

August 5, 2019

United States Environmental Protection Agency – Region 1 National Pollutant Discharge Elimination System (NPDES) 5 Post Office Square Boston, MA 02109

Subject: Massachusetts Notice of Intent (NOI) – Remediation General Permit (RGP)

Construction Site Dewatering Discharge Permit Application

Parcel E/F

Cambridge Crossing Development Cambridge & Boston, Massachusetts

To Whom it May Concern,

The Vertex Companies, Inc., is submitting this National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) Notice of Intent (NOI) on behalf of Parcel E/F owner DW Propco EF, LLC for construction Site dewatering associated with the Parcel E/F redevelopment at the Cambridge Crossing (CX) project, located in Cambridge and Boston, Massachusetts.

The table below lists the Parcel E/F Operator and Owner as well as The Vertex Companies, Inc. as the consultant for the Owner. Please copy the parties listed below on correspondence regarding this NPDES RGP.

Operator	Owner	Consultant
John Moriarty and Associates, Inc.	DW Propco EF, LLC c/o	The Vertex Companies, Inc.
(JMa)	DW NP Property, LLC	Mr. Jesse M. Freeman, PE
Mr. Kyle Weber	Mr. Mark Johnson,	100 North Washington Street,
3 Church Street	Director of Development	Suite 302
Winchester, MA 01890	200 State Street, 12th Floor	Boston, MA 02114
kweber@jm-a.com	Boston, MA, 02109	jfreeman@vertexeng.com
(781) 729-3900	MJohnson@divcowest.com	(617) 275-5407
	(617) 914-8640	

The following provide additional supporting information related to the specific sections of the attached NOI and/or the NPDES RGP regulatory requirements.

 Section D.1 of the NOI. Utilities located within the Cambridge Crossing property are owned by DW NP Property, LLC. A portion of the discharge will travel through the on-site utilities and afterward will flow through a stormwater utility managed and permitted by the City of Cambridge department of Public Works.

• **Section F.2 and F.3 of the NOI.** Material Safety Data Sheets (MSDS)/Safety Data Sheets (SDS) for the proposed potential chemical additives are attached. If the chemical additives are needed, a Notice of Change will be submitted prior to the use of these additives, which will include the information requested under 2.5.2.g.iii.

Please do not hesitate to contact us should you have any questions or require additional information.

Sincerely,

The Vertex Companies, Inc.

Jesse M. Freeman, PE

Senior Project Manager

Jessica L. Fox, PE

Executive Vice President

Attachments:

NPDES RGP NOI

NOI Supplemental Text

Figures – Site Locus Map

Parcel E/F NPDES Sampling Location Map Dewatering On-Site Discharge Location

Outfall Location

Groundwater Analytical Data Laboratory Analytical Reports

Other Supporting Documentation

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 250 Water Street						
Cambridge Crossing Development Site Parcel E/F	Street:						
	City: Somerville	State: MA	^{Zip:} 02141				
2. Site owner	Contact Person: Mark Johnson, Director of Develo	opment					
DW Propco EF, LLC	Telephone: 617 914-8600	Email: mjo	ohnson@divcowest.com				
	Mailing address: 200 State Street, 12th Floor						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Boston		State: MA	Zip: 02109			
3. Site operator, if different than owner	Contact Person: Kyle Weber						
John Moriarty & Associates, Inc. (JMa) Generator Contractor	Telephone: 781-729-3900 Email: kweber@jm-a.com						
Constant Contractor	Mailing address:						
	Street: 3 Church Street						
	City: Winchester		State: MA	Zip: 01890			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
NA	■ MA Chapter 21e; list RTN(s):	□ CERCL	μA				
NEDER COLUMN TO THE PROPERTY OF THE COLUMN TO THE COLUMN T	3-11533	□ UIC Pro	ogram				
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Resease Detection Fermit.	□ CWA S	ection 404				

B. Receiving water information:									
1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Classi	fication of receiving water(s):						
Lechmere Canal	mere Canal MA72-36 Class B Surface Water								
Receiving water is (check any that apply): \Box Outstanding	Resource Water □ Ocean Sanctuary □ territorial sea □	Wild and Scenic	River						
2. Has the operator attached a location map in accordance Are sensitive receptors present near the site? (check one): If yes, specify:		□ No							
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avail 4.6 of the RGP. Please see attached.									
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		uctions in	NA						
*	5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.								
6. Has the operator received confirmation from the approp If yes, indicate date confirmation received: May 12, 2017. Co. Has the operator attached a summary of receiving water	Correspondence attached.								
(check one): ■ Yes □ No									
C. Source water information: 1. Source water(s) is (check any that apply):									

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: PAHs, Ammonia, Chloride, Arsenic, Lead, C	per, Iron, VOCs	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	For a source water that is a surface water other than the receiving wat rother, indicate any contaminants present at the maximum concentration	· 1
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	ith the instructions in Appendix VIII? (check one): ☐ Yes ☐ No	
3. Has the source water been previously chlorinated or otherwise contains resid	chlorine? (check one): □ Yes ■ No	
D. Discharge information		
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	scharge New source	
Outfall(s):	Outfall location(s): (Latitude, Longitude)	
Outfall D3C to the Lechmere Canal	42.369377° N, -71.075744° E	
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	arge to the receiving water Indirect discharge, if so, specify:	
Discharge will enter on-site drainage system leading to on-site infiltration ☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	_	ınal.
Has notification been provided to the owner of this system? (check one): ■ Yes] No	
Has the operator has received permission from the owner to use such system for obtaining permission:	scharges? (check one): Yes No, if so, explain, with an estimated	timeframe for
Has the operator attached a summary of any additional requirements the owner	this system has specified? (check one): ☐ Yes ■ No	
Provide the expected start and end dates of discharge(s) (month/year): August 2019 to December	2020	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	onths ■ 12 months or more □ is an emergency discharge	
Has the operator attached a site plan in accordance with the instructions in D, a	/e? (check one): ■ Yes □ No	

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known		70. 4	D 4 4	In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (μg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	1	4500NH3	750	28,400	28,400	Report mg/L	
Chloride		✓	1	300.0	25,000	1,600,000	1,600,000	Report µg/l	
Total Residual Chlorine	✓		1	4500CL-D	20	<20	<20	0.2 mg/L	0.011 mg/L
Total Suspended Solids		✓	1	2540D	10,000	39,000	39,000	30 mg/L	
Antimony	✓		1	200.7	4.00	<4.00	<4.00	206 μg/L	
Arsenic		✓	1	200.7	1.00	2.25	2.25	104 μg/L	
Cadmium	✓		1	200.7	0.20	< 0.20	< 0.20	10.2 μg/L	
Chromium III	✓		1	200.7	50	<50	<50	323 μg/L	
Chromium VI	√		1	200.7	50	<50	<50	323 μg/L	
Copper		√	1	200.7	1.00	2.85	2.85	242 μg/L	
Iron		✓	1	200.7	50	18,900	18,900	5,000 μg/L	1,000 ug/L
Lead		✓	1	200.8	1.00	7.64	7.64	160 μg/L	
Mercury	✓		1	245.1	0.20	< 0.20	< 0.20	0.739 μg/L	
Nickel	✓		1	200.7	2.00	<2.00	<2.00	1,450 μg/L	
Selenium	✓		1	200.7	5.00	< 5.00	< 5.00	235.8 μg/L	
Silver	✓		1	200.7	0.40	<0.40	<0.40	35.1 μg/L	
Zinc	✓		1	200.7	10.00	<10.00	<10.00	420 μg/L	
Cyanide	✓		1	4500CN-C	5	<5	<5	178 mg/L	
B. Non-Halogenated VOC	's								
Total BTEX	✓		1	624	3.75	<3.75	<3.75	100 μg/L	
Benzene	✓		1	624	0.50	< 0.50	<0.50	5.0 μg/L	
1,4 Dioxane	✓		1	624.1-SIM	3.0	<3.0	<3.0	200 μg/L	
Acetone	✓		1	624	5.0	<5.0	<5.0	7.97 mg/L	
Phenol		✓	1	625	5.0	10	10	1,080 μg/L	

	Known	Known		_		In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	✓		1	624	0.50	< 0.50	< 0.50	4.4 μg/L	
1,2 Dichlorobenzene	✓		1	624	2.5	<2.5	<2.5	600 μg/L	
1,3 Dichlorobenzene	✓		1	624	2.5	<2.5	<2.5	320 μg/L	
1,4 Dichlorobenzene	✓		1	624	2.5	<2.5	<2.5	5.0 μg/L	
Total dichlorobenzene			-	-	-	-	-	763 μg/L in NH	
1,1 Dichloroethane	✓		1	624	0.75	< 0.75	< 0.75	70 μg/L	
1,2 Dichloroethane	✓		1	624	0.50	< 0.50	< 0.50	5.0 μg/L	
1,1 Dichloroethylene	✓		1	624	0.50	< 0.50	< 0.50	3.2 μg/L	
Ethylene Dibromide	✓		1	504.1	0.010	< 0.010	< 0.010	0.05 μg/L	
Methylene Chloride	✓		1	624	3.0	<3.0	<3.0	4.6 μg/L	
1,1,1 Trichloroethane	✓		1	624	0.50	< 0.50	< 0.50	200 μg/L	
1,1,2 Trichloroethane	✓		1	624	0.75	< 0.75	< 0.75	5.0 μg/L	
Trichloroethylene	✓		1	624	0.50	< 0.50	< 0.50	5.0 μg/L	
Tetrachloroethylene	✓		1	624	0.50	< 0.50	< 0.50	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		1	624	0.50	< 0.50	< 0.50	70 μg/L	
Vinyl Chloride	✓		1	624	1.0	<1.0	<1.0	2.0 μg/L	
D. Non-Halogenated SVOC	T.s								
Total Phthalates			1	625	5	<5	<5	190 μg/L	
Diethylhexyl phthalate			1	625	-	-	-	101 μg/L	
Total Group I PAHs		✓	1	625.1-SIM	0.7	2.92	2.92	1.0 μg/L	
Benzo(a)anthracene	1	1	1	625.1-SIM	0.10	0.64	0.64	1.5	0.0038
Benzo(a)pyrene		✓	1	625.1-SIM	0.10	0.51	0.51	7	0.0038
Benzo(b)fluoranthene		✓	1	625.1-SIM	0.10	0.61	0.61	7	0.0038
Benzo(k)fluoranthene		√	1	625.1-SIM	0.10	0.20	0.20	As Total PAHs	0.0038
Chrysene	1	1	1	625.1-SIM	0.10	0.59	0.59	7	0.0038
Dibenzo(a,h)anthracene	√		1	625.1-SIM	0.10	< 0.10	< 0.10	7	
Indeno(1,2,3-cd)pyrene		✓	1	625.1-SIM	0.10	0.37	0.37	┪	0.0038

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	1	625	1.0	83.82	83.82	100 μg/L	
Naphthalene		✓	1	625	0.20	40	40	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		1	608	0.250	< 0.250	< 0.250	0.000064 μg/L	
Pentachlorophenol	✓		1	625.1-SIM	0.80	< 0.80	< 0.80	1.0 μg/L	
F. Fuels Parameters							•		
Total Petroleum Hydrocarbons	✓		1	1664A	4,000	<4,000	<4,000	5.0 mg/L	
Ethanol	✓		1	1671A	2,000	<2,000	<2,000	Report mg/L	
Methyl-tert-Butyl Ether	✓		1	8260C	1.0	<1.0	<1.0	70 μg/L	
tert-Butyl Alcohol	✓		1	8260C	10	<10	<10	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		1	8260C	2.0	<2.0	<2.0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	e, hardness,	salinity, LC	C ₅₀ , addition	T == *	T .		1=00		
рН			1	field +		7.09	7.09		
Total Phenolics		✓	1	4,420.1	30	45	45		
	1								
						-			
	1								
		<u> </u>			1				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)						
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption						
□ Ion Exchange ■ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:						
Note that a Notice of Change will be submitted prior to use of flocculation or GAC, if needed.						
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.						
The treatment system will consist of a construction dewatering pump that will pump water to a settling tank. Aeration may be provided within the settling tank if needed. Then be pumped through at least one set of three in-line canister bag filters. Due to the presence of localized petroleum releases at the Cambridge Crossing project, where endischarge limits, water will be pumped through an oil/water separator. Additionally, depending on the presence of liquid phase petroleum and the potential for metals to be present discharge limits, water may be treated through granular activates carbon vessels, ion-exchange, pH adjustment, coagulation, or flocculation as needed.	ncountered and					
Identify each major treatment component (check any that apply):						
■ Fractionation tanks□ Equalization tank ■ Oil/water separator □ Mechanical filter □ Media filter						
☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: In-line settling tank. If needed, aeration and additional holding tanks. Granular activated carbon, ion exchange, pH adjustment, flocculation, as needed (Nothing will occur (check any that apply): Change will be submitted before use of these additives).	Notice of					
□ Chlorination □ De-chlorination						
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Bag Filters Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200					
is use of a now meter reasone. (eneek one). If the Elivo, it so, provide justification.						
Provide the proposed maximum effluent flow in gpm.	200					
Provide the average effluent flow in gpm.	30					
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No						

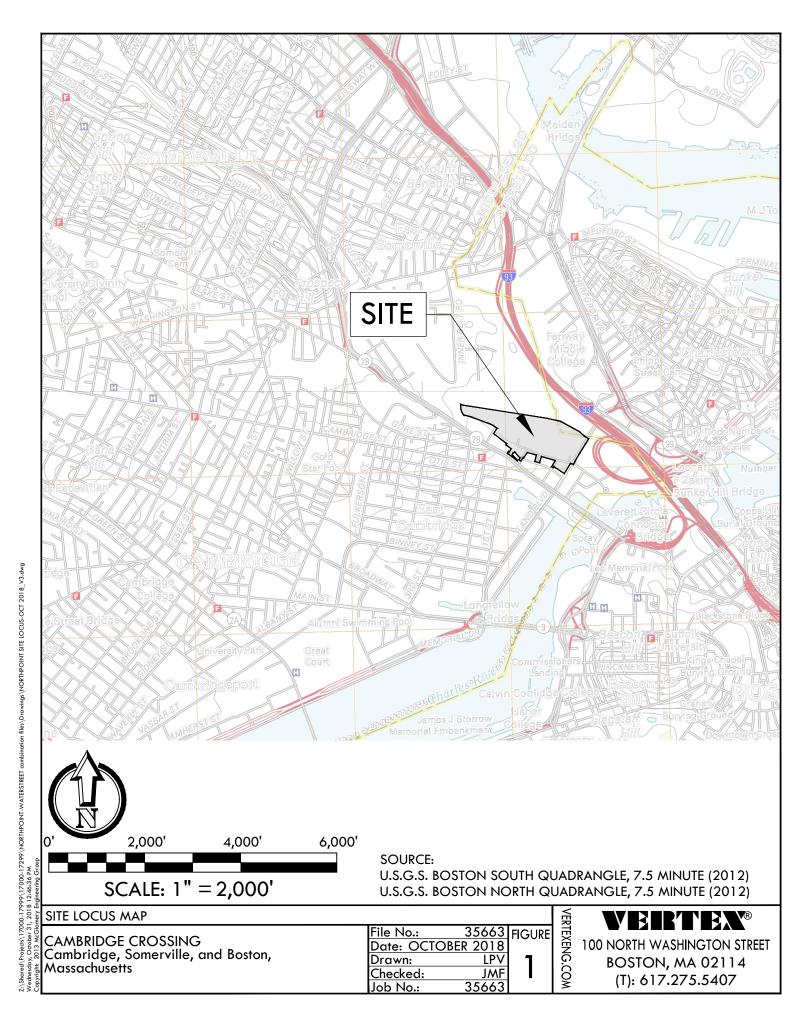
F. Chemical and additive information

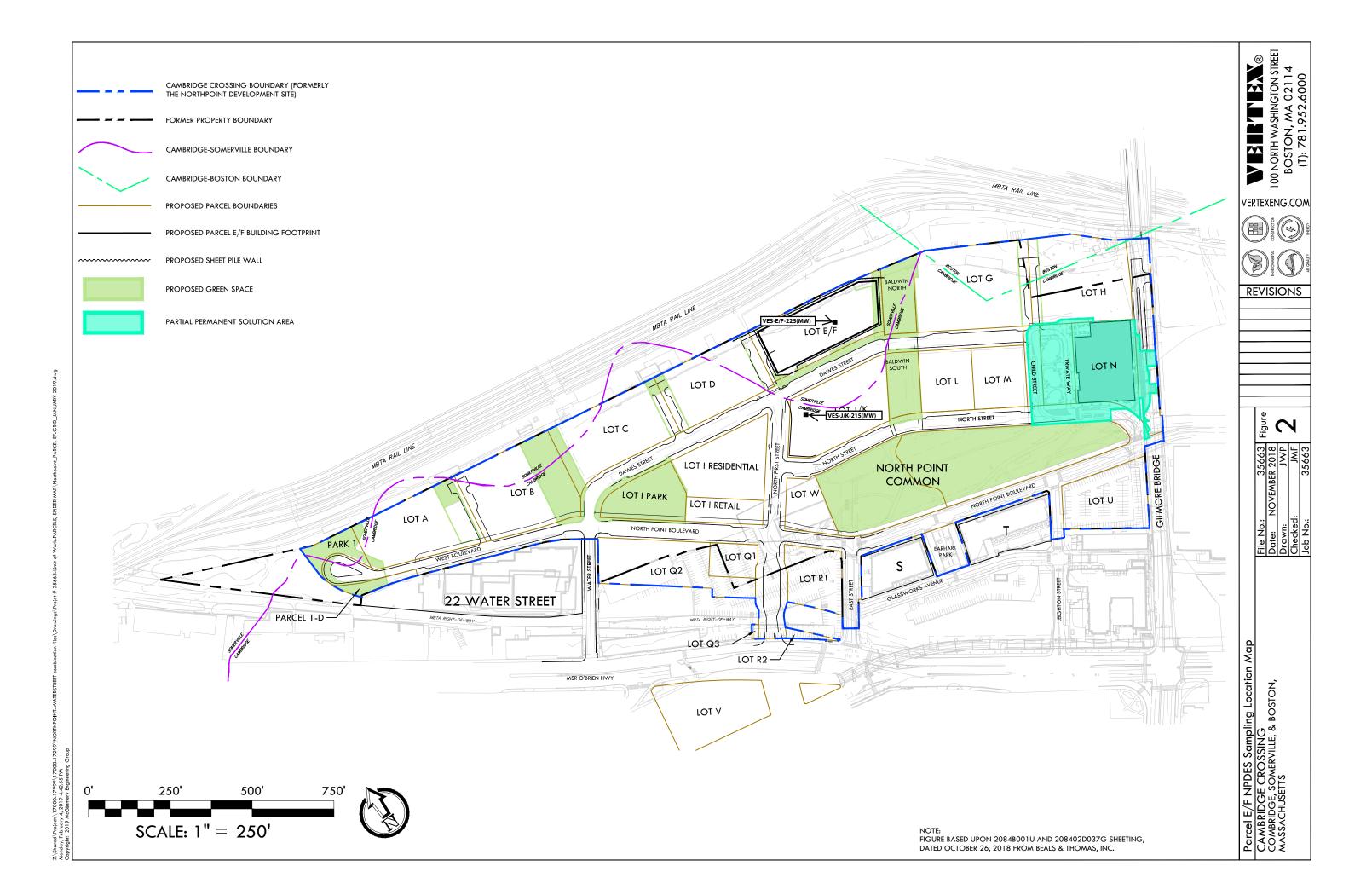
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams ■ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify: MSDS/SDS are included for proposed additives and flocculation agents. A Notice of Change will be submitted prior to implementation.
2. Provide the following information for each chemical/additive, using attachments, if necessary: Will provide in a Notice of Change if additives are needed. a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): □ Yes ■ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes ■ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

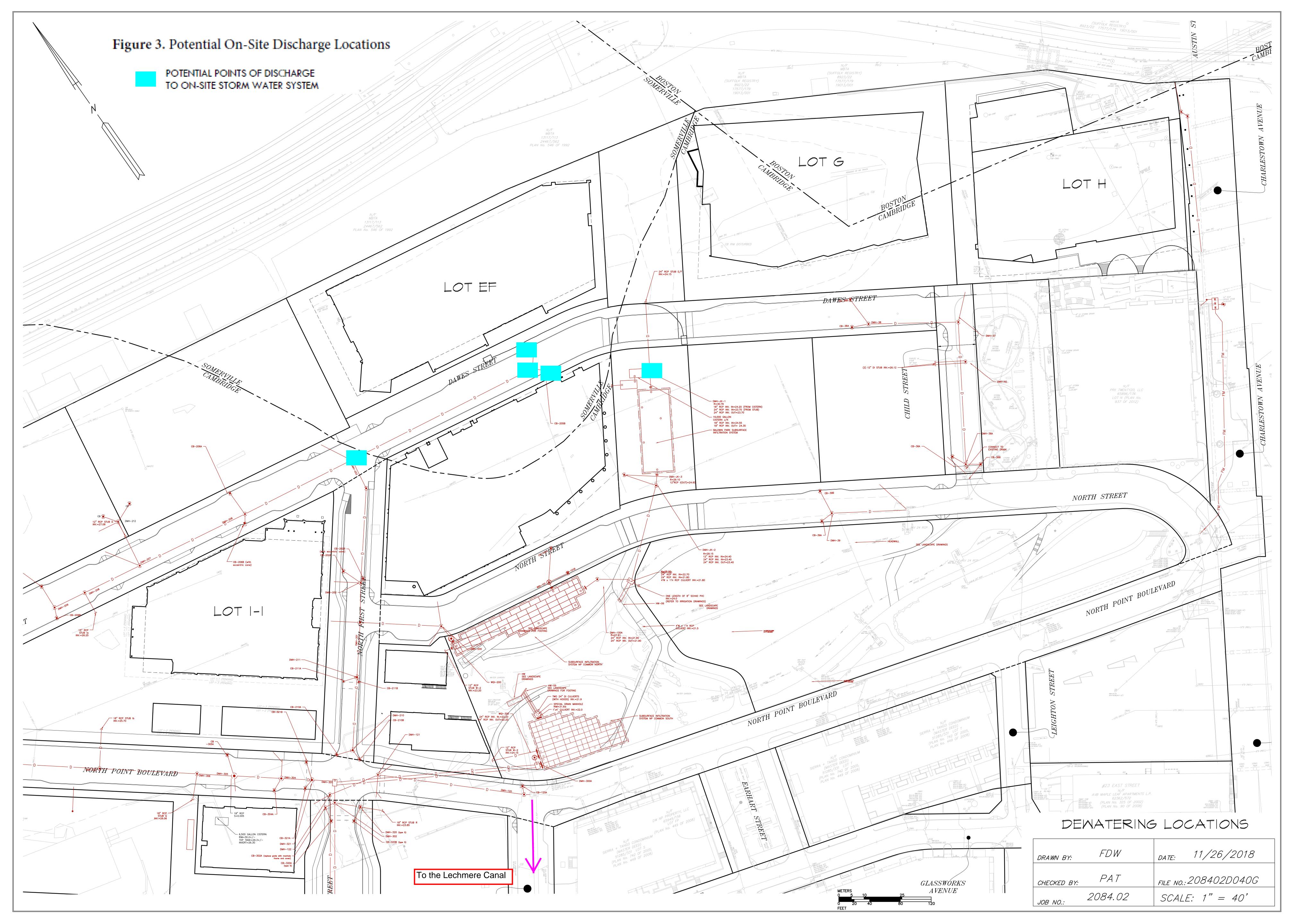
J. Certification r	reguirement.
--------------------	--------------

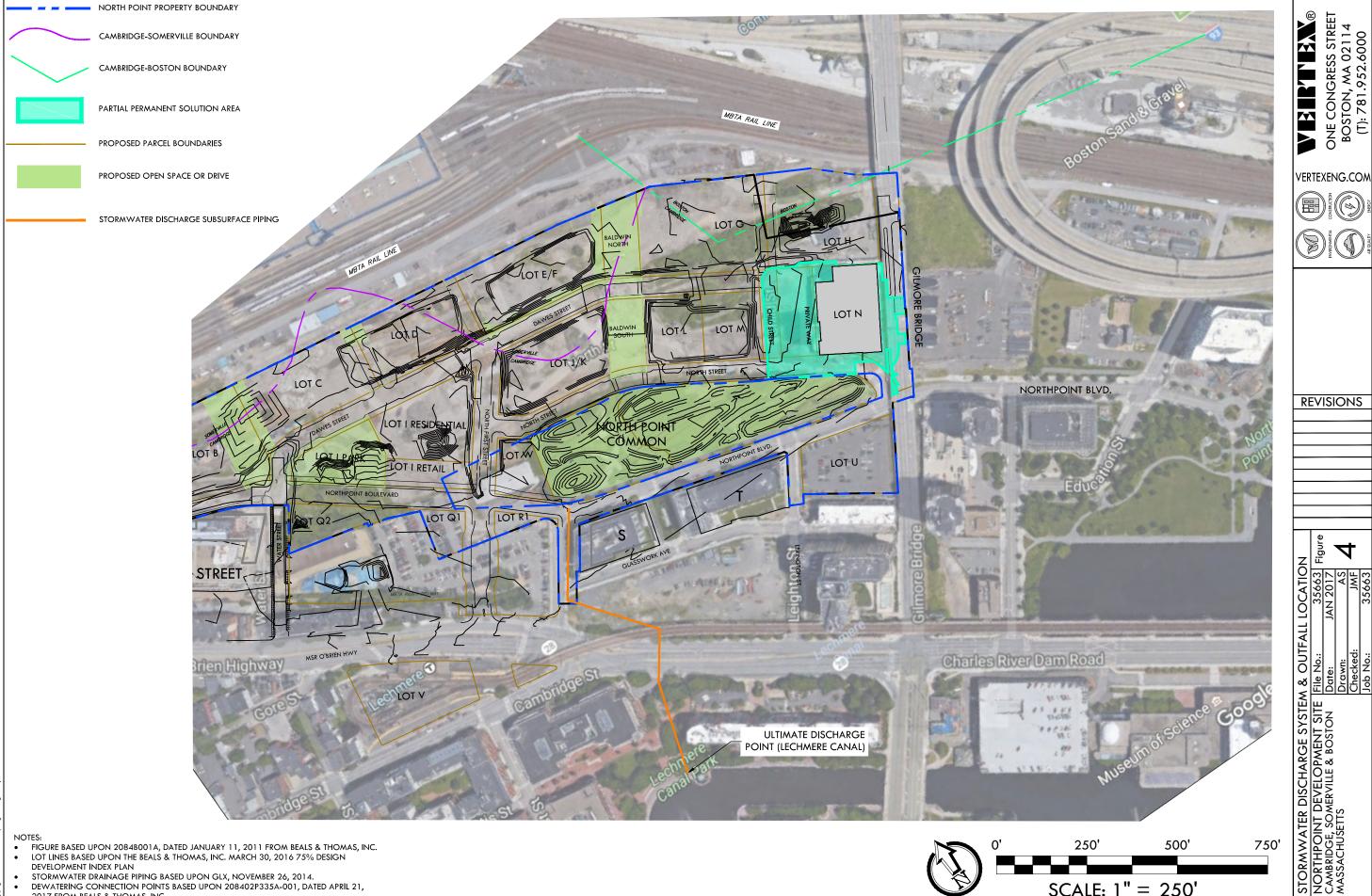
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage t elief, true, accurate, a	he system, or those nd complete. I have
A BMPP meeting the requirements of this Remediation General Perm BMPP certification statement: at the site, implemented upon initiation of discharge and modified as		
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes	No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes	No□ NA□
discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes ■	No 🗆 NA 🗆
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP ■ CGP □ MSGP □ Individual NPDES permit	Check one: Yes 🔳	No □ NA □
☐ Other; if so, specify:		
Signature: Mark Alexan Date	te: 8/5/2019	
Print Name and Title: Mark Johnson Director of Development or	n behalf o	of LLC

B. Receiving water Information (cont.)


3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP.


The Lechmere Canal is a small inlet on the Charles River, so it is considered to be part of Charles Segment MA72-36. The Charles River is listed as a category 5 water. Impairment causes are chlorophyll-a (TMDL 33826), combined biota/habitat bioassessments, DDT, dissolved oxygen saturation, escherichia coli, excess algal growth (TMDL 33826), nutrient/eutrophication biological indicators (TMDL 33826), oil and grease, dissolved oxygen, PCB in fish tissue, phosphorous (total) (TMDL 33826), salinity, secchi disk transparency (TMDL 33826), sediment screening value (exceedence), taste and odor (TMDL 33826), and water temperature.

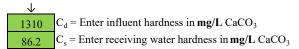

6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): ■Yes □ No


If yes, indicate date confirmation received:

May 12, 2017. Correspondence attached.

STORMWATER DRAINAGE PIPING BASED UPON GLX, NOVEMBER 26, 2014.
DEWATERING CONNECTION POINTS BASED UPON 208402P335A-001, DATED APRIL 21, 2017 FROM BEALS & THOMAS, INC.

