

March 19, 2019

United States Environmental Protection Agency – Region 1 National Pollutant Discharge Elimination System (NPDES) 5 Post Office Square Boston, MA 02109

Subject: Massachusetts Remediation General Permit (RGP) – Notice of Intent (NOI)

Construction Site Dewatering Discharge Permit Application

Parcel G

Cambridge Crossing Development Cambridge & Boston, Massachusetts

To Whom it May Concern,

The Vertex Companies, Inc., is submitting this National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) Notice of Intent (NOI) on behalf of Parcel G owner DW Propco G, LLC for construction Site dewatering associated with the Parcel G redevelopment at the Cambridge Crossing (CX) project, located in Cambridge and Boston, Massachusetts.

The table below lists the Parcel G Operator and Owner as well as The Vertex Companies, Inc. as the consultant for the Owner. Please copy the parties listed below on correspondence regarding this NPDES RGP.

Operator	Owner	Consultant
John Moriarty and Associates, Inc.	DW Propco G, LLC c/o	The Vertex Companies, Inc.
(JMa)	DW NP Property, LLC	Mr. Jesse M. Freeman, PE
Mr. Bill Wilbur	Mr. Mark Johnson,	100 North Washington Street,
3 Church Street	Director of Development	Suite 302
Winchester, MA 01890	200 State Street, 12th Floor	Boston, MA 02114
<u>bwilbur@jm-a.com</u>	Boston, MA, 02109	jfreeman@vertexeng.com
(781) 729-3900	MJohnson@divcowest.com	(617) 275-5407
	(617) 914-8640	

The following provide additional supporting information related to the specific sections of the attached NOI and/or the NPDES RGP regulatory requirements.

 Section D.1 of the NOI. Utilities located within the Cambridge Crossing property are owned by DW NP Property, LLC. A portion of the discharge will travel through the on-site utilities and afterward will flow through a stormwater utility managed and permitted by the City of Cambridge department of Public Works. • **Section F.2 and F.3 of the NOI.** Material Safety Data Sheets (MSDS)/Safety Data Sheets (SDS) for the proposed potential chemical additives are attached. If the chemical additives are needed, a Notice of Change will be submitted prior to the use of these additives, which will include the information requested under 2.5.2.g.iii.

Please do not hesitate to contact us should you have any questions or require additional information.

Sincerely,

The Vertex Companies, Inc.

Jesse M. Freeman, PE

Senior Project Manager

Jessica L. Fox, PE

Vice President of Operations – Environmental

Attachments:

NPDES RGP NOI
NOI Supplemental Text
Figures – Site Locus Map
Parcel G NPDES Sampling Location Map
Dewatering On-Site Discharge Location
Outfall Location
Groundwater Analytical Data
Laboratory Analytical Reports

Other Supporting Documentation

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: Cambridge Crossing Development Site - Parcel G	Site address: Dawes Street Street:				
	City: Cambridge and Boston		State: MA	^{Zip:} 02141	
2. Site owner	Contact Person: Mark Johnson, Director of Develo	LC (not as individ)			
DW Propco G, LLC	Telephone: 617-914-8640	Email: mjc	hnson@div	cowest.com	
	Mailing address: 200 State Street, 12th Floor				
	Street:				
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02109	
3. Site operator, if different than owner	Contact Person: Bill Wilbur				
John Moriarty & Associates, Inc. (JMa) Generator Contractor	Telephone: 781-729-3900 Email: bwilbur@jm-a.com				
	Mailing address:				
	Street: 3 Church Street				
	City: Winchester		State: MA	Zip: 01890	
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):		
N/A	■ MA Chapter 21e; list RTN(s):	□ CERCL	.A		
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	3-11533	1 1 1111 117			
THE DLS permit is (eneck an that appry. ROT DOT COT	3-11533 ☐ NH Groundwater Management Permit or	□ UIC Pro	C	•	
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:			Pretreatment	ī	

Has the operator attached a summary of influent

in accordance with the instruction in Appendix

VIII? (check one):

■ Yes □ No

sampling results as required in Part 4.2 of the RGP

municipality or origin:

 \square Other; if so, specify:

☐ A surface water other

so, indicate waterbody:

than the receiving water; if

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classi	fication of receiving water(s):
Lechmere Canal - Charles Riv	rer MA72-36	Class	B Surface Water
Receiving water is (check any that apply): □ Outstand	ding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic	River
2. Has the operator attached a location map in accorda	ance with the instructions in B, above? (check one):	■ Yes □ No	
Are sensitive receptors present near the site? (check of If yes, specify:	ne): □ Yes ■ No		
3. Indicate if the receiving water(s) is listed in the State pollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP. Please see attached.	, , , ,		
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and Ap		the instructions in	N/A
5. Indicate the requested dilution factor for the calcula accordance with the instructions in Appendix V for sit		~ /	N/A
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: May 12, 20	17. Correspondence attached.		
7. Has the operator attached a summary of receiving v	vater sampling results as required in Part 4.2 of the	RGP in accordance with the	e instruction in Appendix VIII?
(check one): ■ Yes □ No			
C. Source water information:			
1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water: if so, indicate

Has the operator attached a summary of influent

sampling results as required in Part 4.2 of the

RGP in accordance with the instruction in

Appendix VIII? (check one):

☐ Yes ☐ No

2. Source water contaminants: VOCs, PAHs, Arsenic, Chromium, Copper, Iron, Lead, Nickel, Zinc, Nitrogen Ammonia, TSS, Chloride						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance					
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No					
3. Has the source water been previously chlorinated or otherwise contains resident	ual chlorine? (check one): ☐ Yes ■ No					
D. Discharge information						
1.The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New	discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Outfall D3C to the Lechmere Canal	42.369377° N, -71.075744° E					
Discharges enter the receiving water(s) via (check any that apply): \Box Direct dis	charge to the receiving water ■ Indirect discharge, if so, specify:					
Discharge will enter on-site drainage system leading to on-site infiltration	n structure with an overflow that will discharge to the Lechmere Canal.					
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer	er system:					
Has notification been provided to the owner of this system? (check one): ■ Yes	s □ No					
Has the operator has received permission from the owner to use such system for obtaining permission:	r discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for					
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ■ No						
Provide the expected start and end dates of discharge(s) (month/year): March 2019 to December 2020						
Indicate if the discharge is expected to occur over a duration of: \Box less than 12	2 months ■ 12 months or more □ is an emergency discharge					
Has the operator attached a site plan in accordance with the instructions in D, al	bove? (check one): ■ Yes □ No					

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	all that apply)					
	a. If Activity Category I or II: (check all that apply)						
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 						
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)						
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination					
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)						
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply					

4. Influent and Effluent Characteristics

	Known	Known or # of believed present		method	Detection limit (μg/l)	In	fluent	Effluent Limitations	
Parameter	or believed absent		# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1	4500NH3	75	1,090	1,090	Report mg/L	
Chloride		✓	1	300.0	25,000	717,000	717,000	Report µg/l	
Total Residual Chlorine	✓		1	4500CL-D	20	<20	<20	0.2 mg/L	0.011
Total Suspended Solids		✓	1	2540D	5,000	54,000	54,000	30 mg/L	
Antimony	✓		1	200.8	4.00	<4.00	<4.00	206 μg/L	
Arsenic		✓	1	200.8	1.00	3.77	3.77	104 μg/L	
Cadmium	✓		1	200.8	0.20	< 0.20	< 0.20	10.2 μg/L	
Chromium III		✓	1	200.8	1.00	3.79	3.79	323 μg/L	
Chromium VI	✓		1	7196A	10	<10	<10	323 μg/L	
Copper		✓	1	200.8	1	7.46	7.46	242 μg/L	
Iron		✓	1	200.7	50	2,520	2,520	5,000 μg/L	1,000
Lead		✓	1	200.8	1.00	11.67	11.67	160 μg/L	
Mercury	✓		1	245.1	0.20	< 0.20	< 0.20	0.739 μg/L	
Nickel		✓	1	200.8	2.00	4.58	4.58	1,450 μg/L	
Selenium	✓		1	200.8	5.00	< 5.00	<5.00	235.8 μg/L	
Silver	✓		1	200.8	0.40	< 0.40	< 0.40	35.1 μg/L	
Zinc		✓	1	200.8	10.00	14.9	14.9	420 μg/L	
Cyanide	✓		1	4500CN-C	5	<5	<5	178 mg/L	
B. Non-Halogenated VOC	's								
Total BTEX		✓	1	8260C	2.75	2.5	2.5	100 μg/L	
Benzene	✓		1	8260C	0.50	< 0.50	< 0.50	5.0 μg/L	
1,4 Dioxane	✓		1	8260C-SI +		<3.0	<3.0	200 μg/L	
Acetone		✓	1	8260C	5.0	9.2	9.2	7.97 mg/L	
Phenol	✓		1	8270D	5.0	<5.0	<5.0	1,080 μg/L	

	Known	Known		# of samples Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
Parameter	or believed absent	believed believed	# of samples			Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1	8260C	0.50	< 0.50	< 0.50	4.4 μg/L	
1,2 Dichlorobenzene	✓		1	8260C	2.5	<2.5	<2.5	600 μg/L	
1,3 Dichlorobenzene	1		1	8260C	2.5	<2.5	<2.5	320 μg/L	
1,4 Dichlorobenzene	1		1	8260C	2.5	<2.5	<2.5	5.0 μg/L	
Total dichlorobenzene	1		0	-	-	-	-	763 μg/L in NH	
1,1 Dichloroethane	✓		1	8260C	0.75	< 0.75	< 0.75	70 μg/L	
1,2 Dichloroethane	✓		1	8260C	0.50	< 0.50	< 0.50	5.0 μg/L	
1,1 Dichloroethylene	✓		1	8260C	0.50	< 0.50	< 0.50	3.2 μg/L	
Ethylene Dibromide	✓		1	504.1	0.010	< 0.010	< 0.010	0.05 μg/L	
Methylene Chloride	✓		1	8260C	3.0	<3.0	<3.0	4.6 μg/L	
1,1,1 Trichloroethane	1		1	8260C	0.50	< 0.50	< 0.50	200 μg/L	
1,1,2 Trichloroethane	1		1	8260C	0.75	< 0.75	< 0.75	5.0 μg/L	
Trichloroethylene	✓		1	8260C	0.50	<0.50	< 0.50	5.0 μg/L	
Tetrachloroethylene	1		1	8260C	0.50	< 0.50	< 0.50	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		1	8260C	0.50	< 0.50	< 0.50	70 μg/L	
Vinyl Chloride	✓		1	8260C	1.0	<1.0	<1.0	2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	✓		1	8270D	28.0	<28.0	<28.0	190 μg/L	
Diethylhexyl phthalate	1		1	8270D	3.0	<3.0	<3.0	101 μg/L	
Total Group I PAHs		✓	1	8270D-SI	0.70	0.10	0.10	1.0 μg/L	
Benzo(a)anthracene		✓	1	8270D-SI	0.10	0.10	0.10		0.0038
Benzo(a)pyrene	✓		1	8270D-SI		< 0.10	< 0.10	7	
Benzo(b)fluoranthene	1		1	8270D-SI	0.10	< 0.10	< 0.10	7	
Benzo(k)fluoranthene	✓		1	8270D-SI	0.10	< 0.10	< 0.10	As Total PAHs	
Chrysene	✓		1	8270D-SI	0.10	< 0.10	< 0.10	7	
Dibenzo(a,h)anthracene	✓		1	8270D-SI	0.10	< 0.10	< 0.10]	
Indeno(1,2,3-cd)pyrene	✓		1	8270D-SI	0.10	< 0.10	< 0.10	7	

	Known	Known		Test method (#)	Detection limit (μg/l)	In	fluent	Effluent Limitations	
Parameter	or believed absent	or or believed				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	1	8270D-SI		7.5	7.5	100 μg/L	
Naphthalene		✓	1	8270D-SI ₊	0.10	2.2	2.2	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1	608	0.250	< 0.250	< 0.250	0.000064 μg/L	
Pentachlorophenol	✓		1	8270D-SI	0.80	< 0.80	< 0.80	1.0 μg/L	
F. Fuels Parameters			•	•		•			
Total Petroleum Hydrocarbons		✓	1	1664A	4,000	<4,000	<4,000	5.0 mg/L	
Ethanol	✓		1	1671A	2,000	<2,000	<2,000	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	8260C	1.0	<1.0	<1.0	70 μg/L	
tert-Butyl Alcohol	✓		1	8260C	10	<10	<10	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1	8260C	2.0	<2.0	<2.0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	1 .	T .	T *		if so, specify: 7.14	7.14	1	
Temperature		√	1		i	10.4 deg C	7.14 10.4 deg C		
Hardness		√ /	1	field + 6010C	660	430,000	430,000		
Total Suspended Solids		√	1	2540D	5,000	54,000	54,000		
Total Phenolics	√	•	1	420.1	30	<30	<30		
	-			1 - 2 - 2					

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge	arge: (check all that apply)	
\Box Adsorption/Absorption \Box Advanced Oxidation Processes \Box Air Stripping \blacksquare	Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
\Box Ion Exchange \blacksquare Precipitation/Coagulation/Flocculation \blacksquare Separation/Filtrat	tion □ Other; if so, specify:	
Note that a Notice of Change will be submitted prior to use of flocculation or GAC, if no	eeded.	
2. Provide a written description of all treatment system(s) or processes that will	be applied to the effluent prior to discharge.	
The treatment system will consist of a construction dewatering pump that will pump was then be pumped through at least one set of three in-line canister bag filters. Due to the prince if needed, water will be pumped through an oil/water separator. Additionally, depending discharge limits, water may be treated through granular activates carbon vessels, ion-exceptions.	resence of localized petroleum releases at the Cambridge Crossing project, where of g on the presence of liquid phase petroleum and the potential for metals to be prese	encountered and
Identify each major treatment component (check any that apply):		
■ Fractionation tanks □ Equalization tank ■ Oil/water separator □ Mechanical		
\square Chemical feed tank \square Air stripping unit \blacksquare Bag filter \blacksquare Other; if so, specify: Indicate if either of the following will occur (check any that apply):	In-line settling tank. If needed, aeration and additional holding tanks. Granular activated carbon, ion exchange, pH adjustment, flocculation, as needed (Change will be submitted before use of these additives).	(Notice of
\Box Chlorination \Box De-chlorination		1
3. Provide the design flow capacity in gallons per minute (gpm) of the most lim Indicate the most limiting component: Bag Filters or Ion-Exchange (if used)		200
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justific	cation:	
Provide the proposed maximum effluent flow in gpm.		200
Provide the average effluent flow in gpm.		30
If Activity Category IV applies, indicate the estimated total volume of water the	hat will be discharged:	N/A
4. Has the operator attached a schematic of flow in accordance with the instructi	ons in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
MSDS/SDS are included for proposed additives and flocculation agents. A Notice of Change will be submitted prior to implementation.
2. Provide the following information for each chemical/additive, using attachments, if necessary:
Will provide in a Notice of Change if additives are needed.
a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ■ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:
1 113. This determination was made by, (effect one) in the operator in the A in other, it so, specify.

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Please refer to cover letter which includes: Site schematic, treatment system diagram, data table summarizing influent concentrations with supporting laboratory reports, and correspondence with the Massachusetts Department of Environmental Protection (MassDEP) and United States Wildlife Service.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

U. Continential to direction		
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there ar information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or belief, true, accurate, and complete.	those I have
A BMPP meeting the requirements of this Remediation General Pern BMPP certification statement: at the Site, implemented upon initiation of discharge and modified as		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □	
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one; Yes ■ No □	
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes ■ No □ NA	
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■ No □ NA	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (eheek one): RGP DGP CGP MSGP Individual NPDES permit	Check one: Yes ■ No □ NA	
Signature: Da	ate: 3/19/19	
Print Name and Title: Mark Johnson, Director of Development, signi	ing on behalf of	LLC

B. Receiving water Information (cont.)

3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.

The Lechmere Canal is a small inlet on the Charles River, so it is considered to be part of Charles Segment MA72-36. The Charles River is listed as a category 5 water. Impairment causes are chlorophyll-a (TMDL 33826), combined biota/habitat bioassessments, DDT, dissolved oxygen saturation, escherichia coli, excess algal growth (TMDL 33826), nutrient/eutrophication biological indicators (TMDL 33826), oil and grease, dissolved oxygen, PCB in fish tissue, phosphorous (total) (TMDL 33826), salinity, secchi disk transparency (TMDL 33826), sediment screening value (exceedence), taste and odor (TMDL 33826), and water temperature.

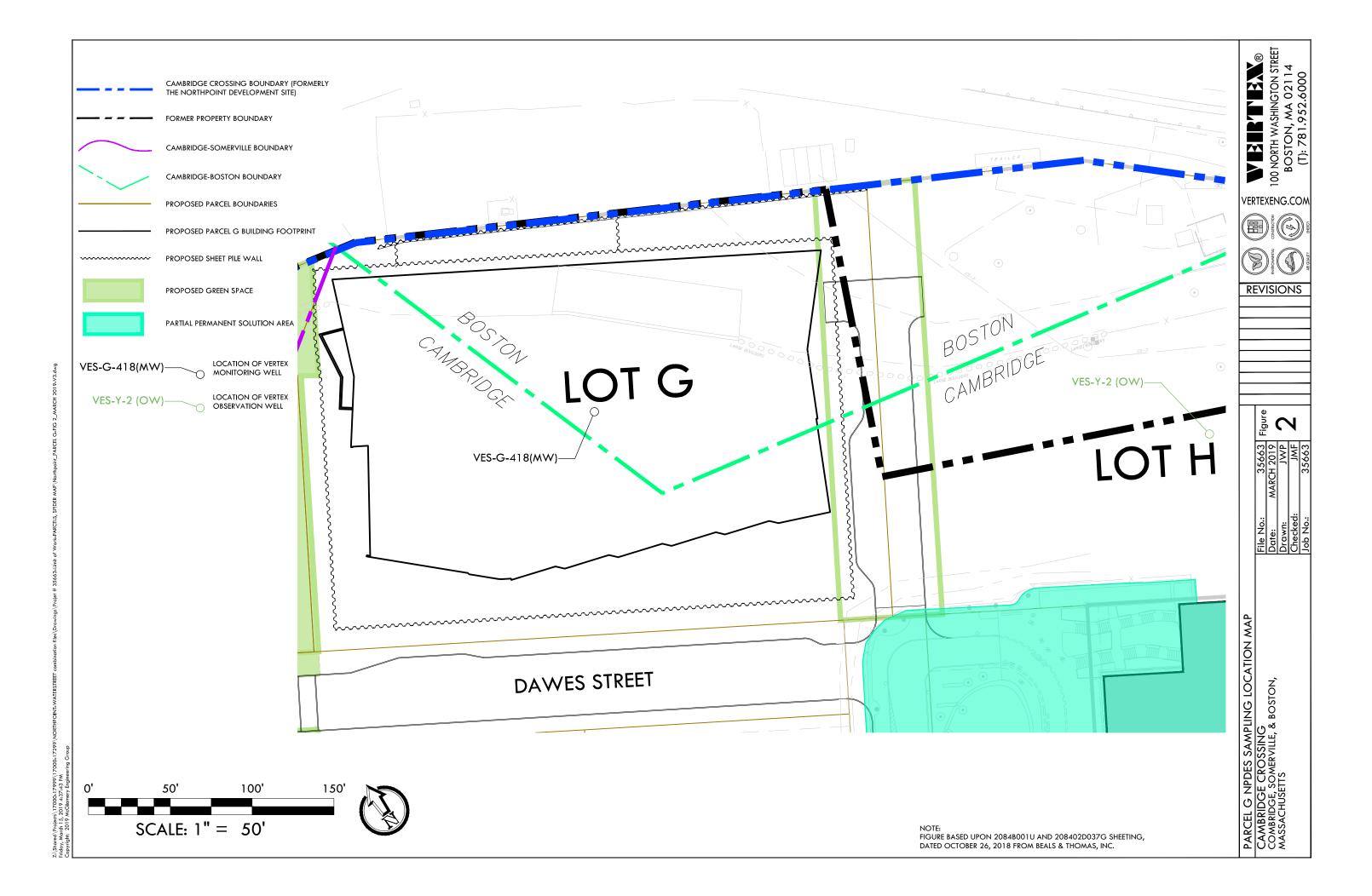
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■Yes □ No

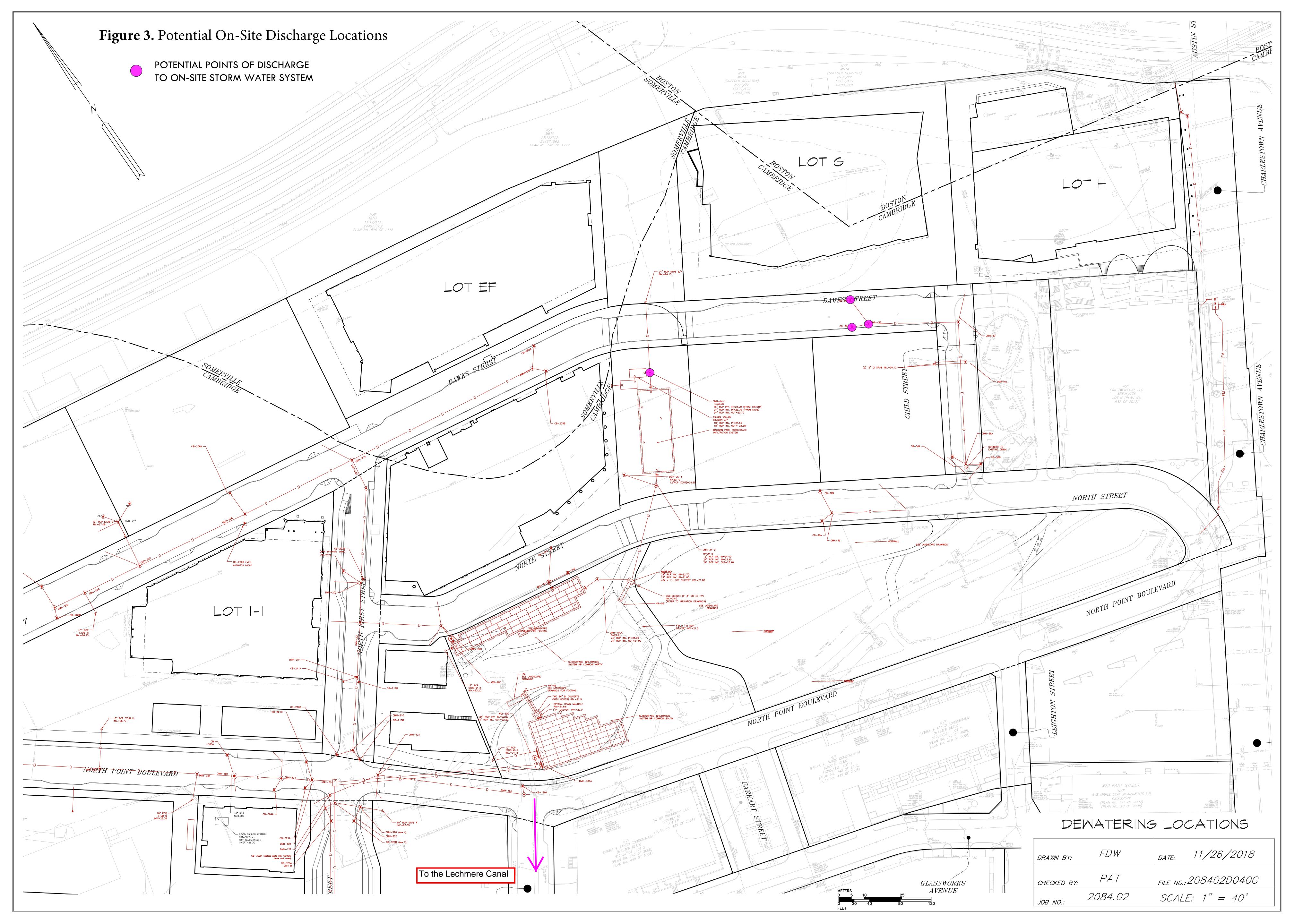
If yes, indicate date confirmation received:

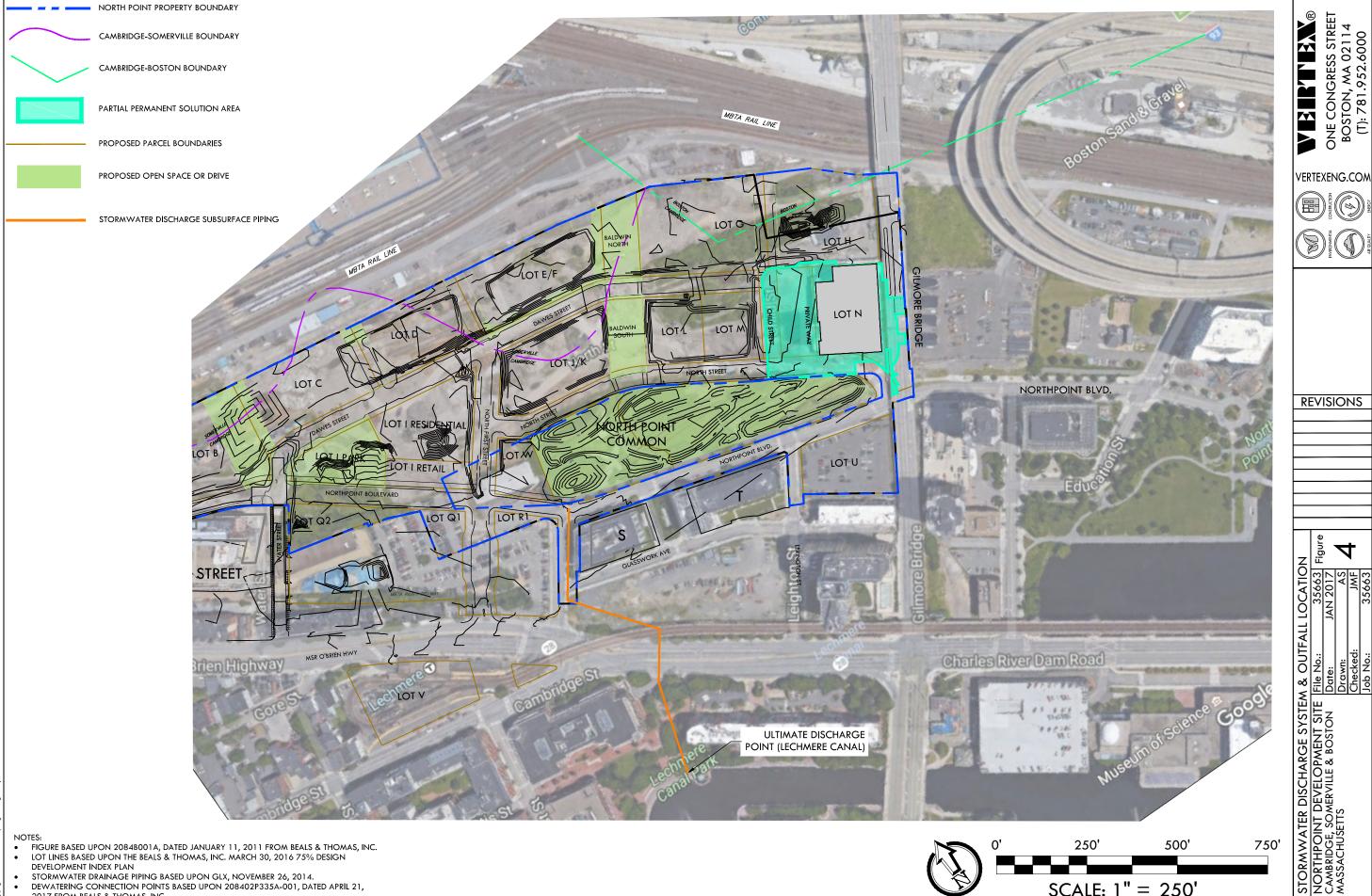
May 12, 2017. Correspondence attached.

Checked:

Job No.:


JMF


35663

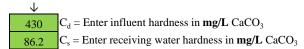

(T): 617.275.5407

rojects/17000-17999/17000-17299/NORTHPOINT-WATERSTREFT combination files/Drawings/NORTHPOINT SITE LOCUS-OCT 2018_V3.dwg

Massachusetts

STORMWATER DRAINAGE PIPING BASED UPON GLX, NOVEMBER 26, 2014.
DEWATERING CONNECTION POINTS BASED UPON 208402P335A-001, DATED APRIL 21, 2017 FROM BEALS & THOMAS, INC.

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	$Q_R = Enter upstream flow in MGD$
0.288	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

	O
\downarrow	-
8.24	pH in Standard Units
13.6	Temperature in ^o C
0.136	Ammonia in mg/L
86.2	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
0	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
0	Zinc in µg/L
	-

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

Enter **influent** concentrations in the units specified

\downarrow	
0	TRC in µg/L
1.09	Ammonia in mg/L
0	Antimony in μg/L
3.77	Arsenic in μg/L
0	Cadmium in µg/L
3.79	Chromium III in µg/L
0	Chromium VI in µg/L
7.46	Copper in µg/L
2,520	Iron in μg/L
11.67	Lead in µg/L
0	Mercury in μg/L
4.58	Nickel in μg/L
0	Selenium in µg/L
0	Silver in μg/L
14.9	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0.1	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_P

 $Q_R = 7Q10$ in MGD

 Q_p = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$\boldsymbol{C_r} = \underline{\boldsymbol{Q_d}\boldsymbol{C_d} + \boldsymbol{Q_s}\boldsymbol{C_s}}$$

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

C_d = Discharge hardness in mg/L

 $Q_s = \text{Upstream flow (7Q10) in MGD}$

C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L

dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

 $C_r = Water quality criterion in <math>\mu g/L$

 $Q_d = Discharge flow in MGD$

 $C_d = WQBEL in \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 Q_{r}

 $C_r = Downstream$ concentration in $\mu g/L$

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 1.0

Dilution Factor	1.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies i	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L			applies it shown	
Chloride	Report	-				
Total Residual Chlorine	0.2	μg/L		/Т	50	а/Т
		mg/L	11	μg/L	30	μg/L
Total Suspended Solids	30	mg/L		-		
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L	0.7974	μg/L		
Chromium III	323	μg/L	284.6	μg/L		
Chromium VI	323	$\mu g/L$	11.4	$\mu g/L$		
Copper	242	$\mu g/L$	32.4	$\mu g/L$		
Iron	5000	$\mu g/L$	1000	$\mu g/L$		
Lead	160	μg/L	20.37	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	179.2	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	46.5	μg/L		
Zinc	420		412.3			
Cyanide		μg/L		μg/L		σ.
B. Non-Halogenated VOCs	178	mg/L	5.2	μg/L		μg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4	μg/L	1.6	μg/L		
1,2 Dichlorobenzene	600	μg/L μg/L		μg/L		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70 5.0	μg/L				
1,2 Dichloroethane	5.0 3.2	μg/L				
1,1 Dichloroethylene Ethylene Dibromide	0.05	μg/L μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	$\mu g/L$				
Trichloroethylene	5.0	μg/L		-		
Tetrachloroethylene cis-1,2 Dichloroethylene	5.0 70	μg/L	3.3	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
D. Non-Halogenated SVOCs	2.0	MB/ E				
Total Phthalates	190	μg/L		$\mu g/L$		
Diethylhexyl phthalate	101	$\mu g/L$	2.2	$\mu g/L$		
Total Group I Polycyclic	1.0	/T				
Aromatic Hydrocarbons Benzo(a)anthracene	1.0 1.0	μg/L μg/L	0.0038	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L μg/L	0.0038	μg/L μg/L	0.1	μg/L μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs		-				
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	$\mu g\!/\!L$
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	$\mu g/L$				

Table 1 Summary of Parcel G NPDES Groundwater Results Cambridge Crossing Cambridge & Boston, Massachusetts

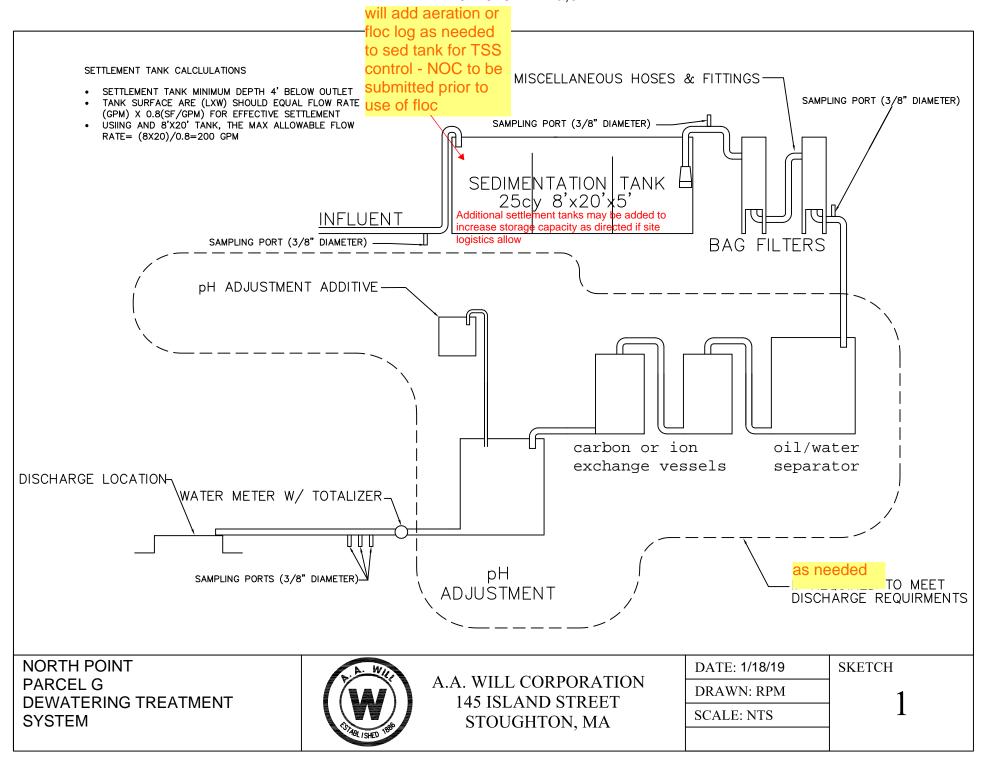
VERTEX Project No. 35663 Release Tracking Number (RTN) 3-11533

