

Goldman Environmental Consultants, Inc.

60 Brooks Drive Braintree, MA 02184 781-356-9140 Fax 781-356-9147 www.goldmanenvironmental.com

August 19, 2019

United States Environmental Protection Agency – Region 1 5 Post Office Square, Suite 100 - Mail Code OEP06-01 Boston, MA 02100-3912

Subject: Submittal of Notice of Intent (NOI)

Remedial General Permit

Groundwater Dewatering and Treatment Massachusetts Avenue and Sidney Street

Cambridge, Massachusetts

To whom it may concern:

The purpose of this letter is to provide a summary and background for the attached NOI and attachments being submitted with this package for the discharge of treated groundwater into the City of Cambridge stormwater system. The project is part of the City of Cambridge PL6 Stormwater Tank Upgrade project in Cambridge, Massachusetts. The groundwater originates beneath Massachusetts Avenue at the intersection with Sidney Street and is the result of a release of gasoline from the vicinity of an abandoned gasoline station. The groundwater contamination was discovered in July 2019 during the excavation under Massachusetts Avenue. The excavation is for a tunnel that will extend from the site of a storm-water storage tank being installed beneath the PL 6 parking lot to the existing sewer system.

The Site is currently used as public roadways, designated Massachusetts Avenue and Sidney Street, within the Central Square section of Cambridge. This portion of Massachusetts Avenue is owned by the City of Cambridge. Refer to Attachment 1 Site locus for the location of the work. Also refer to Attachment 2 for the location of the proposed discharge catch basin, the conveyance stormwater within Massachusetts Avenue and the location of the discharge into the Charles River northeast of the Massachusetts Avenue Bridge.

The project is an MCP site being managed by a Licensed Site Professional, Richard Quateman, for the city. The city has been notified of this discharge and to the stormwater system and has approved it per the attached email in Attachment 3 from Richard Quateman LSP, their on-site representative. Skanska is the General Contractor performing the work.

The work being conducted within Massachusetts Avenue is part of the PL 6 Parking Lot stormwater system improvements being conducted by the City of Cambridge. The PL 6 Parking Lot is located within a disposal site identified as RTN 3-24543. The location of the shaft within Massachusetts Avenue is outside the RTN 3-24543 disposal site boundaries. The discovery of this new release will be performed under a new RTN and a revision to the Construction RAM plan which is currently being prepared by the LSP. The Construction RAM will serve to function as the BMPP and meets the objectives of the general permit.

Construction has stopped for the excavation of the tunnel to allow for this permit to be prepared and submitted. The Proposed treatment plan will collect groundwater form the excavation site and treat it through a fractionation tank, with sand, cloth and granulated carbon filters before discharge to the catch basin located on Massachusetts Avenue. See Figures 3 and 4 & 5 for the design detail and plan of the treatment system.

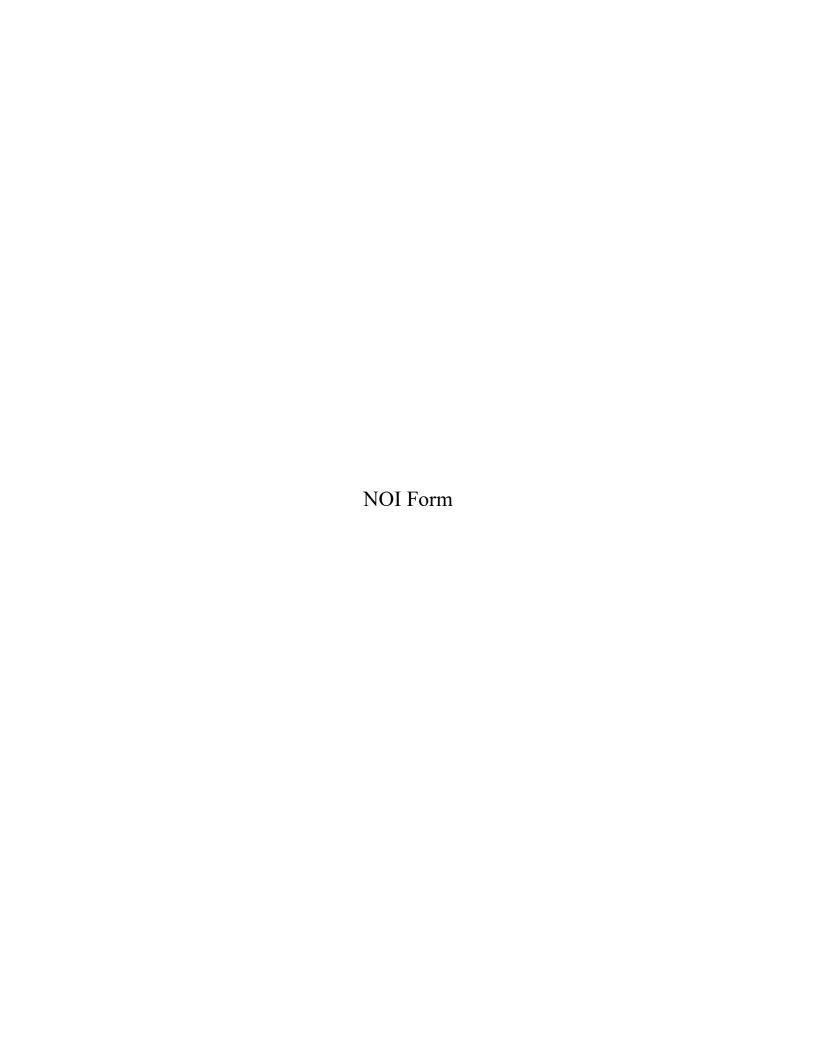
Notice of Intent Remedial General Permit Cambridge, Massachusetts GEC Project No. 1883-9060 Page 2 of 2

Notice of Intent Summary

The NOI includes a literature search of the Endangered Species Act (ESA) and the National Historic Preservation Act (NHPA) as provided below:

- Attachment 1 & 2 Site locus and stormwater system location to be used for the treated discharge.
- Attachment 3 An email from Richard Quateman, LSP and City Site Representative authorizing the discharge on behalf of the City.
- Attachment 4 Streamstats calculation sheet indicating the 7Q10 as 29.2 cfs & dilution factor of 263.1 based on the design treatment flow of 50 GPM. Email from MADEP indicating agreement with calculation.
- Attachment 5 Groundwater Treatment & Technology (GWTT) wastewater treatment design specification, plan and site location equipment layout.
- Attachment 6 USFWS Endangered Species Correspondence indicating no impact.
- Attachment 7 Central Square Historic District map showing the work is on the edge of the boundary. All work is subsurface and within the roadway layout and will not impact the District.
- Attachment 8 Con-Test Analytical data of the influent groundwater and the Charles River Basin surface water quality.

Please feel free to contact me at 781-356-9140 x114 if you have any questions or require further information.


Sincerely yours,

Goldman Environmental Consultants, Inc.

Brian Donahoe, Vice President

Environmental Engineering and Services

Attachments:

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	☐ MA Chapter 21e; list RTN(s): ☐ CERCLA						
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	D NII Consultante Managarat Daniel		☐ UIC Program				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
-		ection 404					

Classification of receiving water(s):

В.	Receiving water information:
1. N	Name of receiving water(s):

Receiving water is (check any that apply): □ Outstan	ding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver					
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No						
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP.								
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.							
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No					
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	nstruction in Appendix VIII?					
(check one): □ Yes □ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								
☐ Contaminated groundwater	Contaminated groundwater Contaminated surface water The receiving water Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other						
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:					
□ Yes □ No	□ Yes □ No							

Waterbody identification of receiving water(s):

2. Source water contaminants:						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No					
D. Discharge information						
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	v discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system						
If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): \Box Ye	es 🗆 No					
Has the operator has received permission from the owner to use such system for discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ☐ No					
Provide the expected start and end dates of discharge(s) (month/year):						
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
□ I – Petroleum-Related Site Remediation	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 					
☐ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)					
 □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	☐ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ☐ A. Inorganics ☐ B. Non-Halogenated Volatile Organic Compounds ☐ C. Halogenated Volatile Organic Compounds ☐ D. Non-Halogenated Semi-Volatile Organic Compounds ☐ D. Halogenated Semi-Volatile Organic Compounds ☐ E. Halogenated Semi-Volatile Organic Compounds ☐ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

Parameter	Known	or or	or # of method ieved samples (#)		Infl	uent	Effluent Limitations		
	or believed			Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report μg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 μg/L	

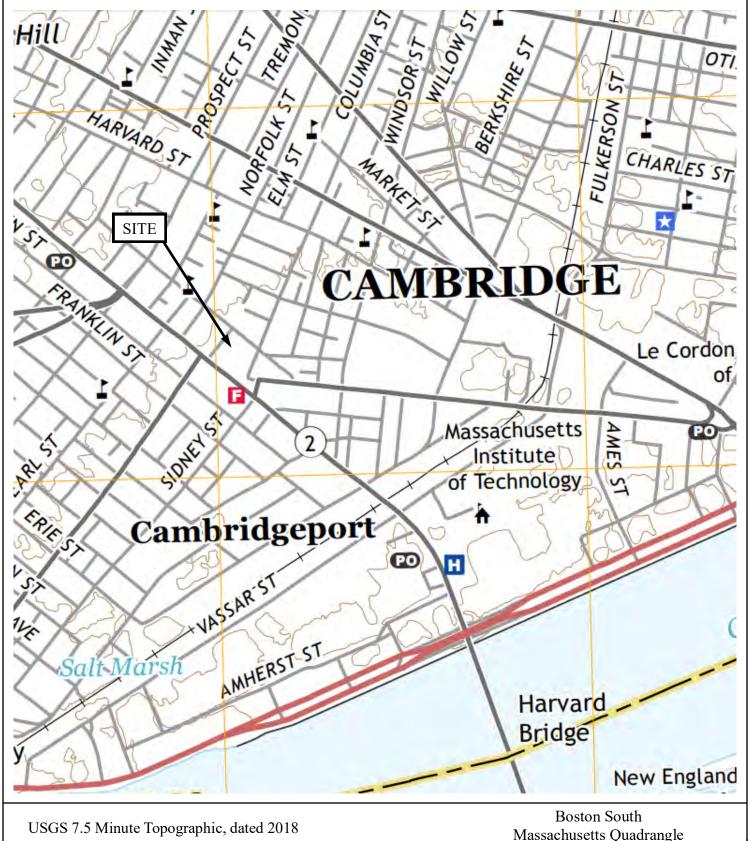
Parameter	Known	Known	_	_		Influent		Effluent Lin	Effluent Limitations	
	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
C. Halogenated VOCs										
Carbon Tetrachloride								4.4 μg/L		
1,2 Dichlorobenzene								600 μg/L		
1,3 Dichlorobenzene								320 μg/L		
1,4 Dichlorobenzene								5.0 μg/L		
Total dichlorobenzene								763 μg/L in NH		
1,1 Dichloroethane								70 μg/L		
1,2 Dichloroethane								5.0 μg/L		
1,1 Dichloroethylene								3.2 μg/L		
Ethylene Dibromide								0.05 μg/L		
Methylene Chloride								4.6 μg/L		
1,1,1 Trichloroethane								200 μg/L		
1,1,2 Trichloroethane								5.0 μg/L		
Trichloroethylene								5.0 μg/L		
Tetrachloroethylene								5.0 μg/L		
cis-1,2 Dichloroethylene								70 μg/L		
Vinyl Chloride								2.0 μg/L		
D. Non-Halogenated SVOC	Cs									
Total Phthalates								190 μg/L		
Diethylhexyl phthalate								101 μg/L		
Total Group I PAHs								1.0 μg/L		
Benzo(a)anthracene										
Benzo(a)pyrene										
Benzo(b)fluoranthene								7		
Benzo(k)fluoranthene								As Total PAHs		
Chrysene								7		
Dibenzo(a,h)anthracene]		
Indeno(1,2,3-cd)pyrene								7		

	Known	Known	Known	_		Influent		Effluent Limitations		
Parameter	or or # of	# of samples	mathad	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL		
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 μg/L		
Pentachlorophenol								1.0 μg/L		
F. Fuels Parameters Total Petroleum						1 1		1		
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	ts present);	if so, specify:				
-										
_										

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	

F. Chemical and additive information


1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(s) of elicinical of additive that will be applied to efficient prior to discharge of that may otherwise be present in the discharge(s). (elicek all that appry)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): □ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): □ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