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.36	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
8.24	pH in Standard Units
13.6	Temperature in °C
0.136	Ammonia in mg/L
86.2	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg /L
0	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in μg/L
0	Chromium VI in µg/L
0	Copper in µg/L
0	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
28.40	Ammonia in mg/L
0	Antimony in μg/L
2.25	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
2.85	Copper in µg/L
18,900	Iron in μg/L
7.64	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
0	Zinc in μg/L
0	Cyanide in μg/L
10	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0.64	Benzo(a)anthracene in μg/L
0.51	Benzo(a)pyrene in μg/L
0.61	Benzo(b)fluoranthene in μg/L
0.2	Benzo(k)fluoranthene in μg/L
0.59	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0.37	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_{P}

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 Q_{r}

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 $C_d = Discharge hardness in mg/L$

 $Q_s = Upstream flow (7Q10) in MGD$

C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

 m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

$$Q_{d}$$

 C_r = Water quality criterion in $\mu g/L$

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 $Q_d = Discharge flow in MGD$

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_{r} = \underline{Q_{d}C_{d} + Q_{s}C}$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 $C_s = Upstream$ (receiving water) concentration in $\mu g/L$

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1 of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor 1.0

Almorganics TBEL applies if border mgsL complement level co	Dilution Factor	1.0					
Ammonia Report mg/L	A Inorganics	TBEL applies if	bolded	WQBEL applies	if bolded	•	
Chloride	_	Danart	ma/I			applies if showli	
Total Suspended Solids		•	_				
Total Suspended Solids					/T	50	/Т
Antimony			_		μg/L	30	μg/L
Arsenic	•		_		_		
Cadmium	•						
Chromium III							
Chromium VI 323							
Copper		323	μg/L		μg/L		
Inon	Chromium VI	323	μg/L	11.4	μg/L		
Lead 160	Copper	242	μg/L	84.1	$\mu g/L$		
Mercury 0.739 μg/L 0.91 μg/L 49.8 μg/L 459.8 μg	Iron	5000	$\mu g/L$	1000	$\mu g/L$		
Nickel 1450	Lead	160	μg/L	84.13	μg/L		
Selenium 235,8	Mercury	0.739	$\mu g/L$	0.91	$\mu g/L$		
Silver	Nickel	1450	μg/L	459.8	μg/L		
Silver	Selenium	235.8	μg/L	5.0	μg/L		
Zinc	Silver	35.1		316.0	μg/L		
Triangle 178	Zinc	420		1059.7			
B. Non-Halogenated VOCs	Cyanide			5.2			цø/L
Benzene 5.0	B. Non-Halogenated VOCs				r-6-		r-6-
1.4 Dioxane 200	Total BTEX						
Acetone 7970							
Phenol	*						
Carbon Tetrachloride					μσ/L		
Carbon Tetrachloride		1,000	F8-2	200	F6 2		
1,3 Dichlorobenzene 320 μg/L 1,4 Dichlorobenzene 5.0 μg/L 1,1 Dichlorobenzene 70 μg/L 1,1 Dichloroethane 70 μg/L 1,1 Dichloroethane 5.0 μg/L 1,1 Dichloroethane 5.0 μg/L 1,1 Dichloroethylene 3.2 μg/L 1,1 Dichloroethylene 5.0 μg/L 1,1,1 Trichloroethane 5.0 μg/L 1,1,1 Trichloroethane 5.0 μg/L 1,1,2 Trichloroethane 5.0 μg/L 1,1,2 Trichloroethane 5.0 μg/L 1,1,2 Trichloroethylene 5.0 μg/L 1,1,2 Dichloroethylene 5.0 μg/L 1,1,2 Dichloroethylene 5.0 μg/L 1,1,2 Dichloroethylene 70 μg/L 1,2,2 Dichloroethylene 70 μg/L 1,2,3 Dichloroethylene 70 μg/L 1,2,4 Dichloroethylene 70 μg/L 1,2,4 Dichloroethylene 70 μg/L 0.0038 μg/L 0.1 μg/L 1,1,2 Dichloroethylene 1.0 μg/L 0.0038 μg/L 0.1 μg/L 1,1,2 Dichloroethalene 1.0 μg/L	e	4.4	μg/L	1.6	$\mu g/L$		
1,4 Dichlorobenzene	*						
Total dichlorobenzene							
1,1 Dichloroethane 70 μg/L 1,2 Dichloroethane 5.0 μg/L 1,1 Dichloroethylene 3.2 μg/L Ethylene Dibromide 0.05 μg/L Methylene Chloride 4.6 μg/L 1,1,1 Trichloroethane 5.0 μg/L 1,1,1 Trichloroethane 5.0 μg/L 1,1,1 Trichloroethane 5.0 μg/L 1,1,2 Trichloroethylene 5.0 μg/L Trichloroethylene 5.0 μg/L Tetrachloroethylene 5.0 μg/L Vinyl Chloride 2.0 μg/L Vinyl Chloride 2.0 μg/L Vinyl Chloride 2.0 μg/L Vinyl Chloride 101 μg/L 2.2 μg/L Dicthylhexyl phthalate 101 μg/L 2.2 μg/L Total Group I Polycyclic Aromatic Hydrocarbons 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Chrysene 1.0 μg/L 0.0038	· ·						
1,1 Dichloroethylene 3.2							
Ethylene Dibromide 0.05 μg/L Methylene Chloride 4.6 μg/L 1,1,1 Trichloroethane 200 μg/L 1,1,1 Trichloroethane 5.0 μg/L Trichloroethylene 5.0 μg/L Trichloroethylene 5.0 μg/L Trichloroethylene 70 μg/L Cis-1,2 Dichloroethylene 70 μg/L Vinyl Chloride 2.0 μg/L D. Non-Halogenated SVOCs Total Phthalates 190 μg/L 2.2 μg/L Total Group I Polycyclic Aromatic Hydrocarbons 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)phyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(b)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)ahnhracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)ahnhracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg		5.0					
Methylene Chloride	· ·						
1,1,1 Trichloroethane 200							
1,1,2 Trichloroethlane 5.0	•						
Trichloroethylene 5.0							
Vinyl Chloride 2.0		5.0					
Vinyl Chloride 2.0 μg/L Pug/L	•			3.3	$\mu g/L$		
D. Non-Halogenated SVOCs							
Total Phthalates 190	•	2.0	μg/L				
Diethylhexyl phthalate 101		190	ug/L		ug/L		
Aromatic Hydrocarbons 1.0 μg/L 0.0038 μg/L 0.1 μg/L				2.2			
Benzo(a)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(a)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(b)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Indeno(1,2,3-ed)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Aromatic Hydrocarbons 100 μg/L μg/L 0.1 μg/L Aromatic Hydrocarbons 100 μg/L υσ/L υσ/L <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			_				
Benzo(a)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(b)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Aromatic Hydrocarbons 100 μg/L <td< td=""><td></td><td></td><td></td><td></td><td>/Т</td><td>0.1</td><td>~/T</td></td<>					/Т	0.1	~/T
Benzo(b)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Total Group II Polycyclic Total Group II Polycyclic	* *						
Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Total Group II Polycyclic							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.0				0.1	
Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Total Group II Polycyclic 4 <							
Aromatic Hydrocarbons 100 μg/L Naphthalene 20 μg/L E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 μg/L 0.5 μg/L Pentachlorophenol 1.0 μg/L	(/ / /1.	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Naphthalene 20 μg/L E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 μg/L 0.5 μg/L Pentachlorophenol 1.0 μg/L <td></td> <td>100</td> <td>μg/L</td> <td></td> <td></td> <td></td> <td></td>		100	μg/L				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_						
F. Fuels Parameters Total Petroleum Hydrocarbons 5.0 mg/L Ethanol Report mg/L Methyl-tert-Butyl Ether 70 μg/L 20 μg/L tert-Butyl Alcohol 120 μg/L						0.5	μg/L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•	1.0	μg/L				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.0	mg/L				
tert-Butyl Alcohol 120 µg/L			_				
, ie				20	$\mu g/L$		
tert-Amyl Metnyl Ether 90 μg/L							
	tert-Amyi Methyi Ether	90	μg/L				

Table 1 Summary of Parcel E/F NPDES Groundwater Results Cambridge Crossing

Cambridge Somerville, Massachusetts VERTEX Project No. 35663

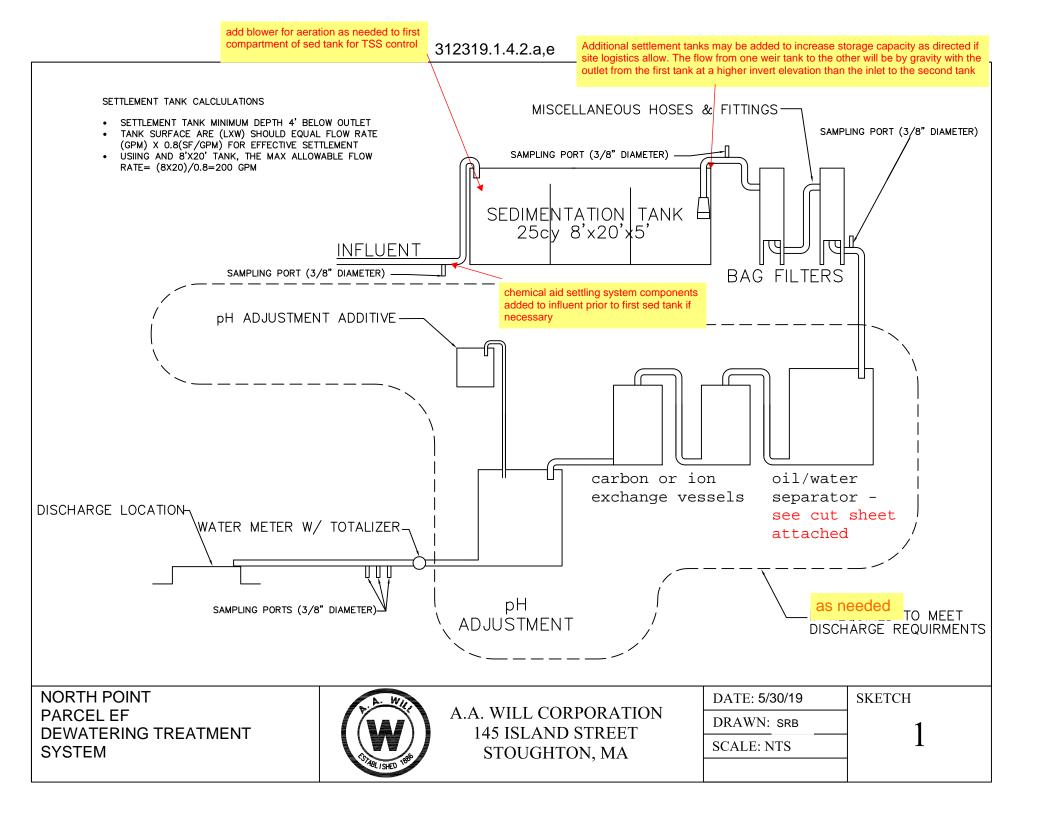
Release Tracking Number (RTN) 3-11533

LOCATION			VES-E/F-225(MW)	Lechmere Canal
SAMPLING DATE			2/28/2018	-
LABORATORY SAMPLE ID			L1806947-01	· ·
ANALYTE	CAS No.	Units —		
Fotal Petroleum Hydrocarbons (TPH)				
ГРН	NONE	μg/L	ND(4000)	-
Volatile Organic Compounds (VOCs)				
1,1,1,2-Tetrachloroethane	630-20-6	μg/L	<u> </u>	-
1,1,1-Trichloroethane	71-55-6	μg/L	ND(0.5)	-
1,1,2,2-Tetrachloroethane	79-34-5	μg/L	- ND(0.7E)	-
.,1,2-Trichloroethane	79-00-5	μg/L	ND(0.75) ND(0.75)	-
L,1-Dichloroethane	75-34-3	μg/L	ND(0.73)	
.,1-Dichloroethene .,1-Dichloropropene	75-35-4 563-58-6	μg/L μg/L	-	-
L,2,3-Trichlorobenzene	87-61-6	μg/L μg/L		
1,2,3-Trichloropenzene	96-18-4	μg/L μg/L	-	_
.,2-Dibromoethane	106-93-4	μg/L	ND(0.01)	_
1.2-Dichlorobenzene	95-50-1	μg/L	ND(2.5)	_
L,2-Dichloroethane	107-06-2	μg/L	ND(0.5)	-
L,3-Dichlorobenzene	541-73-1	μg/L	ND(2.5)	-
.,4-Dichlorobenzene	106-46-7	μg/L	ND(2.5)	-
L,4-Dioxane	123-91-1	μg/L	ND(3)	-
Acetone	67-64-1	μg/L	ND(5)	-
Benzene	71-43-2	μg/L	ND(0.5)	-
Carbon tetrachloride	56-23-5	μg/L	ND(0.5)	-
cis-1,2-Dichloroethene	156-59-2	μg/L	ND(0.5)	-
Ethylbenzene	100-41-4	μg/L	ND(0.5)	-
Methyl tert butyl ether	1634-04-4	μg/L	ND(1)	-
Methylene chloride	75-09-2	μg/L	ND(3)	-
o-Xylene	95-47-6	μg/L	ND(1)	-
o/m-Xylene	179601-23-1	μg/L	ND(1)	-
Tert-Butyl Alcohol	75-65-0	μg/L	ND(10)	-
Tertiary-Amyl Methyl Ether	994-05-8	μg/L	ND(2) ND(0.5)	-
Tetrachloroethene	127-18-4	μg/L	ND(0.5) ND(0.75)	-
Toluene Trichloroethene	108-88-3 79-01-6	μg/L	ND(0.73)	-
/inyl chloride	75-01-6	μg/L μg/L	ND(1)	
Ethanol	64-17-5	μg/L μg/L	ND(2000)	
Fotal Xylenes	1330-20-7	μg/L μg/L	ND(1)	_
Total VOCs	Multiple	μg/L μg/L	-	_
Semivolatile Organic Compounds (SVOCs)	Withingto	P-8/ =		
Bis(2-ethylhexyl)phthalate	117-81-7	μg/L	-	-
Butyl benzyl phthalate	85-68-7	μg/L	ND(5)	-
Di-n-butylphthalate	84-74-2	μg/L	ND(5)	-
Di-n-octylphthalate	117-84-0	μg/L	ND(5)	-
Diethyl phthalate	84-66-2	μg/L	ND(5)	-
Dimethyl phthalate	131-11-3	μg/L	ND(5)	-
Phenol	108-95-2	μg/L	10	-
Acenaphthene	83-32-9	μg/L	13	-
Acenaphthylene	208-96-8	μg/L	0.31	-
Anthracene	120-12-7	μg/L	3.2	-
Benzo(a)anthracene	56-55-3	μg/L	0.64	-
Benzo(a)pyrene	50-32-8	μg/L	0.51	-
Benzo(b)fluoranthene	205-99-2	μg/L	0.61	-
Benzo(ghi)perylene	191-24-2	μg/L	0.31	-
Benzo(k)fluoranthene	207-08-9	μg/L	0.2 0.59	-
Chrysene	218-01-9	μg/L	0.59 ND(0.1)	-
Dibenzo(a,h)anthracene	53-70-3 206-44-0	μg/L	ND(0.1) 4	-
luoranthene luorene	86-73-7	μg/L	8.2	+
ndeno(1,2,3-cd)Pyrene	193-39-5	μg/L	0.37	<u> </u>
Naphthalene	91-20-3	μg/L μg/L	40	-
Pentachlorophenol	87-86-5	μg/L μg/L	ND(0.8)	-
Phenanthrene	85-01-8	μg/L μg/L	12	-
Pyrene	129-00-0	μg/L μg/L	2.8	-
otal SVOCs	Multiple	μg/L	96.74	1
Total Metals		- U		
Antimony, Total	7440-36-0	μg/L	ND(4)	-

Table 1

Summary of Parcel E/F NPDES Groundwater Results

Cambridge Crossing


Cambridge Somerville, Massachusetts VERTEX Project No. 35663

Release Tracking Number (RTN) 3-11533

LOCATION			VES-E/F-225(MW)	Lechmere Canal
SAMPLING DATE			2/28/2018	-
LABORATORY SAMPLE ID			L1806947-01	
LABORATORT SAMIFEE ID			£1800347-01	
ANALYTE	CAS No.	Units		
Arsenic, Total	7440-38-2	μg/L	2.25	-
Cadmium, Total	7440-43-9	μg/L	ND(0.2)	-
Chromium, Total	7440-47-3	μg/L	ND(1)	-
Copper, Total	7440-50-8	μg/L	2.85	-
Iron, Total	7439-89-6	μg/L	18900	-
Lead, Total	7439-92-1	μg/L	7.64	-
Mercury, Total	7439-97-6	μg/L	ND(0.2)	-
Nickel, Total	7440-02-0	μg/L	ND(2)	-
Selenium, Total	7782-49-2	μg/L	ND(5)	-
Silver, Total	7440-22-4	μg/L	ND(0.4)	-
Zinc, Total	7440-66-6	μg/L	ND(10)	-
Chromium, Trivalent	16065-83-1	μg/L	ND(50)	
Chromium, Hexavalent	18540-29-9	μg/L	ND(50)	-
Polychlorinated Biphenyls (PCBs)				
Aroclor 1016	12674-11-2	μg/L	ND(0.25)	-
Aroclor 1221	11104-28-2	μg/L	ND(0.25)	-
Aroclor 1232	11141-16-5	μg/L	ND(0.25)	-
Aroclor 1242	53469-21-9	μg/L	ND(0.25)	-
Aroclor 1248	12672-29-6	μg/L	ND(0.25)	-
Aroclor 1254	11097-69-1	μg/L	ND(0.25)	-
Aroclor 1260	11096-82-5	μg/L	ND(0.2)	-
Cyanide				
Cyanide, Total	57-12-5	μg/L	ND(5)	-
General Chemistry				
Chlorine, Total Residual	NONE	μg/L	ND(20)	-
Nitrogen, Ammonia	7664-41-7	μg/L	28400	136
рН	12408-02-5	SU	7.09†	8.24†
Phenolics, Total	NONE	μg/L	45	-
Solids, Total Suspended	NONE	μg/L	39000	-
Temperature	NONE	°C	14.6†	13.6†
Anions by Ion Chromatography				
Chloride	16887-00-6	μg/L	1,600,000	-
Hardness				
Hardness	NONE	μg/L	1,310,000**	86,200

Notes

- 1. CAS No. = Chemical Abstract Service Number.
- 2. = Sample was not analyzed for specific analyte.
- 3. ND = Not Detected above the laboratory reporting limit shown in parenthesis.
- 4. μ g/L = micrograms per liter.
- 5 mg CaCO3/L = milligrams of calcium carbonate per liter.
- 6. SU = Standard Units.
- 7. μ mhos/cm = micromhos per centimeter.
- 8. † = Field Measured.
- 9. TBEL = Technology-Based Effluent Limitation
- 10. WQBEL Water Quality-based Effluent Limitation
- 11. * = Calculated WQBEL value
- 12. ** = Influent Hardness value from well VES-J/K-215 (MW)

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: November 08, 2018

Consultation Code: 05E1NE00-2019-SLI-0293

Event Code: 05E1NE00-2019-E-00652 Project Name: Cambridge Crossing

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-0293

Event Code: 05E1NE00-2019-E-00652

Project Name: Cambridge Crossing

Project Type: DEVELOPMENT

Project Description: Development

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.3728393098731N71.07446861411378W

Counties: Middlesex, MA | Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: East Cambridge; Resource Type(s): Building, Area, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.B	Lockhart, William L. and Company Coffin Factory		Cambridge	
CAM.C	Blake and Knowles Steam Pump Company		Cambridge	
CAM.E	East Cambridge Historic District		Cambridge	
CAM.F	Winter Street Historic District		Cambridge	
CAM.G	Cambridge Multiple Resource Area		Cambridge	
CAM.H	Lechmere Point Corporation Houses		Cambridge	
CAM.I	Sacred Heart Church, Rectory, School and Convent		Cambridge	
CAM.AJ	Charles River Basin Historic District		Cambridge	
CAM.AO	East Cambridge		Cambridge	
CAM.AV	Blake and Knowles Steam Pump Company		Cambridge	
CAM.352	Blake and Knowles Main Foundry	180 Bent St	Cambridge	c 1895
CAM.357	Blake and Knowles Machine Shop #2	195 Binney St	Cambridge	1917
CAM.358	Blake and Knowles Machine Shop #3	199 Binney St	Cambridge	1918
CAM.356	Blake and Knowles Erecting and Assembling Building	201 Binney St	Cambridge	1903
CAM.906	Cambridge Parkway Bridge over Broad Canal	Cambridge Pkwy	Cambridge	1957
CAM.931	Cambridge Parkway	Cambridge Pkwy	Cambridge	1900
CAM.379	Middlesex County Registry of Deeds Building	Cambridge St	Cambridge	1896
CAM.380	Middlesex County Clerk of Courts Building	Cambridge St	Cambridge	1889
CAM.912	Longfellow Bridge - West Boston Bridge	Cambridge St	Cambridge	c 1907
CAM.914	Lechmere Square Streetcar Station	Cambridge St	Cambridge	1922
CAM.372		82-84 Cambridge St	Cambridge	1937
CAM.373	Davenport, A. H Irving and Casson Company	88-134 Cambridge St	Cambridge	1866
CAM.378		160 Cambridge St	Cambridge	1965
CAM.93	East Cambridge Savings Bank	292 Cambridge St	Cambridge	1931
CAM.94	Union Railway Car Barn	613-621 Cambridge St	Cambridge	1869

Thursday, November 8, 2018 Page 1 of 6

nv. No.	Property Name	Street	Town	Year
CAM.99	Boston and Maine Railroad Signal Tower A	Charles River	Cambridge	1931
CAM.911	Charles River Railroad Draw Bridge #1	Charles River	Cambridge	1931
CAM.920	Charles River Dam	Charles River	Cambridge	r 1905
AM.928	Lechmere Canal	Charles River	Cambridge	1909
AM.929	Broad Canal	Charles River	Cambridge	1805
CAM.932	Charles River Basin Granite Seawall and Iron Fence	Charles River	Cambridge	
AM.908	Commercial Avenue Bridge over Lechmere Canal	Commercial Ave	Cambridge	1907
CAM.1318	Metropolitan District Commission Stables	Commercial Ave	Cambridge	
AM.123		42 Edward J. Lopez Ave	Cambridge	c 1830
CAM.430	Cambridge Public Library - O'Connell Branch	Fifth St	Cambridge	1938
CAM.441		69-71 Fifth St	Cambridge	
AM.452	Hall, Jesse House	75 Fifth St	Cambridge	1837
AM.428		82 Fifth St	Cambridge	
AM.429		83 Fifth St	Cambridge	
AM.907	First Street Bridge over Broad Canal	First St	Cambridge	1924
AM.147	Athenaeum Press Building	215 First St	Cambridge	1895
AM.502	Lechmere Point Corporation Row House	47 Gore St	Cambridge	c 1821
AM.503	Lechmere Point Corporation Row House	49 Gore St	Cambridge	c 1821
AM.504	Lechmere Point Corporation Row House	51 Gore St	Cambridge	c 1821
AM.1317	Metropolitan District Commission Boat House	Lechmere Canal	Cambridge	1910
AM.913	East Cambridge Viaduct - Lechmere Viaduct	O'Brien Hwy	Cambridge	1910
AM.9020	Boston and Lowell Railroad Retaining Wall	O'Brien Hwy	Cambridge	c 1857
AM.349	Lockhart, William L. Coffin Factory Warehouse	195-199 O'Brien Hwy	Cambridge	1873
AM.271	Barnes, James B. House	200 O'Brien Hwy	Cambridge	1824
AM.348	Lockhart, William L. Coffin Factory Main Building	201 O'Brien Hwy	Cambridge	r 1870
AM.272	Lockart, William L. Company Building	209 O'Brien Hwy	Cambridge	c 1859
AM.1400	Morrell, John and Company Branch House	221 O'Brien Hwy	Cambridge	1929
AM.1399	Whitehead Metal Products Company	225 O'Brien Hwy	Cambridge	1929
AM.461	Putnam School	Otis St	Cambridge	1889
AM.465	Saint Hedwig's Parish Church	Otis St	Cambridge	1939
AM.468	Otis Hospital	Otis St	Cambridge	
AM.371	Woodbury, James A Geldowsky, Ferdinand Building	2-28 Otis St	Cambridge	1869
AM.374		31 Otis St	Cambridge	1900
AM.473	Hall, Lewis and William A. Rowhouse	55 Otis St	Cambridge	1851
AM.474	Hall, Lewis and William A. Rowhouse	57 Otis St	Cambridge	1851
AM.475	Hall, Lewis and William A. Rowhouse	59 Otis St	Cambridge	1851
hursdav. Nov	vember 8, 2018			Page 2 of

nv. No.	Property Name	Street	Town	Year
CAM.485	Hazard, Samuel L. House	60 Otis St	Cambridge	1871
CAM.476	Hall, Lewis and William A. Rowhouse	61 Otis St	Cambridge	1851
CAM.484		62 Otis St	Cambridge	
CAM.472	Sortwell, Daniel R. Double House	63-65 Otis St	Cambridge	1871
CAM.483		64 Otis St	Cambridge	
CAM.471		65 1/2 Otis St	Cambridge	
CAM.482	Jones, Andrew - Hall, William A. Double House	66-68 Otis St	Cambridge	1846
CAM.470	Goss, Abiel Double House	67-69 Otis St	Cambridge	1839
CAM.481		70 Otis St	Cambridge	
AM.469		73-75 Otis St	Cambridge	
AM.480		74 Otis St	Cambridge	
AM.479		78 Otis St	Cambridge	
CAM.477	Clark, Josias - Cummings, Daniel P. Rowhouse	80 Otis St	Cambridge	1861
AM.478	Clark, Josias - Cummings, Daniel P. Rowhouse	82 Otis St	Cambridge	1861
AM.467	Deshon, Royal P. House	93 Otis St	Cambridge	1842
AM.460		94 Otis St	Cambridge	
AM.466		95-97 Otis St	Cambridge	
AM.459		96 Otis St	Cambridge	
AM.458		98 Otis St	Cambridge	
AM.457	Taylor, Oliver House	100 Otis St	Cambridge	1848
AM.455	Adams, Jabez F Atwood, Samuel S. Rowhouse	102 Otis St	Cambridge	1848
AM.464	Bridgeman, John L. Double House	103-105 Otis St	Cambridge	1843
AM.456	Adams, Jabez F Atwood, Samuel S. Rowhouse	104 Otis St	Cambridge	1848
AM.454		106-108 Otis St	Cambridge	
AM.463		107-109 Otis St	Cambridge	
AM.453		110 Otis St	Cambridge	
AM.462		113 Otis St	Cambridge	
AM.439		117 1/2 Otis St	Cambridge	
AM.440		117-119 Otis St	Cambridge	
AM.451		118 Otis St	Cambridge	
AM.450		120 Otis St	Cambridge	
AM.448	Dennison, James Double House	122-124 Otis St	Cambridge	1870
AM.449		122 1/2-124 1/2 Otis St	Cambridge	
AM.438		123 Otis St	Cambridge	
AM.437		125-127 Otis St	Cambridge	
AM.447		126-128 Otis St	Cambridge	
AM.436		129-131 Otis St	Cambridge	
AM.446		130 Otis St	Cambridge	

