214-4LCSD	WG1087214-4	02/07/18 05:12
TRIP BLANK	L1804136-04	02/07/18 08:34
B101(MW)_20180206	L1804136-01	02/07/18 10:15
A2(OW)_20180206	L1804136-02	02/07/18 10:40
C2(OW)_20180206	L1804136-03	02/07/18 11:06

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1804136
Project Name : 125-131 SUMNER STREET Project Number : 129204-005
Instrument ID : VOA116 Calibration Date : 02/07/18 04:22

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mi
Fluorobenzene	1	1	-	0	20	100	0
Dichlorodifluoromethane	0.295	0.296	-	-0.3	20	111	0
Chloromethane	0.323	0.341	-	-5.6	20	110	0
Vinyl chloride	0.512	0.616	-	-20.3*	20	127	0
Bromomethane	0.5	0.59	-	-18	20	135	0
Chloroethane	0.364	0.381	-	-4.7	20	103	0
Trichlorofluoromethane	1.137	1.261	-	-10.9	20	118	0
Ethyl ether	0.282	0.269	-	4.6	20	98	0
1,1-Dichloroethene	0.516	0.482	-	6.6	20	97	0
Carbon disulfide	0.834	0.798	-	4.3	20	110	0
Methylene chloride	0.301	0.291	-	3.3	20	102	0
Acetone	0.086	0.068*	-	20.9*	20	105	0
trans-1,2-Dichloroethene	0.294	0.275	-	6.5	20	102	0
Methyl tert-butyl ether	0.647	0.626	-	3.2	20	104	0
Diisopropyl ether	0.88	0.904	-	-2.7	20	109	0
1,1-Dichloroethane	0.522	0.551	-	-5.6	20	110	0
Ethyl tert-butyl ether	0.825	0.774	-	6.2	20	102	0
cis-1,2-Dichloroethene	0.325	0.307	-	5.5	20	100	01
2,2-Dichloropropane	0.461	0.471		-2.2	20	118	0
Bromochloromethane	0.155	0.141		9	20	96	01
Chloroform	0.534	0.535	-	-0.2	20	105	0
Carbon tetrachloride	0.468	0.454	•	3	20	110	0
Tetrahydrofuran	0.074	0.082		-10.8	20	113	02
Dibromofluoromethane	0.29	0.082		-0.7	20	103	0
1,1,1-Trichloroethane	0.487	0.488		-0.7	20	103	0
2-Butanone					20	109	0
	0.104 0.422	0.1 0.414	-	3.8	20	106	
1,1-Dichloropropene			-	1.9			0
Benzene	1.218	1.153	-	5.3	20	104	0
tert-Amyl methyl ether	0.777	0.707	-	9	20	98	0
1,2-Dichloroethane-d4	0.295	0.307	-	-4.1	20	112	0
1,2-Dichloroethane	0.38	0.366	-	3.7	20	107	0
Trichloroethene	0.338	0.31	-	8.3	20	106	0
Dibromomethane	0.186	0.183	-	1.6	20	103	0
1,2-Dichloropropane	0.296	0.296	-	0	20	108	01
Bromodichloromethane	0.444	0.445	-	-0.2	20	106	0
1,4-Dioxane	0.0018	0.00205*	-	-13.9	20	117	0
cis-1,3-Dichloropropene	0.504	0.472	-	6.3	20	103	0
Chlorobenzene-d5	1	1	-	0	20	105	0
Toluene-d8	1.222	1.217	-	0.4	20	104	0
Toluene	0.926	0.809	-	12.6	20	98	0
4-Methyl-2-pentanone	0.091	0.078*	-	14.3	20	96	0
Tetrachloroethene	0.392	0.33	-	15.8	20	99	0
trans-1,3-Dichloropropene	0.54	0.514	-	4.8	20	106	0
1,1,2-Trichloroethane	0.249	0.235	-	5.6	20	96	0
Chlorodibromomethane	0.379	0.319	-	15.8	20	92	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1804136 **Project Name** : 125-131 SUMNER STREET Project Number : 129204-005

Instrument ID : VOA116 Calibration Date : 02/07/18 04:22

: V16180207A04 Init. Calib. Date(s) : 01/25/18 Lab File ID 01/25/18 Sample No : WG1087214-2 Init. Calib. Times : 06:02 09:49

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.497	0.482	-	3	20	104	0
1,2-Dibromoethane	0.292	0.261	-	10.6	20	96	01
2-Hexanone	0.172	0.154	-	10.5	20	99	0
Chlorobenzene	1.045	0.906	-	13.3	20	96	0
Ethylbenzene	1.81	1.574	-	13	20	99	0
1,1,1,2-Tetrachloroethane	0.392	0.329	-	16.1	20	92	0
p/m Xylene	20	17.18	-	14.1	20	98	0
o Xylene	20	16.846	-	15.8	20	96	0
Styrene	20	15.977	-	20.1*	20	95	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	105	0
Bromoform	10	7.926	-	20.7*	20	96	0
Isopropylbenzene	3.519	3.099	-	11.9	20	98	0
4-Bromofluorobenzene	0.809	0.894	-	-10.5	20	108	0
Bromobenzene	0.774	0.679	-	12.3	20	92	01
n-Propylbenzene	4.217	3.93	-	6.8	20	103	0
1,1,2,2-Tetrachloroethane	0.661	0.66	-	0.2	20	104	0
2-Chlorotoluene	2.604	2.401	-	7.8	20	101	0
1,3,5-Trimethylbenzene	2.872	2.567	-	10.6	20	101	0
1,2,3-Trichloropropane	0.521	0.516	-	1	20	103	0
4-Chlorotoluene	2.318	2.133	-	8	20	102	0
tert-Butylbenzene	2.364	1.789	-	24.3*	20	89	0
1,2,4-Trimethylbenzene	2.821	2.497	-	11.5	20	99	0
sec-Butylbenzene	3.424	3.158	-	7.8	20	104	0
p-Isopropyltoluene	10	7.799	-	22*	20	98	0
1,3-Dichlorobenzene	1.568	1.334	-	14.9	20	94	0
1,4-Dichlorobenzene	1.574	1.368	-	13.1	20	96	0
n-Butylbenzene	2.692	2.567	-	4.6	20	109	0
1,2-Dichlorobenzene	1.442	1.233	-	14.5	20	95	0
1,2-Dibromo-3-chloropropan	0.095	0.091	-	4.2	20	98	0
Hexachlorobutadiene	0.238	0.207	-	13	20	103	0
1,2,4-Trichlorobenzene	0.84	0.689	-	18	20	95	0
Naphthalene	2.119	1.776	-	16.2	20	90	0
1,2,3-Trichlorobenzene	0.754	0.6	-	20.4*	20	89	0
<u> </u>							

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1815179

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Teresa Cooper Phone: (617) 886-7358

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Report Date: 05/02/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1815179 **Report Date:** 05/02/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1815179-01	B101 (MW)_20180427	WATER	EAST BOSTON, MA	04/27/18 11:35	04/27/18
L1815179-02	A2(OW)_20180427	WATER	EAST BOSTON, MA	04/27/18 08:30	04/27/18
L1815179-03	C2(OW)_20180427	WATER	EAST BOSTON, MA	04/27/18 09:45	04/27/18
L1815179-04	TRIP BLANK	WATER	EAST BOSTON, MA	04/27/18 00:00	04/27/18

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Project Number: 129204-005 Report Date: 05/02/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status									
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES								
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO								
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES								

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1815179-01 through -04 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0026), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1815179-01 through -04 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/02/18

Custen Walker Cristin Walker

ORGANICS

VOLATILES

L1815179

04/27/18 11:35

Not Specified

04/27/18

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Report Date: 05/02/18

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L1815179-01

Client ID: B101 (MW)_20180427 Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 05/02/18 11:23

Analyst: **MKS**

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough L	.ab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1815179

05/02/18

Project Name: 125-131 SUMNER STREET

L1815179-01

B101 (MW)_20180427

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 04/27/18 11:35

Lab Number:

Report Date:

Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Project Number: 129204-005 **Report Date:** 05/02/18

SAMPLE RESULTS

Lab ID: L1815179-01 Date Collected: 04/27/18 11:35

Client ID: B101 (MW)_20180427 Date Received: 04/27/18 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	103	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	89	70-130	
Dibromofluoromethane	105	70-130	

L1815179

04/27/18 08:30

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Report Date: 05/02/18

Lab Number:

Date Collected:

Lab ID: L1815179-02

Client ID: A2(OW)_20180427 Sample Location: EAST BOSTON, MA Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 05/02/18 11:56

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1815179

05/02/18

Project Name: 125-131 SUMNER STREET

L1815179-02

A2(OW)_20180427

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 04/27/18 08:30

Date Received: 04/27/18

Lab Number:

Report Date:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Project Number: 129204-005 **Report Date:** 05/02/18

SAMPLE RESULTS

Lab ID: L1815179-02 Date Collected: 04/27/18 08:30

Client ID: A2(OW)_20180427 Date Received: 04/27/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westbore	ough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	99	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	94	70-130	
Dibromofluoromethane	101	70-130	

04/27/18 09:45

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Lab Number: L1815179

Report Date: 05/02/18

Date Collected:

Lab ID: L1815179-03

Client ID: C2(OW)_20180427 Sample Location: EAST BOSTON, MA Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 05/02/18 12:30

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.40		1
cis-1,3-Dichloropropene	ND		ug/l	0.40		1
1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1815179

05/02/18

Project Name: 125-131 SUMNER STREET

L1815179-03

C2(OW)_20180427

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Date Collected: 04/27/18 09:45

Lab Number:

Report Date:

Date Received: 04/27/18 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	gh Lab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Project Number: 129204-005 **Report Date:** 05/02/18

SAMPLE RESULTS

Lab ID: L1815179-03 Date Collected: 04/27/18 09:45

Client ID: C2(OW)_20180427 Date Received: 04/27/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ugh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	97	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	99	70-130	
Dibromofluoromethane	104	70-130	

L1815179

04/27/18 00:00

Not Specified

04/27/18

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

SAMPLE RESULTS

Lab Number:

Date Collected:

Date Received:

Field Prep:

Report Date: 05/02/18

Lab ID: L1815179-04

Client ID: TRIP BLANK

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 05/02/18 05:27

Analyst: MM

1,1-Dichloroethane	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
1.1-Dichloroethane	MCP Volatile Organics - Westborough La	nb					
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1.2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 Trichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 Bromochloromethane ND ug/l 1.0 1 Bromochloromethane ND ug/l 0.40 1 Bromochloropropene ND ug/l 0.40 1	Methylene chloride	ND		ug/l	2.0		1
Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofutorethane ND ug/l 2.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,2-Dichloroptropena ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 0.40 1 Bromodichloromethane ND ug/l 0.40 1 1,1-1-Trichloroethane ND ug/l 0.40 1 Bromodichloromethane ND ug/l 0.40 <	1,1-Dichloroethane	ND		ug/l	1.0		1
1,2-Dichloropropane ND Ug/l 1.0 1 1 1,12-Trichloroethane ND Ug/l 1.0 1 1 1,11-Trichloroethane ND Ug/l 1.0 1 1 1 1 1 1 1 1	Chloroform	ND		ug/l	1.0		1
Dibromochloromethane ND	Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	1,2-Dichloropropane	ND		ug/l	1.0		1
Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 Itrans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 <t< td=""><td>Dibromochloromethane</td><td>ND</td><td></td><td>ug/l</td><td>1.0</td><td></td><td>1</td></t<>	Dibromochloromethane	ND		ug/l	1.0		1
Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.40 1 trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 0.40 1 Bromoform ND ug/l 0.40 1 1,1-1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1	1,1,2-Trichloroethane	ND		ug/l	1.0		1
Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 0.40 1 1,1-Trichloropropene ND ug/l 2.0 1 1,1-Trichloropropene ND ug/l 2.0 1 1,1-Trichloropropene ND ug/l 1.0 1 1,1-Trichloropropene ND ug/l 1.0 1 1 1,1-Trichloropropene ND ug/l 1.0 1 1 1 1,1-Trichloropropene ND ug/l 2.0 1 1 1 1 1 1 1 1	Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 V	Chlorobenzene	ND		ug/l	1.0		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1
Bromodichloromethane ND ug/l 1.0 1	1,2-Dichloroethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene ND ug/l 0.40 1 cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene, Total ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 Bromoform ND ug/l 1.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-D	1,1,1-Trichloroethane	ND		ug/l	1.0		1
cis-1,3-Dichloropropene ND ug/l 0.40 1 1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Bromodichloromethane	ND		ug/l	1.0		1
1,3-Dichloropropene, Total ND ug/l 0.40 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Winyl chloride ND ug/l 2.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 2.0 1	trans-1,3-Dichloropropene	ND		ug/l	0.40		1
1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 2.0 1	cis-1,3-Dichloropropene	ND		ug/l	0.40		1
ND	1,3-Dichloropropene, Total	ND		ug/l	0.40		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1
ND	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Toluene	ND		ug/l	1.0		1
Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1
1,1-Dichloroethene ND ug/l 1.0 1	Vinyl chloride	ND		ug/l	1.0		1
	Chloroethane	ND		ug/l	2.0		1
trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1-Dichloroethene	ND		ug/l	1.0		1
	trans-1,2-Dichloroethene	ND		ug/l	1.0		1

L1815179

05/02/18

Project Name: 125-131 SUMNER STREET

L1815179-04

TRIP BLANK

EAST BOSTON, MA

Project Number: 129204-005

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 04/27/18 00:00

Date Received: 04/27/18 Field Prep: Not Specified

Sample Location:

Lab ID:

Client ID:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough La	ab					
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1815179

Project Number: 129204-005 **Report Date:** 05/02/18

SAMPLE RESULTS

Lab ID: L1815179-04 Date Collected: 04/27/18 00:00

Client ID: TRIP BLANK Date Received: 04/27/18
Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough L	_ab						
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	101	70-130	

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-005 **Report Date:** 05/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 05/02/18 04:53

Analyst: MM

MCP Volatile Organics - Westborough Lab for sample(s): 01-04 Batch: WG1111697-5 Methylene chloride ND ug/l 2.0 1,1-Dichloroethane ND ug/l 1.0 Chloroform ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroptomethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene, Total	Parameter	Result	Qualifier	Units	RI	L MDL
1,1-Dichloroethane	MCP Volatile Organics	- Westborough Lab for	sample(s):	01-04	Batch:	WG1111697-5
1,1-Dichloroethane	Methylene chloride	ND		ua/l	2.0	0
Chloroform ND ug/l 1.0 Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
Carbon tetrachloride ND ug/l 1.0 1,2-Dichloropropane ND ug/l 1.0 Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethane ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 8romodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l						
1,2-Dichloropropane ND						
Dibromochloromethane ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.0 Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene, Total ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l <td>1,2-Dichloropropane</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,2-Dichloropropane					
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichloroftuoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0		ND			1.0	0
Tetrachloroethene ND ug/l 1.0 Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0	1,1,2-Trichloroethane	ND		ug/l	1.0	0
Chlorobenzene ND ug/l 1.0 Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 0.40 trans-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene, Total ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 <		ND			1.0	0
Trichlorofluoromethane ND ug/l 2.0 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 Bromodichloromethane ND ug/l 1.0 trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 2.0 Bromoform ND ug/l 2.0 Bromoform ND ug/l 1.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 2.0 Ethylbenzene ND ug/l 2.0 Bromomethane ND ug/l 2.0	Chlorobenzene	ND			1.0	0
1,1,1-Trichloroethane	Trichlorofluoromethane	ND			2.0	0
1,1,1-Trichloroethane	1,2-Dichloroethane	ND		ug/l	1.0	0
trans-1,3-Dichloropropene ND ug/l 0.40 cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Sromomethane ND ug/l 1.0 Chloromethane ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Sromomethane ND ug/l 2.0 Sromomethane ND ug/l 2.0 Uinyl chloride ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Uinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 Uinyl chloroethene ND ug/l 1.0	1,1,1-Trichloroethane	ND		ug/l	1.0	0
cis-1,3-Dichloropropene ND ug/l 0.40 1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromodichloromethane	ND		ug/l	1.0	0
1,3-Dichloropropene, Total ND ug/l 0.40 1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	trans-1,3-Dichloropropene	ND		ug/l	0.4	04
1,1-Dichloropropene ND ug/l 2.0 Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	cis-1,3-Dichloropropene	ND		ug/l	0.4	01
Bromoform ND ug/l 2.0 1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,3-Dichloropropene, Total	l ND		ug/l	0.4	04
1,1,2,2-Tetrachloroethane ND ug/l 1.0 Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1-Dichloropropene	ND		ug/l	2.0	0
Benzene ND ug/l 0.50 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromoform	ND		ug/l	2.0	0
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	0
Ethylbenzene ND ug/l 1.0 Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Benzene	ND		ug/l	0.5	50
Chloromethane ND ug/l 2.0 Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Toluene	ND		ug/l	1.0	0
Bromomethane ND ug/l 2.0 Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Ethylbenzene	ND		ug/l	1.0	0
Vinyl chloride ND ug/l 1.0 Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Chloromethane	ND		ug/l	2.0	0
Chloroethane ND ug/l 2.0 1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Bromomethane	ND		ug/l	2.0	0
1,1-Dichloroethene ND ug/l 1.0 trans-1,2-Dichloroethene ND ug/l 1.0	Vinyl chloride	ND		ug/l	1.0	0
trans-1,2-Dichloroethene ND ug/l 1.0	Chloroethane	ND		ug/l	2.0	0
<u>`</u>	1,1-Dichloroethene	ND		ug/l	1.0	0
Trichloroethene ND ug/l 1.0	trans-1,2-Dichloroethene	ND		ug/l	1.0	0
	Trichloroethene	ND		ug/l	1.0	0

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-005 **Report Date:** 05/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 05/02/18 04:53

Analyst: MM

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics - Westbo	orough Lab for	sample(s):	01-04	Batch: V	VG1111697-5
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	2.0	
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0	
1,2-Dichloroethene (total)	ND		ug/l	1.0	
Dibromomethane	ND		ug/l	2.0	
1,2,3-Trichloropropane	ND		ug/l	2.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	2.0	
2-Butanone	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	2.0	
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	2.0	
1,2-Dibromoethane	ND		ug/l	2.0	
1,3-Dichloropropane	ND		ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	
Bromobenzene	ND		ug/l	2.0	
n-Butylbenzene	ND		ug/l	2.0	
sec-Butylbenzene	ND		ug/l	2.0	
tert-Butylbenzene	ND		ug/l	2.0	
o-Chlorotoluene	ND		ug/l	2.0	

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005 **Report Date:** 05/02/18

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 05/02/18 04:53

Analyst: MM

arameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Wes	tborough Lab for	sample(s):	01-04	Batch: WG1	111697-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	101	70-130
Toluene-d8	95	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	103	70-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1815179

Report Date: 05/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG111	1697-3	WG1111697-4			
Methylene chloride	100		92		70-130	8	20	
1,1-Dichloroethane	94		94		70-130	0	20	
Chloroform	95		97		70-130	2	20	
Carbon tetrachloride	99		98		70-130	1	20	
1,2-Dichloropropane	90		92		70-130	2	20	
Dibromochloromethane	95		98		70-130	3	20	
1,1,2-Trichloroethane	92		93		70-130	1	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	94		93		70-130	1	20	
Trichlorofluoromethane	110		110		70-130	0	20	
1,2-Dichloroethane	94		99		70-130	5	20	
1,1,1-Trichloroethane	100		100		70-130	0	20	
Bromodichloromethane	94		95		70-130	1	20	
trans-1,3-Dichloropropene	93		96		70-130	3	20	
cis-1,3-Dichloropropene	91		93		70-130	2	20	
1,1-Dichloropropene	94		93		70-130	1	20	
Bromoform	93		96		70-130	3	20	
1,1,2,2-Tetrachloroethane	93		93		70-130	0	20	
Benzene	87		89		70-130	2	20	
Toluene	93		91		70-130	2	20	
Ethylbenzene	95		94		70-130	1	20	
Chloromethane	87		90		70-130	3	20	
Bromomethane	98		94		70-130	4	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1815179

Report Date: 05/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG111	1697-3	WG1111697-4			
Vinyl chloride	100		100		70-130	0	20	
Chloroethane	110		100		70-130	10	20	
1,1-Dichloroethene	100		100		70-130	0	20	
trans-1,2-Dichloroethene	99		97		70-130	2	20	
Trichloroethene	98		99		70-130	1	20	
1,2-Dichlorobenzene	96		98		70-130	2	20	
1,3-Dichlorobenzene	97		97		70-130	0	20	
1,4-Dichlorobenzene	98		96		70-130	2	20	
Methyl tert butyl ether	93		98		70-130	5	20	
p/m-Xylene	100		115		70-130	14	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	94		96		70-130	2	20	
Dibromomethane	98		96		70-130	2	20	
1,2,3-Trichloropropane	92		92		70-130	0	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	96		95		70-130	1	20	
Acetone	140	Q	130		70-130	7	20	
Carbon disulfide	93		96		70-130	3	20	
2-Butanone	99		100		70-130	1	20	
4-Methyl-2-pentanone	95		100		70-130	5	20	
2-Hexanone	95		93		70-130	2	20	
Bromochloromethane	100		99		70-130	1	20	
Tetrahydrofuran	93		99		70-130	6	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1815179

Report Date: 05/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-04	Batch: WG111	1697-3	WG1111697-4			
2,2-Dichloropropane	100		100		70-130	0	20	
1,2-Dibromoethane	96		96		70-130	0	20	
1,3-Dichloropropane	94		92		70-130	2	20	
1,1,1,2-Tetrachloroethane	95		96		70-130	1	20	
Bromobenzene	98		93		70-130	5	20	
n-Butylbenzene	81		82		70-130	1	20	
sec-Butylbenzene	93		93		70-130	0	20	
tert-Butylbenzene	94		93		70-130	1	20	
o-Chlorotoluene	91		90		70-130	1	20	
p-Chlorotoluene	94		92		70-130	2	20	
1,2-Dibromo-3-chloropropane	96		99		70-130	3	20	
Hexachlorobutadiene	100		100		70-130	0	20	
Isopropylbenzene	96		93		70-130	3	20	
p-Isopropyltoluene	92		92		70-130	0	20	
Naphthalene	82		88		70-130	7	20	
n-Propylbenzene	93		90		70-130	3	20	
1,2,3-Trichlorobenzene	88		94		70-130	7	20	
1,2,4-Trichlorobenzene	90		96		70-130	6	20	
1,3,5-Trimethylbenzene	93		91		70-130	2	20	
1,2,4-Trimethylbenzene	90		90		70-130	0	20	
Ethyl ether	98		95		70-130	3	20	
Isopropyl Ether	91		91		70-130	0	20	
Ethyl-Tert-Butyl-Ether	95		96		70-130	1	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number:

L1815179

Report Date:

05/02/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Limits
MCP Volatile Organics - Westborough Lab	Associated samp	le(s): 01-04	Batch: WG11	11697-3 W	VG1111697-4		
Tertiary-Amyl Methyl Ether	92		96		70-130	4	20
1,4-Dioxane	104		104		70-130	0	20

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	97	99	70-130
Toluene-d8	99	97	70-130
4-Bromofluorobenzene	96	94	70-130
Dibromofluoromethane	102	101	70-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-005

Lab Number: L1815179 **Report Date:** 05/02/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation			Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815179-01A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-01B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-01C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-02A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-02B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-02C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-03A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-03B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-03C	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-04A	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)
L1815179-04B	Vial HCl preserved	Α	NA		3.8	Υ	Absent		MCP-8260-10(14)

Project Name: 125-131 SUMNER STREET Lab Number: L1815179
Project Number: 129204-005 Report Date: 05/02/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:125-131 SUMNER STREETLab Number:L1815179Project Number:129204-005Report Date:05/02/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 125-131 SUMNER STREET
 Lab Number:
 L1815179

 Project Number:
 129204-005
 Report Date:
 05/02/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 H&A Information H&A Client: WinnDeve H&A Address: 465 Medfo Suite 2200 H&A Phone: 617-886-7 H&A Fax:	ord Street	Service Centers Brewer, ME 04412 Portan Albany, NY 12205 Tonawanda, NY 14150 Holm Project Information Project Name: Project Location: Project # (Use Project name as P Project Manager: ALPHAQuote #: Turn-Around Time	125-131 St East Bosto 129204-000 Project #)			e /		erables		Fax EQuIS (4 File) ogram/Criteria)	ALPHA Job # L 1 S 1 5 1 7 9 Billing Information Same as Client Info Po # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility:	
	haleyaldrich.com	Rush (only if pre approve	The second second	# of Days			Note:	Select State from	manu 8 id	loctify oritoria	□ NJ □ NY	
These samples have been	CONTRACTOR OF THE PARTY OF THE			# Of Days	s. 5 Day		_	LYSIS	menu & ic	entity citteria.	Sample Filtration	
Other project specific red		;					1. VOCs				□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)	0 + a - B 0 + +
ALPHA Lab ID	Sa	mple ID	Col	lection	Sample	Sampler's	1					1
(Lab Use Only)	0.0	mple 15	Date	Time	Matrix	Initials					Sample Specific Comments	- 0
15179-01	B101(MW)_20180427	7	4/27/2018	1135	GW	on	Х					3
02	A2(OW)_20180427		4/27/2018	0830	GW	ow	х					3
0.5	C2(OW)_20180427		4/27/2018	0945	GW	AND	Х		110			3
04	TRIP BLANK		4/27/2018		GW		X					2
												\pm
Preservative Code:	Container Code	Westboro: Certification N	lo: MA935						+		Please print clearly, legibly an	
A = None B = HCI $C = HNO_3$ $D = H_2SO_4$ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification N	lo: MA015	*		tainer Type reservative	AV B				completely. Samples can not l logged in and turnaround time will not start until any ambigui are resolved. Alpha Analytical's services under this Chain of Cus	e clock ities 's
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished And		Date/ 4/27/18	612	Middle	1	ed By:	4/12	Date/Time 18 16 3 v 1/18 / C50	shall be performed in accordance terms and conditions within Blan Service Agreement# 2015-18-Al Analytical by and between Haley Aldrich, Inc., its subsidiaries and	ce with nket lpha y &
Document ID: 20455 Rev 1 (1/2	8/2016)	10000- 151		4/27/18	1910	00			110	IID CCC	affiliates and Alpha Analytical.	

Method Blank Summary Form 4 VOLATILES

Client : Haley & Aldrich, Inc. Lab Number : L1815179
Project Name : 125-131 SUMNER STREET Project Number : 129204-005
Lab Sample ID : WG1111697-5 Lab File ID : VJ180502A08

Instrument ID : JACK Matrix : WATER

Analysis Date : 05/02/18 04:53

Client Sample No.	Lab Sample ID	Analysis Date
WG1111697-3LCS	WG1111697-3	05/02/18 03:13
WG1111697-4LCSD	WG1111697-4	05/02/18 03:46
TRIP BLANK	L1815179-04	05/02/18 05:27
B101 (MW)_20180427	L1815179-01	05/02/18 11:23
A2(OW)_20180427	L1815179-02	05/02/18 11:56
C2(OW) 20180427	L1815179-03	05/02/18 12:30

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1815179 **Project Name** : 125-131 SUMNER STREET Project Number : 129204-005

Instrument ID Calibration Date : JACK : 05/02/18 03:13

Init. Calib. Date(s) : 04/18/18 Lab File ID : VJ180502A02 04/18/18 Sample No : WG1111697-2 Init. Calib. Times : 07:18 11:11

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	98	0
Dichlorodifluoromethane	0.37	0.354	-	4.3	20	92	0
Chloromethane	0.674	0.587	-	12.9	20	94	0
Vinyl chloride	0.508	0.513	-	-1	20	102	0
Bromomethane	10	9.843	-	1.6	20	94	0
Chloroethane	0.251	0.268	-	-6.8	20	102	0
Trichlorofluoromethane	0.516	0.572	-	-10.9	20	109	0
Ethyl ether	0.152	0.148	-	2.6	20	100	0
1,1-Dichloroethene	0.296	0.302	-	-2	20	105	0
Carbon disulfide	0.748	0.693	-	7.4	20	98	0
Methylene chloride	0.326	0.333	-	-2.1	20	102	0
Acetone	10	14.244	-	-42.4*	20	146	0
trans-1,2-Dichloroethene	0.334	0.332	-	0.6	20	98	0
Methyl tert-butyl ether	0.843	0.786	-	6.8	20	89	0
Diisopropyl ether	1.938	1.758	-	9.3	20	90	0
1,1-Dichloroethane	0.883	0.828	-	6.2	20	92	0
Ethyl tert-butyl ether	1.529	1.449	-	5.2	20	94	0
cis-1,2-Dichloroethene	0.415	0.391	-	5.8	20	92	0
2,2-Dichloropropane	0.635	0.656	-	-3.3	20	98	0
Bromochloromethane	0.171	0.173	-	-1.2	20	101	0
Chloroform	0.721	0.688	-	4.6	20	94	0
Carbon tetrachloride	0.566	0.562	-	0.7	20	103	0
Tetrahydrofuran	0.126	0.117	-	7.1	20	89	0
Dibromofluoromethane	0.233	0.237	-	-1.7	20	98	0
1,1,1-Trichloroethane	0.662	0.663	-	-0.2	20	101	0
2-Butanone	0.177	0.176	-	0.6	20	106	0
1,1-Dichloropropene	0.611	0.572	-	6.4	20	100	0
Benzene	1.756	1.534	-	12.6	20	90	0
tert-Amyl methyl ether	1.036	0.955	-	7.8	20	95	0
1,2-Dichloroethane-d4	0.312	0.303	-	2.9	20	96	0
1,2-Dichloroethane	0.619	0.58	-	6.3	20	94	0
Trichloroethene	0.429	0.419	-	2.3	20	100	0
Dibromomethane	0.206	0.202	-	1.9	20	100	0
1,2-Dichloropropane	0.499	0.449	-	10	20	89	01
Bromodichloromethane	0.533	0.499	-	6.4	20	95	0
1,4-Dioxane	0.00241	0.0025*	-	-3.7	20	103	0
cis-1,3-Dichloropropene	0.686	0.624	-	9	20	93	0
Chlorobenzene-d5	1	1	-	0	20	100	0
Toluene-d8	1.25	1.243	-	0.6	20	101	0
Toluene	1.419	1.32	-	7	20	97	0
4-Methyl-2-pentanone	0.162	0.154	-	4.9	20	95	0
Tetrachloroethene	0.56	0.558	-	0.4	20	107	0
trans-1,3-Dichloropropene	0.748	0.697	-	6.8	20	96	0
1,1,2-Trichloroethane	0.327	0.3	-	8.3	20	97	0
Chlorodibromomethane	0.433	0.413	-	4.6	20	98	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1815179 **Project Name** : 125-131 SUMNER STREET Project Number : 129204-005 Calibration Date : 05/02/18 03:13

Instrument ID : JACK

Lab File ID : VJ180502A02 Init. Calib. Date(s) : 04/18/18 04/18/18 Sample No : WG1111697-2 Init. Calib. Times : 07:18 11:11

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(mir
1,3-Dichloropropane	0.697	0.656	-	5.9	20	96	0
1,2-Dibromoethane	0.382	0.368	-	3.7	20	99	01
2-Hexanone	0.336	0.32	-	4.8	20	105	0
Chlorobenzene	1.481	1.395	-	5.8	20	98	0
Ethylbenzene	2.776	2.644	-	4.8	20	99	02
1,1,1,2-Tetrachloroethane	0.526	0.498	-	5.3	20	96	01
p/m Xylene	0.908	0.908	-	0	20	97	02
o Xylene	0.955	0.904	-	5.3	20	98	02
Styrene	1.557	1.53	-	1.7	20	100	02
1,4-Dichlorobenzene-d4	1	1	-	0	20	104	02
Bromoform	0.456	0.425	-	6.8	20	101	02
Isopropylbenzene	4.93	4.747	-	3.7	20	104	02
4-Bromofluorobenzene	0.959	0.924	-	3.6	20	100	01
Bromobenzene	1.062	1.037	-	2.4	20	101	02
n-Propylbenzene	5.801	5.414	-	6.7	20	100	02
1,1,2,2-Tetrachloroethane	0.805	0.752	-	6.6	20	102	02
2-Chlorotoluene	3.898	3.566	-	8.5	20	98	02
1,3,5-Trimethylbenzene	3.914	3.638	-	7.1	20	103	02
1,2,3-Trichloropropane	0.713	0.656	-	8	20	101	02
4-Chlorotoluene	3.57	3.338	-	6.5	20	99	02
tert-Butylbenzene	3.361	3.173	-	5.6	20	105	02
1,2,4-Trimethylbenzene	3.762	3.388	-	9.9	20	98	02
sec-Butylbenzene	4.445	4.149	-	6.7	20	105	02
p-Isopropyltoluene	3.962	3.662	-	7.6	20	104	02
1,3-Dichlorobenzene	2.045	1.979	-	3.2	20	104	02
1,4-Dichlorobenzene	2.025	1.99	-	1.7	20	106	02
n-Butylbenzene	10	8.142	-	18.6	20	100	02
1,2-Dichlorobenzene	1.879	1.809	-	3.7	20	103	02
1,2-Dibromo-3-chloropropan	0.13	0.124	-	4.6	20	106	01
Hexachlorobutadiene	0.347	0.36	-	-3.7	20	115	0
1,2,4-Trichlorobenzene	0.856	0.773	-	9.7	20	100	01
Naphthalene	1.826	1.499	-	17.9	20	92	01
1,2,3-Trichlorobenzene	0.757	0.665	-	12.2	20	96	01

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1909859

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Denis Bell

Phone: (617) 886-7300

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Report Date: 03/19/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date:

03/19/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1909859-01	B101 (MW)	WATER	EAST BOSTON, MA	03/13/19 12:30	03/13/19

Project Name: CLIPPERSHIP APTS Lab Number:

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: CLIPPERSHIP APTS Lab Number: L1909859

Case Narrative (continued)

Microextractables

WG1217014: Due to the changeover to Daylight Savings Time, the samples in this batch were analyzed one hour later than indicated on the report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 03/19/19

600, Sew Kelly Stenstrom

ORGANICS

VOLATILES

03/13/19 12:30

Refer to COC

03/13/19

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

SAMPLE RESULTS

Lab Number: L1909859

Date Collected:

Date Received:

Field Prep:

Report Date: 03/19/19

Lab ID: L1909859-01

Client ID: B101 (MW)

Sample Location: EAST BOSTON, MA

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 03/14/19 16:58

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	stborough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: CLIPPERSHIP APTS Lab Number: L1909859

Project Number: 129204-009 **Report Date:** 03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Date Collected: 03/13/19 12:30

Client ID: B101 (MW) Date Received: 03/13/19
Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	112		60-140	
Fluorobenzene	100		60-140	
4-Bromofluorobenzene	98		60-140	

L1909859

03/19/19

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

L1909859-01

EAST BOSTON, MA

B101 (MW)

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 03/13/19 12:30

Date Received: 03/13/19 Field Prep: Refer to COC

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 03/14/19 16:58

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	- Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance iteria
Fluorobenzene			116		(60-140
4-Bromofluorobenzene			92		(60-140

Project Name: CLIPPERSHIP APTS Lab Number: L1909859

Project Number: 129204-009 **Report Date:** 03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Date Collected: 03/13/19 12:30

Client ID: B101 (MW) Date Received: 03/13/19
Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14.504.1 Extraction Date: 03/19/19 08:59

Analytical Method: 14,504.1 Extraction Date: 03/19/19 08:59
Analytical Date: 03/19/19 09:33

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 03/14/19 10:46

Analyst: GT

Parameter	Result	Qualifier L	Inits	RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1216008-4
Methylene chloride	ND		ug/l	1.0	
1,1-Dichloroethane	ND		ug/l	1.5	
Carbon tetrachloride	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.5	
Tetrachloroethene	ND		ug/l	1.0	
1,2-Dichloroethane	ND		ug/l	1.5	
1,1,1-Trichloroethane	ND		ug/l	2.0	
Benzene	ND		ug/l	1.0	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Vinyl chloride	ND		ug/l	1.0	
1,1-Dichloroethene	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	
1,2-Dichlorobenzene	ND		ug/l	5.0	
1,3-Dichlorobenzene	ND		ug/l	5.0	
1,4-Dichlorobenzene	ND		ug/l	5.0	
p/m-Xylene	ND		ug/l	2.0	
o-xylene	ND		ug/l	1.0	
Xylenes, Total	ND		ug/l	1.0	
Acetone	ND		ug/l	10	
Methyl tert butyl ether	ND		ug/l	10	
Tert-Butyl Alcohol	ND		ug/l	100	
Tertiary-Amyl Methyl Ether	ND		ug/l	20	

Lab Number:

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009 **Report Date:** 03/19/19

Report Date: 03/19/1

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 03/14/19 10:46

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	stborough La	ab for sampl	le(s): 01	Batch: WO	G1216008-4	

		Acceptance
Surrogate	%Recovery Quality	fier Criteria
Pentafluorobenzene	112	60-140
Feritaliuoroberizerie	112	60-140
Fluorobenzene	101	60-140
4-Bromofluorobenzene	95	60-140

Project Name: CLIPPERSHIP APTS Lab Number:

Project Number: 129204-009 **Report Date:** 03/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 03/14/19 10:46

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1216017-4	
1,4-Dioxane	ND		ug/l		50		

	Acceptance						
Surrogate	%Recovery Qualifi	er Criteria					
Fluorobenzene	117	60-140					
4-Bromofluorobenzene	93	60-140					

L1909859

Project Name: CLIPPERSHIP APTS Lab Number:

Project Number: 129204-009 **Report Date:** 03/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 03/19/19 08:51 Extraction Date: 03/19/19 08:59