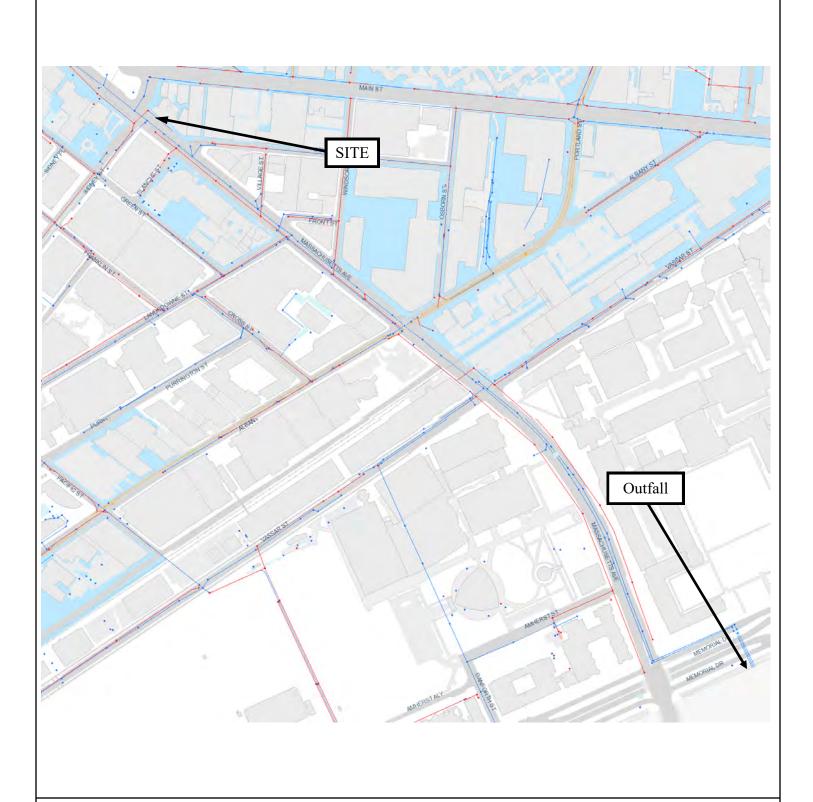
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
BMPP certification statement:	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA □
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit$	Check one: Yes □ No □ NA □
☐ Other; if so, specify:	
Signature: Dans Dans Dans Dans Dans Dans Dans Dans	te:
Print Name and Title:	

Attachment 1
Site Locus

Massachusetts Quadrangle

Goldman Environmental Consultants, Inc. 60 Brooks Drive Braintree, MA 02184 (781)356-9140 Fax: (781)356-9147 www.goldmanenvironmental.com

SITE LOCUS


30 Bishop Allen Drive Cambridge, MA

GEC Project #: 1883-8010

Figure 1

Attachment 2
Stormwater System
Outfall Location

City of Cambridge GIS

Goldman Environmental Consultants, Inc. 60 Brooks Drive
Braintree, M A 02184
(781)356-9140 Fax: (781)356-9147
www.goldmanenvironmental.com

Outfall Location

Sidney St @ Mass Ave Cambridge, MA

GEC Project #: 1883-9060

Figure 2

Attachment 3 Email from City of Cambridge Site Representative

From: Richard Quateman
To: Brian Donahoe

Cc: Friedman, Jerry; Katherine Goyette; Edmund Mitiguy

Subject: PL-6 Discharge of treated groundwater to Cambridge drainage system

Date: Wednesday, August 14, 2019 10:50:15 AM

Attachments: <u>image003.png</u>

Brian, I am writing as the Licensed Site Professional (LSP) for City of Cambridge on the PL-6 Stormwater improvements project.

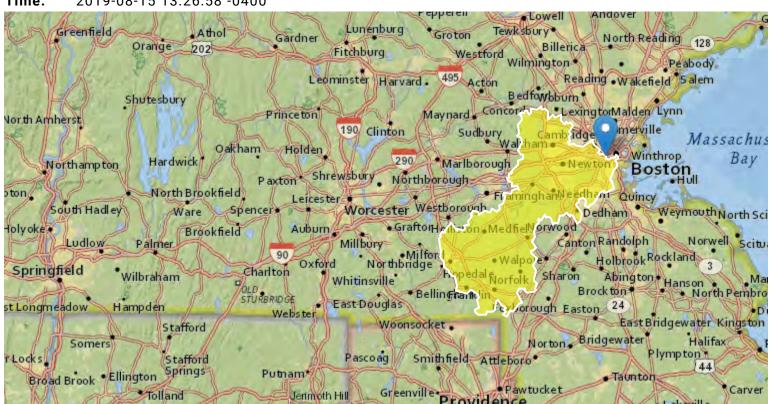
On behalf of the City, I am providing notification that discharge of treated groundwater into the city-owned stormwater system is acceptable provided all NPDES Remediation General Permit discharge standards are met.

Richard K. Quateman, LSP, CHMM Senior Principal Professional

One Beacon Street, Suite 8100 Boston, MA 02108 o| 617.497.7800 d| 617.498.4735

This email may contain confidential information. If you have received this email—including any attachments—in error, please notify the sender promptly and delete the email and any attachments from all of your systems.

Attachment 4 Streamstats Calculation And Dilution Factor Calculations


StreamStats Report

Region ID: MA

Workspace ID: MA20190815172905056000

Clicked Point (Latitude, Longitude): 42.35477, -71.09141

Time: 2019-08-15 13:26:58 -0400

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	307	square miles			
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.341	percent			
DRFTPERSTR	Area of stratified drift per unit of stream length	0.25	square mile per mile			
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless			

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Code	Parameter Name	Value Units	Min Limit Max Limit

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	307	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.341	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.25	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	57.3	ft^3/s
7 Day 10 Year Low Flow	29.2	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
18.87	$Q_R = Enter upstream flow in MGD$
0.072	$Q_P = Enter discharge flow in MGD$
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
6.5	pH in Standard Units
25	Temperature in °C
0.056	Ammonia in mg /L
55	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg /L
0	Arsenic in μg /L
0	Cadmium in μg/L
1.6	Chromium III in µg/L
0	Chromium VI in µg/L
5.6	Copper in µg/L
1200	Iron in μg /L
8.7	Lead in μg/L
0	Mercury in μg /L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L

Enter influent concentrations in the units specified

	_
48	TRC in µg/L
0.07	Ammonia in mg/L
1.1	Antimony in μg /L
1.4	Arsenic in μg/L
0	Cadmium in μg/L
1.6	Chromium III in μg/L
1.6	Chromium VI in µg/L
4.4	Copper in µg/L
530	Iron in μg /L
7.7	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in μg/L
240	Phenol in μg/L
0	Carbon Tetrachloride in μg/L
0	Tetrachloroethylene in μg/L
	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Dilution Factor 263.1

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	2894	μg/L		μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	168373	μg/L		
Arsenic	104	μg/L	2631	μg/L		
Cadmium	10.2	μg/L	45.7771	μg/L		
Chromium III	323	μg/L	13495.2	μg/L		
Chromium VI	323	μg/L	3008.2	μg/L		
Copper	242	μg/L	7.0	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L μg/L	1.49	μg/L μg/L		
Mercury	0.739	μg/L μg/L	238.32	μg/L μg/L		
Nickel	1450	μg/L μg/L	8287.8	μg/L μg/L		
Selenium	235.8		1315.4			
Silver		μg/L	357.1	μg/L		
	35.1	μg/L		μg/L		
Zinc	420	μg/L	19021.9	μg/L		_
Cyanide	178	mg/L	1368.0	$\mu g/L$		μg/L
B. Non-Halogenated VOCs Total BTEX	100	ua/I				
Benzene	5.0	μg/L μg/L				
1,4 Dioxane	200	μg/L μg/L				
Acetone	7970	μg/L μg/L				
Phenol	1,080	μg/L μg/L	78925	μg/L		
C. Halogenated VOCs	1,000	μ _g , L	70323	μ _β L		
Carbon Tetrachloride	4.4	μg/L	420.9	μg/L		
1,2 Dichlorobenzene	600	μg/L				
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	$\mu g/L$				
1,1 Dichloroethylene	3.2	$\mu g/L$				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μg/L				
Trichloroethylene	5.0	μg/L		-		
Tetrachloroethylene	5.0	μg/L	868.2	μg/L		
cis-1,2 Dichloroethylene	70 2.0	μg/L				
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	$\mu g/L$		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	578.8	$\mu g/L$		

Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.9997	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.9997	μg/L		μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.9997	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.9997	μg/L		μg/L
Chrysene	1.0	μg/L	0.9997	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.9997	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.9997	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L μg/L			0.5	μg/L
F. Fuels Parameters	1.0	μg/L				
	5 0	/T				
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	5262	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

From: Ruan, Xiaodan (DEP)
To: Brian Donahoe

Cc: <u>Vakalopoulos, Catherine (DEP)</u>
Subject: RE: RGP 7Q10 and dilution calculation/
Date: Friday, August 16, 2019 3:02:29 PM

Hi Brian,

I can confirm that the 7Q10 value of 29.2 cfs and the dilution calculation of 263.1 for the proposed discharge from the location near the intersection of Massachusetts Ave and Sidney Street in Cambridge are correct.

To assist you with filling out the NOI for coverage under the RGP, this segment of the Charles River is identified as MA72-38, classified as Class B, and is not listed as an Outstanding Resource Water. There are two approved TMDLs for pathogens and nutrients. To see the causes of impairments, go to: https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf and search for "MA72-38".

Since this is a *current* MCP site, you do not need to apply with MassDEP.

Please let me know if you have any question.

Thanks, Xiaodan

From: Vakalopoulos, Catherine (DEP) **Sent:** Friday, August 16, 2019 9:18 AM

To: Ruan, Xiaodan (DEP)

Cc: bdonahoe@goldmanenvironmental.com **Subject:** FW: RGP 7Q10 and dilution calculation/

Hi Xiaodan,

Please let me know if you have time to look at this today. I don't know why it went to my junk box – that's why I just saw it.

Thanks, Cathy

From: Brian Donahoe [mailto:bdonahoe@goldmanenvironmental.com]

Sent: Wednesday, August 14, 2019 2:02 PM

To: Vakalopoulos, Catherine (DEP)

Cc: Karen Horne

Subject: RGP 7Q10 and dilution calculation/

Hi Catherine, we are preparing an application under the EPA/Massachusetts Remediation General Permit for a project being constructed near the intersection of Massachusetts Ave and Sidney Street in Cambridge. A locus and a stormwater drainage plan obtained form the Cambridge DPW is attached for reference. The project is being supervised by an LSP working for the city and is regulated as an MCP site.

The Streamstats 7Q10 value was determined to be 29.2 cfs and the dilution calculation was 263.1 based on a treatment design flow of 50 gpm. Please confirm these are approved so we can complete the application. Thanks

Brian Donahoe, Vice President Environmental Services & Engineering Goldman Environmental Consultants, Inc. 60 Brooks Drive Braintree, MA 02184

Mobile: 617-947-0957

Office: 781-356-9140 x 114

Fax: 781-356-9147

Attachment 5

Groundwater Treatment Technology (GWTT)

Wastewater Treatment Design Specifications, Plan and Site Location Equipment Layout

39 RIVER STREET MILLBURY, MA 01527 TEL: (800) 962-4150 (508) 755-7075 FAX: (508)755-7206

August 7, 2019

Ms. Kelly McGonagle Skanska USA 1365 Main Street Waltham, MA 02451

Via email: ed.breed@skanska.com

Reference: Proposal – Temporary Water Treatment System

City of Cambridge PL6 Stormwater Storage Tank

GWTT Ref # 8942 Rev.1

Dear Ms. McGonagle:

Thank you for your inquiry regarding rental treatment equipment supplied by Ground/Water Treatment & Technology, LLC (GWTT). The following is our **revised** proposal for a rental water treatment system designed to treat a maximum of 50 gpm of water generated from construction dewatering operations.

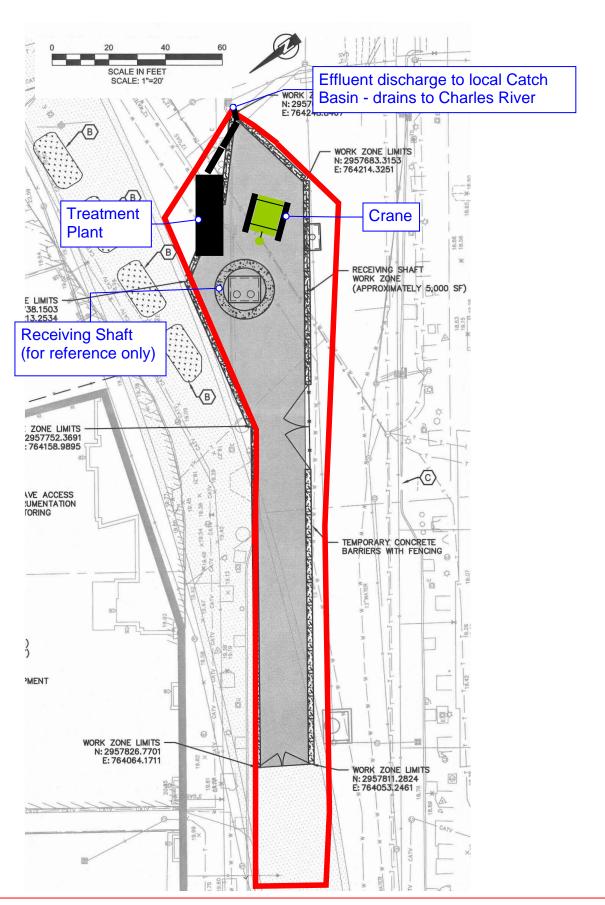
Our proposed system is based exclusively on your recent conversations with Derek Lonczak of GWTT and his site visit from 8/2/19.