LOCATION			VES-G-418 (MW)	VES-Y-2 (OW)	Lechmere Canal
SAMPLING DATE			2/28/2018	5/9/2017	5/16/2017
LABORATORY SAMPLE ID			L1806948-01	L1714950-01	L1715855-01
PARCEL			490-147313-1 G	H	-
SAMPLE TYPE			Groundwater &	Groundwater &	Receiving Water
	CASNA	11-26-	NPDES	NPDES	
ANALYTE	CAS No.	Units			
Total Petroleum Hydrocarbons (TPH) TPH	NONE	μg/L	ND(4000)	ND(4000)	-
Volatile Organic Compounds (VOCs)	620.20.6	/1		ND(0.F)	
1,1,1,2-Tetrachloroethane 1.1.1-Trichloroethane	630-20-6 71-55-6	μg/L μg/L	- ND(0.5)	ND(0.5) ND(0.5)	-
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	-	ND(0.5)	-
1,1,2-Trichloroethane 1.1-Dichloroethane	79-00-5	μg/L	ND(0.75)	ND(0.75)	-
1,1-Dichloroethane 1,1-Dichloroethene	75-34-3 75-35-4	μg/L μg/L	ND(0.75) ND(0.5)	ND(0.75) ND(0.5)	-
1,1-Dichloropropene	563-58-6	μg/L	-	ND(2.5)	-
1,2,3-Trichlorobenzene	87-61-6	μg/L	-	ND(2.5)	-
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	96-18-4 120-82-1	μg/L μg/L	-	ND(5) ND(5)	-
1,2,4-Trimethylbenzene	95-63-6	μg/L	-	ND(2.5)	-
1,2-Dibromo-3-chloropropane	96-12-8	μg/L	-	ND(0.01)	-
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	μg/L μg/L	ND(0.01) ND(2.5)	ND(0.01) ND(2)	-
1,2-Dichloroethane	107-06-2	μg/L μg/L	ND(2.5)	ND(0.5)	-
1,2-Dichloroethene, Total	540-59-0	μg/L	-	ND(0.5)	-
1,2-Dichloropropane 1,3,5-Trimethylbenzene	78-87-5 108-67-8	μg/L μg/L	-	ND(1.8) ND(2.5)	-
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	541-73-1	μg/L μg/L	- ND(2.5)	ND(2.5) ND(2.5)	-
1,3-Dichloropropane	142-28-9	μg/L	-	ND(2.5)	-
1,3-Dichloropropene, Total	542-75-6	μg/L	-	ND(0.5)	-
1,4-Dichlorobenzene 1,4-Dioxane	106-46-7 123-91-1	μg/L μg/L	ND(2.5) ND(3)	ND(2.5) ND(3)	-
2,2-Dichloropropane	594-20-7	μg/L	-	ND(2.5)	-
2-Hexanone	591-78-6	μg/L	-	ND(5)	-
Acetone	67-64-1 107-13-1	μg/L	9.2	ND(5)	-
Acrylonitrile Benzene	71-43-2	μg/L μg/L	ND(0.5)	ND(5) ND(0.5)	-
Bromobenzene	108-86-1	μg/L	-	ND(2.5)	-
Bromochloromethane	74-97-5	μg/L	-	ND(2.5)	-
Bromodichloromethane Bromoform	75-27-4 75-25-2	μg/L μg/L	-	ND(0.5) ND(2)	-
Bromomethane	74-83-9	μg/L	-	ND(1)	-
Carbon disulfide	75-15-0	μg/L	-	ND(5)	-
Carbon tetrachloride Chlorobenzene	56-23-5 108-90-7	μg/L μg/L	ND(0.5)	ND(0.5) ND(0.5)	-
Chloroethane	75-00-3	μg/L	-	ND(1)	-
Chloroform	67-66-3	μg/L	-	ND(0.75)	-
Chloromethane cis-1,2-Dichloroethene	74-87-3 156-59-2	μg/L μg/L	- ND(0.5)	ND(2.5) ND(0.5)	-
cis-1,3-Dichloropropene	10061-01-5	μg/L	-	ND(0.5)	-
Dibromochloromethane	124-48-1	μg/L	-	ND(0.5)	-
Dibromomethane Dichlorodifluoromethane	74-95-3 75-71-8	μg/L	-	ND(5)	-
Diethyl ether (Ethyl ether)	60-29-7	μg/L μg/L	-	ND(5) ND(2.5)	-
Ethylbenzene	100-41-4	μg/L	ND(0.5)	ND(0.5)	-
	87-68-3	μg/L	-	ND(0.5)	-
sopropylbenzene Methyl ethyl ketone (2-Butanone)	98-82-8 78-93-3	μg/L μg/L	-	ND(0.5) ND(5)	-
Methyl tert butyl ether	1634-04-4	μg/L	ND(1)	ND(1)	-
Methylene chloride	75-09-2	μg/L	ND(3)	ND(3)	-
n-Butylbenzene n-Propylbenzene	104-51-8 103-65-1	μg/L μg/L	-	ND(0.5) ND(0.5)	-
Naphthalene	91-20-3	μg/L μg/L	-	ND(0.5)	-
o-Chlorotoluene	95-49-8	μg/L	-	ND(2.5)	-
o-Xylene o-Chlorotoluene	95-47-6 106-43-4	μg/L	ND(1)	ND(1)	-
o-Chiorotoluene o-Isopropyltoluene	99-87-6	μg/L μg/L	-	ND(2.5) 0.82	-
p/m-Xylene	179601-23-1	μg/L	1.0	ND(1)	-
sec-Butylbenzene	135-98-8	μg/L	-	ND(0.5)	-
Styrene Fert-Butyl Alcohol	100-42-5 75-65-0	μg/L μg/L	- ND(10)	ND(1) -	-
ert-Butylbenzene	98-06-6	μg/L	-	ND(2.5)	-
Tertiary-Amyl Methyl Ether	994-05-8	μg/L	ND(2)	- ND(0.E)	-
Tetrachloroethene Tetrahydrofuran	127-18-4 109-99-9	μg/L μg/L	ND(0.5)	ND(0.5) ND(5)	-
Foluene	108-88-3	μg/L	1.5	ND(0.75)	-
rans-1,2-Dichloroethene	156-60-5	μg/L	-	ND(0.75)	-
rans-1,3-Dichloropropene Trichloroethene	10061-02-6 79-01-6	μg/L μg/L	- ND(0.5)	ND(0.5) ND(0.5)	-
Trichloroethene Frichlorofluoromethane	75-69-4	μg/L μg/L	ND(0.5)	ND(0.5) ND(2.5)	-
/inyl chloride	75-01-4	μg/L	ND(1)	ND(1)	-
Total Xylenes	1330-20-7	μg/L	1.0	ND(1)	-
I,4-Dichlorobutane Ethyl methacrylate	110-56-5 97-63-2	μg/L μg/L	-	ND(5) ND(5)	-
Vinyl acetate	108-05-4	μg/L	-	ND(5)	-
Total VOCs	Multiple	μg/L	11.7	0.82	-

Table 1 Summary of Parcel G NPDES Groundwater Results Cambridge Crossing Cambridge & Boston, Massachusetts

VERTEX Project No. 35663
Release Tracking Number (RTN) 3-11533

OCATION			VES-G-418 (MW)	VES-Y-2 (OW)	Lechmere Canal
SAMPLING DATE			2/28/2018	5/9/2017	5/16/2017
ABORATORY SAMPLE ID			L1806948-01	L1714950-01	L1715855-01
PARCEL			490-147313-1 G	Н	-
SAMPLE TYPE			Groundwater &	Groundwater &	Receiving Water
AIVIPLE I TPE			NPDES	NPDES	Receiving water
ANALYTE	CAS No.	Units			
Semivolatile Organic Compounds (SVOCs)	120-82-1	μg/L	-	ND(5)	-
L,2-Dichlorobenzene	95-50-1	μg/L	-	ND(2)	-
,3-Dichlorobenzene	541-73-1	μg/L	-	ND(2)	-
L,4-Dichlorobenzene	106-46-7	μg/L	-	ND(2)	-
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	95-95-4 88-06-2	μg/L μg/L	-	ND(5) ND(5)	-
2,4-Dichlorophenol	120-83-2	μg/L	-	ND(5)	-
2,4-Dimethylphenol	105-67-9	μg/L	-	ND(5)	-
2,4-Dinitrophenol	51-28-5	μg/L	-	ND(20)	-
2,4-Dinitrotoluene 2,6-Dinitrotoluene	121-14-2 606-20-2	μg/L	-	ND(5)	=
2-Chlorophenol	95-57-8	μg/L μg/L	-	ND(5) ND(2)	-
2-Methylphenol	95-48-7	μg/L	-	ND(5)	-
2-Nitroaniline	88-74-4	μg/L	-	ND(5)	-
2-Nitrophenol	88-75-5	μg/L	-	ND(10)	-
3,3'-Dichlorobenzidine 3-Methylphenol/4-Methylphenol	91-94-1 108-39-4	μg/L μg/L	-	ND(5) ND(5)	-
3-Metnyiphenoi/4-Metnyiphenoi 3-Nitroaniline	99-09-2	μg/L μg/L	-	ND(5)	-
I,6-Dinitro-o-cresol	534-52-1	μg/L	-	ND(10)	-
I-Bromophenyl phenyl ether	101-55-3	μg/L	-	ND(2)	-
I-Chloroaniline	106-47-8	μg/L	-	ND(5)	-
I-Chlorophenyl phenyl ether I-Nitroaniline	7005-72-3 100-01-6	μg/L μg/L	-	ND(2) ND(5)	-
I-Nitrophenol	100-01-0	μg/L μg/L	-	ND(10)	-
Aniline	62-53-3	μg/L	-	ND(2)	-
zobenzene	103-33-3	μg/L	-	ND(2)	-
Benzidine	92-87-5	μg/L	-	ND(20)	-
Benzoic Acid Benzyl Alcohol	65-85-0 100-51-6	μg/L μg/L	-	ND(50) ND(2)	-
Biphenyl	92-52-4	μg/L	-	ND(2)	-
Sis(2-chloroethoxy)methane	111-91-1	μg/L	-	ND(5)	=
Bis(2-chloroethyl)ether	111-44-4	μg/L	-	ND(2)	-
Bis(2-chloroisopropyl)ether	108-60-1	μg/L	- ND(2)	ND(2)	-
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	117-81-7 85-68-7	μg/L μg/L	ND(3) ND(5)	ND(3) ND(5)	-
Carbazole	86-74-8	μg/L	-	ND(2)	-
Di-n-butylphthalate	84-74-2	μg/L	ND(5)	ND(5)	-
Di-n-octylphthalate	117-84-0	μg/L	ND(5)	ND(5)	-
Dibenzofuran Diethyl phthalate	132-64-9 84-66-2	μg/L μg/L	- ND(5)	ND(2) ND(5)	-
Dimethyl phthalate	131-11-3	μg/L μg/L	ND(5)	ND(5)	-
Hexachlorocyclopentadiene	77-47-4	μg/L	-	ND(20)	-
sophorone	78-59-1	μg/L	-	ND(5)	-
n-Nitrosodi-n-propylamine	621-64-7	μg/L	-	ND(5)	-
n-Nitrosodimethylamine NDPA/DPA	62-75-9 86-30-6	μg/L μg/L	-	ND(2) ND(2)	-
Noray Dr A Nitrobenzene	98-95-3	μg/L μg/L	-	ND(2)	-
o-Chloro-m-cresol	59-50-7	μg/L	-	ND(2)	-
Phenol	108-95-2	μg/L	ND(5)	ND(5)	-
Pyridine	110-86-1	μg/L	-	ND(3.5)	-
L-Methylnaphthalene 2-Chloronaphthalene	90-12-0 91-58-7	μg/L μg/L	-	ND(0.2) ND(0.2)	-
P-Methylnaphthalene	91-57-6	μg/L μg/L	-	ND(0.2)	-
Acenaphthene	83-32-9	μg/L	2.1	0.25	-
cenaphthylene	208-96-8	μg/L	0.28	ND(0.2)	-
Anthracene	120-12-7	μg/L	0.41 0.10	ND(0.2)	-
Benzo(a)anthracene Benzo(a)pyrene	56-55-3 50-32-8	μg/L μg/L	0.10 ND(0.1)	ND(0.2) ND(0.2)	-
enzo(b)fluoranthene	205-99-2	μg/L	ND(0.1)	ND(0.2)	-
enzo(ghi)perylene	191-24-2	μg/L	ND(0.1)	ND(0.2)	-
enzo(k)fluoranthene	207-08-9	μg/L	ND(0.1)	ND(0.2)	-
hrysene Dibenzo(a,h)anthracene	218-01-9 53-70-3	μg/L	ND(0.1) ND(0.1)	ND(0.2) ND(0.2)	-
luoranthene	206-44-0	μg/L μg/L	ND(0.1) 0.56	ND(0.2) ND(0.2)	-
luorene	86-73-7	μg/L μg/L	1.4	ND(0.2)	-
lexachlorobenzene	118-74-1	μg/L	-	ND(0.8)	-
lexachlorobutadiene	87-68-3	μg/L	-	ND(0.5)	-
Hexachloroethane	67-72-1	μg/L	- ND(0.4)	ND(0.8)	-
ndeno(1,2,3-cd)Pyrene Naphthalene	193-39-5 91-20-3	μg/L μg/L	ND(0.1) 2.2	ND(0.2) ND(0.2)	-
Pentachlorophenol	87-86-5	μg/L	ND(0.8)	ND(0.2)	-
	85-01-8	μg/L	0.11	ND(0.2)	_
Phenanthrene	03-01-0	μ6/ L	*:	ND(0.2)	<u> </u>


Table 1 **Summary of Parcel G NPDES Groundwater Results Cambridge Crossing**

Cambridge & Boston, Massachusetts **VERTEX Project No. 35663** Release Tracking Number (RTN) 3-11533

LOCATION			VES-G-418 (MW)	VES-Y-2 (OW)	Lechmere Canal	
SAMPLING DATE LABORATORY SAMPLE ID			2/28/2018	5/9/2017	5/16/2017 L1715855-01	
			L1806948-01 490-147313-1	L1714950-01		
PARCEL			G	Н	-	
SAMPLE TYPE			Groundwater & NPDES	Groundwater & NPDES	Receiving Water	
ANALYTE	CAS No.	Units				
Total Metals						
Antimony, Total	7440-36-0	μg/L	ND(4)	ND(4)	-	
Arsenic, Total	7440-38-2	μg/L	3.77	18	-	
Barium, Total	7440-39-3	μg/L	-	229	-	
Beryllium, Total	7440-41-7	μg/L	-	ND(1)	-	
Boron, Total	7440-42-8	μg/L	-	ND(1)	-	
Cadmium, Total	7440-43-9	μg/L	ND(0.2)	-	-	
Calcium, Total	7440-70-2	μg/L	-	150,000	-	
Chromium, Total	7440-47-3	μg/L	3.79	ND(1)	-	
Copper, Total	7440-50-8	μg/L	7.46	ND(1)	-	
Iron, Total	7439-89-6	μg/L	2,520	32,900	-	
Lead, Total	7439-92-1	μg/L	11.67	3	-	
Magnesium, Total	7439-95-4	μg/L	-	14,800	-	
Manganese, Total	7439-96-5	μg/L	-	1,168	-	
Mercury, Total	7439-97-6	μg/L	ND(0.2)	ND(0.2)	-	
Nickel, Total	7440-02-0	μg/L	4.58	5	-	
Potassium, Total	7440-09-7	μg/L	- ND/5)	12,500	=	
Selenium, Total	7782-49-2	μg/L	ND(5)	ND(5)	-	
Silver, Total	7440-22-4	μg/L	ND(0.4)	ND(1)	=	
Sodium, Total	7440-23-5 7440-28-0	μg/L	-	84,500 -	-	
Thallium, Total Zinc, Total	7440-28-0	μg/L	14.9		-	
Chromium, Trivalent	16065-83-1	μg/L μg/L	ND(10)	ND(10)	-	
Chromium, Hexavalent	18540-29-9	μg/L μg/L	ND(10)	ND(10)	-	
Polychlorinated Biphenyls (PCBs)	18340-23-3	μg/ L	NB(10)	ND(10)	_	
Aroclor 1016	12674-11-2	μg/L	ND(0.25)	ND(0.25)	-	
Aroclor 1221	11104-28-2	μg/L	ND(0.25)	ND(0.25)	_	
Aroclor 1221 Aroclor 1232	11141-16-5	μg/L	ND(0.25)	ND(0.25)	_	
Aroclor 1242	53469-21-9	μg/L	ND(0.25)	ND(0.25)	_	
Aroclor 1248	12672-29-6	μg/L	ND(0.25)	ND(0.25)	_	
Aroclor 1254	11097-69-1	μg/L	ND(0.25)	ND(0.25)	_	
Aroclor 1260	11096-82-5	μg/L	ND(0.2)	ND(0.25)	-	
Aroclor 1262	37324-23-5	μg/L	-	-	-	
Aroclor 1268	11100-14-4	μg/L	-	-	-	
Total PCBs	Multiple	μg/L	ND(0.25)	ND(0.25)	-	
Cyanide		1 0,				
Cyanide, Total	57-12-5	μg/L	ND(5)	ND(5)	-	
General Chemistry						
Chlorine, Total Residual	NONE	μg/L	ND(20)	ND(20)	-	
Ethanol	64-17-5	μg/L	ND(2000)		-	
Nitrogen, Ammonia	7664-41-7	μg/L	1,090	12,800	136	
рН	12408-02-5	SU	7.14†	6.47†	8.24†	
Phenolics, Total	NONE	μg/L	ND(30)	ND(30)	-	
Phosphorus, Soluble	7723-14-0	μg/L	-	20	-	
Phosphorus, Total	7723-14-0	μg/L	-	1,080	-	
Solids, Total Dissolved	NONE	μg/L	-	820,000	-	
Solids, Total Suspended	NONE	μg/L	54,000	47,000	-	
Temperature (field measured in °C)	NONE	°C	10.4†	8.83†	13.6†	
Anions by Ion Chromatography						
Chloride	16887-00-6	μg/L	717,000	174,000	-	
Hardness						
Hardness	NONE	μg/L	**	430,000	86,200	

Notes

- 1. CAS No. = Chemical Abstract Service Number.
- 2. Regulatory criteria are established under the Massachusetts Contingency Plan (MCP).
- 3. UCL = Upper Concentration Limit.
- 4. = MCP Standard not currently established or sample was not analyzed for specific analyte.
- 5. ND = Not Detected above the laboratory reporting limit shown in parenthesis.
- 6. μ g/L = micrograms per liter.
- 7. mg CaCO3/L = milligrams of calcium carbonate per liter.
- 8. SU = Standard Units.
- 9. μ mhos/cm = micromhos per centimeter.
- 10. For analytes without published UCL values, the default UCL of 10,000 μg/L was used in accordance with 310 Code of Massachusetts Regulations (CMR) 40.0996(7).
- 11. † = Field Measured.
- 12. TBEL = Technology-Based Effluent Limitation.
- 13. WQBEL Water Quality-based Effluent Limitation.
- 14. * = Calculated WQBEL value.
 15. ** = The Hardness value is provided for monitoring well VES-Y-2 (OW).
- 16. Based upon the overall Site data regarding the concentrations of Chromium III and Chromium VI, Total Chromium was assumed to be Chromium III.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: November 08, 2018

Consultation Code: 05E1NE00-2019-SLI-0293

Event Code: 05E1NE00-2019-E-00652 Project Name: Cambridge Crossing

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-0293

Event Code: 05E1NE00-2019-E-00652

Project Name: Cambridge Crossing

Project Type: DEVELOPMENT

Project Description: Development

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.3728393098731N71.07446861411378W

Counties: Middlesex, MA | Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: East Cambridge; Resource Type(s): Building, Area, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.B	Lockhart, William L. and Company Coffin Factory	,	Cambridge	
CAM.C	Blake and Knowles Steam Pump Company		Cambridge	
CAM.E	East Cambridge Historic District		Cambridge	
CAM.F	Winter Street Historic District		Cambridge	
CAM.G	Cambridge Multiple Resource Area		Cambridge	
CAM.H	Lechmere Point Corporation Houses		Cambridge	
CAM.I	Sacred Heart Church, Rectory, School and Convent		Cambridge	
CAM.AJ	Charles River Basin Historic District		Cambridge	
CAM.AO	East Cambridge		Cambridge	
CAM.AV	Blake and Knowles Steam Pump Company		Cambridge	
CAM.352	Blake and Knowles Main Foundry	180 Bent St	Cambridge	c 1895
CAM.357	Blake and Knowles Machine Shop #2	195 Binney St	Cambridge	1917
CAM.358	Blake and Knowles Machine Shop #3	199 Binney St	Cambridge	1918
CAM.356	Blake and Knowles Erecting and Assembling Building	201 Binney St	Cambridge	1903
CAM.906	Cambridge Parkway Bridge over Broad Canal	Cambridge Pkwy	Cambridge	1957
CAM.931	Cambridge Parkway	Cambridge Pkwy	Cambridge	1900
CAM.379	Middlesex County Registry of Deeds Building	Cambridge St	Cambridge	1896
CAM.380	Middlesex County Clerk of Courts Building	Cambridge St	Cambridge	1889
CAM.912	Longfellow Bridge - West Boston Bridge	Cambridge St	Cambridge	c 1907
CAM.914	Lechmere Square Streetcar Station	Cambridge St	Cambridge	1922
CAM.372		82-84 Cambridge St	Cambridge	1937
CAM.373	Davenport, A. H Irving and Casson Company	88-134 Cambridge St	Cambridge	1866
CAM.378		160 Cambridge St	Cambridge	1965
CAM.93	East Cambridge Savings Bank	292 Cambridge St	Cambridge	1931
CAM.94	Union Railway Car Barn	613-621 Cambridge St	Cambridge	1869

Thursday, November 8, 2018 Page 1 of 6

nv. No.	Property Name	Street	Town	Year
CAM.99	Boston and Maine Railroad Signal Tower A	Charles River	Cambridge	1931
CAM.911	Charles River Railroad Draw Bridge #1	Charles River	Cambridge	1931
CAM.920	Charles River Dam	Charles River	Cambridge	r 1905
AM.928	Lechmere Canal	Charles River	Cambridge	1909
CAM.929	Broad Canal	Charles River	Cambridge	1805
CAM.932	Charles River Basin Granite Seawall and Iron Fence	Charles River	Cambridge	
CAM.908	Commercial Avenue Bridge over Lechmere Canal	Commercial Ave	Cambridge	1907
CAM.1318	Metropolitan District Commission Stables	Commercial Ave	Cambridge	
CAM.123		42 Edward J. Lopez Ave	Cambridge	c 1830
CAM.430	Cambridge Public Library - O'Connell Branch	Fifth St	Cambridge	1938
CAM.441		69-71 Fifth St	Cambridge	
CAM.452	Hall, Jesse House	75 Fifth St	Cambridge	1837
AM.428		82 Fifth St	Cambridge	
AM.429		83 Fifth St	Cambridge	
AM.907	First Street Bridge over Broad Canal	First St	Cambridge	1924
AM.147	Athenaeum Press Building	215 First St	Cambridge	1895
AM.502	Lechmere Point Corporation Row House	47 Gore St	Cambridge	c 1821
AM.503	Lechmere Point Corporation Row House	49 Gore St	Cambridge	c 1821
AM.504	Lechmere Point Corporation Row House	51 Gore St	Cambridge	c 1821
AM.1317	Metropolitan District Commission Boat House	Lechmere Canal	Cambridge	1910
AM.913	East Cambridge Viaduct - Lechmere Viaduct	O'Brien Hwy	Cambridge	1910
AM.9020	Boston and Lowell Railroad Retaining Wall	O'Brien Hwy	Cambridge	c 1857
AM.349	Lockhart, William L. Coffin Factory Warehouse	195-199 O'Brien Hwy	Cambridge	1873
AM.271	Barnes, James B. House	200 O'Brien Hwy	Cambridge	1824
AM.348	Lockhart, William L. Coffin Factory Main Building	201 O'Brien Hwy	Cambridge	r 1870
AM.272	Lockart, William L. Company Building	209 O'Brien Hwy	Cambridge	c 1859
AM.1400	Morrell, John and Company Branch House	221 O'Brien Hwy	Cambridge	1929
AM.1399	Whitehead Metal Products Company	225 O'Brien Hwy	Cambridge	1929
AM.461	Putnam School	Otis St	Cambridge	1889
AM.465	Saint Hedwig's Parish Church	Otis St	Cambridge	1939
AM.468	Otis Hospital	Otis St	Cambridge	
AM.371	Woodbury, James A Geldowsky, Ferdinand Building	2-28 Otis St	Cambridge	1869
AM.374		31 Otis St	Cambridge	1900
AM.473	Hall, Lewis and William A. Rowhouse	55 Otis St	Cambridge	1851
AM.474	Hall, Lewis and William A. Rowhouse	57 Otis St	Cambridge	1851
AM.475	Hall, Lewis and William A. Rowhouse	59 Otis St	Cambridge	1851
burnaday May	vember 8, 2018			Page 2 of

nv. No.	Property Name	Street	Town	Year
CAM.485	Hazard, Samuel L. House	60 Otis St	Cambridge	1871
CAM.476	Hall, Lewis and William A. Rowhouse	61 Otis St	Cambridge	1851
CAM.484		62 Otis St	Cambridge	
CAM.472	Sortwell, Daniel R. Double House	63-65 Otis St	Cambridge	1871
AM.483		64 Otis St	Cambridge	
AM.471		65 1/2 Otis St	Cambridge	
AM.482	Jones, Andrew - Hall, William A. Double House	66-68 Otis St	Cambridge	1846
CAM.470	Goss, Abiel Double House	67-69 Otis St	Cambridge	1839
AM.481		70 Otis St	Cambridge	
AM.469		73-75 Otis St	Cambridge	
AM.480		74 Otis St	Cambridge	
AM.479		78 Otis St	Cambridge	
CAM.477	Clark, Josias - Cummings, Daniel P. Rowhouse	80 Otis St	Cambridge	1861
AM.478	Clark, Josias - Cummings, Daniel P. Rowhouse	82 Otis St	Cambridge	1861
AM.467	Deshon, Royal P. House	93 Otis St	Cambridge	1842
AM.460		94 Otis St	Cambridge	
AM.466		95-97 Otis St	Cambridge	
AM.459		96 Otis St	Cambridge	
AM.458		98 Otis St	Cambridge	
AM.457	Taylor, Oliver House	100 Otis St	Cambridge	1848
AM.455	Adams, Jabez F Atwood, Samuel S. Rowhouse	102 Otis St	Cambridge	1848
AM.464	Bridgeman, John L. Double House	103-105 Otis St	Cambridge	1843
AM.456	Adams, Jabez F Atwood, Samuel S. Rowhouse	104 Otis St	Cambridge	1848
AM.454		106-108 Otis St	Cambridge	
AM.463		107-109 Otis St	Cambridge	
AM.453		110 Otis St	Cambridge	
AM.462		113 Otis St	Cambridge	
AM.439		117 1/2 Otis St	Cambridge	
AM.440		117-119 Otis St	Cambridge	
AM.451		118 Otis St	Cambridge	
AM.450		120 Otis St	Cambridge	
AM.448	Dennison, James Double House	122-124 Otis St	Cambridge	1870
AM.449		122 1/2-124 1/2 Otis St	Cambridge	
AM.438		123 Otis St	Cambridge	
AM.437		125-127 Otis St	Cambridge	
AM.447		126-128 Otis St	Cambridge	
AM.436		129-131 Otis St	Cambridge	
AM.446		130 Otis St	Cambridge	

Thursday, November 8, 2018 Page 3 of 6

Inv. No.	Property Name	Street	Town	Year
CAM.445		132 Otis St	Cambridge	
CAM.435		133-135 Otis St	Cambridge	
CAM.275	Hoyt, Benjamin House	134 Otis St	Cambridge	1868
CAM.443		136-138 Otis St	Cambridge	
CAM.434	Warren, Moses - Smith, Benjamin G. Rowhouse	137 Otis St	Cambridge	1852
CAM.1339	Warren, Moses - Smith, Benjamin G. Rowhouse	139 Otis St	Cambridge	1852
CAM.442		140 Otis St	Cambridge	1895
CAM.1340	Warren, Moses - Smith, Benjamin G. Rowhouse	141 Otis St	Cambridge	1852
CAM.1341	Warren, Moses - Smith, Benjamin G. Rowhouse	143 Otis St	Cambridge	1852
CAM.1342	Warren, Moses - Smith, Benjamin G. Rowhouse	145 Otis St	Cambridge	1852
CAM.433	Fraser, John B. Double House	147-149 Otis St	Cambridge	1846
CAM.432		151 Otis St	Cambridge	
CAM.415	Hastings, Deborah House	72 Sciarappa St	Cambridge	1823
CAM.416		74 Sciarappa St	Cambridge	
CAM.401	Pendexter, Charles House	80-82 Sciarappa St	Cambridge	1847
CAM.1321	Boston Museum of Science	Science Park	Cambridge	1951
CAM.1322	Hayden Planetarium	Science Park	Cambridge	1958
CAM.375	Roby, Ebenezer Rowhouse	30 Second St	Cambridge	1836
CAM.376	Roby, Ebenezer Rowhouse	32 Second St	Cambridge	1836
CAM.377	Roby, Ebenezer Rowhouse	34 Second St	Cambridge	1836
CAM.364	Hall, Jesse Rowhouse	36 Second St	Cambridge	1842
CAM.365	Hall, Jesse Rowhouse	38 Second St	Cambridge	1842
CAM.366	Hall, Jesse Rowhouse	40 Second St	Cambridge	1842
CAM.367	Hall, Jesse Rowhouse	42 Second St	Cambridge	1842
CAM.368	Hall, Jesse Rowhouse	44 Second St	Cambridge	1842
CAM.369	Hall, Jesse Rowhouse	46 Second St	Cambridge	1842
CAM.370		50 Second St	Cambridge	
CAM.308	American Net and Twine Company Factory	155R Second St	Cambridge	1875
CAM.506	Sacred Heart Roman Catholic Church	39 Sixth St	Cambridge	1874
CAM.431		40 Sixth St	Cambridge	
CAM.508	Sacred Heart Roman Catholic Church Rectory	49 Sixth St	Cambridge	1885
CAM.325	Harugari Hall	154 Spring St	Cambridge	1873
CAM.353	Blake and Knowles Core Shop #1	Third St	Cambridge	c 1889
CAM.354	Blake and Knowles Core Shop #2	Third St	Cambridge	c 1890
CAM.505	Lechmere Point Corporation Row House	25 Third St	Cambridge	c 1821
CAM.381	Rollins, John W. Rowhouse	83 Third St	Cambridge	1860
CAM.382	Rollins, John W. Rowhouse	85 Third St	Cambridge	1860
CAM.383	Rollins, John W. Rowhouse	87 Third St	Cambridge	1860
Thursday No	vember 8. 2018			Page 4

Thursday, November 8, 2018 Page 4 of 6

nv. No.	Property Name	Street	Town	Year
CAM.384	Rollins, John W. Rowhouse	89 Third St	Cambridge	1860
CAM.331	Old Middlesex County Superior Courthouse	90 Third St	Cambridge	1814
CAM.385	Rollins, John W. Rowhouse	91 Third St	Cambridge	1860
CAM.386	Rollins, John W. Rowhouse	93 Third St	Cambridge	1860
CAM.387	Rollins, John W. Rowhouse	95 Third St	Cambridge	1860
CAM.314	Holy Cross Polish National Catholic Church	99 Third St	Cambridge	1827
CAM.315	Bottle House Block	204-214 Third St	Cambridge	1826
CAM.350	Blake and Knowles Machine Shop #1	265 Third St	Cambridge	1889
CAM.351	Blake and Knowles Office Headhouse	265 Third St	Cambridge	1892
CAM.355	Blake and Knowles Smith Shop and Brass Foundry	275 Third St	Cambridge	c 1890
AM.326	Cambridge Gas Light Company Purifying Plant	354 Third St	Cambridge	1908
CAM.388	Stevens, Atherton H. Rowhouse	59 Thorndike St	Cambridge	1827
CAM.395	Smallidge, Samuel House	66 Thorndike St	Cambridge	1827
CAM.389	Bates, Moses Jr. House	69 Thorndike St	Cambridge	1844
CAM.396	Buck, Silas B. House	70 Thorndike St	Cambridge	1845
CAM.390	Tufts, Sophia Kimball Double House	71-73 Thorndike St	Cambridge	1857
CAM.397	Wellington, Peter House	74 Thorndike St	Cambridge	1843
AM.391		75 Thorndike St	Cambridge	
AM.398		76 Thorndike St	Cambridge	
AM.392		77 Thorndike St	Cambridge	
AM.399		78 Thorndike St	Cambridge	
AM.393		79-81 Thorndike St	Cambridge	
AM.400		80 Thorndike St	Cambridge	
AM.394		83 Thorndike St	Cambridge	
CAM.402	Stickney, Francis H Davies, Benjamin Rowhouse	84 Thorndike St	Cambridge	1867
AM.417	Clark, Cornelius - Kneeland, W. W. House	85 Thorndike St	Cambridge	1822
CAM.403	Stickney, Francis H Davies, Benjamin Rowhouse	86 Thorndike St	Cambridge	1867
AM.404	Stickney, Francis H Davies, Benjamin Rowhouse	88 Thorndike St	Cambridge	1867
AM.418		89-91 Thorndike St	Cambridge	
AM.405	Stickney, Francis H Davies, Benjamin Rowhouse	90 Thorndike St	Cambridge	1867
AM.406	Stickney, Francis H Davies, Benjamin Rowhouse	92 Thorndike St	Cambridge	1867
AM.419	Whitacre, Celeste I. Rowhouse	93 Thorndike St	Cambridge	1885
CAM.407	Stickney, Francis H Davies, Benjamin Rowhouse	94 Thorndike St	Cambridge	1867

Thursday, November 8, 2018 Page 5 of 6

Inv. No.	Property Name	Street	Town	Year
CAM.420	Whitacre, Celeste I. Rowhouse	95 Thorndike St	Cambridge	1885
CAM.408	Train, Isaac House	96 Thorndike St	Cambridge	1826
CAM.421	Whitacre, Celeste I. Rowhouse	97 Thorndike St	Cambridge	1885
CAM.422	Davies, Daniel House	97 1/2 Thorndike St	Cambridge	1843
CAM.409		98 Thorndike St	Cambridge	
CAM.423		99 Thorndike St	Cambridge	
CAM.424	Daniels, Granville W. House	101 Thorndike St	Cambridge	1868
CAM.410		102 Thorndike St	Cambridge	
CAM.411	Spare, Elijah Jr. Double House	104-106 Thorndike St	Cambridge	1846
CAM.425	Eaton, Charles House	109 Thorndike St	Cambridge	1857
CAM.412	Quimby, Amos House	110 Thorndike St	Cambridge	1857
CAM.426		111-113 Thorndike St	Cambridge	
CAM.413	Stickney, Francis H. Double House	112-114 Thorndike St	Cambridge	1863
CAM.427		113 1/2 Thorndike St	Cambridge	
CAM.414	Bacon, Henry A. House	116 Thorndike St	Cambridge	1865
CAM.507	Sacred Heart Roman Catholic School and Convent	163 Thorndike St	Cambridge	1902
CAM.500		19 Winter St	Cambridge	r 1855
CAM.492		21 Winter St	Cambridge	c 1854
CAM.486	Leighton, Thomas H. House	22 Winter St	Cambridge	1833
CAM.491		24 Winter St	Cambridge	c 1854
CAM.493		25 Winter St	Cambridge	c 1854
CAM.494		27 Winter St	Cambridge	c 1854
CAM.496		28-30 Winter St	Cambridge	c 1854
CAM.495		29 Winter St	Cambridge	c 1854
CAM.497		31-33 Winter St	Cambridge	c 1854
CAM.501		34-42 Winter St	Cambridge	r 1875
CAM.498		61 Winter St	Cambridge	c 1854
CAM.499		65 Winter St	Cambridge	c 1854
CAM.489	Stevens, Atherton Haugh House	67 Winter St	Cambridge	1843
CAM.490	Stevens, Atherton Haugh House	71 Winter St	Cambridge	1843
CAM.487	Stevens, Atherton Haugh House	74 Winter St	Cambridge	1838
CAM.1344		75 Winter St	Cambridge	
CAM.1345	Stevens, Atherton Haugh House	77 Winter St	Cambridge	1838
CAM.488	Stevens, Atherton Haugh House	79 Winter St	Cambridge	1838

Thursday, November 8, 2018

JOHN MORIARTY & ASSOCIATES, INC.
SHOP DRAWING / SUBMITTAL REVIEW

Project Name: Northpoint Parcel G
Submittal ID: 312319-003
Reviewed On: 2/14/2019
Reviewed By: Barbara Cipriani

Action: FOR REVIEW

700 Series Floc Logs®

Polyacrylamide Sediment and Turbidity Control Applicator Logs

700 Series Floc Logs are a group of soil-specific tailored log-blocks that contain blends of water treatment components and polyacrylamide co-polymer for water clarification. They reduce and prevent fine particles and colloidal clays from suspension in stormwater. There are several types of Floc Logs designed to treat most water and soil types. Contact Lockwood Remediation Technologies, LLC for free testing and site-specific application information.