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westboro	ough Lab for	sample(s):	01	Batch: WG1217	7014-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	216008-3				
Methylene chloride	110		-		60-140	-		28
1,1-Dichloroethane	110		-		50-150	-		49
Carbon tetrachloride	110		-		70-130	-		41
1,1,2-Trichloroethane	100		-		70-130	-		45
Tetrachloroethene	95		-		70-130	-		39
1,2-Dichloroethane	120		-		70-130	-		49
1,1,1-Trichloroethane	115		-		70-130	-		36
Benzene	115		-		65-135	-		61
Toluene	100		-		70-130	-		41
Ethylbenzene	100		-		60-140	-		63
Vinyl chloride	105		-		5-195	-		66
1,1-Dichloroethene	110		-		50-150	-		32
cis-1,2-Dichloroethene	105		-		60-140	-		30
Trichloroethene	110		-		65-135	-		48
1,2-Dichlorobenzene	95		-		65-135	-		57
1,3-Dichlorobenzene	90		-		70-130	-		43
1,4-Dichlorobenzene	90		-		65-135	-		57
p/m-Xylene	92		-		60-140	-		30
o-xylene	90		-		60-140	-		30
Acetone	108		-		40-160	-		30
Methyl tert butyl ether	110		-		60-140	-		30
Tert-Butyl Alcohol	120		-		60-140	-		30
Tertiary-Amyl Methyl Ether	115		-		60-140	-		30

CLIPPERSHIP APTS

Lab Number:

L1909859

Project Number:

Project Name:

129204-009

Report Date:

03/19/19

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Parameter Qual Qual Limits RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1216008-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	112			60-140
Fluorobenzene	104			60-140
4-Bromofluorobenzene	96			60-140

Lab Number:

L1909859

Project Number:

Project Name:

129204-009

CLIPPERSHIP APTS

Report Date:

03/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1216017-	3				_
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	117 93			60-140 60-140

Project Name: CLIPPERSHIP APTS

Lab Number:

L1909859

Project Number: 129204-009 Report Date:

03/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	ple(s): 01	Batch: WG1217	7014-2					
1,2-Dibromoethane	104		-		80-120	-			А

Matrix Spike Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date:

03/19/19

Parameter	Native Sample	MS Added	MS Found %	MS 6Recoverv	Qual	MSD Found	MSD %Recovery	R Qual	ecovery Limits	RPD	RPD Qual Limits	Column
Microextractables by GC -		Associate	ed sample(s): 01			17014-3	QC Sample:				IS Sample	<u> </u>
1,2-Dibromoethane	ND	0.25	0.275	110		-	-		80-120	-	20	А
1,2-Dibromo-3-chloropropane	ND	0.25	0.269	108		-	-		80-120	-	20	Α

SEMIVOLATILES

Project Name: CLIPPERSHIP APTS Lab Number: L1909859

Project Number: 129204-009 **Report Date:** 03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Date Collected: 03/13/19 12:30

Client ID: B101 (MW) Date Received: 03/13/19
Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 03/16/19 13:06

Analytical Date: 03/18/19 05:01

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - \	Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	75	46-121
4-Terphenyl-d14	79	47-138

Project Name: Lab Number: **CLIPPERSHIP APTS** L1909859

Project Number: 129204-009 **Report Date:** 03/19/19

SAMPLE RESULTS

Lab ID: Date Collected: L1909859-01 03/13/19 12:30

Date Received: Client ID: 03/13/19 B101 (MW)

Sample Location: Field Prep: EAST BOSTON, MA Refer to COC

Sample Depth:

Parameter

Extraction Method: EPA 625.1 Matrix: Water

Result

Extraction Date: 03/16/19 13:07 Analytical Method: 129,625.1-SIM Analytical Date: 03/17/19 15:47

Analyst: DV

Parameter	Result	Qualifier	Units	KL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SI	M - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	1.0		1	

Qualifier

Units

RL

MDL

Dilution Factor

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	50	25-87	
Phenol-d6	35	16-65	
Nitrobenzene-d5	90	42-122	
2-Fluorobiphenyl	75	46-121	
2,4,6-Tribromophenol	79	45-128	
4-Terphenyl-d14	77	47-138	

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 129,625.1

Analyst:

03/18/19 04:11

SZ

Extraction Method: EPA 625.1 Extraction Date: 03/16/19 13:06

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1216356-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l		2.2		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		

	Acceptance					
Surrogate	%Recovery Qualifier	Criteria				
Nitrobenzene-d5	70	42-122				
2-Fluorobiphenyl	77	46-121				
4-Terphenyl-d14	83	47-138				

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 03/17/19 15:21

Analyst: DV

Extraction Method: EPA 625.1 Extraction Date: 03/16/19 13:07

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/MS	S-SIM - Westbo	rough Lab	for sample	e(s): 01	Batch: WG12163	57-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	48	25-87
Phenol-d6	34	16-65
Nitrobenzene-d5	83	42-122
2-Fluorobiphenyl	70	46-121
2,4,6-Tribromophenol	73	45-128
4-Terphenyl-d14	81	47-138

Project Name: CLIPPERSHIP APTS

Project Number:

129204-009

Lab Number:

L1909859

Report Date:

03/19/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01 Batch:	WG1216356	6-2				
Bis(2-ethylhexyl)phthalate	92		-		29-137	-		30	
Butyl benzyl phthalate	107		-		1-140	-		30	
Di-n-butylphthalate	98		-		8-120	-		30	
Di-n-octylphthalate	93		-		19-132	-		30	
Diethyl phthalate	93		-		1-120	-		30	
Dimethyl phthalate	91		-		1-120	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	72		42-122	
2-Fluorobiphenyl	80		46-121	
4-Terphenyl-d14	87		47-138	

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

arameter	LCS %Recovery Qua	LCSD MRecovery	%Recovery Qual Limits	RPD	RPD Qual Limits
semivolatile Organics by GC/MS-SIM - Wes	stborough Lab Associate	ed sample(s): 01 Batch:	WG1216357-2		
Acenaphthene	82	-	60-132	-	30
Fluoranthene	80	-	43-121	-	30
Naphthalene	74	-	36-120	-	30
Benzo(a)anthracene	84	-	42-133	-	30
Benzo(a)pyrene	86	-	32-148	-	30
Benzo(b)fluoranthene	81	-	42-140	-	30
Benzo(k)fluoranthene	81	-	25-146	-	30
Chrysene	82	-	44-140	-	30
Acenaphthylene	84	-	54-126	-	30
Anthracene	78	-	43-120	-	30
Benzo(ghi)perylene	84	-	1-195	-	30
Fluorene	88	-	70-120	-	30
Phenanthrene	74	-	65-120	-	30
Dibenzo(a,h)anthracene	88	-	1-200	-	30
Indeno(1,2,3-cd)pyrene	89	-	1-151	-	30
Pyrene	79	-	70-120	-	30
Pentachlorophenol	67	-	38-152	-	30

Project Name: CLIPPERSHIP APTS

Lab Number:

L1909859 03/19/19

Project Number: 129204-009

Report Date:

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1216357-2

Surrogate	LCS %Recovery Qual %I	LCSD Recovery	Qual	Acceptance Criteria
2-Fluorophenol	51			25-87
Phenol-d6	34			16-65
Nitrobenzene-d5	86			42-122
2-Fluorobiphenyl	73			46-121
2,4,6-Tribromophenol	75			45-128
4-Terphenyl-d14	76			47-138

PCBS

Project Name: CLIPPERSHIP APTS Lab Number: L1909859

Project Number: 129204-009 **Report Date:** 03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Date Collected: 03/13/19 12:30

Client ID: B101 (MW) Date Received: 03/13/19
Sample Location: EAST BOSTON, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 03/15/19 10:18

Analystical Date: 03/16/19 12:58

Analyst: JM

Cleanup Method: EPA 3665A

Cleanup Date: 03/16/19

Cleanup Method: EPA 3660B Cleanup Date: 03/16/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	81		37-123	В
Decachlorobiphenyl	57		38-114	В
2,4,5,6-Tetrachloro-m-xylene	90		37-123	Α
Decachlorobiphenyl	91		38-114	Α

L1909859

Lab Number:

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009 **Report Date:** 03/19/19

Method Blank Analysis
Batch Quality Control

Analytical Method: 127,608.3 Analytical Date: 03/16/19 11:44

Analyst: JM

Extraction Method: EPA 608.3
Extraction Date: 03/15/19 10:17
Cleanup Method: EPA 3665A
Cleanup Date: 03/16/19
Cleanup Method: EPA 3660B
Cleanup Date: 03/16/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01 Batch:	WG1215930)-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Accep	tanc	e
Surrogate	%Recovery Qu	alifier Crit	eria	Column
2,4,5,6-Tetrachloro-m-xylene	82	37-	123	В
Decachlorobiphenyl	61	38-	114	В
2,4,5,6-Tetrachloro-m-xylene	91	37-	123	Α
Decachlorobiphenyl	90	38-1	114	Α

Project Name: CLIPPERSHIP APTS

Lab Number:

L1909859

Project Number: 129204-009

Report Date:

03/19/19

	LCS	LCS			%Recovery				
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - W	estborough Lab Associa	ited sample(s):	01 Batch:	WG1215930-	2				
Aroclor 1016	94		-		50-140	-		36	А
Aroclor 1260	91		-		8-140	-		38	Α

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	80			37-123	В
Decachlorobiphenyl	65			38-114	В
2,4,5,6-Tetrachloro-m-xylene	88			37-123	Α
Decachlorobiphenyl	87			38-114	Α

METALS

Project Name: CLIPPERSHIP APTS

129204-009 Report Dat

Lab Number: L1909859

Report Date:

03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Client ID: B101 (MW)

Sample Location: EAST BOSTON, MA

Date Collected: 03/13/19 12:30 Date Received: 03/13/19

Field Prep: Refer to COC

Sample Depth:

Project Number:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00177		mg/l	0.00100		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Copper, Total	0.00850		mg/l	0.00100		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Iron, Total	0.898		mg/l	0.050		1	03/14/19 17:0	3 03/15/19 19:01	EPA 3005A	19,200.7	AB
Lead, Total	0.00269		mg/l	0.00100		1	03/14/19 17:0	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/18/19 15:0	7 03/18/19 22:07	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/14/19 17:03	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	03/14/19 17:0	3 03/15/19 10:42	EPA 3005A	3,200.8	AM
Total Hardness by \$	SM 2340B	- Mansfield	d Lab								
Hardness	148		mg/l	0.660	NA	1	03/14/19 17:03	3 03/15/19 19:01	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		03/15/19 10:42	NA	107,-	

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s): 01 Batc	h: WG12	215687·	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	03/14/19 17:03	03/15/19 10:23	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Batch	n: WG12	215688-	1				
Iron, Total	ND	mg/l	0.050		1	03/14/19 17:03	03/15/19 16:58	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bato	h: WG121	5688-1			
Hardness	ND	mg/l	0.660	NA	1	03/14/19 17:03	03/15/19 16:58	3 19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date:

03/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batcl	h: WG12	216786-	1				
Mercury, Total	ND	mg/l	0.0002		1	03/18/19 15:07	03/18/19 21:40	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number: L1909859

Report Date: 03/19/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1215687-2				
Antimony, Total	111	-	85-115	-		
Arsenic, Total	107	-	85-115	-		
Cadmium, Total	111	-	85-115	-		
Chromium, Total	104	-	85-115	-		
Copper, Total	106	-	85-115	-		
Lead, Total	109	-	85-115	-		
Nickel, Total	108	-	85-115	-		
Selenium, Total	115	-	85-115	-		
Silver, Total	109	-	85-115	-		
Zinc, Total	110	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1215688-2				
Iron, Total	110	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01 Batch: WG1215688	3-2			
Hardness	105	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1216786-2				
Mercury, Total	115	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	RPD Qual Limits
Total Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch II	D: WG121568	7-3	QC Sample:	L1909763-01	Clier	t ID: MS Sa	ample	
Antimony, Total	ND	0.5	0.6190	124		-	-		70-130	-	20
Arsenic, Total	ND	0.12	0.1297	108		-	-		70-130	-	20
Cadmium, Total	ND	0.051	0.05839	114		-	-		70-130	-	20
Chromium, Total	0.0104	0.2	0.2239	107		-	-		70-130	-	20
Copper, Total	ND	0.25	0.2552	102		-	-		70-130	-	20
Lead, Total	ND	0.51	0.5488	108		-	-		70-130	-	20
Nickel, Total	ND	0.5	0.5466	109		-	-		70-130	-	20
Selenium, Total	ND	0.12	0.1380	115		-	-		70-130	-	20
Silver, Total	ND	0.05	0.05404	108		-	-		70-130	-	20
Zinc, Total	ND	0.5	0.5870	117		-	-		70-130	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch II	D: WG121568	8-3	QC Sample:	L1909763-01	Clier	t ID: MS Sa	ample	
Iron, Total	ND	1	1.10	110		-	-		75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	h ID: \	NG1215688	-3 QC Samp	ole: L19	09763-01	Client I	D: MS Sample
Hardness	229	66.2	290	92		-	-		75-125	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch II	D: WG121568	8-7	QC Sample:	L1909872-01	Clier	t ID: MS Sa	ample	
Iron, Total	12.1	1	13.0	90		-	-		75-125	-	20
otal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s):	01 QC Bato	:h ID: \	NG1215688	-7 QC Samp	ole: L19	09872-01	Client I	D: MS Sample
Hardness	220	66.2	284	97		-	-		75-125	-	20
otal Metals - Mansfield	Lab Associated sar	nple(s): 01	QC Batch II	D: WG121678	6-3	QC Sample:	L1909843-01	Clier	t ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.0056	112		-	-		70-130	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date:

03/19/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch	ID: WG1216786-5	QC Sample	: L1909843-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.0055	110	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

Parameter	Nativ	e Sample	e Dupl	icate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associa	ated sample(s): 01 QC B	atch ID: V	NG1215687-4	QC Sample:	L1909763-01	Client ID:	DUP Sample	
Copper, Total		ND		ND	mg/l	NC		20
Lead, Total		ND		ND	mg/l	NC		20
Nickel, Total		ND		ND	mg/l	NC		20
Silver, Total		ND		ND	mg/l	NC		20
Zinc, Total		ND		ND	mg/l	NC		20
Total Metals - Mansfield Lab Associa	ated sample(s): 01 QC B	atch ID: V	NG1215688-4	QC Sample:	L1909763-01	Client ID:	DUP Sample	
Iron, Total		ND		ND	mg/l	NC		20
Γotal Metals - Mansfield Lab Associa	ated sample(s): 01 QC B	atch ID: V	NG1216786-4	QC Sample:	L1909843-01	Client ID:	DUP Sample	
Mercury, Total		ND		ND	mg/l	NC		20
Total Metals - Mansfield Lab Associa	ated sample(s): 01 QC B	atch ID: V	NG1216786-6	QC Sample:	L1909843-02	Client ID:	DUP Sample	
Mercury, Total		ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

SAMPLE RESULTS

Lab ID: L1909859-01 Client ID: B101 (MW)

Sample Location: EAST BOSTON, MA

Date Collected: 03/13/19 12:30

Date Received: 03/13/19

Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
SALINITY	ND		SU	2.0		1	-	03/14/19 06:45	121,2520B	MA
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/14/19 11:25	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	03/14/19 14:20	03/14/19 16:47	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/13/19 23:25	121,4500CL-D	AS
Nitrogen, Ammonia	10.1		mg/l	0.075		1	03/14/19 02:00	03/14/19 23:32	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.00		1	03/14/19 16:00	03/14/19 22:00	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	03/14/19 07:20	03/14/19 11:18	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	03/13/19 23:00	03/13/19 23:24	1,7196A	JW
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	250.		mg/l	25.0		50	-	03/15/19 17:05	44,300.0	AU

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15339-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	03/13/19 23:00	03/13/19 23:22	1,7196A	JW
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15340-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	03/13/19 23:25	121,4500CL-D	AS
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15377-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/14/19 02:00	03/14/19 23:10	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15447-1				
Phenolics, Total	ND		mg/l	0.030		1	03/14/19 07:20	03/14/19 11:16	4,420.1	BR
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15453-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/14/19 11:25	121,2540D	DR
General Chemistry -	Westborough Lab 1	for sam	ple(s): 01	Batch:	WG12	15599-1				
Cyanide, Total	ND		mg/l	0.005		1	03/14/19 14:20	03/14/19 16:21	121,4500CN-CE	LH
General Chemistry -	Westborough Lab 1	or sam	ple(s): 01	Batch:	WG12	15678-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	03/14/19 16:00	03/14/19 22:00	74,1664A	ML
Anions by Ion Chrom	natography - Westbo	orough I	Lab for sar	nple(s):	01 B	atch: WG1	216881-1			
Chloride	ND		mg/l	0.500		1	-	03/15/19 16:05	44,300.0	AU

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date:

Parameter	LCS %Recovery Qua	LCSD al %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215339-2				
Chromium, Hexavalent	97	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215340-2				
Chlorine, Total Residual	96	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215377-2				
Nitrogen, Ammonia	97	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215447-2				
Phenolics, Total	98	-	70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215448-1				
SALINITY	101	-		-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215599-2				
Cyanide, Total	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1215678-2				
ТРН	84	-	64-132	-		34

Project Name: CLIPPERSHIP APTS

Lab Number: L1909859

Project Number: 129204-009 Report Date: 03/19/19

Parameter	LCS %Recovery		SD covery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westboroug	h Lab Associated samp	ole(s): 01	Batch: WG1216881-	2		
Chloride	98		-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery(Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215339-4	QC Sample: L190	9859-01 Client	ID: B101 (MW	/)
Chromium, Hexavalent	ND	0.1	0.095	95		-	85-115	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215340-4	QC Sample: L190	9859-01 Client	ID: B101 (MW	/)
Chlorine, Total Residual	ND	0.25	0.24	96	-	-	80-120	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215377-4	QC Sample: L190	00003-63 Client	ID: MS Samp	e
Nitrogen, Ammonia	0.334	4	4.03	92	-	-	80-120	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215447-4	QC Sample: L190	9859-01 Client	ID: B101 (MW	/)
Phenolics, Total	ND	0.4	0.42	105	-	-	70-130	-	20
General Chemistry - Westbord Sample	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215599-4 \	VG1215599-5 QC	Sample: L19096	18-04 Client	ID: MS
Cyanide, Total	0.257	0.4	0.622	91	0.60	86	Q 90-110	3	30
General Chemistry - Westboro	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1215678-4	QC Sample: L190	9499-01 Client	ID: MS Samp	e
TPH	ND	20.8	22.5	108	-	-	64-132	-	34
Anions by Ion Chromatography	y - Westboroug	jh Lab Asso	ciated sar	nple(s): 01 Q	C Batch ID: WG	1216881-3 QC S	ample: L1909957	7-01 Client ID	: MS
Chloride	21.9	4	25.1	80	Q -	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909859

Report Date: 03/19/19

Parameter	Nati	ive Sa	ample	Duplicate Sam	nple Unit	s RPD) Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215339-3	QC Sample:	L1909859-01	Client ID:	B101 (MW)
Chromium, Hexavalent		ND		ND	mg/	NC NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215340-3	QC Sample:	L1909859-01	Client ID:	B101 (MW)
Chlorine, Total Residual		ND		ND	mg/	NC NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215377-3	QC Sample:	L1900003-63	Client ID:	DUP Sample
Nitrogen, Ammonia		0.334	4	0.343	mg/	3		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215447-3	QC Sample:	L1909859-01	Client ID:	B101 (MW)
Phenolics, Total		ND		ND	mg/	I NC		20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215448-2	QC Sample:	L1909859-01	Client ID:	B101 (MW)
SALINITY		ND		ND	SU	NC		
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215453-2	QC Sample:	L1909599-05	Client ID:	DUP Sample
Solids, Total Suspended		95		100	mg/	7 5		29
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215599-3	QC Sample:	L1909618-04	Client ID:	DUP Sample
Cyanide, Total		0.257	7	0.182	mg/	1 34	Q	30
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG1215678-3	QC Sample:	L1909499-01	Client ID:	DUP Sample
TPH	. ,	ND		ND	mg/	I NC		34
Anions by Ion Chromatography - Westbo	orough Lab Associated	d sam	ple(s): 01 Q	C Batch ID: WG	1216881-4	QC Sample: L	1909957-0	1 Client ID: DUP
Chloride		21.9		22.0	mg/	0		18

Project Name: **CLIPPERSHIP APTS**

Project Number: 129204-009

Lab Number: L1909859 **Report Date:** 03/19/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information Container ID Container Type Cooler pH PH deg C Pres Seal Date/Time Analysis(*) L1909859-01A Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01C Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01J Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L L1909859-01L L1909859-01L Amber 120ml unpreserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L L1909859-01L Amber 120ml unpreserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A N/A N/A N/A 3.2 Y Absent TCN-4500(14) L1909859-01N Plastic 250ml NaOH preserved A >12 >12 >12 3.2 Y Absent HOLD-WETCHEM()
L1909859-01B Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01C Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA NA 3.2 Y Absent 504(14) L1909859-01I Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A N/A N/A 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A > 12 > 12 > 12 3.2 Y Absent TCN-4500(14)
L1909859-01C Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial HCl preserved A N/A N/A 3.2 Y Absent 504(14) L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE()
L1909859-01D Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01I Vial HCl preserved A N/A N/A 3.2 Y Absent 504(14) L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01E Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01I Vial HCI preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCI preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCI preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y
L1909859-01F Vial Na2S2O3 preserved A NA 3.2 Y Absent 624.1-RGP(7),624.1-SIM-RGP(7) L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA NA 3.2 Y Absent 504(14) L1909859-01I Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01G Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01I Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01H Vial Na2S2O3 preserved A NA 3.2 Y Absent 504(14) L1909859-01I Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01I Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01J Vial HCl preserved A N/A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01J Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01K Vial HCl preserved A N/A N/A 3.2 Y Absent ARCHIVE() L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01L Amber 120ml unpreserved A 7 7 3.2 Y Absent SALINITY(28) L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
L1909859-01M Plastic 250ml NaOH preserved A >12 >12 3.2 Y Absent TCN-4500(14)
140000E0 04N Plactic 250ml NoOH presented A 142 42 32 V About HOLD WETCHEM/
L1909609-01N Plastic 250th NaOn preserved A >12 >12 5.2 1 Absent HOLD-We10newi()
L1909859-01O Plastic 500ml H2SO4 preserved A <2 <2 3.2 Y Absent NH3-4500(28)
L1909859-01P Plastic 250ml HNO3 preserved A <2 <2 3.2 Y Absent HOLD-METAL-DISSOLVED(180)
L1909859-01Q Plastic 250ml HNO3 preserved A <2 <2 3.2 Y Absent CD-2008T(180),NI-2008T(180),ZN-2008T(180),HRDU(180),AG-2008T(180),AG-2008T(180),AS-2008T(180),HG-U(28),SE-2008T(180),CR-2008T(180),PB-2008T(180),SB-2008T(180)
L1909859-01R Plastic 950ml unpreserved A 7 7 3.2 Y Absent CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1909859-01S Plastic 950ml unpreserved A 7 7 3.2 Y Absent TSS-2540(7)
L1909859-01T Amber 950ml H2SO4 preserved A <2 <2 3.2 Y Absent TPHENOL-420(28)
L1909859-01U Amber 1000ml Na2S2O3 A 7 7 3.2 Y Absent PCB-608.3(7)

Lab Number: L1909859

Report Date: 03/19/19

Container Information Initial Final Temp Frozen deg C Pres Seal pН Date/Time Cooler pH Container ID Container Type Analysis(*)

L1909859-01V	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent	PCB-608.3(7)
L1909859-01W	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent	PCB-608.3(7)
L1909859-01X	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent	625.1-RGP(7),625.1-SIM-RGP(7)
L1909859-01Y	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent	625.1-RGP(7),625.1-SIM-RGP(7)
L1909859-01Y1	Amber 1000ml Na2S2O3	Α	7	7	3.2	Υ	Absent	625.1-RGP(7),625.1-SIM-RGP(7)
L1909859-01Z	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent	TPH-1664(28)
L1909859-01Z1	Amber 1000ml HCl preserved	Α	NA		3.2	Υ	Absent	TPH-1664(28)

Project Name:

Project Number: 129204-009

CLIPPERSHIP APTS

Project Name:CLIPPERSHIP APTSLab Number:L1909859Project Number:129204-009Report Date:03/19/19

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

NC

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPMF)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)
- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The

LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

Report Format: Data Usability Report

Project Name:CLIPPERSHIP APTSLab Number:L1909859Project Number:129204-009Report Date:03/19/19

original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:CLIPPERSHIP APTSLab Number:L1909859Project Number:129204-009Report Date:03/19/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN OF CUSTODY	Service Centers Page 1 Brawer, NE 04412 Portamouth, NH 03891 Mahwab, NJ 07430 Albany, NY 13205 Tenawanda, NY 14150 Helmes, PA 19043					Date Rec'd 3/3//5												ALPHA Job # (190 %59				
Westborough, MA 01591 Manafield, MA 02048 8 Walkup Dr. 330 Forbes Blvd TEL: 508-698-9220 TEL: 508-622-9300 FAX: 508-658-9193 FAX: 508-622-3288		Project Information Project Name: Clippership Apts Project Location: East Boston, MA					Oeliverables ✓ Email Fax ☐ EQuIS (1 File) ✓ EQuIS (4 File)												Same as Client Info				
H&A Information Project # 129204-009 H&A Client: WinnDevelopment (Use Project name as Project.)							_	Other: ulatory	r Requirements (Program/Criteria)									Disposal Site Information	16.				
H&A Address: 465 Medi		Project Manager: ALPHAQuote #:	D. Bell			- 11	MA	NPDE	SAGP	1												Please identify below location of applicable di facilities.	disposal
H&A Phone: 617-886- H&A Fax: H&A Email: Lhoward,	Moronan, Sbutwill	Turn-Around Time Standard (only if pre approved)	100	Due Date:			-	: Select	_	from mer	nu & iden	tily crite	ria.									Disposal Facility: NJ NY Other: Sample Filtration	,
These samples have be Other project specific "Field Filtered PLEASE RUN FOR FU Analyze using the EPA Please specify Metals	requirements/commer LL 2017 RGP SUITE, N 2017 RGP Approved	MINUS ETHANOL					-2540, TRC-4500	TCN-4500, 504	8260-SIM for Dioxane	HEXCR-3500, Trivalent Chromium	8270TCL (also including Diethylhexylphthalate),	8270TCL-SIM	Total Metals: Ag, As, Cd, Cr, Ju, Ni, Pb, Sb, Se, Zn, Fe, Hg	CL-300	Ammonia	Salinity, hardness	TPH-1664, PCB-608, TPHENOL-420	HOLD PACN	HOLD ACN	HOLD DISSOLVED METALS		Bone Lab to do Preservation Lab to do (Please Specify below)	0 1 3 1 8 0 1 1 1 0
ALPHA Lab ID (Lab Use Only)	Sam	Sample ID Collection Date Time				Sample Sampler's Matrix Initials	144	8260,	Ŷ.	827C Diel		Total N Cu, Ni,				₽					Sample Specific Comments		
09859-01	B101 (MW)		3 13 19	1230	AQ	SRP	X	X	×	X	х	X	X	X	×	×	X	x 2	K	×	+		28
							1	5															
							1																
							+	-	-	-	-	=			_	=				_			
A = None B = HCI C = HNO ₃ D = H ₃ SO ₄ E = NaOM F = MeOH G = NaHSO ₄ H = Na S O	Container Code P = Plastic A = Amber Glass V = Vial G = Glass		Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type Preservative	_ A					PE	P		Please print clearly, legibly and complete Samples can not be logged in and turnar time clock will not start until any ambigures resolved. Alpha Analytical's services unde Chain of Custody shall be performed in acc with terms and conditions within Blanket Sc	around juities are der this coordance							
	B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Relinquisting By: Date 3/13/19 3/13/19 3/13/19 3/13/19				Mill	W.	eived B		3//3	13	13/	14 1	16:	0	Date/T	ime					Agreement# 2015-18-Alpha Analytical by between Haley & Aldrich, Inc., its subsidiar afféates and Alpha Analytical.	and

ANALYTICAL REPORT

Lab Number: L1909861

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Denis Bell

Phone: (617) 886-7300

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Report Date: 03/18/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:03181917:08

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909861

Report Date:

03/18/19

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1909861-01 SURFACE WATER WATER EAST BOSTON, MA 03/13/19 13:45 03/13/19

Serial No:03181917:08

Project Name: CLIPPERSHIP APTS Lab Number: L1909861

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

 acc comac i	i rojoot manag	gorriorit at ooo o	Z i ozzo mai a	ing quoditorio.		

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Please contact Project Management at 800-624-9220 with any questions

ΔLPHA

Date: 03/18/19

INORGANICS & MISCELLANEOUS

Serial_No:03181917:08

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909861

Report Date:

03/18/19

SAMPLE RESULTS

Lab ID: L1909861-01

Client ID: SURFACE WATER Sample Location: EAST BOSTON, MA

Date Collected:

03/13/19 13:45

Date Received: Field Prep:

03/13/19 Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	borough Lal)								
SALINITY	16		SU	2.0		1	-	03/14/19 06:45	121,2520B	MA
pH (H)	7.7		SU	-	NA	1	-	03/14/19 06:19	121,4500H+-B	MA
Nitrogen, Ammonia	0.489		mg/l	0.075		1	03/14/19 02:00	03/14/19 23:33	121,4500NH3-BH	H AT

Serial_No:03181917:08

L1909861

Lab Number:

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009 Report Date: 03/18/19

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab for samp	ole(s): 01	Batch:	WG12	15377-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	03/14/19 02:00	03/14/19 23:10	121,4500NH3-B	H AT

Lab Control Sample Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number:

129204-009

Lab Number:

L1909861

Report Date:

03/18/19

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough La	ab Associated sample(s): 01	Batch: WG1215377-2	2				
Nitrogen, Ammonia	97	-		80-120	-		20
General Chemistry - Westborough La	ab Associated sample(s): 01	Batch: WG1215448-7	1				
SALINITY	101	-			-		
General Chemistry - Westborough La	ab Associated sample(s): 01	Batch: WG1215465-	1				
рН	100	-		99-101	-		5

Matrix Spike Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909861

Report Date:

03/18/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qu	Recovery al Limits	RPD Q	RPD ual Limits
General Chemistry - Westboro	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID: V	NG1215377-4	QC Sample: L19000	03-63 Client	ID: MS S	ample
Nitrogen, Ammonia	0.334	4	4.03	92	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Lab Number:

L1909861

Report Date:

03/18/19

Parameter	Native Sam	ple Duplicate Sa	mple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC	C Batch ID: WG1215377-3	QC Sample: L	_1900003-63	Client ID: D	UP Sample
Nitrogen, Ammonia	0.334	0.343	mg/l	3		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01 Q0	C Batch ID: WG1215448-2	QC Sample: L	_1909859-01	Client ID: D	UP Sample
SALINITY	ND	ND	SU	NC		
General Chemistry - Westborough Lab As	ssociated sample(s): 01 QC	C Batch ID: WG1215465-2	QC Sample: L	_1900003-69	Client ID: D	UP Sample
рН	7.4	7.5	SU	1		5

Serial_No:03181917:08

Lab Number: L1909861

Report Date: 03/18/19

Project Name: CLIPPERSHIP APTS

Project Number: 129204-009

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1909861-01A	Plastic 60ml unpreserved	В	7	7	4.2	Υ	Absent		PH-4500(.01)
L1909861-01B	Amber 120ml unpreserved	В	7	7	4.2	Υ	Absent		SALINITY(28)
L1909861-01C	Plastic 500ml H2SO4 preserved	В	<2	<2	4.2	Υ	Absent		NH3-4500(28)

Project Name: Lab Number: CLIPPERSHIP APTS L1909861 **Project Number:**

Report Date: 129204-009 03/18/19

GLOSSARY

Acronyms

LCSD

LOD

MS

NC

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

Laboratory Control Sample Duplicate: Refer to LCS.

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

> Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

Report Format: Data Usability Report

Project Name:CLIPPERSHIP APTSLab Number:L1909861Project Number:129204-009Report Date:03/18/19

original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:03181917:08

Project Name:CLIPPERSHIP APTSLab Number:L1909861Project Number:129204-009Report Date:03/18/19

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03181917:08

Published Date: 10/9/2018 4:58:19 PM

ID No.:17873

Revision 12

Page 1 of 1

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Per 07430 Albany, NY 1220 Tonawanda, NY 14150 Ho		1 Mahwah, NJ	Page				Rec'd Lab					3/13	119			ALPHA JOB 1 09861	
Westborough, MA 01591 8 Walkup Dr.	320 Forbes Blvd	Project Information		, grade		me ma		erables										Billing Information	
TEL: 506-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3298		Sippership Apt	-			-	Emai			☐ F4							Same as Client Info	
All Septiments		Project Location: E	ast Boston, M.	Α			10		S (1 Fil	le)	N E	JulS (4 Fi	le)					PO	
H&A Information			29204-009												-2			Water Committee of the	
H&A Client: WinnDev	velopment	(Use Project name a	s Projed)							ments (Program	Criteria)						Disposal Site Information	
H&A Address 465 Med	ford St	Project Manager: 0	D. Bell				MA	NPDE	SRGP									Please identify below location of applicable di facilities.	isposal
Boston,	MA 02129-1400	ALPHAQuote #:								- 1									
H&A Phone: 617-886-	7400	Turn-Around Time																Disposal Facility:	
H&A Fax:		Standard	2	Due Date:			1											D NN □NY	
H&A Email: Lhoward	Mcronan, Sbutwill	(only if pre approved)		# of Days:	5 Day		Note:	Select S	tate fron	n menu 8	dentify c	iteria.						Other:	
These samples have b	een previously analyze	by Alpha [92 15		ANA	LYSIS										Sample Filtration	+
Other project specific Analyze using the EP pH and Temperature	A 2017 RGP Approve	Testing Methods and		tection Leve	els.		Ammonia	Ħ	Salinity									Done Lab to do Preservation Lab to do (Please Specify below)	1 a
ALPHA Lab ID (Lab Use Only)	Samp	ile ID	Collec	tion Time	Sample Matrix	Sampler's Initials												Sample Specific Comments	:
09861-9	Sustace	Wite	3/13/19	1345	AQ	SIZP	х	Х	Х			\perp		-	\vdash	4	-		3
						_	-	+	+	-	_	_	+	-	+	++	++		_
							\vdash	+	+		-	_	+	-	+	++	++		
			-				-	1	-		-	_	+	-	+	+-	++-		_
			_		-/		-	-	-		_	_	+	-	-	-	+	1	_
					/		-	-	-			-	+	_	-	-	+-	-	_
					/		-	+	-		-	_		-	1	++	-		_
							-	+	-		-	-	+-	-	++	++	-	-	_
				- 10			-	+	-			-	+	_	+	++	+	-	_
Preservative Code: A = None B = HCl C = HNO ₂ D = H ₂ SO ₄ E = NaOH F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₅ K/E = Zn Ac/NaOH O = Other	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore D = BOD Bottle	Westboro: Certification Mansfield: Certification Relinquished	on No: MA015	Date 3/13/19 3/13/19 3/13/19	1410 1613+	Preservative	D	ived By	A A-		3/10	3/19 / 3/13/1	6130	Date	/Time			Please print clearly, legibly and completel Samples can not be logged in and turnare time clock will not start until any ambigui resolved. Alpha Analytical's services under Chain of Custody shall be performed in acco with terms and conditions within Blanket Ser Agreements 2015-18-Alpha Analytical by an between Haley & Aldrich, Inc., its subsidiarie affiliates and Alpha Analytical.	ound ities are this ordance vice d
Document ID: 20455 Rev	(1/28/2016)	1		-1-X401		7111			"	7									

ANALYTICAL REPORT

Lab Number: L1708040

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Teresa Cooper Phone: (617) 886-7358

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Report Date: 03/22/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040 **Report Date:** 03/22/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1708040-01	A2_31617	WATER	EAST BOSTON, MA	03/16/17 10:50	03/16/17
L1708040-02	B101_31617	WATER	EAST BOSTON, MA	03/16/17 13:10	03/16/17
L1708040-03	C2_31617	WATER	EAST BOSTON, MA	03/16/17 14:10	03/16/17

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800-	-624-9220) with a	างเ	nuestions
loase	Contact	Olicit	OCI VICCO	at ooo	02-7 02-20	, with a	ıy c	_f ucstions.

Project Name: 125-131 SUMNER STREET Lab Number: L1708040
Project Number: 129204-003 Report Date: 03/22/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1708040-01 (A2_31617) and -02 (B101_31617), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0020), as well as the average response factor for 2-butanone and 1,4-dioxane.

The initial calibration, associated with L1708040-03 (C2_31617), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0015), as well as the average response factor for 1,4-dioxane.

The continuing calibration standards, associated with L1708040-01, -02 and -03 (all samples), are outside the acceptance criteria for several compounds; however, they are within overall method allowances. Copies of the continuing calibration standards are included as an addendum to this report.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Melissa Cripps Melissa Cripps

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 03/22/17

ORGANICS

VOLATILES

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

SAMPLE RESULTS

Lab ID: L1708040-01

Client ID: A2_31617

Sample Location: EAST BOSTON, MA

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 03/21/17 10:50

Analyst: PK

Date Collected: 03/16/17 10:50

Date Received: 03/16/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1708040

03/22/17

	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough La	ıb						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	1.4		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 03/16/17 10:50

L1708040-01 A2_31617

Date Received: 03/16/17

Lab Number:

Report Date:

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

L1708040

03/22/17

					Metals)
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab				
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylene (Total)	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
1,2-Dichloroethene (total)	ND	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	23	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
2-Butanone	ND	ug/l	5.0		1
4-Methyl-2-pentanone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1
1,2,3-Trichlorobenzene	ND	ug/l	2.0		1
1,2,4-Trichlorobenzene	ND	ug/l	2.0		1

Project Name: 125-131 SUMNER STREET

L1708040-01

EAST BOSTON, MA

A2_31617

Project Number: 129204-003

Lab ID:

Client ID:

1,4-Dioxane

Sample Location:

SAMPLE RESULTS

Date Collected: 03/16/17 10:50

Date Received: 03/16/17

--

Lab Number:

Report Date:

250

ug/l

Field Prep: Field Filtered (Dissolved

Metals)

L1708040

03/22/17

1

						,	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	98		70-130
Toluene-d8	96		70-130
4-Bromofluorobenzene	99		70-130
Dibromofluoromethane	106		70-130

ND

L1708040

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

SAMPLE RESULTS

Report Date: 03/22/17

Lab Number:

Lab ID: L1708040-02 B101_31617 Client ID:

Sample Location: EAST BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/21/17 11:23

Analyst: PΚ Date Collected: 03/16/17 13:10 Date Received: 03/16/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboro	ough Lab						
Methylene chloride	ND		ug/l	2.0		1	
1,1-Dichloroethane	ND		ug/l	1.0		1	
Chloroform	ND		ug/l	1.0		1	
Carbon tetrachloride	ND		ug/l	1.0		1	
1,2-Dichloropropane	ND		ug/l	1.0		1	
Dibromochloromethane	ND		ug/l	1.0		1	
1,1,2-Trichloroethane	ND		ug/l	1.0		1	
Tetrachloroethene	ND		ug/l	1.0		1	
Chlorobenzene	ND		ug/l	1.0		1	
Trichlorofluoromethane	ND		ug/l	2.0		1	
1,2-Dichloroethane	ND		ug/l	1.0		1	
1,1,1-Trichloroethane	ND		ug/l	1.0		1	
Bromodichloromethane	ND		ug/l	1.0		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.0		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	1.0		1	
Ethylbenzene	ND		ug/l	1.0		1	
Chloromethane	ND		ug/l	2.0		1	
Bromomethane	ND		ug/l	2.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	2.0		1	
1,1-Dichloroethene	ND		ug/l	1.0		1	
trans-1,2-Dichloroethene	ND		ug/l	1.0		1	
Trichloroethene	ND		ug/l	1.0		1	
1,2-Dichlorobenzene	ND		ug/l	1.0		1	
						W.	