It is our understanding that the raw water is expected to contain low levels of Total Suspended Solids (TSS), Petroleum Hydrocarbons and Volatile Organic Compounds (VOCs) which must be reduced prior to discharge via a valid discharge permit obtained by others. We have assumed that any metals present in the raw water stream are associated with the TSS and can be removed by gravity settling followed by mechanical filtration via bag filters. If these unit processes are not sufficient to reduce the metals to below their discharge levels, the treatment system can be enhanced to include coagulation/flocculation/clarification and/or ion exchange units at an additional cost.

Our proposed temporary treatment system consists of an influent settling tank, electric submersible pump, bag filters, liquid phase carbon adsorbers and a totalizing flow meter as described below.

The pumps provided in the proposed treatment system will turn on and off automatically based on pump control floats installed in the influent settling tank. However, the system is not designed to run unattended for long periods of time as an Operator will be required to periodically change out the bag filters in the bag filter housings. If the bag filters are not properly operated and maintained, the differential pressure across the filter housings can rise to the point that the transfer pump cannot pump water from the influent settling tank faster than water is introduced into the influent settling tank. The water level in the influent settling tank will rise, activating a high level alarm float which will activate a local high level alarm light on the pump skid. The default high level alarm does not shut off the dewatering pumps although this can be provided as an adder upon review of the dewatering pump

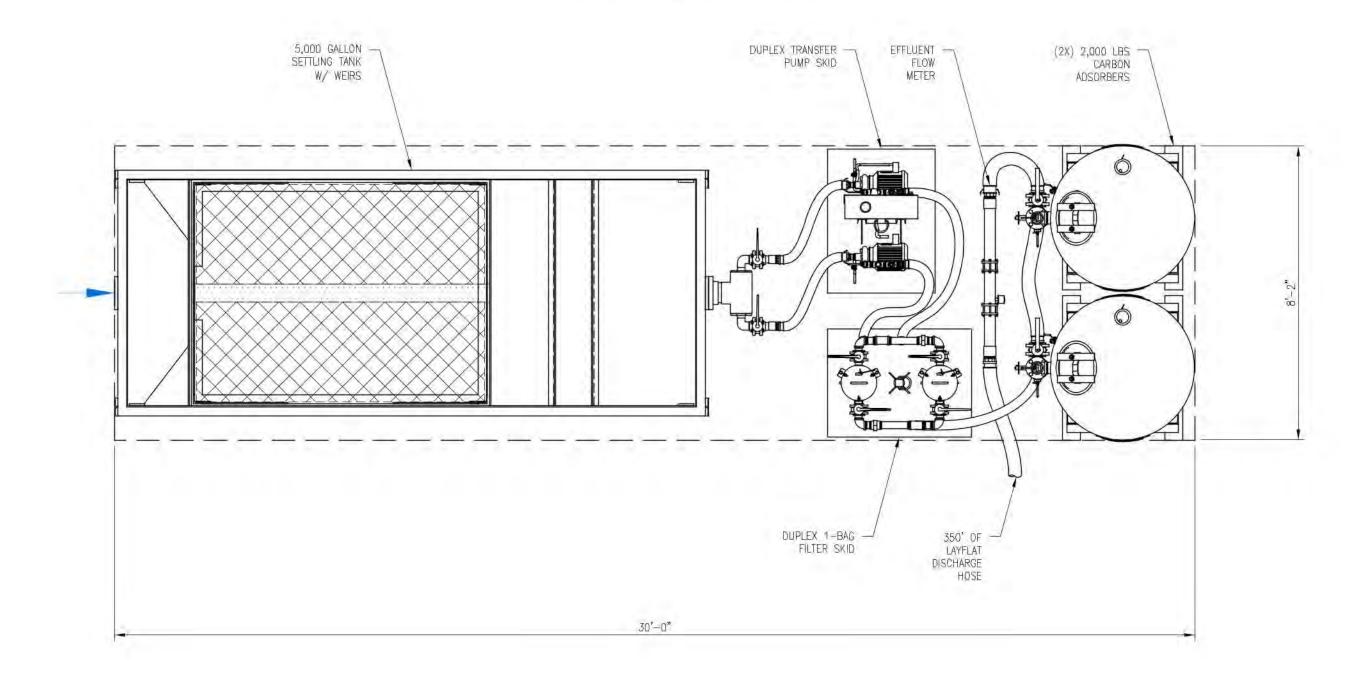
New Jersey • Massachusetts • Appalachia • Delaware • Florida


control panel. If the bag filters are not changed, the water level in the influent settling tank will continue to rise and will eventually overflow.

Please note if sumps will be utilized in the dewatering process, it will be in your best interests to install properly constructed sumps (sumps by others) to limit the amount of TSS entering the treatment system. Limiting the amount of TSS entering the treatment system will not only reduce the amount of sediment needed to be removed and disposed from the influent settling tank at the conclusion of the rental period, but will also help to meet TSS and metals discharge limits, and also reduce the frequency of bag filter changeouts and the need for carbon media backwashes.

In preparing this proposal, we have assumed that dewatering pumps and associated hoses, a source of 115/230 volt, 1 phase electrical power, lifting equipment during mobilization/demobilization, labor to assist during mobilization/demobilization, union coverage of any kind, cleaning of the influent settling tank at the conclusion of the rental period, a source of clean water to hydrate the carbon adsorbers at least 24 hours prior to startup, removal/analysis/disposal of carbon media will be provided by others.

Proposed Temporary Treatment System - 50 gpm


- One (1) open top, 5,000-gallon influent settling tank (clarifier without media) with over/under weirs.
- 2. One (1) solo electric submersible pump skid containing one (1) full capacity pump capable of 50 gpm @ 50' TDH, supplied with 1.5 Hp, 115/230V, 1 phase motors, an automatic float control panel, an integrated control panel, and 25' of feed wire.
- 3. One (1) duplex 1-bag filter housing skid consisting of two (2) full capacity bag filter housings one (1) operating, one (1) installed standby complete with isolation valves, pressure gauges and sample taps. The use of a duplex bag filter skid will enable you to change the bags in one (1) of the filter housings without having to shut down the dewatering or transfer pumps.
- Two (2) non-Code carbon adsorbers plumbed in lead-lag series operation, each pre-loaded with 2,000 lbs of reactivated carbon media. The vessels will be provided complete with isolation valves, pressure gauges and sample taps.
- 5. One (1) 2" effluent flow meter with totalizer.
- 6. Piping and/or flexible hose from the influent settling tank to the flow meter
- 7. Seven (7) 50' lengths of 2" layflat hose (350' total)

Skanska Civil Receiving Shaft Work Zone Layout 8/8/19

TEMPORARY TREATMENT SYSTEM

OVERALL PLAN VIEW

- 1. DESIGN FLOW RATE: 50 GPM
- SYSTEM FOOTPRINT APPROXIMATELY 8'x30'
 NOT ALL VALVES, CONNECTIONS, ETC. SHOWN FOR CLARITY
- 4. GENERATOR BY OTHERS

Figure 4	4

ID - C:\Cod Files\QUO	PTES\Q-8000s\Q-8044 Cambridge\Working CAD\QTE-1480	44-LYT01(A).dwg - Fri, 2 Aug 2019 - 13:18	THIS DRAW	THIS DRAWING IS THE PROPERTY OF GROUND/MATER TREATMENT AND TECHNOLOGY, LLC. IT IS NOT TO BE USED FOR ANY PURPOSES DETRIMENTAL TO THE INTEREST OF THIS COMPANY AND IS SUBJECT TO RETURN UPON REDUEST, SCALE.				C27 MACHINE HORE BOAD, WHAREON NI 07805
				CUSTOMER:	SKANSKA	EQUIPMENT LAYOUT	DRAWN BY: RS DATE: DB/OZ/19 APPROVED	PHONE: 973-983-0901 • FAX: 973-983-0903 www.gwttllc.com
A 08/02/19 RS REV. DATE BY	PRELIMINARY DESIGN FOR REVIEW REMARKS	REV. DATE BY	REMARKS	SITE:	CAMRIDGE, MA	50 GPM TEMPORARY TREATMENT SYSTEM	BY: EM DATE: 08/02/19	DWG SIZE: B SHEET: 1 OF 1 DRAWING NO.: QTE-148044-LYT01 A

Attachment 6 USFW Endangered Species Correspondence

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 15, 2019

Consultation Code: 05E1NE00-2019-SLI-2598

Event Code: 05E1NE00-2019-E-06722

Project Name: City of Cambridge PL6 Stormwater Storage Tank RGP Dewatering Project

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-2598

Event Code: 05E1NE00-2019-E-06722

Project Name: City of Cambridge PL6 Stormwater Storage Tank RGP Dewatering

Project

Project Type: LAND - DRAINAGE

Project Description: Treatment of groundwater from dewatering proejct and discharge through

municipal stormwater system into the Charles River under EPA NPDES

Remediation General Permit.

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.363334226885875N71.09996396150879W

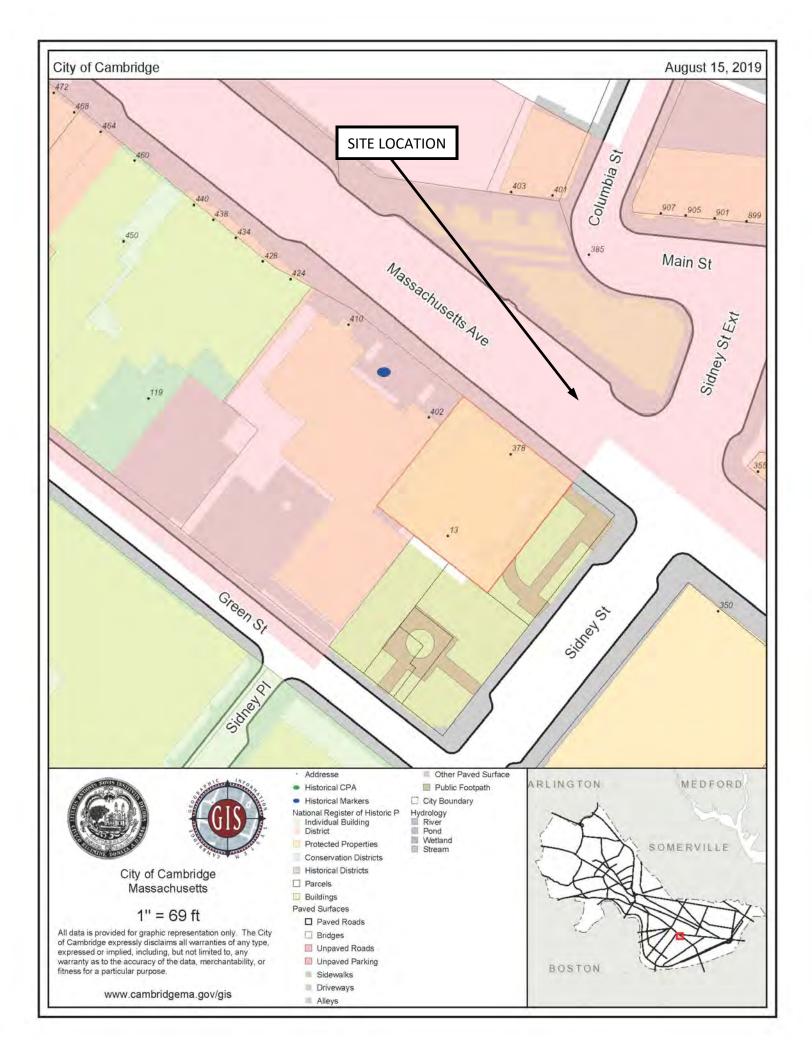
Counties: Middlesex, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.