Primary Applications

- Mine tailings and waste pile ditches
- Stormwater drainage from construction and building sites
- Road and highway construction runoff ditches
- Ditch and treatment system placement for all forms of highly turbid waters (less than 4% solids)
- Dredging operations as a flocculent

Features and Benefits

- Removes solubilized soils and clay from water
- Prevents colloidal solutions in water within ditch systems
- Binds cationic metals within water, reducing solubilization
- Binds pesticides and fertilizers within runoff water
- Reduces operational and cleanup costs
- Reduces environmental risks and helps meet compliance

Specifications / Compliances

- ANSI/NSF Standard 60 Drinking water treatment chemical additives
- 48h or 96h Acute Toxicity Tests (*D. magna* or *O. mykiss*)
- 7 Day Chronic Toxicity Tests (P. promealas or C. dubia

<u>Packaging</u>

700 Series Floc Logs are packaged in boxes of four (4)

Technical Information

Appearance - semi-solid block Biodegradable internal coconut skeleton Percent Moisture - 40% maximum pH 0.5% Solution - 6-8 Shelf Life – up to 5 years when stored out of UV rays

Placement

Floc Logs are designed for placement within ditches averaging three feet wide by two feet deep. Floc log placement is based on gallon per minute flow rates. Note: actual GPM or dosage will vary based on site criteria and soil/water testing.

Directions for Use

(Water and Floc Log Mixing is Very Important!)

700 Series Floc Logs should be placed within the upper quarter to half of a *stabilized* ditch system or as close as possible to active earth moving activities. Floc Logs have built in ropes with attachment loops which can be looped over stakes to ensure they remain where placed. Mixing is key! If the flow rate is too slow, adding sand bags, cinder blocks, etc., can create the turbulence required for proper mixing. Floc Logs are designed to treat dirty water, not liquid mud; when the water contains heavy solids (exceeding 4%), it will be necessary to create a sediment or grit pit to let the heavy solids settle before treating the water.

Floc Logs must not be placed in areas where heavy erosion would result in the Floc Logs becoming buried. Where there is heavy sedimentation, maintenance will be required.

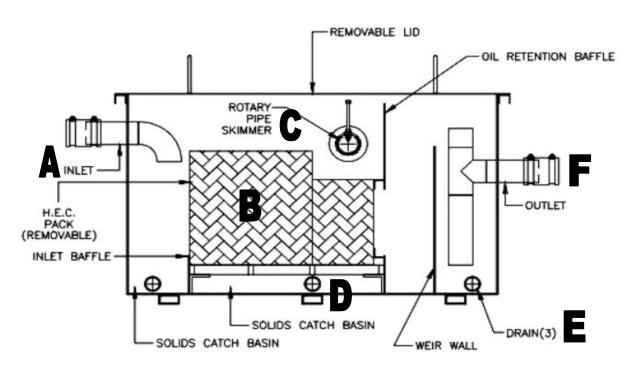
700 Series Floc Logs can easily be moved to different locations as site conditions change. Water quality will be improved with the addition of a dispersion field or soft armor covered ditch checks below the Floc Log(s) to collect flocculated particulate. Construction of mixing weirs may be required in areas where short ditch lines, swelling clays, heavy particle concentrations, or steep slopes may be encountered.

<u>Cleanup</u>:

Latex or rubber gloves are recommended for handling during usage. Use soap and water to wash hands after handling.

Precautions / Limitations

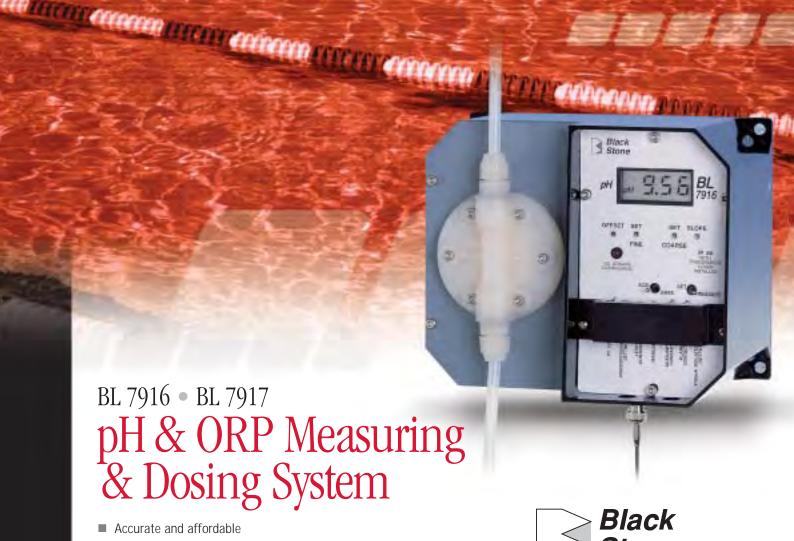
- 700 Series Floc Logs are extremely slippery when wet.
- Clean up spills quickly. Do not use water unless necessary as extremely slippery conditions will
 result and if water is necessary, use pressure washer.
- Floc Log will remain viable for up to 5 years when stored out of UV rays.
- 700 Series Floc Logs have been specifically tailored to specific water and soil types and samples must be tested. Testing is necessary and is free.
- For product information, treatment system design assistance, or performance issues, contact Lockwood Remediation Technologies, LLC.



89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


Environmental Oil Water Separator

Specifications:

- Rated for 50 gpm
- Manual drain line for NAPL
- Coalescing Media

- A: Inlet
- **B**: Separation Chamber with Coalescing Media
- C: Drain Line for Oil/NAPL
- **D**: Clarifier with Sludge Drain Line
- E: Clean Water Chamber

- Controller and dosing pump in one compact unit
- Proportional dosing
- Corrosion resistant housing
- Easy to install

This series of instruments will mount easily in your plant using a minimal amount of wall space. The controls and pumphead are located in the front to allow easy access. They offer accurate measurements with unbeatable performance in one compact, affordable unit.

High Performance pH & ORP Controller & Dosing Pump to Maximize Efficiency

2 Advanced Instruments in 1

MEADOS pumps combine the powerful BlackStone dosing pumps with the state-of-the-art controllers that Hanna is famous for. These unique products were developed by HANNA for measuring and controlling pH or ORP and regulated dosing of various chemicals. This latest innovation eliminates the need for multiple instruments by combining two instruments into one. No more complicated installations, wiring, or compatibility problems. This compact unit features accurate regulation, proportional dosing, alarm and recorder signals and much more all in one meter.

Easy Installation

Designed with mounting holes in the rugged base, BlackStone pump/controllers are simple to install. There is no need for any additional hardware. All the controls and pump assemblies are conveniently located on the front of the unit. If the operator must access the pump head or control panel for any reason, there is no need to uninstall the unit.

Rugged Construction

BlackStone pump/controllers are housed in rugged, fiber-reinforced, polypropylene casings. They are IP55 rated, preventing the intrusion of liquids. The material used for the housing resists corrosion caused by most chemicals, protecting the unit from hazardous spills and splashes.

Superior Materials

BlackStone pumps use PVDF, FPM/FKMand PTFE materials for all components in contact with the chemicals being dosed. These materials have properties which enable them to resist even the most corrosive chemicals in the industry. BlackStone's choice of material makes the pump more versatile, allowing it to handle a wider variety of chemicals.

Simple Pump Action

A positive displacement solenoid with few moving parts make BlackStone pumps more reliable than motor driven pumps. With no rotating parts, gears or cams, part wear and oiling associated with motor driven pumps is eliminated, drastically reducing any chance of mechanical failure.

- pH controller and dosing pump in one compact unit.
- ±0.01 pH accuracy with unbeatable performance.
- Isolated 4 to 20 mA recorder output.
- Proportional dosing slows the pump down when the measured pH level approaches the setpoint which ensures precise dosage and avoids costly waste of chemicals due to overdosage.
- Alarm contact is activated whenever the pH value varies by more than 2 pH units from the setpoint.
- Auxiliary contacts allow the user to attach a mixer or priming pump that is activated only when the pump is dosing.
- PVDF, FPM/FKM & PTFE materials are used for all parts that come into contact with liquid.

Specifications	BL 7916U		
Range	0.00 to 14.00 pH		
Resolution	0.01 pH		
Accuracy (20°C/68°F)	±0.01 pH		
Typical EMC Deviation	±0.1 pH		
Flow Rate	See table on next page		
Input	High impedance 10 ¹² Ohm		
Calibration	Offset: ±1 pH by offset printer; Slope: 85 to 115% by slope trimmer		
Dosage	Proportional: acid or base. User-selectable		
Recorder Output	4 to 20 mA, isolated		
Dosing Contact	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes		
Alarm Relay	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes		
Power Supply	115V ±15% (40W)		
Environment	0 to 50°C (32 to 122°F); RH 85% non-condensing		
Dimensions	7.1 x 8.7 x 5.6" (181 x 221 x 142 mm)		
Weight	11 lb. (5 Kg)		

Accessories and Replacement Parts for BL 7916

HI 1001	Plastic in-line pH electrode
HI 721101	Pumphead, O-ring & 6 screws
HI 721102	Discharge valve assembly
HI 721103	Suction valve assembly
HI 721004	
HI 721005	Foot valve assembly
HI 721008	4 x ceramic weight
HI 7020L	.ORP testing solution, 16.9 oz. (500 mL)
HI 7091L	Reducing solution, 16.9 oz. (500 mL)

HI 7092L	Oxidizing solution, 16.9 oz. (500 mL)
HI 7004L .	pH 4.01 buffer solution, 16.9 oz. (500 mL)
HI 7007L .	pH 7.01 buffer solution, 16.9 oz. (500 mL)
HI 7010L	pH 10.01 buffer solution, 16.9 oz. (500 mL)
HI 767/P	Power plug (5 pcs)
HI 7671/P	Outlet plug (5 pcs)
HI 8427 .	pH & ORP electrode simulator
HI 931001	pH & ORP electrode simulator

ORP Controller & Pump

- ORP controller and dosing pump in one compact unit.
- ±5 mV accuracy with unbeatable performance.
- Isolated 4 to 20 mA recorder output.
- **Proportional dosing** slows the pump down when the measured ORP level approaches the set value which avoids overdosage of oxidizing or reducing agents.
- Alarm contact is activated whenever the ORP value varies by more than 200 mV from the set point.
- Auxiliary contacts allow the user to attach a mixer or priming pump that is activated only when the pump is dosing.
- PVDF, FPM/FKM & PTFE materials are used for all parts that come into contact with liquid.

Specifications	BL 7917U		
Range	±999 mV		
Resolution	1 mV		
Accuracy (20°C/68°F)	±5 mV		
Typical EMC Deviation	±6 mV		
Flow Rate	See table below		
Input	High impedance 10 ¹² Ohm		
Calibration	Offset: ± 2 pH by offset printer; Slope: 85 to 115% by slope trimmer		
Dosage	Proportional: oxidizing or reducing. User-selectable		
Recorder Output	4 to 20 mA, isolated		
Dosing Contact	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes		
Alarm Relay	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes		
Power Supply	115V ±15% (40W)		
Environment	32 to 122°F (0 to 50°C); RH 85% non-condensing		
Dimensions	7.1 x 8.7 x 5.6" (181 x 221 x 142 mm)		
Weight	11 lb. (5 Kg)		

Accessories and Replacement Parts for BL 7917

Accessories and replacement raits for DL 7717				
HI 2001	Plastic in-line ORP electrode			
HI 721101	Pumphead, O-ring & 6 screws			
HI 721102	Discharge valve assembly			
HI 721103	Suction valve assembly			
HI 721004	Injection valve assembly			
HI 721005	Foot valve assembly			
HI 721008	4 x ceramic weights			
HI 7020LORP testi	ing solution, 16.9 oz. (500 mL)			
HI 7091LReduci	ing solution, 16.9 oz. (500 mL)			
HI 7092LOxidizi	ing solution, 16.9 oz. (500 mL)			

BL 7916 & BL 7917				
FLOW/PRESSURE				
PSI GPH				
7.4 3.5				
14.7	3.0			
29.4 2.6				
44.1 2.3				
58.8 2.0				

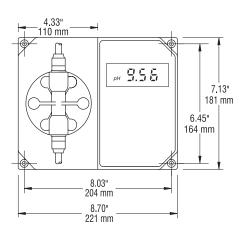
Proportional Dosing

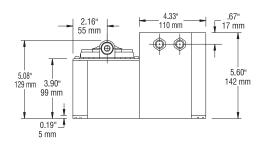
The BlackStone controller/pump strokes at full capacity when the measured value deviates by more than 1.5 pH or 150 mV from the set value. A proportional control slows down the stroke rate as the measured value approaches the user-selectable value, avoiding overdosage of chemicals. This feature makes the pump's dosing more accurate, saves chemicals and eliminates unnecessary and costly corrections of your processes, especially with slow reacting chemicals.

Isolated Recorder Output

To enhance troubleshooting and provide the user with the ability to record data while monitoring, BlackStone's controller/pumps provide a recorder output. By simply attaching a recorder to the instrument's 4 to 20 mA output contacts conveniently located on the front panel, you can obtain a hard copy of the results on demand.

Alarm Output


When monitoring and controlling pH and ORP levels in a process, it is very important that any potential problem does not go unattended. The Hanna MEADOS units incorporate an alarm system that will alert the user if the reaction is not within certain guidelines. The alarm of the BL 7916 will be activated if the measured pH value is 2 pH units lower than the setpoint (If dosing acid, this indicates overdosage, a common symptom of siphoning). The alarm will also activate if the value is 2 pH higher than the setpoint (If dosing acid, this is an indication of insufficient dosage, a common symptom of the lack of chemicals). The BL 7917's alarm will activate if the mV value is 200 mV lower than the setpoint (if dosing


reducing chemicals, this indicates overdosage). The alarm will also activate if the value is 200 mV higher than the setpoint (if dosing reducing chemicals, this is an indication of lack of chemicals).

Auxiliary Dosing Contacts

The auxiliary dosing contacts of the MEADOS units are closed whenever the pump is dosing. This solution offers considerable advantages, especially for small plants where these pumps need to be the only equipment left running. This will spare other equipment such as mixers, priming pumps etc. With this feature activated, a mixer can be automatically started when the pump is dosing.

Mechanical Dimensions for the Meados pH & ORP measuring & dosing systems

Accessories

HI 721101

This kit contains the PVDF pumphead, PTFE coated O-ring, 6 screws and washers.

HI 721102

This kit contains all the necessary replacement parts for your discharge valve assembly. Complete with a FPM/FKM O-ring, glass valve ball, valve spacer and seat, head nipple and tube nut to secure the assembled parts.

HI 721103

HI 721103 is the suction valve assembly. Complete with a FPM/FKM O-ring, glass valve ball, valve spacer and seat, head nipple, and tube nut to secure the assembled parts.

HI 721004

The HI 721004 comes complete with an injection nipple, PTFE coated spring, glass valve ball, and a valve assembly.

HI 721005

This kit contains a filter with a filter holder and a valve assembly.

HI 721008

This kit contains 4 ceramic weights.

HI 721008

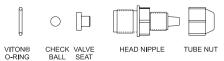
CERAMIC WEIGHT

HI 721101

TEFLON® COATED

6 SCREWS

HI 721102



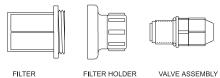
TUBE NUT HEAD NIPPLE

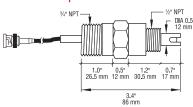
_E CHECK SPACER

HECK SPACER VALVE VITON® BALL SEAT O-RING

HI 721103

HI 721004

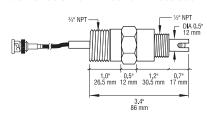


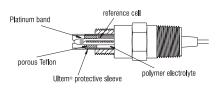

INJECTION NIPPLE

KYNAR® CHECK VALVE ASSEMBLY SPRING BALL

HI 721005

HI 1001 Combination pH Electrode





Specifications	HI 1001
	111 1001
Reference System	
Junction	Double
Туре	PTFE
Electrolyte	Polymer
Temperature	23 to 176°F (-5 to 80°C)
Max Pressure	87 psi (6 bar)
Lead	
Connector	BNC
Cable	10' (3 m)

HI 2001 Combination ORP Platinum Electrode

Specifications	HI 2001
Reference System	
Junction	Double
Туре	PTFE
Electrolyte	Polymer
Temperature	23 to 176°F (-5 to 80°C)
Max Pressure	87 psi (6 bar)
Lead	
Connector	BNC
Cable	10' (3 m)

Material Safety Data Sheet

Carbon Dioxide

Section 1. Chemical product and company identification

Product Name

: Carbon Dioxide

Supplier

AIRGAS INC., on behalf of its subsidiaries

259 North Radnor-Chester Road

Suite 100

Radnor, PA 19087-5283

1-610-687-5253

Product use

: Synthetic/Analytical chemistry.

MSDS#

: 001013

Date of

4/11/2005.

Preparation/Revision

In case of emergency

: 1-800-949-7937

Section 2. Composition, Information on Ingredients

Name Carbon Dioxide CAS number

124-38-9

% Volume

Exposure limits

ACGIH TLV (United States, 9/2004).

STEL: 54000 mg/m³ 15 minute(s). Form: All

forms

STEL: 30000 ppm 15 minute(s). Form: All

forms

TWA: 9000 mg/m³ 8 hour(s). Form: All forms TWA: 5000 ppm 8 hour(s). Form: All forms **NIOSH REL (United States, 6/2001).**STEL: 54000 mg/m³ 15 minute(s). Form: All

STEL: 54000 mg/m³ 15 minute(s). Form: All

forms

STEL: 30000 ppm 15 minute(s). Form: All

forms

TWA: 9000 mg/m³ 10 hour(s). Form: All

forms

TWA: 5000 ppm 10 hour(s). Form: All forms

OSHA PEL (United States, 6/1993).

TWA: 9000 mg/m³ 8 hour(s). Form: All forms TWA: 5000 ppm 8 hour(s). Form: All forms

Section 3. Hazards identification

Physical state

: Gas.

Emergency overview

Warning!

CONTENTS UNDER PRESSURE.

CAUSES DAMAGE TO THE FOLLOWING ORGANS: LUNGS, CARDIOVASCULAR SYSTEM, SKIN, EYES, CENTRAL NERVOUS SYSTEM, EYE, LENS OR CORNEA.

MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.

Avoid contact with skin and clothing. Avoid breathing gas. Do not puncture or incinerate container. Keep container closed. Use only with adequate ventilation. Wash thoroughly

after handling.

Contact with rapidly expanding gas, liquid, or solid can cause frostbite.

Routes of entry

Inhalation, Dermal, Eyes

Potential acute health effects

Eyes Skin : Moderately irritating to the eyes.

La la = 1 = 41 = a

Moderately irritating to the skin.

Inhalation

: Moderately irritating to the respiratory system.

Ingestion

: Ingestion is not a normal route of exposure for gases

effects

Potential chronic health

: CARCINOGENIC EFFECTS Not available. **MUTAGENIC EFFECTS** Not available. TERATOGENIC EFFECT: Not available.

Medical conditions

: Acute or chronic respiratory conditions may be aggravated by overexposure to this gas.

aggravated by overexposure

See toxicological Information (section 11)

Section 4. First aid measures

No action shall be taken involving any personal risk or without suitable training. If fumes are still suspected to be present, the rescuer should wear an appropriate mask or a self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

Eve contact

: In case of contact, immediately flush eves with plenty of water for at least 15 minutes. Get medical attention immediately.

Skin contact

: In case of contact, immediately flush skin with plenty of water. Remove contaminated clothing and shoes. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Frostbite

; Try to warm up the frozen tissues and seek medical attention.

Inhalation

: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Ingestion

: Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention if symptoms appear.

Section 5. Fire fighting measures

Flammability of the product: Non-flammable.

Fire fighting media and instructions

: Use an extinguishing agent suitable for surrounding fires.

If involved in fire, shut off flow immediately if it can be done without risk. Apply water from a safe distance to cool container and protect surrounding area.

No specific hazard.

Special protective equipment for fire-fighters : Fire fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full facepiece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions

: Immediately contact emergency personnel. Keep unnecessary personnel away. Use suitable protective equipment (Section 8). Shut off gas supply if this can be done safely. Isolate area until gas has dispersed.

Environmental precautions :

Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

Section 7. Handling and storage

Handling

Avoid contact with eyes, skin and clothing. Keep container closed. Use only with adequate ventilation. Do not puncture or incinerate container. Wash thoroughly after handling. High pressure gas. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. Never allow any unprotected part of the body to touch uninsulated pipes or vessels that contain cryogenic liquids. Prevent entrapment of liquid in closed systems or piping without pressure relief devices. Some materials may become brittle at low temperatures and will easily fracture.

Storage

: Keep container tightly closed. Keep container in a cool, well-ventilated area. Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).

Section 8. Exposure Controls, Personal Protection

Engineering controls

: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits.

Personal protection

Eyes

: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts.

When working with cryogenic liquids, wear a full face shield.

Skin

: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Respiratory

: Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

The applicable standards are (US) 29 CFR 1910.134 and (Canada) Z94.4-93

Hands

Chemical-resistant, impervious gloves or gauntlets complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary.

Insulated gloves suitable for low temperatures

Personal protection in case: A self-contained breathing apparatus should be used to avoid inhalation of the product.

of a large spill

Consult local authorities for acceptable exposure limits.

Section 9. Physical and chemical properties

Molecular weight : 44.01 g/mole

: CO2 Molecular formula

Boiling/condensation point : -78.55°C (-109.4°F)

Melting/freezing point

: Sublimation temperature: -78.5°C (-109.3°F)

Critical temperature

: 30.9°C (87.6°F)

Vapor pressure

: 830 psig : 1.53 (Air = 1)

Vapor density

: 8.77193

Specific Volume (ft³/lb)

Gas Density (lb/ft³)

. 0.114

Physical chemical

: Not available.

comments

Section 10. Stability and reactivity

Stability and reactivity : The product is stable.

Section 11. Toxicological information

Toxicity data

IDLH

: 40000 ppm

Chronic effects on humans : Causes damage to the following organs: lungs, cardiovascular system, skin, eyes,

central nervous system (CNS), eye, lens or cornea.

Other toxic effects on

humans

: No specific information is available in our database regarding the other toxic effects of this material for humans.

Specific effects

Carcinogenic effects

Mutagenic effects

: No known significant effects or critical hazards. : No known significant effects or critical hazards.

Reproduction toxicity

: No known significant effects or critical hazards.

Section 12. Ecological information

Products of degradation

: These products are carbon oxides (CO, CO₂).

Toxicity of the products of: The product itself and its products of degradation are not toxic.

biodegradation **Environmental fate**

: Not available.

Environmental hazards

: No known significant effects or critical hazards.

Toxicity to the environment: Not available.

Section 13. Disposal considerations

Product removed from the cylinder must be disposed of in accordance with appropriate Federal, State, local regulation.Return cylinders with residual product to Airgas, Inc.Do not dispose of locally.

Section 14. Transport information

Regulatory information	UN number	Proper shipping name	Class	Packing group	Label	Additional information
DOT Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		Limited quantity Yes. Packaging instruction Passenger Aircraft Quantity limitation: 75 kg Cargo Aircraft Quantity limitation: 150 kg
TDG Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		Explosive Limit and Limited Quantity Index 0.125 Passenger Carrying Road or Rail Index 75
Mexico Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		-

Section 15. Regulatory information

United States

U.S. Federal regulations

: TSCA 8(b) inventory: Carbon Dioxide

SARA 302/304/311/312 extremely hazardous substances: No products were found.

SARA 302/304 emergency planning and notification: No products were found.

SARA 302/304/311/312 hazardous chemicals: Carbon Dioxide

SARA 311/312 MSDS distribution - chemical inventory - hazard identification: Carbon Dioxide: Sudden Release of Pressure, Immediate (Acute) Health Hazard, Delayed

(Chronic) Health Hazard

Clean Water Act (CWA) 307: No products were found. Clean Water Act (CWA) 311: No products were found.

Clean air act (CAA) 112 accidental release prevention: No products were found.

Clean air act (CAA) 112 regulated flammable substances: No products were found.

Clean air act (CAA) 112 regulated toxic substances: No products were found.

State regulations

: Pennsylvania RTK: Carbon Dioxide: (generic environmental hazard)

Massachusetts RTK: Carbon Dioxide

New Jersey: Carbon Dioxide

Canada

WHMIS (Canada)

: Class A: Compressed gas.

CEPA DSL: Carbon Dioxide

Section 16. Other information

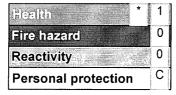
United States

Label Requirements

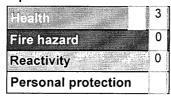
: CONTENTS UNDER PRESSURE.

CAUSES DAMAGE TO THE FOLLOWING ORGANS: LUNGS, CARDIOVASCULAR SYSTEM, SKIN, EYES, CENTRAL NERVOUS SYSTEM, EYE, LENS OR CORNEA.

MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.


Canada

Label Requirements


Hazardous Material

Information System (U.S.A.)

: Class A: Compressed gas.


liquid:

National Fire Protection Association (U.S.A.)

liquid:

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

Material Safety Data Sheet (MSDS): HYDROCHLORIC ACID

Company Headquarters Cooper Natural Resources Chemical Division, Inc. 2407 E. Skelly Drive Tulsa, OK 74105

24 Hour Emergency Telephone: 505-390-7115

1. Product Identification

Synonyms: Muriatic acid; hydrogen chloride, aqueous

CAS No.: 7647-01-0

Molecular Weight (Hydrogen Chloride): 36.46

Chemical Formula: HCI

2. Composition/Information on Ingredients

Ingredient	CAS No.	<u>Percent</u>	Hazardous
Hydrogen Chloride	7647-01-0	31.5 -35.2%	Yes
Water	7732-18-5	64.8-68.5%	No

3. Hazards Identification

Emergency Overview

Poison! Danger! Corrosive! Liquid and mist cause severe burns to all body tissue. May be fatal if swallowed or inhaled. Inhalation may cause lung damage.

Potential Health Effects

Eve:

Corrosive! Vapor or mist may cause irritation and severe burns and permanent eye damage. May cause painful sensitization to light. May cause conjunctivitis.

Skin:

Corrosive! May be absorbed through the skin in harmful amounts. Contact with liquid is corrosive and causes severe burns and ulceration. May cause photosensitization in certain individuals.

Ingestion:

Corrosive! May cause circulatory system failure. Causes severe digestive tract burns with abdominal pain, vomiting, and possible death. May cause permanent tissue destruction of the esophagus and digestive tract.

Inhalation:

Corrosive! Causes severe irritation of upper respiratory tract with coughing, burns, breathing difficulty, and possible coma. May cause pulmonary edema and severe respiratory disturbances.

Chronic:

Prolonged or repeated skin contact may cause dermatitis. Repeated exposure may cause erosion of teeth. May cause conjunctivitis and photosensitization.

4. First Aid Measures

Eyes:

Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower lids. Get medical aid immediately. Do NOT allow victim to rub or keep eyes closed.

Skin:

Get medical attention immediately. Rinse area with large amounts of water for at least 15 minutes. Remove contaminated clothing and shoes.

Ingestion:

DO NOT INDUCE VOMITING. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Get medical attention immediately.

Inhalation:

Remove to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

5. Fire Fighting Measures

General Information:

In the event of a fire, wear full protective clothing and NIOSH (approved or equivalent), and full protective gear. Not flammable, but reacts with most metals to form flammable hydrogen gas. Cool tanks with water spray until well after fire is out.

Fire and Explosion Hazards: May release toxic gases

Extinguishing Media: Use extinguishing agents appropriate for surrounding fires.

Fire Fighting: Keep unnecessary people away, isolate hazard area and deny entry. Wear NIOSH approved positive-pressure self-contained breathing apparatus. Move container from fire area if it can be done without risk. Avoid inhalation of material or combustion by-products, Stay upwind and keep out of low areas. Cool containers with water.

Hazardous Combustion Products:

Thermal decomposition products or combustion: hydrogen chloride

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in section 8. Isolate hazard area. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e.g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer. US regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities.

If release occurs in the U.S. and is reportable under CERCLA Section 103, notify the National Response Center at (800)424-8802 (USA) or (202)426-2675 (USA)

7. Handling and Storage

Handling:

Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use with adequate ventilation. Do not get on skin or in eyes. Do not ingest or inhale.

Storage:

Keep away from heat and flame. Keep out of direct sunlight. Store in a cool, dry, well-ventilated area away from incompatible substances.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

OSHA Permissible Exposure Limit (PEL): 5 ppm Ceiling ACGIH Threshold Limit Value (TLV): 5 ppm Ceiling

Ventilation System:

Use closed systems when possible. Provide local exhaust ventilation where vapor or mist may be generated. Ensure compliance with applicable exposure limits.

Personal Protective Equipment

Skin Protection:

Wear impervious protective clothing, including boots, gloves, suitable chemical splash protection (i.e., rubber overalls and jacket buttoned to the collar), as appropriate to prevent skin contact.

Eye Protection:

Use chemical safety goggles and full face shield where splashing is possible. Maintain eye wash fountain and quick drench facilities (safety shower) in immediate work area.

Personal Respirators: (NIOSH Approved):

For emergencies or instances where the exposure levels are not known, use a full-face piece positive-pressure, air supplied respirator. WARNING: Air purifying respirators do not protect workers in oxygen-deficient atmospheres.