Thursday, November 8, 2018 Page 3 of 6

Inv. No.	Property Name	Street	Town	Year
CAM.445		132 Otis St	Cambridge	
CAM.435		133-135 Otis St	Cambridge	
CAM.275	Hoyt, Benjamin House	134 Otis St	Cambridge	1868
CAM.443		136-138 Otis St	Cambridge	
CAM.434	Warren, Moses - Smith, Benjamin G. Rowhouse	137 Otis St	Cambridge	1852
CAM.1339	Warren, Moses - Smith, Benjamin G. Rowhouse	139 Otis St	Cambridge	1852
CAM.442		140 Otis St	Cambridge	1895
CAM.1340	Warren, Moses - Smith, Benjamin G. Rowhouse	141 Otis St	Cambridge	1852
CAM.1341	Warren, Moses - Smith, Benjamin G. Rowhouse	143 Otis St	Cambridge	1852
CAM.1342	Warren, Moses - Smith, Benjamin G. Rowhouse	145 Otis St	Cambridge	1852
CAM.433	Fraser, John B. Double House	147-149 Otis St	Cambridge	1846
CAM.432		151 Otis St	Cambridge	
CAM.415	Hastings, Deborah House	72 Sciarappa St	Cambridge	1823
CAM.416		74 Sciarappa St	Cambridge	
CAM.401	Pendexter, Charles House	80-82 Sciarappa St	Cambridge	1847
CAM.1321	Boston Museum of Science	Science Park	Cambridge	1951
CAM.1322	Hayden Planetarium	Science Park	Cambridge	1958
CAM.375	Roby, Ebenezer Rowhouse	30 Second St	Cambridge	1836
CAM.376	Roby, Ebenezer Rowhouse	32 Second St	Cambridge	1836
CAM.377	Roby, Ebenezer Rowhouse	34 Second St	Cambridge	1836
CAM.364	Hall, Jesse Rowhouse	36 Second St	Cambridge	1842
CAM.365	Hall, Jesse Rowhouse	38 Second St	Cambridge	1842
CAM.366	Hall, Jesse Rowhouse	40 Second St	Cambridge	1842
CAM.367	Hall, Jesse Rowhouse	42 Second St	Cambridge	1842
CAM.368	Hall, Jesse Rowhouse	44 Second St	Cambridge	1842
CAM.369	Hall, Jesse Rowhouse	46 Second St	Cambridge	1842
CAM.370		50 Second St	Cambridge	
CAM.308	American Net and Twine Company Factory	155R Second St	Cambridge	1875
CAM.506	Sacred Heart Roman Catholic Church	39 Sixth St	Cambridge	1874
CAM.431		40 Sixth St	Cambridge	
CAM.508	Sacred Heart Roman Catholic Church Rectory	49 Sixth St	Cambridge	1885
CAM.325	Harugari Hall	154 Spring St	Cambridge	1873
CAM.353	Blake and Knowles Core Shop #1	Third St	Cambridge	c 1889
CAM.354	Blake and Knowles Core Shop #2	Third St	Cambridge	c 1890
CAM.505	Lechmere Point Corporation Row House	25 Third St	Cambridge	c 1821
CAM.381	Rollins, John W. Rowhouse	83 Third St	Cambridge	1860
CAM.382	Rollins, John W. Rowhouse	85 Third St	Cambridge	1860
CAM.383	Rollins, John W. Rowhouse	87 Third St	Cambridge	1860
Thursday No	vember 8. 2018			Page 4

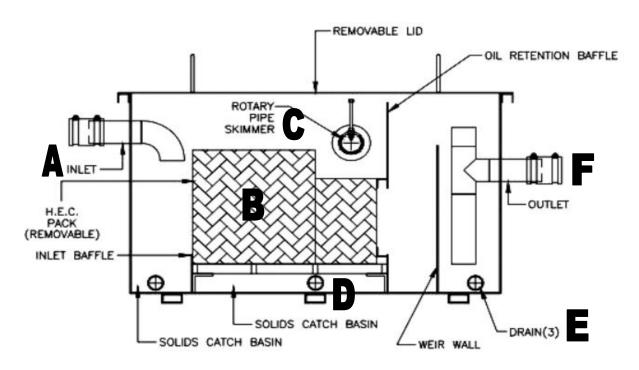
Thursday, November 8, 2018 Page 4 of 6

nv. No.	Property Name	Street	Town	Year
CAM.384	Rollins, John W. Rowhouse	89 Third St	Cambridge	1860
CAM.331	Old Middlesex County Superior Courthouse	90 Third St	Cambridge	1814
CAM.385	Rollins, John W. Rowhouse	91 Third St	Cambridge	1860
CAM.386	Rollins, John W. Rowhouse	93 Third St	Cambridge	1860
CAM.387	Rollins, John W. Rowhouse	95 Third St	Cambridge	1860
CAM.314	Holy Cross Polish National Catholic Church	99 Third St	Cambridge	1827
CAM.315	Bottle House Block	204-214 Third St	Cambridge	1826
CAM.350	Blake and Knowles Machine Shop #1	265 Third St	Cambridge	1889
CAM.351	Blake and Knowles Office Headhouse	265 Third St	Cambridge	1892
CAM.355	Blake and Knowles Smith Shop and Brass Foundry	275 Third St	Cambridge	c 1890
AM.326	Cambridge Gas Light Company Purifying Plant	354 Third St	Cambridge	1908
CAM.388	Stevens, Atherton H. Rowhouse	59 Thorndike St	Cambridge	1827
CAM.395	Smallidge, Samuel House	66 Thorndike St	Cambridge	1827
CAM.389	Bates, Moses Jr. House	69 Thorndike St	Cambridge	1844
CAM.396	Buck, Silas B. House	70 Thorndike St	Cambridge	1845
CAM.390	Tufts, Sophia Kimball Double House	71-73 Thorndike St	Cambridge	1857
AM.397	Wellington, Peter House	74 Thorndike St	Cambridge	1843
AM.391		75 Thorndike St	Cambridge	
AM.398		76 Thorndike St	Cambridge	
AM.392		77 Thorndike St	Cambridge	
AM.399		78 Thorndike St	Cambridge	
AM.393		79-81 Thorndike St	Cambridge	
AM.400		80 Thorndike St	Cambridge	
AM.394		83 Thorndike St	Cambridge	
CAM.402	Stickney, Francis H Davies, Benjamin Rowhouse	84 Thorndike St	Cambridge	1867
AM.417	Clark, Cornelius - Kneeland, W. W. House	85 Thorndike St	Cambridge	1822
AM.403	Stickney, Francis H Davies, Benjamin Rowhouse	86 Thorndike St	Cambridge	1867
AM.404	Stickney, Francis H Davies, Benjamin Rowhouse	88 Thorndike St	Cambridge	1867
AM.418		89-91 Thorndike St	Cambridge	
AM.405	Stickney, Francis H Davies, Benjamin Rowhouse	90 Thorndike St	Cambridge	1867
AM.406	Stickney, Francis H Davies, Benjamin Rowhouse	92 Thorndike St	Cambridge	1867
AM.419	Whitacre, Celeste I. Rowhouse	93 Thorndike St	Cambridge	1885
CAM.407	Stickney, Francis H Davies, Benjamin Rowhouse	94 Thorndike St	Cambridge	1867

Thursday, November 8, 2018 Page 5 of 6

Inv. No.	Property Name	Street	Town	Year
CAM.420	Whitacre, Celeste I. Rowhouse	95 Thorndike St	Cambridge	1885
CAM.408	Train, Isaac House	96 Thorndike St	Cambridge	1826
CAM.421	Whitacre, Celeste I. Rowhouse	97 Thorndike St	Cambridge	1885
CAM.422	Davies, Daniel House	97 1/2 Thorndike St	Cambridge	1843
CAM.409		98 Thorndike St	Cambridge	
CAM.423		99 Thorndike St	Cambridge	
CAM.424	Daniels, Granville W. House	101 Thorndike St	Cambridge	1868
CAM.410		102 Thorndike St	Cambridge	
CAM.411	Spare, Elijah Jr. Double House	104-106 Thorndike St	Cambridge	1846
CAM.425	Eaton, Charles House	109 Thorndike St	Cambridge	1857
CAM.412	Quimby, Amos House	110 Thorndike St	Cambridge	1857
CAM.426		111-113 Thorndike St	Cambridge	
CAM.413	Stickney, Francis H. Double House	112-114 Thorndike St	Cambridge	1863
CAM.427		113 1/2 Thorndike St	Cambridge	
CAM.414	Bacon, Henry A. House	116 Thorndike St	Cambridge	1865
CAM.507	Sacred Heart Roman Catholic School and Convent	163 Thorndike St	Cambridge	1902
CAM.500		19 Winter St	Cambridge	r 1855
CAM.492		21 Winter St	Cambridge	c 1854
CAM.486	Leighton, Thomas H. House	22 Winter St	Cambridge	1833
CAM.491		24 Winter St	Cambridge	c 1854
CAM.493		25 Winter St	Cambridge	c 1854
CAM.494		27 Winter St	Cambridge	c 1854
CAM.496		28-30 Winter St	Cambridge	c 1854
CAM.495		29 Winter St	Cambridge	c 1854
CAM.497		31-33 Winter St	Cambridge	c 1854
CAM.501		34-42 Winter St	Cambridge	r 1875
CAM.498		61 Winter St	Cambridge	c 1854
CAM.499		65 Winter St	Cambridge	c 1854
CAM.489	Stevens, Atherton Haugh House	67 Winter St	Cambridge	1843
CAM.490	Stevens, Atherton Haugh House	71 Winter St	Cambridge	1843
CAM.487	Stevens, Atherton Haugh House	74 Winter St	Cambridge	1838
CAM.1344		75 Winter St	Cambridge	
CAM.1345	Stevens, Atherton Haugh House	77 Winter St	Cambridge	1838
CAM.488	Stevens, Atherton Haugh House	79 Winter St	Cambridge	1838

Thursday, November 8, 2018

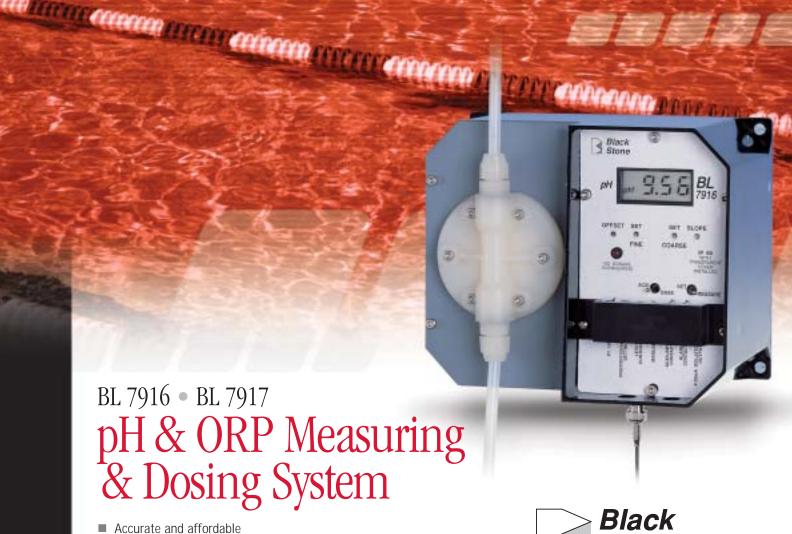


89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Environmental Oil Water Separator



Specifications:

- Rated for 50 gpm
- Manual drain line for NAPL
- Coalescing Media

- A: Inlet
- **B**: Separation Chamber with Coalescing Media
- C: Drain Line for Oil/NAPL
- **D**: Clarifier with Sludge Drain Line
- E: Clean Water Chamber

pH Adjustment System Components pH Adjustment Reagent MSDS Sheets (Hydrochloric Acid, Caustic Soda, Carbon Dioxide)

- Controller and dosing pump in one compact unit
- Proportional dosing
- Corrosion resistant housing
- Easy to install

This series of instruments will mount easily in your plant using a minimal amount of wall space. The controls and pumphead are located in the front to allow easy access. They offer accurate measurements with unbeatable performance in one compact, affordable unit.

High Performance pH & ORP Controller & Dosing Pump to Maximize Efficiency

2 Advanced Instruments in 1

MEADOS pumps combine the powerful BlackStone dosing pumps with the state-ofthe-art controllers that Hanna is famous for. These unique products were developed by HANNA for measuring and controlling pH or ORP and regulated dosing of various chemicals. This latest innovation eliminates the need for multiple instruments by combining two instruments into one. No more complicated installations, wiring, or compatibility problems. This compact unit features accurate regulation, proportional dosing, alarm and recorder signals and much more all in one meter.

Easy Installation

Designed with mounting holes in the rugged base, BlackStone pump/controllers are simple to install. There is no need for any additional hardware. All the controls and pump assemblies are conveniently located on the front of the unit. If the operator must access the pump head or control panel for any reason, there is no need to uninstall the unit.

Rugged Construction

BlackStone pump/controllers are housed in rugged, fiber-reinforced, polypropylene casings. They are IP55 rated, preventing the intrusion of liquids. The material used for the housing resists corrosion caused by most chemicals, protecting the unit from hazardous spills and splashes.

Superior Materials

BlackStone pumps use PVDF, FPM/FKMand PTFE materials for all components in contact with the chemicals being dosed. These materials have properties which enable them to resist even the most corrosive chemicals in the industry. BlackStone's choice of material makes the pump more versatile, allowing it to handle a wider variety of chemicals.

Simple Pump Action

A positive displacement solenoid with few moving parts make BlackStone pumps more reliable than motor driven pumps. With no rotating parts, gears or cams, part wear and oiling associated with motor driven pumps is eliminated, drastically reducing any chance of mechanical failure.

- pH controller and dosing pump in one compact unit.
- ±0.01 pH accuracy with unbeatable performance.
- Isolated 4 to 20 mA recorder output.
- Proportional dosing slows the pump down when the measured pH level approaches the setpoint which ensures precise dosage and avoids costly waste of chemicals due to overdosage.
- Alarm contact is activated whenever the pH value varies by more than 2 pH units from the setpoint.
- Auxiliary contacts allow the user to attach a mixer or priming pump that is activated only when the pump is dosing.
- PVDF, FPM/FKM & PTFE materials are used for all parts that come into contact with liquid.

Specifications	BL 7916U
Range	0.00 to 14.00 pH
Resolution	0.01 pH
Accuracy (20°C/68°F)	±0.01 pH
Typical EMC Deviation	±0.1 pH
Flow Rate	See table on next page
Input	High impedance 10 ¹² Ohm
Calibration	Offset: ±1 pH by offset printer; Slope: 85 to 115% by slope trimmer
Dosage	Proportional: acid or base. User-selectable
Recorder Output	4 to 20 mA, isolated
Dosing Contact	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes
Alarm Relay	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes
Power Supply	115V ±15% (40W)
Environment	0 to 50°C (32 to 122°F); RH 85% non-condensing
Dimensions	7.1 x 8.7 x 5.6" (181 x 221 x 142 mm)
Weight	11 lb. (5 Kg)

Accessories and Replacement Parts for BL 7916

HI 1001	HI 7092LOxidizing solution, 16.9 oz. (500 mL)
HI 721101Pumphead, O-ring & 6 screws	HI 7004LpH 4.01 buffer solution, 16.9 oz. (500 mL)
HI 721102Discharge valve assembly	HI 7007LpH 7.01 buffer solution, 16.9 oz. (500 mL)
HI 721103	HI 7010L pH 10.01 buffer solution, 16.9 oz. (500 mL)
HI 721004	HI 767/P Power plug (5 pcs)
HI 721005 Foot valve assembly	HI 7671/P Outlet plug (5 pcs)
HI 7210084 x ceramic weight	
HI 7020L ORP testing solution, 16.9 oz. (500 mL)	HI 8427pH & ORP electrode simulator
HI 7091L	HI 931001

ORP Controller & Pump

- ORP controller and dosing pump in one compact unit.
- ±5 mV accuracy with unbeatable performance.
- Isolated 4 to 20 mA recorder output.
- **Proportional dosing** slows the pump down when the measured ORP level approaches the set value which avoids overdosage of oxidizing or reducing agents.
- Alarm contact is activated whenever the ORP value varies by more than 200 mV from the set point.
- Auxiliary contacts allow the user to attach a mixer or priming pump that is activated only when the pump is dosing.
- PVDF, FPM/FKM & PTFE materials are used for all parts that come into contact with liquid.

Specifications	BL 7917U
Range	±999 mV
Resolution	1 mV
Accuracy (20°C/68°F)	±5 mV
Typical EMC Deviation	±6 mV
Flow Rate	See table below
Input	High impedance 10 ¹² Ohm
Calibration	Offset: ±2 pH by offset printer; Slope: 85 to 115% by slope trimmer
Dosage	Proportional: oxidizing or reducing. User-selectable
Recorder Output	4 to 20 mA, isolated
Dosing Contact	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes
Alarm Relay	Isolated, 2 A, Max. 240V, resistive load, 1,000,000 strokes
Power Supply	115V ±15% (40W)
Environment	32 to 122°F (0 to 50°C); RH 85% non-condensing
Dimensions	7.1 x 8.7 x 5.6" (181 x 221 x 142 mm)
Weight	11 lb. (5 Kg)

Accessories and Replacement Parts for BL 7917

AU	Jesson les al	nu repiacement raits for DL 7717
Н	2001	
Ш	721101	Pumphead, O-ring & 6 screws
Ш	721102	Discharge valve assembly
Ш	721103	Suction valve assembly
Ш	721004	njection valve assembly
Ш	721005	Foot valve assembly
Ш	721008	4 x ceramic weights
Ш	7020L	ORP testing solution, 16.9 oz. (500 mL)
Ш	7091L	
Н	7092L	Oxidizing solution, 16.9 oz. (500 mL)

BL 7916 & BL 7917					
FLOW/PRESSURE					
PSI GPH					
7.4	3.5				
14.7	3.0				
29.4	2.6				
44.1	2.3				
58.8	2.0				

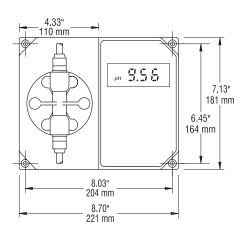
Proportional Dosing

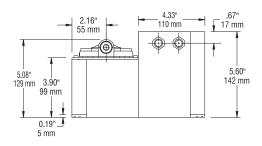
The BlackStone controller/pump strokes at full capacity when the measured value deviates by more than 1.5 pH or 150 mV from the set value. A proportional control slows down the stroke rate as the measured value approaches the user-selectable value, avoiding overdosage of chemicals. This feature makes the pump's dosing more accurate, saves chemicals and eliminates unnecessary and costly corrections of your processes, especially with slow reacting chemicals.

Isolated Recorder Output

To enhance troubleshooting and provide the user with the ability to record data while monitoring, BlackStone's controller/pumps provide a recorder output. By simply attaching a recorder to the instrument's 4 to 20 mA output contacts conveniently located on the front panel, you can obtain a hard copy of the results on demand.

Alarm Output


When monitoring and controlling pH and ORP levels in a process, it is very important that any potential problem does not go unattended. The Hanna MEADOS units incorporate an alarm system that will alert the user if the reaction is not within certain guidelines. The alarm of the BL 7916 will be activated if the measured pH value is 2 pH units lower than the setpoint (If dosing acid, this indicates overdosage, a common symptom of siphoning). The alarm will also activate if the value is 2 pH higher than the setpoint (If dosing acid, this is an indication of insufficient dosage, a common symptom of the lack of chemicals). The BL 7917's alarm will activate if the mV value is 200 mV lower than the setpoint (if dosing


reducing chemicals, this indicates overdosage). The alarm will also activate if the value is 200 mV higher than the setpoint (if dosing reducing chemicals, this is an indication of lack of chemicals).

Auxiliary Dosing Contacts

The auxiliary dosing contacts of the MEADOS units are closed whenever the pump is dosing. This solution offers considerable advantages, especially for small plants where these pumps need to be the only equipment left running. This will spare other equipment such as mixers, priming pumps etc. With this feature activated, a mixer can be automatically started when the pump is dosing.

Mechanical Dimensions for the Meados pH & ORP measuring & dosing systems

Accessories

HI 721101

This kit contains the PVDF pumphead, PTFE coated O-ring, 6 screws and washers.

HI 721102

This kit contains all the necessary replacement parts for your discharge valve assembly. Complete with a FPM/FKM O-ring, glass valve ball, valve spacer and seat, head nipple and tube nut to secure the assembled parts.

HI 721103

HI 721103 is the suction valve assembly. Complete with a FPM/FKM O-ring, glass valve ball, valve spacer and seat, head nipple, and tube nut to secure the assembled parts.

HI 721004

The HI 721004 comes complete with an injection nipple, PTFE coated spring, glass valve ball, and a valve assembly.

HI 721005

This kit contains a filter with a filter holder and a valve assembly.

HI 721008

This kit contains 4 ceramic weights.

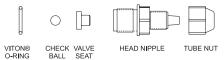
HI 721008

CERAMIC WEIGHT

HI 721101

PUMPHEAD

TEFLON® COATED

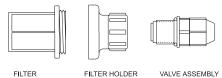

6 SCREWS

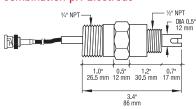
HI 721102

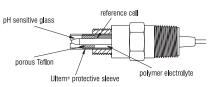
TUBE NUT HEAD NIPPLE CHECK SPACER VALVE VITON® SEAT O-RING

HI 721103

HI 721004

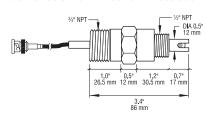


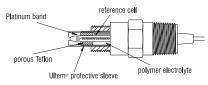

INJECTION NIPPLE


KYNAR® CHECK VALVE ASSEMBLY SPRING

HI 721005

HI 1001 Combination pH Electrode





Cassifications	LII 1001
Specifications	HI 1001
Reference System	
Junction	Double
Туре	PTFE
Electrolyte	Polymer
Temperature	23 to 176°F (-5 to 80°C)
Max Pressure	87 psi (6 bar)
Lead	
Connector	BNC
Cable	10' (3 m)

HI 2001 Combination ORP Platinum Electrode

Specifications	HI 2001
Reference System	
Junction	Double
Туре	PTFE
Electrolyte	Polymer
Temperature	23 to 176°F (-5 to 80°C)
Max Pressure	87 psi (6 bar)
Lead	
Connector	BNC
Cable	10' (3 m)

Material Safety Data Sheet

Carbon Dioxide

Section 1. Chemical product and company identification

Product Name

: Carbon Dioxide

Supplier

AIRGAS INC., on behalf of its subsidiaries

259 North Radnor-Chester Road

Suite 100

Radnor, PA 19087-5283

1-610-687-5253

Product use

: Synthetic/Analytical chemistry.

MSDS#

: 001013

Date of

4/11/2005.

Preparation/Revision

In case of emergency

: 1-800-949-7937

Section 2. Composition, Information on Ingredients

Name Carbon Dioxide CAS number

124-38-9

% Volume

Exposure limits

ACGIH TLV (United States, 9/2004).

STEL: 54000 mg/m³ 15 minute(s). Form: All

forms

STEL: 30000 ppm 15 minute(s). Form: All

forms

TWA: 9000 mg/m³ 8 hour(s). Form: All forms TWA: 5000 ppm 8 hour(s). Form: All forms **NIOSH REL (United States, 6/2001).**STEL: 54000 mg/m³ 15 minute(s). Form: All

STEL: 54000 mg/m³ 15 minute(s). Form: All

forms

STEL: 30000 ppm 15 minute(s). Form: All

forms

TWA: 9000 mg/m³ 10 hour(s). Form: All

forms

TWA: 5000 ppm 10 hour(s). Form: All forms

OSHA PEL (United States, 6/1993).

TWA: 9000 mg/m³ 8 hour(s). Form: All forms TWA: 5000 ppm 8 hour(s). Form: All forms

Section 3. Hazards identification

Physical state

: Gas.

Emergency overview

Warning!

CONTENTS UNDER PRESSURE.

CAUSES DAMAGE TO THE FOLLOWING ORGANS: LUNGS, CARDIOVASCULAR SYSTEM, SKIN, EYES, CENTRAL NERVOUS SYSTEM, EYE, LENS OR CORNEA.

MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.

Avoid contact with skin and clothing. Avoid breathing gas. Do not puncture or incinerate container. Keep container closed. Use only with adequate ventilation. Wash thoroughly

after handling.

Contact with rapidly expanding gas, liquid, or solid can cause frostbite.

Routes of entry

Inhalation, Dermal, Eyes

Potential acute health effects

Eyes Skin : Moderately irritating to the eyes.

La la = 1 = 41 = a

Moderately irritating to the skin.

Inhalation

: Moderately irritating to the respiratory system.

Ingestion

: Ingestion is not a normal route of exposure for gases

effects

Potential chronic health

: CARCINOGENIC EFFECTS Not available. **MUTAGENIC EFFECTS** Not available. TERATOGENIC EFFECT: Not available.

Medical conditions

: Acute or chronic respiratory conditions may be aggravated by overexposure to this gas.

aggravated by overexposure

See toxicological Information (section 11)

Section 4. First aid measures

No action shall be taken involving any personal risk or without suitable training. If fumes are still suspected to be present, the rescuer should wear an appropriate mask or a self-contained breathing apparatus. It may be dangerous to the person providing aid to give mouth-to-mouth resuscitation.

Eve contact

: In case of contact, immediately flush eves with plenty of water for at least 15 minutes. Get medical attention immediately.

Skin contact

: In case of contact, immediately flush skin with plenty of water. Remove contaminated clothing and shoes. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Frostbite

; Try to warm up the frozen tissues and seek medical attention.

Inhalation

: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Ingestion

: Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Get medical attention if symptoms appear.

Section 5. Fire fighting measures

Flammability of the product: Non-flammable.

Fire fighting media and instructions

: Use an extinguishing agent suitable for surrounding fires.

If involved in fire, shut off flow immediately if it can be done without risk. Apply water from a safe distance to cool container and protect surrounding area.

No specific hazard.

Special protective equipment for fire-fighters : Fire fighters should wear appropriate protective equipment and self-contained breathing apparatus (SCBA) with a full facepiece operated in positive pressure mode.

Section 6. Accidental release measures

Personal precautions

: Immediately contact emergency personnel. Keep unnecessary personnel away. Use suitable protective equipment (Section 8). Shut off gas supply if this can be done safely. Isolate area until gas has dispersed.

Environmental precautions :

Avoid dispersal of spilled material and runoff and contact with soil, waterways, drains and sewers.

Section 7. Handling and storage

Handling

Avoid contact with eyes, skin and clothing. Keep container closed. Use only with adequate ventilation. Do not puncture or incinerate container. Wash thoroughly after handling. High pressure gas. Use equipment rated for cylinder pressure. Close valve after each use and when empty. Protect cylinders from physical damage; do not drag, roll, slide, or drop. Use a suitable hand truck for cylinder movement. Never allow any unprotected part of the body to touch uninsulated pipes or vessels that contain cryogenic liquids. Prevent entrapment of liquid in closed systems or piping without pressure relief devices. Some materials may become brittle at low temperatures and will easily fracture.

Storage

: Keep container tightly closed. Keep container in a cool, well-ventilated area. Cylinders should be stored upright, with valve protection cap in place, and firmly secured to prevent falling or being knocked over. Cylinder temperatures should not exceed 52 °C (125 °F).

Section 8. Exposure Controls, Personal Protection

Engineering controls

: Use only with adequate ventilation. Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits.

Personal protection

Eyes

: Safety eyewear complying with an approved standard should be used when a risk assessment indicates this is necessary to avoid exposure to liquid splashes, mists or dusts.

When working with cryogenic liquids, wear a full face shield.

Skin

: Personal protective equipment for the body should be selected based on the task being performed and the risks involved and should be approved by a specialist before handling this product.

Respiratory

: Use a properly fitted, air-purifying or air-fed respirator complying with an approved standard if a risk assessment indicates this is necessary. Respirator selection must be based on known or anticipated exposure levels, the hazards of the product and the safe working limits of the selected respirator.

The applicable standards are (US) 29 CFR 1910.134 and (Canada) Z94.4-93

Hands

Chemical-resistant, impervious gloves or gauntlets complying with an approved standard should be worn at all times when handling chemical products if a risk assessment indicates this is necessary.

Insulated gloves suitable for low temperatures

Personal protection in case: A self-contained breathing apparatus should be used to avoid inhalation of the product.

of a large spill

Consult local authorities for acceptable exposure limits.

Section 9. Physical and chemical properties

Molecular weight : 44.01 g/mole

: CO2 Molecular formula

Boiling/condensation point : -78.55°C (-109.4°F)

Melting/freezing point

: Sublimation temperature: -78.5°C (-109.3°F)

Critical temperature

: 30.9°C (87.6°F)

Vapor pressure

: 830 psig : 1.53 (Air = 1)

Vapor density

: 8.77193

Specific Volume (ft³/lb)

Gas Density (lb/ft³)

. 0.114

Physical chemical

: Not available.

comments

Section 10. Stability and reactivity

Stability and reactivity : The product is stable.

Section 11. Toxicological information

Toxicity data

IDLH

: 40000 ppm

Chronic effects on humans : Causes damage to the following organs: lungs, cardiovascular system, skin, eyes,

central nervous system (CNS), eye, lens or cornea.

Other toxic effects on

humans

: No specific information is available in our database regarding the other toxic effects of this material for humans.

Specific effects

Carcinogenic effects

Mutagenic effects

: No known significant effects or critical hazards. : No known significant effects or critical hazards.

Reproduction toxicity

: No known significant effects or critical hazards.

Section 12. Ecological information

Products of degradation

: These products are carbon oxides (CO, CO₂).

Toxicity of the products of: The product itself and its products of degradation are not toxic.

biodegradation **Environmental fate**

: Not available.

Environmental hazards

: No known significant effects or critical hazards.

Toxicity to the environment: Not available.

Section 13. Disposal considerations

Product removed from the cylinder must be disposed of in accordance with appropriate Federal, State, local regulation.Return cylinders with residual product to Airgas, Inc.Do not dispose of locally.

Section 14. Transport information

Regulatory information	UN number	Proper shipping name	Class	Packing group	Label	Additional information
DOT Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		Limited quantity Yes. Packaging instruction Passenger Aircraft Quantity limitation: 75 kg Cargo Aircraft Quantity limitation: 150 kg
TDG Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		Explosive Limit and Limited Quantity Index 0.125 Passenger Carrying Road or Rail Index 75
Mexico Classification	UN1013 UN2187	CARBON DIOXIDE Carbon dioxide, refrigerated liquid	2.2	Not applicable (gas).		-

Section 15. Regulatory information

United States

U.S. Federal regulations

: TSCA 8(b) inventory: Carbon Dioxide

SARA 302/304/311/312 extremely hazardous substances: No products were found.