See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Attachment 7 Central Square Historic District Map

Attachment 8
Analytical Data

August 12, 2019

Andrew Foley Goldman Environmental 60 Brooks Drive Braintree, MA 02184

Project Location: RGP Client Job Number:

Project Number: 1883-8010

Laboratory Work Order Number: 19H0486

M M Corthy

Enclosed are results of analyses for samples received by the laboratory on August 8, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Raymond J. McCarthy Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	6
19H0486-01	6
19H0486-02	14
19H0486-03	23
19H0486-04	24
Sample Preparation Information	25
QC Data	28
Volatile Organic Compounds by GC/MS	28
B237607	28
Semivolatile Organic Compounds by GC/MS	30
B237654	30
Semivolatile Organic Compounds by - GC/MS	32
B237602	32
Polychlorinated Biphenyls By GC/ECD	33
B237498	33
Metals Analyses (Total)	34
B237611	34
B237612	34
B237636	35
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	36
B237609	36
B237631	36
B237632	36

Table of Contents (continued)

B237721	36
B237729	37
B237754	37
B237765	37
Drinking Water Organics EPA 504.1	38
B237628	38
Flag/Qualifier Summary	39
Certifications	40
Chain of Custody/Sample Receipt	43

Goldman Environmental 60 Brooks Drive Braintree, MA 02184 ATTN: Andrew Foley

PURCHASE ORDER NUMBER:

REPORT DATE: 8/12/2019

PROJECT NUMBER: 1883-8010

ANALYTICAL SUMMARY

19H0486 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: RGP

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Mass Ave Trench	19H0486-01	Ground Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 420.1	
				EPA 504.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2340C	
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
Charles River	19H0486-02	Surface Water		608.3	
				624.1	
				625.1	
				EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 420.1	
				EPA 504.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				SM2520B	MA M-CT007/CT PH-0618/NY11301
				Tri Chrome Calc.	
Mass Ave Trench TB	19H0486-03	Trip Blank Water		624.1	
Charles River TB	19H0486-04	Trip Blank Water		624.1	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

624.1

Qualifications:

PR-08

pH of sample (pH 5) is outside of method specified preservation criteria.

Analyte & Samples(s) Qualified:

19H0486-03[Mass Ave Trench TB], 19H0486-04[Charles River TB]

625.1

Qualifications:

RL-12

Elevated reporting limit due to matrix interference.

Analyte & Samples(s) Qualified:

19H0486-02[Charles River]

Z-01

Compound calibrated using non-linear calibration

Analyte & Samples(s) Qualified:

Pentachlorophenol (SIM)

 $19H0486-01[Mass\ Ave\ Trench],\ 19H0486-02[Charles\ River],\ B237654-BLK1,\ B237654-BS1,\ B237654-BSD1$

SM21-22 4500 CL G

Qualifications:

Z-01a

SM 4500 test had calibration points outside of acceptable back-calculated recoveries. Reanalysis yielded similar results.

Analyte & Samples(s) Qualified:

Chlorine, Residual

19H0486-01[Mass Ave Trench], 19H0486-02[Charles River], B237631-BLK1, B237631-BS1, B237631-BSD1

 $The \ results \ of \ analyses \ reported \ only \ relate \ to \ samples \ submitted \ to \ the \ Con-Test \ Analytical \ Laboratory \ for \ testing.$

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

na Watslengton

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

4-Bromofluorobenzene

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

97.1

Sample ID: 19H0486-01 Sample Matrix: Ground Water

			Volat	tile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analysi
Acetone	<50.0	50.0	0.540	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.110	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
Benzene	<1.00	1.00	0.180	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	3.50	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
Carbon Tetrachloride	<2.00	2.00	0.110	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
1,2-Dichlorobenzene	<2.00	2.00	0.160	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
1,3-Dichlorobenzene	< 2.00	2.00	0.120	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
1,4-Dichlorobenzene	< 2.00	2.00	0.130	μg/L	1		624.1	8/9/19	8/9/19 8:11	MFF
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
cis-1,2-Dichloroethylene	<1.00	1.00	0.0500	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
1,4-Dioxane	< 50.0	50.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Ethanol	< 50.0	50.0	27.9	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Ethylbenzene	2.15	2.00	0.130	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
m+p Xylene	2.66	2.00	0.300	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
o-Xylene	2.05	2.00	0.170	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:11	MFF
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		103		70-130					8/9/19 8:11	
Toluene-d8		100		70-130					8/9/19 8:11	

70-130

8/9/19 8:11

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

		Semi	volatile Organic Co	mpounds by	GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analys
Acenaphthene (SIM)	< 0.29	0.29	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Acenaphthylene (SIM)	< 0.29	0.29	$\mu g/L$	1		625.1	8/9/19	8/9/19 15:42	CLA
Anthracene (SIM)	< 0.19	0.19	$\mu g/L$	1		625.1	8/9/19	8/9/19 15:42	CLA
Benzo(a)anthracene (SIM)	< 0.048	0.048	$\mu g/L$	1		625.1	8/9/19	8/9/19 15:42	CLA
Benzo(a)pyrene (SIM)	< 0.096	0.096	$\mu g/L$	1		625.1	8/9/19	8/9/19 15:42	CLA
Benzo(b)fluoranthene (SIM)	< 0.048	0.048	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Benzo(g,h,i)perylene (SIM)	< 0.48	0.48	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Benzo(k)fluoranthene (SIM)	< 0.19	0.19	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Bis(2-ethylhexyl)phthalate (SIM)	< 0.96	0.96	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Chrysene (SIM)	< 0.19	0.19	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Dibenz(a,h)anthracene (SIM)	< 0.19	0.19	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Fluoranthene (SIM)	< 0.48	0.48	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Fluorene (SIM)	< 0.96	0.96	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.19	0.19	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Naphthalene (SIM)	< 0.96	0.96	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Pentachlorophenol (SIM)	< 0.96	0.96	μg/L	1	Z-01	625.1	8/9/19	8/9/19 15:42	CLA
Phenanthrene (SIM)	< 0.048	0.048	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Pyrene (SIM)	< 0.96	0.96	μg/L	1		625.1	8/9/19	8/9/19 15:42	CLA
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2-Fluorophenol (SIM)		40.9	15-110		8.0			8/9/19 15:42	
Phenol-d6 (SIM)		33.8	15-110					8/9/19 15:42	
Nitrobenzene-d5 (SIM)		67.9	30-130					8/9/19 15:42	
2-Fluorobiphenyl (SIM)		47.9	30-130					8/9/19 15:42	
2,4,6-Tribromophenol (SIM)		73.3	15-110					8/9/19 15:42	
p-Terphenyl-d14 (SIM)		55.7	30-130					8/9/19 15:42	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Butylbenzylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:16	BGL
Di-n-butylphthalate	<9.62	9.62	μg/L	1		625.1	8/9/19	8/9/19 14:16	BGL
Diethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:16	BGL
Dimethylphthalate	<9.62	9.62	μg/L	1		625.1	8/9/19	8/9/19 14:16	BGL
Di-n-octylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:16	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		37.9	15-110					8/9/19 14:16	
Phenol-d6		29.2	15-110					8/9/19 14:16	
Nitrobenzene-d5		56.1	30-130					8/9/19 14:16	
2-Fluorobiphenyl		54.7	30-130					8/9/19 14:16	
2,4,6-Tribromophenol		52.6	15-110					8/9/19 14:16	
p-Terphenyl-d14		56.4	30-130					8/9/19 14:16	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	< 0.100	0.100	0.0920	μg/L	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1221 [1]	< 0.100	0.100	0.0805	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1232 [1]	< 0.100	0.100	0.0995	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1242 [1]	< 0.100	0.100	0.0865	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1248 [1]	< 0.100	0.100	0.0950	μg/L	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1254 [1]	< 0.100	0.100	0.0525	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:29	TG
Aroclor-1260 [1]	< 0.100	0.100	0.0980	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:29	TG
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
Decachlorobiphenyl [1]		73.0		30-150		•			8/9/19 14:29	
D 11 11 1101		75.6		20, 150					0/0/10 14 20	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

	-			***		T 10 1		Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	1.1	1.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Arsenic	1.4	0.80		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Chromium	1.6	1.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Chromium, Trivalent	0.0016			mg/L	1		Tri Chrome Calc.	8/9/19	8/12/19 7:59	MJH
Copper	4.4	1.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Iron	0.53	0.050		mg/L	1		EPA 200.7	8/9/19	8/9/19 16:09	EJB
Lead	7.7	0.50		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/9/19	8/9/19 12:53	AJL
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH
Zinc	ND	10		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:38	MJH

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	150	10		mg/L	10		EPA 300.0	8/9/19	8/9/19 10:48	IS
Chlorine, Residual	0.048	0.020		mg/L	1	Z-01a	SM21-22 4500 CL G	8/8/19	8/8/19 22:35	MJG
Hardness	80	2.0		mg/L	1		SM21-22 2340C	8/10/19	8/10/19 15:17	KMV
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	8/8/19	8/8/19 22:50	MJG
Phenol	0.24	0.050		mg/L	1		EPA 420.1	8/12/19	8/12/19 12:37	MMH
Total Suspended Solids	10	2.0		mg/L	1		SM21-22 2540D	8/10/19	8/10/19 16:25	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	8/12/19	8/12/19 10:30	LL

Analyte

Surrogates

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

RL

0.020 % Recovery

Results

ND

Sample ID: 19H0486-01
Sample Matrix: Ground Water

1,2-Dibromoethane (EDB) (1)

Dri	inking Water O	rganics EPA 5	04.1				
					Date	Date/Time	
	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
	μg/L	1		EPA 504.1	8/9/19	8/9/19 20:17	JMB

Flag/Qual

1,3-Dibromopropane (1) 107 70-130 8/9/19 20:17

Recovery Limits

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench

Sampled: 8/8/2019 13:10

Sample ID: 19H0486-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.07	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		8/9/19 22:51	AAL
Cvanide	ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		8/12/19 10:38	AAL

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Volatile Organic Compounds by GC/MS	,

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	5.06	50.0	0.540	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.110	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,2-Dichlorobenzene	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
cis-1,2-Dichloroethylene	<1.00	1.00	0.0500	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,1-Dichloroethane	<2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,4-Dioxane	<50.0	50.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Ethanol	<50.0	50.0	27.9	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Ethylbenzene	<2.00	2.00	0.130	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,1,1-Trichloroethane	<2.00	2.00	0.200	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
1,1,2-Trichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Trichloroethylene	< 2.00	2.00	0.240	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Vinyl Chloride	<2.00	2.00	0.450	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
m+p Xylene	<2.00	2.00	0.300	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
o-Xylene	<2.00	2.00	0.170	$\mu g/L$	1		624.1	8/9/19	8/9/19 8:38	MFF
Surrogates		% Reco	very	Recovery Limits	1	Flag/Qual				
1.2-Dichloroethane-d4		105		70-130					8/9/19 8:38	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	105	70-130		8/9/19 8:38
Toluene-d8	97.7	70-130		8/9/19 8:38
4-Bromofluorobenzene	93.7	70-130		8/9/19 8:38

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02 Sample Matrix: Surface Water

Sample Flags: RL-12		Sem	ivolatile Organic Co	mpounds by	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Acenaphthene (SIM)	< 0.58	0.58	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Acenaphthylene (SIM)	< 0.58	0.58	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Anthracene (SIM)	< 0.38	0.38	$\mu g/L$	2		625.1	8/9/19	8/9/19 16:12	CLA
Benzo(a)anthracene (SIM)	< 0.096	0.096	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Benzo(a)pyrene (SIM)	< 0.19	0.19	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Benzo(b)fluoranthene (SIM)	0.11	0.096	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Benzo(g,h,i)perylene (SIM)	< 0.96	0.96	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Benzo(k)fluoranthene (SIM)	< 0.38	0.38	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Bis(2-ethylhexyl)phthalate (SIM)	<1.9	1.9	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Chrysene (SIM)	< 0.38	0.38	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Dibenz(a,h)anthracene (SIM)	< 0.38	0.38	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Fluoranthene (SIM)	< 0.96	0.96	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Fluorene (SIM)	<1.9	1.9	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Indeno(1,2,3-cd)pyrene (SIM)	< 0.38	0.38	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Naphthalene (SIM)	<1.9	1.9	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Pentachlorophenol (SIM)	<1.9	1.9	μg/L	2	Z-01	625.1	8/9/19	8/9/19 16:12	CLA
Phenanthrene (SIM)	< 0.096	0.096	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Pyrene (SIM)	<1.9	1.9	μg/L	2		625.1	8/9/19	8/9/19 16:12	CLA
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		32.5	15-110					8/9/19 16:12	
Phenol-d6 (SIM)		26.4	15-110					8/9/19 16:12	
Nitrobenzene-d5 (SIM)		51.0	30-130					8/9/19 16:12	
2-Fluorobiphenyl (SIM)		40.2	30-130					8/9/19 16:12	
2,4,6-Tribromophenol (SIM)		63.3	15-110					8/9/19 16:12	
p-Terphenyl-d14 (SIM)		47.4	30-130					8/9/19 16:12	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Butylbenzylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:43	BGL
Di-n-butylphthalate	< 9.62	9.62	μg/L	1		625.1	8/9/19	8/9/19 14:43	BGL
Diethylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:43	BGL
Dimethylphthalate	<9.62	9.62	μg/L	1		625.1	8/9/19	8/9/19 14:43	BGL
Di-n-octylphthalate	<9.62	9.62	$\mu g/L$	1		625.1	8/9/19	8/9/19 14:43	BGL
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		32.8	15-110					8/9/19 14:43	
Phenol-d6		24.0	15-110					8/9/19 14:43	
Nitrobenzene-d5		46.5	30-130					8/9/19 14:43	
2-Fluorobiphenyl		46.4	30-130					8/9/19 14:43	
2,4,6-Tribromophenol		46.3	15-110					8/9/19 14:43	
p-Terphenyl-d14		48.9	30-130					8/9/19 14:43	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	< 0.100	0.100	0.0920	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1221 [1]	< 0.100	0.100	0.0805	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1232 [1]	< 0.100	0.100	0.0995	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1242 [1]	< 0.100	0.100	0.0865	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1248 [1]	< 0.100	0.100	0.0950	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1254 [1]	< 0.100	0.100	0.0525	$\mu g/L$	1		608.3	8/8/19	8/9/19 14:42	TG
Aroclor-1260 [1]	< 0.100	0.100	0.0980	μg/L	1		608.3	8/8/19	8/9/19 14:42	TG