L1708040

03/22/17

Project Name: 125-131 SUMNER STREET

L1708040-02

B101_31617

Project Number: 129204-003

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected: 03/16/17 13:10

Lab Number:

Report Date:

Date Received: 03/16/17 Field Prep: Not Specified

Chefit ID.	D101_31017				Date Ne		03/10/17	
Sample Location:	EAST BOSTON, MA				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organ	nics - Westborough Lab							
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane	1	ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloroprop	ane	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/16/17 13:10

Client ID: B101_31617 Date Received: 03/16/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough	Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	103		70-130	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

SAMPLE RESULTS

L1708040

Lab Number:

Report Date: 03/22/17

Lab ID: L1708040-03

Client ID: C2_31617

Sample Location: EAST BOSTON, MA

Matrix: Water Analytical Method: 97,8260C Analytical Date: 03/18/17 03:21

Analyst: BD Date Collected: 03/16/17 14:10

Date Received: 03/16/17 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ugh Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	1.9		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1708040

03/22/17

Project Name: 125-131 SUMNER STREET

L1708040-03

EAST BOSTON, MA

C2_31617

Project Number: 129204-003

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 03/16/17 14:10

Lab Number:

Report Date:

Date Received: 03/16/17 Field Prep: Not Specified

	,			1 1014 1 10	۲.	rtot opoomoa
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	gh Lab					
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	18		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	12		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

SAMPLE RESULTS

Lab ID: L1708040-03 Date Collected: 03/16/17 14:10

Client ID: C2_31617 Date Received: 03/16/17 Sample Location: EAST BOSTON, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
MCP Volatile Organics - Westborough Lab										
Ethod others	ND			0.0		,				
Ethyl ether	ND		ug/l	2.0		1				
Isopropyl Ether	ND		ug/l	2.0		1				
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1				
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1				
1,4-Dioxane	ND		ug/l	250		1				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	93		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	87		70-130	
Dibromofluoromethane	94		70-130	

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/17/17 21:47

Analyst: BD

Parameter	Result	Qualifier Ur	its	RL	MDL
MCP Volatile Organics -	Westborough Lab for	sample(s): 03	Ва	tch: WG986575	-5
Methylene chloride	ND		ıg/l	2.0	
	ND ND			1.0	
1,1-Dichloroethane			ıg/l		
Chloroform	ND		ıg/l	1.0	
Carbon tetrachloride	ND		ıg/l	1.0	
1,2-Dichloropropane	ND		ıg/l	1.0	
Dibromochloromethane	ND		ıg/l	1.0	
1,1,2-Trichloroethane	ND		ıg/l	1.0	
Tetrachloroethene	ND		ıg/l	1.0	
Chlorobenzene	ND		ıg/l	1.0	
Trichlorofluoromethane	ND	ι	ıg/l	2.0	
1,2-Dichloroethane	ND	ι	ıg/l	1.0	
1,1,1-Trichloroethane	ND	ι	ıg/l	1.0	
Bromodichloromethane	ND	ι	ıg/l	1.0	
trans-1,3-Dichloropropene	ND	ι	ıg/l	0.50	
cis-1,3-Dichloropropene	ND	ι	ıg/l	0.50	
1,3-Dichloropropene, Total	ND	ι	ıg/l	0.50	
1,1-Dichloropropene	ND	Ų	ıg/l	2.0	
Bromoform	ND	U	ıg/l	2.0	
1,1,2,2-Tetrachloroethane	ND	U	ıg/l	1.0	
Benzene	ND	L	ıg/l	0.50	
Toluene	ND	L	ıg/l	1.0	
Ethylbenzene	ND	U	ıg/l	1.0	
Chloromethane	ND	U	ıg/l	2.0	
Bromomethane	ND	l	ıg/l	2.0	
Vinyl chloride	ND		ıg/l	1.0	
Chloroethane	ND		ıg/l	2.0	
1,1-Dichloroethene	ND		ıg/l	1.0	
trans-1,2-Dichloroethene	ND		ıg/l	1.0	
Trichloroethene	ND		ıg/l	1.0	

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/17/17 21:47

Analyst: BD

arameter	Result	Qualifier Un	its		RL	MDL
ICP Volatile Organics -	· Westborough Lab for	sample(s): 03	В	atch:	WG986575-5	
1,2-Dichlorobenzene	ND	U:	g/l		1.0	
1,3-Dichlorobenzene	ND	u.	g/l		1.0	
1,4-Dichlorobenzene	ND	u.	g/l		1.0	
Methyl tert butyl ether	ND	u.	g/l		2.0	
p/m-Xylene	ND	U:	g/l		2.0	
o-Xylene	ND	u	g/l		1.0	
Xylene (Total)	ND	u	g/l		1.0	
cis-1,2-Dichloroethene	ND	u	g/l		1.0	
1,2-Dichloroethene (total)	ND	u	g/l		1.0	
Dibromomethane	ND	u	g/l		2.0	
1,2,3-Trichloropropane	ND	u	g/l		2.0	
Styrene	ND	u	g/l		1.0	
Dichlorodifluoromethane	ND	u	g/l		2.0	
Acetone	ND	u	g/l		5.0	
Carbon disulfide	ND	u	g/l		2.0	
2-Butanone	ND	u	g/l		5.0	
4-Methyl-2-pentanone	ND	u	g/l		5.0	
2-Hexanone	ND	u	g/l		5.0	
Bromochloromethane	ND	u	g/l		2.0	
Tetrahydrofuran	ND	u	g/l		2.0	
2,2-Dichloropropane	ND	u	g/l		2.0	
1,2-Dibromoethane	ND	u	g/l		2.0	
1,3-Dichloropropane	ND	u	g/l		2.0	
1,1,1,2-Tetrachloroethane	ND	u	g/l		1.0	
Bromobenzene	ND		g/l		2.0	
n-Butylbenzene	ND		g/l		2.0	
sec-Butylbenzene	ND		g/l		2.0	
tert-Butylbenzene	ND		g/l		2.0	
o-Chlorotoluene	ND		g/l		2.0	

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 03/17/17 21:47

Analyst: BD

Parameter	Result	Qualifier	Unit	s	RL	MDL	
MCP Volatile Organics - Westborou	igh Lab for	sample(s):	03	Batch:	WG98	B6575-5	
p-Chlorotoluene	ND		ug/	1	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/		2.0		
Hexachlorobutadiene	ND		ug/	′ I	0.60		
Isopropylbenzene	ND		ug/	Ί	2.0		
p-Isopropyltoluene	ND		ug/	1	2.0		
Naphthalene	ND		ug	Ί	2.0		
n-Propylbenzene	ND		ug/	′ I	2.0		
1,2,3-Trichlorobenzene	ND		ug/	1	2.0		
1,2,4-Trichlorobenzene	ND		ug/	1	2.0		
1,3,5-Trimethylbenzene	ND		ug/	Ί	2.0		
1,2,4-Trimethylbenzene	ND		ug/	Ί	2.0		
Ethyl ether	ND		ug/	Ί	2.0		
Isopropyl Ether	ND		ug/	1	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/	1	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/	1	2.0		
1,4-Dioxane	ND		ug/	Ί	250		

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	91		70-130					
Toluene-d8	104		70-130					
4-Bromofluorobenzene	87		70-130					
Dibromofluoromethane	97		70-130					

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/21/17 06:23

Analyst: MM

Parameter	Result	Qualifier	Units	RL	. MDL
MCP Volatile Organics - Westbo	orough Lab for	sample(s):	01-02	Batch:	WG987045-5
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.0)
Carbon tetrachloride	ND		ug/l	1.0)
1,2-Dichloropropane	ND		ug/l	1.0)
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.0)
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.0)
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.5	0
cis-1,3-Dichloropropene	ND		ug/l	0.5	0
1,3-Dichloropropene, Total	ND		ug/l	0.5	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.0)
Ethylbenzene	ND		ug/l	1.0)
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.0)
trans-1,2-Dichloroethene	ND		ug/l	1.0)
Trichloroethene	ND		ug/l	1.0	

Project Name: 125-131 SUMNER STREET Lab Number:

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/21/17 06:23

Analyst: MM

arameter	Result	Qualifier	Units	RI	L MDL
ICP Volatile Organics	- Westborough Lab for s	sample(s):	01-02	Batch:	WG987045-5
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Report Date: 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 03/21/17 06:23

Analyst: MM

Parameter	Result	Qualifier	Units	R	L MDI	-
MCP Volatile Organics - Westbord	ough Lab for	sample(s):	01-02	Batch:	WG987045-5	
p-Chlorotoluene	ND		ug/l	2.	0	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.	0	
Hexachlorobutadiene	ND		ug/l	0.6	00	
Isopropylbenzene	ND		ug/l	2.	0	
p-Isopropyltoluene	ND		ug/l	2.	0	
Naphthalene	ND		ug/l	2.	0	
n-Propylbenzene	ND		ug/l	2.	0	
1,2,3-Trichlorobenzene	ND		ug/l	2.	0	
1,2,4-Trichlorobenzene	ND		ug/l	2.	0	
1,3,5-Trimethylbenzene	ND		ug/l	2.	0	
1,2,4-Trimethylbenzene	ND		ug/l	2.	0	
Ethyl ether	ND		ug/l	2.	0	
Isopropyl Ether	ND		ug/l	2.	0	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.	0	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.	0	
1,4-Dioxane	ND		ug/l	25	0	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		ug/l	2.	0	
tert-Butyl Alcohol	ND		ug/l	10)	
2-Chloroethylvinyl ether	ND		ug/l	10)	

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
4.0 Diablementh and 44	00		70.400	
1,2-Dichloroethane-d4	99		70-130	
Toluene-d8	99		70-130	
4-Bromofluorobenzene	101		70-130	
Dibromofluoromethane	105		70-130	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Reco Qual Lim		RPE Qual Limit	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 03	Batch: WG986575	-3 WG986575-4			
Methylene chloride	110		110	70-13	30 0	20	
1,1-Dichloroethane	100		100	70-13	30 0	20	
Chloroform	100		100	70-13	30 0	20	
Carbon tetrachloride	100		100	70-13	30 0	20	
1,2-Dichloropropane	110		110	70-13	30 0	20	
Dibromochloromethane	99		100	70-13	30 1	20	
1,1,2-Trichloroethane	110		110	70-13	30 0	20	
Tetrachloroethene	110		110	70-13	30 0	20	
Chlorobenzene	100		100	70-13	30 0	20	
Trichlorofluoromethane	110		110	70-13	30 0	20	
1,2-Dichloroethane	100		100	70-13	30 0	20	
1,1,1-Trichloroethane	110		110	70-13	30 0	20	
Bromodichloromethane	100		100	70-13	30 0	20	
trans-1,3-Dichloropropene	97		100	70-13	30 3	20	
cis-1,3-Dichloropropene	99		100	70-13	30 1	20	
1,1-Dichloropropene	110		110	70-13	30 0	20	
Bromoform	96		97	70-13	30 1	20	
1,1,2,2-Tetrachloroethane	110		110	70-13	30 0	20	
Benzene	110		110	70-13	30 0	20	
Toluene	110		110	70-13	30 0	20	
Ethylbenzene	100		100	70-13	30 0	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab A	Associated samp	ole(s): 03	Batch: WG986575	-3 WG986	6575-4			
Chloromethane	100		110		70-130	10	20	
Bromomethane	92		100		70-130	8	20	
Vinyl chloride	120		120		70-130	0	20	
Chloroethane	120		120		70-130	0	20	
1,1-Dichloroethene	110		120		70-130	9	20	
trans-1,2-Dichloroethene	110		110		70-130	0	20	
Trichloroethene	110		110		70-130	0	20	
1,2-Dichlorobenzene	110		100		70-130	10	20	
1,3-Dichlorobenzene	110		100		70-130	10	20	
1,4-Dichlorobenzene	100		100		70-130	0	20	
Methyl tert butyl ether	98		100		70-130	2	20	
p/m-Xylene	95		90		70-130	5	20	
o-Xylene	100		85		70-130	16	20	
cis-1,2-Dichloroethene	110		100		70-130	10	20	
Dibromomethane	100		110		70-130	10	20	
1,2,3-Trichloropropane	100		100		70-130	0	20	
Styrene	90		90		70-130	0	20	
Dichlorodifluoromethane	120		98		70-130	20	20	
Acetone	100		110		70-130	10	20	
Carbon disulfide	110		100		70-130	10	20	
2-Butanone	100		120		70-130	18	20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 03	Batch: WG986575	-3 WG986	575-4		
4-Methyl-2-pentanone	90		95		70-130	5	20
2-Hexanone	86		97		70-130	12	20
Bromochloromethane	110		110		70-130	0	20
Tetrahydrofuran	110		110		70-130	0	20
2,2-Dichloropropane	96		97		70-130	1	20
1,2-Dibromoethane	100		110		70-130	10	20
1,3-Dichloropropane	110		110		70-130	0	20
1,1,1,2-Tetrachloroethane	95		96		70-130	1	20
Bromobenzene	100		100		70-130	0	20
n-Butylbenzene	120		120		70-130	0	20
sec-Butylbenzene	110		100		70-130	10	20
tert-Butylbenzene	110		100		70-130	10	20
o-Chlorotoluene	100		98		70-130	2	20
p-Chlorotoluene	100		96		70-130	4	20
1,2-Dibromo-3-chloropropane	88		88		70-130	0	20
Hexachlorobutadiene	96		94		70-130	2	20
Isopropylbenzene	110		100		70-130	10	20
p-Isopropyltoluene	110		100		70-130	10	20
Naphthalene	110		110		70-130	0	20
n-Propylbenzene	110		100		70-130	10	20
1,2,3-Trichlorobenzene	110		110		70-130	0	20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD imits
MCP Volatile Organics - Westborou	gh Lab Associated sample	e(s): 03	Batch: WG986575	5-3 WG98	36575-4		
1,2,4-Trichlorobenzene	100		110		70-130	10	20
1,3,5-Trimethylbenzene	100		95		70-130	5	20
1,2,4-Trimethylbenzene	110		100		70-130	10	20
Ethyl ether	110		110		70-130	0	20
Isopropyl Ether	110		110		70-130	0	20
Ethyl-Tert-Butyl-Ether	100		100		70-130	0	20
Tertiary-Amyl Methyl Ether	96		100		70-130	4	20
1,4-Dioxane	98		92		70-130	6	20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	91		96		70-130	
Toluene-d8	98		103		70-130	
4-Bromofluorobenzene	95		96		70-130	
Dibromofluoromethane	97		98		70-130	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG987	045-3 WG987045-4		
Methylene chloride	100		110	70-130	10	20
1,1-Dichloroethane	110		110	70-130	0	20
Chloroform	110		110	70-130	0	20
Carbon tetrachloride	97		100	70-130	3	20
1,2-Dichloropropane	100		100	70-130	0	20
Dibromochloromethane	89		93	70-130	4	20
1,1,2-Trichloroethane	100		100	70-130	0	20
Tetrachloroethene	110		110	70-130	0	20
Chlorobenzene	100		100	70-130	0	20
Trichlorofluoromethane	110		110	70-130	0	20
1,2-Dichloroethane	100		100	70-130	0	20
1,1,1-Trichloroethane	100		100	70-130	0	20
Bromodichloromethane	86		94	70-130	9	20
trans-1,3-Dichloropropene	86		90	70-130	5	20
cis-1,3-Dichloropropene	87		92	70-130	6	20
1,1-Dichloropropene	110		110	70-130	0	20
Bromoform	84		84	70-130	0	20
1,1,2,2-Tetrachloroethane	96		96	70-130	0	20
Benzene	110		110	70-130	0	20
Toluene	110		110	70-130	0	20
Ethylbenzene	100		100	70-130	0	20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG98	7045-3 WG	987045-4				
Chloromethane	110		110		70-130	0		20	
Bromomethane	100		120		70-130	18		20	
Vinyl chloride	120		120		70-130	0		20	
Chloroethane	120		120		70-130	0		20	
1,1-Dichloroethene	100		100		70-130	0		20	
trans-1,2-Dichloroethene	110		110		70-130	0		20	
Trichloroethene	100		100		70-130	0		20	
1,2-Dichlorobenzene	100		100		70-130	0		20	
1,3-Dichlorobenzene	98		96		70-130	2		20	
1,4-Dichlorobenzene	100		99		70-130	1		20	
Methyl tert butyl ether	95		98		70-130	3		20	
p/m-Xylene	100		105		70-130	5		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	110		110		70-130	0		20	
Dibromomethane	95		100		70-130	5		20	
1,2,3-Trichloropropane	99		95		70-130	4		20	
Styrene	95		100		70-130	5		20	
Dichlorodifluoromethane	110		110		70-130	0		20	
Acetone	83		88		70-130	6		20	
Carbon disulfide	100		110		70-130	10		20	
2-Butanone	84		99		70-130	16		20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-02	Batch: WG987	045-3 WG987045-4		
4-Methyl-2-pentanone	78		80	70-130	3	20
2-Hexanone	77		82	70-130	6	20
Bromochloromethane	100		110	70-130	10	20
Tetrahydrofuran	100		110	70-130	10	20
2,2-Dichloropropane	92		96	70-130	4	20
1,2-Dibromoethane	97		100	70-130	3	20
1,3-Dichloropropane	99		100	70-130	1	20
1,1,1,2-Tetrachloroethane	92		93	70-130	1	20
Bromobenzene	98		96	70-130	2	20
n-Butylbenzene	81		79	70-130	3	20
sec-Butylbenzene	96		94	70-130	2	20
tert-Butylbenzene	96		92	70-130	4	20
o-Chlorotoluene	97		95	70-130	2	20
p-Chlorotoluene	94		92	70-130	2	20
1,2-Dibromo-3-chloropropane	75		80	70-130	6	20
Hexachlorobutadiene	100		94	70-130	6	20
Isopropylbenzene	99		96	70-130	3	20
p-Isopropyltoluene	97		95	70-130	2	20
Naphthalene	89		93	70-130	4	20
n-Propylbenzene	98		95	70-130	3	20
1,2,3-Trichlorobenzene	91		93	70-130	2	20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
CP Volatile Organics - Westborough I	_ab Associated sampl	e(s): 01-02	Batch: WG987	7045-3 W	G987045-4				
1,2,4-Trichlorobenzene	99		100		70-130	1		20	
1,3,5-Trimethylbenzene	98		94		70-130	4		20	
1,2,4-Trimethylbenzene	96		95		70-130	1		20	
Ethyl ether	100		110		70-130	10		20	
Isopropyl Ether	100		110		70-130	10		20	
Ethyl-Tert-Butyl-Ether	97		100		70-130	3		20	
Tertiary-Amyl Methyl Ether	92		96		70-130	4		20	
1,4-Dioxane	104		114		70-130	9		20	
1,1,2-Trichloro-1,2,2-Trifluoroethane	110		110		70-130	0		20	
tert-Butyl Alcohol	78		80		70-130	3		20	
2-Chloroethylvinyl ether	69	Q	60	Q	70-130	14		20	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	89		95		70-130	
Toluene-d8	100		101		70-130	
4-Bromofluorobenzene	100		100		70-130	
Dibromofluoromethane	101		100		70-130	

SEMIVOLATILES

L1708040

03/22/17

Project Name: 125-131 SUMNER STREET

03/19/17 22:42

Project Number: 129204-003

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L1708040-01 Date Collected: 03/16/17 10:50

Date Received: Client ID: A2_31617 03/16/17

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Extraction Method: EPA 3510C Matrix: Water Analytical Method: 97,8270D Extraction Date: 03/17/17 17:35

Analyst: ALS

Analytical Date:

	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics - Westborough	n Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND			5.0		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
	ND		ug/l	3.0		1
Bis(2-ethylhexyl)phthalate			ug/l			
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
Acetophenone	ND		ug/l	5.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1

Project Name: 125-131 SUMNER STREET

L1708040-01

Project Number: 129204-003

Lab ID:

SAMPLE RESULTS

Date Collected: 03/16/17 10:50

Date Received: 03/16/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1708040

03/22/17

Client ID: A2_31617
Sample Location: EAST BOSTON, MA

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Semivolatile Organics - Westk	oorough Lab						
4-Nitrophenol	ND		ug/l	10		1	
2,4-Dinitrophenol	ND		ug/l	20		1	
Phenol	ND		ug/l	5.0		1	
2-Methylphenol	ND		ug/l	5.0		1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1	
2,4,5-Trichlorophenol	ND		ug/l	5.0		1	

Surrogate	% Recovery	eptance riteria
2-Fluorophenol	42	15-110
Phenol-d6	31	15-110
Nitrobenzene-d5	67	30-130
2-Fluorobiphenyl	51	30-130
2,4,6-Tribromophenol	53	15-110
4-Terphenyl-d14	50	30-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

SAMPLE RESULTS

Lab ID: L1708040-01

Client ID: A2_31617

Sample Location: EAST BOSTON, MA

Matrix: Water

Analytical Method: 97,8270D-SIM Analytical Date: 03/18/17 12:25

Analyst: DV Date Collected: 03/16/17 10:50

Date Received: 03/16/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1708040

03/22/17

Extraction Method: EPA 3510C

Extraction Date: 03/17/17 17:35

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Semivolatile Organics by SIM - W	estborough Lab					
Acenaphthene	ND		ug/l	0.20		1
2-Chloronaphthalene	ND		ug/l	0.20		1
Fluoranthene	ND		ug/l	0.20		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene	0.60		ug/l	0.20		1
Benzo(a)anthracene	ND		ug/l	0.20		1
Benzo(a)pyrene	ND		ug/l	0.20		1
Benzo(b)fluoranthene	ND		ug/l	0.20		1
Benzo(k)fluoranthene	ND		ug/l	0.20		1
Chrysene	ND		ug/l	0.20		1
Acenaphthylene	ND		ug/l	0.20		1
Anthracene	ND		ug/l	0.20		1
Benzo(ghi)perylene	ND		ug/l	0.20		1
Fluorene	ND		ug/l	0.20		1
Phenanthrene	ND		ug/l	0.20		1
Dibenzo(a,h)anthracene	ND		ug/l	0.20		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		1
Pyrene	ND		ug/l	0.20		1
2-Methylnaphthalene	ND		ug/l	0.20		1
Pentachlorophenol	ND		ug/l	0.80		1
Hexachlorobenzene	ND		ug/l	0.80		1
Hexachloroethane	ND		ug/l	0.80		1

Project Name: 125-131 SUMNER STREET **Lab Number:** L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

SAMPLE RESULTS

Lab ID: Date Collected: 03/16/17 10:50

Client ID: A2_31617 Date Received: 03/16/17

Sample Location: EAST BOSTON, MA Field Prep: Field Filtered (Dissolved

Metals)

Parameter Result Qualifier Units RL MDL Dilution Factor

MCP Semivolatile Organics by SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	15-110
Phenol-d6	32	15-110
Nitrobenzene-d5	70	30-130
2-Fluorobiphenyl	78	30-130
2,4,6-Tribromophenol	97	15-110
4-Terphenyl-d14	61	30-130

L1708040

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/19/17 21:47

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 03/16/17 18:05

Parameter	Result	Qualifier Units	RL	MDL
MCP Semivolatile Organics - Wes	tborough Lab	for sample(s):	01 Batch:	WG986297-1
Acenaphthene	ND	ug/l	2.0	
1,2,4-Trichlorobenzene	ND	ug/l	5.0	
Hexachlorobenzene	ND	ug/l	2.0	
Bis(2-chloroethyl)ether	ND	ug/l	2.0	
2-Chloronaphthalene	ND	ug/l	2.0	
1,2-Dichlorobenzene	ND	ug/l	2.0	
1,3-Dichlorobenzene	ND	ug/l	2.0	
1,4-Dichlorobenzene	ND	ug/l	2.0	
3,3'-Dichlorobenzidine	ND	ug/l	5.0	
2,4-Dinitrotoluene	ND	ug/l	5.0	
2,6-Dinitrotoluene	ND	ug/l	5.0	
Azobenzene	ND	ug/l	2.0	
Fluoranthene	ND	ug/l	2.0	
4-Bromophenyl phenyl ether	ND	ug/l	2.0	
Bis(2-chloroisopropyl)ether	ND	ug/l	2.0	
Bis(2-chloroethoxy)methane	ND	ug/l	5.0	
Hexachlorobutadiene	ND	ug/l	2.0	
Hexachloroethane	ND	ug/l	2.0	
Isophorone	ND	ug/l	5.0	
Naphthalene	ND	ug/l	2.0	
Nitrobenzene	ND	ug/l	2.0	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0	
Butyl benzyl phthalate	ND	ug/l	5.0	
Di-n-butylphthalate	ND	ug/l	5.0	
Di-n-octylphthalate	ND	ug/l	5.0	
Diethyl phthalate	ND	ug/l	5.0	
Dimethyl phthalate	ND	ug/l	5.0	
Benzo(a)anthracene	ND	ug/l	2.0	
Benzo(a)pyrene	ND	ug/l	2.0	

L1708040

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Report Date: 03/22/17

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D Analytical Date: 03/19/17 21:47

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 03/16/17 18:05

Parameter	Result	Qualifier Units	RL	MDL
MCP Semivolatile Organics	- Westborough Lab	for sample(s): 01	Batch:	WG986297-1
Benzo(b)fluoranthene	ND	ug/l	2.0	
Benzo(k)fluoranthene	ND	ug/l	2.0	
Chrysene	ND	ug/l	2.0	
Acenaphthylene	ND	ug/l	2.0	
Anthracene	ND	ug/l	2.0	
Benzo(ghi)perylene	ND	ug/l	2.0	
Fluorene	ND	ug/l	2.0	
Phenanthrene	ND	ug/l	2.0	
Dibenzo(a,h)anthracene	ND	ug/l	2.0	
Indeno(1,2,3-cd)pyrene	ND	ug/l	2.0	
Pyrene	ND	ug/l	2.0	
Aniline	ND	ug/l	2.0	
4-Chloroaniline	ND	ug/l	5.0	
Dibenzofuran	ND	ug/l	2.0	
2-Methylnaphthalene	ND	ug/l	2.0	
Acetophenone	ND	ug/l	5.0	
2,4,6-Trichlorophenol	ND	ug/l	5.0	
2-Chlorophenol	ND	ug/l	2.0	
2,4-Dichlorophenol	ND	ug/l	5.0	
2,4-Dimethylphenol	ND	ug/l	5.0	
2-Nitrophenol	ND	ug/l	10	
4-Nitrophenol	ND	ug/l	10	
2,4-Dinitrophenol	ND	ug/l	20	
Pentachlorophenol	ND	ug/l	10	
Phenol	ND	ug/l	5.0	
2-Methylphenol	ND	ug/l	5.0	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	
2,4,5-Trichlorophenol	ND	ug/l	5.0	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number:

L1708040

Report Date: 03/22/17

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 97,8270D 03/19/17 21:47

Analyst:

PS PS

Extraction Method: EPA 3510C

Extraction Date:

03/16/17 18:05

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Semivolatile Organics - We	sthorough La	h for sample	$(s) \cdot 01$	Batch: WG	1986297-1	

Acceptance Criteria %Recovery Qualifier Surrogate 2-Fluorophenol 39 15-110 Phenol-d6 30 15-110 Nitrobenzene-d5 57 30-130 2-Fluorobiphenyl 57 30-130 2,4,6-Tribromophenol 63 15-110 4-Terphenyl-d14 59 30-130

Extraction Method: EPA 3510C

L1708040

03/16/17 18:05

Lab Number:

Extraction Date:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 Report Date: 03/22/17

Method Blank Analysis

Batch Quality Control

Analytical Method: 97,8270D-SIM Analytical Date: 03/17/17 09:07

Analyst: DV

Parameter	Result	Qualifier	Units	RL		MDL	
MCP Semivolatile Organics by SIM	- Westboro	ugh Lab fo	r sample(s):	01	Batch:	WG986311-1	
Acenaphthene	ND		ug/l	0.20)		
2-Chloronaphthalene	ND		ug/l	0.20)		
Fluoranthene	ND		ug/l	0.20)		
Hexachlorobutadiene	ND		ug/l	0.50)		
Naphthalene	ND		ug/l	0.20)		
Benzo(a)anthracene	ND		ug/l	0.20)		
Benzo(a)pyrene	ND		ug/l	0.20)		
Benzo(b)fluoranthene	ND		ug/l	0.20)		
Benzo(k)fluoranthene	ND		ug/l	0.20)		
Chrysene	ND		ug/l	0.20)		
Acenaphthylene	ND		ug/l	0.20)		
Anthracene	ND		ug/l	0.20)		
Benzo(ghi)perylene	ND		ug/l	0.20)		
Fluorene	ND		ug/l	0.20)		
Phenanthrene	ND		ug/l	0.20)		
Dibenzo(a,h)anthracene	ND		ug/l	0.20)		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20)		
Pyrene	ND		ug/l	0.20)		
2-Methylnaphthalene	ND		ug/l	0.20)		
Pentachlorophenol	ND		ug/l	0.80)		
Hexachlorobenzene	ND		ug/l	0.80)		
Hexachloroethane	ND		ug/l	0.80)		

L1708040

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8270D-SIM Analytical Date: 03/17/17 09:07

Analyst: DV

Extraction Method: EPA 3510C Extraction Date: 03/16/17 18:05

Parameter	Result	Qualifier	Units	RL		MDL
MCP Semivolatile Organics by SIM	- Westborou	gh Lab for	sample(s):	01	Batch:	WG986311-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	42	15-110
Phenol-d6	31	15-110
Nitrobenzene-d5	64	30-130
2-Fluorobiphenyl	68	30-130
2,4,6-Tribromophenol	85	15-110
4-Terphenyl-d14	73	30-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough L	ab Associated	sample(s): 01	Batch: WG9	86297-2	WG986297-3			
Acenaphthene	55		55		40-140	0		20
1,2,4-Trichlorobenzene	53		54		40-140	2		20
Hexachlorobenzene	61		61		40-140	0		20
Bis(2-chloroethyl)ether	54		54		40-140	0		20
2-Chloronaphthalene	58		58		40-140	0		20
1,2-Dichlorobenzene	50		52		40-140	4		20
1,3-Dichlorobenzene	50		52		40-140	4		20
1,4-Dichlorobenzene	49		52		40-140	6		20
3,3'-Dichlorobenzidine	47		45		40-140	4		20
2,4-Dinitrotoluene	60		60		40-140	0		20
2,6-Dinitrotoluene	63		62		40-140	2		20
Azobenzene	59		58		40-140	2		20
Fluoranthene	57		56		40-140	2		20
4-Bromophenyl phenyl ether	62		61		40-140	2		20
Bis(2-chloroisopropyl)ether	53		53		40-140	0		20
Bis(2-chloroethoxy)methane	59		59		40-140	0		20
Hexachlorobutadiene	50		50		40-140	0		20
Hexachloroethane	49		50		40-140	2		20
Isophorone	59		59		40-140	0		20
Naphthalene	55		54		40-140	2		20
Nitrobenzene	57		57		40-140	0		20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Semivolatile Organics - Westborough La	ab Associated	sample(s): 01	Batch: WG98	36297-2 \	NG986297-3				
Bis(2-ethylhexyl)phthalate	62		61		40-140	2		20	
Butyl benzyl phthalate	53		52		40-140	2		20	
Di-n-butylphthalate	60		59		40-140	2		20	
Di-n-octylphthalate	63		62		40-140	2		20	
Diethyl phthalate	59		58		40-140	2		20	
Dimethyl phthalate	62		62		40-140	0		20	
Benzo(a)anthracene	57		56		40-140	2		20	
Benzo(a)pyrene	59		59		40-140	0		20	
Benzo(b)fluoranthene	58		58		40-140	0		20	
Benzo(k)fluoranthene	56		55		40-140	2		20	
Chrysene	56		55		40-140	2		20	
Acenaphthylene	60		60		40-140	0		20	
Anthracene	57		56		40-140	2		20	
Benzo(ghi)perylene	57		56		40-140	2		20	
Fluorene	58		57		40-140	2		20	
Phenanthrene	56		55		40-140	2		20	
Dibenzo(a,h)anthracene	58		57		40-140	2		20	
Indeno(1,2,3-cd)pyrene	60		58		40-140	3		20	
Pyrene	55		54		40-140	2		20	
Aniline	28	Q	21	Q	40-140	29	Q	20	
4-Chloroaniline	30	Q	26	Q	40-140	14		20	

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics - Westborough La	ab Associated	sample(s): 01	Batch: WG98	6297-2	WG986297-3			
Dibenzofuran	57		56		40-140	2		20
2-Methylnaphthalene	57		56		40-140	2		20
Acetophenone	61		61		40-140	0		20
2,4,6-Trichlorophenol	64		64		30-130	0		20
2-Chlorophenol	57		57		30-130	0		20
2,4-Dichlorophenol	64		64		30-130	0		20
2,4-Dimethylphenol	60		56		30-130	7		20
2-Nitrophenol	61		60		30-130	2		20
4-Nitrophenol	47		47		30-130	0		20
2,4-Dinitrophenol	59		57		30-130	3		20
Pentachlorophenol	60		62		30-130	3		20
Phenol	31		31		30-130	0		20
2-Methylphenol	54		54		30-130	0		20
3-Methylphenol/4-Methylphenol	54		54		30-130	0		20
2,4,5-Trichlorophenol	64		64		30-130	0		20

Project Name: 125-131 SUMNER STREET

Project Number:

129204-003

Lab Number:

L1708040

Report Date:

03/22/17

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

MCP Semivolatile Organics - Westborough Lab Associated sample(s): 01 Batch: WG986297-2 WG986297-3

	LCS	LCSD	Acceptance
Surrogate	%Recovery	Qual %Recovery G	Qual Criteria
2-Fluorophenol	44	44	15-110
Phenol-d6	34	34	15-110
Nitrobenzene-d5	58	58	30-130
2-Fluorobiphenyl	59	59	30-130
2,4,6-Tribromophenol	67	64	15-110
4-Terphenyl-d14	51	51	30-130

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Semivolatile Organics by SIM - Westbor	ough Lab Asso	ociated sample(s): 01 Batch:	WG986311-2 WG986311-3		
Acenaphthene	85	80	40-140	6	20
2-Chloronaphthalene	78	76	40-140	3	20
Fluoranthene	77	74	40-140	4	20
Hexachlorobutadiene	81	77	40-140	5	20
Naphthalene	76	72	40-140	5	20
Benzo(a)anthracene	88	84	40-140	5	20
Benzo(a)pyrene	88	86	40-140	2	20
Benzo(b)fluoranthene	88	86	40-140	2	20
Benzo(k)fluoranthene	90	87	40-140	3	20
Chrysene	94	91	40-140	3	20
Acenaphthylene	84	83	40-140	1	20
Anthracene	81	77	40-140	5	20
Benzo(ghi)perylene	90	88	40-140	2	20
Fluorene	88	84	40-140	5	20
Phenanthrene	79	74	40-140	7	20
Dibenzo(a,h)anthracene	93	88	40-140	6	20
Indeno(1,2,3-cd)pyrene	90	88	40-140	2	20
Pyrene	76	72	40-140	5	20
2-Methylnaphthalene	77	76	40-140	1	20
Pentachlorophenol	91	87	30-130	4	20
Hexachlorobenzene	101	96	40-140	5	20

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number:

L1708040

Report Date:

03/22/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Semivolatile Organics by SIM - Westbo	rough Lab Asso	ciated sample	(s): 01 Batch:	WG98631	1-2 WG986311-3			
Hexachloroethane	69		66		40-140	4		20

	LCS	LCSD		Acceptance	
Surrogate	%Recovery	Qual %Recovery	Qual	Criteria	
2-Fluorophenol	51	48		15-110	
Phenol-d6	33	32		15-110	
Nitrobenzene-d5	72	68		30-130	
2-Fluorobiphenyl	79	77		30-130	
2,4,6-Tribromophenol	103	97		15-110	
4-Terphenyl-d14	66	62		30-130	

PETROLEUM HYDROCARBONS

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 Lab Number:

L1708040

Report Date:

03/22/17

SAMPLE RESULTS

Lab ID: L1708040-01

A2_31617 Client ID: Sample Location: EAST BOSTON, MA Date Collected: Date Received: 03/16/17 10:50 03/16/17

Metals)

Field Prep:

Field Filtered (Dissolved

Matrix: Water

Analytical Method: 100, VPH-04-1.1 Analytical Date: 03/18/17 13:35

Analyst: JM

Quality Control Information

Condition of sample received:

Aqueous Preservative:

Satisfactory

Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	104		70-130	
2,5-Dibromotoluene-FID	98		70-130	

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

SAMPLE RESULTS

Lab ID: L1708040-01 Date Collected: 03/16/17 10:50

Client ID: A2_31617 Date Received: 03/16/17
Sample Location: EAST BOSTON, MA Field Prep: Field Filtere

Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/17/17 14:28

Analytical Date: 03/19/17 15:16 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 03/18/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	63		40-140	
o-Terphenyl	70		40-140	
2-Fluorobiphenyl	68		40-140	
2-Bromonaphthalene	68		40-140	

L1708040

Lab Number:

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis
Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 03/19/17 13:10

Analyst: SR

Extraction Method: EPA 3510C
Extraction Date: 03/17/17 14:28
Cleanup Method: EPH-04-1

Cleanup Date: 03/18/17

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbo	ns - Westbor	ough Lab f	or sample(s):	01	Batch: WG986241-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

0
Criteria
40-140
40-140
40-140
40-140

Project Name: 125-131 SUMNER STREET Lab Number: L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 03/18/17 12:27

Analyst: JM

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Petroleum Hydrocarbon	s - Westborough	Lab for	sample(s):	01 Batch:	WG986473-3	
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

	Acceptance							
Surrogate	%Recovery	Qualifier	Criteria					
2,5-Dibromotoluene-PID	103		70-130					
2,5-Dibromotoluene-FID	99		70-130					

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sample(s): 01 Batch	: WG986241-2 WG986241-	3	
C9-C18 Aliphatics	61	71	40-140	15	25
C19-C36 Aliphatics	78	84	40-140	7	25
C11-C22 Aromatics	68	80	40-140	16	25
Naphthalene	54	62	40-140	14	25
2-Methylnaphthalene	55	63	40-140	14	25
Acenaphthylene	60	70	40-140	15	25
Acenaphthene	59	68	40-140	14	25
Fluorene	62	73	40-140	16	25
Phenanthrene	65	78	40-140	18	25
Anthracene	66	80	40-140	19	25
Fluoranthene	68	82	40-140	19	25
Pyrene	70	85	40-140	19	25
Benzo(a)anthracene	68	83	40-140	20	25
Chrysene	71	86	40-140	19	25
Benzo(b)fluoranthene	70	84	40-140	18	25
Benzo(k)fluoranthene	70	84	40-140	18	25
Benzo(a)pyrene	67	81	40-140	19	25
Indeno(1,2,3-cd)Pyrene	68	82	40-140	19	25
Dibenzo(a,h)anthracene	71	85	40-140	18	25
Benzo(ghi)perylene	65	78	40-140	18	25
Nonane (C9)	46	52	30-140	12	25

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Extractable Petroleum Hydrocarbons	s - Westborough Lab Ass	ociated sam	ple(s): 01 Bat	tch: WG98624	1-2 WG98624	1-3		
Decane (C10)	52		60		40-140	14	25	
Dodecane (C12)	57		66		40-140	15	25	
Tetradecane (C14)	62		71		40-140	14	25	
Hexadecane (C16)	67		80		40-140	18	25	
Octadecane (C18)	72		86		40-140	18	25	
Nonadecane (C19)	72		86		40-140	18	25	
Eicosane (C20)	73		88		40-140	19	25	
Docosane (C22)	74		89		40-140	18	25	
Tetracosane (C24)	74		88		40-140	17	25	
Hexacosane (C26)	74		88		40-140	17	25	
Octacosane (C28)	74		88		40-140	17	25	
Triacontane (C30)	74		89		40-140	18	25	
Hexatriacontane (C36)	78		93		40-140	18	25	

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	66		78		40-140	
o-Terphenyl	67		79		40-140	
2-Fluorobiphenyl	60		71		40-140	
2-Bromonaphthalene	62		72		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Petroleum Hydrocarbons - Westborou	ıgh Lab Assoc	ated sample(s)): 01 Batch: W	/G986473-1 WG986473-2			
C5-C8 Aliphatics	93		95	70-130	2	25	
C9-C12 Aliphatics	91		90	70-130	1	25	
C9-C10 Aromatics	99		100	70-130	1	25	
Benzene	98		99	70-130	1	25	
Toluene	99		101	70-130	2	25	
Ethylbenzene	99		100	70-130	1	25	
p/m-Xylene	99		100	70-130	1	25	
o-Xylene	99		100	70-130	2	25	
Methyl tert butyl ether	96		97	70-130	1	25	
Naphthalene	97		98	70-130	1	25	
1,2,4-Trimethylbenzene	99		100	70-130	1	25	
Pentane	88		89	70-130	2	25	
2-Methylpentane	94		96	70-130	2	25	
2,2,4-Trimethylpentane	98		100	70-130	2	25	
n-Nonane	96		96	30-130	0	25	
n-Decane	85		85	70-130	1	25	
n-Butylcyclohexane	98		96	70-130	2	25	

Project Name: 125-131 SUMNER STREET

Lab Number:

L1708040

Project Number: 129204-003

Report Date:

03/22/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Petroleum Hydrocarbons - Westborough Lab Associated sample(s): 01 Batch: WG986473-1 WG986473-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Qual Criteria		
2,5-Dibromotoluene-PID	98		99		70-130		
2,5-Dibromotoluene-FID	94		94		70-130		

METALS

Project Name:125-131 SUMNER STREETLab Number:L1708040

Project Number: 129204-003 **Report Date:** 03/22/17

SAMPLE RESULTS

Lab ID: L1708040-01 Client ID: A2_31617

Sample Location: EAST BOSTON, MA

Matrix: Water

Date Collected: 03/16/17 10:50

Date Received: 03/16/17 Field Prep: Field Filtered

(Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Mar	nsfield Lab									
Arsenic, Dissolved	ND		mg/l	0.005		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Barium, Dissolved	0.200		mg/l	0.010		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Cadmium, Dissolved	ND		mg/l	0.004		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Chromium, Dissolved	ND		mg/l	0.01		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Copper, Dissolved	ND		mg/l	0.010		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Lead, Dissolved	ND		mg/l	0.010		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Mercury, Dissolved	ND		mg/l	0.0002		1	03/17/17 09:43	3 03/17/17 19:21	EPA 7470A	97,7470A	EA
Selenium, Dissolved	ND		mg/l	0.010		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS
Silver, Dissolved	ND		mg/l	0.007		1	03/17/17 12:53	3 03/21/17 02:51	EPA 3005A	97,6010C	PS

Serial_No:03221715:07

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number:

L1708040

Report Date: 03/22/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
MCP Dissolved Metals	- Mansfield Lab for s	ample(s):	01 Ba	tch: Wo	G986128-1				
Mercury, Dissolved	ND	mg/l	0.0002		1	03/17/17 09:43	03/17/17 19:15	97,7470A	EA

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metal	ls - Mansfield Lab for s	sample(s):	01 Ba	tch: Wo	G986167-1				
Arsenic, Dissolved	ND	mg/l	0.005		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Barium, Dissolved	ND	mg/l	0.010		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Cadmium, Dissolved	ND	mg/l	0.004		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Chromium, Dissolved	ND	mg/l	0.01		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Copper, Dissolved	ND	mg/l	0.010		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Lead, Dissolved	ND	mg/l	0.010		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Selenium, Dissolved	ND	mg/l	0.010		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS
Silver, Dissolved	ND	mg/l	0.007		1	03/17/17 12:53	03/21/17 02:38	97,6010C	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 125-131 SUMNER STREET

Project Number: 129204-003

Lab Number: L1708040

Report Date: 03/22/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Assoc	ciated sample(s): 01	Batch: V	WG986128-2 W	/G986128-3				
Mercury, Dissolved	104		103		80-120	1		20
MCP Dissolved Metals - Mansfield Lab Assoc	ciated sample(s): 01	Batch: V	WG986167-2 W	/G986167-3				
Arsenic, Dissolved	105		106		80-120	1		20
Barium, Dissolved	100		100		80-120	0		20
Cadmium, Dissolved	104		104		80-120	0		20
Chromium, Dissolved	100		95		80-120	5		20
Copper, Dissolved	96		96		80-120	0		20
Lead, Dissolved	99		99		80-120	0		20
Selenium, Dissolved	104		107		80-120	3		20
Silver, Dissolved	101		99		80-120	2		20

Serial_No:03221715:07

Project Name: 125-131 SUMNER STREET

Lab Number: L1708040 **Report Date:** 03/22/17 **Project Number:** 129204-003

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg Ċ	Pres	Seal	Analysis(*)
L1708040-01A	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-01B	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-01C	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-01D	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	VPH-10(14)
L1708040-01E	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	VPH-10(14)
L1708040-01F	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	VPH-10(14)
L1708040-01G	Amber 1000ml HCl preserved	Α	<2	4.3	Υ	Absent	EPH-10(14)
L1708040-01H	Amber 1000ml HCl preserved	Α	<2	4.3	Υ	Absent	EPH-10(14)
L1708040-01I	Amber 1000ml unpreserved	Α	7	4.3	Υ	Absent	MCP-8270-10(7),MCP- 8270SIM-10(7)
L1708040-01J	Amber 1000ml unpreserved	Α	7	4.3	Υ	Absent	MCP-8270-10(7),MCP- 8270SIM-10(7)
L1708040-01K	Plastic 250ml HNO3 preserved	А	<2	4.3	Y	Absent	MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-CU-6010S-10(180),MCP-SE-6010S-10(180)
L1708040-02A	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-02B	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-02C	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-03A	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-03B	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)
L1708040-03C	Vial HCl preserved	Α	N/A	4.3	Υ	Absent	MCP-8260-10(14)

Project Name:125-131 SUMNER STREETLab Number:L1708040Project Number:129204-003Report Date:03/22/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:125-131 SUMNER STREETLab Number:L1708040Project Number:129204-003Report Date:03/22/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

 Project Name:
 125-131 SUMNER STREET
 Lab Number:
 L1708040

 Project Number:
 129204-003
 Report Date:
 03/22/17

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:03221715:07

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581	CHAIN OF CUSTODY	Albany, NY 12205 Tonawanda, NY 14150 Holme	outh, NH 03801 M es, PA 19043	ahwah, NJ 07430	Page	- 1	0.3		Lab	d O	3	16	17	ALPHA JOB # 170804	0
8 Walkup Dr.	320 Forbes Blvd	Project Information		LAWY ACO			-	/erable				1		Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:	125-131 Sur				1 🖹	Ema				Fax	O (Same as Client Info	
		Project Location:	East Boston	, MA		40.00	1 1		IS (1 F	-ıle)	2] EQu	S (4 File)	PO#	
H&A Information		Project #	129204-003					Othe	-						
H&A Client: Haley & Ald	Irich, Inc.	(Use Project name as Pr	roject#)				Regi	ulatory	Requ	iireme	nts (P	rogran	/Criteria)	Disposal Site Information	
H&A Address: 465 Medfor	d Street	Project Manager:	T.Cooper				1				1			Please identify below location	of
Suite 2200		ALPHAQuote #:									1			applicable disposal facilities.	
H&A Phone: 617-886-73	58	Turn-Around Time									1			Disposal Facility:	
H&A Fax:		Standard	4 🗸	Due Date	:		1							☐ NJ ☐ NY	
H&A Email: tcooper@hi	aleyaldrich.com	Rush (only if pre approved) 🔲	# of Days:	:		Note:	Select	State f	rom m	enu & i	dentify	criteria.	Other:	
These samples have been p	previously analyzed by	Alpha					ANA	LYSIS						Sample Filtration	T
COC edits by Gir	na Hall AAL 3/1	7/17 - Copper is D	Dissolved	FF			1. VOCs	2. SVOCS	3. ЕРН	4. VPH	RCRA 8 Metals	6. Copper		□Done □Lab to do Preservation □Lab to do (Please Specify below)	o t a l B o t t
ALPHA Lab ID (Lab Use Only)	Sai	mple ID		ection	Sample Matrix	Sampler's Initials					5.				_ l e
	10 01/17		Date	Time	Sept. Contraction	A CONTROL	1	17			_	1		Sample Specific Comments	s
08040-01	A2_31617		3/16/17	1050	GW	AF	X	X	X	X	X	X		3. C-Ranges only	Ш
02	B101_31617		3/16/17	1310	6W	AF	X	_	_	_		_		4. C -Ranges only	3
03	c2_31617		3/16/17	1410	GW	AF	X							5. Dissolved (field filtered)	3
B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH F = MeOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other	Westboro: Certification N Mansfield: Certification N Relinquished	o: MA015 By:	, Date/	Р	tainer Type	Receiv	ed By				Date/	Time	Please print clearly, legibly ar completely. Samples can not logged in and turnaround tim will not start until any ambigu are resolved. Alpha Analytical services under this Chain of Cu shall be performed in accordance	be e clock lities 's stody ce with
$H = Na_2S_2O_3$	E = Encore D = BOD Bottle	auf yeing		3/16/17/ 51(6/17/1 1/6/17	184	Mario	77	are Lit	_	3,	3/1	(8/17	1613	terms and conditions within Blar Service Agreement# 2015-18-A Analytical by and between Hale Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.	lpha y &

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Service Centers Brewer, ME 04412 Portsm Albany, NY 12205 Tonawanda, NY 14150 Holms Project Information Project Name: Project Location:	outh, NH 03801 M ps, PA 19043 125-131 Sur East Boston.	mner Street	Page			in verable Ema		0		Fax EQui	IS (4 File)	ALPHA Job# LITOGO 40 Billing Information Same as Client Info PO#
H&A Information	K ISSE BAR	Project #	129204-003				1 🗆	Othe	er:	35			.515	
H&A Client: Haley & Ale	drich, Inc.	(Use Project name as Pr	oject#)				Reg	ulatory	Requ	ıireme	nts (Pi	rogram	n/Criteria)	Disposal Site Information
H&A Address: 465 Medfo	rd Street	Project Manager:	T.Cooper											Please identify below location of
Suite 2200		ALPHAQuote #:									1			applicable disposal facilities.
H&A Phone: 617-886-73	358	Turn-Around Time				THE W								Disposal Facility:
H&A Fax:		Standard	V1913	Due Date			1							☐ NJ ☐ NY
	aleyaldrich.com	Rush (only if pre approved) 📙	# of Days	:		-			from m	enu & i	dentify (criteria.	Other:
These samples have been p							ANA	LYSIS						Sample Filtration
Other project specific requirements of Telegraph Please specify Metals or T	4 4	:			-		1. VOCs	2. SVOCS	3. EPH	4. VPH	RCRA 8 Metals	6. Copper		□ Done □ Lab to do Preservation □ Lab to do (Please Specify below)
ALPHA Lab ID	Sai	mple ID		ection	Sample	Sampler's	1				5. 8			i
(Lab Use Only)		W	Date	Time	Matrix	Initials		1.	_		_	ļ.		Sample Specific Comments
08040-01	A2_31617		3/16/17	1050	GW	AF	X	X	X	X	X	X		3. C-Ranges only
02	B101_31617	,	3/16/17	1310	6W	AF	X		_	-	_	_		4. C -Ranges only
03	c2_31617		3/16/17	1410	GW	AF	X							5. Dissolved (field filtered) 3
Preservative Code:	Container Code													Place wint sleeply legibly and
A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				reservative								Please print clearly, legibly and completely. Samples can not be logged in and turnaround time cloc will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished	,	Date/ 3/15/17 51(6) 7 /	ha.	Mario		ed By Art		3,	3/0		Time 16136 1623 1623	shall be performed in accordance with terms and conditions within Blanket Service Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1708040
Project Name : 125-131 SUMNER STREET Project Number : 129204-003
Lab Sample ID : WG986575-5 Lab File ID : VJ170317B08

Instrument ID : JACK

Matrix : WATER Analysis Date : 03/17/17 21:47

Client Sample No.	Lab Sample ID	Analysis Date	
WG986575-3LCS	WG986575-3	03/17/17 20:07	
WG986575-4LCSD	WG986575-4	03/17/17 20:40	
C2_31617	L1708040-03	03/18/17 03:21	

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1708040
Project Name : 125-131 SUMNER STREET Project Number : 129204-003
Lab Sample ID : WG987045-5 Lab File ID : VJ170321A09

Instrument ID : JACK

Matrix : WATER Analysis Date : 03/21/17 06:23

Client Sample No.	Lab Sample ID	Analysis Date	
WG987045-3LCS	WG987045-3	03/21/17 04:07	
WG987045-4LCSD	WG987045-4	03/21/17 04:38	
A2_31617	L1708040-01	03/21/17 10:50	
B101_31617	L1708040-02	03/21/17 11:23	

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1708040 : 125-131 SUMNER STREET **Project Name** Project Number : 129204-003 Calibration Date : 03/17/17 20:07

Instrument ID : JACK

: VJ170317B02 Lab File ID Init. Calib. Date(s) : 02/28/17 02/28/17 Sample No : WG986575-2 Init. Calib. Times : 07:34 11:28

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev
Fluorobenzene	1 0.467	1 0.540	-	0	20	77	0
Dichlorodifluoromethane	0.467	0.548	-	-17.3	20	89	0
Chloromethane	0.428	0.445	-	-4	20	82	.04
Vinyl chloride	0.444	0.541	-	-21.8*	20	89	0
Bromomethane	0.229	0.211	-	7.9	20	77	0
Chloroethane	10	12.161	-	-21.6*	20	83	0
Trichlorofluoromethane	0.703	0.796	-	-13.2	20	83	02
Ethyl ether	0.18	0.195	-	-8.3	20	85	02
1,1-Dichloroethene	0.4	0.456	-	-14	20	87	02
Carbon disulfide	1.142	1.226	-	-7.4	20	83	02
Methylene chloride	10	11.019	-	-10.2	20	84	02
Acetone	10	9.964	-	0.4	20	84	02
trans-1,2-Dichloroethene	0.424	0.466	-	-9.9	20	87	02
Methyl tert-butyl ether	0.91	0.889	-	2.3	20	81	0
Diisopropyl ether	1.34	1.474	-	-10	20	84	0
1,1-Dichloroethane	0.843	0.88	-	-4.4	20	81	02
Ethyl tert-butyl ether	1.072	1.111	-	-3.6	20	80	0
cis-1,2-Dichloroethene	0.491	0.525	-	-6.9	20	85	02
2,2-Dichloropropane	0.717	0.692	-	3.5	20	71	0
Bromochloromethane	0.221	0.242	-	-9.5	20	87	0
Chloroform	0.808	0.841	-	-4.1	20	82	0
Carbon tetrachloride	0.658	0.679	-	-3.2	20	83	0
Tetrahydrofuran	0.109	0.117	-	-7.3	20	91	0
Dibromofluoromethane	0.304	0.295	-	3	20	76	0
1,1,1-Trichloroethane	0.735	0.782	-	-6.4	20	81	02
2-Butanone	0.117	0.119	-	-1.7	20	86	0
1,1-Dichloropropene	0.568	0.636	-	-12	20	85	0
Benzene	1.575	1.764	-	-12	20	85	0
tert-Amyl methyl ether	0.833	0.801	-	3.8	20	74	0
1,2-Dichloroethane-d4	0.326	0.296	-	9.2	20	73	02
1,2-Dichloroethane	0.535	0.557	-	-4.1	20	82	0
Trichloroethene	0.436	0.463	-	-6.2	20	82	0
Dibromomethane	0.212	0.224	-	-5.7	20	83	02
1,2-Dichloropropane	0.395	0.429	-	-8.6	20	82	0
Bromodichloromethane	0.522	0.521	-	0.2	20	77	0
1,4-Dioxane	0.00145	0.00143*	-	1.4	20	84	0
cis-1,3-Dichloropropene	0.603	0.6	-	0.5	20	76	0
Chlorobenzene-d5	1	1	-	0	20	84	0
Toluene-d8	1.338	1.309	-	2.2	20	78	0
Toluene	1.245	1.414	-	-13.6	20	87	0
4-Methyl-2-pentanone	0.134	0.12	-	10.4	20	73	0
Tetrachloroethene	0.646	0.743	-	-15	20	86	0
trans-1,3-Dichloropropene	0.807	0.785	-	2.7	20	74	0
1,1,2-Trichloroethane	0.372	0.703	<u> </u>	-6.7	20	81	0
Chlorodibromomethane	0.573	0.569	<u> </u>	0.7	20	78	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1708040 **Project Name** : 125-131 SUMNER STREET **Project Number** : 129204-003 Calibration Date : 03/17/17 20:07

Instrument ID : JACK

Lab File ID : VJ170317B02 Init. Calib. Date(s) : 02/28/17 02/28/17 Sample No : WG986575-2 Init. Calib. Times : 07:34 11:28

Channel

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.781	0.828	-	-6	20	83	0
1,2-Dibromoethane	0.421	0.445	-	-5.7	20	80	01
2-Hexanone	0.245	0.212	-	13.5	20	73	0
Chlorobenzene	1.301	1.375	-	-5.7	20	83	0
Ethylbenzene	2.08	2.131	-	-2.5	20	85	0
1,1,1,2-Tetrachloroethane	0.614	0.582	-	5.2	20	77	0
p/m Xylene	0.623	0.592	-	5	20	84	0
o Xylene	0.655	0.648	-	1.1	20	97	0
Styrene	1.295	1.147	-	11.4	20	83	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	82	0
Bromoform	0.624	0.6	-	3.8	20	72	0
Isopropylbenzene	5.499	5.843	-	-6.3	20	80	0
4-Bromofluorobenzene	1.073	1.018	-	5.1	20	78	0
Bromobenzene	1.377	1.443	-	-4.8	20	84	0
n-Propylbenzene	5.077	5.509	-	-8.5	20	82	01
1,1,2,2-Tetrachloroethane	0.991	1.056	-	-6.6	20	85	0
2-Chlorotoluene	3.328	3.478	-	-4.5	20	83	0
1,3,5-Trimethylbenzene	2.276	2.356	-	-3.5	20	83	0
1,2,3-Trichloropropane	0.753	0.774	-	-2.8	20	81	0
4-Chlorotoluene	2.894	3.057	-	-5.6	20	87	0
tert-Butylbenzene	3.398	3.693	-	-8.7	20	80	0
1,2,4-Trimethylbenzene	2.467	2.666	-	-8.1	20	86	0
sec-Butylbenzene	4.84	5.464	-	-12.9	20	80	0
p-Isopropyltoluene	3.433	3.859	-	-12.4	20	80	0
1,3-Dichlorobenzene	2.1	2.269	-	-8	20	83	0
1,4-Dichlorobenzene	1.989	2.106	-	-5.9	20	84	0
n-Butylbenzene	2.872	3.583	-	-24.8*	20	77	0
1,2-Dichlorobenzene	1.96	2.152	-	-9.8	20	83	0
1,2-Dibromo-3-chloropropan	10	8.776	-	12.2	20	76	01
Hexachlorobutadiene	10	9.62	-	3.8	20	68	01
1,2,4-Trichlorobenzene	0.686	0.727	-	-6	20	75	0
Naphthalene	1.075	1.14	-	-6	20	79	02
1,2,3-Trichlorobenzene	0.557	0.613	-	-10.1	20	75	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1708040 : 125-131 SUMNER STREET **Project Name** Project Number : 129204-003 Calibration Date : 03/21/17 04:07

Instrument ID : JACK

Lab File ID : VJ170321A01 Init. Calib. Date(s) : 02/28/17 02/28/17 Sample No : WG987045-2 Init. Calib. Times : 07:17 11:10

Channel

Compound	Ave. RRF	RRF 10	Min RRF	%D 0	Max %D 20	Area% 81	Dev
Fluorobenzene Dichlorodifluoromethane			-		20	84	
	0.343	0.376	-	-9.6			0
Chloromethane	0.387	0.427	-	-10.3	20	87	0
Vinyl chloride	0.354	0.41	-	-15.8	20	92	0
Bromomethane	10	10.499	-	-5	20	92	0
Chloroethane	10	11.585	-	-15.9	20	84	0
Trichlorofluoromethane	0.431	0.461	-	-7	20	82	0
Ethyl ether	0.11	0.114	-	-3.6	20	80	0
1,1-Dichloroethene	0.258	0.27	-	-4.7	20	84	0
Carbon disulfide	0.716	0.742	-	-3.6	20	81	0
Freon-113	0.245	0.266	-	-8.6	20	81	0
Methylene chloride	0.272	0.27	-	0.7	20	77	0
Acetone	10	8.326	-	16.7	20	72	0
trans-1,2-Dichloroethene	0.274	0.302	-	-10.2	20	87	0
Methyl tert-butyl ether	0.592	0.563	-	4.9	20	77	0
tert-Butyl alcohol	50	39.432	-	21.1*	20	63	0
Diisopropyl ether	1.053	1.085	-	-3	20	84	0
1,1-Dichloroethane	0.52	0.585	-	-12.5	20	88	0
Ethyl tert-butyl ether	0.803	0.776	-	3.4	20	79	0
cis-1,2-Dichloroethene	0.315	0.339	-	-7.6	20	87	0
2,2-Dichloropropane	0.504	0.462	-	8.3	20	72	0
Bromochloromethane	0.139	0.146	-	-5	20	85	0
Chloroform	0.522	0.56	-	-7.3	20	85	0
Carbon tetrachloride	0.451	0.439	-	2.7	20	79	0
Tetrahydrofuran	0.069	0.072	-	-4.3	20	89	0
Dibromofluoromethane	0.23	0.232	-	-0.9	20	80	0
1,1,1-Trichloroethane	0.52	0.544	-	-4.6	20	83	0
2-Butanone	0.086	0.072*	-	16.3	20	67	0
1,1-Dichloropropene	0.432	0.471	-	-9	20	87	0
Benzene	1.271	1.363	-	-7.2	20	87	0
tert-Amyl methyl ether	0.658	0.605	-	8.1	20	77	0
1,2-Dichloroethane-d4	0.252	0.225	-	10.7	20	67	0
1,2-Dichloroethane	0.361	0.382	-	-5.8	20	85	0
Trichloroethene	0.348	0.361	-	-3.7	20	86	0
Dibromomethane	0.153	0.145	-	5.2	20	77	0
1,2-Dichloropropane	0.318	0.319	-	-0.3	20	82	0
2-Chloroethyl vinyl ether	0.128	0.089	-	30.5*	20	58	0
Bromodichloromethane	0.423	0.362	-	14.4	20	72	0
1,4-Dioxane	0.00199	0.00205*	-	-3	20	91	0
cis-1,3-Dichloropropene	0.533	0.465	-	12.8	20	72	0
Chlorobenzene-d5	1	1		0	20	80	0
Toluene-d8	1.129	1.133	-	-0.4	20	79	0
Toluene	0.968	1.045	-	-8	20	86	0
4-Methyl-2-pentanone	10	7.804	<u> </u>	22*	20	64	0
Tetrachloroethene	0.46	0.496	<u> </u>	-7.8	20	86	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1708040
Project Name : 125-131 SUMNER STREET Project Number : 129204-003

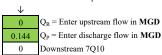
 Instrument ID
 : JACK
 Calibration Date
 : 03/21/17 04:07

 Lab File ID
 : VJ170321A01
 Init. Calib. Date(s)
 : 02/28/17

Channel:

	Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1	trans-1,3-Dichloropropene	0.442	0.379	-	14.3	20	69	0
	1,1,2-Trichloroethane	0.199	0.209	-	-5	20	82	0
	Chlorodibromomethane	0.342	0.305	-	10.8	20	73	0
-	1,3-Dichloropropane	0.424	0.42	-	0.9	20	80	0
-	1,2-Dibromoethane	0.254	0.246	-	3.1	20	78	01
- :	2-Hexanone	0.158	0.121	-	23.4*	20	67	0
	Chlorobenzene	1.194	1.208	-	-1.2	20	82	0
	Ethylbenzene	2.148	2.157	-	-0.4	20	81	0
-	1,1,1,2-Tetrachloroethane	0.431	0.395	-	8.4	20	77	0
	p/m Xylene	0.885	0.887	-	-0.2	20	80	0
	o Xylene	0.863	0.828	-	4.1	20	77	0
	Styrene	1.466	1.413	-	3.6	20	79	0
-	1,4-Dichlorobenzene-d4	1	1	-	0	20	77	0
	Bromoform	0.35	0.294	-	16	20	67	0
	Isopropylbenzene	4.14	4.116	-	0.6	20	77	01
	4-Bromofluorobenzene	0.831	0.829	-	0.2	20	80	0
-	Bromobenzene	0.894	0.879	-	1.7	20	76	0
Г	n-Propylbenzene	4.705	4.626	-	1.7	20	76	01
-	1,1,2,2-Tetrachloroethane	0.502	0.485	-	3.4	20	76	0
- :	2-Chlorotoluene	3.056	2.971	-	2.8	20	77	0
-	1,3,5-Trimethylbenzene	3.429	3.349	-	2.3	20	77	0
-	1,2,3-Trichloropropane	0.405	0.402	-	0.7	20	80	0
	4-Chlorotoluene	2.773	2.606	-	6	20	74	0
1	tert-Butylbenzene	3.024	2.914	-	3.6	20	74	0
	1,2,4-Trimethylbenzene	3.345	3.217	-	3.8	20	74	0
	sec-Butylbenzene	4.403	4.248	-	3.5	20	75	0
	p-Isopropyltoluene	3.735	3.628	-	2.9	20	73	0
-	1,3-Dichlorobenzene	1.869	1.832	-	2	20	77	0
-	1,4-Dichlorobenzene	1.754	1.769	-	-0.9	20	78	0
Г	n-Butylbenzene	10	8.114	-	18.9	20	57	0
	1,2-Dichlorobenzene	1.587	1.614	-	-1.7	20	74	0
	1,2-Dibromo-3-chloropropan	10	7.529	-	24.7*	20	59	01
ı	Hexachlorobutadiene	0.418	0.418	-	0	20	71	01
	1,2,4-Trichlorobenzene	0.785	0.779	-	0.8	20	74	0
	Naphthalene	10	8.886	-	11.1	20	71	02
	Napriliaierie		0.000					

^{*} Value outside of QC limits.


APPENDIX C

Effluent Limit Calculations

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L CaCO ₃
0	C _s = Enter receiving water hardness in mg/L CaCO

Enter receiving water concentrations in the units specified

Enter receiving water concentration					
	_				
7.7	pH in Standard Units				
6.4	Temperature in °C				
0.489	Ammonia in mg/L				
0	Hardness in mg/L CaCO				
0.016	Salinity in ppt				
0	Antimony in μg/L				
0	Arsenic in μg/L				
0	Cadmium in µg/L				
0	Chromium III in μg/L				
0	Chromium VI in μg/L				
0	Copper in µg/L				
0	Iron in μg/L				
0	Lead in μg/L				
0	Mercury in μg/L				
0	Nickel in μg/L				
0	Selenium in μg/L				
0	Silver in μg/L				
0	Zinc in μg/L				

Enter influent concentrations in the units specified

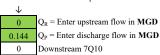
↓	
0	TRC in μg/L
10.1	Ammonia in mg/L
0	Antimony in μg/L
1.77	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
8.5	Copper in µg/L
898	Iron in μg/L
2.69	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only


pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salimity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L CaCO ₃
0	C _s = Enter receiving water hardness in mg/L CaCO

Enter receiving water concentrations in the units specified

↓	
7.7	pH in Standard Units
6.4	Temperature in °C
0.489	Ammonia in mg/L
0	Hardness in mg/L CaCO
0.016	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in μg/L
0	Chromium VI in μg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L

Enter influent concentrations in the units specified

↓	<u>-</u>
0	TRC in μg/L
101	Ammonia in mg/L
0	Antimony in μg/L
1.77	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
8.5	Copper in µg/L
898	Iron in μg/L
2.69	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave $\boldsymbol{0}$ if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Enter number values in green boxes below

Enter values in the units specified

	\downarrow	-
l	0.144	Q _R = Enter upstream flow in MGD
	0	Q _P = Enter discharge flow in MGI
	0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L CaCO ₃
0	C _s = Enter receiving water hardness in mg/L CaCO ₃

Enter receiving water concentrations in the units specified

Liner rece	Tring water concentiation
\downarrow	_
7.7	pH in Standard Units
6.4	Temperature in °C
0.489	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
0.016	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in µg/L
0	Zinc in μg/L
	-

Enter influent concentrations in the units specified

\downarrow	
0	TRC in μg/L
101	Ammonia in mg/L
0	Antimony in μg/L
1.77	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
8.5	Copper in µg/L
898	Iron in μg/L
2.69	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor 0.0

Dilution Factor	0.0					
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L			applies if shown	
Chloride	•	-				
Total Residual Chlorine	Report	μg/L		/T	50	/T
	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	$\mu g/L$		
Cadmium	10.2	μg/L	8.9	$\mu g/L$		
Chromium III	323	$\mu g/L$	100.0	$\mu g/L$		
Chromium VI	323	$\mu g/L$	50	$\mu g/L$		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	μg/L		$\mu g/L$		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L μg/L		
Silver	35.1		2.2			
Zinc		μg/L	86	μg/L		
	420	μg/L		μg/L		(T
Cyanide R. Non-Hologopoted VOCs	178	mg/L	1.0	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs	4.4		1.6	/T		
Carbon Tetrachloride 1,2 Dichlorobenzene	600	μg/L	1.6	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene Ethylene Dibromide	3.2 0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70 2.0	μg/L				
Vinyl Chloride D. Non-Halogenated SVOCs	2.0	μg/L				
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L		/7		(T
Benzo(a)anthracene	1.0 1.0	μg/L	0.0038 0.0038	μg/L		μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0	μg/L μg/L	0.0038	μg/L μg/L		μg/L μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	$\mu g/L$	0.0038	$\mu g/L$		$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	μg/L		$\mu g/L$
Total Group II Polycyclic	100	ua/I				
Aromatic Hydrocarbons Naphthalene	100 20	μg/L μg/L				
E. Halogenated SVOCs	20	r6 -				
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol Mathyl tort Putyl Ethan	Report 70	mg/L	20	п.∞/т		
Methyl-tert-Butyl Ether tert-Butyl Alcohol	120	μg/L μg/L	20 	μg/L		
tert-Amyl Methyl Ether	90	μg/L μg/L				
yy 		r-0/2				

Dilution Factor 0.0

Dilution Factor	0.0					
A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L			applies if shown	
Chloride	•	-				
Total Residual Chlorine	Report	μg/L		/T	50	/T
	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	$\mu g/L$		
Cadmium	10.2	μg/L	8.9	$\mu g/L$		
Chromium III	323	$\mu g/L$	100.0	$\mu g/L$		
Chromium VI	323	$\mu g/L$	50	$\mu g/L$		
Copper	242	$\mu g/L$	3.7	$\mu g/L$		
Iron	5000	μg/L		$\mu g/L$		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	μg/L	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L μg/L		
Silver	35.1		2.2			
Zinc		μg/L	86	μg/L		
	420	μg/L		μg/L		(T
Cyanide R. Non-Hologopoted VOCs	178	mg/L	1.0	μg/L		μg/L
B. Non-Halogenated VOCs Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	$\mu g/L$		
C. Halogenated VOCs	4.4		1.6	/T		
Carbon Tetrachloride 1,2 Dichlorobenzene	600	μg/L	1.6	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene Ethylene Dibromide	3.2 0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	$\mu g/L$				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70 2.0	μg/L				
Vinyl Chloride D. Non-Halogenated SVOCs	2.0	μg/L				
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L		/7		(T
Benzo(a)anthracene	1.0 1.0	μg/L	0.0038 0.0038	μg/L		μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0	μg/L μg/L	0.0038	μg/L μg/L		μg/L μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	$\mu g/L$	0.0038	$\mu g/L$		$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	$\mu g/L$	0.0038	μg/L		$\mu g/L$
Total Group II Polycyclic	100	ua/I				
Aromatic Hydrocarbons Naphthalene	100 20	μg/L μg/L				
E. Halogenated SVOCs	20	r6 -				
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol Mathyl tort Putyl Ethan	Report 70	mg/L	20	п.∞/т		
Methyl-tert-Butyl Ether tert-Butyl Alcohol	120	μg/L μg/L	20 	μg/L		
tert-Amyl Methyl Ether	90	μg/L μg/L				
yy 		r-0/2				

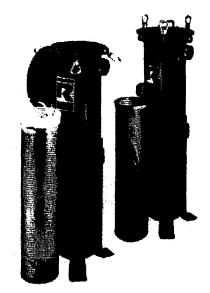
APPENDIX D

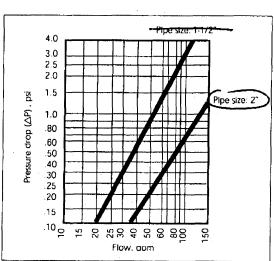
Typical Treatment System Products

Model NCO and NLCO Bag or Cartridge Filter Housings

Low cost filter housings for flow rates to 100 gpm*

NCO high-capacity bag filters offer an exceptional value in basic filtration applications. Offered in trade sizes 1, 2, and 12, the NCO is also available with our Platinum 700 cartridge series.


NCO housings provide large dirt-holding capacity combined with a rugged design rated to 150 psi. The housings incorporate an eyenut cover that is easily removed, reducing time spent on bag or cartridge change-out. The NCO bag housing offers versatility for any piping arrangement, utilizing our unistyle design (side and bottom outlet). Two connection sizes are available for both bag and cartridge filters.


The NCO housings are electropolished creating a smooth, easy-to-clean surface. A variety of filter bags or cartridges (rated 0.5µ absolute to 100µ nominal) can be utilized in this housing. Keep your filtration process cost effective without sacrificing quality.

Features

- Permanently piped housings are opened without special tools
- Carbon or stainless steel housings
- Covers are O-ring sealed
- O-ring seals: Buna N, EPR and Viton®
- 150 psi rated housing
- Heavy-duty basket, over 50% open area
- Uses standard number 1, 2 or 12 size bags and 500 or 700 series cartridges

- Filter selection surface area is:
 2.3 square feet (number 1 size bag),
 4.4 square feet (number 2 size bag),
 5.6 square feet (number 12 size bag)
 68 square feet (500 series cartridge)
 100 square feet (700 series cartridge)
- 1-1/2 inch o 2-inch NPT inlet and outlet
- 1/4-inch NPT vent connection
- Adjustable leg assembly



*Based on housing only. Fluid viscosity, filter bag used, and expected dirt loading should be considered when sizing a filter.

How To Order

Build an ordering code as shown in the example.

Dimensions are reference only and should not be used for hard plumbing. Consult factory for certified drawings.

FILTER BAG Design Details

Standard Filter Bag Types

RING TOP BAGS are stocked in sizes 1, 2, 3, 4, 8, 9 & 12 with galvanized steel, rings.