9. Physical and Chemical Properties (Hydrochloric Acid)

Physical State: liquid Appearance: clear Color: colorless Odor: pungent odor

Molecular Weight: 36.46 Molecular Formula: HCI

Boiling Point: 140-221 F (60.0-105 C) Freezing Point: -29 to 5 F (-34 to -15 C) Vapor Pressure: 14.6-80 mmHg @ 20 C Vapor Density: (air=1): 1.3 @ 20 C Specific Gravity (water=1): 1.05-1.18

Bulk Density: 8.75-9.83 lbs/gal

Water Solubility: 100% PH: 2 (.02% solution) Volatility: 9-36% by volume

Oder Threeholds 0.2 mm (courses o

Odor Threshold: 0.3 ppm (causes of factory fatigue)

Evaporation Rate: <1.00 (butyl acetate=1)

Coefficient of water/oil distribution: Not available

10. Stability and Reactivity

Chemical Stability:

Stable under normal temperatures and pressures. Containers may burst when heated.

Hazardous Decomposition Products:

When heated to decomposition emits toxic hydrogen chloride fumes and will react with water or steam to produce heat and toxic and corrosive fumes. Thermal oxidative decomposition produces toxic chlorine fumes and explosive hydrogen gas.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

A strong mineral acid, concentrated hydrochloric acid is incompatible with many substances and highly reactive with strong bases, metals, metal oxides, hydroxides, amines, carbonates and other alkaline materials. Incompatible with materials such as cyanides, sulfides, sulfites and formaldehyde.

Conditions to Avoid:

Avoid heat, flames, sparks and other sources of ignition. Contact with water may produce a strong exothermic reaction with spattering. Contact with metals may evolve flammable hydrogen gas. Hydrogen chloride may react with cyanide, forming lethal concentrations of hydrocyanic acid.

11. Toxicological Information

Inhalation rat LC50: 3124 ppm/1H; oral rabbit LD50: 900mg/kg (Hydrochloric acid concentrated); investigated as a tumorigen, mutagen, reproductive effector.

Cancer Lists

	-NTP Carcinogen-						
Ingredient	Known	Anticipated	IARC	Category			
Hydrogen Chloride (7647-01-0	No	No		3			
Water	No	No		None			

12. Ecological Information

Environmental Fate:

When released into the soil, this material is not expected to be biodegrade. When released into the soil, this material may leak into groundwater.

Environmental Toxicity:

This material is expected to be toxic to aquatic life.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Reuse or reprocess if possible. Dispose in accordance with all applicable regulations. Subject to disposal regulations: U.S. EPA 40 CFR 262. Hazardous Waste Number(s): D002

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: Hydrochloric Acid

UN/NA: UN1789 Hazard Class: 8 Packing Group: II

Information reported for product/size: 475LB

International (Water, I.M.O.)

Proper Shipping name: Hydrochloric Acid

UN/NA: UN1789 Hazard Class: 8 Packing Group: II

Information reported for product/size: 475LB

15. Regulatory Information

U.S. Regulations:

CERCLA sections 102a/103 hazardous substances (40 CFR 302.4): Hydrogen Chloride (Hydrochloric Acid): 5000 LBS RQ (liquid)

Chlorine: 10 LBS RQ

Sara Title III Section 302 extremely hazardous substances (40 CFR 355.30):

Hydrogen Chloride (Hydrochloric Acid): 500LBS TPQ (gas)

Sara Title III section 311/312 hazardous categories (40 CFR 370.21):

Acute: Yes Chronic: No Fire: No Reactive: No

Sudden Release: No

Sara Title III section 313 (40 CFR 372.65):

Hydrogen Chloride (Hydrochloric Acid): aerosol form only

This product contains a toxic chemical subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR 372. Refer to Section 3.

OSHA Process safety (29CFR1910.1190:

Hydrogen Chloride (Hydrochloric Acid): 5000 LBS TQ (gas)

Chlorine: 1500 LBS TQ

FDA: This material has Generally Recognized as Safe (GRAS) status under specific FDA regulations. Additional information is available from the Code of Federal Register (CFR) which is accessible on the FDA's website.

State Regulations:

California Proposition 65: This product may contain contaminants known to the State of California to cause cancer or reproductive toxicity as listed under Proposition 65 State Drinking Water and Toxic Enforcement Act. For additional information, contact Customer Service.

16. Other Information

NFPA Ratings:

Health: 3 Flammability: 0 Reactivity: 0

Label Hazard Warning:

POISON! DANGER! CORROSIVE LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED, INHALATION MAY CAUSE LUNG DAMAGE.

Label Precautions:

Do not get in eyes, on skin, or on clothing.
Do not breathe vapor or mist.
Use only with adequate ventilation.
Wash thoroughly after handling.
Store in a tightly closed container.
Remove and wash contaminated clothing promptly.

Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If swallowed, **DO NOT INDUCE VOMITING** Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In all cases get medical attention immediately.

Product Use:

Chemical intermediate; oil & gas well acidizing; pH control; water treatment; steel pickling and metal cleaning; ore reduction; food processing.

Cooper Natural Resources Chemical Division, Inc. ("CNR") provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose.

CNR makes no representations or warranties, either expressed or implied, including without limitation any warranties of merchantability, fitness for a particular purpose with respect to the information set forth herein or the product to which the information refers. Accordingly, CNR will not be responsible for damages resulting from use of or reliance upon this information.

SAFETY DATA SHEET

CAUSTIC SODA LIQUID (ALL GRADES)

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.: 08

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Company Identification:

Occidental Chemical Corporation

5005 LBJ Freeway P.O. Box 809050 Dallas, Tx 75380-9050

24 Hour Emergency Telephone

Number:

1-800-733-3665 or 1-972-404-3228 (U.S.); 32.3.575.55.55 (Europe);

1800-033-111 (Australia)

To Request an MSDS: Customer Service:

MSDS@oxy.com or 1-972-404-3245 1-800-752-5151 or 1-972-404-3700

Trade Name:

Caustic Soda Diaphragm Grade 10%, 15%, 18%, 20%, 25%, 30%, 35%, 40%, 50%, Caustic Soda Rayon Grade 18%, 20%, 25%, 30%, 50%, 50% Caustic Soda Rayon Grade OS, Caustic Soda Membrane 6%, 18%, 20%, 25%, 30%, 48%, 50%, 50% Caustic Soda Membrane OS, 50% Caustic Soda Diaphragm OS, Caustic Soda Low Salt 50%, 25% Caustic Soda Purified, 50% Caustic Soda Purified, 50% Caustic Soda Purified OS, Caustic Soda Liquid 70/30, Membrane Blended, 50% Caustic Soda Membrane (Northeast), 50% Caustic Soda Diaphragm (West Coast), 50% Blended

Rayon Grade Blended, Membrane Cell Liquor

Synonyms:

Sodium hydroxide solution, Liquid Caustic, Lye Solution, Caustic, Lye, Soda Lye

Product Use:

Metal finishing, Cleaner, Process chemical, Petroleum industry

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW:

Color:

Odor:

Colorless to slightly colored

Physical State:

Liquid

Signal Word:

Odorless Danger

Print date: 05/29/2009 Page: 1 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

MAJOR HEALTH HAZARDS: CORROSIVE. CAUSES BURNS TO THE RESPIRATORY TRACT, SKIN, EYES AND GASTROINTESTINAL TRACT. CAUSES PERMANENT EYE DAMAGE.

PHYSICAL HAZARDS: CORROSIVE. Mixing with water, acid or incompatible materials may cause splattering and release of heat.

ECOLOGICAL HAZARDS: Keep out of water supplies and sewers. This material is alkaline and may raise the pH of surface waters. This material has exhibited moderate toxicity to aquatic organisms.

PRECAUTIONARY STATEMENTS: Avoid breathing vapors or mist. Avoid contact with skin, eyes and clothing. Keep container tightly closed. Wash thoroughly after handling. Use only with adequate ventilation.

POTENTIAL HEALTH EFFECTS:

Inhalation: May cause irritation (possibly severe), chemical burns, and pulmonary edema.

Skin contact: May cause irritation (possibly severe) and chemical burns.

Eye contact: May cause irritation (possibly severe), chemical burns, eye damage, and blindness.

Ingestion: May cause irritation (possibly severe), chemical burns, nausea, and vomiting.

Target Organs Effected: Respiratory System, Skin, Eye

Medical Conditions Aggravated by Exposure: Asthma, Respiratory disorders

See Section 11: TOXICOLOGICAL INFORMATION

3. COMPOSITION/INFORMATION ON INGREDIENTS

Hazardous Component	Concentration (by weight %)	CAS - No.
Water	48.5 - 94.5	7732-18-5
Sodium hydroxide	5.5 - 51.5	1310-73-2
Sodium chloride (NaCl)	1 - 5	7647-14-5

4. FIRST AID MEASURES

Inhalation: If adverse effects occur, remove to uncontaminated area. Give artificial respiration if not breathing. If breathing is difficult, oxygen should be administered by qualified personnel. If respiration or pulse has stopped, have a trained person administer basic life support (Cardio-Pulmonary Resuscitation/Automatic External Defibrillator) and CALL FOR EMERGENCY SERVICES IMMEDIATELY.

Skin Contact: Immediately flush contaminated areas with water. Remove contaminated clothing, jewelry, and shoes immediately. Wash contaminated areas with soap and water. Thoroughly clean and dry contaminated clothing before reuse. Discard contaminated leather goods. GET MEDICAL ATTENTION IMMEDIATELY.

Print date: 05/29/2009 Page: 2 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

4. FIRST AID MEASURES

Eye Contact: Immediately flush eyes with a directed stream of water for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissues. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY.

Ingestion: Never give anything by mouth to an unconscious or convulsive person. If swallowed, do not induce vomiting. Give large amounts of water. If vomiting occurs spontaneously, keep airway clear. Give more water when vomiting stops. GET MEDICAL ATTENTION IMMEDIATELY.

Notes to Physician: The absence of visible signs or symptoms of burns does NOT reliably exclude the presence of actual tissue damage. Probable mucosal damage may contraindicate the use of gastric lavage.

5. FIRE-FIGHTING MEASURES

Fire Hazard: Negligible fire hazard.

Extinguishing Media: Use media appropriate for surrounding fire

Fire Fighting: Move container from fire area if it can be done without risk. Cool containers with water. Avoid contact with

skin.

Sensitivity to Mechanical Impact: Not sensitive.

Sensitivity to Static Discharge: Not sensitive.

Flash point: Not flammable

6. ACCIDENTAL RELEASE MEASURES

Occupational Release:

Wear appropriate personal protective equipment recommended in Section 8 of the MSDS. Completely contain spilled material with dikes, sandbags, etc. Shovel dry material into suitable container. Liquid material may be removed with a vacuum truck. Remaining material may be diluted with water and neutralized with dilute acid, then absorbed and collected. Flush spill area with water, if appropriate. Keep product and flush water out of water supplies and sewers. This material is alkaline and may raise the pH of surface waters with low buffering capacity. Releases should be reported, if required, to appropriate agencies.

7. HANDLING AND STORAGE

Storage Conditions: Store and handle in accordance with all current regulations and standards. Keep container tightly closed and properly labeled. Do not store in aluminum container or use aluminum fittings or transfer lines, as flammable hydrogen gas may be generated. Keep separated from incompatible substances.

Print date: 05/29/2009 Page: 3 of 8

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.: 08

7. HANDLING AND STORAGE

Handling Procedures: Avoid breathing vapor or mist. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling. When mixing, slowly add to water to minimize heat generation and spattering.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

OSHA Regulatory Exposure limit(s):

Hazardous Component	CAS - No.	OSHA Final PEL TWA	OSHA Final PEL STEL	OSHA Final PEL Ceiling
Sodium hydroxide	1310-73-2	2 mg/m ³		

Non-Regulatory Exposure Limit(s):

The Non-Regulatory OSHA limits shown in the table are the Vacated 1989 PEL's (vacated by 58 FR 35338, June 30, 1993).

The Non-Regulatory Cortix little	3 3110W11 111 ti	ic table are	ile vacated	303 I EE 3 (V	acated by oc	7 1 10 00000, 00	anc 50, 1555/.
Hazardous Component	CAS - No.	ACGIH	ACGIH	ACGIH	OSHA	OSHA	OSHA Ceiling
		TWA	STEL	Ceiling	TWA	STEL	(Vacated)
					(Vacated)	(Vacated)	
Sodium hydroxide	1310-73-2			2 mg/m³			2 mg/m ³

ENGINEERING CONTROLS: Provide local exhaust ventilation where dust or mist may be generated. Ensure compliance with applicable exposure limits.

PERSONAL PROTECTIVE EQUIPMENT:

Eye Protection: Wear chemical safety goggles with a faceshield to protect against eye and skin contact when appropriate. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin and Body Protection: Wear chemical resistant clothing and rubber boots when potential for contact with the material exists. Contaminated clothing should be removed, then discarded or laundered.

Hand Protection: Wear appropriate chemical resistant gloves

Protective Material Types: Natural rubber, Neoprene, Nitrile

Hazardous Component	Immediately Dangerous to Life/ Health (IDLH)
Sodium hydroxide	10 mg/m ³ IDLH

Respiratory Protection: A NIOSH approved respirator with N95 (dust, fume, mist) cartridges may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits, or when symptoms have been observed that are indicative of overexposure. If eye irritation occurs, a full face style mask should be used. A respiratory protection program that meets 29 CFR 1910.134 must be followed whenever workplace conditions warrant use of a respirator.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State:

Liquid

Appearance:

Clear to opaque

Color:

Colorless to slightly colored

Odor:

Odorless

Boiling Point/Range:

230 - 291 F (110 - 144 C)

Print date: 05/29/2009 Page: 4 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

9. PHYSICAL AND CHEMICAL PROPERTIES

Freezing Point/Range:

-26 to 59 F (-32 to 15 C)

Vapor Pressure:

13 - 135 mmHg @ 60 C

Vapor Density (air=1):

No data available

Specific Gravity (water=1):

1.11 - 1.53 @ 15.6 C

Water Solubility:

100%

pH: Volatility: 14.0 (7.5% solution) No data available

Evaporation Rate (ether=1):

No data available

Partition Coefficient (n-

No data available

octanol/water):

10. STABILITY AND REACTIVITY

Reactivity/ Stability:

Stable at normal temperatures and pressures.

Conditions to Avoid:

Mixing with water, acid or incompatible materials may cause splattering and release of large amounts of heat. Will react with some metals forming flammable hydrogen gas. Carbon monoxide gas may form upon contact with reducing sugars, food and

beverage products in enclosed spaces.

Incompatibilities/

Materials to Avoid:

Acids, Halogenated compounds, Prolonged contact with aluminum, brass, bronze,

copper, lead, tin, zinc or other alkali sensitive metals or alloys

Hazardous Decomposition

Products:

Toxic fumes of sodium oxide

Hazardous Polymerization:

Will not occur

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA:

Hazardous Component	is Component LD50 Oral		LD50 Dermal	
Sodium hydroxide	Not listed	Not listed	1350 mg/kg (Rabbit)	
Sodium chloride (NaCl)	3 g/kg (Rat)	42 g/m ³ (1 hr-Rat)	10 g/kg (Rabbit)	

TOXICITY:

The severity of the tissue damage is a function of its concentration, the length of tissue contact time, and local tissue conditions. After exposure there may be a time delay before irritation and other effects occur. This material is a strong irritant and is corrosive to the skin, eyes, and mucous membranes. This material may cause severe burns and permanent damage to any tissue with which it comes into contact. Inhalation will cause severe irritation, possible burns with pulmonary edema, which may lead to pneumonitis. Skin contact with this material may cause severe irritation and corrosion of tissue. Repeated exposure may cause dermatitis. Eye contact can cause severe irritation, corrosion with possible corneal damage and blindness. Ingestion may cause irritation, corrosion/ulceration, nausea, and vomiting.

CARCINOGENICITY: This product is not classified as a carcinogen by NTP, IARC or OSHA.

Print date: 05/29/2009 Page: 5 of 8

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.:08

12. ECOLOGICAL INFORMATION

AQUATIC TOXICITY: This material has exhibited moderate toxicity to aquatic organisms. Data provided are for sodium hydroxide.

Freshwater Fish Data:

LC50 brook trout: 25 ppm/24 hr LC50 king salmon: 48 ppm **Invertebrate Toxicity Data:** EC50 daphnia magna: 100 ppm EC50 shrimp: 33 - 100 ppm/48 hr EC50 cockle: 330 - 1000 ppm/48 hr

BIODEGRADATION: This material is inorganic and not subject to biodegradation.

PERSISTENCE: This material is alkaline and may raise the pH of surface waters with low buffering capacity. This material is believed to exist in the disassociated state in the environment.

BIOCONCENTRATION: This material is not expected to bioconcentrate in organisms.

ADDITIONAL ECOLOGICAL INFORMATION: This material has exhibited slight toxicity to terrestrial organisms.

13. DISPOSAL CONSIDERATIONS

Reuse or reprocess, if possible. Dispose in accordance with all applicable regulations. May be subject to disposal regulations: U.S. EPA 40 CFR 261. Hazardous Waste Number(s): D002

14. TRANSPORT INFORMATION

U.S.DOT 49 CFR 172.101:

PROPER SHIPPING NAME:

Sodium Hydroxide Solution

DOT UN NUMBER:

UN1824

HAZARD CLASS/ DIVISION:

8

PACKING GROUP:

11

LABELING REQUIREMENTS:

R

DOT RQ (lbs):

RQ 1000 lbs. (Sodium Hydroxide)

CANADIAN TRANSPORTATION OF DANGEROUS GOODS:

SHIPPING NAME:

Sodium hydroxide solution

UN NUMBER: CLASS:

UN1824

PACKING/RISK GROUP:

П

Print date: 05/29/2009

Page: 6 of 8

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.:08

15. REGULATORY INFORMATION

U.S. REGULATIONS

OSHA REGULATORY STATUS:

This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200) (US).

CERCLA SECTIONS 102a/103 HAZARDOUS SUBSTANCES (40 CFR 302.4):

If a release is reportable under CERCLA section 103, notify the state emergency response commission and local emergency planning committee. In addition, notify the National Response Center at (800) 424-8802 or (202) 426-2675.

Hazardous Component	CERCLA Reportable Quantities:
Sodium hydroxide	1000 lb (final RQ)

- EPCRA EXTREMELY HAZARDOUS SUBSTANCES (40 CFR 355.30): No components are listed.
- EPCRA SECTIONS 311/312 HAZARD CATEGORIES (40 CFR 370.21):

Acute Health Hazard

- EPCRA SECTION 313 (40 CFR 372.65): No components are listed.
- OSHA PROCESS SAFETY (29 CFR 1910.119): Not regulated

NATIONAL INVENTORY STATUS

- U.S. INVENTORY STATUS (TSCA): All components are listed or exempt
- TSCA 12(b): This product is not subject to export notification

CANADIAN DOMESTIC SUBSTANCE LIST (DSL/NDSL): All components are listed.

STATE REGULATIONS

California Proposition 65: This product is not listed, but it may contain contaminants known to the State of California to cause cancer or reproductive toxicity as listed under Proposition 65 State Drinking Water and Toxic Enforcement Act. For additional information, contact OxyChem Customer Service.

Hazardous Component	Sodium hydroxide
California Proposition 65 Cancer WARNING:	Not Listed
California Proposition 65 CRT List - Male reproductive toxin:	Not Listed
California Proposition 65 CRT List - Female reproductive	toxin: Not Listed
Massachusetts Right to Know Hazardous Substance Lis	Listed
New Jersey Right to Know Hazardous Substance List	Listed
New Jersey Special Health Hazards Substance List	Listed
Pennsylvania Right to Know Hazardous Substance List	Listed
Pennsylvania Right to Know Environmental Hazard List	Listed
Rhode Island Right to Know Hazardous Substance List	Listed

Print date: 05/29/2009 Page: 7 of 8

ANALYTICAL REPORT

Lab Number: L1806948

Client: Vertex Environmental Services, Inc.

100 North Washington Street

Suite 302

Boston, MA 02114

ATTN: Jesse Freeman Phone: (781) 952-6000

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 Report Date: 11/14/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11141815:08

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date:

11/14/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1806948-01	VES-G-418(MW)	WATER	CAMBRIDGE, MA	02/28/18 10:25	02/28/18

Serial_No:11141815:08

L1806948

Project Name: CAMBRIDGE CROSSING G Lab Number:

Project Number: 35663 Report Date: 11/14/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 80	0-624	-9220	with	any	question	ıs.

Serial_No:11141815:08

Project Name:CAMBRIDGE CROSSING GLab Number:L1806948Project Number:35663Report Date:11/14/18

Case Narrative (continued)

Report Revision

November 14, 2018: The Semivolatile Organics analyte list has been amended on L1806948-01.

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 11/14/18

Nails

ALPHA

ORGANICS

VOLATILES

L1806948

11/14/18

Project Name: CAMBRIDGE CROSSING G

L1806948-01

VES-G-418(MW)

CAMBRIDGE, MA

Project Number: 35663

SAMPLE RESULTS

Date Collected: 02/28/18 10:25

Lab Number:

Report Date:

Date Received: 02/28/18
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water
Analytical Method: 1,8260C
Analytical Date: 03/06/18 10:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	1.5		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	1.0		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	1.0		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Acetone	9.2		ug/l	5.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Project Name: Lab Number: CAMBRIDGE CROSSING G L1806948

Project Number: Report Date: 35663 11/14/18

SAMPLE RESULTS

Lab ID: L1806948-01 Date Collected: 02/28/18 10:25

Date Received: Client ID: VES-G-418(MW) 02/28/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	105	70-130	

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

Lab ID: L1806948-01 Date Collected: 02/28/18 10:25

Client ID: VES-G-418(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/06/18 10:29

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - West	borough Lab						
1,4-Dioxane	ND		ug/l	3.0		1	

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

03/05/18 12:54

Lab ID: L1806948-01 Date Collected: 02/28/18 10:25

Client ID: VES-G-418(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 03/05/18 10:19

Analytical Date: 03/05 Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

L1806948

Project Name: CAMBRIDGE CROSSING G Lab Number:

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 03/05/18 11:50 Extraction Date: 03/05/18 10:19

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westboro	ugh Lab for	sample(s):	01	Batch: WG1094	492-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1094887-5	
1,4-Dioxane	ND		ug/l		3.0		

Project Name: CAMBRIDGE CROSSING G **Lab Number:** L1806948

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier Unit	ts F	RL MDL	
Volatile Organics by GC/MS -	Westborough Lal	o for sample(s):	01 Bato	h: WG1094892	?-5
Methylene chloride	ND	ug	ı/l 3	3.0	
1,1-Dichloroethane	ND	ug	ı/l 0.	.75	
Carbon tetrachloride	ND	ug	ı/l 0.	.50	
1,1,2-Trichloroethane	ND	ug	y/I 0.	.75	
Tetrachloroethene	ND	ug	y/I 0.	.50	
1,2-Dichloroethane	ND	ug	y/I 0.	.50	
1,1,1-Trichloroethane	ND	ug	y/I 0.	.50	
Benzene	ND	ug	y/I 0.	.50	
Toluene	ND	ug	y/I 0.	.75	
Ethylbenzene	ND	ug	y/I 0.	.50	
Vinyl chloride	ND	ug	ı/l 1	.0	
1,1-Dichloroethene	ND	ug	y/I 0.	.50	
Trichloroethene	ND	ug	y/I 0.	.50	
1,2-Dichlorobenzene	ND	ug	y/l 2	2.5	
1,3-Dichlorobenzene	ND	ug	_J /I 2	2.5	
1,4-Dichlorobenzene	ND	ug	y/l 2	2.5	
Methyl tert butyl ether	ND	ug	ı/l 1	.0	
p/m-Xylene	ND	ug	ı/l 1	.0	
o-Xylene	ND	ug	ı/l 1	.0	
Xylenes, Total	ND	ug	y/l 1	.0	
cis-1,2-Dichloroethene	ND	ug	ı/l 0.	.50	
Acetone	ND	ug	ı/l 5	5.0	
Tert-Butyl Alcohol	ND	ug	ı/l 1	10	
Tertiary-Amyl Methyl Ether	ND	ug	ı/l 2	2.0	

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sampl	e(s): 01	Batch: W	G1094892-5	

		Acceptance	
Surrogate	%Recovery	Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	103	70-130	

Project Name: CAMBRIDGE CROSSING G

Lab Number:

L1806948

Project Number: 35663

Report Date:

11/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1094	1492-2					
1,2-Dibromoethane	90		-		80-120	-			Α

Project Name: CAMBRIDGE CROSSING G Lab Number:

L1806948

Project Number: 35663

Report Date:

11/14/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS-SIM - Westbe	orough Lab Associat	ed sample(s):	01 Batch:	WG1094887-3	WG1094887-4			
1,4-Dioxane	100		110		70-130	10		25

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number: L1806948

Report Date: 11/14/18

Parameter	LCS %Recovery	LCSD Qual %Recov		%Recovery Limits	RPD	RPD Qual Limits	;
Volatile Organics by GC/MS - Westbor	ough Lab Associated sa	mple(s): 01 Batch:	WG1094892-3 W	G1094892-4			
Methylene chloride	110	110		70-130	0	20	
1,1-Dichloroethane	100	100		70-130	0	20	
Carbon tetrachloride	100	110		63-132	10	20	
1,1,2-Trichloroethane	100	110		70-130	10	20	
Tetrachloroethene	91	99		70-130	8	20	
1,2-Dichloroethane	100	100		70-130	0	20	
1,1,1-Trichloroethane	100	100		67-130	0	20	
Benzene	100	100		70-130	0	25	
Toluene	93	99		70-130	6	25	
Ethylbenzene	92	96		70-130	4	20	
Vinyl chloride	100	110		55-140	10	20	
1,1-Dichloroethene	100	110		61-145	10	25	
Trichloroethene	100	110		70-130	10	25	
1,2-Dichlorobenzene	93	96		70-130	3	20	
1,3-Dichlorobenzene	98	98		70-130	0	20	
1,4-Dichlorobenzene	94	92		70-130	2	20	
Methyl tert butyl ether	100	110		63-130	10	20	
p/m-Xylene	95	100		70-130	5	20	
o-Xylene	90	95		70-130	5	20	
cis-1,2-Dichloroethene	98	100		70-130	2	20	
Acetone	130	130		58-148	0	20	
Tert-Butyl Alcohol	108	108		70-130	0	20	
Tertiary-Amyl Methyl Ether	100	100		66-130	0	20	

Project Name: CAMBRIDGE CROSSING G Lab Number:

L1806948

Project Number: 35663

Report Date:

11/14/18

LCS **LCSD** %Recovery RPD %Recovery %Recovery Limits Limits **Parameter** Qual Qual RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1094892-3 WG1094892-4

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	104	70-130
Toluene-d8	99	101	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	104	99	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date:

11/14/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	d sample(s): 01	1 QC Batch	ID: WG10	94492-3	QC Sample:	L18069	48-01 Clie	ent ID: `	VES-G-4	118(MW)	
1,2-Dibromoethane	ND	0.254	0.270	106		-	-		80-120	-		20	А

SEMIVOLATILES

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

Lab ID: L1806948-01 Date Collected: 02/28/18 10:25

Client ID: VES-G-418(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 03/01/18 01:42

Analyst: TT

03/06/18 04:46

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - 1	Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Phenol	ND		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	73		21-120	
Phenol-d6	58		10-120	
Nitrobenzene-d5	126	Q	23-120	
2-Fluorobiphenyl	111		15-120	
2,4,6-Tribromophenol	114		10-120	
4-Terphenyl-d14	103		41-149	

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

Lab ID: L1806948-01 Date Collected: 02/28/18 10:25

Client ID: VES-G-418(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 03/01/18 01:46
Analytical Date: 03/02/18 17:21

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	S-SIM - Westborough La	ab					
Acenaphthene	2.1		ug/l	0.10		1	
Fluoranthene	0.56		ug/l	0.10		1	
Naphthalene	2.2		ug/l	0.10		1	
Benzo(a)anthracene	0.10		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	0.28		ug/l	0.10		1	
Anthracene	0.41		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	1.4		ug/l	0.10		1	
Phenanthrene	0.11		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	0.44		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	62		21-120	
Phenol-d6	54		10-120	
Nitrobenzene-d5	111		23-120	
2-Fluorobiphenyl	126	Q	15-120	
2,4,6-Tribromophenol	118		10-120	
4-Terphenyl-d14	116		41-149	

L1806948

Lab Number:

Project Name: CAMBRIDGE CROSSING G

1,8270D

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Batch Quality Contro

Analytical Date: 03/04/18 18:15 Analyst: PS

Analytical Method:

Extraction Method: EPA 3510C Extraction Date: 02/28/18 16:16

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01	Batch:	WG1093149-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		
Phenol	ND		ug/l		5.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	82	10-120
4-Terphenyl-d14	98	41-149

L1806948

Lab Number:

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date:

03/04/18 11:55

Analyst: KL Extraction Method: EPA 3510C 02/28/18 16:16 Extraction Date:

arameter	Result	Qualifier	Units	RL	1	MDL
semivolatile Organics by GC/M	S-SIM - Westbo	orough Lab f	or sample(s)	: 01	Batch:	WG1093150-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	83	10-120
4-Terphenyl-d14	83	41-149

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

Lab Number: L1806948

Report Date: 11/14/18

	LCS	LCSD	g	%Recovery			RPD
Parameter	%Recovery Qual	%Recovery	Qual	Limits	RPD	Qual	Limits
Semivolatile Organics by GC/MS - V	Vestborough Lab Associated sample	(s): 01 Batch:	WG1093149-2	WG1093149-3			
Bis(2-ethylhexyl)phthalate	96	96		40-140	0		30
Butyl benzyl phthalate	96	92		40-140	4		30
Di-n-butylphthalate	92	87		40-140	6		30
Di-n-octylphthalate	100	100		40-140	0		30
Diethyl phthalate	88	86		40-140	2		30
Dimethyl phthalate	100	95		40-140	5		30
Phenol	40	38		12-110	5		30

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	51	47	21-120
Phenol-d6	40	38	10-120
Nitrobenzene-d5	92	89	23-120
2-Fluorobiphenyl	86	85	15-120
2,4,6-Tribromophenol	84	83	10-120
4-Terphenyl-d14	81	78	41-149

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number: L1806948

Report Date: 11/14/18

rameter	LCS %Recovery Qua	LCSD I %Recovery Q	%Recovery ual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM	- Westborough Lab Associate	d sample(s): 01 Batch: \	WG1093150-2 WG1093	150-3	
Acenaphthene	71	68	40-140	4	40
Fluoranthene	75	72	40-140	4	40
Naphthalene	64	63	40-140	2	40
Benzo(a)anthracene	73	71	40-140	3	40
Benzo(a)pyrene	80	78	40-140	3	40
Benzo(b)fluoranthene	79	78	40-140	1	40
Benzo(k)fluoranthene	83	82	40-140	1	40
Chrysene	76	74	40-140	3	40
Acenaphthylene	74	72	40-140	3	40
Anthracene	76	73	40-140	4	40
Benzo(ghi)perylene	78	77	40-140	1	40
Fluorene	77	74	40-140	4	40
Phenanthrene	72	70	40-140	3	40
Dibenzo(a,h)anthracene	84	82	40-140	2	40
Indeno(1,2,3-cd)pyrene	81	80	40-140	1	40
Pyrene	74	72	40-140	3	40
Pentachlorophenol	79	75	40-140	5	40

Project Name: CAMBRIDGE CROSSING G Lab Number:

L1806948

Project Number: 35663

Report Date:

11/14/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1093150-2 WG1093150-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	45	46	21-120
Phenol-d6	33	33	10-120
Nitrobenzene-d5	71	71	23-120
2-Fluorobiphenyl	69	68	15-120
2,4,6-Tribromophenol	85	81	10-120
4-Terphenyl-d14	74	72	41-149

PCBS

Project Name: CAMBRIDGE CROSSING G **Lab Number:** L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

 Lab ID:
 L1806948-01
 Date Collected:
 02/28/18 10:25

 Client ID:
 VES-G-418(MW)
 Date Received:
 02/28/18

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 03/01/18 01:56
Analytical Date: 03/02/18 10:06 Cleanup Method: EPA 3665A

Analytical Date: 03/02/18 10:06 Cleanup Method: EPA 3665A
Analyst: JW Cleanup Date: 03/01/18
Cleanup Method: EPA 3660B

Cleanup Date: 03/02/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	А
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ua/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	110		30-150	Α
Decachlorobiphenyl	102		30-150	Α

L1806948

Lab Number:

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 03/01/18 05:56

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 02/28/18 04:27
Cleanup Method: EPA 3665A
Cleanup Date: 02/28/18
Cleanup Method: EPA 3660B
Cleanup Date: 02/28/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01 Batch:	WG1092967	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		Acceptance	e
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	99	30-150	Α
Decachlorobiphenyl	99	30-150	Α

Project Name:

CAMBRIDGE CROSSING G

Project Number: 35663 Lab Number:

L1806948

Report Date:

11/14/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab Associa	ted sample(s)	: 01 Batch:	WG1092967	-2				
Aroclor 1016	93		-		30-150	-		30	А
Aroclor 1260	95		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual %	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	102 93				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date:

11/14/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	/ Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD Qu	RPD ual Limits (Column
Polychlorinated Biphenyls by G	GC - Westbor	ough Lab	Associated sam	nple(s): 01	QC Batch II	D: WG1092	2967-3 Q	C Sample	e: L1800002-0)1 Client II	D: MS Sample	е
Aroclor 1016	ND	3.12	3.00	96		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.83	91		-	-		40-127	-	30	Α

	MS	MSD	Acceptance		
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column	
2,4,5,6-Tetrachloro-m-xylene	104		30-150	А	
Decachlorobiphenyl	74		30-150	Α	

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 Lab Number:

L1806948

11/14/18 Report Date:

Parameter	Native Sample Duplicate Sample		le Units	RPD	Qual	RPD Limits		
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1092967-4	QC Sample:	L1800002-01	Client ID:	DUP	
Aroclor 1016	ND	ND	ug/l	NC		30	Α	
Aroclor 1221	ND	ND	ug/l	NC		30	Α	
Aroclor 1232	ND	ND	ug/l	NC		30	Α	
Aroclor 1242	ND	ND	ug/l	NC		30	Α	
Aroclor 1248	ND	ND	ug/l	NC		30	Α	
Aroclor 1254	ND	ND	ug/l	NC		30	Α	
Aroclor 1260	ND	ND	ug/l	NC		30	Α	

			Acceptance	
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	95	107	30-150	А
Decachlorobiphenyl	83	88	30-150	Α

METALS

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

Lab ID:L1806948-01Date Collected:02/28/18 10:25Client ID:VES-G-418(MW)Date Received:02/28/18Sample Location:CAMBRIDGE, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	resuit	Qualifici	Onito		IIIDL		· · · · · · · · · · · · · · · · · · ·	<u> </u>			Allalyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00377		mg/l	0.00100		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Chromium, Total	0.00379		mg/l	0.00100		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Copper, Total	0.00746		mg/l	0.00100		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Iron, Total	2.52		mg/l	0.050		1	03/01/18 15:40	03/06/18 15:20	EPA 3005A	19,200.7	LC
Lead, Total	0.01167		mg/l	0.00100		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/01/18 10:43	03/01/18 19:14	EPA 245.1	3,245.1	EA
Nickel, Total	0.00458		mg/l	0.00200		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	AM
Zinc, Total	0.01490		mg/l	0.01000		1	03/01/18 15:40	03/02/18 13:01	EPA 3005A	3,200.8	АМ
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		03/02/18 13:01	NA	107,-	

L1806948

Lab Number:

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 **Report Date:** 11/14/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG10	93482-	-1				
Mercury, Total	ND	mg/l	0.00020		1	03/01/18 10:43	03/01/18 18:36	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Man	nsfield Lab for sample(s):	01 Batcl	h: WG10	093586-	1				
Iron, Total	ND	mg/l	0.050		1	03/01/18 15:40	03/06/18 13:22	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Bato	h: WG10	93588	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date:

11/14/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Reco / Qual Limi		Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1093482-2				
Mercury, Total	102	-	85-11	5 -		
Fotal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1093586-2				
Iron, Total	103	-	85-11	5 -		
otal Metals - Mansfield Lab Associated sample Antimony, Total	e(s): 01 Batch: \	WG1093588-2 -	85-11	5 -		
Antimony, Total	102	-	85-11	5 -		
Arsenic, Total	105	-	85-11	5 -		
Cadmium, Total	107	-	85-11	5 -		
Chromium, Total	100	-	85-11	5 -		
Copper, Total	102	-	85-11	5 -		
Lead, Total	99	-	85-11	5 -		
Nickel, Total	101	-	85-11	5 -		
Selenium, Total	111	-	85-11	5 -		
Silver, Total	100	-	85-11	5 -		
Zinc, Total	108	-	85-11	5 -		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number: L1806948

Report Date: 11/14/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery (MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD _{ual} Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093482-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00506	101	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093482-	5 QC Sample	: L1806885-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00494	99	-	-	70-130	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093586-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Iron, Total	0.918	1	2.04	112	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093588-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Antimony, Total	0.00577	0.5	0.5537	110	-	-	70-130	-	20
Arsenic, Total	0.00406	0.12	0.1372	111	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05827	114	-	-	70-130	-	20
Chromium, Total	0.00161	0.2	0.2141	106	-	-	70-130	-	20
Copper, Total	0.00407	0.25	0.2776	109	-	-	70-130	-	20
Lead, Total	0.00359	0.51	0.5508	107	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5397	108	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1382	115	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05410	108	-	-	70-130	-	20
Zinc, Total	0.03678	0.5	0.6062	114	-	-	70-130	-	20

L1806948

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

11/14/18 Report Date:

Lab Number:

Parameter	Native Sample Du	olicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1093482-4	QC Sample:	L1806885-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1093482-6	QC Sample:	L1806885-02	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1093586-4	QC Sample:	L1806885-01	Client ID:	DUP Sample	
Iron, Total	0.918	0.918	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1093588-4	QC Sample:	L1806885-01	Client ID:	DUP Sample	
Antimony, Total	0.00577	0.00593	mg/l	3		20
Arsenic, Total	0.00406	0.00410	mg/l	1		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.00161	0.00166	mg/l	3		20
Copper, Total	0.00407	0.00404	mg/l	1		20
Lead, Total	0.00359	0.00360	mg/l	0		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.03678	0.03753	mg/l	2		20

INORGANICS & MISCELLANEOUS

Project Name: CAMBRIDGE CROSSING G Lab Number: L1806948

Project Number: 35663 Report Date: 11/14/18

SAMPLE RESULTS

Lab ID:L1806948-01Date Collected:02/28/18 10:25Client ID:VES-G-418(MW)Date Received:02/28/18Sample Location:CAMBRIDGE, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	54.		mg/l	5.0	NA	1	-	03/02/18 11:30	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	02/28/18 22:52	03/01/18 10:06	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/28/18 23:30	121,4500CL-D	AS
Nitrogen, Ammonia	1.09		mg/l	0.075		1	03/01/18 02:00	03/01/18 22:22	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	03/01/18 17:00	03/01/18 21:45	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	03/02/18 13:29	03/02/18 19:42	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.010		1	03/01/18 01:13	03/01/18 02:01	1,7196A	UN
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	717.		mg/l	25.0		50	-	03/02/18 18:45	44,300.0	ED

L1806948

Lab Number:

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663 Report Date: 11/14/18

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93295-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/28/18 23:30	121,4500CL-D	AS
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93298-1				
Cyanide, Total	ND		mg/l	0.005		1	02/28/18 22:52	03/01/18 09:47	121,4500CN-CE	E LH
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93333-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	03/01/18 01:13	03/01/18 01:50	1,7196A	UN
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93343-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/01/18 02:00	03/01/18 22:03	121,4500NH3-B	H AT
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93620-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	03/01/18 17:00	03/01/18 21:45	74,1664A	ML
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	93770-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/02/18 11:30	121,2540D	JT
General Chemistry -	- Westborough Lab	for sam	nple(s): 01	Batch:	WG10	94008-1				
Phenolics, Total	ND		mg/l	0.030		1	03/02/18 14:45	03/02/18 19:33	4,420.1	BR
Anions by Ion Chror	matography - Westk	orough	Lab for sar	mple(s):	01 B	atch: WG1	094375-1			
Chloride	ND		mg/l	0.500		1	-	03/02/18 18:09	44,300.0	JR

Lab Control Sample Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date:

11/14/18

Parameter	LCS %Recovery	LCSD Qual %Recove		%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1093	3295-2				
Chlorine, Total Residual	101	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1093	3298-2				
Cyanide, Total	98	-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1093	3333-2				
Chromium, Hexavalent	97	-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1093	3343-2				
Nitrogen, Ammonia	101	-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1093	3620-2				
TPH	92	-		64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1094	4008-2				
Phenolics, Total	92	-		70-130	-		
Anions by Ion Chromatography - Westb	oorough Lab Associated	d sample(s): 01 Ba	tch: WG1094375-2	2			
Chloride	103	-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number:

L1806948

Report Date: 11/14/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery al Limits R	RPD PD Qual Limits
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093295-4	QC Sample: L180694	48-01 Client ID:	VES-G-418(MW)
Chlorine, Total Residual	ND	0.248	0.22	89	-	-	80-120	- 20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093298-4	QC Sample: L180688	35-01 Client ID:	MS Sample
Cyanide, Total	ND	0.2	0.210	105	-	-	90-110	- 30
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093333-4	QC Sample: L180694	48-01 Client ID:	VES-G-418(MW)
Chromium, Hexavalent	ND	0.1	0.093	93		-	85-115	- 20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093343-4	QC Sample: L180694	47-01 Client ID:	MS Sample
Nitrogen, Ammonia	28.4	4	33.2	120	-	-	80-120	- 20
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093620-4	QC Sample: L180672	25-01 Client ID:	MS Sample
TPH	9.80	20.4	26.1	80	-	-	64-132	- 34
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1094008-4	QC Sample: L180687	75-02 Client ID:	MS Sample
Phenolics, Total	ND	0.4	0.38	96	-	-	70-130	- 20
Anions by Ion Chromatograpl Sample	hy - Westboroug	jh Lab Asso	ciated sar	nple(s): 01 Q(C Batch ID: WG1	094375-3 QC Sam	ple: L1807170-02	2 Client ID: MS
Chloride	221	100	323	102	-	-	90-110	- 18

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number: L1806948

Report Date: 11/14/18

Parameter	Native Sample	Duplicate Samp	le Units RPI	Qual RPD Limits
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093295-3	QC Sample: L1806947-01	Client ID: DUP Sample
Chlorine, Total Residual	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093298-3	QC Sample: L1806885-01	Client ID: DUP Sample
Cyanide, Total	ND	0.007	mg/l NC	30
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093333-3	QC Sample: L1806948-01	Client ID: VES-G-418(MW)
Chromium, Hexavalent	ND	ND	mg/l NC	20
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093343-3 (QC Sample: L1806947-01	Client ID: DUP Sample
Nitrogen, Ammonia	28.4	28.4	mg/l 0	20
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093620-3	QC Sample: L1806725-01	Client ID: DUP Sample
TPH	9.80	8.50	mg/l 14	34
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1093770-2	QC Sample: L1807125-01	Client ID: DUP Sample
Solids, Total Suspended	86	86	mg/l 0	29
General Chemistry - Westborough Lab Associ	iated sample(s): 01 QC Batch ID:	WG1094008-3	QC Sample: L1806875-02	Client ID: DUP Sample
Phenolics, Total	ND	ND	mg/l NC	20
Anions by Ion Chromatography - Westborough Sample	Lab Associated sample(s): 01 Q	C Batch ID: WG10	094375-4 QC Sample: L	.1807170-02 Client ID: DUP
Chloride	221	221	mg/l 0	18

Project Name: CAMBRIDGE CROSSING G

Project Number: 35663

Lab Number: L1806948 **Report Date:** 11/14/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

С Absent

ormation		Initial	Final	Temp			Frozen	
Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
Vial HCI preserved	С	NA		4.2	Υ	Absent		8260-SIM(14),8260(14)
Vial HCl preserved	С	NA		4.2	Υ	Absent		8260-SIM(14),8260(14)
Vial HCl preserved	С	NA		4.2	Υ	Absent		8260-SIM(14),8260(14)
Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		504(14)
Vial Na2S2O3 preserved	С	NA		4.2	Υ	Absent		504(14)
Vial HCl preserved	С	NA		4.2	Υ	Absent		SUB-ETHANOL(14)
Vial HCl preserved	С	NA		4.2	Υ	Absent		SUB-ETHANOL(14)
Vial HCl preserved	С	NA		4.2	Υ	Absent		SUB-ETHANOL(14)
Plastic 250ml HNO3 preserved	С	<2	<2	4.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
Plastic 250ml NaOH preserved	С	>12	>12	4.2	Υ	Absent		TCN-4500(14)
Plastic 500ml H2SO4 preserved	С	<2	<2	4.2	Υ	Absent		NH3-4500(28)
Plastic 950ml unpreserved	С	7	7	4.2	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
Plastic 950ml unpreserved	С	7	7	4.2	Υ	Absent		TSS-2540(7)
Amber 950ml H2SO4 preserved	С	<2	<2	4.2	Υ	Absent		TPHENOL-420(28)
Amber 1000ml HCl preserved	С	NA		4.2	Υ	Absent		TPH-1664(28)
Amber 1000ml HCI preserved	С	NA		4.2	Υ	Absent		TPH-1664(28)
Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		PCB-608(7)
Amber 1000ml Na2S2O3	С	7	7	4.2	Υ	Absent		PCB-608(7)
Amber 1000ml unpreserved	С	7	7	4.2	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
Amber 1000ml unpreserved	С	7	7	4.2	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
	Vial HCl preserved Vial HCl preserved Vial HCl preserved Vial Na2S2O3 preserved Vial Na2S2O3 preserved Vial HCl preserved Vial HCl preserved Vial HCl preserved Plastic 250ml HNO3 preserved Plastic 250ml HNO3 preserved Plastic 500ml H2SO4 preserved Plastic 950ml unpreserved Plastic 950ml unpreserved Amber 950ml H2SO4 preserved Amber 1000ml HCl preserved Amber 1000ml HCl preserved Amber 1000ml Na2S2O3 Amber 1000ml Na2S2O3 Amber 1000ml unpreserved	Container TypeCoolerVial HCl preservedCVial HCl preservedCVial HCl preservedCVial Na2S2O3 preservedCVial Na2S2O3 preservedCVial HCl preservedCVial HCl preservedCVial HCl preservedCPlastic 250ml HNO3 preservedCPlastic 500ml H2SO4 preservedCPlastic 950ml unpreservedCPlastic 950ml unpreservedCAmber 950ml H2SO4 preservedCAmber 1000ml HCl preservedCAmber 1000ml HCl preservedCAmber 1000ml Na2S2O3CAmber 1000ml Na2S2O3CAmber 1000ml unpreservedC	Container Type Vial HCl preserved C NA Vial HCl preserved C NA Vial HCl preserved C NA Vial Na2S2O3 preserved C NA Vial HCl preserved C NA Vial Na2S2O3 preserved C NA Vial HCl preserved C NA Plastic 250ml HNO3 preserved C Plastic 250ml HNO3 preserved C Plastic 950ml unpreserved C Plastic 950ml unpreserved C Amber 950ml H2SO4 preserved C Amber 1000ml HCl preserved C Amber 1000ml HCl preserved C Amber 1000ml Na2S2O3 C Amber 1000ml Na2S2O3 C Amber 1000ml Na2S2O3 C Amber 1000ml Na2S2O3 C Amber 1000ml unpreserved C C C C C C C C C C C C C	Container Type Cooler pH Initial pH Vial HCl preserved C NA Vial HCl preserved C NA Vial HCl preserved C NA Vial Na2S2O3 preserved C NA Vial Na2S2O3 preserved C NA Vial HCl preserved C NA Vial HCl preserved C NA Vial HCl preserved C NA Plastic 250ml HNO3 preserved C <2	Container Type Cooler nmttal pH retin deg C Vial HCl preserved C NA 4.2 Vial HCl preserved C NA 4.2 Vial HCl preserved C NA 4.2 Vial Na2S2O3 preserved C NA 4.2 Vial HCl preserved C NA 4.2 Plastic 250ml HN03 preserved C <2	Container Type Cooler pH Heart of deg C Pres Vial HCl preserved C NA 4.2 Y Vial HCl preserved C NA 4.2 Y Vial HCl preserved C NA 4.2 Y Vial Na2S2O3 preserved C NA 4.2 Y Vial HCl preserved C NA 4.2 Y Plastic 250ml HN03 preserved C <2	Container Type Cooler PH Head of the ph PH deg C Pres Seal Vial HCl preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Vial Na2S2O3 preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Plastic 250ml HNO3 preserved C <2	Container Type Cooler PH PH PH deg C Pres Seal Date/Time Vial HCl preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Vial Na2S2O3 preserved C NA 4.2 Y Absent Vial HCl preserved C NA 4.2 Y Absent Plastic 250ml HNO3 preserved C -2 -2 4.2 Y Absent Plastic 950ml unpreserved C 7

Project Name: Lab Number: CAMBRIDGE CROSSING G L1806948 **Report Date: Project Number:** 35663 11/14/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:CAMBRIDGE CROSSING GLab Number:L1806948Project Number:35663Report Date:11/14/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:CAMBRIDGE CROSSING GLab Number:L1806948Project Number:35663Report Date:11/14/18

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

ID No.:17873

Revision 12

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance Title: Certificate/Approval Program Summary

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διρна	CHAIN	OF CU	JSTO	DY .	PAGE_	_OF	- Date I	Rec'd in	Lab:	Alas	3/18		A	LPHA J	ob#:	180694	8
# Walkup Driv		2000000	at Informa				Repo	ort Info					s B	illing Inf	ormation	1	
Westbaro, MA Tel: 505-896	9220 Tel 508-822-9300	Project	Name: COY	nordat	e Cross	singa	DAYAD	Ex	,DX	EMAIL			20	Same as C	Client Info	PO#	
Client Informat	A STATE OF THE PARTY OF THE PAR	Project	Location:	amn	vidae	MA.	Regu	latory I	Requir	ments	s &	Proje	ct Infor	mation F	Requiren	ents	
Client The V	extex Compani	es Project	# 350	63	0	1	☐ Yes	No No N	IA MCP latrix So	Analytic	al Meth	ods this St	G7 /Pa	☐ Yes 🐹	No CT F	CP Analytical M	ethods
Address: \CO	ngress st.		Manager:		reer	nan	☐ Yes	A No G	W1 Star	ndards (Info Re	quired t	or Metal	s & EPH w	ith Target	ganics) s)	
Bos	STON, MA	ALPHA	A Quote #:					□ No N or State						Criter	ria		
Phone: (017-	274-5407	Turn-	Around Ti	me				1	_	-	1.1	1	1-1	/ /	11	1-1	
Additional	man evertexeng. Project Information:	Date	Due: 5	Day	continued if are a	уфестика)	J8260 Dex	METALS: DABN C PAH	METALS: URCRUS DINCHT4 DROS	VPH; CRanges & Targets C DPP13	D PCB C PEST	N.P. Deliant Only Define	ES ROTO			SAMPLE I Filtration D Field D Lab to d Preservation	D B
ALPHA Lab ID (Lab Use Only)	Sample ID) = -	Colle	ection Time	Sample Matrix	Sampler Initials	100,	METALS.	METALS	VPH. D.	D PCB	NON	1/	//	11	Lab to de	L L
06948-01	VES-G-418(LW)	2/28/18	10:25	W	EMW						X				odinpro obilili	ana L
Container Type	Preservative			-													
P= Ptastic A= Amber glass V= Vial	A= None B= HCI				20.0	iner Type	4		-		-						
G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Dollar	ished By:			servative			1					-			
C= Cube O= Other E= Encore D= BOD Bottle Page 51 of 65	F= MeQH G= NatASQ+ H = NatSQO+ I= Ascorbic Acid J = NHt_QC K= Zn Acetate O= Other	ploan's	MAC	2/2	-	Time 5:19 18/2	an	all ?	eived By	A	AL	2/2	15/18/8	2 See	reverse s	and Conditions de (23-Mar-2012)	ject to

Subcontract Chain of Custody

Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204

Alpha Job Number L1806948

Client Information

Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019

Phone: 603.319.5010 Email: mgulli@alphalab.com

Project Information

Project Location: MA Project Manager: Melissa Gulli

Turnaround & Deliverables Information

Due Date: 03/07/18 (RUSH) Deliverables:

Regulatory Requirements/Report Limits

State/Federal Program:

Regulatory Criteria: GW-2-14;S1/G2-14

Project Specific Requirements and/or Report Requirements

Reference following Alpha Job Number on final report/deliverables: L1806948

Report to include Method Blank, LCS/LCSD:

Additional Comments: Send all results/reports to subreports@alphalab.com

Lab ID	Client ID	Collection Date/Time	Sample Matrix	,	Analysis	Batch
	VES-G-41B(MW)	02-28-18 10:25	WATER	Ethanol by EPA 1671 Re		QC

Westborough, Massachusetts 01581-1019

Authorized for release by: 3/7/2018 2:07:51 PM

Ken Hayes, Project Manager II

(615)301-5035

ken.hayes@testamericainc.com

.....LINKS

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com Page 53 of 65

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 490-147313-1

Client: Alpha Analytical Inc Project/Site: L1806948

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

Ω Ω

9

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1806948

TestAmerica Job ID: 490-147313-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-147313-1	VES-G-418(MW)	Water	02/28/18 10:25	03/02/18 09:00

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

Job ID: 490-147313-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-147313-1

Comments

No additional comments.

Receipt

The sample was received on 3/2/2018 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

3

4

6

O

q

1 በ

11

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

-0

Glossary

PQL

QC

RER

RPD TEF

TEQ

RL

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1806948

Client Sample ID: VES-G-418(MW)

TestAmerica Job ID: 490-147313-1

Lab Sample ID: 490-147313-1

Matrix: Water

Date Collected: 02/28/18 10:25 Date Received: 03/02/18 09:00

Method: 1671A - Ethanol (GC/FID)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

 Ethanol
 ND
 2000
 500 ug/L
 03/03/18 16:08
 1

 Surrogate
 %Recovery Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

| Sopropyl acetate (Surr) | 83 | 70 - 130 | 77 - 130 |

8

6

9

11

QC Sample Results

Client: Alpha Analytical Inc Project/Site: L1806948

Analysis Batch: 499157

Analysis Batch: 499157

Matrix: Water

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-499157/22

TestAmerica Job ID: 490-147313-1

Client Sample ID: Method Blank

Prep Type: Total/NA

	r	MB MB									
Analyte	Res	ult Qualifier	r RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Ethanol		ND	2000		500	ug/L				03/03/18 15:43	1
	1	ИВ МВ									
Surrogate	%Recove	ery Qualifier	r Limits						Prepared	Analyzed	Dil Fac
Isopropyl acetate (Surr)		73	70 - 130							03/03/18 15:43	1
_ Lab Sample ID: LCS 490-4 Matrix: Water	99157/23						Cli	ent Sa	ample ID	: Lab Control S Prep Type: To	_
Analysis Batch: 499157										rich Type. I	Julia
Analysis Batch. 499107			Spike	LCS	LCS	;				%Rec.	
Analyte			Added	Result	Qua	lifier	Unit	0	%Rec	Limits	
Ethanol			50200	53230			ug/L		106	70 - 130	
	LCS I	LCS									
Surrogate	%Recovery (Qualifier	Limits								
Isopropyl acetate (Surr)	78		70 - 130								
Lab Sample ID: 490-14732 Matrix: Water	3-D-6 MS							C	Client Sa	mple ID: Matrix Prep Type: To	

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethanol	ND		50200	52880		ug/L		105	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
Isopropyl acetate (Surr)	80		70 - 130							

Lab Sample ID: 490-14732 Matrix: Water Analysis Batch: 499157	23-D-6 MSD					Client	Samp	le ID: N	latrix Spil Prep Ty		
7 maryolo Datom 100101	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethanol	ND		50200	47250		ug/L		94	70 - 130	11	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Isopropyl acetate (Surr)	79		70 - 130								

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

GC VOA

Analysis Batch: 499157

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-147313-1	VES-G-418(MW)	Total/NA	Water	1671A	
MB 490-499157/22	Method Blank	Total/NA	Water	1671A	
LCS 490-499157/23	Lab Control Sample	Total/NA	Water	1671A	
490-147323-D-6 MS	Matrix Spike	Total/NA	Water	1671A	
490-147323-D-6 MSD	Matrix Spike Duplicate	Total/NA	Water	1671A	

5

6

8

9

TestAmerica Nashville

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

Lab Sample ID: 490-147313-1

Matrix: Water

Date Collected: 02/28/18 10:25 Date Received: 03/02/18 09:00

Client Sample ID: VES-G-418(MW)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			499157	03/03/18 16:08	MH	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

4

5

U

8

9

11

Method Summary

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

Method	Method Description	Protocol	Laboratory
1671A	Ethanol (GC/FID)	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

7

10

4 4

Accreditation/Certification Summary

Client: Alpha Analytical Inc Project/Site: L1806948 TestAmerica Job ID: 490-147313-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Regi	on Identification Nu	ımber Expiration Date
California	State Prog	gram	9	2938	10-31-18
The following analyte:	s are included in this repor	t, but accreditation	certification is no	t offered by the governi	ng authority:
Analysis Method	Prep Method	Matrix	Aı	nalyte	
1671A		Water	E	hanol	
Maine	State Prog	gram	1	TN00032	11-03-19
The following analyte	s are included in this repor	t, but accreditation	certification is no	t offered by the governi	ng authority:
Analysis Method	Prep Method	Matrix	Aı	nalyte	
1671A		Water	E	hanol	

6

Л

4

5

10

11

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On 03-02-2018 @ 0960	
Time Samples Removed From Cooler 1365 Time Samples Placed In Storage 1319	(2 Hour Window)
1. Tracking # 12E 3865 & My digits, FedEx) Courier: UPS 1 ex	, ,
IR Gun ID 31470366 pH Strip Lot VA Chlorine Strip Lot V/	<u>f</u>
2. Temperature of rep. sample or temp blank when opened: 2.7 Degrees Celsius	_
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NOVA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	-
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	on ,
7. Were custody seals on containers: YES AND and Intact	YESNONA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None
9. Cooling process: (Ice / Ice-pack Ice (direct contact) Dry Ice	Other None
10. Did all containers arrive in good condition (unbroken)?	MEDNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	VESNONA
12. Did all container labels and tags agree with custody papers?	CYESNONA
13a. Were VOA vials received?	YESNONA
b. Was there any observable headspace present in any VOA vial?	YES. (NONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNA If multiple coolers, sequent	ce #
certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO.(NA)
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	YESNONA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	ga
17. Were custody papers properly filled out (ink, signed, etc)?	YESINONA
18. Did you sign the custody papers in the appropriate place?	€E\$NONA
19. Were correct containers used for the analysis requested?	VESNONA
20. Was sufficient amount of sample sent in each container?	YES NO NA
certify that I entered this project into LIMS and answered questions 17-20 (intial)	
certify that I attached a label with the unique LIMS number to each container (intial)	2
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO	#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

6900	3-2-18	Bords war The MS	Barra							Form No: AL_subcoc
									<i>.</i>	
					31118		e AM	Mh	· · · ·	
	Date/Time:	<i>l</i> :	Received By:		Date/Time:		By:	Relinquished I		
		13	Loc: 490 147313							
				Ethanol by EPA 1671 Revision A	Ethanol b	WATER	02-28-18 10:25	5	VES-G-418(MW)	
Batch QC				Analysis		Sample Matrix	Collection Date/Time		Client ID	Lab ID
						.com	subreports@alphalab	ults/reports to s	Send all resu	Additional Comments: Send all results/reports to subreports@alphalab.com
	LCSD:	Report to include Method Blank, LCS/LCSD:	eport to include l	148 Repo	s: L1806948	teliverables	Reference following Alpha Job Number on final report/deliverables:	a Alpha Job Nu	nce following	Refere
		-	ments	Deliverables: Project Specific Requirements and for Report Require	nents and	Reguliren	Deliverables: Project Specific Requirements		ab.com	Email: mgulli@alphalab.com
	51/G2-14	Regulatory Criteria: GW-2-14;S1/G2-14	Regulatory	Turnaround & Deliverables Information	verables	nd & Deli	Turnarou	019	MA 01581-1	Westborough, Phone: 603.319.5010
		State/Federal Program:	State/Feder		ulli	MA Melissa G	Project Location: MA Project Manager: Melissa Gulli		al Labs Drive	Client: Alpha Analytical Labs Address: Eight Walkup Drive
its	ents/Report Lim	Regulatory Requirements/Report Limits	Regu	on	nformation	Project Information			Client Information	Client Ir
Jumber	Alpha Job Number L1806948			Subcontract Chain of Custody st America (Nashville) 50 Foster Creighton Drive shville, TN 37204	act Cha Vashville) Pighton Dr 7204	Subcontract Chain Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	Test 2960 Nasi			MOTO Class Chamistry

ANALYTICAL REPORT

Lab Number: L1714950

Client: Vertex Environmental Services, Inc.

One Congress Street

10th Floor

Boston, MA 02114

ATTN: Jesse Freeman
Phone: (781) 952-6000
Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950 **Report Date:** 05/24/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1714950-01	VES-Y-2 (OW)	WATER	CAMBRIDGE, MA	05/09/17 07:50	05/09/17
L1714950-02	TRIP BLANKS	WATER	CAMBRIDGE, MA	05/09/17 00:00	05/09/17

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:NORTHPOINTLab Number:L1714950Project Number:35663Report Date:05/24/17

Case Narrative (continued)

Report Submission

This final report replaces the partial report issued May 16, 2017 and includes the results of all requested analyses.

The analysis of ethanol was subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

Metals

The WG1002079-7 MS recoveries for calcium (60%) and iron (10%), performed on L1714950-01, do not apply because the sample concentrations are greater than four times the spike amounts added.

The WG1002087-3 MS recovery for hardness (60%), performed on L1714950-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/24/17

Coolin Walker Cristin Walker

ORGANICS

VOLATILES

05/09/17 07:50

Project Name: NORTHPOINT

Project Number: 35663

SAMPLE RESULTS

Lab Number: L1714950

Date Collected:

Report Date: 05/24/17

Lab ID: L1714950-01

Client ID: Date Received: 05/09/17 VES-Y-2 (OW)

Sample Location: Field Prep: CAMBRIDGE, MA Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/16/17 09:02

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	3.0	0.68	1
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1
Chloroform	ND		ug/l	0.75	0.16	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.18	1
Trichlorofluoromethane	ND		ug/l	2.5	0.16	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	0.75	0.16	1
Ethylbenzene	ND		ug/l	0.50	0.17	1
Chloromethane	ND		ug/l	2.5	0.18	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	1.0	0.13	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 07:50

Client ID: VES-Y-2 (OW) Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Location. Children	OL, IVIA			i iciu i ic	ρ.	Not Specified
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.19	1
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1
p/m-Xylene	ND		ug/l	1.0	0.33	1
o-Xylene	ND		ug/l	1.0	0.33	1
Xylenes, Total	ND		ug/l	1.0	0.33	1
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1
Dibromomethane	ND		ug/l	5.0	0.36	1
1,4-Dichlorobutane	ND		ug/l	5.0	0.46	1
1,2,3-Trichloropropane	ND		ug/l	5.0	0.18	1
Styrene	ND		ug/l	1.0	0.36	1
Dichlorodifluoromethane	ND		ug/l	5.0	0.24	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	0.30	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	0.31	1
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1
2-Hexanone	ND		ug/l	5.0	0.52	1
Ethyl methacrylate	ND		ug/l	5.0	0.61	1
Acrylonitrile	ND		ug/l	5.0	0.43	1
Bromochloromethane	ND		ug/l	2.5	0.15	1
Tetrahydrofuran	ND		ug/l	5.0	0.83	1
2,2-Dichloropropane	ND		ug/l	2.5	0.20	1
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1
Bromobenzene	ND		ug/l	2.5	0.15	1
n-Butylbenzene	0.28	J	ug/l	0.50	0.19	1
sec-Butylbenzene	ND		ug/l	0.50	0.18	1
tert-Butylbenzene	ND		ug/l	2.5	0.18	1
o-Chlorotoluene	ND		ug/l	2.5	0.17	1
p-Chlorotoluene	ND		ug/l	2.5	0.18	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35	1
Hexachlorobutadiene	ND		ug/l	0.50	0.22	1
Isopropylbenzene	ND		ug/l	0.50	0.19	1
p-Isopropyltoluene	0.82		ug/l	0.50	0.19	1
Naphthalene	ND		ug/l	2.5	0.22	1
n-Propylbenzene	ND		ug/l	0.50	0.17	1
			-			

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 07:50

Client ID: VES-Y-2 (OW) Date Received: 05/09/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18	1	
Ethyl ether	ND		ug/l	2.5	0.16	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	96	70-130
Toluene-d8	88	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	100	70-130

Project Name: Lab Number: NORTHPOINT L1714950

Project Number: Report Date: 35663 05/24/17

SAMPLE RESULTS

Lab ID: L1714950-01 Date Collected: 05/09/17 07:50

Client ID: Date Received: 05/09/17 VES-Y-2 (OW) Sample Location: Field Prep: CAMBRIDGE, MA Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 05/15/17 12:36

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Westborough Lab							
1,4-Dioxane	ND		ug/l	3.0	0.76	1	

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

L1714950-01

VES-Y-2 (OW)

CAMBRIDGE, MA

Date Collected: 05/09/17 07:50

Date Received: 05/09/17
Field Prep: Not Specified

Extraction Method: EPA 504.1

Extraction Date: 05/15/17 14:40

Matrix: Water
Analytical Method: 14,504.1
Analytical Date: 05/15/17 21:05

Analyst: NS

Lab ID:

Client ID:

Sample Location:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010	0.004	1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010	0.005	1	Α

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 00:00

Client ID: TRIP BLANKS Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water Analytical Method: 1,8260C

Analytical Date: 05/16/17 06:09

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboro	ough Lab					
Methylene chloride	ND		ug/l	3.0	0.68	1
1,1-Dichloroethane	ND		ug/l	0.75	0.21	1
Chloroform	ND		ug/l	0.75	0.16	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.8	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	0.50	0.18	1
Trichlorofluoromethane	ND		ug/l	2.5	0.16	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.17	1
Bromoform	ND		ug/l	2.0	0.25	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	0.75	0.16	1
Ethylbenzene	ND		ug/l	0.50	0.17	1
Chloromethane	ND		ug/l	2.5	0.18	1
Bromomethane	ND		ug/l	1.0	0.26	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	1.0	0.13	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16	1
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16	1
Trichloroethene	ND		ug/l	0.50	0.18	1