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	100	30-150		8/9/19 14:42
Decachlorobiphenyl [2]	98.1	30-150		8/9/19 14:42
Tetrachloro-m-xylene [1]	93.5	30-150		8/9/19 14:42
Tetrachloro-m-xylene [2]	79.7	30-150		8/9/19 14:42

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

3.5 . 3			(7E) (E)
Metals	Ana	vses	(Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	8/9/19	8/9/19 12:41	МЈН
Arsenic	ND	0.80		μg/L	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Cadmium	ND	0.20		μg/L	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Chromium	2.0	1.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Chromium, Trivalent	0.0020			mg/L	1		Tri Chrome Calc.	8/9/19	8/12/19 7:59	MJH
Copper	5.6	1.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Iron	1.2	0.050		mg/L	1		EPA 200.7	8/9/19	8/9/19 16:30	EJB
Lead	8.7	0.50		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/9/19	8/9/19 12:55	AJL
Nickel	ND	5.0		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Selenium	ND	5.0	1.6	$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Zinc	13	10		$\mu g/L$	1		EPA 200.8	8/9/19	8/9/19 12:41	MJH
Hardness	55			mg/L	1		EPA 200.7	8/9/19	8/9/19 16:30	EJB

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	120	10		mg/L	10		EPA 300.0	8/9/19	8/9/19 12:01	IS
Chlorine, Residual	0.23	0.020		mg/L	1	Z-01a	SM21-22 4500 CL G	8/8/19	8/8/19 22:35	MJG
Hexavalent Chromium	ND	0.0040		mg/L	1		SM21-22 3500 Cr B	8/8/19	8/8/19 22:50	MJG
Phenol	0.29	0.050		mg/L	1		EPA 420.1	8/12/19	8/12/19 12:37	MMH
Total Suspended Solids	32	2.0		mg/L	1		SM21-22 2540D	8/10/19	8/10/19 16:25	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	8/12/19	8/12/19 10:30	LL

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
1,2-Dibromoethane (EDB) (1)	ND	0.019	$\mu g/L$	1		EPA 504.1	8/9/19	8/9/19 20:49	JMB
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
1.2 Dibromonronono (1)		101	70.120					9/0/10 20:40	

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.056	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		8/9/19 21:00	AAL
Cyanide	ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		8/11/19 16:10	AAL

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River

Sampled: 8/8/2019 14:15

Sample ID: 19H0486-02
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		ND	0.5		ppt	1		SM2520B		8/9/19 0:00	PEL

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Mass Ave Trench TB

Sampled: 8/8/2019 13:10

95.9

Sample ID: 19H0486-03
Sample Matrix: Trip Blank Water

4-Bromofluorobenzene

Sample Flags: PR-08			Vola	tile Organic Comp	pounds by G	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	<50.0	50.0	0.540	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.110	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
Carbon Tetrachloride	<2.00	2.00	0.110	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
1,2-Dichlorobenzene	<2.00	2.00	0.160	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,3-Dichlorobenzene	<2.00	2.00	0.120	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,4-Dichlorobenzene	<2.00	2.00	0.130	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,2-Dichloroethane	<2.00	2.00	0.410	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
cis-1,2-Dichloroethylene	<1.00	1.00	0.0500	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,1-Dichloroethane	<2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
1,1-Dichloroethylene	<2.00	2.00	0.320	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,4-Dioxane	< 50.0	50.0	3.50	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Ethanol	< 50.0	50.0	27.9	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Ethylbenzene	<2.00	2.00	0.130	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Methyl tert-Butyl Ether (MTBE)	<2.00	2.00	0.250	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
Methylene Chloride	< 5.00	5.00	0.340	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Tetrachloroethylene	<2.00	2.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
Toluene	<1.00	1.00	0.140	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
1,1,1-Trichloroethane	<2.00	2.00	0.200	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
1,1,2-Trichloroethane	<2.00	2.00	0.160	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
Vinyl Chloride	<2.00	2.00	0.450	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
m+p Xylene	< 2.00	2.00	0.300	μg/L	1		624.1	8/9/19	8/9/19 9:04	MFF
o-Xylene	<2.00	2.00	0.170	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:04	MFF
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					8/9/19 9:04	
Toluene-d8		98.8		70-130					8/9/19 9:04	

70-130

8/9/19 9:04

Project Location: RGP Sample Description: Work Order: 19H0486

Date Received: 8/8/2019

Field Sample #: Charles River TB

Sampled: 8/8/2019 14:15

94.2

Sample ID: 19H0486-04
Sample Matrix: Trip Blank Water

4-Bromofluorobenzene

Sample Flags: PR-08			Volat	tile Organic Comp	pounds by G	GC/MS				
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	4.29	50.0	0.540	μg/L	1		624.1	8/9/19	8/9/19 9:31	MFF
tert-Amyl Methyl Ether (TAME)	< 0.500	0.500	0.110	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Benzene	<1.00	1.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
tert-Butyl Alcohol (TBA)	<20.0	20.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Carbon Tetrachloride	< 2.00	2.00	0.110	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,2-Dichlorobenzene	< 2.00	2.00	0.160	μg/L	1		624.1	8/9/19	8/9/19 9:31	MFF
1,3-Dichlorobenzene	< 2.00	2.00	0.120	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,4-Dichlorobenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,2-Dichloroethane	< 2.00	2.00	0.410	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
cis-1,2-Dichloroethylene	<1.00	1.00	0.0500	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,1-Dichloroethane	< 2.00	2.00	0.160	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,1-Dichloroethylene	< 2.00	2.00	0.320	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,4-Dioxane	< 50.0	50.0	3.50	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Ethanol	< 50.0	50.0	27.9	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Ethylbenzene	< 2.00	2.00	0.130	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Methyl tert-Butyl Ether (MTBE)	< 2.00	2.00	0.250	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Methylene Chloride	< 5.00	5.00	0.340	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Tetrachloroethylene	< 2.00	2.00	0.180	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Toluene	<1.00	1.00	0.140	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,1,1-Trichloroethane	< 2.00	2.00	0.200	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
1,1,2-Trichloroethane	< 2.00	2.00	0.160	μg/L	1		624.1	8/9/19	8/9/19 9:31	MFF
Trichloroethylene	< 2.00	2.00	0.240	μg/L	1		624.1	8/9/19	8/9/19 9:31	MFF
Vinyl Chloride	< 2.00	2.00	0.450	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
m+p Xylene	< 2.00	2.00	0.300	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
o-Xylene	<2.00	2.00	0.170	$\mu g/L$	1		624.1	8/9/19	8/9/19 9:31	MFF
Surrogates		% Reco	very	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		105		70-130					8/9/19 9:31	
Toluene-d8		97.4		70-130					8/9/19 9:31	

70-130

8/9/19 9:31

Sample Extraction Data

Prep Method:	SW-846 3510	C-608.3
--------------	-------------	---------

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237498	1000	5.00	08/08/19
19H0486-02 [Charles River]	B237498	1000	5.00	08/08/19

Prep Method: SW-846 5030B-624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237607	5	5.00	08/09/19
19H0486-02 [Charles River]	B237607	5	5.00	08/09/19
19H0486-03 [Mass Ave Trench TB]	B237607	5	5.00	08/09/19
19H0486-04 [Charles River TB]	B237607	5	5.00	08/09/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237602	1040	1.00	08/09/19
19H0486-02 [Charles River]	B237602	1040	1.00	08/09/19

Prep Method: SW-846 3510C-625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237654	1040	1.00	08/09/19
19H0486-02 [Charles River]	B237654	1040	1.00	08/09/19

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
19H0486-01 [Mass Ave Trench]	B237765	1000	08/12/19
19H0486-02 [Charles River]	B237765	1000	08/12/19

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237611	25.0	25.0	08/09/19
19H0486-02 [Charles River]	B237611	25.0	25.0	08/09/19
19H0486-02 [Charles River]	B237611	25.0		08/09/19

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
19H0486-01 [Mass Ave Trench]	B237612	25.0	25.0	08/09/19
19H0486-02 [Charles River]	B237612	25.0	25.0	08/09/19

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237636	6.00	6.00	08/09/19	

Sample Extraction Data

Prep	Method:	EPA 245.1-EPA 245.1	

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-02 [Charles River]	B237636	6.00	6.00	08/09/19	
EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237609	10.0	10.0	08/09/19	
19H0486-02 [Charles River]	B237609	10.0	10.0	08/09/19	
EPA 420.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237754	50.0	50.0	08/12/19	
19H0486-02 [Charles River]	B237754	50.0	50.0	08/12/19	
Prep Method: EPA 504 water-EPA 504.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237628	35.0	35.0	08/09/19	
19H0486-02 [Charles River]	B237628	36.4	35.0	08/09/19	
SM21-22 2340C					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237721	50.0	50.0	08/10/19	
SM21-22 2540D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
19H0486-01 [Mass Ave Trench]	B237729	250		08/10/19	
19H0486-02 [Charles River]	B237729	250		08/10/19	
SM21-22 3500 Cr B					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237632	50.0	50.0	08/08/19	
19H0486-02 [Charles River]	B237632	50.0	50.0	08/08/19	
SM21-22 4500 CL G					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
19H0486-01 [Mass Ave Trench]	B237631	100	100	08/08/19	
19f10460-01 [Mass Ave Hench]	D23 / 03 I	100	100	00/00/19	

Sample Extraction Data

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
19H0486-01 [Mass Ave Trench]	B237612	25.0	08/09/19
19H0486-02 [Charles River]	B237612	25.0	08/09/19