MOLDED ROSEDALE TOP BAGS are stocked with polypropylene tops in sizes 1, 2, 3, 4, 8 & 9.

HANDLES are standard on all bags.

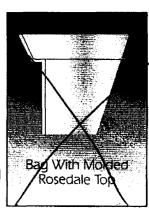
ALL STANDARD STOCK BAGS have sewn construction.

FILTER BAG FINISH

Felt filter bags are supplied with a glazed finish to reduce fiber migration. Mesh filter bags are supplied with a plain finish as woven.

Microfiber filter bags have spunbonded covers to prevent fiber migration.

CONSTRUCTION


Standard filter bags are typically manufactured with a metal ring, either galvanized carbon steel or stainless steel, sewn in the top of the filter bag. Woven fabric handles are also sewn.

Another design incorporates a molded plastic top. These tops typically are polypropylene or polyester with molded lifting handles. Various types of tops are available to fit specific manufacturers' housings.

All Welded Construction

All seams and the collar are sonically welded, enhancing filtration quality, eliminating leaks and bypass that may have occurred with sewn seams.

	Nominal Micron Rating- 50%	High Efficiency Micron Rating- 95%
	1	35
	. 5	48
	10	55
فالقوال	25	65
	50	70
	100	110
	200	200
		Profession of

Eor years filter baig manufacturers

have used homistal rapides to
about 50% efficiency for polyester
and polypropylene felt filter bacs

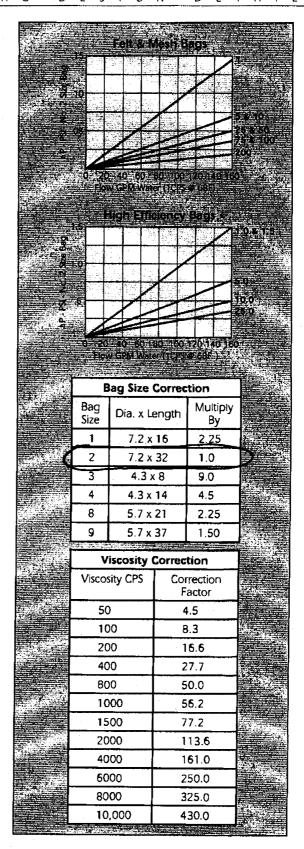
"Ine table gives it en usem altrigs
"Ine table gives it en usem altrigs
"Ine table gives it en usem altrigs

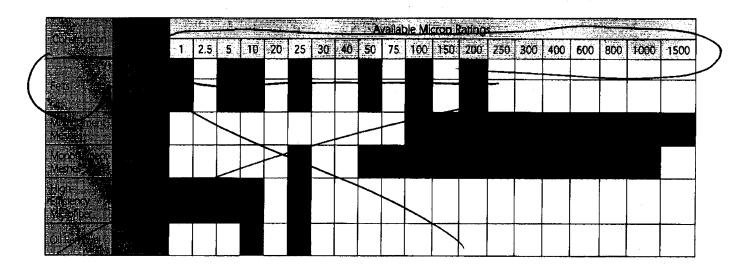
Filter Bag Pressure Drop

The graphs give the clean pressure drop through a number 2 size bag for water, 1 CPS @ 68°F

To determine the pressure drop caused by the filter bag, follow these steps:

Step 1 Select the type of bag, micron rating and flow rate, determine the pressure drop for water, 1 cps @ 68°F, for a size #2 bag.

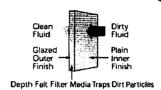

Step 2 Correct for bag size from the Bag Size Correction table at the right if the bag size is different than a #2 size.


Step 3 If the viscosity of the liquid is greater than 1 cps (water@ 68°F), multiply the result from step 2 by the proper correction factor from the Viscosity Correction table at the right.

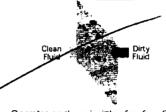
The value obtained in Step 3 is the clean pressure drop caused by the filter bag.

SUMMARY

For new applications, the clean pressure drop of the system, housing and bag should be 2.0 PSI or less. The lower the value is, the more contaminant a bag will hold. For applications with low dirt loading, this value can go to 3.0 PSI or more. Consult the factory for recommendations when the clean pressure drop of the system exceeds 3.0 PSI.



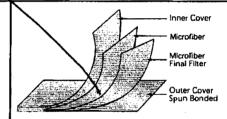
		Diameter (Inches)	Length (Inches)	Area FE	
		7.2	16	2.0	
<		7.2	32	4.5	File Holyslog Charles File Holyslog Bright Side File Holyslog Bright Side File Holyslog Bright Side File Holyslog Bright Side File File File File File File File Fil
		4.3	8	0.5	Fire Housings Brancis Ground Ground Strainers Micron Macron Macron Macron Macron Barros (diving) Fauth Firendon Citiens Citiens Citiens Citiens
	4(4)	4.3	14	1.0	Alexa (Cara) Alexa (Cara) Alexa (Cara) Cara (Cara) Car
		5.1	20	2.8	##Microsoft and project in the second
		5.7	15	1.5	Holder de Siver
		5.7	32	3.0	
		5.7	32	3.0	
	7.112 1.12 1.12	8.4	34	5.5	Siner:



FELT filter bag materials are made from synthetic fibers in polypropylene or polyester. The proper combination of fiber diameters, weights and thickness results in an economical depth type filter media. Polypropylene and polyester bags are suppled with a glazed finish to reduce fiber migration. These bags have a nominal micron rating. Filter efficiency is about 50%.

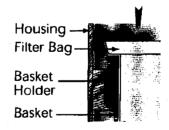
MULTIFILAMENT MESH materials are offered in polyester and are woven from threads made of small fibers twisted together. Bags made of this material are low cost and considered disposable. They have lower efficiencies than the monofilament mesh. Filter efficiencies are about 80%.

1


MONOFILAMENT MESH is offered in nylon and is a woven material. Each thread is a single filament The openings are square. They have excellent strength and are considered to be cleanable. Filter efficiency is 90% or more.

- Operates on the principle of surface filtration
- Wide range of micron ratings
- Reusable or disposableNon-fiber releasing
- Good efficiencies
- High contaminant quantities under correct conditions

MICROFIBER filter bags provide high efficiency and high contaminant holding capacity at low ratings. Bags are available in polypropylene. Filter efficiency is 95% or more.


MICROFIBER polypropylene filter bags also can remove oil from water and other liquids. Optimized designs are called "OIL REMOVAL BAGS".

MOLDED ROSEDALE TOPS - POR STYLE

Filter bags with molded Rosedale tops require no filter bag hold down devices. As the differential pressure in the application increases, the integrity of the seal improves. Polypropylene tops are standard with polyester optional for temperatures over 200°F, or for chemical capatibility.

THE MOLDED ROSEDALE TOP OFFERS THE BEST BAG-TO-HOUSING SEAL IN TODAY'S MARKETPLACE, IN ADDITION TO BEING THE EASIEST TO INSTALL AND REMOVE.

FILTER BAG WITH MOLDED ROSEDALE TOP JUST PRIOR TO INSTALLATION IN BASKET HOLDER

FILTER BAG WITH MOLDED ROSEDALE TOP INSTALLED IN HOUSING

OTHER BAG TYPES AND DESIGNS

500 SERIES 3M TYPE multiple layer filter bags with microfiber filter layers and felt prefilter layers. Up to 5 layers of felt

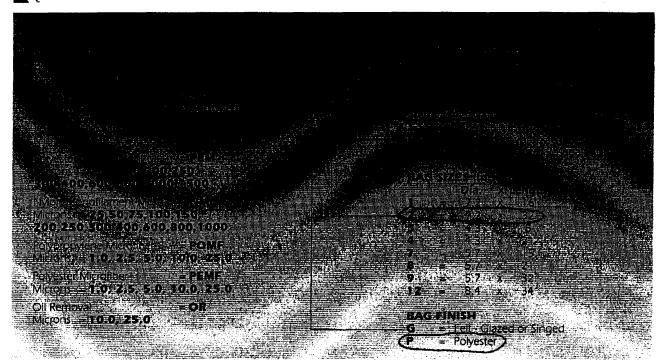
DOUBLE & TRIPLE LAYER felt bags where the micron rating of the layers are designed to optimize service life.

SPECIAL SIZE & DESIGN bags are available in all materials and most micron ratings.

OIL REMOVAL BAGS require a special design to obtain to result in the largest surface area of fibers in a bag for maximum oil removal capacity. These are standard in micron ratings of 10 and 25.

FILTER BAG HOLD-DOWNS

Adjustable filter bag hold-downs for Size #1 and #2 bags are available for side entry housings manufactured by:


Filter Specialists, Inc. / Micron Technologies / Krystil Klear / Strainrite / Other Side Entry Brands

Available in polypropylene, they provide additional positive filter bag hold-down capabilities for critical applications where necessary. It is suitable for ring top bags and bags with molded plastic tops. It is necessary for many bags with molded tops and ring bags if the bag manufacturer improperly designs and manufactures them.

A FILTER BAG HOLD-DOWN IS NOT REQUIRED WHEN USING FILTER BAGS WITH MOLDED ROSEDALE TOPS.

PE- -P-2-5

How To Order Build an ordering code as shown in the example

Recordall[®] Cold Water Top Load Bronze Disc Meter

Size 2" (DN 50mm)

Technical Brief

DESCRIPTION

Badger Meter offers the Recordall Disc meter in Cast Bronze and a Low Lead Alloy. The Low Lead Alloy (Trade Designation: M170 LL) version complies with NSF/ANSI Standard 61 and carries the NSF-61 Mark on the housing. All components of the Low Lead Alloy meter, i.e., disc, chamber, housing, seals, etc., comprise the certified system.

APPLICATIONS: For use in measurement of potable cold water in residential, commercial and industrial services where flow is in one direction only.

OPERATION: Water flows through the meter's strainer and into the measuring chamber where it causes the disc to nutate. The disc, which moves freely, nutates on its own ball, guided by a thrust roller. A drive magnet transmits the motion of the disc to a follower magnet located within the permanently-sealed register. The follower magnet is connected to the register gear train. The gear train reduces the disc nutations into volume totalization units displayed on the register dial face.

OPERATING PERFORMANCE: The Badger Recordall Disc meters meet or exceed registration accuracy for the low flow rates (95%), normal operating flow rates ($100 \pm 1.5\%$), and maximum continuous operation flow rates as specifically stated by AWWA Standard C700.

CONSTRUCTION: Badger Recordall Disc meter construction, which complies with ANSI/AWWA standard C700, consists of three basic components: bronze meter housing, measuring chamber, and permanently, sealed register. A corrosion-resistant thermoplastic material is used for the measuring chamber.

To simplify maintenance, the register, measuring chamber, and strainer can be replaced without removing the meter housing from the installation. No change gears are required for accuracy calibration. Interchangeability of parts among like-sized meters also minimizes spare parts inventory investment. The built-in strainer has an effective straining area of twice the inlet size.

MAGNETIC DRIVE: Direct magnetic drive, through the use of high-strength magnets, provides positive, reliable and dependable register coupling for straight-reading, remote or automatic meter reading options.

SEALED REGISTER: The standard register consists of a straight-reading, odometer-type totalization display, 360° test circle with center sweep hand and flow finder to detect leaks. Register gearing consists of self-lubricating thermoplastic gears to minimize friction and provides long life. Permanently sealed; dirt, moisture, tampering and lens fogging problems are eliminated. Multi-position register simplifies meter installation and reading. Generator-type remote reading and automatic meter reading systems are available for all Recordall Disc meters. All reading options are removable from the meter without disrupting water service.

TAMPER-PROOF FEATURES: Customer removal of the register to obtain free water can be prevented when the optional tamper detection seal wire screw/or Torx® tamper seal resistant screw is added to the meter. Both can be installed at the meter site or at the factory.

MAINTENANCE: Badger Recordall Disc meters are designed and manufactured to provide long-term service with minimal maintenance. When maintenance is required, it can be performed easily either at the meter installation or at any other convenient location. As an alternative to repair by the utility, Badger offers various maintenance and meter component exchange programs to fit the needs of the utility.

CONNECTIONS: Tailpieces/Flanges for installations of meters on various pipe types and sizes, including misaligned pipes, are available as an option.

Model 170 shown with optional 1" Test Plug

SPECIFICATIONS

Typical Operating $2 \frac{1}{2} - 170 \text{ GPM } (.57 \text{ to } 39 \text{ m}^3/\text{hr})$ **Range (100% \pm 1.5%)**

Low Flow 1 1/2 GPM (.34 m³/hr) (Min. 95%)

Maximum 100 GPM (23 m³/hr)
Continuous Operation

Pressure Loss 3.3 PSI at 100 GPM (.23 bar at 23 m³/hr)
Continuous Operation

Maximum Operating 80°F (26°C)
Temperature
Maximum Operating 150 PSI (10 bar)

Pressure

Measuring Element Nutating disc, pos

Register Type Straight reading, permanently

sealed magnetic drive standard. Remote reading or Automatic Meter

Reading units optional.

100 Gallons, 10 Cubic Feet, 1 m³

Register Capacity 100,000,000 Gallons, 10 Cubic Feet, 1 m³

10,000,000 Cubic Feet, 1,000,000 m³. 6 odometer wheels.

Meter Connections 2" AWWA two bolt elliptical flange, drilled, or 2" - 11 1/2 NPT

internal pipe threads.

Optional Test Plug 1" NPT test plug (TP) available on elliptical

long and short versions.

MATERIALS

Meter Housing Cast Bronze, Low Lead Alloy

Housing Top Plates Bronze, Low Lead Alloy

Measuring Chamber Thermoplastic

Disc Thermoplastic

Trim Stainless Steel/Bronze

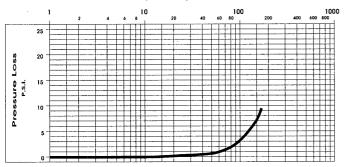
Strainer Thermoplastic

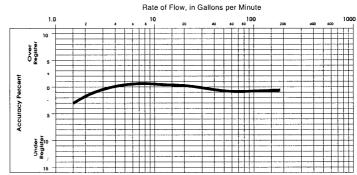
Disc Spindle Stainless Steel

Magnet Ceramic

Magnet Spindle Stainless Steel

Register Lid and Box Thermoplastic or Bronze


Generator Housing Thermoplastic



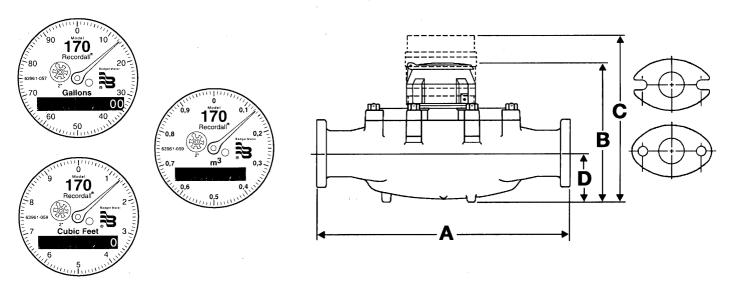
PRESSURE LOSS CHART

ACCURACY CHART

Rate of Flow, in Gallons per Minute

METER SIZE	METER MODEL	A LAYING LENGTH	B HEIGHT REG./RTR	C HEIGHT GEN.	D CENTERLINE BASE	WIDTH	APPROX. SHIPPING WEIGHT
2"	170 EL, Hex.	15 ¹ / ₄ "	8"	9 ³ / ₈ "	2 ⁷ / ₈ "	9¹/₂"	30 lb.
(50mm)	170 EL, TP	(387mm)	(203mm)	(238mm)	(73mm)	(241mm)	(13.6kg)
2"	170 ELL,	17"	8"	9 ³ / ₈ "	2 ⁷ / ₈ "	9 ¹ / ₂ "	30 lb.
(50mm)	170 ELL, TP	(432mm)	(203mm)	(238mm)	(73mm)	(241mm)	(13.6kg)

EL = Elliptical


ELL = Elliptical Long

Hex = Hexagon, $2'' - 11^{1/2}$ NPT Thread

TP=Test Plug 1"

Sweep Hand Registration

MODEL	GALLON	CU.FT.	CU. METER
M170	100	10	1

RTR® and Recordall® are registered trademarks of Badger Meter, Inc. TORX® is a registered trademark of Camcar, Division of Textron, Inc.

Please see our website at www.badgermeter.com for specific contacts.

Due to continuous research, product improvements and enhancements, Badger Meter reserves the right to change product or system specifications without notice, except to the extent an outstanding contractual obligation exists.

BadgerMeter, Inc.

P.O. Box 245036, Milwaukee, WI 53224-9536 (800) 876-3837 / Fax: (888) 371-5982 www.badgermeter.com

sc200™ UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

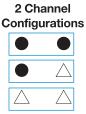
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison



	Previous I	Models		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transferStandardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's Broad Range of Digital and Analog Sensors				
Parameter	Sensor	Digital or Analog		
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•		
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•		
Chlorine Dioxide	9185 sc	•		
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\triangle		
Dissolved Oxygen	LDO® Model 2, 5740 sc	•		
Dissolved Oxygen	5500	\triangle		
Flow	U53, F53 Sensors	\triangle		
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•		
Oil in Water	FP360 sc	•		
Organics	UVAS sc	•		
Ozone	9187 sc	•		
pH/ORP	pHD	•		
pH/ORP	pHD, pH Combination, LCP	\triangle		
Phosphate	PHOSPHAX™ sc			
Sludge Level	SONATAX™ sc	•		
Suspended Solids	SOLITAX™ sc, TSS sc	•		
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•		
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\triangle		
Ultra Pure pH/ORP	8362	\triangle		

= Digital $\triangle =$ Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

backlighting, transreflective

Display Size 1.9 x 2.7 in. (48 mm x 68 mm)

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg) 100 - 240 V AC, 24 V DC

Power Requirements

(Voltage)

Power Requirements 50/60 Hz (Hz)

Operating **Temperature Range**

Analog Outputs

Mode

-20 to 60 $^{\circ}\text{C}$, 0 to 95% RH non-condensing

> Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

Operational Mode: measurement

or calculated value

Analog Output Linear, Logarithmic, Bi-linear, PID **Functional Mode**

Security Levels 2 password-protected levels Mounting Wall, pole, and panel mounting

Configurations NEMA 4X/IP66 **Enclosure Rating Conduit Openings** 1/2 in NPT Conduit **Relay: Operational** Primary or secondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays (Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

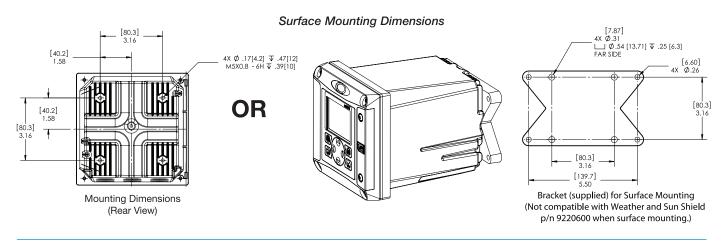
- EMC Immunity EN 61326-1 (Industrial limits)

Safety

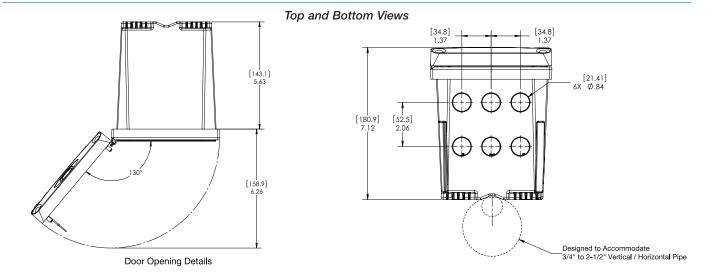
cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller 5

Dimensions

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552sc200 controller, 2 channels, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, Conductivity

LXV404.99.01552 sc200 controller, 2 channels, digital, Modbus RS232/RS485

LXV404.99.00112 sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602 sc200 controller, 1 channel, ultrapure conductivity

9500.99.00702 sc200 controller, 1 channel, ultrapure pH

9500.99.00662 sc200 controller, 2 channel, ultrapure conductivity

9500.99.00772 sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900 Analog pH/ORP and DO module for GLI Sensors9013000 Analog Conductivity module for GLI Sensors

9012700 Flow module

9012800 4-20 mA Input Module

9525700 Analog pH/ORP Module for Polymetron Sensors9525800 Analog Conductivity Module for Polymetron Sensors

9013200 Modbus 232/485 Module9173900 Profibus DP Module

9328100 HART Module

9334600 4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600 sc200 Weather and Sun Shield with UV Protection Screen

8809200 sc200 UV Protection Screen

9218200 SD card reader (USB) for connection to PC

9218100 4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

 United States:
 800-227-4224 tel
 970-669-2932 fax
 orders@hach.com

 Outside United States:
 970-669-3050 tel
 970-461-3939 fax
 int@hach.com

hach.com

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

DW

ww

PW

IW

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and Viton® Orings

Warranty

90 days

*Specifications subject to change without notice.

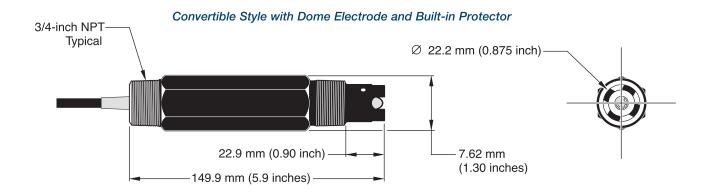
Ryton[®] is a registered trademark of Phillips 66 Co.; Viton[®] is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar[®] is a registered trademark of Pennwalt Corp.

Engineering Specifications

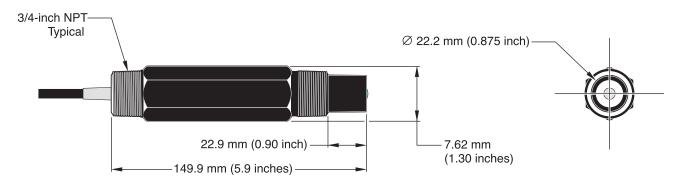
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS® RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor

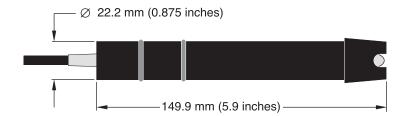

The convertible style sensor has a Ryton® body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.



Convertible Style with Flat Electrode

Dimensions continued

Insertion Style with Dome Electrode and Built-In Protector

Sanitary Style Ø 22.2 mm (0.875 inches) Ø 49.1 mm (1.96 inches) Ø 22 mm (0.87 inches) 88.9 mm (3.5 inches)

Ordering Information

Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

Product Number	<u>Measurement</u>	<u>Sensor Style</u>	Body Material	Electrode Type	Temp. Comp.
DPC1R1N	рН	Convertible	Ryton	General purpose glass	None
DPC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
DPC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
DPC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
DPC1R3A	рН	Convertible	Ryton	HF-resistant glass (see Note)	Pt 1000 ohm RTD
DPC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
DPC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
DPC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
DRC1R5N	ORP	Convertible	Ryton	Platinum	None
DRC2K5N	ORP	Insertion	PVDF	Platinum	None

NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

Replacement Digital Gateway

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

Ordering Information continued

Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	Body Material	Electrode Type	Temp. Comp.
PC1R1N	рН	Convertible	Ryton	General purpose glass	None
PC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
PC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
PC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
PC1R3A	рН	Convertible	Ryton	HF-resistant glass	Pt 1000 ohm RTD
PC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
PC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
PC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
RC1R5N	ORP	Convertible	Ryton	Platinum	None
RC2K5N	ORP	Insertion	PVDF	Platinum	None

Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

 6122400
 Digital Extension Cable, 1 m (3.3 ft)

 5796000
 Digital Extension Cable, 7.7 m (25 ft)

 5796100
 Digital Extension Cable, 15 m (50 ft)

 5796200
 Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

1W1100 Analog Interconnect Cable (order per foot)

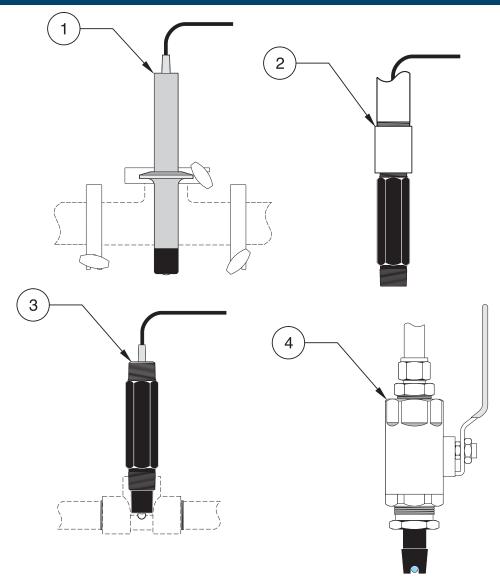
Digital Termination Box

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).

5867000 Digital Termination Box

Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.


60A2053 Junction Box, Surface-mount, aluminum (includes mounting hardware)

Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)

Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)

76A4010-001 Junction Box, NEMA 4X (no mounting hardware included)

Ordering Information continued

1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

Mounting Hardware for PC sc and RC sc Combination Sensors

Sanitary Mount Hardware

9H1310 2-inch Sanitary Tee9H1132 2-inch Sanitary Clamp9H1384 2-inch Sanitary Viton Gasket

Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe, 1/2 x 3/4-inch NPT coupling, and plastic pipe-mount junction box with terminal strip.

MH432G CPVC Pipe

Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

 MH313N3NZ
 316 SS Tee

 MH333N3NZ
 CPVC Tee

 MH373N3NZ
 PVC Tee

Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut.

MH116M3MZ 316 SS Hardware

To complete your pH and ORP measurement system, choose from these Hach controllers...

Model sc200 Controller

(see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.

sc200 for Hach Digital Sensors

LXV404.99.00552sc200 controller, 2 channel, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00512sc200 controller, 2 channel, digital & mA inputLXV404.99.00522sc200 controller, 2 channel, digital & pH/DOLXV404.99.00532sc200 controller, 2 channel, digital & ConductivityLXV404.99.00532sc200 controller, 2 channel, digital & Flow

sc200 for Hach Analog Sensors

LXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00212sc200 controller, 2 channel, pH/DOLXV404.99.00222sc200 controller, 1 channel, ConductivityLXV404.99.00212sc200 controller, 2 channel, pH/DO & ConductivityLXV404.99.00302sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, Flow & pH/DOLXV404.99.00322sc200 controller, 2 channel, Flow & Conductivity

Note: Other sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS and Profibus DPV1) are available.

Model sc1000 Controller

(see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

LXV402.99.00002 sc1000 Display Module

LXV400.99.1R572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays,

110-230V

LXV400.99.1B572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays, RS-485

(MODBUS), 110-230V

LXV400.99.1F572 sc1000 Probe Module, 4 sensors,

4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V

LXV400.99.1R582 sc1000 Probe Module, 6 sensors,

4 mA Out, 4 mA In, 4 Relays, 110-230V

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure.

Make it simple.

Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters

P.O. Box 389

Loveland, Colorado 80539-0389

U.S.A.

Telephone: 800-227-4224 Fax: 970-669-2932 E-mail: orders@hach.com

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters

P.O. Box 389

Loveland, Colorado 80539-0389

U.S.A.

Telephone: 970-669-3050 Fax: 970-461-3939 E-mail: intl@hach.com www.hach.com

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH Willstätterstraße 11 D-40549 Düsseldorf GERMANY

Tel: +49 (0) 211 5288-0 Fax: +49 (0) 211 5288-143 E-mail: info@hach-lange.de

www.hach-lange.com

LIT2470 Rev 2
Printed in U.S.A.

©Hach Company, 2016. All rights reserved.

In the interest of improving and updating its equipment, Hach Company reserves the right to alter specifications to equipment at any time.

95-Gallon OverPack Salvage Drum #A95OVER - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

Weight: 48 lbs.

per Pallet: 3
Incinerable: No

UN RATING: 1H2/X295/S

Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

Weight: 21.8 kg

Online: spilltech.com Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Technical Documents:

(Available at **spilltech.com**)
Product Data Sheet (PDS)
Chemical Compatibility (CCG)

Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

* PULSAFEEDER®

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPD (1.9 lph), and flow capacities to 58 GPD (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with auto-reset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing - Optional

External Pace With Stop - Optional (125 SPM only)

Controls Options									
Feature	Standard	Optional							
reature	Configuration	Configuration ¹							
External Pacing	-	Auto / Manual Selection 2							
External Pace w/ Stop	/	Auto / Manual Selection							
(125 SPM only)									
Manual Stroke Rate	10:1 Ratio	100:1 Ratio							
Manual Stroke Length	10:1 Ratio	10:1 Ratio							
Total Turndown Ratio	100:1 Ratio	1000:1 Ratio							

Note 1: On S2, S3 & S4 sizes only.

Note 2: Not available on 1000:1 turndown pumps.

1. Tested and Certified by WQA against NSF/ANSI 61 & 372.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
- Process Controllers (MicroVision)

PULSAiron[®] Series A Plus Electronic Metering Pumps

SAITON Series A Plus

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	0.25	0.42	0.50	1.00	1.25	2.00	0.50	1.38	2.42
nominal		GPD	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
	GFPP, PVDF, 316SS											
	or PVC (W code)											
Pressure ³	w/TFE Seats)	PSIG	250 (17)	150 (10)	050 (47)	150 (10)	100 (7)	100 (7)	FO (2.2)	250 (17)	150 (10)	100 (7)
(max.)	PVC (V code) Viton or	(Bar)		150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (3.3)		150 (10)	100 (7)
	CSPE Seats / Degas											
	Liquid End		150 (10)							150 (10)		
Connections:		Tubing			1/4" ID X	3/8" OD			3/8" ID X 1/2" OD	1/4	"ID X 3/8" ()D
		Piping		1/4" FNPT								
Strokes/Minute		SPM		125								

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details

Engineering Data

Pump Head Materials Available: GFPPL

PVC **PVDF**

316 SS

Diaphragm:

PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic PTFE

316 SS Alloy C

Fittings Materials Available: **GFPPL**

PVC

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Clear PVC **Tubing:**

White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacity

Viscosity Max CPS: 1000 CPS

Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1 /100:1 by Model

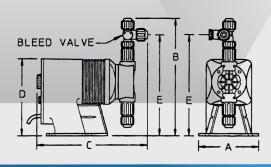
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps **Peak Input Power:** 130 Watts Average Input Power @ Max SPM: 50 Watts

Custom Engineered Designs – Pre-Engineered Systems


Pre-Engineered Systems

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to

Dimensions

	Series A PLUS Dimensions (inches)									
Model No.	Α	В	С	D	Е	Weight				
LB02 / S2	5.0	9.6	9.5	6.5	8.2	10				
LBC2	5.0	9.9	9.5	6.5	8.5	10				
LBC3	5.0	9.9	9.5	6.5	8.5	10				
LB03 / S3	5.0	9.9	9.5	6.5	8.5	10				
LB04 /S4	5.0	9.9	9.5	6.5	8.5	10				
LB64	5.0	9.9	9.5	6.5	8.5	10				
LBC4	5.0	9.9	9.5	6.5	8.5	10				

NOTE: Inches X 2.54 = cm

www.pulsatron.com

PULSAFEEDER 01 Airport Road

SAFETY DATA SHEET

Creation Date 12-Nov-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Sulfuric Acid (Certified ACS Plus)

Cat No.: A300-212; A300-225LB; A300-500; A300-612GAL; A300-700LB;

A300C212; A300C212EA; A300P500; A300S212; A300S212EA;

A300S500; A300SI212

Synonyms Hydrogen sulfate; Vitriol brown oil; Oil of vitriol

Recommended UseLaboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Specific target organ toxicity (single exposure)

Category 1

Category 1

Category 3

Target Organs - Respiratory system.

Label Elements

Signal Word

Danger

Hazard Statements

Causes severe skin burns and eye damage May cause respiratory irritation

Precautionary Statements

Prevention

Do not breathe dust/fume/gas/mist/vapors/spray

Wear protective gloves/protective clothing/eye protection/face protection

Wash face, hands and any exposed skin thoroughly after handling

Use only outdoors or in a well-ventilated area

Response

Immediately call a POISON CENTER or doctor/physician

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing **Ingestion**

IF SWALLOWED: Rinse mouth. DO NOT induce vomiting

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

Unknown Acute Toxicity

3. Composition / information on ingredients

Component	CAS-No	Weight %
Sulfuric acid	7664-93-9	90 - 98
Water	7732-18-5	2 - 10

4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Remove and wash

contaminated clothing before re-use. Call a physician immediately.

Inhalation If not breathing, give artificial respiration. Remove from exposure, lie down. Do not use

mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory

medical device. Call a physician immediately.

Ingestion Do not induce vomiting. Clean mouth with water. Never give anything by mouth to an

unconscious person. Call a physician immediately.

Most important symptoms/effects Causes burns by all exposure routes. Product is a corrosive material. Use of gastric

lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes severe swelling, severe damage to the delicate tissue

and danger of perforation

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media CO 2, dry chemical, dry sand, alcohol-resistant foam.

Unsuitable Extinguishing Media DO NOT USE WATER

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. The product causes burns of eyes, skin and mucous membranes.

Hazardous Combustion Products

Sulfur oxides Hydrogen

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
3	0	2	W

Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Evacuate personnel to

safe areas. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only

under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Keep away from

water. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Sulfuric acid	TWA: 0.2 mg/m ³	(Vacated) TWA: 1 mg/m ³	IDLH: 15 mg/m ³	TWA: 1 mg/m ³
	_	TWA: 1 mg/m ³	TWA: 1 mg/m ³	_

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eve/face Protection Wear appropriate protective eveglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Liquid

Appearance Clear, Colorless to brown

Odor Odorless

Odor Threshold No information available

pH 0.3 (1N) **Melting Point/Range** 10 °C / 50 °F

Boiling Point/Range 290 - 338 °C / 554 - 640.4 °F

Flash Point Not applicable
Evaporation Rate Slower than ether
Flammability (solid,gas) Not applicable

Flammability or explosive limits

Upper No data available
Lower No data available

Vapor Pressure < 0.001 mmHg @ 20 °C

Vapor Density 3.38 (Air = 1.0)

Specific Gravity 1.84

Solubility

Partition coefficient; n-octanol/water

Autoignition Temperature

Soluble in water
No data available
No information available

Decomposition Temperature 340°C

Viscosity No information available

Molecular FormulaH2SO4Molecular Weight98.08

10. Stability and reactivity

Reactive Hazard Yes

Stability Reacts violently with water. Hygroscopic.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

Incompatible Materials Water, Organic materials, Strong acids, Strong bases, Metals, Alcohols, Cyanides, Sulfides

Hazardous Decomposition Products Sulfur oxides, Hydrogen

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Oral LD50 Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. **Dermal LD50** Based on ATE data, the classification criteria are not met. ATE > 2000 mg/kg. Based on ATE data, the classification criteria are not met. ATE > 20 mg/l. Vapor LC50

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Sulfuric acid	2140 mg/kg (Rat)	Not listed	LC50 = 510 mg/m ³ (Rat) 2 h
Water	-	Not listed	Not listed

Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Causes severe burns by all exposure routes Irritation

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Exposure to strong inorganic mists containing sulfuric acid may cause cancer by inhalation.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Sulfuric acid	7664-93-9	Group 1	Known	A2	X	A2
Water	7732-18-5	Not listed				

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen

A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

No information available. **Teratogenicity**

STOT - single exposure Respiratory system

STOT - repeated exposure None known

Aspiration hazard No information available

delayed

Symptoms / effects,both acute and Product is a corrosive material. Use of gastric lavage or emesis is contraindicated. Possible perforation of stomach or esophagus should be investigated: Ingestion causes

severe swelling, severe damage to the delicate tissue and danger of perforation

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment. .

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Sulfuric acid	-	LC50: > 500 mg/L, 96h static	-	EC50: 29 mg/L/24h
		(Brachydanio rerio)		

Persistence and Degradability

No information available

Bioaccumulation/ AccumulationNo information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN1830
Proper Shipping Name Sulfuric acid

Hazard Class 8
Packing Group ||

TDG

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

<u>IATA</u>

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group ||

IMDG/IMO

UN-No UN1830

Proper Shipping Name SULFURIC ACID

Hazard Class 8
Packing Group

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Sulfuric acid	Х	Χ	-	231-639-5	-		Χ	Χ	Χ	Χ	Χ
Water	Х	Χ	-	231-791-2	-		Х	-	Χ	Х	Χ

Legend:

E - Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.

X - Listed

F - Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.

N - Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.

- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Sulfuric acid	7664-93-9	90 - 98	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard Yes

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Sulfuric acid	X	1000 lb	-	-

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Sulfuric acid	1000 lb	1000 lb

California Proposition 65 This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Sulfuric acid	7664-93-9	Carcinogen	-	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Sulfuric acid	X	X	X	X	X
Water	-	-	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information	
-----------------------	--

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 12-Nov-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

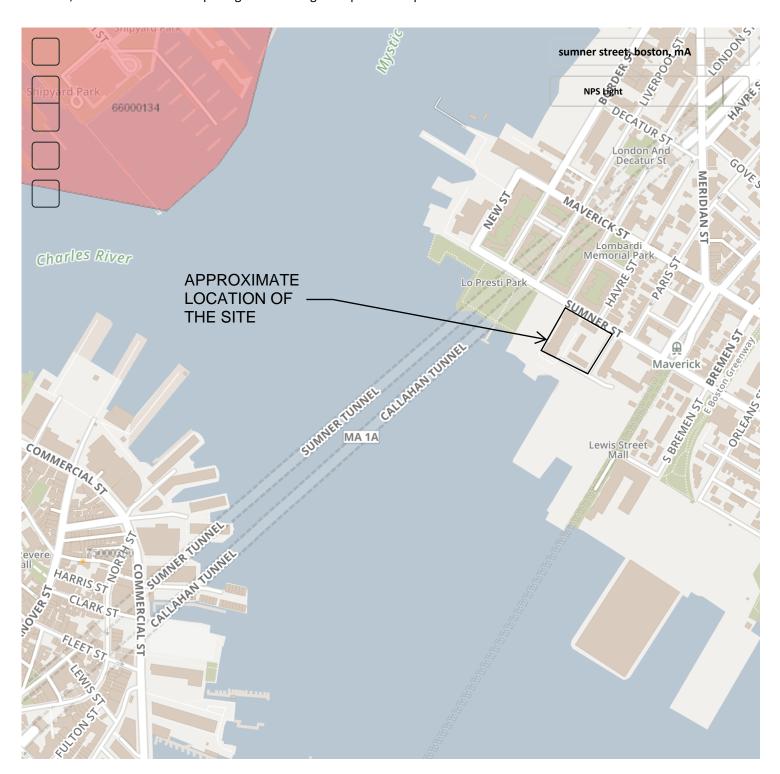
Revision Summary SDS sections updated. 2.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

APPENDIX E


National Register of Historic Places Documentation

National Register of Histori...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data proce...