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 00:00

Client ID: TRIP BLANKS Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

oumpio zooddom or mibraboz, mr	·				γ.	riot opcomed	
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboro	ugh Lab						
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18	1	
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19	1	
1,4-Dichlorobenzene	ND		ug/l	2.5	0.19	1	
Methyl tert butyl ether	ND		ug/l	1.0	0.17	1	
p/m-Xylene	ND		ug/l	1.0	0.33	1	
o-Xylene	ND		ug/l	1.0	0.33	1	
Xylenes, Total	ND		ug/l	1.0	0.33	1	
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19	1	
Dibromomethane	ND		ug/l	5.0	0.36	1	
1,4-Dichlorobutane	ND		ug/l	5.0	0.46	1	
1,2,3-Trichloropropane	ND		ug/l	5.0	0.18	1	
Styrene	ND		ug/l	1.0	0.36	1	
Dichlorodifluoromethane	ND		ug/l	5.0	0.24	1	
Acetone	ND		ug/l	5.0	1.5	1	
Carbon disulfide	ND		ug/l	5.0	0.30	1	
2-Butanone	ND		ug/l	5.0	1.9	1	
Vinyl acetate	ND		ug/l	5.0	0.31	1	
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42	1	
2-Hexanone	ND		ug/l	5.0	0.52	1	
Ethyl methacrylate	ND		ug/l	5.0	0.61	1	
Acrylonitrile	ND		ug/l	5.0	0.43	1	
Bromochloromethane	ND		ug/l	2.5	0.15	1	
Tetrahydrofuran	ND		ug/l	5.0	0.83	1	
2,2-Dichloropropane	ND		ug/l	2.5	0.20	1	
1,2-Dibromoethane	ND		ug/l	2.0	0.19	1	
1,3-Dichloropropane	ND		ug/l	2.5	0.21	1	
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16	1	
Bromobenzene	ND		ug/l	2.5	0.15	1	
n-Butylbenzene	ND		ug/l	0.50	0.19	1	
sec-Butylbenzene	ND		ug/l	0.50	0.18	1	
tert-Butylbenzene	ND		ug/l	2.5	0.18	1	
o-Chlorotoluene	ND		ug/l	2.5	0.17	1	
p-Chlorotoluene	ND		ug/l	2.5	0.18	1	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.22	1	
Isopropylbenzene	ND		ug/l	0.50	0.19	1	
p-Isopropyltoluene	ND		ug/l	0.50	0.19	1	
Naphthalene	ND		ug/l	2.5	0.22	1	
n-Propylbenzene	ND		ug/l	0.50	0.17	1	

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 00:00

Client ID: TRIP BLANKS Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18	1	
Ethyl ether	ND		ug/l	2.5	0.16	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	87	70-130
Toluene-d8	111	70-130
4-Bromofluorobenzene	112	70-130
Dibromofluoromethane	96	70-130

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 00:00

Client ID: TRIP BLANKS Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water

Analytical Method: 1,8260C-SIM(M) Analytical Date: 05/15/17 12:11

Analyst: KD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - Wes	stborough Lab						
1,4-Dioxane	ND		ug/l	3.0	0.76	1	

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/15/17 20:19 Extraction Date: 05/15/17 14:40

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	r sample(s)	: 01	Batch: WG1003	3595-1	
1,2-Dibromoethane	ND		ug/l	0.010	0.004	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010	0.005	Α

Project Name: NORTHPOINT **Lab Number:** L1714950

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 05/15/17 08:26

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Organics by GC/MS-SIM - V	Vestborough	Lab for sa	ample(s):	01-02	Batch:	WG1003650-5	
1,4-Dioxane	ND		ug/l	3.0		0.76	

L1714950

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/17 05:02

Parameter	Result	Qualifier	Units	RL	MDL
/olatile Organics by GC/MS	- Westborough La	b for sampl	e(s): 02	Batch:	WG1003766-5
Methylene chloride	ND		ug/l	3.0	0.68
1,1-Dichloroethane	ND		ug/l	0.75	0.21
Chloroform	ND		ug/l	0.75	0.16
Carbon tetrachloride	ND		ug/l	0.50	0.13
1,2-Dichloropropane	ND		ug/l	1.8	0.14
Dibromochloromethane	ND		ug/l	0.50	0.15
1,1,2-Trichloroethane	ND		ug/l	0.75	0.14
Tetrachloroethene	ND		ug/l	0.50	0.18
Chlorobenzene	ND		ug/l	0.50	0.18
Trichlorofluoromethane	ND		ug/l	2.5	0.16
1,2-Dichloroethane	ND		ug/l	0.50	0.13
1,1,1-Trichloroethane	ND		ug/l	0.50	0.16
Bromodichloromethane	ND		ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14
1,1-Dichloropropene	ND		ug/l	2.5	0.17
Bromoform	ND		ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17
Benzene	ND		ug/l	0.50	0.16
Toluene	ND		ug/l	0.75	0.16
Ethylbenzene	ND		ug/l	0.50	0.17
Chloromethane	ND		ug/l	2.5	0.18
Bromomethane	ND		ug/l	1.0	0.26
Vinyl chloride	ND		ug/l	1.0	0.07
Chloroethane	ND		ug/l	1.0	0.13
1,1-Dichloroethene	ND		ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND		ug/l	0.75	0.16
1,2-Dichloroethene, Total	ND		ug/l	0.50	0.16

L1714950

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/17 05:02

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	- Westborough La	b for sampl	e(s): 02	Batch:	WG1003766-5
Trichloroethene	ND		ug/l	0.50	0.18
1,2-Dichlorobenzene	ND		ug/l	2.5	0.18
1,3-Dichlorobenzene	ND		ug/l	2.5	0.19
1,4-Dichlorobenzene	ND		ug/l	2.5	0.19
Methyl tert butyl ether	ND		ug/l	1.0	0.17
p/m-Xylene	ND		ug/l	1.0	0.33
o-Xylene	ND		ug/l	1.0	0.33
Xylenes, Total	ND		ug/l	1.0	0.33
cis-1,2-Dichloroethene	ND		ug/l	0.50	0.19
Dibromomethane	ND		ug/l	5.0	0.36
1,4-Dichlorobutane	ND		ug/l	5.0	0.46
1,2,3-Trichloropropane	ND		ug/l	5.0	0.18
Styrene	ND		ug/l	1.0	0.36
Dichlorodifluoromethane	ND		ug/l	5.0	0.24
Acetone	ND		ug/l	5.0	1.5
Carbon disulfide	ND		ug/l	5.0	0.30
2-Butanone	ND		ug/l	5.0	1.9
Vinyl acetate	ND		ug/l	5.0	0.31
4-Methyl-2-pentanone	ND		ug/l	5.0	0.42
2-Hexanone	ND		ug/l	5.0	0.52
Ethyl methacrylate	ND		ug/l	5.0	0.61
Acrylonitrile	ND		ug/l	5.0	0.43
Bromochloromethane	ND		ug/l	2.5	0.15
Tetrahydrofuran	ND		ug/l	5.0	0.83
2,2-Dichloropropane	ND		ug/l	2.5	0.20
1,2-Dibromoethane	ND		ug/l	2.0	0.19
1,3-Dichloropropane	ND		ug/l	2.5	0.21
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50	0.16
Bromobenzene	ND		ug/l	2.5	0.15

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/17 05:02

Parameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS - W	estborough La	b for sample	e(s): 02	Batch:	WG1003766-5
n-Butylbenzene	ND		ug/l	0.50	0.19
sec-Butylbenzene	ND		ug/l	0.50	0.18
tert-Butylbenzene	ND		ug/l	2.5	0.18
o-Chlorotoluene	ND		ug/l	2.5	0.17
p-Chlorotoluene	ND		ug/l	2.5	0.18
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.35
Hexachlorobutadiene	ND		ug/l	0.50	0.22
Isopropylbenzene	ND		ug/l	0.50	0.19
p-Isopropyltoluene	ND		ug/l	0.50	0.19
Naphthalene	ND		ug/l	2.5	0.22
n-Propylbenzene	ND		ug/l	0.50	0.17
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.23
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.22
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.17
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.19
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.18
Ethyl ether	ND		ug/l	2.5	0.16

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
1,2-Dichloroethane-d4	88	70-130
1,2-Dichioroethane-d4	00	70-130
Toluene-d8	110	70-130
4-Bromofluorobenzene	107	70-130
Dibromofluoromethane	89	70-130

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/17 07:47

olatile Organics by GC/MS -				
•	- Westborough Lab	for sample(s):	01 Batch:	WG1003846-5
Methylene chloride	ND	ug/l	3.0	0.68
1,1-Dichloroethane	ND	ug/l	0.75	0.21
Chloroform	ND	ug/l	0.75	0.16
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.8	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	0.75	0.14
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	0.50	0.18
Trichlorofluoromethane	ND	ug/l	2.5	0.16
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	0.50	0.16
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.17
Bromoform	ND	ug/l	2.0	0.25
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	0.75	0.16
Ethylbenzene	ND	ug/l	0.50	0.17
Chloromethane	ND	ug/l	2.5	0.18
Bromomethane	ND	ug/l	1.0	0.26
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	1.0	0.13
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	0.75	0.16
1,2-Dichloroethene, Total	ND	ug/l	0.50	0.16

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/16/17 07:47

No	Parameter	Result	Qualifier Units	s RL	MDL
1,2-Dichlorobenzene ND ug/l 2.5 0.18 1,3-Dichlorobenzene ND ug/l 2.5 0.19 1,4-Dichlorobenzene ND ug/l 2.5 0.19 Methyl tert butyl ether ND ug/l 1.0 0.17 p/m-Xylene ND ug/l 1.0 0.33 o-Xylene ND ug/l 1.0 0.33 xylenes, Total ND ug/l 1.0 0.33 xylenes, Total ND ug/l 1.0 0.33 zis-1,2-Dichloroethene ND ug/l 5.0 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.31	Volatile Organics by GC/MS	- Westborough Lab	for sample(s):	01 Batch:	WG1003846-5
1,3-Dichlorobenzene ND ug/l 2.5 0.19 1,4-Dichlorobenzene ND ug/l 2.5 0.19 Methyl tert butyl ether ND ug/l 1.0 0.17 p/m-Xylene ND ug/l 1.0 0.33 o-Xylene ND ug/l 1.0 0.33 Xylenes, Total ND ug/l 1.0 0.33 Zylenes, Total ND ug/l 0.50 0.19 Dibromomethane ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.36 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30	Trichloroethene	ND	ug/	I 0.50	0.18
1,4-Dichlorobenzene ND ug/l 2.5 0.19 Methyl tert butyl ether ND ug/l 1.0 0.17 p/m-Xylene ND ug/l 1.0 0.33 o-Xylene ND ug/l 1.0 0.33 Xylenes, Total ND ug/l 1.0 0.33 zylenes, Total ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0	1,2-Dichlorobenzene	ND	ug/	1 2.5	0.18
Methyl tert butyl ether ND ug/l 1.0 0.17 p/m-Xylene ND ug/l 1.0 0.33 o-Xylene ND ug/l 1.0 0.33 Xylenes, Total ND ug/l 1.0 0.33 xylenes, Total ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.52	1,3-Dichlorobenzene	ND	ug/	1 2.5	0.19
p/m-Xylene ND ug/l 1.0 0.33 o-Xylene ND ug/l 1.0 0.33 Xylenes, Total ND ug/l 1.0 0.33 cis-1,2-Dichloroethene ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.48 Styrene ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.18 Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52	1,4-Dichlorobenzene	ND	ug/	1 2.5	0.19
o-Xylene ND ug/l 1.0 0.33 Xylenes, Total ND ug/l 1.0 0.33 cis-1,2-Dichloroethene ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61	Methyl tert butyl ether	ND	ug/	1.0	0.17
Xylenes, Total ND ug/l 1.0 0.33 cis-1,2-Dichloroethene ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15	p/m-Xylene	ND	ug/	1.0	0.33
cis-1,2-Dichloroethene ND ug/l 0.50 0.19 Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 1.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15	o-Xylene	ND	ug/	1.0	0.33
Dibromomethane ND ug/l 5.0 0.36 1,4-Dichlorobutane ND ug/l 5.0 0.46 1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.20	Xylenes, Total	ND	ug/	1.0	0.33
1,4-Dichlorobutane	cis-1,2-Dichloroethene	ND	ug/	0.50	0.19
1,2,3-Trichloropropane ND ug/l 5.0 0.18 Styrene ND ug/l 1.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.21	Dibromomethane	ND	ug/	J 5.0	0.36
Styrene ND ug/l 1.0 0.36 Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 0.30 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.30 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.20 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.	1,4-Dichlorobutane	ND	ug/	J 5.0	0.46
Dichlorodifluoromethane ND ug/l 5.0 0.24 Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 0.31 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	1,2,3-Trichloropropane	ND	ug/	J 5.0	0.18
Acetone ND ug/l 5.0 1.5 Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 2.5 0.20 1,2-Dichloropropane ND ug/l 2.5 0.20 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Styrene	ND	ug/	1.0	0.36
Carbon disulfide ND ug/l 5.0 0.30 2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.21 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Dichlorodifluoromethane	ND	ug/	J 5.0	0.24
2-Butanone ND ug/l 5.0 1.9 Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.5 0.21 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Acetone	ND	ug/	5.0	1.5
Vinyl acetate ND ug/l 5.0 0.31 4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Carbon disulfide	ND	ug/	5.0	0.30
4-Methyl-2-pentanone ND ug/l 5.0 0.42 2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	2-Butanone	ND	ug/	J 5.0	1.9
2-Hexanone ND ug/l 5.0 0.52 Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Vinyl acetate	ND	ug/	J 5.0	0.31
Ethyl methacrylate ND ug/l 5.0 0.61 Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	4-Methyl-2-pentanone	ND	ug/	J 5.0	0.42
Acrylonitrile ND ug/l 5.0 0.43 Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	2-Hexanone	ND	ug/	J 5.0	0.52
Bromochloromethane ND ug/l 2.5 0.15 Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Ethyl methacrylate	ND	ug/	J 5.0	0.61
Tetrahydrofuran ND ug/l 5.0 0.83 2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Acrylonitrile	ND	ug/	5.0	0.43
2,2-Dichloropropane ND ug/l 2.5 0.20 1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Bromochloromethane	ND	ug/	1 2.5	0.15
1,2-Dibromoethane ND ug/l 2.0 0.19 1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	Tetrahydrofuran	ND	ug/	J 5.0	0.83
1,3-Dichloropropane ND ug/l 2.5 0.21 1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	2,2-Dichloropropane	ND	ug/	1 2.5	0.20
1,1,1,2-Tetrachloroethane ND ug/l 0.50 0.16	1,2-Dibromoethane	ND	ug/	1 2.0	0.19
	1,3-Dichloropropane	ND	ug/	1 2.5	0.21
Bromobenzene ND ug/l 2.5 0.15	1,1,1,2-Tetrachloroethane	ND	ug/	0.50	0.16
	Bromobenzene	ND	ug/	1 2.5	0.15

L1714950

Lab Number:

Project Name: NORTHPOINT

> 1,8260C 05/16/17 07:47

Project Number: Report Date: 35663 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: Analyst: MM

stborough La ND ND	b for sample(s): 0 ⁻¹	1 Batch: 0.50	WG1003846-5	
		0.50		
ND			0.19	
	ug/l	0.50	0.18	
ND	ug/l	2.5	0.18	
ND	ug/l	2.5	0.17	
ND	ug/l	2.5	0.18	
ND	ug/l	2.5	0.35	
ND	ug/l	0.50	0.22	
ND	ug/l	0.50	0.19	
ND	ug/l	0.50	0.19	
ND	ug/l	2.5	0.22	
ND	ug/l	0.50	0.17	
ND	ug/l	2.5	0.23	
ND	ug/l	2.5	0.22	
ND	ug/l	2.5	0.17	
ND	ug/l	2.5	0.19	
ND	ug/l	2.5	0.18	
ND	ug/l	2.5	0.16	
	ND N	ND ug/l ND ug/l	ND ug/l 2.5 ND ug/l 2.5 ND ug/l 2.5 ND ug/l 0.50 ND ug/l 0.50 ND ug/l 0.50 ND ug/l 0.50 ND ug/l 2.5 ND ug/l 2.5	ND ug/l 2.5 0.18 ND ug/l 2.5 0.17 ND ug/l 2.5 0.18 ND ug/l 2.5 0.35 ND ug/l 0.50 0.22 ND ug/l 0.50 0.19 ND ug/l 0.50 0.19 ND ug/l 2.5 0.22 ND ug/l 2.5 0.23 ND ug/l 2.5 0.22 ND ug/l 2.5 0.17 ND ug/l 2.5 0.17 ND ug/l 2.5 0.19 ND ug/l 2.5 0.19 ND ug/l 2.5 0.19 ND ug/l 2.5 0.18

Surrogate	%Recovery Qua	Acceptance lifier Criteria	
	<u> </u>		
1,2-Dichloroethane-d4	92	70-130	
Toluene-d8	91	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	102	70-130	

05/24/17

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Lab Number: L1714950

Project Number: 35663 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1003	3595-2					
1,2-Dibromoethane	88		-		70-130	-			Α
1,2-Dibromo-3-chloropropane	91		-		70-130	-			Α

Project Name: NORTHPOINT Lab Number:

L1714950

Project Number: 35663

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS-SIM - Westboro	ugh Lab Associa	ted sample(s)	: 01-02 Batch:	WG1003650-3 WG10036	50-4		
1,4-Dioxane	110		100	70-130	10	25	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	2 Batch: WG1	1003766-3	WG1003766-4			
Methylene chloride	110		110		70-130	0		20
1,1-Dichloroethane	110		100		70-130	10		20
Chloroform	96		92		70-130	4		20
Carbon tetrachloride	77		72		63-132	7		20
1,2-Dichloropropane	100		100		70-130	0		20
Dibromochloromethane	88		85		63-130	3		20
1,1,2-Trichloroethane	110		100		70-130	10		20
Tetrachloroethene	100		93		70-130	7		20
Chlorobenzene	100		91		75-130	9		25
Trichlorofluoromethane	91		81		62-150	12		20
1,2-Dichloroethane	91		84		70-130	8		20
1,1,1-Trichloroethane	83		81		67-130	2		20
Bromodichloromethane	89		83		67-130	7		20
trans-1,3-Dichloropropene	110		100		70-130	10		20
cis-1,3-Dichloropropene	100		98		70-130	2		20
1,1-Dichloropropene	100		99		70-130	1		20
Bromoform	89		88		54-136	1		20
1,1,2,2-Tetrachloroethane	120		110		67-130	9		20
Benzene	110		100		70-130	10		25
Toluene	110		100		70-130	10		25
Ethylbenzene	110		100		70-130	10		20
Chloromethane	90		85		64-130	6		20
Bromomethane	150	Q	120		39-139	22	Q	20

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 0	2 Batch: WG1	003766-3	WG1003766-4			
Vinyl chloride	110		100		55-140	10	20	
Chloroethane	110		120		55-138	9	20	
1,1-Dichloroethene	110		100		61-145	10	25	
trans-1,2-Dichloroethene	100		100		70-130	0	20	
Trichloroethene	94		89		70-130	5	25	
1,2-Dichlorobenzene	100		95		70-130	5	20	
1,3-Dichlorobenzene	98		92		70-130	6	20	
1,4-Dichlorobenzene	97		89		70-130	9	20	
Methyl tert butyl ether	100		99		63-130	1	20	
p/m-Xylene	105		100		70-130	5	20	
o-Xylene	105		100		70-130	5	20	
cis-1,2-Dichloroethene	100		97		70-130	3	20	
Dibromomethane	94		91		70-130	3	20	
1,4-Dichlorobutane	110		100		70-130	10	20	
1,2,3-Trichloropropane	110		110		64-130	0	20	
Styrene	110		100		70-130	10	20	
Dichlorodifluoromethane	96		89		36-147	8	20	
Acetone	90		79		58-148	13	20	
Carbon disulfide	100		100		51-130	0	20	
2-Butanone	92		84		63-138	9	20	
Vinyl acetate	85		84		70-130	1	20	
4-Methyl-2-pentanone	110		120		59-130	9	20	
2-Hexanone	86		83		57-130	4	20	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westboro	ugh Lab Associated	sample(s): 0	2 Batch: WG1	003766-3	WG1003766-4		
Ethyl methacrylate	130		120		70-130	8	20
Acrylonitrile	110		110		70-130	0	20
Bromochloromethane	97		88		70-130	10	20
Tetrahydrofuran	76		76		58-130	0	20
2,2-Dichloropropane	97		87		63-133	11	20
1,2-Dibromoethane	100		93		70-130	7	20
1,3-Dichloropropane	120		120		70-130	0	20
1,1,1,2-Tetrachloroethane	90		86		64-130	5	20
Bromobenzene	97		89		70-130	9	20
n-Butylbenzene	120		110		53-136	9	20
sec-Butylbenzene	95		91		70-130	4	20
tert-Butylbenzene	91		85		70-130	7	20
o-Chlorotoluene	100		100		70-130	0	20
p-Chlorotoluene	110		100		70-130	10	20
1,2-Dibromo-3-chloropropane	95		94		41-144	1	20
Hexachlorobutadiene	100		100		63-130	0	20
Isopropylbenzene	94		91		70-130	3	20
p-Isopropyltoluene	93		90		70-130	3	20
Naphthalene	90		91		70-130	1	20
n-Propylbenzene	100		100		69-130	0	20
1,2,3-Trichlorobenzene	98		95		70-130	3	20
1,2,4-Trichlorobenzene	98		91		70-130	7	20
1,3,5-Trimethylbenzene	97		96		64-130	1	20

05/24/17

20

20

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Lab Number: L1714950

16

0

Project Number: 35663

trans-1,4-Dichloro-2-butene

Ethyl ether

Report Date:

70-130

59-134

	LCS		_	SD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Rec	overy	Qual	Limits	RPD	Qual	Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02 Bato	h: WG	1003766-3	WG1003766-4				
1,2,4-Trimethylbenzene	98			94		70-130	4		20	

82

120

96

120

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	85	88	70-130	
Toluene-d8	110	105	70-130	
4-Bromofluorobenzene	108	106	70-130	
Dibromofluoromethane	91	86	70-130	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	003846-3	WG1003846-4		
Methylene chloride	99		93		70-130	6	20
1,1-Dichloroethane	100		100		70-130	0	20
Chloroform	98		96		70-130	2	20
Carbon tetrachloride	99		100		63-132	1	20
1,2-Dichloropropane	71		69	Q	70-130	3	20
Dibromochloromethane	85		83		63-130	2	20
1,1,2-Trichloroethane	93		89		70-130	4	20
Tetrachloroethene	89		88		70-130	1	20
Chlorobenzene	96		94		75-130	2	25
Trichlorofluoromethane	93		94		62-150	1	20
1,2-Dichloroethane	93		90		70-130	3	20
1,1,1-Trichloroethane	93		94		67-130	1	20
Bromodichloromethane	97		98		67-130	1	20
trans-1,3-Dichloropropene	80		80		70-130	0	20
cis-1,3-Dichloropropene	83		84		70-130	1	20
1,1-Dichloropropene	91		93		70-130	2	20
Bromoform	120		120		54-136	0	20
1,1,2,2-Tetrachloroethane	84		83		67-130	1	20
Benzene	99		100		70-130	1	25
Toluene	86		88		70-130	2	25
Ethylbenzene	92		87		70-130	6	20
Chloromethane	96		98		64-130	2	20
Bromomethane	64		72		39-139	12	20

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 0	1 Batch: WG1	003846-3 V	NG1003846-4		
Vinyl chloride	98		100		55-140	2	20
Chloroethane	94		95		55-138	1	20
1,1-Dichloroethene	86		90		61-145	5	25
trans-1,2-Dichloroethene	92		92		70-130	0	20
Trichloroethene	93		92		70-130	1	25
1,2-Dichlorobenzene	79		80		70-130	1	20
1,3-Dichlorobenzene	83		86		70-130	4	20
1,4-Dichlorobenzene	80		83		70-130	4	20
Methyl tert butyl ether	86		84		63-130	2	20
p/m-Xylene	80		85		70-130	6	20
o-Xylene	70		70		70-130	0	20
cis-1,2-Dichloroethene	95		95		70-130	0	20
Dibromomethane	91		88		70-130	3	20
1,4-Dichlorobutane	90		88		70-130	2	20
1,2,3-Trichloropropane	80		80		64-130	0	20
Styrene	120		125		70-130	4	20
Dichlorodifluoromethane	100		100		36-147	0	20
Acetone	100		100		58-148	0	20
Carbon disulfide	86		86		51-130	0	20
2-Butanone	120		110		63-138	9	20
Vinyl acetate	110		100		70-130	10	20
4-Methyl-2-pentanone	84		79		59-130	6	20
2-Hexanone	88		84		57-130	5	20

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s): 0	1 Batch: WG	1003846-3	WG1003846-4			
Ethyl methacrylate	73		71		70-130	3	20	
Acrylonitrile	110		100		70-130	10	20	
Bromochloromethane	100		100		70-130	0	20	
Tetrahydrofuran	110		110		58-130	0	20	
2,2-Dichloropropane	100		100		63-133	0	20	
1,2-Dibromoethane	85		81		70-130	5	20	
1,3-Dichloropropane	86		86		70-130	0	20	
1,1,1,2-Tetrachloroethane	87		91		64-130	4	20	
Bromobenzene	84		86		70-130	2	20	
n-Butylbenzene	79		81		53-136	3	20	
sec-Butylbenzene	78		82		70-130	5	20	
tert-Butylbenzene	93		96		70-130	3	20	
o-Chlorotoluene	85		87		70-130	2	20	
p-Chlorotoluene	81		83		70-130	2	20	
1,2-Dibromo-3-chloropropane	81		76		41-144	6	20	
Hexachlorobutadiene	89		90		63-130	1	20	
Isopropylbenzene	75		78		70-130	4	20	
p-Isopropyltoluene	75		78		70-130	4	20	
Naphthalene	73		73		70-130	0	20	
n-Propylbenzene	83		86		69-130	4	20	
1,2,3-Trichlorobenzene	76		78		70-130	3	20	
1,2,4-Trichlorobenzene	77		78		70-130	1	20	
1,3,5-Trimethylbenzene	82		86		64-130	5	20	

Project Name: NORTHPOINT Lab Number:

L1714950

Project Number:

35663

Parameter Volatile Organics by GC/MS - Westborough L	LCS %Recovery ab Associated	Qual sample(s): 01	LCSD %Recovery	Qual 1003846-3	%Recovery Limits WG1003846-4	RPD	RPD Qual Limits	
1,2,4-Trimethylbenzene	97	, , , , ,	100		70-130	3	20	
trans-1,4-Dichloro-2-butene	93		90		70-130	3	20	
Ethyl ether	89		90		59-134	1	20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	89	87	70-130
Toluene-d8	93	92	70-130
4-Bromofluorobenzene	94	98	70-130
Dibromofluoromethane	97	94	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1714950

Report Date:

05/24/17

	Native	MS	MS	MS		MSD	MSD	F	Recovery		= =	PD	
Parameter	Sample	Added	Found %	6Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual Li	mits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG10	03595-3	QC Sample:	L171495	0-01 Clie	nt ID: \	/ES-Y-2 (O	W)	
1,2-Dibromoethane	ND	0.258	0.240	93		-	-		65-135	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.258	0.237	92		-	-		65-135	-		20	Α

SEMIVOLATILES

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

SZ

Lab ID: Date Collected: 05/09/17 07:50

Client ID: VES-Y-2 (OW) Date Received: 05/09/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Extraction Method: EPA 3510C

Matrix: Water Extraction Method: EPA 3510C

Extraction Date: 05/10/17 02:50

Analytical Method: 1,8270D
Analytical Date: 05/10/17 15:55

Parameter Result Qualifier Units RL MDL **Dilution Factor** Semivolatile Organics by GC/MS - Westborough Lab ND 1 Benzidine ug/l 20 8.1 1,2,4-Trichlorobenzene ND 5.0 0.66 1 ug/l Bis(2-chloroethyl)ether ND 2.0 ug/l 0.67 1 ND 2.0 1 1,2-Dichlorobenzene ug/l 0.73 1,3-Dichlorobenzene ND 2.0 0.69 1 ug/l 1 ND 2.0 0.71 1,4-Dichlorobenzene ug/l 3,3'-Dichlorobenzidine ND 5.0 1.4 1 ug/l 2,4-Dinitrotoluene ND 5.0 0.84 1 ug/l 2,6-Dinitrotoluene ND 5.0 1 1.1 ug/l Azobenzene ND 2.0 0.75 1 ug/l 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.62 1 4-Bromophenyl phenyl ether ND 2.0 0.73 1 ug/l ND 0.70 Bis(2-chloroisopropyl)ether 2.0 1 ug/l Bis(2-chloroethoxy)methane ND ug/l 5.0 0.63 1 ND Hexachlorocyclopentadiene 20 7.8 1 ug/l Isophorone ND 5.0 0.60 1 ug/l ND 2.0 0.75 1 Nitrobenzene ug/l NDPA/DPA ND 1 2.0 0.64 ug/l n-Nitrosodi-n-propylamine ND 5.0 0.70 1 ug/l Bis(2-ethylhexyl)phthalate ND 3.0 0.91 1 ug/l Butyl benzyl phthalate ND 5.0 1.3 1 ug/l Di-n-butylphthalate ND 5.0 0.69 1 ug/l Di-n-octylphthalate ND 5.0 1.1 1 ug/l Diethyl phthalate ND 5.0 0.63 1 ug/l Dimethyl phthalate ND 5.0 0.65 1 ug/l Biphenyl ND 2.0 0.76 1 ug/l Aniline ND 2.0 0.65 1 ug/l 4-Chloroaniline ND ug/l 5.0 0.63 1 ND 2-Nitroaniline ug/l 5.0 1.1 1 3-Nitroaniline ND 5.0 1.2 ug/l 1

Analyst:

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 07:50

Client ID: VES-Y-2 (OW) Date Received: 05/09/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
4-Nitroaniline	ND		ug/l	5.0	1.3	1	
Dibenzofuran	ND		ug/l	2.0	0.66	1	
n-Nitrosodimethylamine	ND		ug/l	2.0	0.67	1	
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.68	1	
p-Chloro-m-cresol	ND		ug/l	2.0	0.62	1	
2-Chlorophenol	ND		ug/l	2.0	0.63	1	
2,4-Dichlorophenol	ND		ug/l	5.0	0.77	1	
2,4-Dimethylphenol	ND		ug/l	5.0	1.6	1	
2-Nitrophenol	ND		ug/l	10	1.5	1	
4-Nitrophenol	ND		ug/l	10	1.8	1	
2,4-Dinitrophenol	ND		ug/l	20	5.5	1	
4,6-Dinitro-o-cresol	ND		ug/l	10	2.1	1	
Phenol	ND		ug/l	5.0	1.9	1	
2-Methylphenol	ND		ug/l	5.0	1.0	1	
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.1	1	
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.72	1	
Benzoic Acid	ND		ug/l	50	13.	1	
Benzyl Alcohol	ND		ug/l	2.0	0.72	1	
Carbazole	ND		ug/l	2.0	0.63	1	
Pyridine	ND		ug/l	3.5	1.9	1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	39	21-120	
Phenol-d6	29	10-120	
Nitrobenzene-d5	69	23-120	
2-Fluorobiphenyl	65	15-120	
2,4,6-Tribromophenol	71	10-120	
4-Terphenyl-d14	66	41-149	

L1714950

Lab Number:

Project Name: NORTHPOINT

05/13/17 23:19

Project Number: Report Date: 35663 05/24/17

SAMPLE RESULTS

Lab ID: L1714950-01 Date Collected: 05/09/17 07:50

Client ID: Date Received: VES-Y-2 (OW) 05/09/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified Extraction Method: EPA 3510C

Matrix: Water Extraction Date: 05/10/17 02:48

Analytical Method: 1,8270D-SIM Analytical Date:

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM	1 - Westborough La	ab					
Acenaphthene	0.25		ug/l	0.10	0.04	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.04	1	
Fluoranthene	0.09	J	ug/l	0.20	0.04	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.04	1	
Naphthalene	ND		ug/l	0.20	0.04	1	
Benzo(a)anthracene	ND		ug/l	0.20	0.02	1	
Benzo(a)pyrene	ND		ug/l	0.20	0.04	1	
Benzo(b)fluoranthene	ND		ug/l	0.20	0.02	1	
Benzo(k)fluoranthene	ND		ug/l	0.20	0.04	1	
Chrysene	ND		ug/l	0.20	0.04	1	
Acenaphthylene	ND		ug/l	0.20	0.04	1	
Anthracene	ND		ug/l	0.20	0.04	1	
Benzo(ghi)perylene	ND		ug/l	0.20	0.04	1	
Fluorene	0.06	J	ug/l	0.20	0.04	1	
Phenanthrene	ND		ug/l	0.20	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04	1	
Pyrene	0.08	J	ug/l	0.20	0.04	1	
1-Methylnaphthalene	ND		ug/l	0.20	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.20	0.05	1	
Pentachlorophenol	ND		ug/l	0.80	0.22	1	
Hexachlorobenzene	ND		ug/l	0.80	0.03	1	
Hexachloroethane	ND		ug/l	0.80	0.03	1	

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

Lab ID: Date Collected: 05/09/17 07:50

Client ID: VES-Y-2 (OW) Date Received: 05/09/17 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	46	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	72	23-120
2-Fluorobiphenyl	83	15-120
2,4,6-Tribromophenol	75	10-120
4-Terphenyl-d14	64	41-149

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/09/17 21:55

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 05/09/17 07:23

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1001543-1	
Acenaphthene	ND		ug/l		2.0	0.59	
Benzidine	ND		ug/l		20	8.1	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.66	
Hexachlorobenzene	ND		ug/l		2.0	0.58	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.67	
2-Chloronaphthalene	ND		ug/l		2.0	0.64	
1,2-Dichlorobenzene	ND		ug/l		2.0	0.73	
1,3-Dichlorobenzene	ND		ug/l		2.0	0.69	
1,4-Dichlorobenzene	ND		ug/l		2.0	0.71	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.4	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.84	
2,6-Dinitrotoluene	ND		ug/l		5.0	1.1	
Azobenzene	ND		ug/l		2.0	0.75	
Fluoranthene	ND		ug/l		2.0	0.57	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.62	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.73	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.70	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.63	
Hexachlorobutadiene	ND		ug/l		2.0	0.72	
Hexachlorocyclopentadiene	ND		ug/l		20	7.8	
Hexachloroethane	ND		ug/l		2.0	0.68	
Isophorone	ND		ug/l		5.0	0.60	
Naphthalene	ND		ug/l		2.0	0.68	
Nitrobenzene	ND		ug/l		2.0	0.75	
NDPA/DPA	ND		ug/l		2.0	0.64	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.70	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	0.91	
Butyl benzyl phthalate	ND		ug/l		5.0	1.3	
Di-n-butylphthalate	ND		ug/l		5.0	0.69	