SARA 302/304 emergency planning and notification: No products were found.

SARA 302/304/311/312 hazardous chemicals: Carbon Dioxide

SARA 311/312 MSDS distribution - chemical inventory - hazard identification: Carbon Dioxide: Sudden Release of Pressure, Immediate (Acute) Health Hazard, Delayed

(Chronic) Health Hazard

Clean Water Act (CWA) 307: No products were found. Clean Water Act (CWA) 311: No products were found.

Clean air act (CAA) 112 accidental release prevention: No products were found.
Clean air act (CAA) 112 regulated flammable substances: No products were found.
Clean air act (CAA) 112 regulated toxic substances: No products were found.

State regulations

: Pennsylvania RTK: Carbon Dioxide: (generic environmental hazard)

Massachusetts RTK: Carbon Dioxide

New Jersey: Carbon Dioxide

Canada

WHMIS (Canada)

: Class A: Compressed gas.

CEPA DSL: Carbon Dioxide

Section 16. Other information

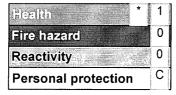
United States

Label Requirements

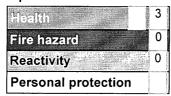
: CONTENTS UNDER PRESSURE.

CAUSES DAMAGE TO THE FOLLOWING ORGANS: LUNGS, CARDIOVASCULAR SYSTEM, SKIN, EYES, CENTRAL NERVOUS SYSTEM, EYE, LENS OR CORNEA.

MAY CAUSE RESPIRATORY TRACT, EYE AND SKIN IRRITATION.


Canada

Label Requirements


Hazardous Material

Information System (U.S.A.)

: Class A: Compressed gas.

liquid:

National Fire Protection Association (U.S.A.)

liquid:

Notice to reader

To the best of our knowledge, the information contained herein is accurate. However, neither the above named supplier nor any of its subsidiaries assumes any liability whatsoever for the accuracy or completeness of the information contained herein.

Final determination of suitability of any material is the sole responsibility of the user. All materials may present unknown hazards and should be used with caution. Although certain hazards are described herein, we cannot guarantee that these are the only hazards that exist.

Material Safety Data Sheet (MSDS): HYDROCHLORIC ACID

Company Headquarters Cooper Natural Resources Chemical Division, Inc. 2407 E. Skelly Drive Tulsa, OK 74105

24 Hour Emergency Telephone: 505-390-7115

1. Product Identification

Synonyms: Muriatic acid; hydrogen chloride, aqueous

CAS No.: 7647-01-0

Molecular Weight (Hydrogen Chloride): 36.46

Chemical Formula: HCI

2. Composition/Information on Ingredients

Ingredient	CAS No.	<u>Percent</u>	Hazardous
Hydrogen Chloride	7647-01-0	31.5 -35.2%	Yes
Water	7732-18-5	64.8-68.5%	No

3. Hazards Identification

Emergency Overview

Poison! Danger! Corrosive! Liquid and mist cause severe burns to all body tissue. May be fatal if swallowed or inhaled. Inhalation may cause lung damage.

Potential Health Effects

Eve:

Corrosive! Vapor or mist may cause irritation and severe burns and permanent eye damage. May cause painful sensitization to light. May cause conjunctivitis.

Skin:

Corrosive! May be absorbed through the skin in harmful amounts. Contact with liquid is corrosive and causes severe burns and ulceration. May cause photosensitization in certain individuals.

Ingestion:

Corrosive! May cause circulatory system failure. Causes severe digestive tract burns with abdominal pain, vomiting, and possible death. May cause permanent tissue destruction of the esophagus and digestive tract.

Inhalation:

Corrosive! Causes severe irritation of upper respiratory tract with coughing, burns, breathing difficulty, and possible coma. May cause pulmonary edema and severe respiratory disturbances.

Chronic:

Prolonged or repeated skin contact may cause dermatitis. Repeated exposure may cause erosion of teeth. May cause conjunctivitis and photosensitization.

4. First Aid Measures

Eyes:

Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower lids. Get medical aid immediately. Do NOT allow victim to rub or keep eyes closed.

Skin:

Get medical attention immediately. Rinse area with large amounts of water for at least 15 minutes. Remove contaminated clothing and shoes.

Ingestion:

DO NOT INDUCE VOMITING. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Get medical attention immediately.

Inhalation:

Remove to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

5. Fire Fighting Measures

General Information:

In the event of a fire, wear full protective clothing and NIOSH (approved or equivalent), and full protective gear. Not flammable, but reacts with most metals to form flammable hydrogen gas. Cool tanks with water spray until well after fire is out.

Fire and Explosion Hazards: May release toxic gases

Extinguishing Media: Use extinguishing agents appropriate for surrounding fires.

Fire Fighting: Keep unnecessary people away, isolate hazard area and deny entry. Wear NIOSH approved positive-pressure self-contained breathing apparatus. Move container from fire area if it can be done without risk. Avoid inhalation of material or combustion by-products, Stay upwind and keep out of low areas. Cool containers with water.

Hazardous Combustion Products:

Thermal decomposition products or combustion: hydrogen chloride

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in section 8. Isolate hazard area. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e.g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer. US regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities.

If release occurs in the U.S. and is reportable under CERCLA Section 103, notify the National Response Center at (800)424-8802 (USA) or (202)426-2675 (USA)

7. Handling and Storage

Handling:

Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use with adequate ventilation. Do not get on skin or in eyes. Do not ingest or inhale.

Storage:

Keep away from heat and flame. Keep out of direct sunlight. Store in a cool, dry, well-ventilated area away from incompatible substances.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

OSHA Permissible Exposure Limit (PEL): 5 ppm Ceiling ACGIH Threshold Limit Value (TLV): 5 ppm Ceiling

Ventilation System:

Use closed systems when possible. Provide local exhaust ventilation where vapor or mist may be generated. Ensure compliance with applicable exposure limits.

Personal Protective Equipment

Skin Protection:

Wear impervious protective clothing, including boots, gloves, suitable chemical splash protection (i.e., rubber overalls and jacket buttoned to the collar), as appropriate to prevent skin contact.

Eye Protection:

Use chemical safety goggles and full face shield where splashing is possible. Maintain eye wash fountain and quick drench facilities (safety shower) in immediate work area.

Personal Respirators: (NIOSH Approved):

For emergencies or instances where the exposure levels are not known, use a full-face piece positive-pressure, air supplied respirator. WARNING: Air purifying respirators do not protect workers in oxygen-deficient atmospheres.

9. Physical and Chemical Properties (Hydrochloric Acid)

Physical State: liquid Appearance: clear Color: colorless Odor: pungent odor

Molecular Weight: 36.46 Molecular Formula: HCI

Boiling Point: 140-221 F (60.0-105 C) Freezing Point: -29 to 5 F (-34 to -15 C) Vapor Pressure: 14.6-80 mmHg @ 20 C Vapor Density: (air=1): 1.3 @ 20 C Specific Gravity (water=1): 1.05-1.18

Bulk Density: 8.75-9.83 lbs/gal

Water Solubility: 100% PH: 2 (.02% solution) Volatility: 9-36% by volume

Oder Threeholds 0.2 mm (courses o

Odor Threshold: 0.3 ppm (causes of factory fatigue)

Evaporation Rate: <1.00 (butyl acetate=1)

Coefficient of water/oil distribution: Not available

10. Stability and Reactivity

Chemical Stability:

Stable under normal temperatures and pressures. Containers may burst when heated.

Hazardous Decomposition Products:

When heated to decomposition emits toxic hydrogen chloride fumes and will react with water or steam to produce heat and toxic and corrosive fumes. Thermal oxidative decomposition produces toxic chlorine fumes and explosive hydrogen gas.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

A strong mineral acid, concentrated hydrochloric acid is incompatible with many substances and highly reactive with strong bases, metals, metal oxides, hydroxides, amines, carbonates and other alkaline materials. Incompatible with materials such as cyanides, sulfides, sulfites and formaldehyde.

Conditions to Avoid:

Avoid heat, flames, sparks and other sources of ignition. Contact with water may produce a strong exothermic reaction with spattering. Contact with metals may evolve flammable hydrogen gas. Hydrogen chloride may react with cyanide, forming lethal concentrations of hydrocyanic acid.

11. Toxicological Information

Inhalation rat LC50: 3124 ppm/1H; oral rabbit LD50: 900mg/kg (Hydrochloric acid concentrated); investigated as a tumorigen, mutagen, reproductive effector.

Cancer Lists

	-NTP Carcinogen-				
Ingredient	Known	Anticipated	IARC	Category	
Hydrogen Chloride (7647-01-0	No	No		3	
Water	No	No		None	

12. Ecological Information

Environmental Fate:

When released into the soil, this material is not expected to be biodegrade. When released into the soil, this material may leak into groundwater.

Environmental Toxicity:

This material is expected to be toxic to aquatic life.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Reuse or reprocess if possible. Dispose in accordance with all applicable regulations. Subject to disposal regulations: U.S. EPA 40 CFR 262. Hazardous Waste Number(s): D002

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: Hydrochloric Acid

UN/NA: UN1789 Hazard Class: 8 Packing Group: II

Information reported for product/size: 475LB

International (Water, I.M.O.)

Proper Shipping name: Hydrochloric Acid

UN/NA: UN1789 Hazard Class: 8 Packing Group: II

Information reported for product/size: 475LB

15. Regulatory Information

U.S. Regulations:

CERCLA sections 102a/103 hazardous substances (40 CFR 302.4): Hydrogen Chloride (Hydrochloric Acid): 5000 LBS RQ (liquid)

Chlorine: 10 LBS RQ

Sara Title III Section 302 extremely hazardous substances (40 CFR 355.30):

Hydrogen Chloride (Hydrochloric Acid): 500LBS TPQ (gas)

Sara Title III section 311/312 hazardous categories (40 CFR 370.21):

Acute: Yes Chronic: No Fire: No Reactive: No

Sudden Release: No

Sara Title III section 313 (40 CFR 372.65):

Hydrogen Chloride (Hydrochloric Acid): aerosol form only

This product contains a toxic chemical subject to the reporting requirements of Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 and 40 CFR 372. Refer to Section 3.

OSHA Process safety (29CFR1910.1190:

Hydrogen Chloride (Hydrochloric Acid): 5000 LBS TQ (gas)

Chlorine: 1500 LBS TQ

FDA: This material has Generally Recognized as Safe (GRAS) status under specific FDA regulations. Additional information is available from the Code of Federal Register (CFR) which is accessible on the FDA's website.

State Regulations:

California Proposition 65: This product may contain contaminants known to the State of California to cause cancer or reproductive toxicity as listed under Proposition 65 State Drinking Water and Toxic Enforcement Act. For additional information, contact Customer Service.

16. Other Information

NFPA Ratings:

Health: 3 Flammability: 0 Reactivity: 0

Label Hazard Warning:

POISON! DANGER! CORROSIVE LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED, INHALATION MAY CAUSE LUNG DAMAGE.

Label Precautions:

Do not get in eyes, on skin, or on clothing.
Do not breathe vapor or mist.
Use only with adequate ventilation.
Wash thoroughly after handling.
Store in a tightly closed container.
Remove and wash contaminated clothing promptly.

Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If swallowed, **DO NOT INDUCE VOMITING** Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In all cases get medical attention immediately.

Product Use:

Chemical intermediate; oil & gas well acidizing; pH control; water treatment; steel pickling and metal cleaning; ore reduction; food processing.

Cooper Natural Resources Chemical Division, Inc. ("CNR") provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose.

CNR makes no representations or warranties, either expressed or implied, including without limitation any warranties of merchantability, fitness for a particular purpose with respect to the information set forth herein or the product to which the information refers. Accordingly, CNR will not be responsible for damages resulting from use of or reliance upon this information.

SAFETY DATA SHEET

CAUSTIC SODA LIQUID (ALL GRADES)

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.: 08

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Company Identification:

Occidental Chemical Corporation

5005 LBJ Freeway P.O. Box 809050 Dallas, Tx 75380-9050

24 Hour Emergency Telephone

Number:

1-800-733-3665 or 1-972-404-3228 (U.S.); 32.3.575.55.55 (Europe);

1800-033-111 (Australia)

To Request an MSDS: Customer Service:

MSDS@oxy.com or 1-972-404-3245 1-800-752-5151 or 1-972-404-3700

Trade Name:

Caustic Soda Diaphragm Grade 10%, 15%, 18%, 20%, 25%, 30%, 35%, 40%, 50%, Caustic Soda Rayon Grade 18%, 20%, 25%, 30%, 50%, 50% Caustic Soda Rayon Grade OS, Caustic Soda Membrane 6%, 18%, 20%, 25%, 30%, 48%, 50%, 50% Caustic Soda Membrane OS, 50% Caustic Soda Diaphragm OS, Caustic Soda Low Salt 50%, 25% Caustic Soda Purified, 50% Caustic Soda Purified, 50% Caustic Soda Purified OS, Caustic Soda Liquid 70/30, Membrane Blended, 50% Caustic Soda Membrane (Northeast), 50% Caustic Soda Diaphragm (West Coast), 50% Blended

Rayon Grade Blended, Membrane Cell Liquor

Synonyms:

Sodium hydroxide solution, Liquid Caustic, Lye Solution, Caustic, Lye, Soda Lye

Product Use:

Metal finishing, Cleaner, Process chemical, Petroleum industry

2. HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW:

Color:

Odor:

Colorless to slightly colored

Physical State:

Liquid

Signal Word:

Odorless Danger

Print date: 05/29/2009 Page: 1 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

MAJOR HEALTH HAZARDS: CORROSIVE. CAUSES BURNS TO THE RESPIRATORY TRACT, SKIN, EYES AND GASTROINTESTINAL TRACT. CAUSES PERMANENT EYE DAMAGE.

PHYSICAL HAZARDS: CORROSIVE. Mixing with water, acid or incompatible materials may cause splattering and release of heat.

ECOLOGICAL HAZARDS: Keep out of water supplies and sewers. This material is alkaline and may raise the pH of surface waters. This material has exhibited moderate toxicity to aquatic organisms.

PRECAUTIONARY STATEMENTS: Avoid breathing vapors or mist. Avoid contact with skin, eyes and clothing. Keep container tightly closed. Wash thoroughly after handling. Use only with adequate ventilation.

POTENTIAL HEALTH EFFECTS:

Inhalation: May cause irritation (possibly severe), chemical burns, and pulmonary edema.

Skin contact: May cause irritation (possibly severe) and chemical burns.

Eye contact: May cause irritation (possibly severe), chemical burns, eye damage, and blindness.

Ingestion: May cause irritation (possibly severe), chemical burns, nausea, and vomiting.

Target Organs Effected: Respiratory System, Skin, Eye

Medical Conditions Aggravated by Exposure: Asthma, Respiratory disorders

See Section 11: TOXICOLOGICAL INFORMATION

3. COMPOSITION/INFORMATION ON INGREDIENTS

Hazardous Component	Concentration (by weight %)	CAS - No.
Water	48.5 - 94.5	7732-18-5
Sodium hydroxide	5.5 - 51.5	1310-73-2
Sodium chloride (NaCl)	1 - 5	7647-14-5

4. FIRST AID MEASURES

Inhalation: If adverse effects occur, remove to uncontaminated area. Give artificial respiration if not breathing. If breathing is difficult, oxygen should be administered by qualified personnel. If respiration or pulse has stopped, have a trained person administer basic life support (Cardio-Pulmonary Resuscitation/Automatic External Defibrillator) and CALL FOR EMERGENCY SERVICES IMMEDIATELY.

Skin Contact: Immediately flush contaminated areas with water. Remove contaminated clothing, jewelry, and shoes immediately. Wash contaminated areas with soap and water. Thoroughly clean and dry contaminated clothing before reuse. Discard contaminated leather goods. GET MEDICAL ATTENTION IMMEDIATELY.

Print date: 05/29/2009 Page: 2 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

4. FIRST AID MEASURES

Eye Contact: Immediately flush eyes with a directed stream of water for at least 15 minutes, forcibly holding eyelids apart to ensure complete irrigation of all eye and lid tissues. Washing eyes within several seconds is essential to achieve maximum effectiveness. GET MEDICAL ATTENTION IMMEDIATELY.

Ingestion: Never give anything by mouth to an unconscious or convulsive person. If swallowed, do not induce vomiting. Give large amounts of water. If vomiting occurs spontaneously, keep airway clear. Give more water when vomiting stops. GET MEDICAL ATTENTION IMMEDIATELY.

Notes to Physician: The absence of visible signs or symptoms of burns does NOT reliably exclude the presence of actual tissue damage. Probable mucosal damage may contraindicate the use of gastric lavage.

5. FIRE-FIGHTING MEASURES

Fire Hazard: Negligible fire hazard.

Extinguishing Media: Use media appropriate for surrounding fire

Fire Fighting: Move container from fire area if it can be done without risk. Cool containers with water. Avoid contact with

skin.

Sensitivity to Mechanical Impact: Not sensitive.

Sensitivity to Static Discharge: Not sensitive.

Flash point: Not flammable

6. ACCIDENTAL RELEASE MEASURES

Occupational Release:

Wear appropriate personal protective equipment recommended in Section 8 of the MSDS. Completely contain spilled material with dikes, sandbags, etc. Shovel dry material into suitable container. Liquid material may be removed with a vacuum truck. Remaining material may be diluted with water and neutralized with dilute acid, then absorbed and collected. Flush spill area with water, if appropriate. Keep product and flush water out of water supplies and sewers. This material is alkaline and may raise the pH of surface waters with low buffering capacity. Releases should be reported, if required, to appropriate agencies.

7. HANDLING AND STORAGE

Storage Conditions: Store and handle in accordance with all current regulations and standards. Keep container tightly closed and properly labeled. Do not store in aluminum container or use aluminum fittings or transfer lines, as flammable hydrogen gas may be generated. Keep separated from incompatible substances.

Print date: 05/29/2009 Page: 3 of 8

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.:08

7. HANDLING AND STORAGE

Handling Procedures: Avoid breathing vapor or mist. Do not get in eyes, on skin, or on clothing. Wash thoroughly after handling. When mixing, slowly add to water to minimize heat generation and spattering.

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

OSHA Regulatory Exposure limit(s):

Hazardous Component	CAS - No.	OSHA Final PEL TWA	OSHA Final PEL STEL	OSHA Final PEL Ceiling
Sodium hydroxide	1310-73-2	2 mg/m ³		

Non-Regulatory Exposure Limit(s):

The Non-Regulatory OSHA limits shown in the table are the Vacated 1989 PEL's (vacated by 58 FR 35338, June 30, 1993)

The Non-Regulatory Cortix mint	The Worl-Regulatory Coria limits shown in the table are the Vacated 1905 I ELS (Vacated by Coria Cosco, Carle Co, 1930).							
Hazardous Component	CAS - No.	ACGIH	ACGIH	ACGIH	OSHA	OSHA	OSHA Ceiling	
		TWA	STEL	Ceiling	TWA	STEL	(Vacated)	
					(Vacated)	(Vacated)		
Sodium hydroxide	1310-73-2			2 mg/m³			2 mg/m ³	

ENGINEERING CONTROLS: Provide local exhaust ventilation where dust or mist may be generated. Ensure compliance with applicable exposure limits.

PERSONAL PROTECTIVE EQUIPMENT:

Eye Protection: Wear chemical safety goggles with a faceshield to protect against eye and skin contact when appropriate. Provide an emergency eye wash fountain and quick drench shower in the immediate work area.

Skin and Body Protection: Wear chemical resistant clothing and rubber boots when potential for contact with the material exists. Contaminated clothing should be removed, then discarded or laundered.

Hand Protection: Wear appropriate chemical resistant gloves

Protective Material Types: Natural rubber, Neoprene, Nitrile

Hazardous Component	Immediately Dangerous to Life/ Health (IDLH)
Sodium hydroxide	10 mg/m ³ IDLH

Respiratory Protection: A NIOSH approved respirator with N95 (dust, fume, mist) cartridges may be permissible under certain circumstances where airborne concentrations are expected to exceed exposure limits, or when symptoms have been observed that are indicative of overexposure. If eye irritation occurs, a full face style mask should be used. A respiratory protection program that meets 29 CFR 1910.134 must be followed whenever workplace conditions warrant use of a respirator.

9. PHYSICAL AND CHEMICAL PROPERTIES

Physical State:

Liquid

Appearance:

Clear to opaque

Color: Odor:

Colorless to slightly colored

Odorless

Boiling Point/Range:

230 - 291 F (110 - 144 C)

Print date: 05/29/2009 Page: 4 of 8

MSDS No.: M32415 Rev. Date: 05/29/2009 Rev. Num.: 08

9. PHYSICAL AND CHEMICAL PROPERTIES

Freezing Point/Range:

-26 to 59 F (-32 to 15 C)

Vapor Pressure:

13 - 135 mmHg @ 60 C

Vapor Density (air=1):

No data available

Specific Gravity (water=1):

1.11 - 1.53 @ 15.6 C

Water Solubility:

100%

pH: Volatility: 14.0 (7.5% solution) No data available

Evaporation Rate (ether=1):

No data available

Partition Coefficient (n-

No data available

octanol/water):

10. STABILITY AND REACTIVITY

Reactivity/ Stability:

Stable at normal temperatures and pressures.

Conditions to Avoid:

Mixing with water, acid or incompatible materials may cause splattering and release of large amounts of heat. Will react with some metals forming flammable hydrogen gas. Carbon monoxide gas may form upon contact with reducing sugars, food and

beverage products in enclosed spaces.

Incompatibilities/

Materials to Avoid:

Acids, Halogenated compounds, Prolonged contact with aluminum, brass, bronze,

copper, lead, tin, zinc or other alkali sensitive metals or alloys

Hazardous Decomposition

Products:

Toxic fumes of sodium oxide

Hazardous Polymerization:

Will not occur

11. TOXICOLOGICAL INFORMATION

TOXICITY DATA:

Hazardous Component	LD50 Oral	LC50 Inhalation	LD50 Dermal
Sodium hydroxide	Not listed	Not listed	1350 mg/kg (Rabbit)
Sodium chloride (NaCl)	3 g/kg (Rat)	42 g/m ³ (1 hr-Rat)	10 g/kg (Rabbit)

TOXICITY:

The severity of the tissue damage is a function of its concentration, the length of tissue contact time, and local tissue conditions. After exposure there may be a time delay before irritation and other effects occur. This material is a strong irritant and is corrosive to the skin, eyes, and mucous membranes. This material may cause severe burns and permanent damage to any tissue with which it comes into contact. Inhalation will cause severe irritation, possible burns with pulmonary edema, which may lead to pneumonitis. Skin contact with this material may cause severe irritation and corrosion of tissue. Repeated exposure may cause dermatitis. Eye contact can cause severe irritation, corrosion with possible corneal damage and blindness. Ingestion may cause irritation, corrosion/ulceration, nausea, and vomiting.

CARCINOGENICITY: This product is not classified as a carcinogen by NTP, IARC or OSHA.

Print date: 05/29/2009 Page: 5 of 8

MSDS No.: M32415

Rev. Date: 05/29/2009

Rev. Num.:08

12. ECOLOGICAL INFORMATION

AQUATIC TOXICITY: This material has exhibited moderate toxicity to aquatic organisms. Data provided are for sodium hydroxide.

Freshwater Fish Data:

LC50 brook trout: 25 ppm/24 hr LC50 king salmon: 48 ppm **Invertebrate Toxicity Data:** EC50 daphnia magna: 100 ppm EC50 shrimp: 33 - 100 ppm/48 hr EC50 cockle: 330 - 1000 ppm/48 hr

BIODEGRADATION: This material is inorganic and not subject to biodegradation.

PERSISTENCE: This material is alkaline and may raise the pH of surface waters with low buffering capacity. This material is believed to exist in the disassociated state in the environment.

BIOCONCENTRATION: This material is not expected to bioconcentrate in organisms.

ADDITIONAL ECOLOGICAL INFORMATION: This material has exhibited slight toxicity to terrestrial organisms.

13. DISPOSAL CONSIDERATIONS

Reuse or reprocess, if possible. Dispose in accordance with all applicable regulations. May be subject to disposal regulations: U.S. EPA 40 CFR 261. Hazardous Waste Number(s): D002

14. TRANSPORT INFORMATION

U.S.DOT 49 CFR 172.101:

PROPER SHIPPING NAME:

Sodium Hydroxide Solution

DOT UN NUMBER:

UN1824

HAZARD CLASS/ DIVISION:

8

PACKING GROUP:

11

LABELING REQUIREMENTS:

R

DOT RQ (lbs):

RQ 1000 lbs. (Sodium Hydroxide)

CANADIAN TRANSPORTATION OF DANGEROUS GOODS:

SHIPPING NAME:

Sodium hydroxide solution

UN NUMBER: CLASS:

UN1824

PACKING/RISK GROUP:

П

Print date: 05/29/2009

Page: 6 of 8

Water Meter w/Totalizer Manufacturer's Information

312319.1.4.A.2.f

Recordall[®] Cold Water Top Load Bronze Disc Meter

Size 2" (DN 50mm)

Technical Brief

DESCRIPTION

Badger Meter offers the Recordall Disc meter in Cast Bronze and a Low Lead Alloy. The Low Lead Alloy (Trade Designation: M170 LL) version complies with NSF/ANSI Standard 61 and carries the NSF-61 Mark on the housing. All components of the Low Lead Alloy meter, i.e., disc, chamber, housing, seals, etc., comprise the certified system.

APPLICATIONS: For use in measurement of potable cold water in residential, commercial and industrial services where flow is in one direction only.

OPERATION: Water flows through the meter's strainer and into the measuring chamber where it causes the disc to nutate. The disc, which moves freely, nutates on its own ball, guided by a thrust roller. A drive magnet transmits the motion of the disc to a follower magnet located within the permanently-sealed register. The follower magnet is connected to the register gear train. The gear train reduces the disc nutations into volume totalization units displayed on the register dial face.

OPERATING PERFORMANCE: The Badger Recordall Disc meters meet or exceed registration accuracy for the low flow rates (95%), normal operating flow rates ($100 \pm 1.5\%$), and maximum continuous operation flow rates as specifically stated by AWWA Standard C700.

CONSTRUCTION: Badger Recordall Disc meter construction, which complies with ANSI/AWWA standard C700, consists of three basic components: bronze meter housing, measuring chamber, and permanently, sealed register. A corrosion-resistant thermoplastic material is used for the measuring chamber.

To simplify maintenance, the register, measuring chamber, and strainer can be replaced without removing the meter housing from the installation. No change gears are required for accuracy calibration. Interchangeability of parts among like-sized meters also minimizes spare parts inventory investment. The built-in strainer has an effective straining area of twice the inlet size.

MAGNETIC DRIVE: Direct magnetic drive, through the use of highstrength magnets, provides positive, reliable and dependable register coupling for straight-reading, remote or automatic meter reading options.

SEALED REGISTER: The standard register consists of a straight-reading, odometer-type totalization display, 360° test circle with center sweep hand and flow finder to detect leaks. Register gearing consists of self-lubricating thermoplastic gears to minimize friction and provides long life. Permanently sealed; dirt, moisture, tampering and lens fogging problems are eliminated. Multi-position register simplifies meter installation and reading. Generator-type remote reading and automatic meter reading systems are available for all Recordall Disc meters. All reading options are removable from the meter without disrupting water service.

TAMPER-PROOF FEATURES: Customer removal of the register to obtain free water can be prevented when the optional tamper detection seal wire screw/or Torx® tamper seal resistant screw is added to the meter. Both can be installed at the meter site or at the factory.

MAINTENANCE: Badger Recordall Disc meters are designed and manufactured to provide long-term service with minimal maintenance. When maintenance is required, it can be performed easily either at the meter installation or at any other convenient location. As an alternative to repair by the utility, Badger offers various maintenance and meter component exchange programs to fit the needs of the utility.

CONNECTIONS: Tailpieces/Flanges for installations of meters on various pipe types and sizes, including misaligned pipes, are available as an option.

Model 170 shown with optional 1" Test Plug

SPECIFICATIONS

Typical Operating $2 \frac{1}{2} - 170 \text{ GPM } (.57 \text{ to } 39 \text{ m}^3/\text{hr})$ **Range (100% \pm 1.5%)**

Low Flow 1 1/2 GPM (.34 m³/hr) (Min. 95%)

Maximum 100 GPM (23 m³/hr) Continuous Operation

Pressure Loss 3.3 PSI at 100 GPM (.23 bar at 23 m³/hr)
Continuous Operation

Maximum Operating 80°F (26°C)
Temperature

Maximum Operating Pressure

Measuring Element Nutating disc. pos

Register Type Straight reading, permanently

sealed magnetic drive standard. Remote reading or Automatic Meter

Reading units optional.

Registration 100 Gallons, 10 Cubic Feet, 1 m³

Register Capacity 100,000,000 Gallons, 10,000,000 Cubic Feet, 1,000,000 m³.