5 Maphox (https://www.mapbox.com/about/maps/) © OpenStreetMap (https://www.openstreetmap.org/copyright) contributors

Exclude Value to Search For

Attribute

87000757

87000760

87000761

97001278

99000633

Harvard Stadium

Boston Common

Symphony Hall

Boston Public Garden

ROSEWAY (schooner)

NHL Nomination		Yes							
Total records:	269	6							
Ref#	Prefix	Property Name	Restricted Address	Acreage of Property	Category of Property	City	County	NHL Designated Date	State
01001048		Gibson House	FALSE		BUILDING	Boston	Suffolk	8/7/2001	MASSACHUSETTS
03000645		Union Oyster House	FALSE	0.9	BUILDING	Boston	Suffolk	5/27/2003	MASSACHUSETTS
05000459		Ayer, Frederick, Mansion	FALSE		BUILDING	Boston	Suffolk	4/5/2005	MASSACHUSETTS
12001012		Central Congregational Church	FALSE		BUILDING	Boston	Suffolk	10/16/2012	MASSACHUSETTS
66000127		Arnold Arboretum	FALSE	265		Boston	Suffolk		MASSACHUSETTS
66000130		Beacon Hill Historic District	FALSE	105	DISTRICT	Boston	Suffolk	12/19/1962	MASSACHUSETTS
66000132		Boston Athenaeum	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000133		Boston Light	FALSE		STRUCTURE	Boston	Suffolk	• •	MASSACHUSETTS
66000134		Boston Naval Shipyard	FALSE		DISTRICT	Boston	Suffolk	• •	MASSACHUSETTS
66000138		Bunker Hill Monument	FALSE		STRUCTURE	Boston	Suffolk		MASSACHUSETTS
66000141		Brook Farm	FALSE	180		Boston	Suffolk		MASSACHUSETTS
66000366		Ether Dome, Massachusetts General Hospital	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000368		Faneuil Hall	FALSE		BUILDING	Boston	Suffolk	• •	MASSACHUSETTS
66000653		Garrison, William Lloyd, House	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000764		Harding, Chester, House	FALSE		BUILDING		Suffolk	• •	MASSACHUSETTS
						Boston	Suffolk		MASSACHUSETTS
66000765		Headquarters House	FALSE		BUILDING	Boston		• •	
66000768		Long Wharf and Customhouse Block	FALSE		STRUCTURE	Boston	Suffolk		MASSACHUSETTS
66000770		Massachusetts Historical Society Building	FALSE		BUILDING	Boston	Suffolk	• •	MASSACHUSETTS
66000771		Massachusetts Statehouse	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000776		Old North Church	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000778		Old South Meetinghouse	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000779		Old State House	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000782		Parkman, Francis, House	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000784		Quincy Market	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000785		Revere, Paul, House	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
66000788		Tremont Street Subway	FALSE		STRUCTURE	Boston	Suffolk		MASSACHUSETTS
66000789		U.S.S. CONSTITUTION	FALSE	0.9	STRUCTURE	Boston	Suffolk	12/19/1960	MASSACHUSETTS
68000042		Pierce-Hichborn House	FALSE	0.9	BUILDING	Boston	Suffolk	11/24/1968	MASSACHUSETTS
70000539		Otis, (First) Harrison Gray, House	FALSE	1	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000540		Fort Warren	FALSE	4	DISTRICT	Boston	Suffolk	8/29/1970	MASSACHUSETTS
70000682		Massachusetts General Hospital	FALSE	4	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000687		Old City Hall	FALSE	0.5	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000690		Old South Church in Boston	FALSE	0.3	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000691		Old West Church	FALSE	1	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000730		St. Paul's Church	FALSE	1.3	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000731		Sears, David, House	FALSE	1	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
70000733		Trinity Church	FALSE	1	BUILDING	Boston	Suffolk	12/30/1970	MASSACHUSETTS
71000087		African Meetinghouse	FALSE	0.5	BUILDING	Boston	Suffolk	5/30/1974	MASSACHUSETTS
73000317		Boston Public Library	FALSE	5	BUILDING	Boston	Suffolk	2/24/1986	MASSACHUSETTS
73001953		Sumner, Charles, House	FALSE	0.9	BUILDING	Boston	Suffolk	11/7/1973	MASSACHUSETTS
74002044		Howe, Samuel Gridley and Julia Ward, House	FALSE	0.9	BUILDING	Boston	Suffolk		MASSACHUSETTS
74002045		King's Chapel	FALSE	0.1	BUILDING	Boston	Suffolk		MASSACHUSETTS
76001979		Nell, William C., House	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
77001541		Appleton, Nathan, Residence	FALSE		BUILDING	Boston	Suffolk	• •	MASSACHUSETTS
78000473		Fenway Studios	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
80000672		New England Conservatory of Music	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
83004099		LUNA (tugboat)	FALSE		STRUCTURE	Boston	Suffolk		MASSACHUSETTS
85000317		Dimock Community Health Center Complex	FALSE		BUILDING	Boston	Suffolk		MASSACHUSETTS
86000317		USS CASSIN YOUNG (destroyer)	FALSE		STRUCTURE	Boston	Suffolk	• •	MASSACHUSETTS
87000757		Harvard Stadium	FALSE FALSE		STRUCTURE	Roston	Suffolk	• •	MASSACHUSETTS

11 STRUCTURE

50 DISTRICT

24 DISTRICT

0.9 BUILDING

0.9 SITE

Boston

Boston

Boston

Boston

Boston

Suffolk

Suffolk

Suffolk

Suffolk

Suffolk

2/27/1987 MASSACHUSETTS

2/27/1987 MASSACHUSETTS

2/27/1987 MASSACHUSETTS

9/25/1997 MASSACHUSETTS

1/20/1999 MASSACHUSETTS

FALSE

FALSE

FALSE

FALSE

FALSE

Attribute Value to Search For
Status Listed

Total records:

Acreage

					of			
Ref#	Property Name	Status	Status Date	Restricted Address	Property Category of Property	City	County	State
00000160	Fulton-Commercial Streets Historic District (Bou	ndar Listed	3/3/2000	FALSE	DISTRICT	Boston	Suffolk	MASSACHUSETTS
00000415	Harvard Avenue Historic District	Listed	4/28/2000	FALSE	23 DISTRICT	Boston	Suffolk	MASSACHUSETTS
00000871	Dearborn School	Listed	8/2/2000	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
01000088	Brighton Center Historic District	Listed	2/20/2001	FALSE	15 DISTRICT	Boston	Suffolk	MASSACHUSETTS
01000304	DorchesterMilton Lower Mills Industrial Distric	•	4/6/2001	FALSE	5 DISTRICT	Boston	Suffolk	MASSACHUSETTS
01000872	Peabody, The	Listed	8/8/2001	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
01001048	Gibson House	Listed	8/7/2001	FALSE	BUILDING	Boston	Suffolk	MASSACHUSETTS
01001557	Boston Consumptives Hospital	Listed	2/7/2002		52 DISTRICT	Boston	Suffolk	MASSACHUSETTS
02000081	Frances and Isabella Apartments Greenwood Memorial United Methodist Church	Listed	2/22/2002 3/8/2002	FALSE	0.9 BUILDING 0.9 BUILDING	Boston	Suffolk Suffolk	MASSACHUSETTS
02000154 02000548	Bennington Street Burying Ground	Listed Listed	5/22/2002	FALSE FALSE	3.6 SITE	Boston Boston	Suffolk	MASSACHUSETTS MASSACHUSETTS
02000348	Paine Furniture Building	Listed	9/12/2002	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
02001039	Harrison Square Historic District	Listed	10/22/2002	FALSE	28 DISTRICT	Boston	Suffolk	MASSACHUSETTS
03000385	Savin Hill Historic District	Listed	5/9/2003	FALSE	100 DISTRICT	Boston	Suffolk	MASSACHUSETTS
03000565	Union Oyster House	Listed	5/27/2003	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
03000781	Publicity Building	Listed	8/20/2003	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000023	Benedict Fenwick School	Listed	2/11/2004	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000085	Haskell, Edward H., Home for Nurses	Listed	2/26/2004	FALSE	1.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000119	YWCA Boston	Listed	3/3/2004	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000189	Nix's Mate Daybeacon	Listed	3/18/2004	FALSE	0.9 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
04000426	Nazing Court Apartments	Listed	5/12/2004	FALSE	2 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000534	Hibernian Hall	Listed	6/2/2004	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
04000959	Fort Point Channel Historic District	Listed	9/10/2004	FALSE	55 DISTRICT	Boston	Suffolk	MASSACHUSETTS
04001219	Forest Hills Cemetery	Listed	11/17/2004	FALSE	250 SITE	Boston	Suffolk	MASSACHUSETTS
04001430	Truman ParkwayMetropolitan Park System of C		1/5/2005	FALSE	8 DISTRICT	Boston	Suffolk	MASSACHUSETTS
04001432	VFW Parkway, Metropolitan Park System of Grea		1/5/2005	FALSE	20 DISTRICT	Boston	Suffolk	MASSACHUSETTS
04001572	Morton Street, Metropolitan Park System of Gre		1/24/2005	FALSE	13 DISTRICT	Boston	Suffolk	MASSACHUSETTS
04001573	Neponset Valley Parkway, Metorpolitan Park Sys		1/24/2005	FALSE	13 DISTRICT	Boston	Suffolk	MASSACHUSETTS
05000459	Ayer, Frederick, Mansion	Listed	4/5/2005	FALSE	BUILDING	Boston	Suffolk	MASSACHUSETTS
05000559	Collins Building	Listed	6/8/2005	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
05000879	Home for Aged Couples	Listed	8/11/2005	FALSE	2.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
05000936	South Boston Boat Clubs Historic District	Listed	9/1/2005	FALSE	3.5 DISTRICT	Boston	Suffolk	MASSACHUSETTS
05001509	Stony Brook Reservation Parkways, Metropolita	n Par Listed	1/3/2006	FALSE	21.3 DISTRICT	Boston	Suffolk	MASSACHUSETTS
06000127	East Boston High School, Old	Listed	3/15/2006	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
07000510	Goldsmith Block	Listed	6/5/2007	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
07000861	Boston Transit Commission Building	Listed	8/31/2007	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
08000089	Dorchester Park	Listed	2/20/2008	FALSE	28.5 SITE	Boston	Suffolk	MASSACHUSETTS
08000693	Old Harbor Reservation Parkways, Metropolitan	Parl Listed	7/24/2008	FALSE	55.8 DISTRICT	Boston	Suffolk	MASSACHUSETTS
08000793	Joshua Bates School	Listed	8/22/2008		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
08000795	Ohabei Shalom Cemetery	Listed	8/19/2008		2.4 SITE	Boston	Suffolk	MASSACHUSETTS
08001284	Compton Building	Listed	12/31/2008		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
09000612	Evergreen Cemetery	Listed	8/14/2009		19.7 SITE	Boston	Suffolk	MASSACHUSETTS
09000717	Fairview Cemetery	Listed	9/16/2009		57.7 SITE	Boston	Suffolk	MASSACHUSETTS
09000767	Mount Hope Cemetery	Listed	9/24/2009		125.2 SITE	Boston	Suffolk	MASSACHUSETTS
10000039	EDNA G. shipwreck (Eastern Rig dragger)	Listed	11/22/2010		22.2 SITE	Boston	Suffolk	MASSACHUSETTS
10000300	Highland Spring Brewery Bottling and Storage Bu		5/28/2010		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
10000391	Second Church in Boston	Listed	6/24/2010		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
10000506	Charles River Reservation (Speedway)Upper Ba		7/19/2010		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
10001066	Egleston Substation	Listed	12/27/2010		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
11000160	United State Post Office, Courthouse, and Feder		4/8/2011		2.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
12000069	Fenway Park	Listed	3/7/2012		8.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
12000099	Terminal Storage Warehouse District	Listed	3/12/2012		DISTRICT	Boston	Suffolk	MASSACHUSETTS
12000783	Saint Mark's Episcopal Church	Listed	7/3/2014	FALSE	BUILDING	Boston	Suffolk	MASSACHUSETTS
12000978	Sherman Apartments Historic District	Listed	11/28/2012		0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
12001012 12001162	Central Congregational Church Commonwealth Pier Five	Listed	10/16/2012 10/10/1979		BUILDING 1.8 BUILDING	Boston	Suffolk Suffolk	MASSACHUSETTS
		Listed			0.9 BUILDING	Boston		MASSACHUSETTS
13000621 13000928	Roslindale Substation Davidson, Sarah, Apartment Block	Listed Listed	8/27/2013 12/18/2013	FALSE FALSE	0.9 BUILDING	Boston Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
13000928	Pilgrim Congregational Church	Listed	12/18/2013	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
13000929	Walton and Roslin Halls	Listed	12/18/2013	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000272	Blake and Amory Building	Listed	6/2/2014	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000272	Dorchester South Burying Ground	Listed	6/27/2014		2 SITE	Boston	Suffolk	MASSACHUSETTS
14000561	Buildings at 825829 Blue Hill Avenue	Listed	9/10/2014	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000501	Almont Apartments	Listed	9/22/2014	TRUE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000840	Home for Destitute Jewish Children	Listed	10/8/2014	TRUE	4 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000840	Gridley Street Historic District	Listed	12/3/2014	FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
14000975	Lyman, Theodore, School	Listed	12/2/2014	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
14000373	South End District (Boundary Increase)	Listed	12/29/2014	FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
15000048	Boston Police Station Number OneTraffic Tunn		3/3/2015		1 BUILDING	Boston	Suffolk	MASSACHUSETTS
15000045	Boston National Historical Park	Listed	5/5/2015	FALSE	44 DISTRICT	Boston	Suffolk	MASSACHUSETTS
15000133	Fox, I.J., Building	Listed	12/29/2015	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
16000342	Francis StreetFenwood Road Historic District	Listed	6/23/2016		7 DISTRICT	Boston	Suffolk	MASSACHUSETTS
16000454	Governor Shirley Square Historic District	Listed	7/18/2016		5.8 district	Boston	Suffolk	MASSACHUSETTS
66000050	Dorchester Heights National Historic Site	Listed	10/15/1966		5.4 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
66000127	Arnold Arboretum	Listed	10/15/1966		265 SITE	Boston	Suffolk	MASSACHUSETTS
66000130	Beacon Hill Historic District	Listed	10/15/1966		105 DISTRICT	Boston	Suffolk	MASSACHUSETTS
66000132	Boston Athenaeum	Listed	10/15/1966		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000133	Boston Light	Listed	10/15/1966		3.5 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
66000134	Boston Naval Shipyard	Listed	11/15/1966		129.5 DISTRICT	Boston	Suffolk	MASSACHUSETTS
66000138	Bunker Hill Monument	Listed	10/15/1966		3.8 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
66000141	Brook Farm	Listed	10/15/1966		180 SITE	Boston	Suffolk	MASSACHUSETTS
	Ethar Dama Massashusatts Canaral Hasnital	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000366	Ether Dome, Massachusetts General Hospital	Listeu	10/13/1300	171252	0.5 DOILDING	DOSCOII	Janon	1V1/133/1C1103E113

Attribute Value to Search For
Status Listed

80000453

80000455

80000458

Boston Edison Electric Illuminating Company

West Street District

Piano Row District

Total records:	:							
					Acreage			
Ref#	Property Name	Status	Status Date Res	stricted Address	of Property Category of Property	City	County	State
66000653	Garrison, William Lloyd, House	Listed	10/15/1966	FALSE	0.7 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000764	Harding, Chester, House	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000765	Headquarters House	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000768	Long Wharf and Customhouse Block	Listed	11/13/1966	FALSE	1.5 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
66000770	Massachusetts Historical Society Building	Listed	10/15/1966	FALSE	0.3 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000771	Massachusetts Statehouse	Listed	10/15/1966	FALSE	5.8 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000776 66000778	Old North Church Old South Meetinghouse	Listed Listed	10/15/1966 10/15/1966	FALSE FALSE	0.9 BUILDING 0.2 BUILDING	Boston Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
66000778	Old State House	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000773	Parkman, Francis, House	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000784	Quincy Market	Listed	11/13/1966	FALSE	4.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000785	Revere, Paul, House	Listed	10/15/1966	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
66000788	Tremont Street Subway	Listed	10/15/1966	FALSE	6 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
66000789	U.S.S. CONSTITUTION	Listed	10/15/1966	FALSE	0.9 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
68000042	Pierce-Hichborn House	Listed	11/24/1968	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000539	Otis, (First) Harrison Gray, House	Listed	12/30/1970	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000540	Fort Warren	Listed	8/29/1970	FALSE	4 DISTRICT	Boston	Suffolk	MASSACHUSETTS
70000682	Massachusetts General Hospital	Listed	12/30/1970	FALSE	4 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000687	Old City Hall	Listed	12/30/1970	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000690	Old South Church in Boston	Listed	12/30/1970	FALSE	0.3 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000691	Old West Church	Listed	12/30/1970	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000730	St. Paul's Church	Listed	12/30/1970	FALSE	1.3 BUILDING	Boston	Suffolk	MASSACHUSETTS
70000731 70000733	Sears, David, House Trinity Church	Listed	12/30/1970 7/1/1970	FALSE FALSE	1 BUILDING 1 BUILDING	Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
70000733	Fort Independence	Listed Listed	7/1/1970 10/15/1970	FALSE	15 SITE	Boston Boston	Suffolk	MASSACHUSETTS
710000921	African Meetinghouse	Listed	10/15/1970	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
72000144	Boston Common and Public Garden	Listed	7/12/1972	FALSE	74 DISTRICT	Boston	Suffolk	MASSACHUSETTS
72000144	Crowninshield House	Listed	2/23/1972	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
72000146	First Baptist Church	Listed	2/23/1972	FALSE	0.4 BUILDING	Boston	Suffolk	MASSACHUSETTS
72000150	Trinity Rectory	Listed	2/23/1972	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
72000544	Loring-Greenough House	Listed	4/26/1972	FALSE	1.8 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000313	Arlington Street Church	Listed	5/4/1973	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000314	Armory of the First Corps of Cadets	Listed	5/22/1973	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000315	Blackstone Block Historic District	Listed	5/26/1973	FALSE	2.3 DISTRICT	Boston	Suffolk	MASSACHUSETTS
73000317	Boston Public Library	Listed	5/6/1973	FALSE	5 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000318	Cyclorama Building	Listed	4/13/1973	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000319	Fulton-Commercial Streets District	Listed	3/21/1973	FALSE	9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
73000321	Custom House District	Listed	5/11/1973	FALSE	15.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
73000322	Old Corner Bookstore	Listed	4/11/1973	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000324	South End District	Listed	5/8/1973	FALSE	238 DISTRICT	Boston	Suffolk	MASSACHUSETTS
73000325	Hale, Edward Everett, House	Listed	3/21/1979	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000850 73000854	Town Hill District John Eliot Square District	Listed Listed	5/11/1973 4/23/1973	FALSE FALSE	11 DISTRICT 9.5 DISTRICT	Boston Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
73000854	Kittredge, Alvah, House	Listed	5/8/1973	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
73000856	Roxbury High Fort	Listed	4/23/1973	FALSE	4 SITE	Boston	Suffolk	MASSACHUSETTS
73001948	Back Bay Historic District	Listed	8/14/1973	FALSE	340 DISTRICT	Boston	Suffolk	MASSACHUSETTS
73001953	Sumner, Charles, House	Listed	11/7/1973	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
73001955	Otis, (Second) Harrison Gray, House	Listed	7/27/1973	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000382	Ames Building	Listed	4/26/1974	FALSE	0.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000385	Copp's Hill Burial Ground	Listed	4/18/1974	FALSE	4 SITE	Boston	Suffolk	MASSACHUSETTS
74000388	Eliot Burying Ground	Listed	6/25/1974	FALSE	0.8 SITE	Boston	Suffolk	MASSACHUSETTS
74000390	Park Street District	Listed	5/1/1974	FALSE	1.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
74000391	John Adams Courthouse	Listed	5/8/1974	FALSE	2 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000392	Winthrop Building	Listed	4/18/1974	FALSE	0.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000393	Youth's Companion Building	Listed	5/2/1974	FALSE	0.6 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000907 74000911	Phipps Street Burying Ground	Listed	5/14/1974 5/2/1974	FALSE FALSE	1.8 SITE 1 BUILDING	Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
74000911 74000915	Clapp Houses Dorchester North Burying Ground	Listed Listed	5/2/1974 4/18/1974	FALSE	3.3 DISTRICT	Boston Boston	Suffolk	MASSACHUSETTS
74000915	Pierce House	Listed	4/18/1974 4/26/1974	FALSE	0.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
74000917	Howe, Samuel Gridley and Julia Ward, House	Listed	9/13/1974	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
74002044	King's Chapel	Listed	5/2/1974	FALSE	0.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
74002043	Boston National Historical Park	Listed	10/26/1974	FALSE	41 DISTRICT	Boston	Suffolk	MASSACHUSETTS
74002350	Blake, James, House	Listed	5/1/1974	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
75000299	South Station Headhouse	Listed	2/13/1975	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
75000300	St. Stephen's Church	Listed	4/14/1975	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
75000301	Symphony and Horticultural Halls	Listed	5/30/1975	FALSE	2 BUILDING	Boston	Suffolk	MASSACHUSETTS
76001979	Nell, William C., House	Listed	5/11/1976	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
77001541	Appleton, Nathan, Residence	Listed	12/22/1977	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
78000473	Fenway Studios	Listed	9/13/1978	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
79000368	Bedford Building	Listed	8/21/1979	FALSE	0.4 BUILDING	Boston	Suffolk	MASSACHUSETTS
79000369	International Trust Company Building	Listed	9/10/1979	FALSE	0.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
79000370	Washington Street Theatre District	Listed	3/19/1979	FALSE	1.7 DISTRICT	Boston	Suffolk	MASSACHUSETTS
80000442	Wirth, Jacob, Buildings	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000443	Wilbur Theatre	Listed	12/9/1980	FALSE	0.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000444	Shubert, Sam S., Theatre	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000445	Metropolitan Theatre	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000446	Hayden Building	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000448	Dill Building	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000450 80000451	Boylston Building Boston Young Men's Christian Union	Listed Listed	12/9/1980 12/9/1980	FALSE FALSE	0.9 BUILDING 0.9 BUILDING	Boston Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
80000451	Boston Edison Electric Illuminating Company	Listed	12/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS

12/9/1980

12/9/1980

12/9/1980

Listed

Listed

Listed

FALSE

FALSE

FALSE

0.9 BUILDING

0.6 DISTRICT

4.3 DISTRICT

Suffolk

Suffolk

Suffolk

Boston

Boston

Boston

MASSACHUSETTS

MASSACHUSETTS

MASSACHUSETTS

Attribute Value to Search For
Status Listed

Total records:

Acreage

Ref# 80000460 80000462 80000463 80000465 80000669 80000670 80000671 80000672 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448 82004450	Liberty Tree District Beach-Knapp District Russia Wharf Buildings Oak Square School United Shoe Machinery Corporation Building Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church Dillaway School	Listed	12/9/1980 12/9/1980 12/2/1980 11/10/1980 8/19/1980 6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE	Property Category of Property 0.6 DISTRICT 0.4 DISTRICT 2.2 BUILDING 0.9 BUILDING 0.9 BUILDING 2.6 BUILDING 0.9 BUILDING	Boston Boston Boston Boston Boston Boston Boston Boston	Suffolk Suffolk Suffolk Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS
80000462 80000463 80000465 80000668 80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Beach-Knapp District Russia Wharf Buildings Oak Square School United Shoe Machinery Corporation Building Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed	12/9/1980 12/2/1980 11/10/1980 8/19/1980 6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE FALSE FALSE FALSE FALSE FALSE	0.4 DISTRICT2.2 BUILDING0.9 BUILDING0.9 BUILDING2.6 BUILDING	Boston Boston Boston	Suffolk Suffolk Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS
80000463 80000465 80000668 80000669 80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Russia Wharf Buildings Oak Square School United Shoe Machinery Corporation Building Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed	12/2/1980 11/10/1980 8/19/1980 6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE FALSE FALSE FALSE	2.2 BUILDING 0.9 BUILDING 0.9 BUILDING 2.6 BUILDING	Boston Boston Boston	Suffolk Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS MASSACHUSETTS
80000465 80000668 80000669 80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Oak Square School United Shoe Machinery Corporation Building Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed Listed Listed Listed Listed Listed Listed	11/10/1980 8/19/1980 6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE FALSE FALSE FALSE	0.9 BUILDING 0.9 BUILDING 2.6 BUILDING	Boston Boston	Suffolk Suffolk	MASSACHUSETTS MASSACHUSETTS
80000668 80000669 80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	United Shoe Machinery Corporation Building Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed Listed Listed Listed Listed Listed	8/19/1980 6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE FALSE FALSE	0.9 BUILDING 2.6 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000669 80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Union Wharf Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed Listed Listed Listed	6/22/1980 4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE FALSE	2.6 BUILDING			
80000670 80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Suffolk County Jail Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed Listed Listed	4/23/1980 6/16/1980 5/14/1980 4/16/1980	FALSE FALSE		Boston		
80000671 80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Stearns, R. H., House New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed Listed	6/16/1980 5/14/1980 4/16/1980	FALSE	0.9 BUILDING	D +	Suffolk	MASSACHUSETTS
80000672 80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	New England Conservatory of Music Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed Listed	5/14/1980 4/16/1980		O O BLUI DING	Boston	Suffolk	MASSACHUSETTS
80000674 80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Garrison, William Lloyd, School Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed Listed	4/16/1980		0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000675 80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Dorchester-Milton Lower Mills Industrial District Charles Playhouse Berger Factory All Saints' Church	Listed		FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000676 80000677 80000678 80001683 80004396 81000620 82000486 82004448	Charles Playhouse Berger Factory All Saints' Church		4/2/4000	FALSE	1.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
80000677 80000678 80001683 80004396 81000620 82000486 82004448	Berger Factory All Saints' Church	Listea	4/2/1980	FALSE	20.1 DISTRICT	Boston	Suffolk	MASSACHUSETTS
80000678 80001683 80004396 81000620 82000486 82004448	All Saints' Church	ا محمدا	6/16/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80001683 80004396 81000620 82000486 82004448		Listed	4/9/1980	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
80004396 81000620 82000486 82004448	Dillaway School	Listed	6/16/1980 4/9/1980	FALSE FALSE	1.1 BUILDING	Boston	Suffolk Suffolk	MASSACHUSETTS
81000620 82000486 82004448	Boston African American National Historic Site	Listed			0.9 BUILDING 1 DISTRICT	Boston	Suffolk	MASSACHUSETTS MASSACHUSETTS
82000486 82004448		Listed Listed	10/10/1980 11/12/1981	FALSE FALSE	0.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
82004448	Fields Corner Municipal Building Wigglesworth Building		10/21/1982	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
		Listed Listed	4/15/1982	FALSE	1.4 BUILDING	Boston	Suffolk	MASSACHUSETTS
02004430	Roughan Hall McKay, Donald, House	Listed	6/2/1982	FALSE	0.3 BUILDING	Boston Boston	Suffolk	MASSACHUSETTS
82004453	Haffenreffer Brewery	Listed	5/2/1982	FALSE	5 BUILDING	Boston	Suffolk	MASSACHUSETTS
82004456	Adams-Nervine Asylum	Listed	6/1/1982	FALSE	8.6 BUILDING	Boston	Suffolk	MASSACHUSETTS
83000601	Charles Street African Methodist Episcopal Church	Listed	9/1/1983	FALSE	0.3 BUILDING	Boston	Suffolk	MASSACHUSETTS
83000602	Codman Square District	Listed	6/23/1983	FALSE	4 DISTRICT	Boston	Suffolk	MASSACHUSETTS
83000603	Gardner, Isabella Stewart, Museum		1/27/1983	FALSE	1.7 BUILDING		Suffolk	MASSACHUSETTS
83000604	Loring, Harrison, House	Listed Listed	9/1/1983	FALSE	0.3 BUILDING	Boston Boston	Suffolk	MASSACHUSETTS
83000605	Harvard Avenue Fire Station	Listed	3/31/1983	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
83000605	Lawrence Model Lodging Houses	Listed	9/22/1983	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
83000607	Newspaper Row	Listed	7/7/1983	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
83004097	Codman Building	Listed	10/19/1983	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
83004098	Leather District	Listed	12/21/1983	FALSE	11 DISTRICT	Boston	Suffolk	MASSACHUSETTS
83004099	LUNA (tugboat)	Listed	10/6/1983	FALSE	0.9 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
83004285	Baker, Sarah J., School	Listed	7/7/1983	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
84000421	Vermont Building	Listed	11/13/1984	FALSE	0.3 BUILDING	Boston	Suffolk	MASSACHUSETTS
84002875	Fenway-Boylston Street District	Listed	9/4/1984	FALSE	3.3 DISTRICT	Boston	Suffolk	MASSACHUSETTS
84002890	Moreland Street Historic District	Listed	3/29/1984	FALSE	63.1 DISTRICT	Boston	Suffolk	MASSACHUSETTS
85000316	Bigelow School	Listed	2/21/1985	FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
85000317	Dimock Community Health Center Complex	Listed	2/21/1985	FALSE	10 BUILDING	Boston	Suffolk	MASSACHUSETTS
85000318	Dorchester Pottery Works	Listed	2/21/1985	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
85002015	Building at 138142 Portland Street	Listed	9/5/1985	FALSE	0.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
85003074	Dudley Station Historic District	Listed	12/5/1985	FALSE	20 DISTRICT	Boston	Suffolk	MASSACHUSETTS
85003323	Boston Harbor Islands Archeological District	Listed	12/21/1985	TRUE	886.7 DISTRICT	Boston	Suffolk	MASSACHUSETTS
85003375	Engine House No. 34	Listed	10/24/1985	FALSE	0.4 BUILDING	Boston	Suffolk	MASSACHUSETTS
86000084	USS CASSIN YOUNG (destroyer)	Listed	1/14/1986	FALSE	0.9 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
86000140	Christ Church	Listed	1/30/1986	FALSE	0.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
86000274	Bulfinch Triangle Historic District	Listed	2/27/1986	FALSE	7 DISTRICT	Boston	Suffolk	MASSACHUSETTS
86000375	Harriswood Crescent	Listed	3/13/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
86001486	Sears' Crescent and Sears' Block	Listed	8/9/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
86001504	Richardson Block	Listed	8/9/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
86001909	Filene's Department Store	Listed	7/24/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
86001911	LockeOber Restaurant	Listed	7/24/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
86001913	Second Brazer Building	Listed	7/24/1986	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87000757	Harvard Stadium	Listed	2/27/1987	FALSE	11 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
87000760	Boston Common	Listed	2/27/1987	FALSE	50 DISTRICT	Boston	Suffolk	MASSACHUSETTS
87000761	Boston Public Garden	Listed	2/27/1987	FALSE	24 DISTRICT	Boston	Suffolk	MASSACHUSETTS
87000885	Abbotsford	Listed	9/16/1987	FALSE	1.1 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001128	Monument Square Historic District	Listed	6/2/1987	FALSE	8.3 DISTRICT	Boston	Suffolk	MASSACHUSETTS
87001394	New Riding Club	Listed	8/20/1987	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001396	Congress Street Fire Station	Listed	9/3/1987	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001398	House at 17 Cranston Street	Listed	11/20/1987	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001399	Hoxie, Timothy, House	Listed	11/20/1987	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001478	Austin, Francis B., House	Listed	10/21/1988	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001481	Long Island Head Light	Listed	6/15/1987	FALSE	0.1 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
87001495	Saint Augustine Chapel and Cemetery	Listed	9/18/1987	FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
87001771	Bunker Hill School	Listed	10/15/1987	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
87001889	Sumner Hill Historic District	Listed	10/22/1987	FALSE	365 DISTRICT	Boston	Suffolk	MASSACHUSETTS
87002549	District 13 Police Station	Listed	2/10/1988	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
88000427	Temple Place Historic District	Listed	7/26/1988	FALSE	1 DISTRICT	Boston	Suffolk	MASSACHUSETTS
88000908	Goodwin, Ozias, House	Listed	6/23/1988	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
88000955	First Church of Jamaica Plain	Listed	7/15/1988	FALSE	1.4 BUILDING	Boston	Suffolk	MASSACHUSETTS
88000957	Greek Orthodox Cathedral of New England	Listed	6/30/1988	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
88000959	Eliot Hall	Listed	7/15/1988	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
89000004	Mount Pleasant Historic District	Listed	2/9/1989	FALSE	170 DISTRICT	Boston	Suffolk	MASSACHUSETTS
89000147	Roxbury Highlands Historic District	Listed	2/22/1989	FALSE	170 DISTRICT	Boston	Suffolk	MASSACHUSETTS
89000974	Massachusetts School of Art	Listed	8/3/1989	FALSE	2.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
89001747	Mission Hill Triangle Historic District	Listed	11/6/1989	FALSE	3.2 DISTRICT	Boston	Suffolk	MASSACHUSETTS
89002125	Roxbury Presbyterian Church	Listed	3/15/1991	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
89002169	St. Joseph's Roman Catholic Church Complex	Listed	12/28/1989	FALSE	1.5 DISTRICT	Boston	Suffolk	MASSACHUSETTS
89002251	Bellevue Standpipe	Listed	1/18/1990	FALSE	2 STRUCTURE	Boston	Suffolk	MASSACHUSETTS
89002271	Chestnut Hill Reservoir Historic District	Listed	1/18/1990	FALSE	95 DISTRICT	Boston	Suffolk	MASSACHUSETTS
90000631	Copp's Hill Terrace	Listed	4/19/1990	FALSE	0.9 SITE	Boston	Suffolk	MASSACHUSETTS
90001095	Calf Pasture Pumping Station Complex	Listed	8/2/1990	FALSE	9.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
90001145	Bowditch School	Listed	8/3/1990	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS

Attribute	Value to Search For
Status	Listed

Total records:

Acreage of

	Ref#	Property Name	Status	Status Date	Restricted Address	Property Category of Property	City	County	State
	90001536		Listed	10/11/1990) FALSE				MASSACHUSETTS
90001992 Sears Roebuck and Company Mail Order Store	90001537	Upham's Corner Market	Listed	10/11/1990) FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
92000356	90001757	Textile District	Listed	11/29/1990) FALSE	2.8 DISTRICT	Boston	Suffolk	MASSACHUSETTS
93001489 Massachusetts Mental Health Center	90001992	Sears Roebuck and Company Mail Order Store	Listed	1/15/1991	FALSE	8.8 BUILDING	Boston	Suffolk	MASSACHUSETTS
930015737 House at 1 Bay Street Listed 2/9/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 93001587 Eliot Congregational Church Listed 12/16/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 94001492 Faneuil, Peter, School Listed 12/16/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 94001494 Lower Roxbury Historic District Listed 12/19/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 95001450 Riviera, The Listed 12/19/1995 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 96001063 Douglass, Frederick, Square Historic District Listed 10/3/1996 FALSE 5 DISTRICT Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 18/19/99 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 18/19/99 FALSE 3.8 SITE Boston Suffolk MASSACHI 97000971 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000239 Dorchester Temple Baptist Church Listed 11/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 11/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/12/1997 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/12/1997 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/12/1997 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 98001492 St. Mary's Episcopal Church Listed 11/12/1998 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 98001492 St. Mary's Episcopal Church Listed 11/12/1998 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/12/1998 FALSE 0.9 BIILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/12/1999 FALSE	92000356	Trinity Neighborhood House	Listed	4/14/1992	. FALSE	0.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
93001587 Eliot Congregational Church Listed 2/9/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 94001492 Faneuil, Peter, School Listed 12/16/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 94001494 Lower Roxbury Historic District Listed 12/9/1994 FALSE 3.2 DISTRICT Boston Suffolk MASSACHI 95001450 Rivera, The Listed 12/9/1995 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 95001063 Douglass, Frederick, Square Historic District Listed 10/3/1996 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Charlestown Heights Listed 1/8/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001237 Allston Congregational Church Listed 11/17/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (Schooner) Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001273 Allston Congregational Church Listed 1/16/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001429 St. Liuk's and St. Margaret's Church Listed 1/16/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001232 Boston Varifolk MASSACHI 98001232 St. Mary's Episcopal Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001331 Baker Congregational Church Listed 1/16/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Woodbourne Historic District Listed	93001489	Massachusetts Mental Health Center	Listed	1/21/1994	FALSE	2 DISTRICT	Boston	Suffolk	MASSACHUSETTS
94001492 Faneuil, Peter, School Listed 12/16/1994 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 94001494 Lower Roxbury Historic District Listed 12/9/1994 FALSE 3.2 DISTRICT Boston Suffolk MASSACHI 95001450 Riviera, The Listed 12/7/1995 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Charlestown Heights Listed 8/18/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97001273 North Terminal Garage Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 1/26/1998 FALSE 0.9 BUILDING B	93001573	House at 1 Bay Street	Listed	2/9/1994	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
94001494 Lower Roxbury Historic District Listed 12/9/1994 FALSE 3.2 DISTRICT Boston Suffolk MASSACHI 95001450 Riviera, The Usted 12/7/1995 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000969 Charlestown Heights Listed 1/8/1998 FALSE 0.8 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/6/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 11/7/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 0.9 SITTE Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 9800149 St. Mary's Episcopal Church Listed 11/12/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 9900053 Woodbourne Historic District Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Li	93001587	Eliot Congregational Church	Listed	2/9/1994	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
95001450 Riviera, The Listed 12/7/1995 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 96001063 Douglass, Frederick, Square Historic District Listed 10/3/1996 FALSE 5 DISTRICT Boston Suffolk MASSACHI 97000969 Brightnot Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001278 AUSTRICT STATE SUILDING BOSTON Suffolk MASSACHI 97001278 AUSTRICT STATE SUILDING BOSTON Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/7/1997 FALSE 0.9 SITE BOSTON Suffolk MASSACHI 98000149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT BOSTON Suffolk MASSACHI 98001492 St. Mary's Episcopal Church Listed 11/2/1997 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 10/30/1998 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/25/1998 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 98001331 Baker Congregational Church Listed 11/25/1998 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1999 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 990001301 Mariner's House Listed 11/19/1999 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 990001304 Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 99001304 Congregation Alchar Lestoric District Listed 11/12/1999 FALSE 0.9 BUILDING BOSTON Suffolk MASSACHI 99001304 Congregation Alchar Destrict Listed 11/12/1999 FALSE 0.9 BUILDING BOSTON Suffolk MASS	94001492	Faneuil, Peter, School	Listed	12/16/1994	FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
96001063 Douglass, Frederick, Square Historic District Listed 10/3/1996 FALSE 5 DISTRICT Boston Suffolk MASSACHI 97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 1.5 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 11/7/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001277 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000330 Woodbourne Historic District Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 990001302 Mariner's House Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church of Hyde Park Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshuru	94001494	Lower Roxbury Historic District	Listed	12/9/1994	FALSE	3.2 DISTRICT	Boston	Suffolk	MASSACHUSETTS
97000920 Brighton Evangelical Congregational Church Listed 8/21/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97000969 Charlestown Heights Listed 1/8/1998 FALSE 3.8 SITE Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 1.5 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 0.9 SUITE Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 1/1/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Woodbourne Historic District Listed 11/19/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 990001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 9	95001450	Riviera, The	Listed	12/7/1995	5 FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
97000969 Charlestown Heights Listed 1/8/1998 FALSE 3.8 SITE Boston Suffolk MASSACHI 97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 1.5 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 1/1/21/997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 40 DISTRICT Boston Suffolk MASSACHI 98001082 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 9800130 Roslindale Baptist Church Listed 11/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 9900033 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church Child Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001314 Church Green Buildings Historic	96001063	Douglass, Frederick, Square Historic District	Listed	10/3/1996	5 FALSE	5 DISTRICT	Boston	Suffolk	MASSACHUSETTS
97000970 Students House Listed 9/11/1997 FALSE 0.2 BUILDING Boston Suffolk MASSACHI 97000971 North Terminal Garage Listed 9/11/1997 FALSE 1.5 BUILDING Boston Suffolk MASSACHI 97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/71/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001320 Roslindale Baptist Church Listed 11/36/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/36/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 11/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/20/2017 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001315 Columbia Road—Devon Street Historic District Listed 7/20/2017 F	97000920	Brighton Evangelical Congregational Church	Listed	8/21/1997	' FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001277 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 98000149 Eagle Hill Historic District Listed 2/26/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800182 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 98001300 Roslindale Baptist Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 11/100001314 Boston Fish Pier Historic District Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/20/2017 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/20/2017 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Quincy Grammar School Listed 7/20/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001315 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Bost	97000969	Charlestown Heights	Listed	1/8/1998	B FALSE	3.8 SITE	Boston	Suffolk	MASSACHUSETTS
97001239 Dorchester Temple Baptist Church Listed 1/16/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 40 DISTRICT Boston Suffolk MASSACHI 98001082 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/0/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001315 Columbia Road—Devon Street Historic District Listed 7/13/0/1077 FALSE 12.7 district Boston Suffolk MASSACHI 100001315 C	97000970	Students House	Listed	9/11/1997	' FALSE	0.2 BUILDING	Boston	Suffolk	MASSACHUSETTS
97001278 ROSEWAY (schooner) Listed 9/25/1997 FALSE 0.9 SITE Boston Suffolk MASSACHI 97001377 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 40 DISTRICT Boston Suffolk MASSACHI 9800182 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Church Green Buildings Historic District Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 11/10/1999 FALSE 0.9 BUI	97000971	North Terminal Garage	Listed	9/11/1997	' FALSE	1.5 BUILDING	Boston	Suffolk	MASSACHUSETTS
97001377 Allston Congregational Church Listed 11/7/1997 FALSE 1 BUILDING Boston Suffolk MASSACHI 97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 40 DISTRICT Boston Suffolk MASSACHI 98001082 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000533 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001315 Columbia Road-Devon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI	97001239	Dorchester Temple Baptist Church	Listed	1/16/1998	B FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
97001472 St. Luke's and St. Margaret's Church Listed 11/12/1997 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 9800149 Eagle Hill Historic District Listed 2/26/1998 FALSE 40 DISTRICT Boston Suffolk MASSACHI 98001082 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 9900593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregational Church Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHI 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458	97001278	ROSEWAY (schooner)	Listed	9/25/1997	' FALSE	0.9 SITE	Boston	Suffolk	MASSACHUSETTS
9800149Eagle Hill Historic DistrictListed2/26/1998FALSE40 DISTRICTBostonSuffolkMASSACHU98001082Boston Young Men's Christian AssociationListed8/20/1998FALSE1.9 BUILDINGBostonSuffolkMASSACHU98001292St. Mary's Episcopal ChurchListed10/30/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHU98001330Roslindale Baptist ChurchListed11/5/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHU98001361Cathedral of St. George Historic DistrictListed11/25/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHU98001381Baker Congregational ChurchListed11/19/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHU9900593Woodbourne Historic DistrictListed6/4/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHU9900633Symphony HallListed1/20/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHU99001302Mariner's HouseListed11/12/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHU99001304Congregational Church of Hyde ParkListed11/12/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHU99001614Church Green Buildings Historic DistrictListed11/20/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHU100001315Columbia Road-Devon Street Histo	97001377	Allston Congregational Church	Listed	11/7/1997	' FALSE	1 BUILDING	Boston	Suffolk	MASSACHUSETTS
98001082 Boston Young Men's Christian Association Listed 8/20/1998 FALSE 1.9 BUILDING Boston Suffolk MASSACHI 98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHI 100001315 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458	97001472	St. Luke's and St. Margaret's Church	Listed	11/12/1997	' FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
98001292 St. Mary's Episcopal Church Listed 10/30/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001330 Roslindale Baptist Church Listed 11/5/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHI 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI	98000149	Eagle Hill Historic District	Listed	2/26/1998	B FALSE	40 DISTRICT	Boston	Suffolk	MASSACHUSETTS
98001330Roslindale Baptist ChurchListed11/5/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHI98001361Cathedral of St. George Historic DistrictListed11/25/1998FALSE0.9 DISTRICTBostonSuffolkMASSACHI98001381Baker Congregational ChurchListed11/19/1998FALSE0.9 BUILDINGBostonSuffolkMASSACHI99000593Woodbourne Historic DistrictListed6/4/1999FALSE30 DISTRICTBostonSuffolkMASSACHI99000633Symphony HallListed1/20/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHI99001302Mariner's HouseListed11/12/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHI99001304Congregation Adath JeshurunListed11/12/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHI99001308First Congregational Church of Hyde ParkListed11/12/1999FALSE0.9 BUILDINGBostonSuffolkMASSACHI99001614Church Green Buildings Historic DistrictListed12/30/1999FALSE0.9 DISTRICTBostonSuffolkMASSACHI100001314Boston Fish Pier Historic DistrictListed7/13/2017FALSE12.7 districtBostonSuffolkMASSACHI100001315Columbia RoadDevon Street Historic DistrictListed7/20/2017FALSE0.9 buildingBostonSuffolkMASSACHI100001458Quincy Gr	98001082	Boston Young Men's Christian Association	Listed	8/20/1998	B FALSE	1.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
98001361 Cathedral of St. George Historic District Listed 11/25/1998 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 30 DISTRICT Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHI 100001315 Columbia RoadDevon Street Historic District Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI	98001292	St. Mary's Episcopal Church	Listed	10/30/1998	B FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
98001381 Baker Congregational Church Listed 11/19/1998 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 30 DISTRICT Boston Suffolk MASSACHI 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHI 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHI 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHI 100001315 Columbia RoadDevon Street Historic District Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHI	98001330	Roslindale Baptist Church	Listed	11/5/1998	B FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
99000593 Woodbourne Historic District Listed 6/4/1999 FALSE 30 DISTRICT Boston Suffolk MASSACHU 99000633 Symphony Hall Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU	98001361	Cathedral of St. George Historic District	Listed	11/25/1998	B FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
99001302 Mariner's House Listed 1/20/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU	98001381	Baker Congregational Church	Listed	11/19/1998	B FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
99001302 Mariner's House Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU 100001458 Massachu	99000593	Woodbourne Historic District	Listed	6/4/1999) FALSE	30 DISTRICT	Boston	Suffolk	MASSACHUSETTS
99001304 Congregation Adath Jeshurun Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU 100001458	99000633	Symphony Hall	Listed	1/20/1999) FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
99001308 First Congregational Church of Hyde Park Listed 11/12/1999 FALSE 0.9 BUILDING Boston Suffolk MASSACHU 99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU 100001458	99001302	Mariner's House	Listed	11/12/1999) FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
99001614 Church Green Buildings Historic District Listed 12/30/1999 FALSE 0.9 DISTRICT Boston Suffolk MASSACHU 100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU 100001458	99001304	Congregation Adath Jeshurun	Listed	11/12/1999) FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
100001314 Boston Fish Pier Historic District Listed 7/13/2017 FALSE 12.7 district Boston Suffolk MASSACHU 100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU	99001308	First Congregational Church of Hyde Park	Listed	11/12/1999) FALSE	0.9 BUILDING	Boston	Suffolk	MASSACHUSETTS
100001315 Columbia RoadDevon Street Historic District Listed 7/20/2017 FALSE 2 district Boston Suffolk MASSACHU 100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU	99001614	Church Green Buildings Historic District	Listed	12/30/1999) FALSE	0.9 DISTRICT	Boston	Suffolk	MASSACHUSETTS
100001458 Quincy Grammar School Listed 8/3/2017 FALSE 0.9 building Boston Suffolk MASSACHU	100001314	Boston Fish Pier Historic District	Listed	7/13/2017	' FALSE	12.7 district	Boston	Suffolk	MASSACHUSETTS
·	100001315	Columbia RoadDevon Street Historic District	Listed	7/20/2017	' FALSE	2 district	Boston	Suffolk	MASSACHUSETTS
100001582 Columbia RoadBellevue Street Historic District Listed 9/14/2017 FALSE 6.35 district Boston Suffolk MASSACHU	100001458	Quincy Grammar School	Listed	8/3/2017	' FALSE	0.9 building	Boston	Suffolk	MASSACHUSETTS
	100001582	Columbia RoadBellevue Street Historic District	Listed	9/14/2017	' FALSE	6.35 district	Boston	Suffolk	MASSACHUSETTS
		Columbia RoadStrathcona Road Historic District							MASSACHUSETTS
		Benjamin Silverman Apartments							MASSACHUSETTS

64501163

64501197

MC

MC

Attribute	Evoludo	Value to Search For		
	Exclude	Multiple Cover Sheet		
Request Type Total records:	223	·		
Ref#	Prefix	Property Name	Request Type	State
54000269	MC	Arlington MRA	Multiple Cover Sheet	MA
54000270	MC	Arlington MRA (AD)	Multiple Cover Sheet	MA
4000270	MC	Barnstable MRA	Multiple Cover Sheet	MA
54000271	MC	Blue Hills and Neponset River Reservations MRA	Multiple Cover Sheet	MA
54000272	MC	Boston Theatre MRA	Multiple Cover Sheet	MA
54000273	MC	Brookline MRA	Multiple Cover Sheet	MA
54000274	MC	Cambridge MRA	Multiple Cover Sheet	MA
54000275	MC	Central Village, Ipswich, Massachusetts MRA	Multiple Cover Sheet	MA
54000270	MC	Downtown Salem MRA	Multiple Cover Sheet	MA
54000277	MC	Downtown Springfield MRA	Multiple Cover Sheet	MA
54000278	MC	Fall River MRA	Multiple Cover Sheet	MA
			•	
54000280 54000281	MC MC	Fall River MRA (AD) First Period Buildings of Fastern Massachusetts TR	Multiple Cover Sheet	MA MA
54000281 54000282		First Period Buildings of Eastern Massachusetts TR	Multiple Cover Sheet	
34000282	MC MC	Lighthouses of Massachusetts TR	Multiple Cover Sheet	MA
54000283 54000284	MC MC	Lighthouses of Massachusetts TR (AD)	Multiple Cover Sheet	MA
54000284 54000285	MC MC	Methuen MRA Newton MRA	Multiple Cover Sheet Multiple Cover Sheet	MA MA
			•	
4000286	MC	Newton MRA (AD)	Multiple Cover Sheet	MA
4000287	MC	North Adams MRA	Multiple Cover Sheet	MA
4000288	MC	North Adams MRA (AD)	Multiple Cover Sheet	MA
4000289	MC	Quincy MRA	Multiple Cover Sheet	MA
4000290	MC	Reading MRA	Multiple Cover Sheet	MA
4000291	MC	Reading MRA (AD)	Multiple Cover Sheet	MA
4000292	MC	Rehoboth MRA	Multiple Cover Sheet	MA
54000293	MC	Sherborn MRA	Multiple Cover Sheet	MA
54000294	MC	Southbridge MRA	Multiple Cover Sheet	MA
54000295	MC	Stoneham MRA	Multiple Cover Sheet	MA
54000296	MC	Swansea MRA	Multiple Cover Sheet	MA
4000297	MC	Taunton MRA	Multiple Cover Sheet	MA
4000298	MC	Town of Andover MRA	Multiple Cover Sheet	MA
4000299	MC	Uxbridge MRA	Multiple Cover Sheet	MA
4000300	MC	Wakefield MRA	Multiple Cover Sheet	MA
4000301	MC	Waltham MRA	Multiple Cover Sheet	MA
54000302	MC	Washington MRA	Multiple Cover Sheet	MA
4000303	MC	Winchester MRA	Multiple Cover Sheet	MA
4000304	MC	Worcester MRA	Multiple Cover Sheet	MA
4000305	MC	Worcester Three-Deckers TR	Multiple Cover Sheet	MA
4500250	MC	Diners of Massachusetts MPS	Multiple Cover Sheet	MA
4500251	MC	Gloucester MPS	Multiple Cover Sheet	MA
4500252	MC	Massachusetts State Hospitals And State Schools MPS	Multiple Cover Sheet	MA
4500253	MC	Somerville MPS	Multiple Cover Sheet	MA
4500254	MC	Water Supply System of Metropolitan Boston MPS	Multiple Cover Sheet	MA
4500822	MC	Metropolitan Park System of Greater Boston MPS	Multiple Cover Sheet	MA
4500919	MC	Farms and Rural Retreats of Topsfield, Massachusetts MPS	Multiple Cover Sheet	MA
4500934	MC	Underground Railroad in Massachusetts MPS	Multiple Cover Sheet	MA
4501019	MC	Eastern Rig Dragger Fishing Vessel Shipwrecks in the Stellwagen Bank National Marine Sanctuary	Multiple Cover Sheet	MA
4501040	MC	Downtown Architecture of H.M. Francis, Fitchburg, MA	Multiple Cover Sheet	MA
4501135	MC	Granite Vessel Shipwrecks in the Stellwagen Bank NMS MPS	Multiple Cover Sheet	MA
3/501163	MC	Mid-Century Modern Houses of Levington Massachusetts MPS	Multiple Cover Sheet	NΛΛ

Multiple Cover Sheet

Multiple Cover Sheet

MA

MA

Mid-Century Modern Houses of Lexington, Massachusetts MPS

Mid 20th Century Modern Residential Architecture on Outer Cape Cod MPS

1/30/2019 Welcome to MACRIS

Massachusetts Historical Commission

William Francis Galvin, Secretary of the Commonwealth

Home | Feedback | Contact Us

MHC Home

Massachusetts Cultural Resource Information System MACRIS

Scanned forms and photos now available for selected towns!

The Massachusetts Cultural Resource Information System (MACRIS) allows you to search the Massachusetts Historical Commission database for information on historic properties and areas in the Commonwealth.

Users of the database should keep in mind that it does not include information on all historic properties and areas in Massachusetts, nor does it reflect all the information on file on historic properties and areas at the Massachusetts Historical Commission.

Click here to begin your search of the MACRIS database.

Home | Search | Index | Feedback | Contact

http://mhc-macris.net/

1/30/2019 MACRIS Results

Massachusetts Cultural Resource Information S

MHC Home | MACRIS Home

Results

Get Results in Report Format

PDF

Spreadsheet

Below are the results of your search, using the following search criteria:

Town(s): Boston Place: East Boston Street No: 125-131 Street Name: Sumner St

Resource Type(s): Area, Building, Burial Ground, Object, Structure

For more information about this page and how to use it, <u>click here</u>

No Results Found.

New Search

New Search — Same Town(s)

Previous

MHC Home | MACRIS Home

1/30/2019 MACRIS Results

Massachusetts Cultural Resource Information S

MHC Home | MACRIS Home

Results

Get Results in Report Format

PDF

Spreadsheet

Below are the results of your search, using the following search criteria:

Town(s): Boston Place: East Boston

Street Name: Clippership Ln

Resource Type(s): Area, Building, Object, Structure

For more information about this page and how to use it, click here

No Results Found.

New Search

New Search — Same Town(s)

Previous

MHC Home | MACRIS Home

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: East Boston; Street Name: Sumner St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.900	Maverick Square Subway Station	Maverick Sq	Boston	1924
BOS.107	Boston Cold Storage Company - Building #8	8 New St	Boston	1908
BOS.185	Our Lady of Assumption Catholic Parochial School	11-15 Seaver St	Boston	1890
BOS.906	Sumner Street Bridge over Conrail	Sumner St	Boston	1908
BOS.187	Hodge Boiler Works Boiler Shop	111 Sumner St	Boston	1902
BOS.188	Hodge Boiler Works Office	111 Sumner St	Boston	c 1902
BOS.192	Woodbury Building	191-201 Sumner St	Boston	1841
BOS.189	East Boston Engine #40 Fire House	260 Sumner St	Boston	1923
BOS.190	Soldani Building	326-328 Sumner St	Boston	1929
BOS.191	Our Lady of the Assumption Roman Catholic Church	394 Sumner St	Boston	c 1869
BOS.15267	Our Lady of the Assumption Roman Catholic Rectory	404 Sumner St	Boston	c 1947

Wednesday, January 30, 2019 Page 1 of 1

APPENDIX F

Endangered Species Act Documentation

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: January 30, 2019

Consultation Code: 05E1NE00-2019-SLI-0647

Event Code: 05E1NE00-2019-E-01496 Project Name: Clippership Apartments

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-0647

Event Code: 05E1NE00-2019-E-01496

Project Name: Clippership Apartments

Project Type: DEVELOPMENT

Project Description: This project is located at 125-131 Sumner Street in East Boston,

Massachusetts. The site is an approximately 42,000 square foot (sf) parcel

of land developed with four 2-story brick apartment buildings.

Redevelopment plans include demolition of the existing buildings and

construction of two new residential buildings, that will occupy

approximately 21,000 sf of the 42,000 sf site, with the majority of the exterior area planned as pavement or hardscape with minimal landscaped areas and tree pits. This project is expected to start on March 1, 2019 and

to last for up to 18 months.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.36917842598507N71.04150597081149W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

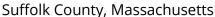
See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

IPaC


U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act 1 and the Bald and Golden Eagle Protection Act 2 .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.

"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

American Oystercatcher Haematopus palliatus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8935

Breeds Apr 15 to Aug 31

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Breeds Oct 15 to Aug 31

Black Skimmer Rynchops niger

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/5234

Breeds May 20 to Sep 15

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Jul 31

Buff-breasted Sandpiper Calidris subruficollis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/9488

Breeds elsewhere

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 20 to Aug 10

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

King Rail Rallus elegans

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/8936

Breeds May 1 to Sep 5

Least Tern Sterna antillarum

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds Apr 20 to Sep 10

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Long-eared Owl asio otus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/3631

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Purple Sandpiper Calidris maritima

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Ruddy Turnstone Arenaria interpres morinella

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Saltmarsh Sparrow Ammodramus caudacutus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Seaside Sparrow Ammodramus maritimus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 20

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Short-billed Dowitcher Limnodromus griseus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9480

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Whimbrel Numenius phaeopus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9483

Breeds elsewhere

Willet Tringa semipalmata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 5

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any

- week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

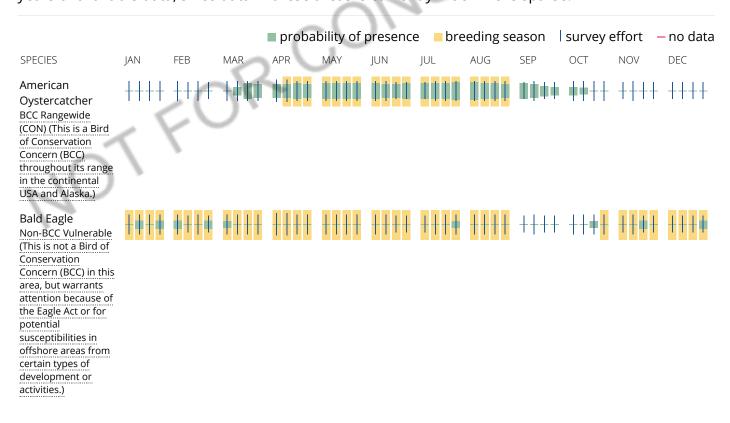
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

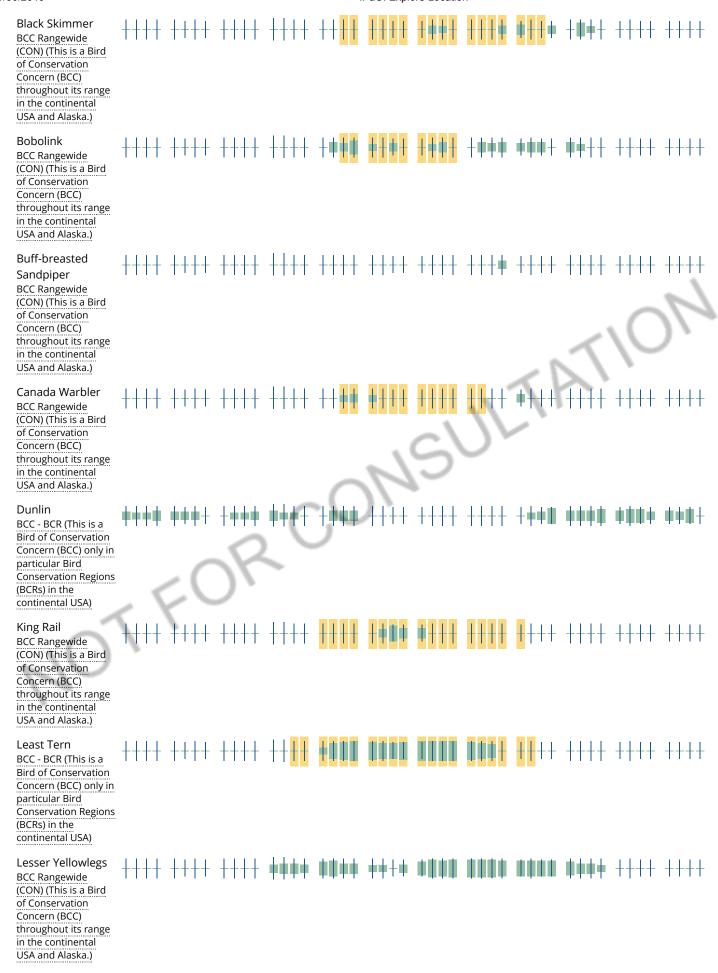
Breeding Season (

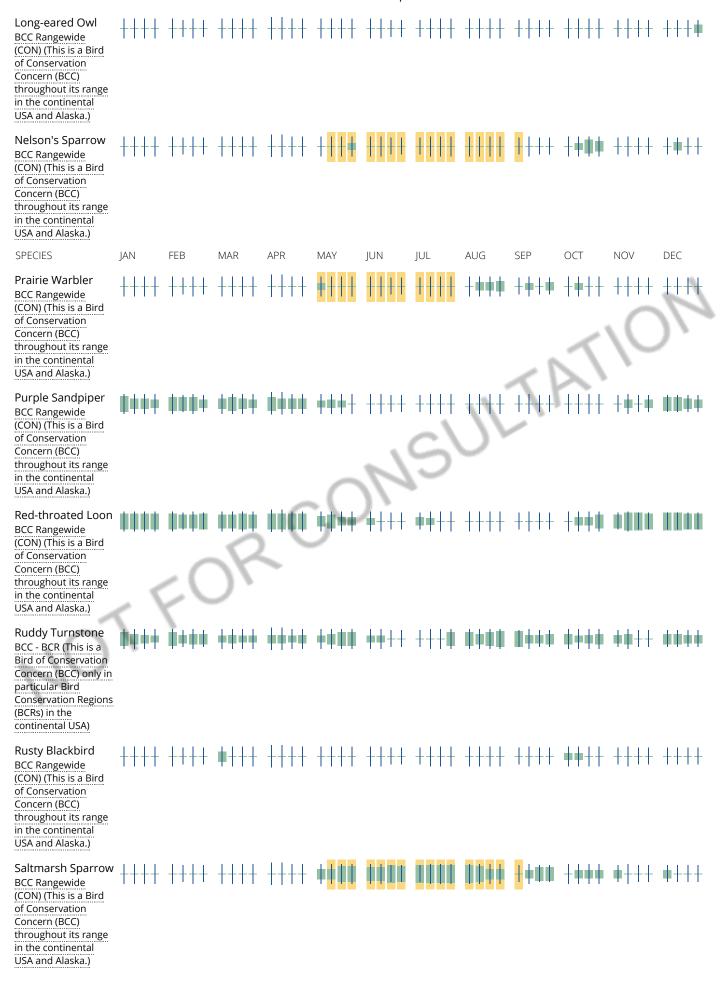
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (1)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and

avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> and/or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>E-bird Explore Data Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird

impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

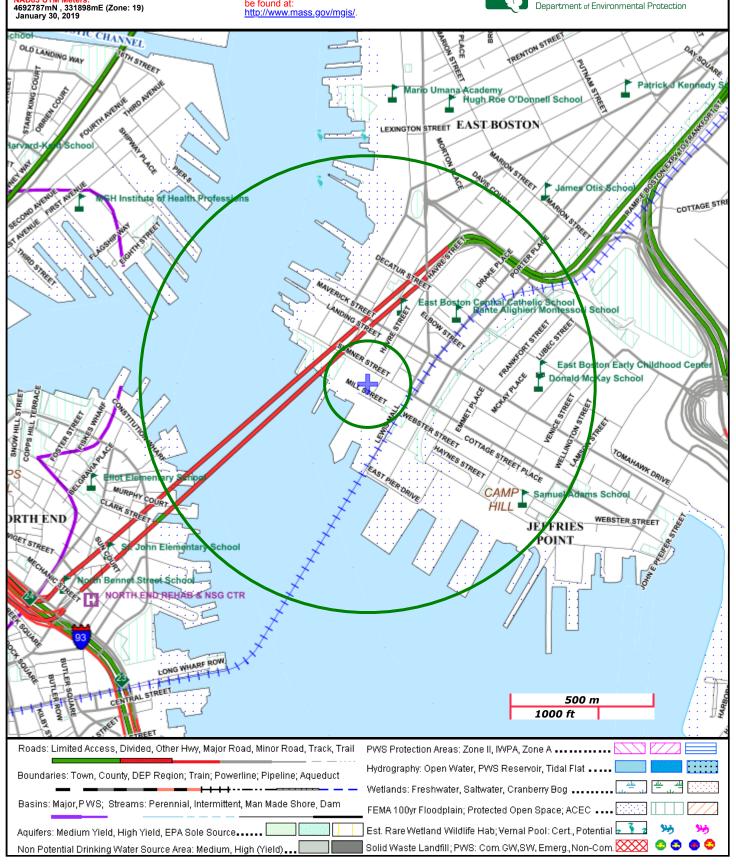
The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions


Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

125-131 SUMNER STREET BOSTON, MA 2-000003981 NAD83 UTM Meters: The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Narraguagus River (ME)	Narraguagus River (ME) Up to Cherryfield Dam (RKM 10.6) adults		Foraging - May be used for foraging; tag detections indicate that usage of the river is for short periods during coastal migrations[1]	[1] Dionne et al. 2013
Penonscot River (ME) - Lun to Militora Dam (RKM/62) - L		adults documented; other life stages assumed but unknown	Spawning - Not documented to date; suitable spawning habitat is accessible[3] Foraging - Foraging concentrations from RKM 10-24.5 during the summer months as well as throughout the lower and middle estuary; RKM 21-45 by mid-July and August[1] Overwintering - Aggregations located from RKM 36.5-42 from mid-August to mid-April[2]	[1] Fernandes et al. 2010; [2] Lachapelle 2013; [3] Johnston 2016
St. George River (ME) Up to RKM 39 in lower estuary		adults	Foraging - May be used for foraging; tag detections indicate that usage of the river is for short periods during coastal migrations[1][2]	[1] Zydlewski et al. 2011; [2] Dionne et al. 2013
Medomak River (ME)	domak River (ME) Up to RKM 17.5 adults		Foraging - May be used for foraging; tag detections indicate that usage of the river is for short periods during coastal migrations[1][2][3]	[1] Zydlewski et al. 2011; [2] Dionne et al. 2013; [3] Johnston 2016
Damariscotta River (ME)	Up to Damariscotta Lake Dam (RKM 30.3)	adults	Foraging - May be used for foraging; tag detections indicate that usage of the river is for short periods during coastal migrations[1][2]	[1] Zydlewski et al. 2011; [2] Dionne et al. 2013
Sheepscot River (ME)	Up to Head Tide Dam (RKM 35)	adults	Foraging - Montsweag Bay during the summer [1] Overwintering - Suspected to occur in the estuary[2]	[1] Fried and McCleave 1973; [2] SSSRT 2010

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Kennebec River (ME)	Up to Lockwood Dam (RKM 103), also includes Merrymeeting Bay, Sagadahoc Bay, and the entirety of the Back, Sasanoa, Eastern, and Cathance Rivers	Spawning - Occurs at two sites: below the former Edwards Dam[7] (RKM 58-74) and downstream of the Lockwood Dam[8] (RKM 87-103) Rearing - Eggs and larvae occur in freshwater reaches below the spawning sites[8] Foraging - Throughout the lower estuary to the mouth of the river[4][5][8] (below RKM 70) with concentration areas near Bath[3][5][8] (RKM 16-29) including Sagadahoc Bay[6] and the Back and Sasanoa Rivers[1][5][8] Overwintering - Majority in Merrymeeting Bay [5][7] (RKM 37-40 and 40-42), also Bluff Head [2][5] (RKM 15), and in the lower portions of the Eastern and Cathance Rivers (tributaries to Merrymeeting Bay)[2]		[1] McCleave et al. 1977; [2] Squiers and Robillard 1997; [3] Squiers 2003; [4] Fernandes et al. 2010; [5] SSSRT 2010; [6] Fire et al. 2012; [7] Wippelhauser and Squiers 2015; [8] Wippelhauser et al. 2015
Androscoggin River (ME)	lroscoggin River (ME)		Spawning - Below Brunswick Dam to the Rt. 201 Bridge(RKM 7.7-8.4)[2] Rearing - Eggs and larvae occur in freshwater reaches below the spawning sites[3] Foraging - Montsweag Bay during the summer [1]	[1] McCleave et al. 1977; [2] Wippelhauser and Squiers 2015; [3] Wippelhauser et al. 2015
Presumpscot River (ME)	Up to Presumpscot Falls (RKM 4)	adults	Foraging - May be used for foraging[1]	[1] Yoder et al. 2009
Saco River (ME)	Up to Cataract Dam (RKM 10)	adults	Foraging - Used seasonally May-November[1]	[1] Little et al. 2013; [2] Hodgdon et al. 2018
Piscataqua River (NH)	Entirety of Piscataqua River including Cocheco River from its confluence with Piscataqua River upstream to Cocheco Falls Dam and waters of Salmon Falls River from its confluence with Piscataqua River upstream to the Route 4 Dam	adults	Foraging - Used seasonally for foraging and resting during spring and fall migrations; tracking data indicates that use by individual sturgeon is limited to days or weeks[1]	[1] Kieffer and Trefry, pers. comm., April 18, 2017

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Merrimack River (MA)	Up to Essex Dam (RKM 46)	eggs, larvae, YOY, juveniles, and adults	Spawning - Near Haverhill[2] (RKM 30-32) Rearing - Eggs and larvae present in spawning grounds four weeks after spawning occurs, following which they would begin to move downstream continuing their development in the freshwater reach of the river[1] (RKM 16-32) Foraging - Lower river with concentrations near Amesbury and the lower islands[1][3] (RKM 6-24) Overwintering - Late fall to early spring[1]; multiple overwintering sites from RKM 15-29 in freshwater reaches beyond the maximum salt penetration[4]	[1] Kieffer and Kynard 1993; [2] Kieffer and Kynard 1996; [3] Kynard et al. 2000; [4] Wippelhauser et al. 2015
Narragansett Bay (RI)	Throughout the bay	adults	Foraging - Potentially occurs where suitable forage is present[1]	[1] NMFS 1998
Thames River (CT)	Up to the Greenville Dam (RKM 28)	adults undocumented, but assumed based on documented occurrences of Atlantic sturgeon in the river	Foraging - Assumed to occur where suitable forage is present[1]	[1] The Day June 17, 2016 (http://www.theday. com/article/20160617/NWS01 /160619212)

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Connecticut River (CT/MA)	Up to Turners Falls Dam, MA (RKM 198)	eggs, larvae, YOY, juveniles, and adults	Spawning - Below Turners Falls Dam/Cabot Station at two locations depending on river conditions[3] (RKM 193-194); limited spawning may occasionally occur below Holyoke Dam[3] (RKM 139-140) Rearing - Eggs and larvae spawned upstream documented up to 20 km downstream of the spawning site[3]; if spawning is successful downstream of Holyoke, early life stages would be present in downstream freshwater reaches [1][3] (RKM 13-194) Foraging - Concentrations above the Holyoke Dam in the Deerfield Concentration Area[3] (RKM 144-192), Agawam Concentration Area [1] (RKM 114-119), and the lower Connecticut Concentration Area[3] (RKM 0-110) Overwintering - Concentrations above the Holyoke Dam in the Deerfield Concentration Area[3] (RKM 144-192); below the Holyoke Dam concentrations near Holyoke[2] (RKM 137-140), Agawam[3] (RKM 114-119), Hartford [2] (RKM 82-86), Portland, CT[3] (RKM 46), and the lower river[2] (RKM 0-25)	[1] Buckley and Kynard 1983; [2] Buckley and Kynard 1985; [3] Kynard et al. 2012
Deerfield River (MA), tributary of the Connecticut River	Up to Deerfield No. 2 at Shelburne Falls (RKM 22.5)	adults documented in lower 3 km; larvae spawned in Connecticut River may be present during certain flow conditions	Rearing - Water flow could potentially draw migrating larvae into unfavorable habitat in the Deerfield River[1]; potential refuge area during high flows[2] Foraging - Spring through fall in lower river[2] (RKM 0-3.5) Overwintering - May be used as an overwintering area potential pre-spawning staging area for adults[1]	[1] Kieffer and Kynard 1992; [2] Kynard et al. 2012

9/17/2018

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Asessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Westfield River (MA), tributary of the Connecticut River	Up to DSI Dam (RKM 9.5)	adults	Foraging - Assumed to occur where suitable forage is present[1]	[1] USFWS 2007 in SSSRT 2010
Quinnipiac River (CT)	Up to Wallace Dam (RKM 27)	adults undocumented, but assumed based on documented occurrences of Atlantic sturgeon in the river	Foraging - Assumed to occur where suitable forage is present[1]	[1] Hartford Courant September 30, 1994 (http: //articles.courant.com/1994- 09- 30/news/9409300111_1_stur geon-fish-story-giant-fish)
Housatonic River (CT)	Up to Derby Dam (RKM 23.5)	adults	Spawning - Historical spawning occurred above the Derby Dam, none known to occur currently[1] Foraging - Potentially occurs where suitable forage is present[1]	[1] Savoy and Benway 2006 in SSSRT 2010
Long Island Sound (CT/NY)	Full length of Long Island Sound in nearshore coastal waters	adults	Foraging - Potentially occurs where suitable forage is present[1]	[1] Savoy 2004 in SSSRT 2010
East River (NY)	Full length of the East River	transient adults undocumented, but assumed based on detections of Atlantic sturgeon and occasional movements of shortnose sturgeon from Hudson River to Connecticut River	Foraging - Potentially occurs where suitable forage is present[1]	[1] Savoy 2004 in SSSRT 2010

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Asessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Hudson River (NY/NJ)	Up to Troy Dam, NY (approximately RKM 246)	eggs, larvae, YOY, juveniles, and adults	Spawning - Documented from late March to early May when water temperatures reach 10°-18°C[1] from Coxsackie to below the Federal Dam at Troy[1][3] (RKM 190-246) Rearing - Eggs on the spawning grounds; larvae downstream to at least RKM 104; YOY downstream to at least RKM 64[1] Foraging - Throughout the Hudson River (RKM 38-175) [3][4] with concentrations in Haverstraw Bay[1] (RKM 56-64) Overwintering - Late fall to early spring[3]; largest area (mainly spawning adults) near Kingston[2] (RKM 137-149); smaller overwintering areas are located from Saugerties to Hyde Park[2] (RKM 123-170) and in the Croton-Haverstraw Bay area[2] (RKM 54-61); many juveniles overwinter in the lower river[1] (RKM 0-64)	[1] Dovel et al. 1992; [2] Geoghegan et al. 1992; [3] Bain 1997; [4] Pendleton et al. 2018