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/09/17 21:55

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 05/09/17 07:23

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01	Batch:	WG1001543-1	
Di-n-octylphthalate	ND		ug/l		5.0	1.1	
Diethyl phthalate	ND		ug/l		5.0	0.63	
Dimethyl phthalate	ND		ug/l		5.0	0.65	
Benzo(a)anthracene	ND		ug/l		2.0	0.61	
Benzo(a)pyrene	ND		ug/l		2.0	0.54	
Benzo(b)fluoranthene	ND		ug/l		2.0	0.64	
Benzo(k)fluoranthene	ND		ug/l		2.0	0.60	
Chrysene	ND		ug/l		2.0	0.54	
Acenaphthylene	ND		ug/l		2.0	0.66	
Anthracene	ND		ug/l		2.0	0.64	
Benzo(ghi)perylene	ND		ug/l		2.0	0.61	
Fluorene	ND		ug/l		2.0	0.62	
Phenanthrene	ND		ug/l		2.0	0.61	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.55	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.71	
Pyrene	ND		ug/l		2.0	0.57	
Biphenyl	ND		ug/l		2.0	0.76	
Aniline	ND		ug/l		2.0	0.65	
4-Chloroaniline	ND		ug/l		5.0	0.63	
1-Methylnaphthalene	ND		ug/l		2.0	0.67	
2-Nitroaniline	ND		ug/l		5.0	1.1	
3-Nitroaniline	ND		ug/l		5.0	1.2	
4-Nitroaniline	ND		ug/l		5.0	1.3	
Dibenzofuran	ND		ug/l		2.0	0.66	
2-Methylnaphthalene	ND		ug/l		2.0	0.72	
n-Nitrosodimethylamine	ND		ug/l		2.0	0.67	
2,4,6-Trichlorophenol	ND		ug/l		5.0	0.68	
p-Chloro-m-cresol	ND		ug/l		2.0	0.62	
2-Chlorophenol	ND		ug/l		2.0	0.63	

Project Number: 35663

Lab Number:

L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 05/09/17 21:55

Analyst: SZ

Extraction Method: EPA 3510C Extraction Date: 05/09/17 07:23

arameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	S - Westboroug	h Lab for s	ample(s):	01	Batch:	WG1001543-1
2,4-Dichlorophenol	ND		ug/l		5.0	0.77
2,4-Dimethylphenol	ND		ug/l		5.0	1.6
2-Nitrophenol	ND		ug/l		10	1.5
4-Nitrophenol	ND		ug/l		10	1.8
2,4-Dinitrophenol	ND		ug/l		20	5.5
4,6-Dinitro-o-cresol	ND		ug/l		10	2.1
Pentachlorophenol	ND		ug/l		10	3.4
Phenol	ND		ug/l		5.0	1.9
2-Methylphenol	ND		ug/l		5.0	1.0
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0	1.1
2,4,5-Trichlorophenol	ND		ug/l		5.0	0.72
Benzoic Acid	ND		ug/l		50	13.
Benzyl Alcohol	ND		ug/l		2.0	0.72
Carbazole	ND		ug/l		2.0	0.63
Pyridine	ND		ug/l		3.5	1.9

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

L1714950

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis
Batch Quality Control

Analytical Method: Analytical Date: 1,8270D 05/09/17 21:55

Analyst:

SZ

Extraction Method: EPA 3510C Extraction Date: 05/09/17 07:23

ParameterResultQualifierUnitsRLMDLSemivolatile Organics by GC/MS - Westborough Lab for sample(s): 01Batch: WG1001543-1

Surrogate	%Recovery Quali	Acceptance fier Criteria
2-Fluorophenol	40	21-120
Phenol-d6	28	10-120
Nitrobenzene-d5	73	23-120
2-Fluorobiphenyl	68	15-120
2,4,6-Tribromophenol	78	10-120
4-Terphenyl-d14	85	41-149

Project Number: 35663

Lab Number: L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: 1
Analytical Date: 0

1,8270D-SIM 05/10/17 08:48

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 05/09/17 07:29

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/	MS-SIM - Westbo	rough Lab	for sample	(s): 01	Batch: WG1001549-1
Acenaphthene	ND		ug/l	0.10	0.04
2-Chloronaphthalene	ND		ug/l	0.20	0.04
Fluoranthene	ND		ug/l	0.20	0.04
Hexachlorobutadiene	ND		ug/l	0.50	0.04
Naphthalene	ND		ug/l	0.20	0.04
Benzo(a)anthracene	0.03	J	ug/l	0.20	0.02
Benzo(a)pyrene	0.04	J	ug/l	0.20	0.04
Benzo(b)fluoranthene	0.04	J	ug/l	0.20	0.02
Benzo(k)fluoranthene	0.06	J	ug/l	0.20	0.04
Chrysene	0.04	J	ug/l	0.20	0.04
Acenaphthylene	ND		ug/l	0.20	0.04
Anthracene	ND		ug/l	0.20	0.04
Benzo(ghi)perylene	ND		ug/l	0.20	0.04
Fluorene	ND		ug/l	0.20	0.04
Phenanthrene	ND		ug/l	0.20	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.20	0.04
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	0.04
Pyrene	ND		ug/l	0.20	0.04
1-Methylnaphthalene	ND		ug/l	0.20	0.04
2-Methylnaphthalene	ND		ug/l	0.20	0.05
Pentachlorophenol	ND		ug/l	0.80	0.22
Hexachlorobenzene	ND		ug/l	0.80	0.03
Hexachloroethane	ND		ug/l	0.80	0.03

L1714950

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM

Analyst:

05/10/17 08:48

Extraction Method: EPA 3510C 05/09/17 07:29 Extraction Date:

KL

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-S	SIM - Westb	orough Lab	for sample	e(s): 01	Batch: WG1001549-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	57	21-120
Phenol-d6	39	10-120
Nitrobenzene-d5	87	23-120
2-Fluorobiphenyl	90	15-120
2,4,6-Tribromophenol	105	10-120
4-Terphenyl-d14	98	41-149

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbore	ough Lab Associ	iated sample(s):	01 Batch:	WG1001543-	2 WG1001543-3				
Acenaphthene	71		74		37-111	4		30	
Benzidine	59		84	Q	10-75	35	Q	30	
1,2,4-Trichlorobenzene	69		71		39-98	3		30	
Hexachlorobenzene	78		82		40-140	5		30	
Bis(2-chloroethyl)ether	65		66		40-140	2		30	
2-Chloronaphthalene	75		78		40-140	4		30	
1,2-Dichlorobenzene	62		65		40-140	5		30	
1,3-Dichlorobenzene	62		61		40-140	2		30	
1,4-Dichlorobenzene	61		63		36-97	3		30	
3,3'-Dichlorobenzidine	74		80		40-140	8		30	
2,4-Dinitrotoluene	80		86		48-143	7		30	
2,6-Dinitrotoluene	77		82		40-140	6		30	
Azobenzene	66		72		40-140	9		30	
Fluoranthene	76		82		40-140	8		30	
4-Chlorophenyl phenyl ether	73		78		40-140	7		30	
4-Bromophenyl phenyl ether	75		81		40-140	8		30	
Bis(2-chloroisopropyl)ether	50		52		40-140	4		30	
Bis(2-chloroethoxy)methane	68		70		40-140	3		30	
Hexachlorobutadiene	66		70		40-140	6		30	
Hexachlorocyclopentadiene	72		79		40-140	9		30	
Hexachloroethane	63		64		40-140	2		30	
Isophorone	71		75		40-140	5		30	
Naphthalene	66		69		40-140	4		30	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	: 01 Batch:	WG1001543-2	2 WG1001543-3			
Nitrobenzene	73		75		40-140	3	30	
NDPA/DPA	76		81		40-140	6	30	
n-Nitrosodi-n-propylamine	71		75		29-132	5	30	
Bis(2-ethylhexyl)phthalate	83		91		40-140	9	30	
Butyl benzyl phthalate	81		86		40-140	6	30	
Di-n-butylphthalate	80		86		40-140	7	30	
Di-n-octylphthalate	85		90		40-140	6	30	
Diethyl phthalate	76		82		40-140	8	30	
Dimethyl phthalate	76		82		40-140	8	30	
Benzo(a)anthracene	76		83		40-140	9	30	
Benzo(a)pyrene	86		89		40-140	3	30	
Benzo(b)fluoranthene	81		84		40-140	4	30	
Benzo(k)fluoranthene	85		88		40-140	3	30	
Chrysene	76		78		40-140	3	30	
Acenaphthylene	78		82		45-123	5	30	
Anthracene	76		80		40-140	5	30	
Benzo(ghi)perylene	77		83		40-140	8	30	
Fluorene	75		80		40-140	6	30	
Phenanthrene	70		76		40-140	8	30	
Dibenzo(a,h)anthracene	74		81		40-140	9	30	
Indeno(1,2,3-cd)pyrene	79		84		40-140	6	30	
Pyrene	75		80		26-127	6	30	
Biphenyl	78		81		40-140	4	30	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	iated sample(s):	01 Batch:	WG1001543-2	2 WG1001543-3		
Aniline	46		53		40-140	14	30
4-Chloroaniline	63		70		40-140	11	30
1-Methylnaphthalene	76		80		41-103	5	30
2-Nitroaniline	84		90		52-143	7	30
3-Nitroaniline	73		77		25-145	5	30
4-Nitroaniline	74		79		51-143	7	30
Dibenzofuran	73		77		40-140	5	30
2-Methylnaphthalene	73		77		40-140	5	30
n-Nitrosodimethylamine	41		38		22-74	8	30
2,4,6-Trichlorophenol	83		87		30-130	5	30
p-Chloro-m-cresol	84		89		23-97	6	30
2-Chlorophenol	72		73		27-123	1	30
2,4-Dichlorophenol	81		85		30-130	5	30
2,4-Dimethylphenol	85		89		30-130	5	30
2-Nitrophenol	83		88		30-130	6	30
4-Nitrophenol	58		53		10-80	9	30
2,4-Dinitrophenol	92		96		20-130	4	30
4,6-Dinitro-o-cresol	83		88		20-164	6	30
Pentachlorophenol	78		86		9-103	10	30
Phenol	42		37		12-110	13	30
2-Methylphenol	68		67		30-130	1	30
3-Methylphenol/4-Methylphenol	67		64		30-130	5	30
2,4,5-Trichlorophenol	85		89		30-130	5	30

Project Name: NORTHPOINT

35663

Project Number:

THPOINT

Lab Number: L1714950

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - We	estborough Lab Associa	ited sample(s):	01 Batch:	WG1001543-2	2 WG1001543-3				
Benzoic Acid	50		41		10-164	20		30	
Benzyl Alcohol	70		68		26-116	3		30	
Carbazole	75		80		55-144	6		30	
Pyridine	31		35		10-66	12		30	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qua	al %Recovery Qual	Criteria
2-Fluorophenol	55	50	21-120
Phenol-d6	42	36	10-120
Nitrobenzene-d5	81	86	23-120
2-Fluorobiphenyl	75	82	15-120
2,4,6-Tribromophenol	76	83	10-120
4-Terphenyl-d14	77	84	41-149

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - We	stborough Lab As	sociated sample(s): 01 Batch	h: WG1001549-2 WG1001	549-3	
Acenaphthene	91	90	37-111	1	40
2-Chloronaphthalene	92	92	40-140	0	40
Fluoranthene	100	93	40-140	7	40
Hexachlorobutadiene	77	79	40-140	3	40
Naphthalene	83	85	40-140	2	40
Benzo(a)anthracene	95	90	40-140	5	40
Benzo(a)pyrene	100	95	40-140	5	40
Benzo(b)fluoranthene	103	96	40-140	7	40
Benzo(k)fluoranthene	105	99	40-140	6	40
Chrysene	96	93	40-140	3	40
Acenaphthylene	101	100	40-140	1	40
Anthracene	101	97	40-140	4	40
Benzo(ghi)perylene	102	97	40-140	5	40
Fluorene	96	94	40-140	2	40
Phenanthrene	90	86	40-140	5	40
Dibenzo(a,h)anthracene	98	93	40-140	5	40
Indeno(1,2,3-cd)pyrene	103	98	40-140	5	40
Pyrene	99	92	26-127	7	40
1-Methylnaphthalene	89	90	40-140	1	40
2-Methylnaphthalene	89	89	40-140	0	40
Pentachlorophenol	100	98	9-103	2	40
Hexachlorobenzene	95	93	40-140	2	40
Hexachloroethane	70	73	40-140	4	40

Project Name: NORTHPOINT

Lab Number:

L1714950

Project Number: 35

35663

Report Date:

05/24/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1001549-2 WG1001549-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	56	58	21-120
Phenol-d6	40	42	10-120
Nitrobenzene-d5	89	92	23-120
2-Fluorobiphenyl	87	88	15-120
2,4,6-Tribromophenol	106	103	10-120
4-Terphenyl-d14	94	86	41-149

PCBS

Project Name: NORTHPOINT **Lab Number:** L1714950

Project Number: 35663 Report Date: 05/24/17

SAMPLE RESULTS

 Lab ID:
 L1714950-01
 Date Collected:
 05/09/17 07:50

 Client ID:
 VES-Y-2 (OW)
 Date Received:
 05/09/17

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified Extraction Method:EPA 608

Matrix: Water Extraction Date: 05/12/17 23:53
Analytical Method: 5,608 Cleanup Method: EPA 3665A

Analytical Date: 05/16/17 07:52 Cleanup Date: 05/13/17
Analyst: JW Cleanup Method: EPA 3660B

Cleanup Date: 05/13/17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by GC - Wes	stborough Lab						
Aroclor 1016	ND		ug/l	0.250	0.042	1	Α
Aroclor 1221	ND		ug/l	0.250	0.056	1	Α
Aroclor 1232	ND		ug/l	0.250	0.024	1	Α
Aroclor 1242	ND		ug/l	0.250	0.028	1	Α
Aroclor 1248	ND		ug/l	0.250	0.028	1	Α
Aroclor 1254	ND		ug/l	0.250	0.043	1	Α
Aroclor 1260	ND		ug/l	0.200	0.045	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	83		30-150	Α
Decachlorobiphenyl	67		30-150	Α

L1714950

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Report Date. 05/24/17

Lab Number:

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 05/16/17 08:16

Analyst: JW

Extraction Method: EPA 608
Extraction Date: 05/12/17 23:53
Cleanup Method: EPA 3665A
Cleanup Date: 05/13/17
Cleanup Method: EPA 3660B
Cleanup Date: 05/13/17

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	C - Westboroug	h Lab for s	ample(s):	01 Batch:	WG1003119)-1
Aroclor 1016	ND		ug/l	0.250	0.042	А
Aroclor 1221	ND		ug/l	0.250	0.056	Α
Aroclor 1232	ND		ug/l	0.250	0.024	Α
Aroclor 1242	ND		ug/l	0.250	0.028	Α
Aroclor 1248	ND		ug/l	0.250	0.028	Α
Aroclor 1254	ND		ug/l	0.250	0.043	Α
Aroclor 1260	ND		ug/l	0.200	0.045	Α

Surrogate	%Recovery	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	79	30-150	A
Decachlorobiphenyl	79	30-150	Α

Project Name: NORTHPOINT

Lab Number:

L1714950

Project Number: 35663

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbo	orough Lab Associa	ted sample(s):	01 Batch:	WG1003119-	2				
Aroclor 1016	94		-		30-150	-		30	Α
Aroclor 1260	97		-		30-150	-		30	А

Surrogate	LCS %Recovery	Qual %	LCSD Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	76 80				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1714950

Report Date:

05/24/17

	Native	MS	MS	MS		MSD	MSD		Recovery		RPD	
Parameter	Sample	Added	Found	%Recovery	' Qual	Found	%Recover	ry Qual	Limits	RPD Qua	l Limits (<u>Colum</u> n
Polychlorinated Biphenyls by 0	GC - Westbord	ough Lab	Associated sar	mple(s): 01 (QC Batch II	D: WG100	3119-3 Q	C Sample:	L1706390-6	5 Client ID:	MS Sample	Э
Aroclor 1016	ND	3.12	3.20	102		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	3.28	105		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	Α
Decachlorobiphenyl	80		30-150	Α

Lab Duplicate Analysis Batch Quality Control

NORTHPOINT

Lab Number:

L1714950

Project Number: 35663

Project Name:

05/24/17 Report Date:

Parameter	Native Sample	Duplicate Sampl	e Units	RPD	Qual	RPD Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1003119-4	QC Sample:	L1706390-65	Client ID	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

		Acceptance Acceptance						
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	85	90	30-150	Α				
Decachlorobiphenyl	83	88	30-150	Α				

METALS

Project Name: NORTHPOINT

Project Number: 35663 Lab Number: **Report Date:**

L1714950

05/24/17

SAMPLE RESULTS

Lab ID: L1714950-01 Client ID: VES-Y-2 (OW)

Sample Location: CAMBRIDGE, MA

Matrix: Water Date Collected:

05/09/17 07:50

Date Received: 05/09/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	0.00047	J	mg/l	0.00400	0.00042	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Arsenic, Total	0.01784		mg/l	0.00100	0.00016	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Barium, Total	0.2289		mg/l	0.00100	0.00017	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Beryllium, Total	ND		mg/l	0.00100	0.00010	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00100	0.00005	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Calcium, Total	150		mg/l	0.100	0.035	1	05/10/17 13:00	05/10/17 18:30	EPA 3005A	19,200.7	PS
Chromium, Total	0.00045	J	mg/l	0.00100	0.00017	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Copper, Total	0.00098	J	mg/l	0.00100	0.00038	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Iron, Total	32.9		mg/l	0.050	0.009	1	05/10/17 13:00	05/10/17 18:30	EPA 3005A	19,200.7	PS
Lead, Total	0.00302		mg/l	0.00100	0.00034	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Magnesium, Total	14.8		mg/l	0.100	0.015	1	05/10/17 13:00	05/10/17 18:30	EPA 3005A	19,200.7	PS
Manganese, Total	1.168		mg/l	0.00100	0.00044	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/10/17 11:19	05/10/17 18:24	EPA 245.1	3,245.1	EA
Nickel, Total	0.00541		mg/l	0.00200	0.00055	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Potassium, Total	12.5		mg/l	2.50	0.237	1	05/10/17 13:00	05/10/17 18:30	EPA 3005A	19,200.7	PS
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00100	0.00026	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Sodium, Total	84.5		mg/l	2.00	0.120	1	05/10/17 13:00	05/10/17 18:30	EPA 3005A	19,200.7	PS
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/10/17 13:00	05/11/17 11:41	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	430		mg/l	0.66	NA	1	05/10/17 13:00	05/11/17 11:21	EPA 3005A	1,6010C	PS
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.010	1		05/11/17 11:41	NA	107,-	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1714950

Report Date: 05/24/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfie	eld Lab for sample(s):	01 Batc	h: WG10	02048-	1				
Mercury, Total	ND	mg/l	0.00020	0.00006	6 1	05/10/17 11:19	05/10/17 18:15	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01 Batch	: WG10	002079-	1				
Calcium, Total	ND	mg/l	0.100	0.035	1	05/10/17 13:00	05/10/17 18:01	19,200.7	PS
Iron, Total	ND	mg/l	0.050	0.009	1	05/10/17 13:00	05/10/17 18:01	19,200.7	PS
Magnesium, Total	ND	mg/l	0.100	0.015	1	05/10/17 13:00	05/10/17 18:01	19,200.7	PS
Potassium, Total	ND	mg/l	2.50	0.237	1	05/10/17 13:00	05/10/17 18:01	19,200.7	PS
Sodium, Total	ND	mg/l	2.00	0.120	1	05/10/17 13:00	05/10/17 18:01	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	eld Lab for sample(s):	01 Bato	h: WG10	02085-1					
Antimony, Total	ND	mg/l	0.00400	0.00042	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100	0.00016	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Barium, Total	ND	mg/l	0.00100	0.00017	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Beryllium, Total	ND	mg/l	0.00100	0.00010	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00100	0.00005	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100	0.00017	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Copper, Total	ND	mg/l	0.00100	0.00038	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Lead, Total	ND	mg/l	0.00100	0.00034	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Manganese, Total	ND	mg/l	0.00100	0.00044	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	0.00055	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	0.00173	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM
Silver, Total	ND	mg/l	0.00100	0.00026	1	05/10/17 13:00	05/11/17 11:14	3,200.8	AM

Project Name: NORTHPOINT

Project Number: 35663

ND

Lab Number:

L1714950

Report Date:

05/10/17 13:00 05/11/17 11:13

05/24/17

3,200.8

1,6010C

AM

PS

Method Blank Analysis Batch Quality Control

Zinc, Total ND mg/l 0.01000 0.00341 1 05/10/17 13:00 05/11/17 11:14

mg/l

Prep Information

Digestion Method: EPA 3005A

Parameter Result Qualifier Units RL MDL Factor Prepared Analyzed Method Analyst

Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1002087-1

NA

Prep Information

Digestion Method: EPA 3005A

0.66

Hardness

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

arameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	(s): 01 Batch: W	/G1002048-2					
Mercury, Total	105	-		85-115	-		
atal Matala Manafialal ala Associata deservala	(-) 04 D-(-1- M	104000070.0					
otal Metals - Mansfield Lab Associated sample	(s): 01 Batch: W	/G1002079-2					
Otal Metals - Mansfield Lab Associated sample Calcium, Total	(s): U1 Batch: W			85-115	-		
·				85-115 85-115	-		
Calcium, Total	92	-					
Calcium, Total	92	-		85-115	-		

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: WG10	002085-2			
Antimony, Total	99	-	85-115	-	
Arsenic, Total	102	-	85-115	-	
Barium, Total	99	-	85-115	-	
Beryllium, Total	101	-	85-115	-	
Cadmium, Total	109	-	85-115	-	
Chromium, Total	106	-	85-115	-	
Copper, Total	105	-	85-115	-	
Lead, Total	105	-	85-115	-	
Manganese, Total	103	-	85-115	-	
Nickel, Total	106	-	85-115	-	
Selenium, Total	102	-	85-115	-	
Silver, Total	99	-	85-115	-	
Zinc, Total	103	-	85-115	-	
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample(s): (01 Batch: WG1002087-2			
Hardness	95	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	Native Sample	MS Added	MS Found ⁶	MS %Recovery	Qua	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II): WG100204	8-3	QC Sample	: L1700005-79	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00490	98		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II): WG100207	9-3	QC Sample	: L1715014-01	Client ID: MS Sa	ample	
Calcium, Total	130.	10	137	70	Q	-	-	75-125	-	20
Iron, Total	0.262	1	1.27	101		-	-	75-125	-	20
Magnesium, Total	49.4	10	56.7	73	Q	-	-	75-125	-	20
Potassium, Total	29.6	10	39.4	98		-	-	75-125	-	20
Sodium, Total	733.	10	696	0	Q	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II): WG100207	9-7	QC Sample	: L1714950-01	Client ID: VES-	Y-2 (OW)
Calcium, Total	150.	10	156	60	Q	-	-	75-125	-	20
Iron, Total	32.9	1	33.0	10	Q	-	-	75-125	-	20
Magnesium, Total	14.8	10	23.5	87		-	-	75-125	-	20
Potassium, Total	12.5	10	21.9	94		-	-	75-125	-	20
Sodium, Total	84.5	10	92.4	79		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

arameter	Native Sample	MS Added	MS Found %	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield L	ab Associated sam	nple(s): 01	QC Batch ID): WG1002085-3	QC Sample:	L1715014-01	Client ID: MS S	ample	
Antimony, Total	0.00162J	0.5	0.6248	125	-	-	70-130	-	20
Arsenic, Total	0.00376	0.12	0.1285	104	-	-	70-130	-	20
Barium, Total	0.1606	2	2.160	100	-	-	70-130	-	20
Beryllium, Total	ND	0.05	0.05239	105	-	-	70-130	-	20
Cadmium, Total	0.00010J	0.051	0.05713	112	-	-	70-130	-	20
Chromium, Total	0.00155	0.2	0.2039	101	-	-	70-130	-	20
Copper, Total	0.00184	0.25	0.2646	105	-	-	70-130	-	20
Lead, Total	0.00116	0.51	0.5234	102	-	-	70-130	-	20
Manganese, Total	0.1028	0.5	0.6330	106	-	-	70-130	-	20
Nickel, Total	0.00125J	0.5	0.5018	100	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1351	112	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05018	100	-	-	70-130	-	20
Zinc, Total	0.00686J	0.5	0.5320	106	-	-	70-130	-	20
otal Hardness by SM 23	40B - Mansfield La	b Associate	ed sample(s):	01 QC Batch II	D: WG1002087	-3 QC Samp	le: L1714950-01	Client ID	: VES-Y-2 (OV
Hardness	430	66.2	470	60	Q -	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950 **Report Date:** 05/24/17

arameter	Native Sample Dup	olicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002048-4	QC Sample:	L1700005-79	Client ID:	DUP Sample	
Mercury, Total	ND	0.00010J	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002079-8	QC Sample:	L1714950-01	Client ID:	VES-Y-2 (OW	V)
Calcium, Total	150.	151	mg/l	1		20
Iron, Total	32.9	33.0	mg/l	0		20
Magnesium, Total	14.8	14.9	mg/l	1		20
Potassium, Total	12.5	12.5	mg/l	0		20
Sodium, Total	84.5	86.5	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1002085-4	QC Sample:	L1715014-01	Client ID:	DUP Sample	
Antimony, Total	0.00162J	0.00231J	mg/l	NC		20
Arsenic, Total	0.00376	0.00375	mg/l	0		20
Cadmium, Total	0.00010J	0.00012J	mg/l	NC		20
Chromium, Total	0.00155	0.00293	mg/l	62	Q	20
Copper, Total	0.00184	0.00175	mg/l	5		20
Lead, Total	0.00116	0.00122	mg/l	5		20
Nickel, Total	0.00125J	0.00295	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.00686J	0.00622J	mg/l	NC		20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1714950 05/24/17

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Associa	ated sample(s): 01	QC Batch ID: WG1002087-4	QC Sample:	L1714950-01	Client ID: VES-Y-2 (OW)
Hardness	430	440	mg/l	2	20

Project Name:

Project Number:

NORTHPOINT

35663

INORGANICS & MISCELLANEOUS

Lab Number:

Project Name: NORTHPOINT

L1714950 **Project Number: Report Date:** 05/24/17 35663

SAMPLE RESULTS

Lab ID: L1714950-01 VES-Y-2 (OW) Client ID:

CAMBRIDGE, MA Sample Location:

Matrix: Water Date Collected: 05/09/17 07:50

Date Received: 05/09/17

Not Specified Field Prep:

Parameter	Result	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ab								
Solids, Total Dissolved	820		mg/l	20	6.1	2	-	05/11/17 11:55	121,2540C	DW
Solids, Total Suspended	47.		mg/l	5.0	NA	1	-	05/11/17 23:55	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/11/17 10:20	05/11/17 15:59	121,4500CN-CE	JO
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/09/17 22:34	121,4500CL-D	AS
Nitrogen, Ammonia	12.8		mg/l	0.075	0.022	1	05/09/17 23:00	05/11/17 23:37	121,4500NH3-BH	H AT
Phosphorus, Total	1.08		mg/l	0.050	0.015	5	05/11/17 11:00	05/12/17 10:56	121,4500P-E	SD
Phosphorus, Soluble	0.020		mg/l	0.020	0.008	2	05/10/17 12:20	05/10/17 16:15	121,4500P-E	SD
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/11/17 17:00	05/11/17 22:37	74,1664A	ML
Phenolics, Total	0.011	J	mg/l	0.030	0.010	1	05/11/17 12:06	05/11/17 16:03	4,420.1	AW
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/09/17 23:15	05/09/17 23:54	1,7196A	MR
Anions by Ion Chromato	graphy - We	stborough	Lab							
Chloride	174.		mg/l	12.5	2.10	25	-	05/11/17 22:36	44,300.0	AU

L1714950

05/24/17

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 **Report Date:**

Method Blank Analysis Batch Quality Control

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	01848-1				
Chlorine, Total Residual	ND		mg/l	0.02	0.01	1	-	05/09/17 22:34	121,4500CL-D	AS
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	01854-1				
Chromium, Hexavalent	ND		mg/l	0.010	0.003	1	05/09/17 23:15	05/09/17 23:53	1,7196A	MR
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	01864-1				
Nitrogen, Ammonia	ND		mg/l	0.075	0.022	1	05/09/17 23:00	05/11/17 23:34	121,4500NH3-BH	H AT
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02042-1				
Phosphorus, Soluble	ND		mg/l	0.010	0.004	1	05/10/17 12:20	05/10/17 16:15	121,4500P-E	SD
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02318-1				
Solids, Total Dissolved	ND		mg/l	10	3.1	1	-	05/11/17 11:55	121,2540C	DW
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02395-1				
Cyanide, Total	ND		mg/l	0.005	0.001	1	05/11/17 10:20	05/11/17 15:56	121,4500CN-CE	JO
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02404-1				
Phosphorus, Total	ND		mg/l	0.010	0.003	1	05/11/17 11:00	05/12/17 09:22	121,4500P-E	SD
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02507-1				
Phenolics, Total	ND		mg/l	0.030	0.010	1	05/11/17 12:06	05/11/17 16:01	4,420.1	AW
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02624-1				
TPH, SGT-HEM	ND		mg/l	4.00	1.24	1	05/11/17 17:00	05/11/17 22:37	74,1664A	ML
General Chemistry - West	tborough Lal	b for sam	nple(s): 01	Batch:	WG10	02698-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/11/17 23:55	121,2540D	VB
Anions by Ion Chromatog	raphy - Wes	tborough	Lab for sar	mple(s):	01 Ba	atch: WG1	002713-1			
Chloride	ND		mg/l	0.500	0.083	1		05/11/17 17:36	44,300.0	AU

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Reco Qual Limi	•	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1001848	3-2		
Chlorine, Total Residual	105	-	90-11) -	
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1001854	1-2		
Chromium, Hexavalent	90	-	85-11	5 -	20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1001864	1-2		
Nitrogen, Ammonia	98	-	80-12) -	20
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1002042	2-2		
Phosphorus, Soluble	107	-	80-12		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1002318	3-2		
Solids, Total Dissolved	100	-	80-12		
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1002395	5-2		
Cyanide, Total	98	-	90-11) -	
General Chemistry - Westborough Lab	Associated sample(s):	01 Batch: WG1002404	1-2		
Phosphorus, Total	95	-	80-12) -	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1002507-2			
Phenolics, Total	92	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1002624-2			
TPH	90	-	64-132	-	34
Anions by Ion Chromatography - Westb	orough Lab Associated sa	ample(s): 01 Batch: WG1002	713-2		
Chloride	105	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1714950

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1001848-4	QC Sample: L1714950	-01 Client ID): VES-Y-2 (OW)
Chlorine, Total Residual	ND	0.248	0.25	101	-	-	80-120	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1001854-4	QC Sample: L1714950	-01 Client ID): VES-Y-2 (OW)
Chromium, Hexavalent	ND	0.1	0.089	89	-	-	85-115	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1001864-4	QC Sample: L1714950	-01 Client ID): VES-Y-2 (OW)
Nitrogen, Ammonia	12.8	4	17.4	115	-	-	80-120	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1002042-3	QC Sample: L1714762-	-02 Client ID	: MS Sampl	e
Phosphorus, Soluble	0.025	0.5	0.484	92	-	-	75-125	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1002395-4	QC Sample: L1700005	-78 Client ID	: MS Sampl	e
Cyanide, Total	0.010	0.2	0.192	91	-	-	90-110	-	30
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1002404-3	QC Sample: L1713797-	-01 Client ID	: MS Sampl	e
Phosphorus, Total	0.051	0.5	0.562	102	-	-	75-125	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1002507-4	QC Sample: L1714972-	-02 Client ID	: MS Sampl	e
Phenolics, Total	0.012J	0.4	0.42	105	-	-	70-130	-	20
General Chemistry - Westboroug	gh Lab Asso	ociated sample	e(s): 01	QC Batch ID: \	WG1002624-4	QC Sample: L1714908-	-01 Client ID	: MS Sampl	e
TPH	52.7	20.4	73.0	99	-	-	64-132	-	34
Anions by Ion Chromatography - Sample	Westborou	igh Lab Assoc	ciated sar	mple(s): 01 Q0	C Batch ID: WG1	002713-3 QC Sample	e: L1715269-0	11 Client ID	: MS
Chloride	130.	100	238	108	-	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

L1714950

Lab Number:

Project Number: Report Date: 05/24/17 35663

Parameter	Native Sa	mple	Duplicate Sam	nple Unit	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	nple(s): 01 QC Batch ID: V		WG1001848-3	QC Sample:	L1714950-01	Client ID:	VES-Y-2 (OW)
Chlorine, Total Residual	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	le(s): 01	QC Batch ID:	WG1001854-3	QC Sample:	L1714950-01	Client ID:	VES-Y-2 (OW)
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	le(s): 01	QC Batch ID:	WG1001864-3	QC Sample:	L1714950-01	Client ID:	VES-Y-2 (OW)
Nitrogen, Ammonia	12.8		13.3	mg/l	4		20
General Chemistry - Westborough Lab Associated samp	le(s): 01	QC Batch ID:	WG1002042-4	QC Sample:	L1714762-01	Client ID:	DUP Sample
Phosphorus, Soluble	0.017		0.014J	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID: V		WG1002318-3	QC Sample:	L1715003-01	Client ID:	DUP Sample
Solids, Total Dissolved	1900		1900	mg/l	0		10
General Chemistry - Westborough Lab Associated samp	le(s): 01	QC Batch ID:	WG1002395-3	QC Sample:	L1714990-01	Client ID:	DUP Sample
Cyanide, Total	0.004	J	0.004J	mg/l	NC		30
General Chemistry - Westborough Lab Associated samp	le(s): 01	QC Batch ID:	WG1002404-4	QC Sample:	L1713797-01	Client ID:	DUP Sample
Phosphorus, Total	0.051		0.047	mg/l	8		20
General Chemistry - Westborough Lab Associated samp	le(s): 01 QC Batch ID: \		WG1002507-3	QC Sample:	L1714972-02	Client ID:	DUP Sample
Phenolics, Total	0.012J		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch ID: V		WG1002624-3	QC Sample:	L1714908-01	Client ID:	DUP Sample
ТРН	52.7		42.2	mg/l	22		34