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%KEC Limits	RPD	Limit	Notes
Batch B237607 - SW-846 5030B										
Blank (B237607-BLK1)				Prepared &	Analyzed: 08	/09/19				
Acetone	ND	50.0	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.500	μg/L							
Benzene	ND	1.00	μg/L							
ert-Butyl Alcohol (TBA)	ND	20.0	μg/L							
Carbon Tetrachloride	ND	2.00	μg/L							
,2-Dichlorobenzene	ND	2.00	μg/L							
,3-Dichlorobenzene	ND	2.00	μg/L							
,4-Dichlorobenzene	ND	2.00	μg/L							
,2-Dichloroethane	ND	2.00	μg/L							
is-1,2-Dichloroethylene	ND	1.00	μg/L							
,1-Dichloroethane	ND	2.00	μg/L							
,1-Dichloroethylene	ND	2.00	μg/L							
,4-Dioxane	ND	50.0	μg/L							
Ethylbenzene	ND	2.00	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.00	μg/L							
Methylene Chloride	ND	5.00	μg/L							
Cetrachloroethylene	ND	2.00	μg/L							
Coluene	ND	1.00	μg/L							
,1,1-Trichloroethane	ND	2.00	μg/L							
,1,2-Trichloroethane	ND	2.00	μg/L							
richloroethylene	ND	2.00	μg/L							
Vinyl Chloride	ND	2.00	μg/L							
n+p Xylene	ND	2.00	μg/L							
-Xylene	ND	2.00	μg/L							
Surrogate: 1,2-Dichloroethane-d4	26.1		$\mu g/L$	25.0		104	70-130			
Surrogate: Toluene-d8	24.6		$\mu g/L$	25.0		98.5	70-130			
Surrogate: 4-Bromofluorobenzene	24.0		μg/L	25.0		95.9	70-130			
LCS (B237607-BS1)					Analyzed: 08	/09/19				
Acetone	220	50.0	μg/L	200		108	70-160			
ert-Amyl Methyl Ether (TAME)	21	0.500	$\mu g \! / \! L$	20.0		103	70-130			
Benzene	22	1.00	$\mu \text{g/L}$	20.0		109	65-135			
ert-Butyl Alcohol (TBA)										
Carbon Tetrachloride	190	20.0	μg/L	200		95.7	40-160			
	190 20	2.00	$\mu g/L$	20.0		101	40-160 70-130			
,2-Dichlorobenzene		2.00 2.00	μg/L μg/L	20.0 20.0		101 107	70-130 65-135			
,2-Dichlorobenzene ,3-Dichlorobenzene	20	2.00 2.00 2.00	μg/L μg/L μg/L	20.0 20.0 20.0		101 107 108	70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene	20 21 22 21	2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0		101 107 108 105	70-130 65-135 70-130 65-135			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane	20 21 22 21 22	2.00 2.00 2.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0		101 107 108 105 108	70-130 65-135 70-130 65-135 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene	20 21 22 21 22 22	2.00 2.00 2.00 2.00 2.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112	70-130 65-135 70-130 65-135 70-130 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethane	20 21 22 21 22 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107	70-130 65-135 70-130 65-135 70-130 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane iis-1,2-Dichloroethylene ,1-Dichloroethylene ,1-Dichloroethylene	20 21 22 21 22 22 22 21 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107	70-130 65-135 70-130 65-135 70-130 70-130 50-150			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane	20 21 22 21 22 22 22 21 22 210	2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111	70-130 65-135 70-130 65-135 70-130 70-130 70-130 50-150 40-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane thylbenzene	20 21 22 21 22 22 21 22 210 21	2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106	70-130 65-135 70-130 65-135 70-130 70-130 70-130 50-150 40-130 60-140			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane Ethylbenzene Methyl tert-Butyl Ether (MTBE)	20 21 22 21 22 22 21 22 210 21	2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106	70-130 65-135 70-130 65-135 70-130 70-130 70-130 50-150 40-130 60-140 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane Ethylbenzene Methyl tert-Butyl Ether (MTBE)	20 21 22 21 22 22 21 22 210 21 21 21	2.00 2.00 2.00 2.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107	70-130 65-135 70-130 65-135 70-130 70-130 70-130 50-150 40-130 60-140 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane Ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride Fetrachloroethylene	20 21 22 21 22 22 21 22 210 21 21 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 50.0 2.00 5.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107 111	70-130 65-135 70-130 65-135 70-130 70-130 50-150 40-130 60-140 70-130 60-140 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane ithylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride etrachloroethylene foluene	20 21 22 21 22 22 21 22 210 21 21 22 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 50.0 2.00 5.00 2.00 1.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107 111 109	70-130 65-135 70-130 65-135 70-130 70-130 50-150 40-130 60-140 70-130 70-130 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride eterachloroethylene foluene ,1,1-Trichloroethane	20 21 22 21 22 22 21 22 210 21 21 22 22 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 50.0 2.00 2.00 5.00 2.00 1.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107 111 109 108	70-130 65-135 70-130 65-135 70-130 70-130 50-150 40-130 60-140 70-130 70-130 70-130 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane iis-1,2-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride fetrachloroethylene foluene ,1,1-Trichloroethane ,1,2-Trichloroethane	20 21 22 21 22 22 21 22 210 21 21 22 22 22 22 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 50.0 2.00 5.00 2.00 1.00 2.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107 111 109 108 106 113	70-130 65-135 70-130 65-135 70-130 70-130 70-130 50-150 40-130 60-140 70-130 70-130 70-130 70-130 70-130			
,2-Dichlorobenzene ,3-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloroethane is-1,2-Dichloroethylene ,1-Dichloroethylene ,1-Dichloroethylene ,4-Dioxane Ethylbenzene Methyl tert-Butyl Ether (MTBE) Methylene Chloride Fetrachloroethylene Foluene ,1,1-Trichloroethane	20 21 22 21 22 22 21 22 210 21 21 22 22 22 22	2.00 2.00 2.00 2.00 2.00 1.00 2.00 50.0 2.00 2.00 5.00 2.00 1.00 2.00	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0		101 107 108 105 108 112 107 111 106 106 107 111 109 108	70-130 65-135 70-130 65-135 70-130 70-130 50-150 40-130 60-140 70-130 70-130 70-130 70-130			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237607 - SW-846 5030B										

LCS (B237607-BS1)		Prepared & Analyzed: 08/09/19					
o-Xylene	22	2.00	μg/L	20.0	109	70-130	
Surrogate: 1,2-Dichloroethane-d4	25.6		μg/L	25.0	102	70-130	
Surrogate: Toluene-d8	25.0		$\mu g/L$	25.0	99.8	70-130	
Surrogate: 4-Bromofluorobenzene	24.7		$\mu g/L$	25.0	98.7	70-130	

QUALITY CONTROL

Spike

Source

%REC

RPD

Semivolatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B237654 - SW-846 3510C										
Blank (B237654-BLK1)				Prepared &	Analyzed: 08	/09/19				
Acenaphthene (SIM)	ND	0.30	μg/L							
Acenaphthylene (SIM)	ND	0.30	μg/L							
anthracene (SIM)	ND	0.20	μg/L							
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(g,h,i)perylene (SIM)	ND	0.50	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.20	$\mu g/L$							
luoranthene (SIM)	ND	0.50	$\mu g/L$							
luorene (SIM)	ND	1.0	μg/L							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.20	μg/L							
Japhthalene (SIM)	ND	1.0	$\mu g/L$							
entachlorophenol (SIM)	ND	1.0	$\mu g/L$							Z-01
henanthrene (SIM)	ND	0.050	$\mu g/L$							
yrene (SIM)	ND	1.0	$\mu g \! / \! L$							
urrogate: 2-Fluorophenol (SIM)	84.1		μg/L	200		42.0	15-110			
urrogate: Phenol-d6 (SIM)	63.7		μg/L	200		31.8	15-110			
urrogate: Nitrobenzene-d5 (SIM)	72.6		μg/L	100		72.6	30-130			
urrogate: 2-Fluorobiphenyl (SIM)	49.5		μg/L	100		49.5	30-130			
urrogate: 2,4,6-Tribromophenol (SIM)	149		μg/L	200		74.7	15-110			
urrogate: p-Terphenyl-d14 (SIM)	58.7		$\mu g/L$	100		58.7	30-130			
.CS (B237654-BS1)				Prepared &	Analyzed: 08	/09/19				
Acenaphthene (SIM)	36.4	6.0	μg/L	50.0		72.8	47-145			
Acenaphthylene (SIM)	37.2	6.0	$\mu g/L$	50.0		74.4	33-145			
anthracene (SIM)	40.8	4.0	μg/L	50.0		81.6	27-133			
Benzo(a)anthracene (SIM)	39.0	1.0	μg/L	50.0		78.1	33-143			
Benzo(a)pyrene (SIM)	43.0	2.0	μg/L	50.0		86.0	17-163			
Benzo(b)fluoranthene (SIM)	42.5	1.0	μg/L	50.0		84.9	24-159			
Benzo(g,h,i)perylene (SIM)	40.3	10	μg/L	50.0		80.6	10-219			
Benzo(k)fluoranthene (SIM)	41.4	4.0	μg/L	50.0		82.8	11-162			
Bis(2-ethylhexyl)phthalate (SIM)	45.0	20	μg/L	50.0		90.0	8-158			
Chrysene (SIM)	39.2	4.0	μg/L	50.0		78.4	17-168			
Dibenz(a,h)anthracene (SIM)	41.6	4.0	μg/L	50.0		83.2	10-227			
luoranthene (SIM)	40.6	10	μg/L	50.0		81.2	26-137			
luorene (SIM)	39.1	20	μg/L	50.0		78.1	59-121			
ndeno(1,2,3-cd)pyrene (SIM)	42.6	4.0	μg/L	50.0		85.2	10-171			
Vaphthalene (SIM)	32.8	20	μg/L	50.0		65.6	21-133			
entachlorophenol (SIM)	44.3	20	μg/L μg/L	50.0		88.6	14-176			Z-01
henanthrene (SIM)	39.0	1.0	μg/L	50.0		77.9	54-120			201
yrene (SIM)	39.2	20	μg/L	50.0		78.4	52-120			
urrogate: 2-Fluorophenol (SIM)	85.2		μg/L	200		42.6	15-110			
surrogate: Phenol-d6 (SIM)	65.8		μg/L μg/L	200		32.9	15-110			
durrogate: Nitrobenzene-d5 (SIM)	75.0		μg/L μg/L	100		75.0	30-130			
-	60.5		μg/L μg/L	100		60.5	30-130			
urrogate: 2-Fluorohiphenyl (SIM)										
surrogate: 2-Fluorobiphenyl (SIM) surrogate: 2,4,6-Tribromophenol (SIM)	158		μg/L μg/L	200		78.8	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B237654 - SW-846 3510C											
LCS Dup (B237654-BSD1)				Prepared &	Analyzed: 08	/09/19					
Acenaphthene (SIM)	33.1	6.0	μg/L	50.0		66.2	47-145	9.55	48		
Acenaphthylene (SIM)	33.9	6.0	$\mu g/L$	50.0		67.8	33-145	9.34	74		
Anthracene (SIM)	36.5	4.0	$\mu g/L$	50.0		73.0	27-133	11.2	66		
Benzo(a)anthracene (SIM)	35.4	1.0	$\mu g/L$	50.0		70.8	33-143	9.78	53		
Benzo(a)pyrene (SIM)	39.0	2.0	$\mu g/L$	50.0		78.0	17-163	9.75	72		
Benzo(b)fluoranthene (SIM)	38.6	1.0	$\mu g/L$	50.0		77.1	24-159	9.63	71		
Benzo(g,h,i)perylene (SIM)	36.4	10	$\mu g/L$	50.0		72.8	10-219	10.1	97		
Benzo(k)fluoranthene (SIM)	37.8	4.0	$\mu g/L$	50.0		75.7	11-162	9.03	63		
Bis(2-ethylhexyl)phthalate (SIM)	40.5	20	$\mu g/L$	50.0		80.9	8-158	10.7	82		
Chrysene (SIM)	35.7	4.0	$\mu g/L$	50.0		71.5	17-168	9.23	87		
Dibenz(a,h)anthracene (SIM)	38.0	4.0	$\mu g/L$	50.0		76.0	10-227	9.15	126		
Fluoranthene (SIM)	36.4	10	$\mu g/L$	50.0		72.8	26-137	10.9	66		
Fluorene (SIM)	35.2	20	$\mu g/L$	50.0		70.5	59-121	10.3	38		
Indeno(1,2,3-cd)pyrene (SIM)	38.5	4.0	$\mu g/L$	50.0		76.9	10-171	10.2	99		
Naphthalene (SIM)	30.5	20	$\mu g/L$	50.0		61.1	21-133	7.08	65		
Pentachlorophenol (SIM)	39.7	20	$\mu g/L$	50.0		79.4	14-176	11.0	86	Z-01	
Phenanthrene (SIM)	34.9	1.0	$\mu g/L$	50.0		69.8	54-120	11.1	39		
Pyrene (SIM)	35.4	20	$\mu \text{g/L}$	50.0		70.7	52-120	10.2	49		
Surrogate: 2-Fluorophenol (SIM)	72.3		μg/L	200		36.2	15-110				
Surrogate: Phenol-d6 (SIM)	57.8		$\mu g/L$	200		28.9	15-110				
Surrogate: Nitrobenzene-d5 (SIM)	69.0		$\mu g/L$	100		69.0	30-130				
Surrogate: 2-Fluorobiphenyl (SIM)	56.3		$\mu g/L$	100		56.3	30-130				
Surrogate: 2,4,6-Tribromophenol (SIM)	144		$\mu g/L$	200		71.8	15-110				
Surrogate: p-Terphenyl-d14 (SIM)	67.0		$\mu g/L$	100		67.0	30-130				