10,000,000 Cubic Feet, 1,000,000 m 6 odometer wheels.

Meter Connections 2" AWWA two bolt elliptical flange, drilled, or 2" - 11 1/2 NPT

internal pipe threads.

Optional Test Plug 1" NPT test plug (TP) available on elliptical

long and short versions.

MATERIALS

Meter Housing Cast Bronze, Low Lead Alloy

Housing Top Plates Bronze, Low Lead Alloy

Measuring Chamber Thermoplastic

Disc Thermoplastic

Trim Stainless Steel/Bronze

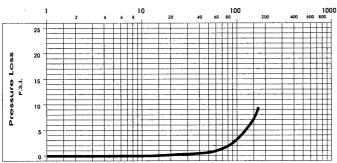
Strainer Thermoplastic

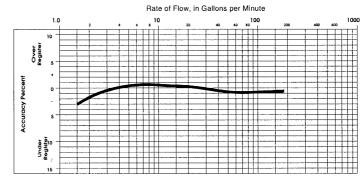
Disc Spindle Stainless Steel

Magnet Ceramic

Magnet Spindle Stainless Steel

Register Lid and Box Thermoplastic or Bronze


Generator Housing Thermoplastic



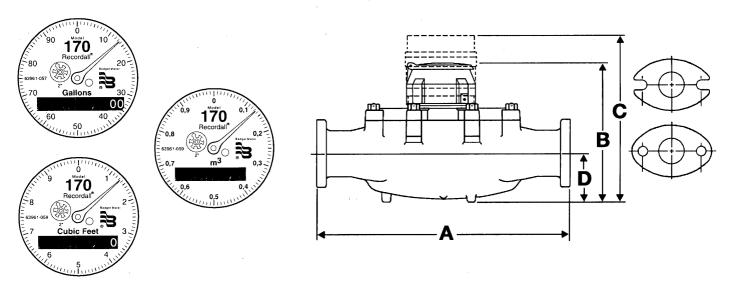
PRESSURE LOSS CHART

ACCURACY CHART

Rate of Flow, in Gallons per Minute

METER SIZE	METER MODEL	A LAYING LENGTH	B HEIGHT REG./RTR	C HEIGHT GEN.	D CENTERLINE BASE	WIDTH	APPROX. SHIPPING WEIGHT
2"	170 EL, Hex.	15 ¹ / ₄ "	8"	9³/ ₈ "	2 ⁷ / ₈ "	9¹/₂"	30 lb.
(50mm)	170 EL, TP	(387mm)	(203mm)	(238mm)	(73mm)	(241mm)	(13.6kg)
2"	170 ELL,	17"	8"	9 ³ / ₈ " .	2 ⁷ / ₈ "	9 ¹ / ₂ "	30 lb.
(50mm)	170 ELL, TP	(432mm)	(203mm)	(238mm)	(73mm)	(241mm)	(13.6kg)

EL = Elliptical


ELL = Elliptical Long

Hex = Hexagon, $2'' - 11^{1/2}$ NPT Thread

TP=Test Plug 1"

Sweep Hand Registration

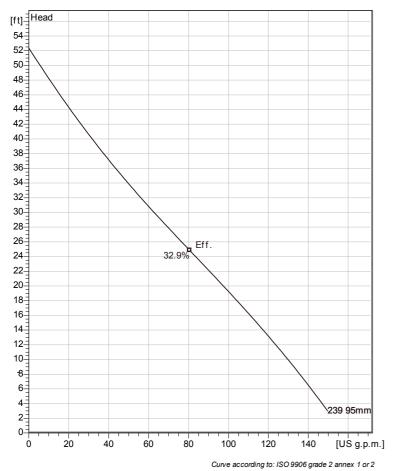
MODEL	GALLON	CU.FT.	CU. METER
M170	100	10	1

RTR® and Recordall® are registered trademarks of Badger Meter, Inc. TORX® is a registered trademark of Camcar, Division of Textron, Inc.

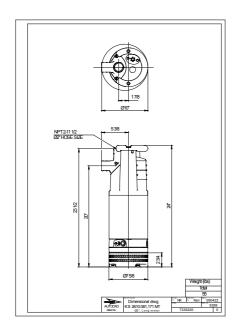
Please see our website at **www.badgermeter.com** for specific contacts.

Due to continuous research, product improvements and enhancements, Badger Meter reserves the right to change product or system specifications without notice, except to the extent an outstanding contractual obligation exists.

BadgerMeter, Inc.


P.O. Box 245036, Milwaukee, WI 53224-9536 (800) 876-3837 / Fax: (888) 371-5982 www.badgermeter.com

Dewatering Pumps Manufacturer's Information


312319.1.4.A.2.a

Technical specification

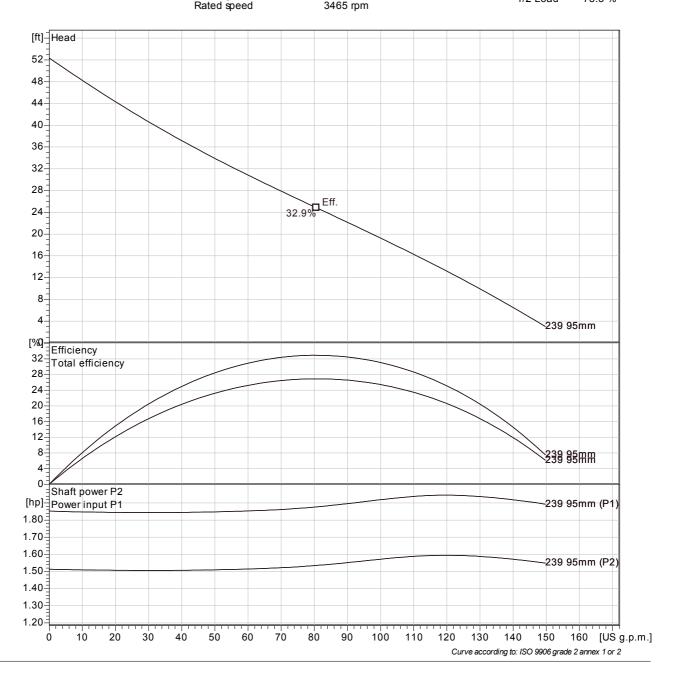
Note: Picture might not correspond to the current configuration.

GeneralPortable pumps ideal for applications in which the water or liquid contains concentrations of abrasives when clogging problems can occur

Impeller	
Impeller material	Hard-Iron ™
Outlet width	1 15/16 inch
Inlet diameter	72 mm
Impeller diameter	95 mm
Number of blades	2
	0 inch

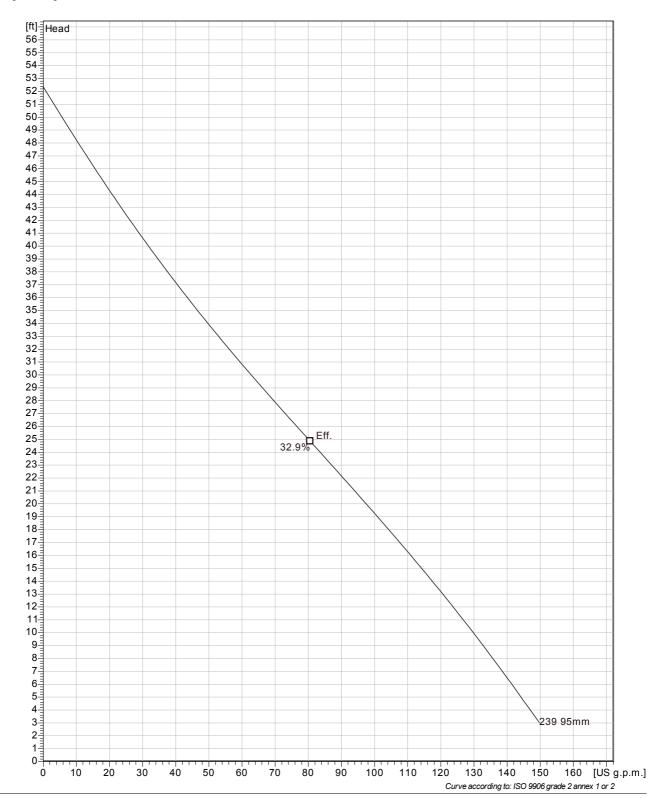
Motor Motor # Stator variant Frequency Rated voltage Number of poles Phases	K2610.171 13-10-2BB-W 1.8hp 7 60 Hz 220 V 2 1~
Rated power Rated current Starting current Rated speed	1.8 hp 7.5 A 35 A 3465 rpm
Power factor 1/1 Load 3/4 Load 1/2 Load	0.98 0.98 0.98
Efficiency 1/1 Load 3/4 Load 1/2 Load	82.0 % 80.5 % 75.5 %

Configuration


Project	Project ID	Created by	Created on	Last update
			2013-04-24	

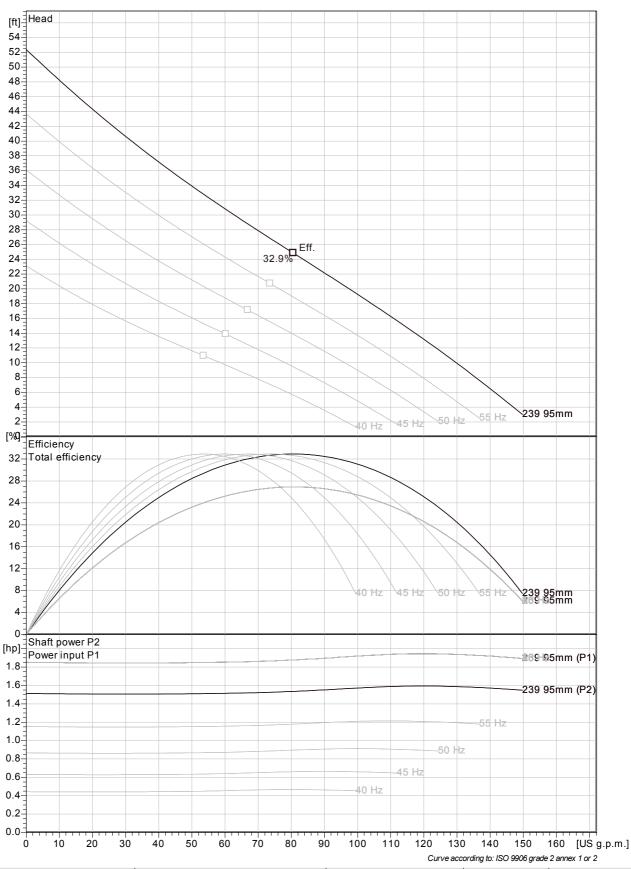
Performance curve

Pump		Motor			
Outlet width Inlet diameter Impeller diameter Number of blades	1 15/16 inc 72 mm 3³/₄" 2 0 inch	n Motor# Stator variant Frequency Rated voltage Number of poles	K2610.171 13-10-2BB-W 1.8hp 7 60 Hz 220 V 2	Power factor 1/1 Load 3/4 Load 1/2 Load	0.98 0.98 0.98
	3	Phases Rated power Rated current Starting current	1~ 1.8 hp 7.5 A 35 A	Efficiency 1/1 Load 3/4 Load 1/2 Load	82.0 % 80.5 % 75.5 %



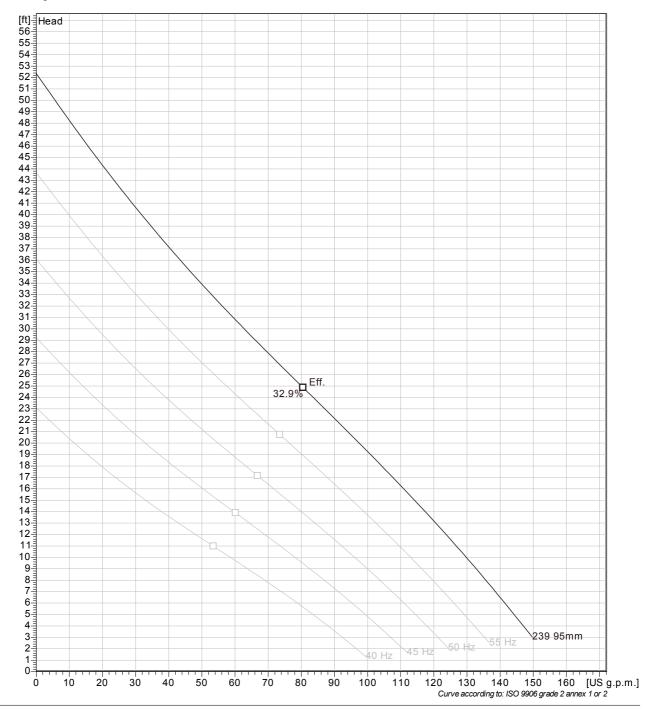
Project	Project ID	Created by	Created on	Last update
			2013-04-24	

Duty Analysis



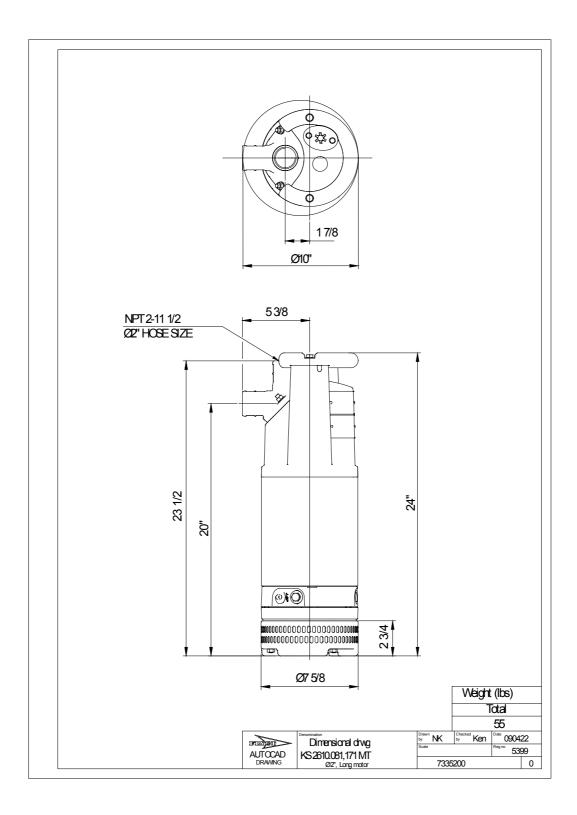
Project	Project ID	Created by	Created on	Last update
			2013-04-24	

VFD Curve



Project Project	ject ID	Created by	Created on	Last update
			2013-04-24	

VFD Analysis


Project	Project ID	Created by	Created on	Last update
			2013-04-24	

KS 2610 MT 1~ 239

Dimensional drawing

Project	Project ID	Created by	Created on	Last update
			2013-04-24	

LB-800/LBT-800 SEMI-VORTEX - DEWATERING PUMP

SPECIFICATIONS

■ FEATURES

- Semi-vortex, urethane rubber impeller, urethane front & rear ware plates and ethylene propylene rubber casing increases wear resistance when pumpage contains abrasive particles.
- Double inside mechanical seals with silicon carbide faces, (both top and bottom) running in an oil filled chamber and further protected by a lip seal running against a replaceable, 304 stainless steel shaft sleeve, provides for the most durable seal design available.
- Highly efficient, continuous duty air filled, copper wound motor with class B, insulation minimizes the cost of operation.
- Built in thermal protector prevents motor failure due to-

- overloading or accidental run -dry conditions.
- Double shielded, permanently lubricated, high temperature C3 ball bearings, extend operational life.
- Top discharge, flow-thru design enables operation at low water levels for extended periods.

APPLICATIONS

- Residential, commercial, industrial wastewater and construction site drainage.
- Effluent transfer.
- Decorative waterfalls and fountains.
- Raw water supply from rivers or lakes..

■ SPECIFICATIONS

Discharge Size Horsepower Range Performance Range Capacity Head

Maximum water temperature Materials of Construction

Casing Impeller Shaft Motor Frame Fasteners

Mechanical Seal Elastomers Impeller Type Solids Handling Capability

Bearings

Motor Nomenclature Type, Speed, Hz. Voltage, Phase

Insulation

Accessories

Operational Mode

STANDARD

2" Npt (50 mm) 1 Hp. (.75 Kw) 10 ~ 82 Gpm. (.037 ~ .31 m³/min) 7 ~ 59 Ft. (2.1 ~ 17.9 m) 104° F. (40° C.)

Ethylene Propylene Rubber Urethane Rubber 403 Stainless Steel Aluminum alloy 304 Stainless Steel

Silicon Carbide/Silicon Carbide NBR (Nitril Buna Rubber) Semi-vortex, solids handling. Screen opening

Pre-lubricated, Double Shielded C3

Air Filled, 3600 Rpm, 60 Hz. 115/230 V., 1 Phase 230/460/575 V. 3 Phase (LBT-800) Class E

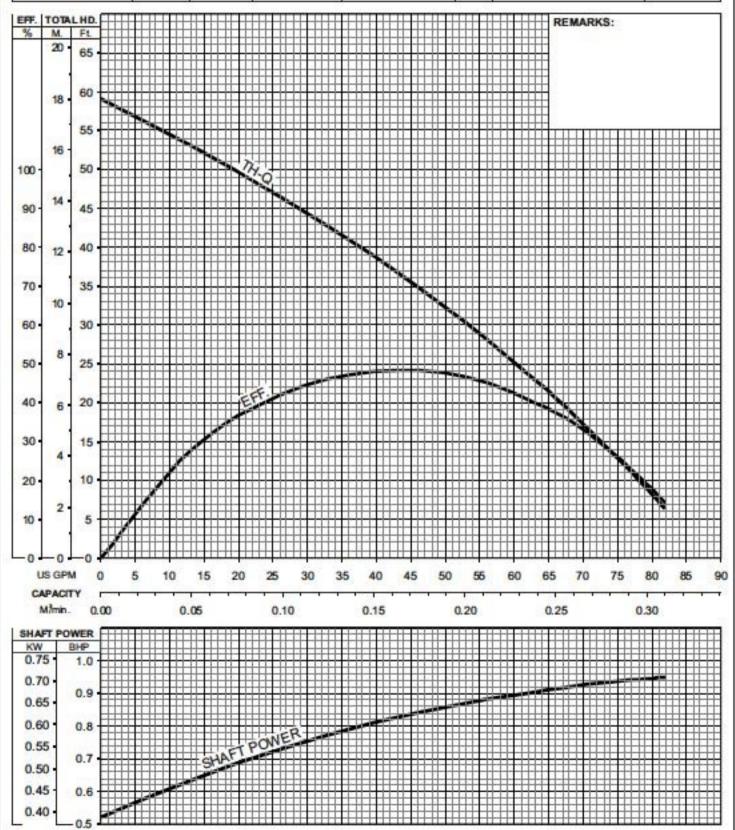
Submersible Power Cable 50' (9.75 m)

Manual

OPTIONS

Length as Required, (97' Max)

*See Technical Data section for details.


TSURUMI PUMP

LB SERIES SEMI-VORTEX - DEWATERING PUMP

PERFORMANCE CURVE

60-PC-LB-02

MODEL		BORE	HP	KW	RPM	SOLIDS DI	A	LIQUID	SG.	VISCOS	TY TEMP
LB-800-60		2"/50mm	1	0.75	3330	0.236"/6mi	m	Water	1.0	1.81 CS	T 60F
PUMPTYP	E	PHASE	VOL	TAGE	AM	PERAGE	HZ	STARTING	METHO	D IN	S. CLASS
Semi-Vortex - Dewat	ering Pump	Single	110/115	/220/230	10.8/10	0.3 / 5.7/5.5	60	Capac	lor Start	102	E
CURVE No.	DATE	PHASE	VOL	TAGE	AM	PERAGE	HZ	STARTING	METHO	D IN	S. CLASS
		*				17.	+1	100	-		

May 1, 2019

START OF ADDITIONAL INFO FOR TREATMENT EQUIPMENT DUE TO HIGH IRON LEVELS

Mr. Steve Barth A.A. Will Corporation 145 Island Street Stoughton, MA 02072

Reference: Proposal – Water Treatment Services

North Point – Parcels G/E/F Cambridge, Massachusetts LRT Reference # 3373

Dear Steve:

Thank you for your inquiry regarding water treatment services provided by Lockwood Remediation Technologies, LLC (LRT) on behalf of A.A. Will Corporation (A.A. Will) for the excavation work at the above-referenced jobsite (site). The following proposal is based on the analytical data and available information provided by A.A. Will.

Baseline Assumptions

- 1. Dewatering will be completed by localized sumping.
- 2. The influent flow rate for has been estimated at 30 gallons per minute (gpm); however, this is only an estimate and actual site conditions may vary.
- 3. Primary contaminants of concern in the waste stream include total suspended solids (TSS), petroleum compounds, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and metals. If additional analytes are encountered in the groundwater, modification to the treatment system may be necessary which could affect the system budget.
- 4. LRT will provide and install a chemical aided settling system to the base water treatment system.

Work Scope

<u>Aerator</u>

1. One (1) blower with aeration installed in the first chamber of the existing weir tank provided by A.A. Will. Power requirements will be 3-Phase, 480V.

Additional Settling Tank

1. One (1) 10,000-gallon weir tank for additional sediment settling capacity. Please note that LRT expects gravity flow from the first settling tank (AA Will provided) to the second settling tank.

Therefore, the first tank will need to be raised; the first tank elevation will be determined based on a review of an AA Will tank cutsheet.

Chemical Aided Settling System

1. One (1) chemical aided settling system for the application of LRT E-50 coagulant and LRT nonionic dry polymer. The system includes two chemical feed pumps, mixers and a control panel. A flocculant "make-down" system that prepares a batch of dry polymer for use is included. The appropriate chemical dosing necessary for efficient solid separation will need to be determined onsite via a "jar test". Once this is completed an accurate estimate of chemical usage can be established. Please note that chemical usage can vary throughout a project with changes in influent water characteristics such as pH, TSS concentration, etc. LRT recommends that periodic jar testing occur throughout the project especially when changes to influent water conditions are expected. The chemical aided settling system will require 1-phase 110V power.

Pricing

Mobilization and Installation:

Chemical Aided Settling System, Aerator & Settling Tank w/ installed fabric weirs – Includes two (2) LRT technicians for setup and training on equipment.

Monthly Rental:

Chemical Aided Settling System, Aerator & Modified Weir Tank

Demobilization:

Chemical Aided Settling System, Aerator & Settling Tank

*Does not include tank cleaning or waste disposal

Consumables:

LRT E50 Coagulant – 55 Gallon Drum LRT Anionic Polymer – 55 Pound Bag

Exclusions:

- 1. Unloading and loading of equipment at the jobsite. LRT will transport all equipment to and from the site on flat trailers. Client will need to use a machine for unloading and loading.
- 2. Level ground
- 3. Electrical power
- 4. Union or prevailing wage labor (unless otherwise specified in this proposal)
- 5. Winterization (unless otherwise specified in this proposal)

- 6. Operation or maintenance of proposed equipment (unless otherwise specified in this proposal)
- 7. Water for media reactivation or flocculant make-down
- 8. Permits or discharge fees
- 9. Cleaning of equipment or disposal of material left in equipment (unless otherwise specified in this proposal)
- 10. Taxes

Our standard limited warranty, disclaimer and limitation of liability and remedy statement is attached and considered part of this proposal. The pricing contained in this proposal is valid for 30 days. Our payment terms are net 30 on delivery. Based on our current availability, the proposed rental equipment can be delivered in less than 2 weeks from your signature of this proposal.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information. We look forward to working with you on this project. Sincerely,

Lockwood Remediation Technologies, LLC

Kim Gravelle	Paul Lockwood	
Kim Gravelle, P.G. Project Manager	Paul Lockwood President	
Acceptance of Terms for Services:		
Print Name/Job Title	Company Name	
Signature	Date	

Lockwood Remediation Technologies, LLC (LRT)

Limited Warranty Disclaimer and Limitation of Liability and Remedy

- 1. Equipment Manufactured by LRT LRT warrants its products against defects in workmanship or materials under normal use for a period of twelve months from the date of installation by LRT personnel. The warranty includes all cost borne by LRT associated with the repair or replacement (at LRT's discretion) of the part or equipment. LRT will make a good faith effort to complete a prompt correction or other adjustment with respect to any product, which proves to be defective within the warranty period. This warranty does not include damages occurring from improper installation, improper operation, improper maintenance, or work by 3rd parties not under LRT's control.
- 2. **Products or Components Manufactured by Others** LRT will honor the manufacturer's specific warranty for products and/or components manufactured by others, however all cost incurred by LRT to remedy the warranty claim will be incurred by the Client, unless the repair is the result of equipment improperly installed by LRT personnel. The repair(s) will be invoiced in accordance with our Schedule of Fees.
- 3. Chemical Compatibility Our warranty does not extend to damage caused by chemical incompatibility unless specifically stated in our proposal. The compatibility statement must include and would be limited to the specific chemicals and concentrations listed.
- **4. Treatment Plants** LRT's treatment plants are warranted to treat chemicals to the concentrations listed in LRT's proposal. All other chemicals, concentrations or constituents other than specifically listed may not be treated or may hinder the treatment process. Any modifications required to either treat or remove additional said chemicals is not included.
- 5. Manuals LRT's treatment system manual is intended to provide a qualified operator with a compilation of manufacturer's manuals for equipment provided. Only qualified personnel shall perform the specified operation, optimization and maintenance of specified equipment. LRT's manuals are not intended to be used by unqualified personnel and are not to be used as a training tool. Any operation, optimization or maintenance completed by unqualified personnel may result in property damage, serious injury or death, under such circumstances, client shall hold LRT harmless.
- 6. Limitation of Liability The warranty expressed herein is in lieu of any other warranties expressed or implied including, but not limited to, any implied warranty or merchantability or fitness for a particular purpose and is in lieu of an and all other obligations or liability on LRT's part. Under no circumstance will LRT be liable for any incidental, special, or consequential damages, or for any other loss, damage or expense of any kind, including loss of profits, or claims for labor, arising from any cause whatsoever. LRT's maximum liability shall not exceed at LRT's discretion, either the (i) repair or replacement of the defective part of product, at LRT's option; or (ii) return of the product and refund the purchased price. Either remedy shall constitute the Client's entire and exclusive remedy whether in contract, tort under warranty or otherwise.

START OF ADDITIONAL INFO FOR TREATMENT EQUIPMENT DUE TO HIGH IRON LEVELS

STANDARD SPECIFICATIONS for AL275

CAPACITY - 10,000 GAL. 238 Bbl

LENGTH - 22'-11" Tank Length / 26'-5 1/2" Overall Length

WIDTH - 97" Tank Inside / 102" Overall Width HEIGHT - 87" Tank Height / 105 🔏 Overall Height

PLATFORM - Outside Rail Construction (36" Inside Rails)
(2) - 6" x 2" x 1/4" Tubing Long Sills / HD Nose Cones / 1" Thick Open Hook

(2) - 6"x13# Outer Channel Floor Ralls

1/4" Plate A36 Floor (Slope Floor Configuration) 3" x 4.1# Structural Channel Floor Crossmembers (16" on Center)

3" x 4.1# Structural Channel Rub Rail (each side of tank)

8" Sch40 x 8" long Rear Platform Rollers

4" O.D. x 6" long Front Nose Rollers

SIDES - 1/4" Plate A36 / 6" x 2 3/4" x 1/4" Formed Side Stakes

(1) - 22" Manway Curb Slde

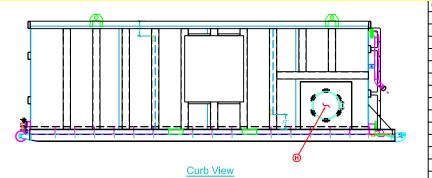
FRONT - 1/4" Plate A36 / (2) - 1/4" Formed Horlzontal Supports

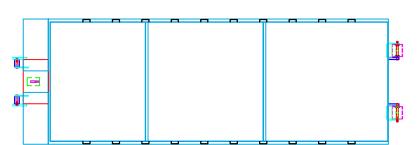
(2) - Outlet Port - 4" Slip-on Flange 150# w/ Butterfly Valve

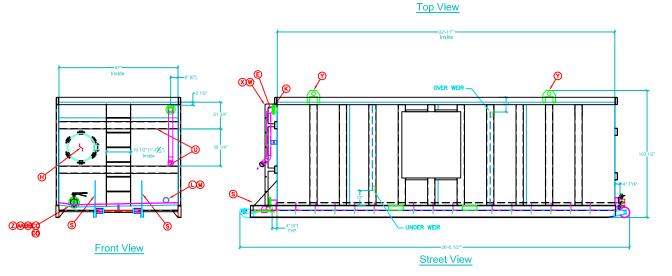
- 4" Threaded Nipple (1) - Inlet Port - 3" Removable Fill Line

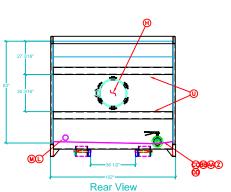
REAR - 1/4" Plate A36 / (2) - 1/4" Formed Horizontal Supports

(1) - Outlet Port - 4" Slip-on Flange 150# w/ Butterfly Valve - 4" Threaded Nipple


BLAST -


INTERIOR SURFACE PREPARATION - SSPC-SP-10 Near-White Metal Blast EXTERIOR SURFACE PREPARATION - SSPC-SP-6 Commercial Blast Cleaning


(INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T (EXTERIOR) Finish Coat Polurethane 4.0 - 5.0 Mils D.F.T


PLACARD - (2) 10 ga. Placard - Drivers & Passenger Side (Customer Specifications)

HYDRO-TESTED

10,000 Gal. Weir Tank

3" FILL LINE (SEE DETAIL DWG.)