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1714950

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
General Chemistry - Westborough Lab Associate	ed sample(s): 01 QC Batch ID	: WG1002698-2 QC	Sample: L17	14954-01 Client	ID: DUP Sample
Solids, Total Suspended	160	160	mg/l	0	29
Anions by Ion Chromatography - Westborough La Sample	ab Associated sample(s): 01 (QC Batch ID: WG1002	713-4 QC S	ample: L171526	9-01 Client ID: DUP
Chloride	130.	130	mg/l	0	18

Project Name: **NORTHPOINT**

Lab Number: L1714950 **Report Date:** 05/24/17 Project Number: 35663

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

В Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1714950-01A	Plastic 250ml HNO3 preserved	В	<2	4.1	Y	Absent	CD-2008T(180),CA-UI(180),MN-2008T(180),NI-2008T(180),BE-2008T(180),K-UI(180),ZN-2008T(180),GU-2008T(180),AG-UI(180),AG-UI(180),AS-2008T(180),HG-U(28),SE-2008T(180),BA-2008T(180),NA-UI(180),CR-2008T(180),HARDT(180),PB-2008T(180),SB-2008T(180)
L1714950-01A1	Plastic 250ml HNO3 preserved	В	<2	4.1	Υ	Absent	HOLD-METAL- DISSOLVED(180)
L1714950-01B	Amber 1000ml Na2S2O3	В	7	4.1	Υ	Absent	PCB-608(7)
L1714950-01C	Amber 1000ml Na2S2O3	В	7	4.1	Υ	Absent	PCB-608(7)
L1714950-01D	Amber 1000ml unpreserved	В	7	4.1	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1714950-01E	Amber 1000ml unpreserved	В	7	4.1	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1714950-01F	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01G	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01H	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01I	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01J	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01K	Vial HCI preserved	В	N/A	4.1	Υ	Absent	SUB-ETHANOL(0)
L1714950-01L	Vial Na2S2O3 preserved	В	N/A	4.1	Υ	Absent	504(14)
L1714950-01M	Vial Na2S2O3 preserved	В	N/A	4.1	Υ	Absent	504(14)
L1714950-01N	Vial HCI preserved	В	N/A	4.1	Υ	Absent	8260-SIM(14),8260(14)
L1714950-01O	Vial HCI preserved	В	N/A	4.1	Υ	Absent	8260-SIM(14),8260(14)
L1714950-01P	Vial HCI preserved	В	N/A	4.1	Υ	Absent	8260-SIM(14),8260(14)
L1714950-01Q	Plastic 950ml unpreserved	В	7	4.1	Y	Absent	CL-300(28),HEXCR- 7196(1),TRC-4500(1),TDS- 2540(7)
L1714950-01R	Plastic 500ml H2SO4 preserved	В	<2	4.1	Υ	Absent	TPHOS-4500(28),NH3-4500(28)
L1714950-01S	Plastic 250ml unpreserved	В	7	4.1	Υ	Absent	TSS-2540(7)
L1714950-01T	Plastic 250ml NaOH preserved	В	>12	4.1	Υ	Absent	TCN-4500(14)
L1714950-01U	Amber 1000ml HCl preserved	В	N/A	4.1	Υ	Absent	TPH-1664(28)
L1714950-01V	Amber 1000ml HCl preserved	В	N/A	4.1	Υ	Absent	TPH-1664(28)

Lab Number: L1714950

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/24/17

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1714950-01W	Amber 1000ml H2SO4 preserved	В	<2	4.1	Υ	Absent	TPHENOL-420(28)
L1714950-01X	Plastic 250ml H2SO4 preserved Fi	В	N/A	4.1	Υ	Absent	SPHOS-4500(28)
L1714950-01Y	Plastic 250ml unpreserved	В	7	4.1	Υ	Absent	SPHOS-4500(28)
L1714950-01Z	Amber 120 mL H2SO4 preserved	В	7	4.1	Υ	Absent	HOLD-WETCHEM(0)
L1714950-02A	Vial HCl preserved	В	N/A	4.1	Υ	Absent	8260-SIM(14),8260(14)
L1714950-02B	Vial HCl preserved	В	N/A	4.1	Υ	Absent	8260-SIM(14),8260(14)
L1714950-02C	Vial Na2S2O3 preserved	В	N/A	4.1	Υ	Absent	HOLD-504/8011(14)
L1714950-02D	Vial Na2S2O3 preserved	В	N/A	4.1	Υ	Absent	HOLD-504/8011(14)

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name:NORTHPOINTLab Number:L1714950Project Number:35663Report Date:05/24/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: NORTHPOINT Lab Number: L1714950

Project Number: 35663 Report Date: 05/24/17

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CH	AIN OF	CUSTO	DY ,	PAGE	OF 3	- Da	ite Rec'	d in La	ab:	5	191	17		AL	PHA	Job#	t: L	171499	50	
8 Walkup Drive	220 Fashan B		oject Informa	ition			R	eport I	nform	ation	- Dat	a Del	iveral	oles		lling l	_	-			
Westboro, MA Tel: 508-898-9	01581 Mansfield, Mansf	A 02048 Dr	oject Name:	Jorthp	oint		Þ	ADEX			EMAIL				7X S	ame a	s Client	t info	PO #:		
Client Information	on	Pro	oject Location:	Ja mo	who	AIM:	R	egulate	ory Re	equire	ment	s &	Pro	ject l	Inforr	nation	Requ	uireme	nts		
Client: THE VEV	trx coma	vanies Pro	oject #: 350	0103	- Cade	i vi i	- X	Yes □ N Yes Øin	No MA	MCP	Analyti	cal Me	ethods	SDG) (Po	☐ Yes	No MC	CTRC	P Analytical N	Methods	
Address: (())	avess St. 10	MTI. Pro	ject Manager:	esse F	TEPM	an	0	Yes X	No GW	1 Star	ndards	(Info I	Require	ed for l	Metals	& EPH	with T	argets)	anics)		
1305			PHA Quote #:	-000	TCGT		1	Yes D N Other S								Cri	teria				
Phone: () 17-	830 -14	47 1	urn-Around Ti	me				/	1	1	3 / 5	1	1.1	1	1	19	7		/ /		
s (enn	ing @ /	×	Standard [□ RUSH (only	confinned if pre-a	pprovedl)		7 8260 D 624 D 524 2	METALS: DMCP 12	EPH. DRCRAS CORCP 14 CRCS	VPH. C. DRanges & Targets CPP13	Kanges & Targets C.	TPH. Calant Only	DFin	7	200-S-100 2		Mominia 504	SAMPLE Filtration Field Lab to co	do Bon O	
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Coll	ection Time	Sample Matrix	Sampler	\ 0 0 0	SVOC	METAL	EPH.	VPH:	PCB	HOT.	E.	2 6	Z	O	T	ample Comm	Ĺ	
14950-01	VES-Y	1-2 (OW) 51917	7:50	GW	STZ	X					X	XX	(X	X	X	(V	7 3	ample Comm	ents	4
02	TVID BI	any s	51917	100			X								V		1			山	
	THE PL	0019	9,				1								1		+				-
										+				+			+				
					T																1
												-		H		+					+
									+	-		+	+	+		#	+				-
									+	-		+	-	+	+	+					1
												+	+								
									+	+			-								-
Container Type	Preservative				Conto	inor Tuno	1/		+	-			+				+				-
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃				101	iner Type eservative	B		+		+		+								-
G= Glass B= Bacteria cup C= Cube	D= H₂SO₄ E= NaOH F= MeOH	Re	linquished By:		_	/Time	ועו		Receiv	ved R	<i>(</i> :	_1_		Date	/Time						1
O= Other E= Encore D= BOD Bottle	G= NaHSO4 H = Na ₂ S ₂ O ₃ I= Ascorbic Åcid J = NH ₄ CI K= Zn Acetate O= Other		Lennen	5/9/1		1740	4	M	~	AA	_	_	5/9	19/7	131	2 A	lpha's ee rev	Terms a erse sid	mitted are su and Condition e. v 12-Mar-2012)	bject to s	

ΔLPHA	CHAIN OF	CU	STO	DY PA	4GE_ 2_	OF 3	Date	e Rec'd	in Lab	: 3	19	11	7		ALPI	HA Jo	ob #:	LI	7149	50
A SE ICAL		Project	Informat	ion			Re	port In	forma	tion - I	Data [Delive	rable	s	Billin	ng Inf	ormat	tion		
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92	320 Forbes Blvd 01581 Mansfield, MA 02048 220 Tel: 508-822-9300	Project N	lame: NC	OPHAPO	int		A	ADEx		M EM	AIL				[X San	ne as C	Client in	nfo P	O #:	
Client Information	n	Project L	ocation:	ambric	WP.L	NA	Re	gulator	y Req	Juirem	ents	&	Proje	ct In	STATE OF STREET			A SHARE WELL AND	1500	
Client: The VPV	tex Companies	Project #	: 250	103	a)cli	11 (es 🗖 No						DG?					Analytical N	/lethods
Address: COO	TYPSS ST IDMF	Project N	fanager:	essef	ropm	nn	DY	es 🛛 No	GW1	Standa	rds (In								1100)	
BOS	tex Companies gress St., 10 th Fl.	the same of the same	Quote #:	20061	CITU	MI		es No ther Sta								Crite	ria			
Phone: (0 7 - 8	330-1447	Turn-A	Around Tir	ne						15	/ m /	_/	1	1	1		1	11	a	ìm
siennos Fcair	and vertexeng com	ZÁStano Date D		RUSH (only o	onlirmed if pre-ap	proved!)	ANALYC	D ABN D 524.2	METALS: UMCP 13 CAN	EPH. DRange DRCRAS DRCRAS	VPH: CRanges & Targets C Ranges	D PEST Ranges On	Jouant Only OFin.	META	C. B. R. B.	W C C C C C C C C C C C C C C C C C C C	SA AGAN	CR-CATERIAL	SAMPLE Filtration Field Lab to Preservat.	do B
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler	رة	SVOC.	METAL	EPH:	VPH: C	TPH.	1/5	5	3	2	at I	Sa	mple Comn	E
14950-01	VES-Y-2(6	W	5)9117	750	GW	STZ							X	X	XX	X	X			31
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	r - 1	ished By:	519117	Pre	iner Type eservative e/Time	UG.	M_		red By:			5/5	Date/T	ime				mitted are s	
Page 83 of 92	I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other				1/17	1740	1	70	rí	¥ ·		-3	19,	/7	174	7 Se	e reve	rse side		

ALPHA	CHAIN O	F CU	STO	DY PA	GE 3	OF_3	Dat	e Rec'	d in L	ab	19	117	7		1	ALPH	IA Jo	ob #:	LI	7149	50
8 Walkup Drive Westboro, MA	320 Forbes Blvd 01581 Mansfield, MA 02048	The second	Informat			- 1			nforn	THE REAL PROPERTY.	n - Dat	Y-MAY	livera	bles				ormat		°O #:	
Tel: 508-898-9	220 Tel: 508-822-9300	Project N	vame: V	DATAC	TINK		1000	ADEX	B		EMAIL	-		-		_				200	
Client Information		Project L	ocation:	lamby	idge	MA					ement Analyt	_	_		Glinre					Analytical Me	thode
Client: The Ve	ctex Companies gress st. 10th Fl.						DY	es X 1	No Ma	trix Sp	ike Re	quired	on th	is SD		Requir	ed for	MCP	norgar	nics)	trious
Address: \ COY	aress St. 10th Fl.	Project N	/lanager: \	jesse F	teen	nan		es ⊠(1 es □ 1			indards	(Info	Requ	red fo	r Met	als &	EPH v	vith Ta	rgets)		
Bost	on MA	ALPHA	Quote #:								ogram						Crite	ria			
Phone: UT-	830-1447	Turn-A	Around Ti	me					1	1	2 2	, / 4	/_		/	17		1	11		
Email: YSnelli Senno +Courr Additional P	830-1447 con evertexeng.com	∑a(Stand		RUSH (only c	onlimed if µre-ap	pproved!)	ANALVA	U 8260 U 624 U 524 2	METALS: DIMCE	S. DRCRAT DMCP 14 DE	VPH: DRanges & Targets DPP1.	D PCB Targets Only	TPH: Dough	Only OFingerprin	No.	RC revols 4	1	MRDWESC		SAMPLE IN Filtration Field Lab to do Preservation Lab to do	#
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll	ection Time	Sample Matrix	Sampler Initials	, VOC.	SVOC.	METALS	METAL	LIPH: D	O PCB	TPH: D	17	F	H	14:		Sa	mple Comme	L E
14950-0]	VES-Y-2 (0	w)	5/9/IF	7:50	GW	STL								X	(>	X	X				3)
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH	- 61	uished By:		Pre	ainer Type eservative			Rec	eived	By:			Da	ate/Tir	me	All	samp	es suh	mitted are sub	piect to
E= Encore D= BOD Bottle Page 84 of 92	G= NaHsO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K= Zn Acetate O= Other	M X	eyim	51911	1/5/17	1740	2	Sin		8	142		5/	19/1	71	134	All	pha's T e reve	erms a	nd Conditions	

SUB UPS: EUROFINS-LANCASTER, PA

***	CHAIN OF	CUSTO	DY	PAGE 1 OF	1	Dat	e Rec'd i	n Lab					AL	PHA	Job #	: L1714	1950	
△L2H	iA	Project Info	rmation			Re	port In	format	ion I	Data De	livera	bles	Bil	ling I	nform	ation		
Westborough, MA	Mansfield, MA			A			FAX			☐ EMAI	2.			Same	as Clie	nt info	PO #:	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:					ADEx			☐ Add'l	Delivera	ables						
	tion	Project Location	on: MA			TO 50.00			uiren	nents/R	eport	Limi						
Client: Alpha Ana		Project #:				Sta	te/Fed Pr	ogram				-	Crit	eria				
Address: 8 Walku	17.7	Project Manag	er: Melissa C	Sulli		MC	P PRE	SUMP	TIVE	CERTA	INTÝ	-CT F	REAS	ONAE	BLE C	ONFID	ENCE PROTOC	OLS
Westborough, Ma	01581	ALPHA Quote				-	Yes		No				cal Met		_			
Phone: 508-898-9	9220	Turn-Aroun	d Time	1.76.	4	AN	ALYSI	S C	INO	Ar	CIRC	SP (Re	asonab	ie Cont	idence	Protocol	s) Required?	T.
Fax:	•		A CONTRACTOR	ush (ONLY IF PI	RE-APPROVED)		T I								1		SAMPLE HANDLING	T
Email: subreports	@alphalab.com				, verez.												Filtration Done	Ĺ
☐ These samples hav	ve been Previously analyzed by Alpha	Due Date:	Time:				1										☐ Not Needed☐ Lab to do	#
Other Project Sp	pecific Requirements/Comme	its:			1											Preservation	В О Т	
Please reference	lease reference Alpha Job #L1714950 on this report.																☐ Lab to do (Please specify	Ť
																	below)	E S
						6711										1		g
ALPHA Lab ID	Sample ID	Co	Collection Samp		Sampler's	1-10												8
(Lab Use Only)	49	Date	Time	Matrix	Initials	Ethanol-1671									III I		Sample Specific	
	VES-Y-2 (OW)	5/9/17	07:50	GW		X			+	+	1	+	1	+		1	Comments	6
	7 L5-1-2 (OW)	3/9/17	07.50	O W		1					+					1750	41	Ť
- (7			1						+
													1					t
									1				1					1
								- 1		-7								
							111											
																		T
													1					
PLEASE ANSWER	QUESTIONS ABOVE!			Cor	ntainer Type	V		- 4	-	TTE.			4	1	1	4		
					Preservative	HCL			17	- 100							Please print clearly, legit and completely Sample	
IS YOUR	S YOUR PROJECT			quished By:		Da	ate/Time			Rece	ived By	:		1/1	Date/Tir	ne	not be logged in and furnaround time clock wi start until any ambiguitie	
	or CT RCP?																resolved All samples submitted are subject to	, qle
FORM NO. 01-01(I) (rev. 30-JUL-07)																	Alpha's Payment Terms.	
Page 85 of 92	2																	

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

ANALYTICAL RESULTS

Prepared by:

Prepared for:

Eurofins Lancaster Laboratories Environmental 2425 New Holland Pike Lancaster, PA 17601 Alpha Analytical, Inc. 145 Flanders Road Westborough MA 01581

Report Date: May 23, 2017

Project: L1714950

Submittal Date: 05/11/2017 Group Number: 1800117 PO Number: L1714950 State of Sample Origin: MA

> Lancaster Labs (LL) # 8988256

<u>Client Sample Description</u> VES-Y-2 (OW) Groundwater Sample

The specific methodologies used in obtaining the enclosed analytical results are indicated on the Laboratory Sample Analysis Record.

Regulatory agencies do not accredit laboratories for all methods, analytes, and matrices. Our current scopes of accreditation can be viewed at http://www.eurofinsus.com/environment-testing/laboratories/eurofins-lancaster-laboratories-environmental/resources/certifications/. To request copies of prior scopes of accreditation, contact your project manager.

Electronic Copy To Alpha Analytical, Inc. Attn: Melissa Gulli Electronic Copy To Alpha Analytical, Inc. Attn: Sublab Contact

Respectfully Submitted,

Bonnie Stadelmann Senior Project Manager

Bornie Stadelmann

(312) 590-3133

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Sample Description: VES-Y-2 (OW) Groundwater Sample

L1714950

LL Sample # WW 8988256 LL Group # 1800117

Account # 09847

Project Name: L1714950

Collected: 05/09/2017 07:50

Alpha Analytical, Inc.

145 Flanders Road

Submitted: 05/11/2017 09:30 Reported: 05/23/2017 15:33

Westborough MA 01581

YYT01

CAT Analysis Name No.

CAS Number

Result

Limit of Quantitation Dilution Factor

GC Miscellaneous

02366 ethanol

EPA 1671 Rev A

ug/l N.D. ug/l 2,000

Sample Comments

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Method

Laboratory Sample Analysis Record

Analysis Name CAT

Trial# Batch#

Analysis

Analyst

Dilution Factor

02366 EPA 1671 VOCs

171380026A

Date and Time

05/19/2017 01:21 Tyler O Griffin

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Group Number: 1800117

Reported: 05/23/2017 15:33

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

All Inorganic Initial Calibration and Continuing Calibration Blanks met acceptable method criteria unless otherwise noted on the Analysis Report.

Method Blank

 Analysis Name
 Result
 LOQ

 ug/l
 ug/l

 Batch number: 171380026A
 Sample number(s): 8988256

 ethanol
 N.D. 2,000

LCS/LCSD

Analysis Name	LCS Spike Added ug/l	LCS Conc ug/l	LCSD Spike Added ug/l	LCSD Conc ug/l	LCS %REC	LCSD %REC	LCS/LCSD Limits	RPD	RPD Max
Batch number: 171380026A	Sample numbe	r(s): 8988	256						
ethanol	4000	3769.52	4000	3890.1	94	97	70-132	3	30

MS/MSD

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Analysis Name	Unspiked Conc ug/l	MS Spike Added ug/l	MS Conc ug/l	MSD Spike Added ug/l	MSD Conc ug/l	MS %Rec	MSD %Rec	MS/MSD Limits	RPD	RPD Max
Batch number: 171380026	Sample num	ber(s): 8988	8256 UNSP	K: P991587						
ethanol	1194.19	4000	4895.84	4000	5061.66	93	97	70-132	3	30

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EPA 1671 VOCs Batch number: 171380026A

	Amyl Alcohol	
8988256	115	
Blank	116	
LCS	116	

^{*-} Outside of specification

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

2425 New Holland Pike, Lancaster, PA 17601 • 717-656-2300 • Fax: 717-656-2681 • www.LancasterLabs.com

Quality Control Summary

Client Name: Alpha Analytical, Inc. Group Number: 1800117

Reported: 05/23/2017 15:33

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: EPA 1671 VOCs Batch number: 171380026A

	Amyl Alcohol	
LCSD	116	
MS	117	
MSD	117	
Timita:	52_144	

P##### is indicative of a Background or Unspiked sample that is batch matrix QC and was not performed using a sample from this submission group.

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

SUB UPS: EUROFINS-LANCASTER, PA

9847/1800117/8988256

~	CHAIN OF	CUSTO	DY	PAGE 1 OF 1	1	Date	Rec'd in	Lab:					ALP	HA J	o b #: L171	4950
ALPHA	ICAL	Project Infor	nation .	•		Rep □ F		orma	tion D	ata Del		oles			formation Client info	PO#:
_	Mansfield, MA	Project Name:] EMAIL		nlos	□ 8	ame as	s Client info	FO #.
FAX: 508-898-9193	FEL: 508-822-9300 FAX: 508-822-3288															
Client Information	on the second second	Project Location	n: MA			-	ulator /Fed Pro		quireme	ents/Re	port i	imits	Criteri	ia		
Client: Alpha Analy	•	Project #:						g								
Address: 8 Walkup	*	Project Manage	er: Melissa Gu	 Ili												DENCE PROTOCOLS
Westborough, Ma (ALPHA Quote #	# :		·		***************************************] No] No			nalytica P (Reas				ols) Required?
Phone: 508-898-92	•	Turn-Around	Time	., . : .			LYSIS			7110	OTIO	, (rtode	onabio	Comina	CHOC T TOLOGO	
Fax:		Standard	•	Sh (ONLY IF PF	RE-APPRO V ED)											SAMPLE HANDLING T Filtration A
Email: subreports@)alphalab.com													:		☐ Done
	been Previously analyzed by Alpha	Due Date:	Time:													☐ Not Needed #
Other Project Spe	ecific Requirements/Commer	nts/Detection Limit	ts:													Preservation 0
Please reference A	lpha Job #L1714950 on this rep	ort.														(Please specify
																below)
•						5711										
ALPHA Lab ID	Sample ID	Coll	ection	Sample	Sampler's	0 - 1										
(Lab Use Only)	9	Date	Time	Matrix	Initials	Ethanol-1671				ŀ						Sample Specific Comments
		<u> </u>							-		1	<u> </u>	 			
•	VES-Y-2 (OW)	5/9/17	07:50	GW		X										6
•												-				
	,											ļ				
											1					
•											+	-				
0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						-										
•											-					
*						-										
	•					-										
												1				
PLEASE ANSWER	QUESTIONS ABOVE!			Co	ntainer Type	V		-	- -	•	ļ-	-	-	-		Please print clearly, legibly
					Preservative	HCL		-	- -	•	-	-	-	-		and completely. Samples can not be logged in and
IS YOUR	PROJECT		Relino	uished By:		_f Da	ate/Time			Rece	ived By	:		D	ate/Time	turnaround time clock will not start until any ambiguities are resolved, All samples
MA MCP	or CT RCP?		ME	2	5	/0//	7			-		-				submitted are subject to Alpha's Payment Terms.
FORM NO: 01-01(I) (rev. 30-JUL-07)		*** Complete of the Complete o			$\overline{}$	'-			\sim	Λ'	1.11		•		110 011	
Page 90 of 92					Page 5	of 7			/	(je	dint	<u> </u>		0/11	117 9:31	Л

Client:

Alpha Analytical

Sample Administration Receipt Documentation Log

Serial_No:05241712:18 Doc Log ID: 183428

Group Number(s): 1800117

Delivery and Receipt Information

Delivery Method: UPS Arrival Timestamp: 05/11/2017 9:30

Number of Packages: 1 Number of Projects: 1

Arrival Condition Summary

Shipping Container Sealed: Yes Sample IDs on COC match Containers: Yes

Custody Seal Present: No Sample Date/Times match COC: Yes

Samples Chilled: Yes VOA Vial Headspace ≥ 6mm: No

Paperwork Enclosed: Yes Total Trip Blank Qty: 0

Samples Intact: Yes Air Quality Samples Present: No

Missing Samples: No

Extra Samples: No

Discrepancy in Container Qty on COC: No

Unpacked by Nia Smith (12375) at 15:42 on 05/11/2017

Samples Chilled Details

Thermometer Types: DT = Digital (Temp. Bottle) IR = Infrared (Surface Temp) All Temperatures in °C.

Cooler #Thermometer IDCorrected TempTherm. TypeIce TypeIce Present?Ice ContainerElevated Temp?1DT1463.3DTWetYLooseN

Lancaster Laboratories Environmental

Explanation of Symbols and Abbreviations

The following defines common symbols and abbreviations used in reporting technical data:

BMQL C	Below Minimum Quantitation Level degrees Celsius	mg mL	milligram(s) milliliter(s)
cfu	colony forming units	MPN	Most Probable Number
CP Units F	cobalt-chloroplatinate units degrees Fahrenheit	N.D. ng	none detected nanogram(s)
g	gram(s)	NTU	nephelometric turbidity units
IŬ	International Units	pg/L	picogram/liter
kg	kilogram(s)	RL	Reporting Limit
L lb.	liter(s) pound(s)	TNTC	Too Numerous To Count microgram(s)
m3	cubic meter(s)	μg μL	microgram(s)
meq	milliequivalents	umhos/cm	micromhos/cm

< less than

> greater than

ppm parts per million - One ppm is equivalent to one milligram per kilogram (mg/kg) or one gram per million grams. For aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter per liter of gas.

ppb parts per billion

Dry weight basisResults printed under this heading have been adjusted for moisture content. This increases the analyte weight concentration to approximate the value present in a similar sample without moisture. All other results are reported on an as-received basis.

Laboratory Data Qualifiers:

C - Result confirmed by reanalysis

E - Concentration exceeds the calibration range

J (or G, I, X) - estimated value ≥ the Method Detection Limit (MDL or DL) and < the Limit of Quantitation (LOQ or RL)

P - Concentration difference between the primary and confirmation column >40%. The lower result is reported.

U - Analyte was not detected at the value indicated

V - Concentration difference between the primary and confirmation column >100%. The reporting limit is raised due to this disparity and evident interference...

W - The dissolved oxygen uptake for the unseeded blank is greater than 0.20 mg/L.

Additional Organic and Inorganic CLP qualifiers may be used with Form 1 reports as defined by the CLP methods. Qualifiers specific to Dioxin/Furans and PCB Congeners are detailed on the individual Analysis Report.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff.

This report shall not be reproduced except in full, without the written approval of the laboratory.

Times are local to the area of activity. Parameters listed in the 40 CFR Part 136 Table II as "analyze immediately" are not performed within 15 minutes.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL, LLC BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL AND (B) WHETHER EUROFINS LANCASTER LABORATORIES ENVIRONMENTAL HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Eurofins Lancaster Laboratories Environmental which includes any conditions that vary from the Standard Terms and Conditions, and Eurofins Lancaster Laboratories Environmental hereby objects to any conflicting terms contained in any acceptance or order submitted by client.

ANALYTICAL REPORT

Lab Number: L1715855

Client: Vertex Environmental Services, Inc.

One Congress Street

10th Floor

Boston, MA 02114

ATTN: Jesse Freeman
Phone: (781) 952-6000
Project Name: NORTHPOINT

Project Number: 35663 Report Date: 05/17/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1715855

Report Date:

05/17/17

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1715855-01 LECHMERE CANAL WATER CAMBRIDGE, MA 05/16/17 11:30 05/16/17

Project Name:NORTHPOINTLab Number:L1715855Project Number:35663Report Date:05/17/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Ρ	lease	contact	Client	Services	at 800	-624-92	220 with	n any	questi	ons.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/17/17

Melissa Cripps Melissa Cripps

ДІРНА

METALS

Project Name: NORTHPOINT Lab Number: L1715855

Project Number: 35663 Report Date: 05/17/17

SAMPLE RESULTS

Lab ID: L1715855-01 Date Collected: 05/16/17 11:30

Client ID: LECHMERE CANAL Date Received: 05/16/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water

Analytical Method Dilution Date Date Prep Prepared Method **Factor** Analyzed **Parameter** Result Qualifier Units RL MDL Analyst Total Hardness by SM 2340B - Mansfield Lab 0.660 Hardness 86.2 mg/l NA 1 05/17/17 06:35 05/17/17 10:35 EPA 3005A 19,200.7 PS

Project Name: NORTHPOINT

35663

Project Number:

Lab Number:

L1715855

Report Date:

05/17/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for sam	ple(s): 0	1 Bato	h: WG100	4174-1			
Hardness	ND	mg/l	0.660	NA	1	05/17/17 06:35	05/17/17 10:26	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1715855

Project Number: 35663 Report Date: 05/17/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	(s): 01	Batch: WG100417	4-2					
Hardness	102		-		85-115	-			

Project Name:

NORTHPOINT

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number:

35663

Lab Number:

L1715855

Report Date:

05/17/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qua	Recovery Limits	RPD Qua	RPD al Limits
Total Hardness by SM 2340B - CANAL	Mansfield Lal	o Associated	sample(s)	: 01 QC Bato	h ID: W	G1004174-3	3 QC Sample: L1	715855-01	Client ID: L	ECHMERE
Hardness	86.2	66.2	155	104		-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1715855

Report Date:

05/17/17

Parameter	Native Sample	Duplicate Sample	Units	RPD (Qual RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Ass CANAL	sociated sample(s): 01	QC Batch ID: WG1004174-4	QC Sample:	L1715855-01	Client ID: LECHMERE
Hardness	86.2	88.7	mg/l	3	20

Project Name:

Project Number:

NORTHPOINT

35663

INORGANICS & MISCELLANEOUS

Project Name: NORTHPOINT Lab Number: L1715855

Project Number: 35663 Report Date: 05/17/17

SAMPLE RESULTS

Lab ID: L1715855-01 Date Collected: 05/16/17 11:30

Client ID: LECHMERE CANAL Date Received: 05/16/17
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab									
Nitrogen, Ammonia	0.136		mg/l	0.075		1	05/16/17 14:20	05/16/17 20:54	121,4500NH3-BH	l AT

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1715855

Report Date:

05/17/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab for sam	ple(s): 01	Batch	: WG10	03790-1				
Nitrogen, Ammonia	ND	mg/l	0.075		1	05/16/17 14:20	05/16/17 20:50	121,4500NH3-B	BH AT

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT Lab Number:

L1715855 05/17/17

Project Number: 35663

Report Date:

Parameter	LCS %Recovery Qua	LCSD al %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1003790-	2					
Nitrogen, Ammonia	96	-		80-120	-		20	

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1715855

Report Date:

05/17/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery I Limits	RPD Q	RPD ual Limits
General Chemistry - Westbor	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID: V	VG1003790-4	QC Sample: L171573	33-04 Client	ID: MS S	ample
Nitrogen, Ammonia	ND	4	3.86	96	-	-	80-120	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1715855

Report Date:

05/17/17

Parameter	Native Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sam	ple(s): 01 QC Batch ID	: WG1003790-3	QC Sample: L1715	733-04 CI	lient ID: D	UP Sample
Nitrogen, Ammonia	ND	ND	mg/l	NC		20

Project Name:

Project Number:

NORTHPOINT

35663

Project Name: NORTHPOINT Lab Number: L1715855

Project Number: 35663 Report Date: 05/17/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	ormation	Temp					
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1715855-01A	Plastic 500ml H2SO4 preserved	Α	<2	4.0	Υ	Absent	NH3-4500(28)
L1715855-01B	Plastic 250ml HNO3 preserved	Α	<2	4.0	Υ	Absent	HARDU(180)

Project Name: NORTHPOINT Lab Number: L1715855

Project Number: 35663 Report Date: 05/17/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:NORTHPOINTLab Number:L1715855Project Number:35663Report Date:05/17/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:NORTHPOINTLab Number:L1715855Project Number:35663Report Date:05/17/17

REFERENCES

Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

MIRHA	CHAIN	OF CL	STO	Y PAC	SE	OF	Date R	ec'd in l	Lab:	5	11611	7	A	LPHA	Job#:	471	5835
Address: (() Phone:	01581 Mansfield, MA 02048 9220 Tel: 508-822-9300	Project Project Project ALPHA	Location: #: 37 W Manager: 76 Quote #: Around Time	orthpo embrio 53 555e F	reema	n n	Regul Yes Yes Othe	No M No M No M No No M No No M Pr State	Require A MCP A atrix Spi W1 Star PDES R Fed Pro	ements Analytica ke Requ idards (I	& [al Metho ired on nfo Req	Project ds this SE uired f	ot Info	Same :	Information Requires No. Control of MCP Information MCP Information Triteria	ements T RCP Analyti norganics) gets) SAM Filtra G Fie	PLE INFO TALL tion #
ALPHA Lab ID (Lab Use Only)	Sample	ID	Collec	ction Time	Sample Matrix	Sampler	VOC. D8	METALS:	METALS:	VPH: DR	D PCB	7	total		//,	1	b to do
15855-01	Lednmere Ca	ral	5/16/17	N; 30 (SW	TIC						χ,	X				2
Container Type P= Plastic A= Amber glass V= Vlal G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 21 of 21	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= Na ₁ S ₂ O ₃ I= Ascorbic Àcid J= NH ₄ CI K= Zn Acetate O= Other	Reling	uishee By:	\$[16]	Pre	niner Type eservative e/Time	7 1	Reg	Ceived E	By:	AAL	5/16		157	Alpha's Te	erms and Cor	