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B237602 - SW-846 3510C										
Blank (B237602-BLK1)				Prepared & A	Analyzed: 08	/09/19				
Butylbenzylphthalate	ND	10.0	μg/L							
Di-n-butylphthalate	ND	10.0	$\mu g \! / \! L$							
Diethylphthalate	ND	10.0	$\mu g\!/\!L$							
Dimethylphthalate	ND	10.0	$\mu g\!/\!L$							
Di-n-octylphthalate	ND	10.0	$\mu g/L$							
Surrogate: 2-Fluorophenol	79.6		μg/L	200		39.8	15-110			
Surrogate: Phenol-d6	54.5		$\mu g/L$	200		27.3	15-110			
Surrogate: Nitrobenzene-d5	60.1		$\mu g/L$	100		60.1	30-130			
Surrogate: 2-Fluorobiphenyl	59.5		$\mu g/L$	100		59.5	30-130			
Surrogate: 2,4,6-Tribromophenol	110		$\mu g/L$	200		54.9	15-110			
Surrogate: p-Terphenyl-d14	62.9		$\mu g/L$	100		62.9	30-130			
LCS (B237602-BS1)				Prepared & A	Analyzed: 08	/09/19				
Butylbenzylphthalate	29.6	10.0	μg/L	50.0		59.3	10-152			
Di-n-butylphthalate	29.4	10.0	$\mu \text{g/L}$	50.0		58.8	10-120			
Diethylphthalate	29.3	10.0	$\mu g/L$	50.0		58.6	10-120			
Dimethylphthalate	32.1	10.0	μg/L	50.0		64.1	10-120			
Di-n-octylphthalate	26.8	10.0	$\mu g/L$	50.0		53.6	4-146			
Surrogate: 2-Fluorophenol	86.4		μg/L	200		43.2	15-110			
Surrogate: Phenol-d6	63.0		μg/L	200		31.5	15-110			
Surrogate: Nitrobenzene-d5	70.8		$\mu g/L$	100		70.8	30-130			
Surrogate: 2-Fluorobiphenyl	68.9		$\mu g/L$	100		68.9	30-130			
Surrogate: 2,4,6-Tribromophenol	130		$\mu g/L$	200		65.2	15-110			
Surrogate: p-Terphenyl-d14	67.3		$\mu g/L$	100		67.3	30-130			
LCS Dup (B237602-BSD1)				Prepared & A	Analyzed: 08	/09/19				
Butylbenzylphthalate	30.4	10.0	μg/L	50.0		60.9	10-152	2.66	60	
Di-n-butylphthalate	30.0	10.0	$\mu g/L$	50.0		59.9	10-120	1.82	47	
Diethylphthalate	30.8	10.0	$\mu g\!/\!L$	50.0		61.7	10-120	5.16	100	
Dimethylphthalate	36.0	10.0	$\mu g\!/\!L$	50.0		72.1	10-120	11.7	183	
Di-n-octylphthalate	27.0	10.0	$\mu g/L$	50.0		54.0	4-146	0.669	69	
Surrogate: 2-Fluorophenol	87.6		μg/L	200		43.8	15-110			
Surrogate: Phenol-d6	65.7		μg/L	200		32.8	15-110			
Surrogate: Nitrobenzene-d5	69.3		μg/L	100		69.3	30-130			
Surrogate: 2-Fluorobiphenyl	84.1		μg/L	100		84.1	30-130			
Surrogate: 2,4,6-Tribromophenol	138		μg/L	200		69.0	15-110			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237498 - SW-846 3510C										
Blank (B237498-BLK1)				Prepared &	Analyzed: 08	/08/19				
Aroclor-1016	ND	0.100	μg/L							
Aroclor-1016 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1221	ND	0.100	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1232	ND	0.100	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1242	ND	0.100	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1248	ND	0.100	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.100	$\mu g \! / \! L$							
Aroclor-1254	ND	0.100	$\mu g/L$							
Aroclor-1254 [2C]	ND	0.100	$\mu g/L$							
Aroclor-1260	ND	0.100	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.100	$\mu g/L$							
Surrogate: Decachlorobiphenyl	0.838		μg/L	1.00		83.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.786		$\mu g/L$	1.00		78.6	30-150			
Surrogate: Tetrachloro-m-xylene	0.909		$\mu g/L$	1.00		90.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.843		$\mu g/L$	1.00		84.3	30-150			
LCS (B237498-BS1)				Prepared &	Analyzed: 08	/08/19				
Aroclor-1016	0.496	0.200	μg/L	0.500		99.2	50-140			
Aroclor-1016 [2C]	0.468	0.200	$\mu g/L$	0.500		93.6	50-140			
Aroclor-1260	0.494	0.200	$\mu g/L$	0.500		98.7	8-140			
Aroclor-1260 [2C]	0.461	0.200	$\mu g \! / \! L$	0.500		92.2	8-140			
Surrogate: Decachlorobiphenyl	1.96		μg/L	2.00		98.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.84		$\mu g/L$	2.00		92.1	30-150			
Surrogate: Tetrachloro-m-xylene	1.78		$\mu g/L$	2.00		89.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.66		$\mu g/L$	2.00		82.9	30-150			
LCS Dup (B237498-BSD1)				Prepared &	Analyzed: 08	/08/19				
Aroclor-1016	0.521	0.200	μg/L	0.500		104	50-140	4.85		
Aroclor-1016 [2C]	0.468	0.200	$\mu g/L$	0.500		93.7	50-140	0.0534		
Aroclor-1260	0.497	0.200	μg/L	0.500		99.5	8-140	0.785		
Aroclor-1260 [2C]	0.464	0.200	$\mu g/L$	0.500		92.8	8-140	0.744		
Surrogate: Decachlorobiphenyl	1.96		μg/L	2.00		98.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.84		μg/L	2.00		92.1	30-150			
Surrogate: Tetrachloro-m-xylene	1.81		μg/L	2.00		90.4	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.68		μg/L	2.00		84.2	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

A 17	D 1	Reporting	TT 14	Spike	Source	0/DEC	%REC	DDD	RPD	N
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B237611 - EPA 200.7										
Blank (B237611-BLK1)				Prepared: 08	/09/19 Analy	yzed: 08/12/	19			
fron	ND	0.050	mg/L							
LCS (B237611-BS1)				Prepared & A	Analyzed: 08	/09/19				
Iron	3.80	0.050	mg/L	4.00		95.0	85-115			
LCS Dup (B237611-BSD1)				Prepared & A	Analyzed: 08	/09/19				
(ron	3.97	0.050	mg/L	4.00	maryzea. 00/	99.3	85-115	4.39	20	
	3.91	0.050	g/ L	4.00		77.5	05-115	4.57	20	
Batch B237612 - EPA 200.8										
Blank (B237612-BLK1)				Prepared & A	Analyzed: 08/	/09/19				
Antimony	ND	1.0	μg/L							
Arsenic	ND	0.80	$\mu \text{g/L}$							
Cadmium	ND	0.20	μg/L							
Chromium	ND	1.0	$\mu g \! / \! L$							
Copper	ND	1.0	$\mu \text{g/L}$							
Lead	ND	0.50	$\mu g \! / \! L$							
Nickel	ND	5.0	$\mu g \! / \! L$							
Selenium	ND	5.0	μg/L							
Silver	ND	0.20	μg/L							
Zine	ND	10	$\mu \text{g/L}$							
LCS (B237612-BS1)				Prepared & A	Analyzed: 08	/09/19				
Antimony	513	10	μg/L	500		103	85-115			
Arsenic	506	8.0	μg/L	500		101	85-115			
Cadmium	497	2.0	$\mu g/L$	500		99.5	85-115			
Chromium	516	10	$\mu g/L$	500		103	85-115			
Copper	987	10	$\mu g/L$	1000		98.7	85-115			
Lead	514	5.0	μg/L	500		103	85-115			
Nickel	509	50	μg/L	500		102	85-115			
Selenium	500	50	μg/L	500		99.9	85-115			
Silver	498	2.0	μg/L	500		99.7	85-115			
Zinc	997	100	$\mu g/L$	1000		99.7	85-115			
LCS Dup (B237612-BSD1)				Prepared & A	Analyzed: 08	/09/19				
Antimony	523	10	μg/L	500		105	85-115	1.96	20	
Arsenic	521	8.0	μg/L	500		104	85-115	3.03	20	
Cadmium	509	2.0	$\mu g/L$	500		102	85-115	2.38	20	
Chromium	515	10	μg/L	500		103	85-115	0.161	20	
Copper	986	10	$\mu g/L$	1000		98.6	85-115	0.0790	20	
Lead	525	5.0	μg/L	500		105	85-115	2.05	20	
Nickel	508	50	μg/L	500		102	85-115	0.256	20	
Selenium	527	50	μg/L	500		105	85-115	5.24	20	
Silver	509	2.0	μg/L	500		102	85-115	2.12	20	
Zinc	1070	100	μg/L	1000		107	85-115	7.26	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237636 - EPA 245.1										
Blank (B237636-BLK1)				Prepared & A	Analyzed: 08	/09/19				
Mercury	ND	0.00010	mg/L							
LCS (B237636-BS1)				Prepared & A	Analyzed: 08	/09/19				
Mercury	0.00379	0.00010	mg/L	0.00400		94.8	85-115			
LCS Dup (B237636-BSD1)				Prepared & A	Analyzed: 08	/09/19				
Mercury	0.00383	0.00010	mg/L	0.00400		95.8	85-115	1.06	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237609 - EPA 300.0										
Blank (B237609-BLK1)				Prepared &	Analyzed: 08	/09/19				
Chloride	ND	1.0	mg/L							
LCS (B237609-BS1)				Prepared &	Analyzed: 08	/09/19				
Chloride	4.6	1.0	mg/L	5.00		91.3	90-110			
LCS Dup (B237609-BSD1)				Prepared &	Analyzed: 08	/09/19				
Chloride	4.6	1.0	mg/L	5.00		91.4	90-110	0.0438	20	
Duplicate (B237609-DUP1)	Sou	rce: 19H0486-	01	Prepared &	Analyzed: 08	/09/19				
Chloride	150	10	mg/L		150			0.422	20	
Matrix Spike (B237609-MS1)	Sou	rce: 19H0486-	01	Prepared &	Analyzed: 08	/09/19				
Chloride	240	10	mg/L	100	150	88.2	80-120			
Batch B237631 - SM21-22 4500 CL G										
Blank (B237631-BLK1)				Prepared &	Analyzed: 08	/08/19				
Chlorine, Residual	ND	0.020	mg/L							Z-01a
LCS (B237631-BS1)				Prepared &	Analyzed: 08	/08/19				
Chlorine, Residual	1.5	0.020	mg/L	1.29		119	66.3-134			Z-01a
LCS Dup (B237631-BSD1)				Prepared &	Analyzed: 08	/08/19				
Chlorine, Residual	1.5	0.020	mg/L	1.29		119	66.3-134	0.287	9.96	Z-01a
Batch B237632 - SM21-22 3500 Cr B										
Blank (B237632-BLK1)				Prepared &	Analyzed: 08	/08/19				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B237632-BS1)				Prepared &	Analyzed: 08	/08/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		108	83.9-121			
LCS Dup (B237632-BSD1)				Prepared &	Analyzed: 08	/08/19				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		108	83.9-121	0.00	10	
Batch B237721 - SM21-22 2340C										
Blank (B237721-BLK1)				Prepared &	Analyzed: 08/	/10/19				
Hardness	ND	2.0	mg/L							

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237721 - SM21-22 2340C						,				
LCS (B237721-BS1)				Prepared &	Analyzed: 08	/10/19				
Hardness	32	2.0	mg/L	31.4		103	89.3-121			
LCS Dup (B237721-BSD1)				Prepared &	Analyzed: 08	/10/19				
Hardness	32	2.0	mg/L	31.4		103	89.3-121	0.00	11.2	
Duplicate (B237721-DUP1)	Sou	rce: 19H0486-	01	Prepared &	Analyzed: 08	/10/19				
Hardness	80	2.0	mg/L		80)		0.00	17.8	
Matrix Spike (B237721-MS1)	Sou	rce: 19H0486-	01	Prepared &	Analyzed: 08	/10/19				
Hardness	100	2.0	mg/L	20.0	80	104	69.9-134			
Batch B237729 - SM21-22 2540D										
Blank (B237729-BLK1)				Prepared &	Analyzed: 08/	/10/19				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B237729-BS1)				Prepared &	Analyzed: 08	/10/19				
Total Suspended Solids	168	10	mg/L	200		84.0	57.6-118			
Batch B237754 - EPA 420.1										
Blank (B237754-BLK1)				Prepared &	Analyzed: 08	/12/19				
Phenol	ND	0.050	mg/L							
LCS (B237754-BS1)				Prepared &	Analyzed: 08	/12/19				
Phenol	0.53	0.050	mg/L	0.500		107	72.4-125			
LCS Dup (B237754-BSD1)				Prepared &	Analyzed: 08/	/12/19				
Phenol	0.56	0.050	mg/L	0.500		113	72.4-125	5.28	11.1	
Batch B237765 - EPA 1664B										
Blank (B237765-BLK1)				Prepared &	Analyzed: 08	/12/19	· · ·			·
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B237765-BS1)				Prepared &	Analyzed: 08	/12/19				
Silica Gel Treated HEM (SGT-HEM)	12		mg/L	10.0		116	64-132			
MRL Check (B237765-MRL1)				Prepared &	Analyzed: 08	/12/19				
Silica Gel Treated HEM (SGT-HEM)	1.20	1.4	mg/L	1.40		85.6	0-200			