3" WELD-NECK FLANGE 150#

4" THREADED NIPPLE x 4" LG.

PL 3/8" FRONT GUSSET BURNOUT

LADDER SIDES PL 1/4" BURNOUT

PL 3/4" LIFTING LUG BURNOUT

PIPE 4" SCH40 x 4" LG.

4" SLIP-ON FLANGE 150# 4" BUTTERFLY VALVE

6" x 2" x 1/4" x 97 1/2" LG. FORMED CHANNEL

BOLTS GRADE 5 Ø5/8" x 5" LG. w/ NYLOCK NUT

4" THREADED FLANGE 150# w/ PLUG

Ø22" MANWAY

4" PIPE CAP

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7
Capacity	GPH	0.50	1.00	2.00	4.00	10.00
nominal	GPD	12	24	48	96	240
(max.)	LPH	1.9	3.8	7.6	15.1	37.9
Pressure	PSIG	150	150	110	110	80
(max.)	BAR	10	10	7	7	5.6
Connections:	Tubing	(S) .50" I.D. X .75" O.D38" I.D. X .50" OD (LVB3 & F4 only)				

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

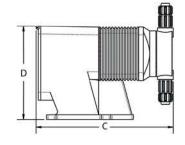
Average Current Draw:

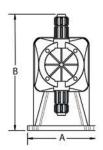
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

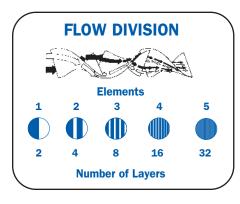
Custom Engineered Designs – Pre-Engineered Systems

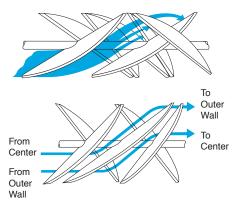

Pre-Engineered Systems

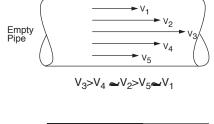

Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

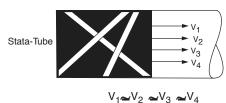
Dimensions

Series HV Dimensions (inches)					
Model No.	Α	В	С	D	Shipping Weight
LVB3	5.4	9.3	9.5	7.5	13
LVF4	5.4	10.8	10.8	7.5	18
LVG4	5.4	9.5	10.6	7.5	18
LVG5	5.4	10.8	10.8	7.5	18
LVH7	6.1	11.5	11	8.2	25


NOTE: Inches X 2.54 = cm







Principles of Operation

000000000

$$Blending = f\left\{ \mathsf{Re}, \mu, \frac{\mu_1}{\mu_2}, \frac{p_1}{p_2}, \frac{V_1}{V_2}, v, n, \frac{L}{D}, lnj \right\}$$

Where Re = Reynolds Number μ = Absolute viscosity

 μ_1/μ_2 = Viscosity ration of unmixed streams p_1/p_2 = Density ratio of unmixed streams V_1/V_2 = Volumetric ratio of unmixed streams

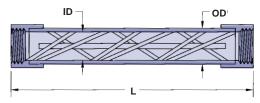
v = Shear rate

n = Number of elements

L/D = Element length to diameter ratioInj = Injection method of additive stream

Reynolds No	Spiral Mixer No Elements	Flow Characteristics
<10	18	Laminar (creeping flow)
10 to 100	12	Laminar through Transitional
100 to 1000	6	Transitional
1000 to 5000	4	Turbulent
>5000	2	Turbulent

50 SERIESStata-tube™ PVC Mixer

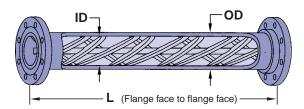


The Series 50 Stata-tube[™] is an effective answer to your mixing requirements. Operating in-line, with **no moving parts**, this mixer blends and disperses treatment chemicals into waste water streams. Compared to competitive mixers, its unique baffling design ensures complete mixing in a shorter length and lower pressure drop.

The Series 50 are easily installed in new or existing process lines. They are available in pipe sizes from 3/8" to 18" diameter. Construction materials include PVC, CPVC and Polypropylene.

PIPE MIXERS 3/8" through 2"

Elements: Polypropylene, Non Removable


Housing: PVC Type 1 (white or gray)

 ${\it Clear\ PVC\ Housing}\ {\rm is\ available,\ contact\ factory.}$

CPVC also Available.

PART NUMBER	NUMBER OF STAGES	ID INCH	OD INCH	END FNPT INCH	L INCH	PRESSURE LIMITATION psi @ 75°F	PIPE SCHEDULE
050-031F	7	0.43	0.675	3/8	5.7	850	80
050-032F	14	0.43	0.675	3/8	7.0	850	
050-061	7	0.69	1.050	3/4	7.0	690	80
050-062	14	0.69	1.050	3/4	10.5	690	
050-081	7	0.91	1.315	1	8.2	630	80
050-082	14	0.91	1.315	1	12.6	630	
050-121	7	1.38	1.660	1 1/4	10.3	370	40
050-122	14	1.38	1.660	1 1/4	17.5	370	
050-161	5	2.05	2.375	2	11.3	280	40
050-162	10	2.05	2.375	2	19.3	280	

PROCESS MIXERS 3" through 12"

Elements: PVC or CPVC Type 1, Removable

Housing: PVC, Type 1

Flanges: FFSO, Van Stone ASA #150 Drilling

Side Ports: Available upon request

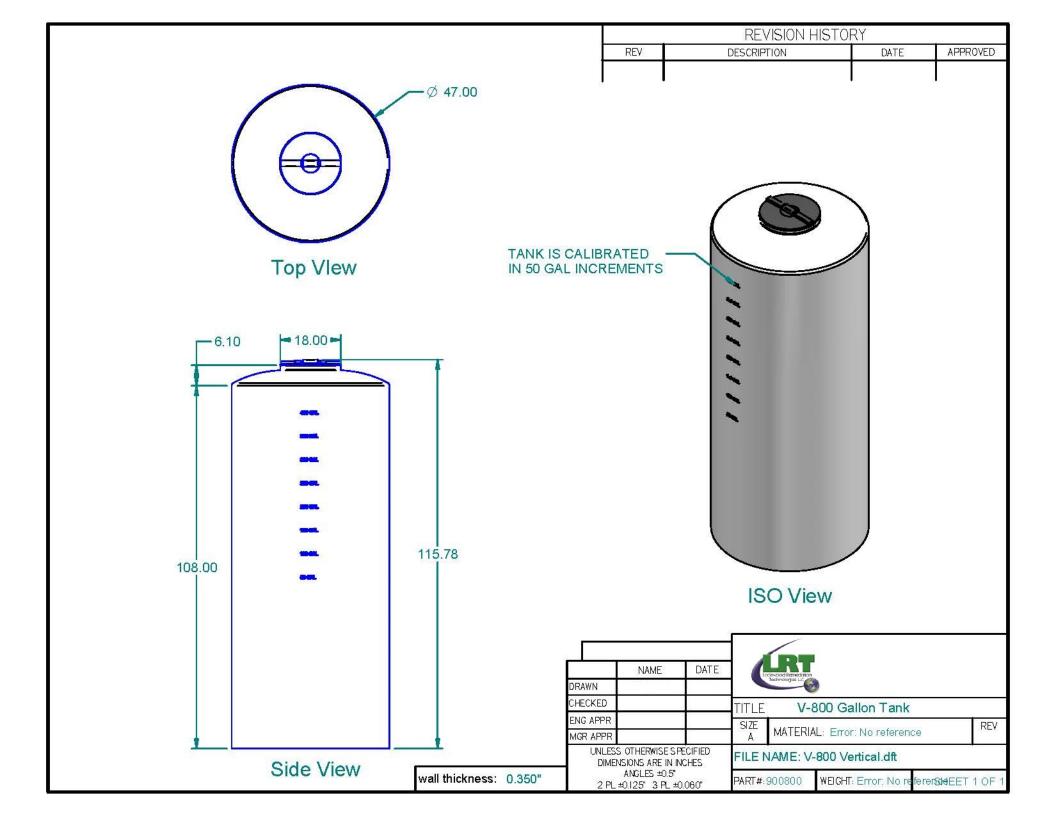
Consult factory for Process Mixers greater than 12"

PART	STATIC I	MIXER			HOUSING		
NUMBER	Number of Stages	Material	Pipe	ID Inch	L Inch	Weight lbs.	Material
T-3-G57-H31	3	CPVC	3" Sch 80	2.90	17	9	PVC
T-3-G57-H61	6	CPVC	3" Sch 80	2.90	30	16	PVC
T-3-H57-H31	3	CPVC	3" Sch 80	2.90	17	9	CPVC
T-3-H57-H61	6	CPVC	3" Sch 80	2.90	30	16	CPVC
T-4-G57-H31	3	CPVC	4" Sch 80	3.83	20	16	PVC
T-4-G57-H61	6	CPVC	4" Sch 80	3.83	35	22	PVC
T-4-H57-H31	3	CPVC	4" Sch 80	3.83	20	16	CPVC
T-4-H57-H61	6	CPVC	4" Sch 80	3.83	35	22	CPVC
T-6-G57-H31	3	CPVC	6" Sch 80	5.76	28	33	PVC
T-6-G57-H61	6	CPVC	6" Sch 80	5.76	51	50	PVC
T-6-H57-H31	3	CPVC	6" Sch 80	5.76	28	33	CPVC
T-6-H57-H61	6	CPVC	6" Sch 80	5.76	51	50	CPVC
T-8-G57-G31	3	PVC	8" Sch 80	7.63	33	55	PVC
T-8-G57-G61	6	PVC	8" Sch 80	7.63	59	90	PVC
T-10-G57-G31	3	PVC	10" Sch 80	9.56	40	88	PVC
T-10-G57-G61	6	PVC	10" Sch 80	9.56	72	130	PVC
T-12-G57-G31	3	PVC	12" Sch 80	11.38	50	140	PVC
T-12-G57-G61	6	PVC	12" Sch 80	11.38	88.5	200	PVC

TAH Industries, Inc. 8 Applegate Drive Robbinsville, NJ 08691 USA

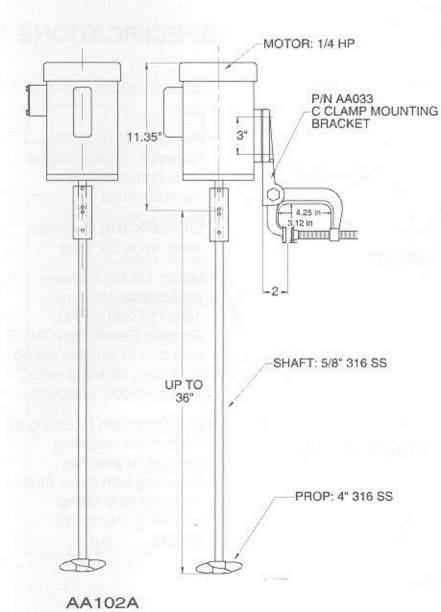
Toll Free: 800-257-5238

Tel: 609-259-9222 Fax: 609-259-0957 Website: www.tah.com **TAH Europe, Inc.** 2 Francis Court


Wellingborough Road

Rushden, Northamptonshire NN10 6AY

Great Britain


Tel: 44 (0) 1933 413233 Fax: 44 (0) 1933 413194 Website: www.tah.com

Distributed By:

MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

SAFETY DATA SHEET

Revision date 2018-06-11 Revision number 2

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product name Redux E50

Other means of identification

Product code

Synonyms Water And Wastewater Treatment Coagulant/Flocculant

Recommended use of the chemical and restrictions on use

Recommended use [RU] No information available Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: (774) 450-7177

Hours: Monday-Friday 9:00-5:00 EST

Emergency telephone number

24 Hour Emergency Phone Number CHEMTREC: (800) 424-9300

Outside USA - +1 (703) 527-3887 collect calls accepted

Contact Point info@reduxtech.com

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Corrosive to metals	Category 1

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Physical state	Color	Appearance	Odor
liquid	colorless to yellow	clear	no appreciable odor

WARNING

Hazard statements

Causes skin irritation Causes serious eye irritation May be corrosive to metals

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container

Precautionary Statements - Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention

Take off contaminated clothing and wash before reuse

Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store in corrosive resistant container with a resistant inner liner

Other information

• May be harmful in contact with skin

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No	weight-%	TRADE SECRET
Trade Secret Ingredient	PROPRIETARY	45 - 55%	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret

4. FIRST AID MEASURES

Page 2/11

First Aid Measures

Eye contact

Immediately flush with plenty of water for at least 20 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek immediate medical attention.

Skin contact

Immediately wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.

Ingestion

Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

Inhalation

Remove to fresh air.

Most important symptoms and effects, both acute and delayed

Acute effects

Possible eye, skin and respiratory tract irritation.

Chronic effects

May aggravate existing skin, eye, and lung conditions. Persons with kidney disorders have an increased risk from exposure based on general information found on aluminum salts.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable extinguishing media

Water Spray, Carbon Dioxide, Foam, Dry Chemical.

Extinguishing media which must not be used for safety reasons

No information available

Special hazards arising from the substance or mixture

Special Hazard

May produce hazardous fumes or hazardous decomposition products.

Advice for firefighters

Firefighting measures

Product is a water solution and nonflammable. In a fire, this product may build up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid breathing mist or spray.

Special protective equipment for firefighters

Not determined

Explosion data

Sensitivity to Mechanical Impact

None.

Sensitivity to Static Discharge

None.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Wear suitable protective clothing and gloves.

Environmental precautions

Environmental precautions

Do not permit run-off to get into sewers or surface waterways.

Methods and material for containment and cleaning up

Methods for containment

Prevent further leakage or spillage if safe to do so. Dike to collect large liquid spills.

Methods for cleaning up

Clear spills immediately. Contain large spill and remove using a vacuum truck. Soak up small spills with inert absorbent material and place in a labeled waste container for disposal. Ventilate area of leak or spill. Spills of solution are extremely slippery so all residue must be removed promptly.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Keep container closed when not in use

Keep away from heat and open flame.

Avoid contact with eyes, skin and clothing

Wash thoroughly after handling

Wear chemical splash goggles, gloves, and protective clothing when handling.

Avoid breathing vapor or mist

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

FOR INDUSTRIAL USE ONLY.

Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Do not store in unlined metal containers.

Product may slowly corrode iron, brass, copper, aluminum, mild steel, and stainless steel.

Store in a cool, dry place away from direct heat.

Keep in tightly closed container.

Incompatible products

Oxidizing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

Appropriate engineering controls

Engineering controls

Local exhaust ventilation as necessary to maintain exposures to within applicable limits. Please refer to the ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Wear chemical splash goggles and face shield (when eye and face contact is possible due to splashing or spraying of material).

Hand Protection

Appropriate chemical resistant gloves should be worn.

Skin and body protection

Standard work clothing and work shoes.

Respiratory protection

If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.

Other personal protection data

Eyewash fountains and safety showers must be easily accessible.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liauid

Color colorless to yellow

Appearance clear

Odor no appreciable odor **Odor threshold** No information available

<u>Property</u>	<u>Values</u>	Remarks / Method
рН	3.5	as is
Melting / freezing point	-7 °C / 19 °F	No information available
Boiling point / boiling range	No information available	No information available
Flash point	Not applicable	No information available
Evaporation rate	No information available	No information available

No information available

Flammability Limit in Air

Flammability (solid, gas)

Upper flammability limitNot applicableNo information availableLower flammability limitNot applicableNo information available

 Vapor pressure
 No information available
 No information available

Not applicable

Vapor density No information available No information available

Specific gravity 1.33 - 1.35 No information available

Solubility (water) Soluble No information available

Solubility in other solvents No information available No information available

Partition coefficient: n-octanol/water No information available No information available

Autoignition temperature Not applicable No information available

Decomposition temperatureNo information available
No information available

Kinematic viscosity

No information available

No information available

Dynamic viscosity < 100 cps @ 20 °C No information available

Other information

Density	11.0 - 11.3 lb/gal
Bulk Density	No information available
Explosive properties	No information available.
Oxidizing properties	No information available
Softening point	No information available
Molecular weight	No information available
Volatile organic compounds (VOCs) content	No information available
Percent Volatile, wt.%	40 - 50%

10. STABILITY AND REACTIVITY

Reactivity

Reactivity

No data available.

Chemical stability

Chemical stability

Stable.

Possibility of hazardous reactions

Possibility of hazardous reactions

None under normal processing.

Hazardous polymerization

No.

Conditions to avoid

Conditions to avoid

None

Incompatible materials

Materials to avoid

Oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products

Thermal decomposition may release toxic and/or hazardous gases such as Cl2 and HCl.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Eye contact

May cause moderate eye irritation that can become severe with prolonged contact. Prolonged exposure to Aluminum salts may cause conjunctivitis.

Skin contact

May be harmful in contact with skin. Prolonged and/or repeated contact may cause skin irritation.

Ingestion

May cause irritation of the mouth, throat and stomach. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhea.

Inhalation

Inhalation of mist or vapor may cause respiratory tract irritation.

Acute toxicity - Product Information

Oral LD50 No information available

Dermal LD50 No information available

Inhalation LC50 No information available

Acute toxicity - Component Information

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/kg (Rat)	

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Irritating to skin

Serious eye damage/eye irritation

Causes serious eye irritation

Sensitization

No information available

Germ cell mutagenicity

No information available

Carcinogenicity

This product does not contain any components in concentrations greater than or equal to 0.1% that are listed as known or suspected carcinogens by NTP, IARC, ACGIH, or OSHA.

Reproductive toxicity

No information available

Specific target organ toxicity - Single exposure

No information available.

Specific target organ toxicity - Repeated exposure

No information available

Aspiration hazard

No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document

ATEmix (oral) 18374 mg/kg **ATEmix (dermal)** 4004 mg/kg

Other information

Conclusions are drawn from sources other than direct testing.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

NOEC (7 day chronic, static) 200 mg/L Ceriodaphnia dubia (Water Flea) ¹

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L	
			(Brachydanio rerio)	
			(Brachydanio rerio)	

Persistence and degradability

Persistence and degradability

No information available

Bioaccumulative potential

Bioaccumulative potential

No information available.

Mobility

Mobility

No information available

Results of PBT and vPvB assessment

PBT and vPvB assessment

No information available

Other adverse effects

Other information

¹ Generated from tests conducted by ECT-Superior Laboratories May 2010

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Do NOT mix with other chemical wastes. Do not put solutions containing this product into sewer systems. Dispose of product in an approved chemical waste landfill or incinerate in accordance with applicable Federal, state and local regulations. Do not re-use empty containers.

Contaminated packaging

Since empty containers retain product residue, follow label warnings even after container is emptied.

14. TRANSPORT INFORMATION

DOT NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging

material must not be aluminum, steel or be degraded by this product

<u>ICAO/IATA</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class8Packing groupIIIERG Code8L

<u>IMDG</u> Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
EmS F-A, S-B

Harmonized Tariff Number 2827.32

15. REGULATORY INFORMATION

International Inventories

TSCA (United States)

All ingredients are on the inventory or exempt from listing

Australia (AICS)

All ingredients are on the inventory or exempt from listing

Canada (DSL)

All ingredients are on the inventory or exempt from listing

Canada (NDSL)

None of the ingredients are on the inventory.

China (IECSC)

All ingredients are on the inventory or exempt from listing

EINECS (European Inventory of Existing Chemical Substances)

All ingredients are on the inventory or exempt from listing

ELINCS (European List of Notified Chemical Substances)

None of the ingredients are on the inventory.

ENCS (Japan)

All ingredients are on the inventory or exempt from listing

South Korea (KECL)

All ingredients are on the inventory or exempt from listing

Philippines (PICCS)

All ingredients are on the inventory or exempt from listing

Legend

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

AICS - Australian Inventory of Chemical Substances

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

IECSC - China Inventory of Existing Chemical Substances

EINECS/ELINCS - European Inventory of Existing Commercial Chemical Substances/EU List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

U.S. Federal Regulations

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

SARA 311/312 Hazard Categories

Acute health hazard Yes
Chronic health hazard No
Fire hazard No
Sudden release of pressure hazard No
Reactive hazard No

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

U.S. State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals.

U.S. State Right-to-Know Regulations

This product does not contain any substances regulated under applicable state right-to-know regulations

16. OTHER INFORMATION

NFPA Rating Health - 1 Flammability - 0 Instability - 0 Special Hazard - HMIS Rating Health - 1 Flammability - 0 Physical hazard - 0 Personal protection - B

Product code

Revision date 2015-03-12

Revision number 1

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

SAFETY DATA SHEET

I. Chemical Product and Company Identification

Product Name: Nonionic / Anionic Polymer Product #s: LRT- 800 Series Polymers

Distributor: Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774-450-7177 Fax: 885-835-0617

Email: plockwood@Irt-llc.net

For Chemical Emergency - Spill, Leak, Fire, Exposure or Accident

Call **CHEMTEL** - Day or Night - 1800-255-3924

II. Composition and Ingredient Information

Components: CAS #:

Anionic Polyacrylamide 25085-02-3

Permissible Exposure Limit (PEL): No information available.

Threshold Limit Value (TLV): Information not available.

III. Hazard Identification

Primary Routes of Exposure: Skin Contact - Eye Contact - Inhalation

Skin Contact: May cause irritation, especially after prolonged or repeated contact.

Eye Contact: Dust contact and solution may cause irritation.

Ingestion: May cause discomfort or gastrointestinal disturbance. Low oral toxicity.

Inhalation: Dust contact and solution may cause irritation.

Unusual Chronic Toxicity: None Known.

IV. First Aid Measures

Skin Contact: Flush with plenty of soap and water for at least 15 minutes. If irritation

persists, get medical attention.

Eyes Contact: Immediately flush with water, continuing for 15 minutes. Immediately

contact a physician for additional treatment.

Ingestion: If conscious, immediately give 2 to 4 glasses of water, and induce

vomiting by touching finger to back of throat or giving syrup of Ipecac.

CAUTION: If unconscious, having breathing or in convulsions, do not

induce vomiting or give water.

Inhalation: Remove to fresh air.

V. Fire-Fighting Measures

Flammability Classification: NFPA - Minimal - Will not burn under normal conditions.

Flash Point: Not flammable.

Flammable and Explosive Limits: UEL: ND LEL: ND

Hazardous Combustion Byproducts:

Thermal decomposition expected to produce carbon monoxide, carbon dioxide, and various nitrous oxides and some HCl vapors.

Extinguishing Media: Foam - Carbon Dioxide - Dry Chemical

AVOID USING WATER - MAY CAUSE EXTREMELY SLIPPERY CONDITIONS.

Special Fire-Fighting Procedures: Wear self-contained breathing apparatus.

Solutions of product are extremely slippery.

Unusual Fire and Explosion Hazards: Material and its solutions are extremely slippery.

VI. Accidental Release Measures

Procedures: Sweep up or shovel into metal or plastic container. Do not use water to

clean area; product is very slippery when wet.

Waste Disposal: Incineration and/or disposal in a chemical landfill. Disposer must

comply with Federal, State, and Local disposal or discharge laws.

VII. Handling and Storage Avoid contact with skin, eyes, or clothing.

Do not inhale mist if formed.

Use normal personal hygiene and housekeeping.

Store in a cool dry place.

VIII. Exposure Controls and Personal Protection

Eye Protection: Safety glasses for normal handling conditions.

Splash-proof goggles when handling solutions.

Do not wear contact lens.

Hand Protection: Rubber gloves.

Ventilation: Local exhaust - if dusting occurs. Natural ventilation adequate in

absence of dust.

Respiratory Protection: If dusty conditions are encountered, wear NIOSH

approved respirator.

Other Protection: Eye wash recommended, full work clothing, add protective

rubber clothing if splashing or repeated contact with solution is

likely.

IX. Physical and Chemical Properties

Appearance White granular

State Solid
Specific Gravity (Water = 1) 0.8 - 1.0
Solubility in Water Complete

X. Stability and Reactivity

Stability: Product is stable as supplied.

Incompatibility: Oxidizing Agents may cause exothermic reaction.

Hazardous Decomposition or Byproducts:

Thermal decomposition expected to produce carbon oxides, and various nitrous oxides.

Hazardous Polymerization: Will not occur.

XI. Toxicological Information Not listed as a carcinogen by IARC, NTP, OSHA or ACGIH.

XII. Ecological Information

XIII. Disposal Considerations

Incineration and/or disposal in chemical landfill. Disposer must comply with federal, state, and local disposal or discharge laws.

RCRA Status of Unused Material if Discarded: Not a hazardous waste.

Hazardous Waste Number: N/A

XIV. Transport Information

Not DOT regulated. Not a RCRA hazardous waste.

Label Instructions: Signal Word: "Caution! Products are extremely slippery!"

XV. Regulatory Information

Reportable Quantity (EPA 40 CFR 302): N/A

Threshold Planning Quantity (EPA 40 CFR 355): N/A

Toxic Chemical Release Reporting (EPA 40 CFR 372): N/A

SARA TITLE 3: Section 311 Hazard Categorizations (40CFR 370): N/A

SARA TITLE 3: Section 313 Information (40CFR 372): N/A

Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Information (40CFR 302.4) N/A

US TSCA: Product is manufactured in compliance with all provisions of the Toxic Substances Control Act, 15 U.S.C.

XVI. Other Information

Health 0 4 = Severe
Flammability 1 3 = Serious
Reactivity 0 2 = Moderate
Personal Protection F 1 = Slight
0 = Insignificant

Personal Protective Equipment Guide

A = Safety Glasses, Gloves, and

Vapor Respirator

B = Safety Glasses, Gloves H = Splash Goggles, Gloves,

Apron, Vapor Respirator C =

Safety Glasses, Gloves, Apron I = Safety Glasses, Gloves, and

Dust & Vapor Respirator

D = Gloves, Apron, Face shield J = Splash Goggles, Gloves, Apron,

and Dust & Vapor Respirator

E = Safety Glasses, Gloves, and Dust K = Air Line Hood/Mask, Respirator Gloves, Full Suit, Boots

F = Safety Glasses, Gloves, Apron X = Ask supervisor for special and Dust Respirator handling instructions

ABBREVIATIONS:

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

TLV - Threshold Limit Value

PEL - Permissible Exposure Limit

TWA - Time Weighted Average

STEL - Short-Term Exposure Limit

ANSI - American National Standard Institute

MSHA - Mine Safety and Health Administration

NIOSH - National Institute for Occupational Safety & Health

NA - Not Applicable

NE - Not Established

NR - Not Required

PPE - Personal Protective Equipment

LEL - Lower Exposure Level

UEL - Upper Exposure Level

ANALYTICAL REPORT

Lab Number: L1632408

Client: Vertex Environmental Services, Inc.

One Congress Street

10th Floor

Boston, MA 02114

ATTN: Jesse Freeman
Phone: (781) 952-6000
Project Name: NORTHPOINT

Project Number: 35663
Report Date: 10/19/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:10191615:48

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408 **Report Date:** 10/19/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1632408-01	VES-J/K-215 (MW)	WATER	CAMBRIDGE, MA	10/11/16 14:10	10/11/16
L1632408-02	TRIP BLANK	WATER	CAMBRIDGE, MA	10/07/16 00:00	10/11/16

Serial_No:10191615:48

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

PI	ease	contact	Client	Services	at 800)-624-922() with	any	questions.	

Serial_No:10191615:48

Project Name:NORTHPOINTLab Number:L1632408Project Number:35663Report Date:10/19/16

Case Narrative (continued)

Sample Receipt

A Trip Blank was received in the laboratory, but not listed on the Chain of Custody, and was not analyzed.

Microextractables

An LCS/LCSD was performed in lieu of a Matrix Spike due to insufficient sample volume available for analysis.

Semivolatile Organics

The WG941429-2 LCS recovery, associated with L1632408-01, is below the acceptance criteria for benzidine (6%); however, it has been identified as a "difficult" analyte. The results of the associated samples are reported.

Semivolatile Organics by SIM

The surrogate recoveries for the WG941420-3 LCSD, associated with L1632408-01, are outside the acceptance criteria for nitrobenzene-d5 (143%) and 2-fluorobiphenyl (130%). The LCSD spike compounds are within overall method allowances; therefore, no further action was taken.

Pesticides

The WG942194-3 MS recovery, performed on L1632408-01, is below the acceptance criteria for methoxychlor (0%) due to the concentration of this compound falling below the reported detection limit.