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Delaware River and Bay (NJ/DE/PA)	Up to Lambertville, PA (RKM 240)	eggs, larvae, YOY, juveniles, and adults eggs, larvae, YOY, juveniles, and located up Wilmingtor Foraging vicinity of (RKM 79) Overwinter overwinter mid-Novem from RKM below Wilm overwinter lsland[5] (Fiform seder		[1] O'Herron et al. 1993; [2] USGS gauge at Philadelphia (01467200) during the 2003- 2008 time period; [3] Burton et al. 2005; [4] ERC 2006; [5] Brundage and O'Herron 2009; [6] ERC 2009; [7] SSSRT 2010
Schuylkill River (PA), tributary of the Delaware River	Up to Fairmount Dam (RKM 13.6)	juveniles and adults	Foraging - Potentially occurs where suitable forage is present[1]	[1] Philadelphia Water Department November 7, 2014 (http://www. phillywatersheds. org/endangered-shortnose- sturgeon-returns-schuylkill)
C&D Canal (DE/MD)	Used at least occasionally to move from Chesapeake Bay to the Delaware River	adults	Foraging - Assumed to occur in areas with suitable forage[1]	[1] Welsh et al. 2002
Chesapeake Bay (MD/VA)	Maryland and Virigina waters of mainstem bay and tidal tributaries including those specifically listed below.	adults documented; other life stage presence unknown	Foraging, Resting, and Overwintering - Assumed to occur in areas with suitable forage [1][2]	[1] SSSRT 2010; [2] Balazik 2017

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Range in Watershed		References
Susquehanna River (MD)	Up to Conowingo Dam (RKM 16)	adults documented; other life stages assumed but unknown	Spawning - Historically occurred; currently unknown as suitability of habitat is likely impacted by dam operations[1] Foraging - Assumed to occur in areas with suitable forage[2] Overwintering - Not documented but assumed based on anecdotal reports of aggregations of sturgeon in deep holes near Lapidum and Perrysville[2]	[1] Litwiler 2001; [2] SSSRT 2010
Potomac River (MD/VA)	Up to Little Falls Dam (RKM 189)	adults documented; other life stages assumed but unknown	Spawning - Historically occurred; current spawning not documented but assumed based on presence of pre-spawning females and suitable habitat at RKM 185-187[1] Rearing - Eggs expected at RKM 185-187, larvae would be present downstream in freshwater[1] Foraging - Mainly in the deepwater channel from RKM 63-141[1][2] Overwintering - Near Mattawoman Creek; saltwater/freshwater reach near Craney Island [1][2] (RKM 63-141)	[1] Kynard et al. 2007; [2] Kynard et al. 2009
Rappahannock River (VA)	Range not confirmed, but they have been documented in this river (likely throughout the entire river)	adults	Foraging - Potentially occurs where suitable forage is present; one was captured in May 1998[1]	[1] Spells 1998
York River (VA)	Range unknown (potentially throughout the river and tributaries)	adults	Foraging - Potentially occurs where suitable forage is present [1]	[1] Balazik, pers. comm., June 7, 2018

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Minas Basin, Nova Scotia, Canada, to the St. Johns River, Florida; only adults occur in marine waters, with some adults making coastal migrations between river systems (e.g., Penobscot River to Merrimack River via the Gulf of Maine; Merrimack River to Connecticut River via the Gulf of Maine and Long Island Sound; Connecticut River to Hudson River via Long Island Sound and the East River); typically, distribution in rivers and inshore bays occurs from the estuary or river mouth up to the first impassible barrier (e.g., a dam or falls); comprehensive information on species biology and distribution is available in the Shortnose Sturgeon Status Review Team's Biological Assessment (SSSRT 2010; available at: http://www.nmfs.noaa.gov/pr/pdfs/species/shortnosesturgeon biological assessment2010.pdf)

Disclaimer: the best available information on shortnose sturgeon presence within the Greater Atlantic Region is presented below; waterbodies included are ones where we have information specific to shortnose sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on shortnose sturgeon; for waterbodies not listed below, we have no data on usage by shortnose sturgeon; however, we expect the species may be present in other coastal waters in the Gulf of Maine and along the U.S. Atlantic coast between the Merrimack and Hudson Rivers; bracketed footnotes are provided in the table to match up "Use of the Watershed" information to the specific reference(s) from which it came; a description of shortnose sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
James River (VA)	Range not confirmed, but likely up to Boshers Dam (RKM 182.3)			[1] Balazik 2017; [2] Balazik, pers. comm., February 10, 2018

Listing rule: 32 FR 4001, March 11, 1967; Recovery plan: NMFS 1998. Available online: http://www.nmfs.noaa.gov/pr/pdfs/recovery/sturgeon_shortnose.pdf

GARFO Master ESA Species Table - Sea Turtles

General distribution: Four species (loggerhead, green, Kemp's ridley, and leatherback) found throughout continental shelf and slope waters of the Northwest Atlantic Ocean; tropical to boreal waters, preferred temperatures greater than 10°C; northward and inshore movement into waters of the Greater Atlantic Region begins in the spring, with turtles arriving into Mid-Atlantic waters in mid-April/May and into Gulf of Maine waters in June; in the fall, this trend is reversed with most turtles leaving the region's waters by the end of November; outside of these times, sea turtle presence in the region's waters is considered unlikely aside from cold-stunned individuals that fail to migrate south (see below); a fifth species (hawksbill) is considered extremely rare in the region based on only a few documented occurrences and its affinity for tropical waters and coral reef type habitats

Disclaimer: the best available information on the presence of sea turtles in the Greater Atlantic Region is presented below; coastal/inshore areas of regular occurrence highlighted below are ones where we have information specific to sea turtle use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on turtles; however, they may occur in other coastal/inshore areas within this region for which we do not currently have specific information; for nesting individuals, the U.S. Fish and Wildlife Service has jurisdiction over sea turtles when they are on land

State	Coastal / Inshore Areas of Regular Occurrence	Likely Presence	Life Stages Present	Behaviors Anticipated to Occur
ME/NH and MA (north of Cape Cod)	Cape Cod Bay	June to October/November (note: cold stunning of hard-shelled sea turtles occurs annually from October to January)		Foraging Loggerhead (Northwest Atlantic DPS) - Pelagic and benthic juveniles - omnivorous on bottom and surface - Sub-adults and adults - benthic invertebrates along the coast
MA (south of Cape Cod)	Buzzards Bay, Nantucket and Vineyard Sounds		Loggerhead (Northwest Atlantic DPS) - Pelagic and benthic juveniles, subadults, and	Green (North Atlantic DPS) - Juveniles - Omnivorous along coasts and in protected bays and lagoons - Adults - Herbivorous in nearshore areas
RI	Narragansett Bay and Block Island Sound		adults Green (North Atlantic DPS	Kemp's ridley - Juveniles - Benthic invertebrates in protected
CT/NY	Long Island Sound and associated bays/estuaries (e.g., Peconic Bay)		- Juveniles and adults Kemp's ridley	Leatherback
NY/NJ	Coastal waters off the New York Harbor Complex (e.g., Raritan and Sandy Hook Bays)	May to November (note: cold stunning of hard-shelled sea turtles occurs annually from October to January)	- Juveniles only Leatherback - Juveniles and adults	- Juveniles and adults - Primarily prey on jellyfish in offshore oceanic or coastal neritic areas
NJ/DE	Delaware Bay and other back bays (e.g., Barnegat Bay)			
DE/MD/VA	Coastal waters off Virginia Beach, coastal waters and back bays of the DelMarVa Peninsula, Chesapeake Bay, Tangier Sound, and lower portions of southern Chesapeake Bay tributaries (e.g., James, York, Rappahannock, and Potomac Rivers)			Nesting North of North Carolina, sea turtle nesting is rare (there is occasional loggerhead nesting in Virginia, but no established nesting beaches further north)

GARFO Master ESA Species Table - Sea Turtles

Loggerhead (Northwest Atlantic DPS)	Listing rule: 76 FR 58868, September 22, 2011;Recovery plan: NMFS and USFWS 2008; Additional references: Shoop and Kenney 1992; Epperly et al. 1995a, 1995b, 1995c; Braun-McNeill and Epperly 2004; Morreale and Standora 2005; Braun-McNeill et al. 2008; Conant et al. 2009; Mansfield et al. 2009; NMFS NEFSC 2011; Griffin et al. 2013
`	Listing rule: 81 FR 20057, April 6, 2016; Recovery plan: NMFS and USFWS 1991; Additional references: Lahanas et al. 1994; Wynne and Schwartz 1999; Ruiz-Urquiola et al. 2010; Seminoff et al. 2015
Kemp's ridley	Listing rule: 35 FR 18319, December 2, 1970; Recovery plan: NMFS et al. 2011; Additional references: TEWG 2000; Morreale et al. 2007; NMFS and USFWS 2015
Leatherback	Listing rule : 35 FR 8491, June 2, 1970; Recovery plan : NMFS and USFWS 1992; Additional references : Bjorndal 1997; TEWG 2007; Fossette et al. 2008; Dodge et al. 2011; NMFS and USFWS 2013
Hawksbill	Listing rule: 35 FR 18319. December 2. 1970:Recovery plan: NMFS and USFWS 1992: Additional references: NMFS and USFWS 2013

GARFO Master ESA Species Table - Marine Mammals

Species	Region	Offshore distribution	Nearshore areas of importance	Likely Presence	Life Stages Present	Behaviors Anticipated to Occur
North Atlantic right whale	Northeast (ME to Cape Cod, MA)	throughout continental shelf and slope waters	Cape Cod Bay, Massachusetts Bay, Great South Channel, western Gulf of Maine, Georges Bank, Jordan Basin, Wilkinson Basin, Jeffreys Ledge, Cashes Ledge	Year round	Adults and juveniles	Foraging - Cape Cod Bay (January-April), Massachusetts Bay (January-April), Great South Channel (April-June), the western Gulf of Maine (April-May and July-October), the northern edge of Georges Bank (May-July), Jordan Basin (August-October), and Wilkinson Basin (April-July) Wintering - Increasing evidence of wintering areas (approximately November-January) in Cape Cod Bay, Jeffreys and Cashes Ledge, Jordan Basin, and Massachusetts Bay (e.g., Stellwagen Bank)
	Mid-Atlantic (Cape Cod, MA to VA)	throughout continental shelf and slope waters	possibly waters off New Jersey and Virginia	Year round	Adults and juveniles	Migration - Migratory pathway to/from northern (high latitude) foraging and southern calving grounds (primarily November-April)
Fin whale	Northeast (ME to Cape Cod, MA)	throughout continental shelf and slope waters	Massachusetts Bay, Stellwagen Bank, Great South Channel, east of Cape Cod, western Gulf of Maine, eastern perimeter of Georges Bank	Year round	Adults and juveniles	Foraging - Greatest densities from March-August; lower densities from September-November; important foraging grounds include Massachusetts Bay (especially Stellwagen Bank), Great South Channel, waters off Cape Cod (~40-50 meter contour), the western Gulf of Maine (especially Jeffreys Ledge), and the eastern perimenter of Georges Bank Wintering - Evidence of wintering areas in Stellwagen Bank and eastern perimeter of Georges Bank
	Mid-Atlantic (Cape Cod, MA to VA)	throughout continental shelf and slope waters	east end of Long Island, mid-shelf east of New Jersey	Year round	Adults and juveniles	Foraging - Year round in the mid-shelf area off the east end of Long Island Migration - Migratory pathway to/from northern (high latitude) foraging and southern (low latitude) calving grounds Wintering - Evidence of wintering areas in mid-shelf areas east of New Jersey Calving - Possible offshore calving area (October-January)

1

GARFO Master ESA Species Table - Marine Mammals

Sei whale	Northeast (ME to Cape Cod, MA)	continental shelf edge/slope waters with depths greater than 200 meters	none	Year round	Adults and juveniles	Foraging - Spring through summer, found in greatest densities in offshore waters of the Gulf of Maine and Georges Bank (eastern margin into the Northeast Channel area; along the southwestern edge in the area of Hydrographer Canyon); prefer continental shelf edge/slope waters (i.e., >200 meters), although incursions into continental shelf waters do occur seasonally or sporadically during periods of high prey abundance; generally feed on copepods and can often be found in areas where right whales are also found foraging, typically a bit further offshore than Cape Cod Bay Migration - The population is believed to migrate from south of Cape Cod and along the coast of eastern Canada in June-July, and return on a southward migration again in September-October
Sperm whale	Northeast and Mid- Atlantic (ME to VA)		none	Year round	Adults and juveniles	Foraging - In winter, concentrated east and northeast of Cape Hatteras; in spring, the center of distribution shifts northward to east of Delaware and Virginia, and is widespread throughout the central portion of the Mid-Atlantic Bight and the southern portion of Georges Bank; in summer, the distribution is similar but also includes the area east and north of Georges Bank and into the Northeast Channel region, as well as the continental shelf (inshore of the 100 meter isobath) south of New England; in fall, occurrence south of New England on the continental shelf is at its highest level, and there remains a continental shelf edge occurrence in the Mid-Atlantic Bight Migration - In some mid-latitudes, there seems to be a general trend to migrate north and south depending on the seasons (they move poleward in the summer); in temperate areas, there appears to be no obvious seasonal migration

GARFO Master ESA Species Table - Marine Mammals

Blue whale	Northeast and Mid-		none	Year round	Adults and juveniles	Foraging - Off the U.S. Northeast and Mid-Atlantic coasts, they are most common during the summer and fall feeding seasons and typically leave by early winter; although they are rare in continental shelf waters, blue whales are occasionally seen off Cape Cod; best considered an occasional visitor in U.S. Atlantic waters, which may represent the southern limit of its feeding range Migration - Migrate seasonally between summer and winter, but some evidence suggests that individuals remain in certain areas year round; information about movements varies with location, and migratory routes are not well known
------------	--------------------	--	------	------------	----------------------	--

<u>Species</u>	Listing Rule	Recovery Plan
North Atlantic right whale	73 FR 12024; March 6, 2008	NMFS 2005
Fin whale	35 FR 18319; December 2, 1970	NMFS 2010a
Sei whale	35 FR 18319; December 2, 1970	NMFS 2011
Sperm whale	35 FR 18319; December 2, 1970	NMFS 2010b
Blue whale	35 FR 18319; December 2, 1970	NMFS 1998

References: CETAP 1982; Watkins and Schevill 1982; Payne 1984; Kenney et al. 1986, 1995; Schevill et al. 1986; Winn et al. 1986; Wenzel et al. 1988; Hamilton and Mayo 1990; Payne et al. 1990; Hain et al. 1992; Brown et al. 2002; McClellan et al. 2004; Good 2008; NOAA 2008; Baumgartner et al. 2011; Cole et al. 2013; Khan et al. 2013, 2014, 2016; Waring et al. 2016; 81 FR 4837, January 27, 2016; 50 CFR 224.105.

General distribution: Atlantic Ocean waters and associated bays, estuaries, and coastal river systems from Hamilton Inlet, Labrador, Canada, to Cape Canaveral, Florida; only subadult and adult lifestages occur in marine waters, where they are typically found in waters 5-50 meters in depth (Stein et al. 2004; ASMFC TC 2007); subadults and adults may travel long distances in marine waters, aggregate in both ocean and estuarine areas at certain times of the year, and exhibit seasonal coastal movements in the spring and fall; distribution in rivers and inshore bays typically occurs from the estuary or river mouth generally up to the first impassible barrier (e.g., a dam or falls); Atlantic sturgeon generally use the deepest habitats available to them in rivers, but they have also been collected over shallow (2.5 meters), tidally influenced flats and substrates ranging from mud to sand and mixed rubble and cobble (Savoy and Pacileo 2003)

Disclaimer: the best available information on Atlantic sturgeon presence within coastal rivers, estuaries, and bays of the Greater Atlantic Region is presented below; waterbodies highlighted below are ones where we have information specific to Atlantic sturgeon use of the area that would be helpful for action agencies reviewing proposed actions and their potential effects on Atlantic sturgeon; however, they may occur in other watersheds within this range for which we do not currently have specific information; note: individuals from any of the five listed DPSs (Gulf of Maine, New York Bight, Chesapeake Bay, Carolina, and South Atlantic) may occur in any of the areas identified throughout the species' range; a description of Atlantic sturgeon life history stages are included at the end of the table below

Body of Water (State)	Distribution/Range in Watershed	Life Stages Present	Use of the Watershed	References
Cobscook Bay/St. Croix River (ME)	Up to the Milltown Dam at Calais, ME (RKM 16)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Zydlewski (UMaine) pers. comm., September 21, 2015
Penobscot River (ME)	Up to the Milford Dam (RKM 62)	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Spawning - undocumented, but 12 km of suitable spawning habitat is accessible[2] Foraging - wherever suitable forage is present, documented in the lower river (RKM 21-24.5)[1]	[1] Fernandes et al. 2010; [2] Wippelhauser et al. 2017
Damariscotta River (ME)	Up to Damariscotta Lake Dam (RKM 30.3)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present; tag detections indicate that usage of the river is for short periods during coastal migrations[1]	[1] Picard and Zydlewski 2014
Sheepscot River (ME)	Up to the head-of-tide dam (RKM 35)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present; may occur in Montsweag Bay as shortnose sturgeon foraging has been documented there[1]; subadults have been captured in the river[2]	[1] Fried and McCleave 1973; [2] ASSRT 2007
Kennebec River (ME)	Up to the Lockwood Dam (RKM 102), also includes the entirety of the Back and Sasanoa Rivers	eggs, larvae, YOY, juveniles, subadults, and adults	Spawning - May-August[4]; documented via captures of spawning condition adults and larvae (RKM 52.8-76)[1][4]; potentially occurs as far upstream as the Lockwood Dam in the restored spawning habitat (RKM 87-102)[4] Rearing - ELS have been documented near the spawning grounds[4]; juveniles have also been documented in the river[3] Foraging - assumed to occur wherever suitable forage is present (documented from RKM 0-42)[4]; also documented in the Sasanoa and Back Rivers[2][3]	Wippelhauser 2012; [3]

Androscoggin River (ME)	Up to the Brunswick Dam (RKM 8.4)	eggs, larvae, YOY, juveniles, subadults, and adults	Spawning - May-August[2]; capture of a ripe male[2] in the summer below the Brunswick Dam (RKM 7.7-8.4)[1] indicates that spawning is likely occurring Rearing - Juveniles likely present throughout the river year-round Foraging - assumed to occur wherever suitable forage is present	[1] Wippelhauser and Squiers 2015; [2] Wippelhauser et al. 2017
Presumpscot River (ME)	Up to Presumpscot Falls (RKM 3)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present; an Atlantic sturgeon was caught below Presumpscot Falls[1]	[1] Yoder et al. 2009
Scarborough River (ME)	Throughout the entire river	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Wippelhauser et al. 2017
Saco River (ME)	Up to Cataract Dam (RKM 10)	juveniles, subadults, and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Novak et al. 2017
Piscataqua River Watershed including Salmon Falls and Cocheco tributaries (NH)	Up to the confluence with the Salmon Falls and Cocheco Rivers (RKM 15) and including Great Bay; Salmon Falls River – up to the Route 4/South Berswick Dam (RKM 7); Cocheco River – up to the Cocheco Falls Dam (RKM 6)	subadults and adults (eggs, larvae, YOY, and juveniles possible)	Spawning - potentially occurs in the Salmon Falls and Cocheco rivers based on the presence of features necessary to support reproduction and recruitment as well as the capture of an adult female Atlantic sturgeon in spawning condition in 1990[1][3] Rearing - Juveniles potentially present throughout the river year-round Foraging - used seasonally for foraging and resting during spring and fall migrations; tagging data indicates that use by individual sturgeon is limited to days or weeks[2]	[1] ASSRT 2007; [2] Kieffer and Trefry 2017 pers. comm.; [3] NMFS 2017
Merrimack River (MA)	Up to the Essex Dam (RKM 46); often found around the lower islands reach (RKM 3-12) and the mouth of the river	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Spawning - potentially occurs due to the presence of features necessary to support reproduction and recruitment[4] Rearing - data suggests it is used as a nursery area for juveniles[3] Foraging - mouth of the river and the lower islands area (RKM 0-12); subadults use RKM 7-12[1][2]	[1] Kieffer and Kynard 1993; [2] Kynard et al. 2000; [3] ASSRT 2007; [4] NMFS 2017
Charles River (MA)	Up to Charles River Locks (RKM 5.5)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Boston.com February 20, 2012 (http://archive.boston. com/news/science/articles/2012 /02/20/from_depths_of_the_cha rles_an_ancient_species/)
North River (MA)	Up to Dam #1 on the Indian Head Reservoir at Luddam's Ford (RKM 21)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present; an adult was found in the North River, 4 miles from the mouth in 2012[1]	[1] The Patriot Ledger June 1, 2012 (http://www.patriotledger. com/article/20120601/NEWS/30 6019786)
Taunton River (MA)	Up to the convergence of the Town River and Matfield River	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1][2]	[1] Buerkett and Kynard 1993; [2] ASSRT 2007

Narragansett Bay (RI)	Throughout the bay	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] ASSRT 2007
Thames River (CT)	Up to the Yantic Dam in the Yantic River and up to the Greenville Dam in the Shetucket River	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1][2][3]	[1] Whitworth 1996; [2] ASSRT 2007; [3] The Day June 17, 2016 (http://www.theday.com/article/20160617/NWS01/1 60619212)
Connecticut River (CT/MA)	Up to the Holyoke Dam (RKM 140); mainly stay in the summer range of the salt wedge (RKM 0-26)	eggs, larvae, YOY, juveniles, subadults, and adults	Spawning/Rearing - captures of pre- migratory juvenile sturgeon in the river strongly suggests that spawning is occurring in this river[3] Foraging - assumed to occur wherever suitable forage is present[1][2]	[1] Savoy and Shake 1993; [2] Savoy and Pacileo 2003; [3] Savoy et al. 2017
Quinnipiac River (CT)	Up to bridge at Quinnipiac Street and River Road in Wallingford (RKM 27)	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Hartford Courant September 30, 1994 (http://articles.courant.com/1994-09-30/news/9409300111_1_sturge on-fish-story-giant-fish)
Housatonic River (CT)	Up to the Derby Dam (RKM 23.5)	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Spawning - not documented; potentially occurs due to the presence of features necessary to support reproduction and recruitment[3] Foraging - assumed to occur wherever suitable forage is present[1][2]	[1] Whitworth 1996; [2] ASSRT 2007; [3] NMFS 2017
Long Island Sound (NY/CT)	All of Long Island Sound	subadults and adults	Foraging - where suitable forage is present; 85% of Atlantic sturgeon caught in Long Island Sound are over mud/transitional bottoms of 27-37 meters deep in the central basin[1]	[1] Savoy and Pacileo 2003
East River (NY)	full length of the East River	subadults and adults	Migration - subadults and adults have been documented using this waterbody to move between the Hudson River and western Long Island Sound[1][2] Foraging - assumed to occur wherever suitable forage is present, but forage is limited[1][2]	[1] Savoy and Pacileo 2003; [2] Tomichek et al. 2014

Hudson River (NY/NJ)	up to the Troy Dam (approximately RKM 246)	eggs, larvae, YOY, juveniles, subadults, and adults	Spawning - late April through August[1][6], notably around Hyde Park (RKM 129-135) [4] and Catskill (RKM 182)[2], as well as throughout RKM 113-184[4]; evidence strongly suggests that there is also spawning further upstream of RKM 193[6] Rearing - larvae and YOY - RKM 60-148[1] [3]; remain upstream of the salt wedge[2]; juveniles - RKM 63-140[1][3]; utilize the estuary up through Kingston (RKM 148)[1]; Newburgh and Haverstraw Bays (RKM 55-61) are areas of known juvenile concentrations[5] Foraging - assumed to occur wherever suitable forage is present Overwintering - juveniles - RKM 19-74 from fall through winter[1]; some juveniles were recorded in Esopus Meadows (RKM 134)[3]	[1] Dovel and Berggren 1983; [2] Van Eenennaam et al. 1996; [3] Bain 1997; [4] Bain et al. 1998; [5] Sweka et al. 2006; [6] Dewayne Fox, DSU, and Kathy Hattala, NYDEC, personal communication April 2014
Delaware River (NJ/DE/PA)	Up to the fall line near Trenton, NJ (RKM 211)	eggs, larvae, YOY, juveniles, subadults, and adults	of the detections in the Marcus Hook Area (RKM 127-129)[7] Foraging - where suitable forage and	[1] Lazzari et al. 1986; [2] Simpson and Fox 2006; [3] Simpson 2008; [4] Calvo et al. 2010; [5] Breece et al. 2013; [6] Stetzar et al. 2015; [7] Hale et al. 2016
C&D Canal (DE/MD)	Used at least occasionally to move from Chesapeake Bay to the Delaware River	juveniles, subadults, and adults	Foraging - Assumed to occur in areas with suitable forage [1][2]	[1] Simpson 2008; [2] Brundage and O'Herron 2009
Chesapeake Bay (MD/VA)	Throughout the bay typically in spring through fall	juveniles, subadults, and adults	Migration - April-November for adults[5] and subadults[1]; year round for juveniles[2] [3]; these lifestages wander among coastal and estuarine habitats[5] Foraging - typically in areas where suitable forage and appropriate habitat conditions are present; typically tidally influenced flats and mud, sand and mixed cobble substrates[4]	[1] Dovel and Berggren 1983; [2] Secor et al. 2000; [3] Welsh et al. 2002; [4] Stein et al. 2004; [5] Horne and Stence 2016
Susquehanna River (MD)	Up to the Conowingo Dam (RKM 16)	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Foraging - where suitable forage and appropriate habitat conditions are present [1]	[1] ASSRT 2007

6/7/2018

Choptank River (MD)	Range not confirmed, but they have been documented in this river (likely up to the dam at RKM 102)	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Foraging - where suitable forage and appropriate habitat conditions are present [2] Spawning - not documented, but a gravid female was caught at the mouth of the river near Tilghman Island[1]	[1] The Baltimore Sun June 13, 2007 (http://articles. baltimoresun.com/2007-06-13/news/0706130110_1_sturge on-chesapeake-bay-university-of-maryland); [2] ASSRT 2007
Nanticoke River, including Marshyhope Creek and Broad Creek tributaries (MD)	Range not confirmed, but they have been documented in the Nanticoke River up to the mouth of Broad Creek; they have also been found up to Federalsburg, MD in Marshyhope Creek and up to Laurel, DE in Broad Creek[2]	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Spawning - potential for spawning due to the presence of features necessary to support reproduction and recruitment in one of its tributaries (in Marshyhope Creek, spawn ready adults have been captured)[2] Rearing - may be used as a nursery for juveniles[1] Foraging - assumed to occur wherever suitable forage is present[1]	[1] ASSRT 2007; [2] Horne and Stence 2016
Pocomoke River (MD)	To the limit of tidal influence where Whiton Crossing Road crosses the river	subadults and adults	Foraging - assumed to occur wherever suitable forage is present[1]	[1] Horne and Stence 2016
Potomac River (MD/VA)	Up to Little Falls Dam (RKM 189)	juveniles, subadults, and adults (potentially eggs, larvae, and YOY)	Spawning - potentially occurs as three small juveniles[3] and a large mature female[2] have been captured and due to the presence of features necessary to support reproduction and recruitment[1][2] Rearing - three juveniles have been captured[3] Foraging - where suitable forage and appropriate habitat conditions are present [2]	[1] Niklitschek and Secor 2005; [2] ASSRT 2007; [3] Kynard et al. 2007
Rappahannock River (VA)	Range not confirmed, but they have been documented in this river (likely throughout the entire river)	subadults and adults (potentially eggs, larvae, YOY, and juveniles)	Spawning - potentially occurs due to the capture of a male sturgeon in spawning condition in September 2015 and the presence of features necessary to support reproduction and recruitment[1][3] Rearing - may be used as a nursery for juveniles[2] Foraging - where suitable forage and appropriate habitat conditions are present [2]	[1] Bushnoe et al. 2005; [2] ASSRT 2007; [3] NMFS 2016

York River, including Mattaponi and Pamunkey River tributaries (VA)	York River - up to confluence with the Mattaponi and Pamunkey Rivers (RKM 55); Pamunkey River - up to RKM 150; Mattaponi River - up to RKM 120	eggs, larvae, YOY, juveniles, subadults, and adults		[1] Bushnoe et al. 2005; [2] Balazik et al. 2012; [3] Hager et al. 2014; [4] Kahn et al. 2014
James River (VA)	Up to Boshers Dam (RKM 182.3)	eggs, larvae, YOY, juveniles, subadults, and adults	between RKM 105 and the fall line near Richmond, VA at RKM 155)[3]	[1] Florida Museum of Natural History 2004; [2] ASSRT 2007; [3] Balazik et al. 2012; [4] Balazik and Musick 2015
Appomattox River (VA), tributary of the James River	Range not confirmed, but they have been documented in this river (likely up to Battersea Dam, RKM 21)	subadults and adults	Foraging - where suitable forage and appropriate habitat conditions are present [1]	[1] The Hopewell News 2013

Listing rules: 77 FR 5880 and 77 FR 5914, February 6, 2012; Recovery plan: none published

6/7/2018

APPENDIX G

Copy of City of Boston Dewatering Permit Application

19 April 2019 File No. 129204-009

Boston Water and Sewer Commission Engineering Customer Services 900 Harrison Avenue Boston, MA 02119

Attention: Matthew Tuttle

Subject: Request for Approval of Temporary Construction Dewatering

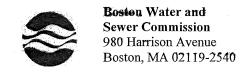
125-131 Sumner Street East Boston, Massachusetts RTN 3-33981 and 3-34165

Dear Mr. Tuttle:

On behalf of our client, WinnDevelopment, this letter submits the Dewatering Discharge Permit Application in support of the building construction activities at the subject site located at the 125-131 Sumner Street property (hereafter referred to as the "Site") in East Boston, Massachusetts (Figure 1).

Dewatering is necessary to enable construction excavations in-the-dry and is anticipated to begin in May 2019 and continue for up to 18 months. Prior to discharge, collected water will be routed through a sedimentation tank and 5-micron bag filter at minimum to remove suspended solids and un-dissolved chemical constituents. The proposed dewatering discharge route and BWSC outfall locations are shown on Figure 2.

A submittal was provided to USEPA for discharge of the dewatering effluent under the Remediation General Permit (RGP). A copy of the submitted RGP application is attached. If you have any questions, please feel free to contact the undersigned at 617-886-7400.

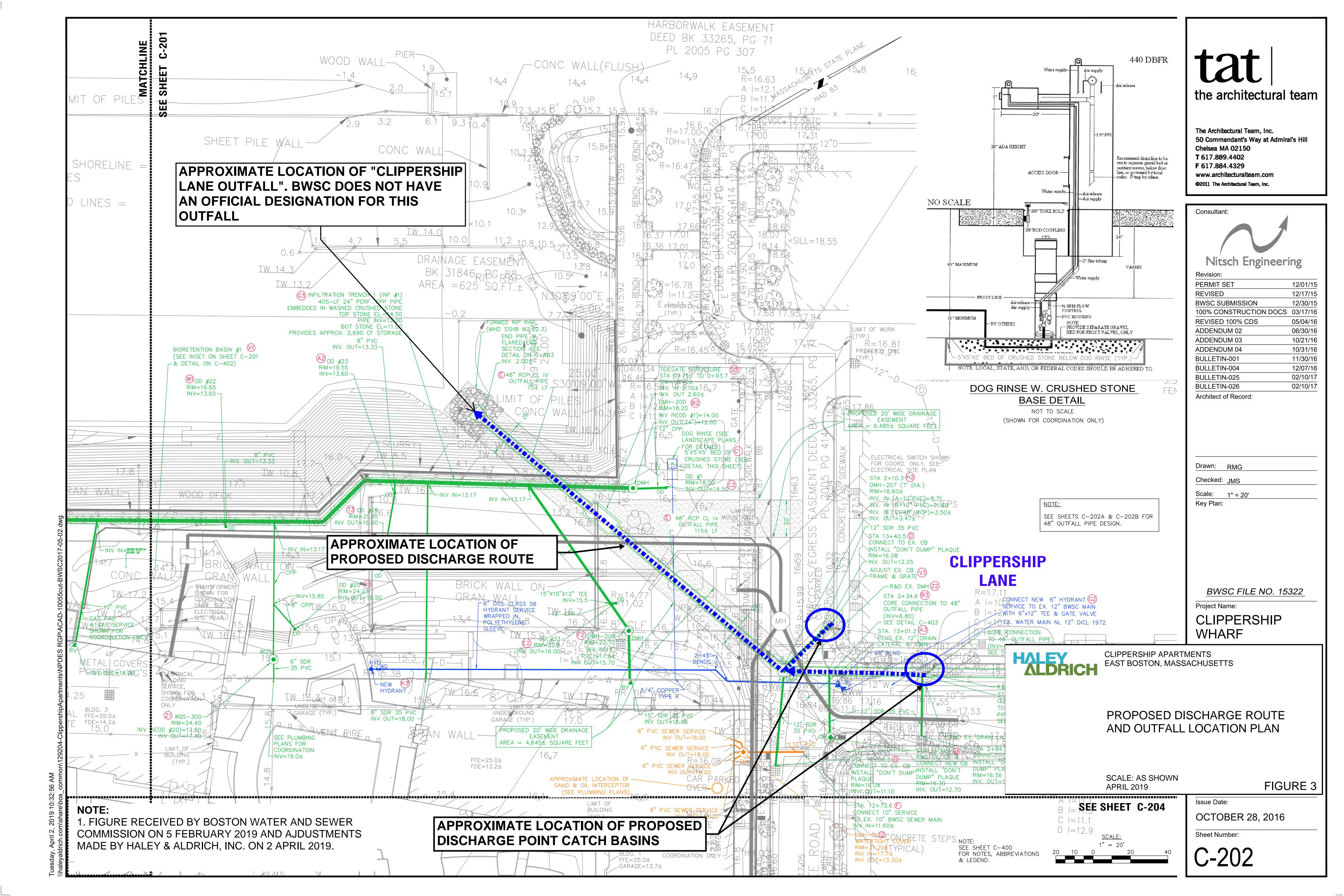

Sincerely yours, HALEY & ALDRICH, INC.

Michael J Cronan, LSP (MA)

Senior Project Manager | Associate

Attachments:

Dewatering Discharge Permit Application
Figure 1 – Project Locus
Figure 2 – Proposed Discharge Route and Outfall Location Plan
Copy of NPDES RGP Permit Application


Signature of Authorized Representative for Property Owner:

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE: Company Name: Cranshaw Construction Address: 2310 Washington Street, Newton Lower Falls, MA 02462 Phone Number: 617-559-5216 Fax number: Travis Smith ____ Title: _____ Contact person name: Cell number: 617-559-5216 Email address: tsmith@cranshaw.com Permit Request (check one): ☑ New Application ☐ Permit Extension ☐ Other (Specify): Owner's Information (if different from above): Owner of property being dewatered: Owner's mailing address: Phone number: **Location of Discharge & Proposed Treatment System(s):** Street number and name: 125-131 Summer Street Neighborhood East Boston Discharge is to a: ☐ Sanitary Sewer ☐ Combined Sewer ☒ Storm Drain ☐ Other (specify): Sedimentation Tank, Bag Filter, and any other components as necessary Describe Proposed Pre-Treatment System(s): (refer to attached RGP Application) BWSC Outfall No. "Clippership Lane Outfall" Receiving Waters Boston Inner Harbor Refer to attached email Temporary Discharges (Provide Anticipated Dates of Discharge): From May 2019 To November 2020 □ Tank Řemoval/Installation ☐ Groundwater Remediation ▼ Foundation Excavation ☐ Utility/Manhole Pumping □ Test Pipe ✗ Trench Excavation ▼ Accumulated Surface Water □ Hydrogeologic Testing □ Other Permanent Discharges ☐ Foundation Drainage □ Crawl Space/Footing Drain ☐ Accumulated Surface Water □ Non-contact/Uncontaminated Cooling □ Non-contact/Uncontaminated Process □ Other; Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter 1. number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. 2. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission **Engineering Customer Services** 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716

ums Cot

Howard, Lindsey

From: Howard, Lindsey

Sent: Wednesday, April 3, 2019 11:20 AM

To: Howard, Lindsey

Subject: FW: BWSC Map Request - Clippership Apts **Attachments:** ACAD-10055cut-BWSC2017-05-02.dwg

From: Tuttle Matthew P. < tuttlemp@BWSC.ORG>
Sent: Tuesday, February 05, 2019 2:57 PM

To: Butwill, Samantha < <u>SButwill@haleyaldrich.com</u>> **Subject:** RE: BWSC Map Request - Clippership Apts

Samantha,

All those drain inlets make their way to the new outfall just south of the map you sent. We don't have an as built or even a designation for that outfall yet but the work is completed. The CAD of the proposed work is attached.

From: Butwill, Samantha < SButwill@haleyaldrich.com>

Sent: Monday, February 4, 2019 10:00 AM

To: Tuttle Matthew P. < tuttlemp@BWSC.ORG >

Subject: RE: BWSC Map Request - Clippership Apts

Good morning Matt,

Any update on the existing drainage for this project?

Thanks, Samantha

Samantha Butwill, E.I.T.

Engineer

Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Boston, MA 02129

T: 617.886.7332 C: 860.459.2676

From: Tuttle Matthew P. <<u>tuttlemp@BWSC.ORG</u>>

Sent: Thursday, January 31, 2019 3:19 PM

To: Butwill, Samantha < <u>SButwill@haleyaldrich.com</u>> **Subject:** RE: BWSC Map Request - Clippership Apts

Samantha.

A lot of the drainage out there is changing or has changed recently. Our base maps won't be updated to show what is existing. I believe the only catch basin going to an outfall is the southernmost one highlighted on the map you sent. I will check with the engineer who reviewed the previous plans in that area to see what the updated situation is and let you know.

Thanks, Matt

From: Butwill, Samantha < SButwill@haleyaldrich.com>

Sent: Tuesday, January 29, 2019 8:55 AM

To: Tuttle Matthew P. < tuttlemp@BWSC.ORG >
Subject: BWSC Map Request - Clippership Apts

Hi Matt -

I am working on a project in East Boston and preparing a construction dewatering permit. Would you mind helping find BWSC maps for this area and potential discharge routes?

Site is located near the Maverick Transit Stop at 125-131 Sumner Street, East Boston. I've attached a figure with potential catch basins for discharge.

Let me know if you have questions. Thank you for your help

Thanks, Sam

Samantha Butwill, E.I.T.

Engineer

Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Boston, MA 02129 T: 617.886.7332

C: 860.459.2676