QUALITY CONTROL

Drinking Water Organics EPA 504.1 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B237628 - EPA 504 water										
Blank (B237628-BLK1)				Prepared & A	Analyzed: 08	/09/19				
1,2-Dibromoethane (EDB)	ND	0.021	μg/L							
1,2-Dibromoethane (EDB) [2C]	ND	0.021	$\mu \text{g}/L$							
Surrogate: 1,3-Dibromopropane	1.07		μg/L	1.05		102	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.08		$\mu g/L$	1.05		102	70-130			
LCS (B237628-BS1)				Prepared & A	Analyzed: 08	/09/19				
1,2-Dibromoethane (EDB)	0.211	0.021	μg/L	0.180		118	70-130			
1,2-Dibromoethane (EDB) [2C]	0.210	0.021	$\mu g/L$	0.180		117	70-130			
Surrogate: 1,3-Dibromopropane	0.989		μg/L	1.03		96.4	70-130			
Surrogate: 1,3-Dibromopropane [2C]	0.982		$\mu g/L$	1.03		95.7	70-130			
LCS Dup (B237628-BSD1)				Prepared & A	Analyzed: 08	/09/19				
1,2-Dibromoethane (EDB)	0.215	0.021	μg/L	0.183		117	70-130	1.65		
1,2-Dibromoethane (EDB) [2C]	0.213	0.021	$\mu g/L$	0.183		116	70-130	1.15		
Surrogate: 1,3-Dibromopropane	1.03		μg/L	1.05		98.6	70-130			
Surrogate: 1,3-Dibromopropane [2C]	1.04		$\mu g/L$	1.05		99.3	70-130			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
PR-08	pH of sample (pH 5) is outside of method specified preservation criteria.
RL-12	Elevated reporting limit due to matrix interference.
Z-01	Compound calibrated using non-linear calibration
Z-01a	SM 4500 test had calibration points outside of acceptable back-calculated recoveries. Reanalysis yielded similar results.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,MA,NH,RI,NC,ME,VA
tert-Butyl Alcohol (TBA)	NY,MA
Carbon Tetrachloride	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,3-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dichlorobenzene	CT,NY,MA,NH,RI,NC,ME,VA
1,2-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
cis-1,2-Dichloroethylene	NY,MA
1,1-Dichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1-Dichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
1,4-Dioxane	MA
Ethanol	NY,MA,NH
Ethylbenzene	CT,NY,MA,NH,RI,NC,ME,VA
Methyl tert-Butyl Ether (MTBE)	NY,MA,NH,NC
Methylene Chloride	CT,NY,MA,NH,RI,NC,ME,VA
Tetrachloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Toluene	CT,NY,MA,NH,RI,NC,ME,VA
1,1,1-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
1,1,2-Trichloroethane	CT,NY,MA,NH,RI,NC,ME,VA
Trichloroethylene	CT,NY,MA,NH,RI,NC,ME,VA
Vinyl Chloride	CT,NY,MA,NH,RI,NC,ME,VA
m+p Xylene	CT,NY,MA,NH,RI,NC
o-Xylene 625.1 in Water	CT,NY,MA,NH,RI,NC
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
625.1 in Water	Cerunications
	CTANA NINAWAYA NA MENANA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
2-Fluorophenol	NC,VA
Phenol-d6	VA
Nitrobenzene-d5	VA
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
EPA 300.0 in Water	
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 420.1 in Water	
Phenol	CT,MA,NH,NY,RI,NC,ME,VA
SM19-22 4500 NH3 C in Water	CI, MA, MI, MI, MC, ME, VA
	NAME OF THE POPULATION OF THE
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2340C in Water	
Hardness	CT,MA,RI,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC
SM21-22 4500 CL G in Water	
	CTMA DIME
Chlorine, Residual	CT,MA,RI,ME
SM21-22 4500 CN E in Water	
Cyanide	CT,MA,NH,NY,RI,NC,ME,VA

 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2020
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2020
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2020
RI	Rhode Island Department of Health	LAO00112	12/30/2019
NC	North Carolina Div. of Water Quality	652	12/31/2019
NJ	New Jersey DEP	MA007 NELAP	06/30/2020
FL	Florida Department of Health	E871027 NELAP	06/30/2020
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2020
ME	State of Maine	2011028	06/9/2021
VA	Commonwealth of Virginia	460217	12/14/2019
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2020
NC-DW	North Carolina Department of Health	25703	07/31/2020
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2020

Table of Contents Prepackaged Cooler? Y / N 'Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Glassware in the fridge? Chain of Custody is a legal document that must be complete and accurate and is used to determine w analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. C Fest values your partnership on each project and will try to assist with missing information, but will no Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. T ' Matrix Codes: GW = Ground Water WW = Waste Water Total Number Of 2 Preservation Codes: X = Sodium Hydraxide DW = Drinking Water S = Sulfuric Acid B = Sodium Bisulfate SL = Sludge SOL = Solid O = Other (please define) 0 = Other (please define) Page 1 of 2 PCB ONLY Non Soxhlet coolers Soxhlet Preservation Code l = lced H = HCL M = Methanol N = Nitric Acid SACTERIA GLASS ENCORE PLASTIC T = Sodium Thiosulfate VIALS_ A = Air S = Sait possible sample concentration within the Conc ċ Please use the following codes to indicate NELAC and AlHA-LAP, LLC Accredited H - High; M - Medium; L - Low; C - Clean; Chromatogram AIHA-LAP, LLC Code column above: held accountable. ANALYSIS REQUESTED Dac # 381 Rev 2_06262019 4ardrass MA MCP Required MCP Certification Form Require AA State DW Required CT RCP Regui RCP Certification Form Rego 39 Spruce Street East Longmeadow, MA 01028 ENCORE BBUTLEY @goldman onvivonmental. com BACTERIA Field Filtered Field Filtered Lab to Filter Lab to Filter GLASS PLASTIC School MBTA Ç S O A CHAIN OF CUSTODY RECORD VIALS ďΩ Ø 0 0 0 0 Conc Code][http://www.contestlabs.com Municipality Brownfield Due Date: Matrix Code 3 # GISMa 3 10-Day 3-Day 4-Day 21 J CLP Like Data Pkg Required: COMP/GRAB STORE PFAS 10-Day (std) Ending Date/Time 816/17 Government Email To: Fax To #: _ Federal Format: Other: Phone: 413-525-2332 19 HO 486 1-Day 7-Day -Day Client Comments: City Project Entity Beginning Date/Time N S Mass Ave Tremplisio 9/8/19 22:25 818/1922:20 16:10 Email: info@contestlabs.com つ テ Client Sample 1D / Description 2 Charles procy 8/8/19 Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: 7 Con-Test Quote Name/Number: MEK Con-test 9-1d ところ Relinquished by: (signature) Refinquished by: (signature) Received by: (signature) Received by: (signature) Con-Test Work Order# invoice Recipient: Project Location: Project Manager: Address: (//) Comments: Sampled By: elinquismed, Phane: Page 43 of 45

Table of Contents *Contest is not responsible for missing samples from prepacked Glassware in freezer? Y / N Prepackaged Cooler? Y / N Glassware in the fridge? * Matrix Codes: GW = Ground Water WW * Waste Water DW = Drinking Water N = Nitric Acid S = Sulfuric Acid B = Sodium Bisulfate X = Sodium Hydroxide Chain of Custody is a legal document that must be complete and accurate and is used to determine w analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. C Test values your partnership on each project and will try to assist with missing information, but will no Disclaimer: Con-Test Labs is not responsible for any omitted information on the Chain of Custody. T Preservation Codes: Total Number Of SL = Sludge SOL = Solid O = Other (please define) Thiosulfate O = Other (please define) PLASTIC C Non Soxhlet PCB ONLY Soxhlet 7 to 7 Base 7 coolers Preservation Code GLASS BACTERIA M = Methanol ENCORE VIALS T = Sodium A = Air S = Soil I = Iced H = HCL TRC, MY HK CLAVAN CHICAIGR possible sample concentration within the Conc H · High; M · Medium; L · Low; C · Clean; U · Please use the following codes to indicate PINOMMA NELAC and AlHA-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC X Code column above: M ANALYSIS REQUESTED held accountable. 579 × Other h7 9 × longud Doc # 381 Rev 2_06262019 × 802 87 WRTA MA MCP Require an State DW Required RCP Certification Form Regor MCP Certification Form Regu h0S -803 CT RCP Requ East Longmeadow, MA 01028 ENCORE BACTERIA 39 Spruce Street EXCEL Field Fittered Field Filtered Lab to Filter Lab to Filter PLASTIC School MBTA GLASS CHAIN OF CUSTODY RECORD VIALS X 0 0 0 0 いとろ Conc Code http://www.contestlabs.com PDF Municipality Brownfield Due Date 'Matrix Code Z X 10-Day 3 DESERTED THE 3-Day 4-Day CLP Like Data Pkg Required: Email To: BRANLLY (2) COMP/GRAB adp 不 PFAS 10-Day (std) X 18/8/19 Ending Date/Time Government Fax To #: Federa format: Other: -Day Client Comments: -Day -Day Phone: 413-525-2332 (9 (+0486 City Project Entity Beginning Date/Time 0 S PY ain tree 4:66 PIBIS Email: info@contestfabs.com 02.22 5/18/18 8/8/19 16:10 2 Mass and Firench Client Sample ID / Description RINEY 8/6/11 Fax: 413-525-6405 Date/Time: Date/Time: Date/Time Date/Time: 1 Charge ے 2 Project Number: (883 80) 0 signature) イイ e d Con-Test Quote Name/Number: Relinquished by: (signature) CON-TEST Sampled By: AF/ W elinquished by: (signature Received by: (signature) Received by: (signature) Con-Test Work Order# ु invoice Recipient: Project Location; Project Manager: Comments: Address: Page 44 of 45

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

GEL

Client

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Receiv	ed By	w		Date	8/8/15		Time	22:26		
How were th	•	In Cooler		No Cooler		On Ice	T	No Ice		
received?		Direct from Sampling		•	Ambient			Melted Ice	***************************************	
Were sam	oles within		By Gun #	1			p-24,41			
Temperatu		T	By Blank #		•	Actual Tem	7		•	
•		ad Intact?		1/1/0	seo Comple	Actual Terri	h -		•	
			NIA	Were Samples Tampered with?						
Was COC Relinquished?				Does Chain Agree With Samples?						
Are there broken/leaking/loose caps on any samples? Is COC in ink/ Legible? Were samples received within holding time?										
								<u> </u>		
Did COC include all Client pertinent Information? Project				Analysis Sampler Name ID's Collection Dates/Times +						
•		Project		ID's		Collection	Dates/Times_			
Are Sample labels filled out and legible?										
Are there Lab to Filters?					Who was notified?					
Are there Rushes? Are there Short Holds?						s notified?	Tony Miran	<u> </u>		
		•			Who was	s notified?	Miranda			
Is there enou	•					7				
	•	ere applicable?		MS/MSD? F						
Proper Media/Containers Used?			Is splitting samples required?							
Were trip blanks received?				On COC?						
Do all sampl	es have the	proper pH?		Acid	TLZ		Base	<u> </u>		
Vials	#	Containers:	#			#			#	
Unp-		1 Liter Amb.	15	1 Liter	Plastic	Ч	16 oz	Amb.		
HCL-	16	500 mL Amb.	2	500 mL	Plastic		8oz Am	b/Clear		
Meoh-		250 mL Amb.		250 mL		6	4oz Aml	o/Clear		
Bisulfate-		Flashpoint		Col./Ba			2oz Aml	o/Clear		
DI-		Other Glass	4	Other I			Enc	ore		
Thiosulfate-		SOC Kit		Plastic			Frozen:			
Sulfuric-		Perchlorate		Ziplo	ock					
Unused Media										
Vials	#	Containers:	#			#			#	
Unp-		1 Liter Amb.	-	1 Liter	Plastic		16 oz .	Amb.		
HCL-		500 mL Amb.		500 mL	Plastic		8oz Aml	o/Clear		
Meoh-		250 mL Amb.		250 mL			4oz Aml	o/Clear		
Bisulfate-		Col./Bacteria		Flash			2oz Aml	o/Clear		
DI-		Other Plastic		Other			Enco	оге		
Thiosulfate-		SOC Kit		Plastic			Frozen:			
Sulfuric-		Perchlorate		Ziplo	ock					
Comments:										
			1							

4 vials received, 2 labeled "Trench" G24.1 TB and 2 labeled "River" C241TB