Cyanide, Total

WG941664: A Laboratory Duplicate was prepared with the sample batch, however, the native sample was not available for reporting; therefore, the laboratory duplicate results could not be reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Sma I Irry Lura L Troy

Authorized Signature:

Title: Technical Director/Representative

Date: 10/19/16

ORGANICS

VOLATILES

10/11/16 14:10

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: L1632408-01 Date Collected: Client ID: VES-J/K-215 (MW) Date Received:

Client ID: VES-J/K-215 (MW) Date Received: 10/11/16
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified
Matrix: Water Extraction Method: EPA 8011
Analytical Method: 14,504.1 Extraction Date: 10/17/16 14:03
Analytical Date: 10/17/16 17:40

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

10/11/16

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/11/16 14:10

Client ID: VES-J/K-215 (MW) Date Received: Sample Location: CAMBRIDGE, MA Field Prep:

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified Matrix: Water

Analytical Method: 5,624

Analytical Date: 10/12/16 14:10
Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborough	Lab						
2-Chloroethylvinyl ether	ND		ug/l	10		1	
Acrolein ¹	ND		ug/l	8.0		1	
Acrylonitrile ¹	ND		ug/l	10		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	103		80-120	
Fluorobenzene	110		80-120	
4-Bromofluorobenzene	92		80-120	

Project Name: Lab Number: NORTHPOINT L1632408

Project Number: Report Date: 35663 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 5,624

10/12/16 11:50

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - West	borough Lab	o for sampl	e(s): 01	Batch:	WG940591-18	
2-Chloroethylvinyl ether	ND		ug/l	10		
Acrolein ¹	ND		ug/l	8.0		
Acrylonitrile ¹	ND		ug/l	10		

			Acceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Pentafluorobenzene	103		80-120	
Fluorobenzene	108		80-120	
4-Bromofluorobenzene	89		80-120	

Project Name: NORTHPOINT **Lab Number:** L1632408

Project Number: 35663 Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 8011

Analytical Date: 10/17/16 16:49 Extraction Date: 10/17/16 14:03

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab for	r sample(s):	01	Batch: WG9428	42-1	
1,2-Dibromoethane	ND		ug/l	0.010		А

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01 Batch: WG9	40591-17				
Methylene chloride	110		-		70-111	-	30	
1,1-Dichloroethane	120	Q	-		78-116	-	30	
Chloroform	115	Q	-		86-111	-	30	
Carbon tetrachloride	100		-		60-112	-	30	
1,2-Dichloropropane	120	Q	-		83-113	-	30	
Dibromochloromethane	90		-		58-129	-	30	
1,1,2-Trichloroethane	95		-		80-118	-	30	
2-Chloroethylvinyl ether	90		-		69-124	-	30	
Tetrachloroethene	95		-		80-126	-	30	
Chlorobenzene	90		-		80-126	-	30	
Trichlorofluoromethane	100		-		83-128	-	30	
1,2-Dichloroethane	115	Q	-		82-110	-	30	
1,1,1-Trichloroethane	110	Q	-		72-109	-	30	
Bromodichloromethane	95		-		71-120	-	30	
trans-1,3-Dichloropropene	95		-		73-106	-	30	
cis-1,3-Dichloropropene	95		-		78-111	-	30	
Bromoform	75		-		45-131	-	30	
1,1,2,2-Tetrachloroethane	85		-		81-122	-	30	
Benzene	115		-		84-116	-	30	
Toluene	100		-		83-121	-	30	
Ethylbenzene	90		-		84-123	-	30	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s): 0	1 Batch: WG9	40591-17			
Chloromethane	105		-		70-144	-	30
Bromomethane	90		-		63-141	-	30
Vinyl chloride	95		-		56-118	-	30
Chloroethane	110		-		74-130	-	30
1,1-Dichloroethene	105		-		77-116	-	30
trans-1,2-Dichloroethene	110		-		81-121	-	30
cis-1,2-Dichloroethene ¹	115	Q	-		85-110	-	30
Trichloroethene	110		-		84-118	-	30
1,2-Dichlorobenzene	80		-		78-128	-	30
1,3-Dichlorobenzene	80		-		77-125	-	30
1,4-Dichlorobenzene	80		-		77-125	-	30
p/m-Xylene ¹	92		-		81-121	-	30
o-Xylene ¹	95		-		81-124	-	30
Styrene ¹	90		-		84-133	-	30
Acetone ¹	124		-		40-160	-	30
Carbon disulfide ¹	110		-		54-134	-	30
2-Butanone ¹	128	Q	-		57-116	-	30
Vinyl acetate ¹	120		-		40-160	-	30
4-Methyl-2-pentanone ¹	104		-		79-125	-	30
2-Hexanone ¹	110		-		78-120	-	30
Acrolein ¹	115		-		40-160	-	30

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 01	Batch: WG9	40591-17					
Acrylonitrile ¹	122		-		66-123	-		30	
Methyl tert butyl ether ¹	105		-		57-126	-		30	
Dibromomethane ¹	115		-		65-126	-		30	
tert-Butyl Alcohol ¹	120	Q	-		52-114	-		30	
Tertiary-Amyl Methyl Ether ¹	110		-		66-111	-		30	

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
Pentafluorobenzene	106				80-120	
Fluorobenzene	111				80-120	
4-Bromofluorobenzene	93				80-120	

Project Name: NORTHPOINT

Project Number:

35663

Lab Number:

L1632408

Report Date:

10/19/16

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Microextractables by GC - Westborough Lal	Associated sam	nple(s): 01	Batch: WG9428	342-2 WG	942842-3				
1,2-Dibromoethane	105		109		70-130	4		20	Α
1,2-Dibromo-3-chloropropane	106		108		70-130	2		20	А

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits
Volatile Organics by GC/MS -	Westborough I	Lab Assoc	ciated sample(s): 01 QC Ba	tch ID: W	G940591-6	QC Sample	e: L1631582-01	Client ID:	MS Sample
Methylene chloride	ND	200	240	120	Q	-	-	70-111	-	30
1,1-Dichloroethane	ND	200	260	130	Q	-	-	78-116	-	30
Chloroform	ND	200	260	130	Q	-	-	86-111	-	30
Carbon tetrachloride	ND	200	240	120	Q	-	-	60-112	-	30
1,2-Dichloropropane	ND	200	260	130	Q	-	-	83-113	-	30
Dibromochloromethane	ND	200	180	90		-	-	58-129	-	30
1,1,2-Trichloroethane	ND	200	190	95		-	-	80-118	-	30
2-Chloroethylvinyl ether	ND	200	160	80		-	-	69-124	-	30
Tetrachloroethene	ND	200	220	110		-	-	80-126	-	30
Chlorobenzene	ND	200	220	110		-	-	80-126	-	30
Trichlorofluoromethane	ND	200	240	120		-	-	83-128	-	30
1,2-Dichloroethane	ND	200	240	120	Q	-	-	82-110	-	30
1,1,1-Trichloroethane	ND	200	240	120	Q	-	-	72-109	-	30
Bromodichloromethane	ND	200	200	100		-	-	71-120	-	30
trans-1,3-Dichloropropene	ND	200	190	95		-	-	73-106	-	30
cis-1,3-Dichloropropene	ND	200	200	100		-	-	78-111	-	30
Bromoform	ND	200	150	75		-	-	45-131	-	30
1,1,2,2-Tetrachloroethane	ND	200	170	85		-	-	81-122	-	30
Benzene	ND	200	260	130	Q	-	-	84-116	-	30
Toluene	ND	200	220	110		-	-	83-121	-	30
Ethylbenzene	ND	200	230	115		-	-	84-123	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recov Qual Limit		RPD Qual Limits
Volatile Organics by GC/MS -	Westborough L	ab Asso	ciated sample(s	s): 01 QC Ba	tch ID: W	G940591-6	QC Sample	e: L1631582-01	Client ID:	MS Sample
Chloromethane	ND	200	240	120		-	-	70-14	1 -	30
Bromomethane	ND	200	190	95		-	-	63-14	1 -	30
Vinyl chloride	ND	200	240	120	Q	-	-	56-118	3 -	30
Chloroethane	ND	200	250	125		-	-	74-130) -	30
1,1-Dichloroethene	ND	200	240	120	Q	-	-	77-110	6 -	30
trans-1,2-Dichloroethene	ND	200	250	125	Q	-	-	81-12	1 -	30
cis-1,2-Dichloroethene ¹	ND	200	250	125	Q	-	-	85-110) -	30
Trichloroethene	ND	200	250	125	Q	-	-	84-118	3 -	30
1,2-Dichlorobenzene	ND	200	180	90		-	-	78-128	3 -	30
1,3-Dichlorobenzene	ND	200	200	100		-	-	77-12	5 -	30
1,4-Dichlorobenzene	ND	200	190	95		-	-	77-12	5 -	30
o/m-Xylene ¹	ND	400	450	113		-	-	81-12	1 -	30
o-Xylene ¹	ND	200	220	110		-	-	81-124	4 -	30
Styrene ¹	ND	200	220	110		-	-	84-13	3 -	30
Acetone ¹	220	500	740	104		-	-	40-160) -	30
Carbon disulfide ¹	ND	200	240	120		-	-	54-134	1 -	30
2-Butanone ¹	ND	500	550	110		-	-	57-110	6 -	30
Vinyl acetate ¹	ND	400	450	113		-	-	40-160) -	30
4-Methyl-2-pentanone ¹	ND	500	460	92		-	-	79-12	5 -	30
2-Hexanone ¹	ND	500	500	100		-	-	78-120) -	30
Acrolein ¹	ND	400	340	85		-	-	40-160) -	30

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

	Native	MS	MS	MS	MSD	MSD	Recove	ery	RPD
Parameter	Sample	Added	Found	%Recovery	Qual Found	l %Recovery	Qual Limits	RPD	Qual Limits
Volatile Organics by GC/MS -	Westborough	Lab Assoc	iated sample(s): 01 QC Ba	tch ID: WG94059	I-6 QC Samp	le: L1631582-01	Client ID	: MS Sample
Acrylonitrile ¹	ND	400	410	103	-	-	66-123	-	30
Dibromomethane ¹	ND	200	220	110	-	-	65-126	-	30

	MS	MS		SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	
4-Bromofluorobenzene	103				80-120	
Fluorobenzene	113				80-120	
Pentafluorobenzene	106				80-120	

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG940	591-5 QC Sam	ple: L1631	582-01 Client ID: DUP Sample
Methylene chloride	ND	ND	ug/l	NC	30
1,1-Dichloroethane	ND	ND	ug/l	NC	30
Chloroform	ND	ND	ug/l	NC	30
Carbon tetrachloride	ND	ND	ug/l	NC	30
1,2-Dichloropropane	ND	ND	ug/l	NC	30
Dibromochloromethane	ND	ND	ug/l	NC	30
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30
2-Chloroethylvinyl ether	ND	ND	ug/l	NC	30
Tetrachloroethene	ND	ND	ug/l	NC	30
Chlorobenzene	ND	ND	ug/l	NC	30
Trichlorofluoromethane	ND	ND	ug/l	NC	30
1,2-Dichloroethane	ND	ND	ug/l	NC	30
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30
Bromodichloromethane	ND	ND	ug/l	NC	30
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30
Bromoform	ND	ND	ug/l	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30
Benzene	ND	ND	ug/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Volatile Organics by GC/MS - Westborough Lab	Associated sample(s): 01	QC Batch ID: WG9405	91-5 QC Samp	le: L1631582-	01 Client ID: DUP Sample
Toluene	ND	ND	ug/l	NC	30
Ethylbenzene	ND	ND	ug/l	NC	30
Chloromethane	ND	ND	ug/l	NC	30
Bromomethane	ND	ND	ug/l	NC	30
Vinyl chloride	ND	ND	ug/l	NC	30
Chloroethane	ND	ND	ug/l	NC	30
1,1-Dichloroethene	ND	ND	ug/l	NC	30
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30
cis-1,2-Dichloroethene ¹	ND	ND	ug/l	NC	30
Trichloroethene	ND	ND	ug/l	NC	30
1,2-Dichlorobenzene	ND	ND	ug/l	NC	30
1,3-Dichlorobenzene	ND	ND	ug/l	NC	30
1,4-Dichlorobenzene	ND	ND	ug/l	NC	30
p/m-Xylene ¹	ND	ND	ug/l	NC	30
o-Xylene ¹	ND	ND	ug/l	NC	30
Xylene (Total) ¹	ND	ND	ug/l	NC	30
Styrene ¹	ND	ND	ug/l	NC	30
Acetone ¹	220	240	ug/l	9	30
Carbon disulfide ¹	ND	ND	ug/l	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

h Quality Control

Lab Number: L1632408

Report Date: 10/19/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
olatile Organics by GC/MS - Westboroug	gh Lab Associated sample(s): 01	QC Batch ID: WG9405	91-5 QC S	ample: L1631582	-01 Client ID: DUP Sample
2-Butanone ¹	ND	ND	ug/l	NC	30
Vinyl acetate ¹	ND	ND	ug/l	NC	30
4-Methyl-2-pentanone ¹	ND	ND	ug/l	NC	30
2-Hexanone ¹	ND	ND	ug/l	NC	30
Acrolein ¹	ND	ND	ug/l	NC	30
Acrylonitrile ¹	ND	ND	ug/l	NC	30
Dibromomethane ¹	ND	ND	ug/l	NC	30

			Acceptance	
Surrogate	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Pentafluorobenzene	103	104	80-120	
Fluorobenzene	111	112	80-120	
4-Bromofluorobenzene	104	104	80-120	

SEMIVOLATILES

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/11/16 14:10

Client ID: VES-J/K-215 (MW) Date Received: 10/11/16
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified
Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D Extraction Date: 10/12/16 16:35
Analytical Date: 10/18/16 14:13

Analyst: HL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Benzidine	ND		ug/l	20		1
1,2,4-Trichlorobenzene	ND		ug/l	5.0		1
Bis(2-chloroethyl)ether	ND		ug/l	2.0		1
1,2-Dichlorobenzene	ND		ug/l	2.0		1
1,3-Dichlorobenzene	ND		ug/l	2.0		1
1,4-Dichlorobenzene	ND		ug/l	2.0		1
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1
2,4-Dinitrotoluene	ND		ug/l	5.0		1
2,6-Dinitrotoluene	ND		ug/l	5.0		1
Azobenzene	ND		ug/l	2.0		1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		1
4-Bromophenyl phenyl ether	ND		ug/l	2.0		1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		1
Hexachlorocyclopentadiene	ND		ug/l	20		1
Isophorone	ND		ug/l	5.0		1
Nitrobenzene	ND		ug/l	2.0		1
NDPA/DPA	ND		ug/l	2.0		1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1
Butyl benzyl phthalate	ND		ug/l	5.0		1
Di-n-butylphthalate	ND		ug/l	5.0		1
Di-n-octylphthalate	ND		ug/l	5.0		1
Diethyl phthalate	ND		ug/l	5.0		1
Dimethyl phthalate	ND		ug/l	5.0		1
Biphenyl	ND		ug/l	2.0		1
Aniline	ND		ug/l	2.0		1
4-Chloroaniline	ND		ug/l	5.0		1
2-Nitroaniline	ND		ug/l	5.0		1
3-Nitroaniline	ND		ug/l	5.0		1

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: Date Collected: 10/11/16 14:10

Client ID: VES-J/K-215 (MW) Date Received: 10/11/16
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	Westborough Lab					
4-Nitroaniline	ND		ug/l	5.0		1
Dibenzofuran	ND		ug/l	2.0		1
n-Nitrosodimethylamine	ND		ug/l	2.0		1
2,4,6-Trichlorophenol	ND		ug/l	5.0		1
p-Chloro-m-cresol	ND		ug/l	2.0		1
2-Chlorophenol	ND		ug/l	2.0		1
2,4-Dichlorophenol	ND		ug/l	5.0		1
2,4-Dimethylphenol	ND		ug/l	5.0		1
2-Nitrophenol	ND		ug/l	10		1
4-Nitrophenol	ND		ug/l	10		1
2,4-Dinitrophenol	ND		ug/l	20		1
4,6-Dinitro-o-cresol	ND		ug/l	10		1
Phenol	ND		ug/l	5.0		1
2-Methylphenol	ND		ug/l	5.0		1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1
2,4,5-Trichlorophenol	ND		ug/l	5.0		1
Benzoic Acid	ND		ug/l	50		1
Benzyl Alcohol	ND		ug/l	2.0		1
Carbazole	ND		ug/l	2.0		1
Pyridine	ND		ug/l	5.0		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	27		21-120	
Phenol-d6	16		10-120	
Nitrobenzene-d5	58		23-120	
2-Fluorobiphenyl	49		15-120	
2,4,6-Tribromophenol	56		10-120	
4-Terphenyl-d14	51		41-149	

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

 Lab ID:
 L1632408-01
 Date Collected:
 10/11/16 14:10

 Client ID:
 VES-J/K-215 (MW)
 Date Received:
 10/11/16

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix: Water Extraction Method:EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 10/12/16 16:28
Analytical Date: 10/14/16 23:13

Analyst: KV

Semivolatile Organics by GC/MS-SIM - Westle Acenaphthene 2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene		ıb			
2-Chloronaphthalene Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene					
Fluoranthene Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.10	 1
Hexachlorobutadiene Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.20	 1
Naphthalene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.20	 1
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.50	 1
Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.20	 1
Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene	ND		ug/l	0.20	 1
Benzo(k)fluoranthene Chrysene	ND		ug/l	0.20	 1
Chrysene	ND		ug/l	0.20	 1
•	ND		ug/l	0.20	 1
A Laboratoria de la companya de la c	ND		ug/l	0.20	 1
Acenaphthylene	ND		ug/l	0.20	 1
Anthracene	ND		ug/l	0.20	 1
Benzo(ghi)perylene	ND		ug/l	0.20	 1
Fluorene	ND		ug/l	0.20	 1
Phenanthrene	ND		ug/l	0.20	 1
Dibenzo(a,h)anthracene	ND		ug/l	0.20	 1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20	 1
Pyrene	ND		ug/l	0.20	 1
1-Methylnaphthalene	ND		ug/l	0.20	 1
2-Methylnaphthalene	ND		ug/l	0.20	 1
Pentachlorophenol	ND		ug/l	0.80	 1
Hexachlorobenzene	ND		ug/l	0.80	 1
Hexachloroethane	ND			0.80	

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: L1632408-01 Date Collected: 10/11/16 14:10

Client ID: VES-J/K-215 (MW) Date Received: 10/11/16
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	32	21-120	
Phenol-d6	21	10-120	
Nitrobenzene-d5	63	23-120	
2-Fluorobiphenyl	64	15-120	
2,4,6-Tribromophenol	66	10-120	
4-Terphenyl-d14	66	41-149	

Project Name: NORTHPOINT

Project Number: 35663 Lab Number: L1632408

Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 10/14/16 17:27

Analyst: ΥW Extraction Method: EPA 3510C 10/12/16 15:52 Extraction Date:

Semivolatile Organics by GC/MS-S Acenaphthene	ND ND ND ND	rough Lab	for sample(s): 01	Batch:	WG941420-1
Acenaphthene	ND		ug/l	0.10		
				0.10		
2-Chloronaphthalene	ND		ug/l	0.20		
Fluoranthene	ND		ug/l	0.20		
Hexachlorobutadiene	ND		ug/l	0.50		
Naphthalene	ND		ug/l	0.20		
Benzo(a)anthracene	ND		ug/l	0.20		
Benzo(a)pyrene	ND		ug/l	0.20		
Benzo(b)fluoranthene	ND		ug/l	0.20		
Benzo(k)fluoranthene	ND		ug/l	0.20		
Chrysene	ND		ug/l	0.20		
Acenaphthylene	ND		ug/l	0.20		
Anthracene	ND		ug/l	0.20		
Benzo(ghi)perylene	ND		ug/l	0.20		
Fluorene	ND		ug/l	0.20		
Phenanthrene	ND		ug/l	0.20		
Dibenzo(a,h)anthracene	ND		ug/l	0.20		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.20		
Pyrene	ND		ug/l	0.20		
1-Methylnaphthalene	ND		ug/l	0.20		
2-Methylnaphthalene	ND		ug/l	0.20		
Pentachlorophenol	ND		ug/l	0.80		
Hexachlorobenzene	ND		ug/l	0.80		
Hexachloroethane	ND		ug/l	0.80		

L1632408

Project Name: NORTHPOINT

Project Number: 35663 Report Date:

10/19/16

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

1,8270D-SIM 10/14/16 17:27

Analyst: ΥW Extraction Method: EPA 3510C 10/12/16 15:52 **Extraction Date:**

Result Qualifier Units RLMDL **Parameter** Batch: WG941420-1 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria				
2-Fluorophenol	46		21-120				
Phenol-d6	30		10-120				
Nitrobenzene-d5	89		23-120				
2-Fluorobiphenyl	79		15-120				
2,4,6-Tribromophenol	83		10-120				
4-Terphenyl-d14	87		41-149				

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/13/16 23:21

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 10/12/16 16:35

arameter	Result	Qualifier	Units		RL	MDL	
emivolatile Organics by GC/MS	- Westboroug	h Lab for s	ample(s):	01	Batch:	WG941429-1	
Acenaphthene	ND		ug/l		2.0		
Benzidine	ND		ug/l		20		
1,2,4-Trichlorobenzene	ND		ug/l		5.0		
Hexachlorobenzene	ND		ug/l		2.0		
Bis(2-chloroethyl)ether	ND		ug/l		2.0		
2-Chloronaphthalene	ND		ug/l		2.0		
1,2-Dichlorobenzene	ND		ug/l		2.0		
1,3-Dichlorobenzene	ND		ug/l		2.0		
1,4-Dichlorobenzene	ND		ug/l		2.0		
3,3'-Dichlorobenzidine	ND		ug/l		5.0		
2,4-Dinitrotoluene	ND		ug/l		5.0		
2,6-Dinitrotoluene	ND		ug/l		5.0		
Azobenzene	ND		ug/l		2.0		
Fluoranthene	ND		ug/l		2.0		
4-Chlorophenyl phenyl ether	ND		ug/l		2.0		
4-Bromophenyl phenyl ether	ND		ug/l		2.0		
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0		
Bis(2-chloroethoxy)methane	ND		ug/l		5.0		
Hexachlorobutadiene	ND		ug/l		2.0		
Hexachlorocyclopentadiene	ND		ug/l		20		
Hexachloroethane	ND		ug/l		2.0		
Isophorone	ND		ug/l		5.0		
Naphthalene	ND		ug/l		2.0		
Nitrobenzene	ND		ug/l		2.0		
NDPA/DPA	ND		ug/l		2.0		
n-Nitrosodi-n-propylamine	ND		ug/l		5.0		
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/13/16 23:21

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 10/12/16 16:35

Parameter	Result	Qualifier	Units		RL	MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for sa	ample(s):	01	Batch:	WG941429-1
Di-n-octylphthalate	ND		ug/l		5.0	
Diethyl phthalate	ND		ug/l		5.0	
Dimethyl phthalate	ND		ug/l		5.0	
Benzo(a)anthracene	ND		ug/l		2.0	
Benzo(a)pyrene	ND		ug/l		2.0	
Benzo(b)fluoranthene	ND		ug/l		2.0	
Benzo(k)fluoranthene	ND		ug/l		2.0	
Chrysene	ND		ug/l		2.0	
Acenaphthylene	ND		ug/l		2.0	
Anthracene	ND		ug/l		2.0	
Benzo(ghi)perylene	ND		ug/l		2.0	
Fluorene	ND		ug/l		2.0	
Phenanthrene	ND		ug/l		2.0	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	
Pyrene	ND		ug/l		2.0	
Biphenyl	ND		ug/l		2.0	
Aniline	ND		ug/l		2.0	
4-Chloroaniline	ND		ug/l		5.0	
1-Methylnaphthalene	ND		ug/l		2.0	
2-Nitroaniline	ND		ug/l		5.0	
3-Nitroaniline	ND		ug/l		5.0	
4-Nitroaniline	ND		ug/l		5.0	
Dibenzofuran	ND		ug/l		2.0	
2-Methylnaphthalene	ND		ug/l		2.0	
n-Nitrosodimethylamine	ND		ug/l		2.0	
2,4,6-Trichlorophenol	ND		ug/l		5.0	
p-Chloro-m-cresol	ND		ug/l		2.0	
2-Chlorophenol	ND		ug/l		2.0	

L1632408

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3510C
Analytical Date: 10/13/16 23:21 Extraction Date: 10/12/16 16:35

Analyst: PS

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG941429-1	
2,4-Dichlorophenol	ND		ug/l		5.0		
2,4-Dimethylphenol	ND		ug/l		5.0		
2-Nitrophenol	ND		ug/l		10		
4-Nitrophenol	ND		ug/l		10		
2,4-Dinitrophenol	ND		ug/l		20		
4,6-Dinitro-o-cresol	ND		ug/l		10		
Pentachlorophenol	ND		ug/l		10		
Phenol	ND		ug/l		5.0		
2-Methylphenol	ND		ug/l		5.0		
3-Methylphenol/4-Methylphenol	ND		ug/l		5.0		
2,4,5-Trichlorophenol	ND		ug/l		5.0		
Benzoic Acid	ND		ug/l		50		
Benzyl Alcohol	ND		ug/l		2.0		
Carbazole	ND		ug/l		2.0		
Pyridine	ND		ug/l		5.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2 Elyaranhanal	27	24.420
2-Fluorophenol	37	21-120
Phenol-d6	23	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	76	10-120
4-Terphenyl-d14	66	41-149

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS-SIM - W	estborough Lab Asso	ociated sample(s): 01 Batch:	WG941420-2 WG941420	0-3	
Acenaphthene	89	80	37-111	20	40
2-Chloronaphthalene	87	74	40-140	29	40
Fluoranthene	94	81	40-140	25	40
Naphthalene	88	70	40-140	26	40
Benzo(a)anthracene	97	82	40-140	26	40
Benzo(a)pyrene	86	72	40-140	24	40
Benzo(b)fluoranthene	84	71	40-140	24	40
Benzo(k)fluoranthene	88	72	40-140	27	40
Chrysene	86	72	40-140	27	40
Acenaphthylene	92	79	40-140	31	40
Anthracene	96	80	40-140	28	40
Benzo(ghi)perylene	96	84	40-140	18	40
Fluorene	92	79	40-140	25	40
Phenanthrene	93	83	40-140	19	40
Dibenzo(a,h)anthracene	89	77	40-140	21	40
Indeno(1,2,3-cd)pyrene	90	79	40-140	18	40
Pyrene	86	74	26-127	25	40
1-Methylnaphthalene	88	74	40-140	27	40
2-Methylnaphthalene	94	76	40-140	26	40

Project Name: NORTHPOINT

Lab Number: L1632408

Project Number: 35663

Report Date: 10/19/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG941420-2 WG941420-3

	LCS		LCSD		Acceptance
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria
Nitrobenzene-d5	86		143	Q	23-120
2-Fluorobiphenyl	78		130	Q	15-120
4-Terphenyl-d14	85		145		41-149

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
emivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01 Batch:	WG941429-2	WG941429-3			
Acenaphthene	68		70		37-111	3		30
Benzidine	6	Q	15		10-75	86	Q	30
1,2,4-Trichlorobenzene	62		64		39-98	3		30
Hexachlorobenzene	71		73		40-140	3		30
Bis(2-chloroethyl)ether	64		65		40-140	2		30
2-Chloronaphthalene	67		70		40-140	4		30
1,2-Dichlorobenzene	59		60		40-140	2		30
1,3-Dichlorobenzene	57		61		40-140	7		30
1,4-Dichlorobenzene	58		60		36-97	3		30
3,3'-Dichlorobenzidine	63		69		40-140	9		30
2,4-Dinitrotoluene	78		83		24-96	6		30
2,6-Dinitrotoluene	78		84		40-140	7		30
Azobenzene	70		74		40-140	6		30
Fluoranthene	70		75		40-140	7		30
4-Chlorophenyl phenyl ether	68		70		40-140	3		30
4-Bromophenyl phenyl ether	69		72		40-140	4		30
Bis(2-chloroisopropyl)ether	75		75		40-140	0		30
Bis(2-chloroethoxy)methane	71		74		40-140	4		30
Hexachlorobutadiene	59		61		40-140	3		30
Hexachlorocyclopentadiene	72		75		40-140	4		30
Hexachloroethane	59		62		40-140	5		30

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westborou	ugh Lab Assoc	ated sample(s):	01 Batch:	WG941429-2	2 WG941429-3			
Isophorone	70		74		40-140	6	30	
Naphthalene	63		64		40-140	2	30	
Nitrobenzene	73		74		40-140	1	30	
NDPA/DPA	71		74		40-140	4	30	
n-Nitrosodi-n-propylamine	73		76		29-132	4	30	
Bis(2-ethylhexyl)phthalate	78		82		40-140	5	30	
Butyl benzyl phthalate	78		82		40-140	5	30	
Di-n-butylphthalate	75		80		40-140	6	30	
Di-n-octylphthalate	79		82		40-140	4	30	
Diethyl phthalate	72		76		40-140	5	30	
Dimethyl phthalate	72		76		40-140	5	30	
Benzo(a)anthracene	68		72		40-140	6	30	
Benzo(a)pyrene	72		75		40-140	4	30	
Benzo(b)fluoranthene	70		73		40-140	4	30	
Benzo(k)fluoranthene	72		74		40-140	3	30	
Chrysene	69		72		40-140	4	30	
Acenaphthylene	70		74		45-123	6	30	
Anthracene	70		74		40-140	6	30	
Benzo(ghi)perylene	70		73		40-140	4	30	
Fluorene	69		72		40-140	4	30	
Phenanthrene	68		72		40-140	6	30	

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborou	gh Lab Associ	ated sample(s):	01 Batch:	WG941429-2	. WG941429-3		
Dibenzo(a,h)anthracene	70		73		40-140	4	30
Indeno(1,2,3-cd)pyrene	71		73		40-140	3	30
Pyrene	69		74		26-127	7	30
Biphenyl	73		77		40-140	5	30
Aniline	31	Q	35	Q	40-140	12	30
4-Chloroaniline	54		55		40-140	2	30
1-Methylnaphthalene	65		68		41-103	5	30
2-Nitroaniline	86		91		52-143	6	30
3-Nitroaniline	63		70		25-145	11	30
4-Nitroaniline	73		76		51-143	4	30
Dibenzofuran	67		70		40-140	4	30
2-Methylnaphthalene	66		69		40-140	4	30
1,2,4,5-Tetrachlorobenzene	70		73		2-134	4	30
Acetophenone	72		74		39-129	3	30
n-Nitrosodimethylamine	34		33		22-74	3	30
2,4,6-Trichlorophenol	75		79		30-130	5	30
p-Chloro-m-cresol	72		76		23-97	5	30
2-Chlorophenol	62		63		27-123	2	30
2,4-Dichlorophenol	73		76		30-130	4	30
2,4-Dimethylphenol	68		68		30-130	0	30
2-Nitrophenol	88		89		30-130	1	30

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01 Batch:	WG941429-2	2 WG941429-3		
4-Nitrophenol	42		42		10-80	0	30
2,4-Dinitrophenol	93		99		20-130	6	30
4,6-Dinitro-o-cresol	97		102		20-164	5	30
Pentachlorophenol	70		73		9-103	4	30
Phenol	22		24		12-110	9	30
2-Methylphenol	55		57		30-130	4	30
3-Methylphenol/4-Methylphenol	50		53		30-130	6	30
2,4,5-Trichlorophenol	77		82		30-130	6	30
Benzoic Acid	31		27		10-164	14	30
Benzyl Alcohol	53		54		26-116	2	30
Carbazole	70		75		55-144	7	30
Pyridine	18		22		10-66	20	30
Parathion, ethyl	129		136		40-140	5	30
Atrazine	93		97		40-140	4	30
Benzaldehyde	52		51		40-140	2	30
Caprolactam	20		22		10-130	10	30
2,3,4,6-Tetrachlorophenol	78		81		40-140	4	30

Project Name: NORTHPOINT

DRTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG941429-2 WG941429-3

LCS		LCSD		Acceptance
%Recovery	Qual	%Recovery	Qual	Criteria
36		37		21-120
24		26		10-120
75		80		23-120
66		70		15-120
82		87		10-120
68		74		41-149
	%Recovery 36 24 75 66 82	%Recovery Qual 36 24 75 66 82	%Recovery Qual %Recovery 36 37 24 26 75 80 66 70 82 87	%Recovery Qual %Recovery Qual 36 37 24 26 75 80 66 70 82 87

PESTICIDES

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: L1632408-01 Date Collected: 10/11/16 14:10

Client ID: VES-J/K-215 (MW) Date Received: 10/11/16
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Matrix:WaterExtraction Method: EPA 608Analytical Method:5,608Extraction Date: 10/14/16 12:33Analytical Date:10/18/16 12:01Cleanup Method: EPA 3620B

Analyst: AM Cleanup Date: 10/14/16

Result

Organochlorine Pesticides by GC - Wes	tborough Lab				
Delta-BHC	ND	ug/l	0.020	 1	Α
Lindane	ND	ug/l	0.020	 1	Α
Alpha-BHC	ND	ug/l	0.020	 1	Α
Beta-BHC	ND	ug/l	0.020	 1	Α
Heptachlor	ND	ug/l	0.020	 1	Α
Aldrin	ND	ug/l	0.020	 1	Α
Heptachlor epoxide	ND	ug/l	0.020	 1	Α
Endrin	ND	ug/l	0.040	 1	Α
Endrin aldehyde	ND	ug/l	0.040	 1	Α
Endrin ketone ¹	ND	ug/l	0.040	 1	Α
Dieldrin	ND	ug/l	0.040	 1	Α
4,4'-DDE	ND	ug/l	0.040	 1	Α
4,4'-DDD	ND	ug/l	0.040	 1	Α
4,4'-DDT	ND	ug/l	0.040	 1	Α
Endosulfan I	ND	ug/l	0.020	 1	Α
Endosulfan II	ND	ug/l	0.040	 1	В
Endosulfan sulfate	ND	ug/l	0.040	 1	Α
Methoxychlor ¹	ND	ug/l	0.100	 1	Α
Toxaphene	ND	ug/l	0.400	 1	Α
Chlordane	ND	ug/l	0.200	 1	Α
cis-Chlordane ¹	ND	ug/l	0.020	 1	Α
trans-Chlordane ¹	ND	ug/l	0.020	 1	Α

Qualifier

Units

RL

MDL

Dilution Factor

Column

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	А
Decachlorobiphenyl	84		30-150	Α

Parameter

L1632408

Lab Number:

Project Name: NORTHPOINT

Project Number: 35663 Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Analytical Method: 5,608

Analytical Date: 10/18/16 12:27

Analyst: AM

Extraction Method: EPA 608

Extraction Date: 10/14/16 12:33
Cleanup Method: EPA 3620B
Cleanup Date: 10/14/16

Parameter	Result	Qualifier	Units	RL	MDL	Column
Organochlorine Pesticides by GC	- Westboroug	gh Lab for s	sample(s):	01 Batch:	WG942194-	1
Delta-BHC	ND		ug/l	0.020		А
Lindane	ND		ug/l	0.020		Α
Alpha-BHC	ND		ug/l	0.020		Α
Beta-BHC	ND		ug/l	0.020		Α
Heptachlor	ND		ug/l	0.020		Α
Aldrin	ND		ug/l	0.020		Α
Heptachlor epoxide	ND		ug/l	0.020		Α
Endrin	ND		ug/l	0.040		Α
Endrin aldehyde	ND		ug/l	0.040		Α
Endrin ketone ¹	ND		ug/l	0.040		Α
Dieldrin	ND		ug/l	0.040		Α
4,4'-DDE	ND		ug/l	0.040		Α
4,4'-DDD	ND		ug/l	0.040		Α
4,4'-DDT	ND		ug/l	0.040		Α
Endosulfan I	ND		ug/l	0.020		Α
Endosulfan sulfate	ND		ug/l	0.040		Α
Methoxychlor ¹	ND		ug/l	0.100		Α
Toxaphene	ND		ug/l	0.400		Α
Chlordane	ND		ug/l	0.200		Α
cis-Chlordane ¹	ND		ug/l	0.020		Α
trans-Chlordane ¹	ND		ug/l	0.020		Α
Endosulfan II	ND		ug/l	0.040		В

		Acceptance					
Surrogate	%Recovery	Qualifier	Criteria	Column			
2,4,5,6-Tetrachloro-m-xylene	67		30-150	Α			
Decachlorobiphenyl	84		30-150	Α			

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC - Westbord	ough Lab Assoc	iated sample(s): 01 Batch:	WG942194-	-2				
Delta-BHC	87		-		30-150	-		30	Α
Lindane	79		-		30-150	-		30	А
Alpha-BHC	83		-		30-150	-		30	А
Beta-BHC	81		-		30-150	-		30	Α
Heptachlor	76		-		30-150	-		30	А
Aldrin	76		-		30-150	-		30	А
Heptachlor epoxide	64		-		30-150	-		30	А
Endrin	86		-		30-150	-		30	А
Endrin aldehyde	64		-		30-150	-		30	А
Endrin ketone ¹	94		-		30-150	-		30	А
Dieldrin	87		-		30-150	-		30	А
4,4'-DDE	76		-		30-150	-		30	А
4,4'-DDD	85		-		30-150	-		30	А
4,4'-DDT	89		-		30-150	-		30	А
Endosulfan I	79		-		30-150	-		30	А
Endosulfan sulfate	77		-		30-150	-		30	А
Methoxychlor ¹	91		-		30-150	-		30	А
cis-Chlordane¹	74		-		30-150	-		30	А
trans-Chlordane ¹	76		-		30-150	-		30	А

Project Name: NORTHPOINT Lab Number:

L1632408

Project Number: 35663

Report Date:

10/19/16

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 Batch: WG942194-2

	LCS		LCSD		Acceptance	0-1
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	70				30-150	Α
Decachlorobiphenyl	80				30-150	Α

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Lab Number:

L1632408

Project Number: 35663

Report Date:

10/19/16

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides by GC	- Westborough Lab Associa	ted sample(s):	01 Batch:	WG942194-2	2				
Endosulfan II	102		-		30-150	-		30	В

			Column
2,4,5,6-Tetrachloro-m-xylene	70	30-150	Α
Decachlorobiphenyl	80	30-150	Α

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recovery	/ Qual	Recovery Limits	RPD	Qual	RPD Limits	Column
Organochlorine Pesticides b (MW)	y GC - Westbo	rough Lab	Associated sa	mple(s): 01	QC Batch II): WG942	2194-3 QC	Sample:	L1632408-01	1 Clie	nt ID: V	'ES-J/K-2	115
Delta-BHC	ND	0.156	0.129	83		-	-		19-140	-		30	Α
Lindane	ND	0.156	0.123	79		-	-		56-123	-		30	Α
Alpha-BHC	ND	0.156	0.125	80		-	-		37-134	-		30	Α
Beta-BHC	ND	0.156	0.138	88		-	-		17-147	-		30	Α
Heptachlor	ND	0.156	0.118	76		-	-		40-111	-		30	Α
Aldrin	ND	0.156	0.120	77		-	-		40-120	-		30	Α
Heptachlor epoxide	ND	0.156	0.129	83		-	-		37-142	-		30	Α
Endrin	ND	0.156	0.121	77		-	-		56-121	-		30	Α
Endrin aldehyde	ND	0.156	0.100	64		-	-		42-122	-		30	Α
Endrin ketone ¹	ND	0.156	0.132	84		-	-		30-150	-		30	Α
Dieldrin	ND	0.156	0.126	81		-	-		52-126	-		30	Α
4,4'-DDE	ND	0.156	0.114	73		-	-		30-145	-		30	Α
4,4'-DDD	ND	0.156	0.122	78		-	-		31-141	-		30	Α
4,4'-DDT	ND	0.156	0.128	82		-	-		38-127	-		30	Α
Endosulfan I	ND	0.156	0.114	73		-	-		45-153	-		30	Α
Endosulfan II	ND	0.156	0.156	100		-	-		.1-202	-		30	В
Endosulfan sulfate	ND	0.156	0.104	67		-	-		26-144	-		30	Α
Methoxychlor ¹	ND	0.156	ND	0	Q	-	-		30-150	-		30	Α
cis-Chlordane ¹	ND	0.156	0.112	72		-	-		30-150	-		30	Α
trans-Chlordane ¹	ND	0.156	0.102	65		-	-		30-150	-		30	Α

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number:

35663

Lab Number:

L1632408

Report Date:

10/19/16

	Native	MS	MS	MS		MSD	MSD	Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery Q	ual Limits	RPD	Qual	Limits

Organochlorine Pesticides by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG942194-3 QC Sample: L1632408-01 Client ID: VES-J/K-215 (MW)

	MS	3	M:	SD	Acceptance	
Surrogate	% Recovery	Qualifier	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74				30-150	Α
Decachlorobiphenyl	89				30-150	Α

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Organochlorine Pesticides by GC - Westborough Lab	Associated sample(s): 0	01 QC Batch ID: W0	G942194-4	QC Sample:	L1632259-01	Client ID:	DUP
Delta-BHC	ND	ND	ug/l	NC		30	Α
Lindane	ND	ND	ug/l	NC		30	Α
Alpha-BHC	ND	ND	ug/l	NC		30	Α
Beta-BHC	ND	ND	ug/l	NC		30	Α
Heptachlor	ND	ND	ug/l	NC		30	Α
Aldrin	ND	ND	ug/l	NC		30	Α
Heptachlor epoxide	ND	ND	ug/l	NC		30	Α
Endrin	ND	ND	ug/l	NC		30	Α
Endrin aldehyde	ND	ND	ug/l	NC		30	Α
Endrin ketone¹	ND	ND	ug/l	NC		30	Α
Dieldrin	ND	ND	ug/l	NC		30	Α
4,4'-DDE	ND	ND	ug/l	NC		30	Α
4,4'-DDD	ND	ND	ug/l	NC		30	Α
4,4'-DDT	ND	ND	ug/l	NC		30	Α
Endosulfan I	ND	ND	ug/l	NC		30	Α
Endosulfan II	ND	ND	ug/l	NC		30	В
Endosulfan sulfate	ND	ND	ug/l	NC		30	Α
Methoxychlor ¹	ND	ND	ug/l	NC		30	Α
Toxaphene	ND	ND	ug/l	NC		30	Α

Lab Duplicate Analysis Batch Quality Control

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Organochlorine Pesticides by GC - Westborough Lab Sample	Associated sample(s):	01 QC Batch ID: V	VG942194-4	QC Sample:	L1632259-01 Client ID: DUP
Chlordane	ND	ND	ug/l	NC	30 A
cis-Chlordane ¹	ND	ND	ug/l	NC	30 A
trans-Chlordane ¹	ND	ND	ug/l	NC	30 A

					Acceptance	
Surrogate	%Recovery	Qualifier	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		72		30-150	Α
Decachlorobiphenyl	83		97		30-150	Α

Project Name:

Project Number:

NORTHPOINT

35663

METALS

Project Name: NORTHPOINT **Lab Number:** L1632408

Project Number: 35663 Report Date: 10/19/16

SAMPLE RESULTS

Lab ID: L1632408-01

Client ID: VES-J/K-215 (MW) Sample Location: CAMBRIDGE, MA

Matrix: Water

Date Collected: 10/11/16 14:10
Date Received: 10/11/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Arsenic, Total	0.0025		mg/l	0.0005		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Beryllium, Total	ND		mg/l	0.0005		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Boron, Total	0.422		mg/l	0.030		1	10/13/16 13:40	10/18/16 11:58	EPA 3005A	19,200.7	AB
Cadmium, Total	ND		mg/l	0.0002		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Calcium, Total	230		mg/l	2.00		20	10/13/16 13:40	10/14/16 09:18	EPA 3005A	1,6020A	AM
Chromium, Total	ND		mg/l	0.0010		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Copper, Total	ND		mg/l	0.0010		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Iron, Total	0.166		mg/l	0.050		1	10/13/16 13:40	10/18/16 11:58	EPA 3005A	19,200.7	AB
Lead, Total	ND		mg/l	0.0005		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Magnesium, Total	243		mg/l	1.40		20	10/13/16 13:40	10/14/16 09:18	EPA 3005A	1,6020A	AM
Manganese, Total	0.3876		mg/l	0.0010		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Mercury, Total	ND		mg/l	0.00020		1	10/13/16 09:51	10/13/16 21:31	EPA 245.1	3,245.1	EA
Potassium, Total	70.0		mg/l	0.100		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
Selenium, Total	ND		mg/l	0.005		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
<u>.</u>	1860			20.0		200	10/13/16 13:40	10/14/16 10:24	EPA 3005A	1,6020A	AM
Zinc, Total	ND		mg/l	0.0100		1	10/13/16 13:40	10/14/16 09:06	EPA 3005A	1,6020A	AM
	SM 2340B	s - Mansfiel									
Hardness	1310			0.660	NA	1	10/13/16 13:40) 10/18/16 11:58	EPA 3005A	19,200.7	AB
Magnesium, Total Manganese, Total Mercury, Total Potassium, Total Selenium, Total Sodium, Total Zinc, Total Total Hardness by S	243 0.3876 ND 70.0 ND 1860 ND	s - Mansfiel	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1.40 0.0010 0.00020 0.100 0.005 20.0 0.0100		20 1 1 1 1 200 1	10/13/16 13:40 10/13/16 13:40 10/13/16 09:51 10/13/16 13:40 10/13/16 13:40 10/13/16 13:40	0 10/14/16 09:18 0 10/14/16 09:06 10/13/16 21:31 0 10/14/16 09:06 0 10/14/16 10:24	EPA 3005A EPA 3005A EPA 245.1 EPA 3005A EPA 3005A EPA 3005A EPA 3005A	1,6020A 1,6020A 3,245.1 1,6020A 1,6020A 1,6020A	AM AM EA AM AM AM

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfield	d Lab for sample(s):	01 Batc	h: WG94	11681-1					
Mercury, Total	ND	mg/l	0.00020		1	10/13/16 09:51	10/13/16 21:15	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG94	11790-1					
Arsenic, Total	ND	mg/l	0.0005		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Beryllium, Total	ND	mg/l	0.0005		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Cadmium, Total	ND	mg/l	0.0002		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Calcium, Total	ND	mg/l	0.100		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Chromium, Total	ND	mg/l	0.0010		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Copper, Total	ND	mg/l	0.0010		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Lead, Total	ND	mg/l	0.0010		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Magnesium, Total	ND	mg/l	0.070		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Manganese, Total	ND	mg/l	0.0010		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Potassium, Total	ND	mg/l	0.100		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Selenium, Total	ND	mg/l	0.005		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Sodium, Total	ND	mg/l	0.100		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM
Zinc, Total	ND	mg/l	0.0100		1	10/13/16 13:40	10/14/16 08:41	1,6020A	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Man	nsfield Lab for sample(s):	01 Batch	n: WG94	42646-1					
Boron, Total	ND	mg/l	0.030		1	10/13/16 13:40	10/18/16 10:34	19,200.7	JH
Iron, Total	ND	mg/l	0.050		1	10/13/16 13:40	10/18/16 10:34	19,200.7	JH

Project Name: NORTHPOINT

Project Number: 35663 Lab Number:

L1632408

Report Date:

10/19/16

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lab	o for sam	ole(s): 0	1 Bato	h: WG942	646-1			
Hardness	ND	mg/l	0.660	NA	1	10/13/16 13:40	10/18/16 10:34	19,200.7	JH

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG941681-2				
Mercury, Total	95	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG941790-2				
Arsenic, Total	107	-	80-120	-		
Beryllium, Total	101	-	80-120	-		
Cadmium, Total	120	-	80-120	-		
Calcium, Total	105	-	80-120	-		
Chromium, Total	107	-	80-120	-		
Copper, Total	108	-	80-120	-		
Lead, Total	106	-	80-120	-		
Magnesium, Total	108	-	80-120	-		
Manganese, Total	103	-	80-120	-		
Potassium, Total	104	-	80-120	-		
Selenium, Total	110	-	80-120	-		
Sodium, Total	103	-	80-120	-		
Zinc, Total	106	-	80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG942646-2				
Boron, Total	105	-	85-115	-		
Iron, Total	92	-	85-115	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Lab Number:

L1632408 10/19/16

Project Number: 35663

Report Date:

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 01	Batch: WG942646-2			
Hardness	98	-	85-115	-	

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

arameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD (RPD Qual Limits
Total Metals - Mansfield Lab	o Associated san	nple(s): 01	QC Batch ID:	: WG941681-	4 QC	Sample: I	L1631988-01	Client I	D: MS Sar	nple	
Mercury, Total	ND	0.005	0.00485	97		-	-		70-130	-	20
Total Metals - Mansfield Lab	o Associated sam	nple(s): 01	QC Batch ID:	: WG941790-	4 QC	Sample: I	L1632495-01	Client I	D: MS Sar	nple	
Arsenic, Total	0.0262	0.12	0.1424	97		-	-		75-125	-	20
Beryllium, Total	ND	0.05	0.0508	102		-	-		75-125	-	20
Cadmium, Total	0.0016	0.051	0.0562	107		-	-		75-125	-	20
Calcium, Total	93.8	10	94.0	2	Q	-	-		75-125	-	20
Chromium, Total	0.0018	0.2	0.1904	94		-	-		75-125	-	20
Copper, Total	0.0135	0.25	0.2787	106		-	-		75-125	-	20
Lead, Total	0.0152	0.51	0.4978	95		-	-		75-125	-	20
Magnesium, Total	7.00	10	16.8	98		-	-		75-125	-	20
Manganese, Total	0.8284	0.5	1.276	90		-	-		75-125	-	20
Potassium, Total	16.8	10	25.4	86		-	-		75-125	-	20
Selenium, Total	ND	0.12	0.137	114		-	-		75-125	-	20
Sodium, Total	12.1	10	21.4	93		-	-		75-125	-	20
Zinc, Total	0.0764	0.5	0.5930	103		-	-		75-125	-	20
Total Metals - Mansfield Lab	o Associated sam	nple(s): 01	QC Batch ID:	: WG942646-	4 QC	Sample: I	L1600010-60	Client I	D: MS Sar	nple	
Boron, Total	0.066	1	1.16	109		-	-		75-125	-	20
Iron, Total	4.80	1	5.60	80		-	-		75-125	-	20
Total Hardness by SM 2340)B - Mansfield La	b Associate	ed sample(s): 0	01 QC Batcl	h ID: W	G942646-4	4 QC Sampl	e: L1600	0010-60 C	Client ID:	MS Sample
Hardness	217	66.2	281	97		-	-		75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

L1632408 10/19/16 Report Date:

Lab Number:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG941681	-3 QC Sample: L1	1631988-01 CI	ient ID: DUI	P Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG941790	-3 QC Sample: L1	1632495-01 CI	ient ID: DUI	⊃ Sample	
Arsenic, Total	0.0262	0.0246	mg/l	6		20
Beryllium, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.0016	0.0014	mg/l	15		20
Chromium, Total	0.0018	ND	mg/l	NC		20
Copper, Total	0.0135	0.0127	mg/l	6		20
Lead, Total	0.0152	0.0145	mg/l	5		20
Selenium, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.0764	0.0695	mg/l	9		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG942646	-3 QC Sample: L1	1600010-60 CI	ient ID: DUI	⊃ Sample	
Boron, Total	0.066	0.066	mg/l	0		20
otal Hardness by SM 2340B - Mansfield Lab Associate	d sample(s): 01 QC Batcl	n ID: WG942646-3	QC Sample:	L1600010-6	0 Client IE	D: DUP Sample
Hardness	217	216	mg/l	0		20

INORGANICS & MISCELLANEOUS

Project Name: NORTHPOINT Lab Number:

L1632408 **Project Number: Report Date:** 10/19/16 35663

SAMPLE RESULTS

Lab ID: Date Collected: L1632408-01 10/11/16 14:10 VES-J/K-215 (MW) Client ID: Date Received: 10/11/16 CAMBRIDGE, MA Not Specified Sample Location: Field Prep:

Matrix: Water

Parameter	Result	Qualifier Units	s RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westh	orough Lab)							
Alkalinity, Total	235.	mg CaC0	D3/L 2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
Alkalinity, Carbonate	ND	mg CaC0	D3/L 2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
Alkalinity, Bicarbonate	234.	mg CaC	D3/L 2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
Alkalinity, Hydroxide	ND	mg CaC0	D3/L 2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
Specific Conductance @ 25 C	11000	umhos/	cm 10		1	-	10/11/16 20:35	121,2510B	MR
Solids, Total Dissolved	6100	mg/l	10		1	-	10/12/16 12:25	121,2540C	DW
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	10/13/16 12:45	121,2540D	DW
Cyanide, Total	ND	mg/l	0.005		1	10/13/16 11:00	10/13/16 15:30	121,4500CN-CE	JO
Chlorine, Total Residual	ND	mg/l	0.02		1	-	10/11/16 21:30	121,4500CL-D	MR
pH (H)	8.0	SU	-	NA	1	-	10/11/16 20:40	121,4500H+-B	MR
Nitrogen, Nitrite	ND	mg/l	0.050		1	-	10/11/16 22:22	44,353.2	MR
Phosphorus, Total	0.194	mg/l	0.010		1	10/13/16 09:45	10/14/16 12:47	121,4500P-E	SD
Phosphorus, Soluble	0.178	mg/l	0.020		2	10/17/16 10:00	10/17/16 13:06	121,4500P-E	SD
TPH, SGT-HEM	ND	mg/l	4.00		1	10/14/16 18:00	10/14/16 22:50	74,1664A	ML
Phenolics, Total	ND	mg/l	0.030		1	10/13/16 09:03	10/13/16 18:15	4,420.1	AW
Chromium, Hexavalent	ND	mg/l	0.010		1	10/12/16 00:04	10/12/16 00:27	121,3500CR-B	KA
Anions by Ion Chromatogra	aphy - West	borough Lab							
Chloride	3820	mg/l	50.0		100	-	10/12/16 03:17	44,300.0	AU
Nitrogen, Nitrate	ND	mg/l	0.050		1	-	10/11/16 23:17	44,300.0	AU
Sulfate	89.7	mg/l	1.00		1	-	10/11/16 23:17	44,300.0	AU

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Method Blank Analysis Batch Quality Control

Parameter Re	esult Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1035-1				
Nitrogen, Nitrite NE)	mg/l	0.050		1	-	10/11/16 21:15	44,353.2	MR
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1059-1				
Chlorine, Total Residual ND)	mg/l	0.02		1	-	10/11/16 21:30	121,4500CL-D	MR
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1084-1				
Chromium, Hexavalent ND)	mg/l	0.010		1	10/12/16 00:04	10/12/16 00:26	121,3500CR-B	KA
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1142-1				
Solids, Total Dissolved ND)	mg/l	10		1	-	10/12/16 12:25	121,2540C	DW
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1252-1				
Alkalinity, Carbonate NE)	mg CaCO3/L	2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
General Chemistry - Westborou	ıgh Lab for s	ample(s): 01	Batch:	WG94	1254-1				
Alkalinity, Bicarbonate ND)	mg CaCO3/L	2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1256-1				
Alkalinity, Hydroxide ND)	mg CaCO3/L	2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1257-1				
Alkalinity, Total ND	=	mg CaCO3/L	2.00	NA	1	-	10/12/16 13:55	121,2320B	SG
Anions by Ion Chromatography	- Westborou	gh Lab for sar	mple(s):	01 Ba	tch: WG9	41476-1			
Chloride NE)	mg/l	0.500		1	-	10/11/16 17:41	44,300.0	AU
Sulfate ND)	mg/l	1.00		1	-	10/11/16 17:41	44,300.0	AU
Anions by Ion Chromatography	- Westborou	gh Lab for sar	mple(s):	01 Ba	tch: WG9	41476-1			
Nitrogen, Nitrate NE)	mg/l	0.050		1	-	10/11/16 17:41	44,300.0	AU
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1637-1				
Phosphorus, Total NE)	mg/l	0.010		1	10/13/16 09:45	10/14/16 12:16	121,4500P-E	SD
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1646-1				
Solids, Total Suspended NE)	mg/l	5.0	NA	1	-	10/13/16 12:45	121,2540D	DW
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1664-1				
Cyanide, Total ND)	mg/l	0.005		1	10/13/16 11:00	10/13/16 15:11	121,4500CN-CE	. JO
General Chemistry - Westborou	igh Lab for s	ample(s): 01	Batch:	WG94	1679-1				
Phenolics, Total ND)	mg/l	0.030		1	10/13/16 09:03	10/13/16 19:01	4,420.1	AW

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date: 10/19/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG94	12306-1				
TPH, SGT-HEM	ND	mg/l	4.00		1	10/14/16 18:00	10/14/16 22:50	74,1664A	ML
General Chemistry -	Westborough Lab for s	ample(s): 01	Batch:	WG94	12777-1				
Phosphorus, Soluble	ND	mg/l	0.010		1	10/17/16 10:00	10/17/16 13:06	121,4500P-E	SD

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941035-2			
Nitrogen, Nitrite	106	-	90-110	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941052-1			
Specific Conductance	101	-	99-101	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941055-1			
рН	100	-	99-101	-	5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941059-2			
Chlorine, Total Residual	97	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941084-2			
Chromium, Hexavalent	104	-	85-115	-	20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941142-2			
Solids, Total Dissolved	92	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941257-3			
Alkalinity, Total	104	-	90-110	-	10

Lab Control Sample Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westbo	orough Lab Associated sa	mple(s): 01 Batch: Wo	G941476-2		
Chloride	98	-	90-110	-	
Nitrogen, Nitrate	96	-	90-110	-	
Sulfate	107	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941637-2			
Phosphorus, Total	115	-	80-120	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941664-2			
Cyanide, Total	97	-	90-110	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG941679-2			
Phenolics, Total	86	-	70-130	-	
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG942306-2			
TPH	90	-	64-132	-	34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG942777-2			
Phosphorus, Soluble	102	-	80-120	-	

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		/ISD ound	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
General Chemistry - Westbor	rough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941035	-4 Q	C Sample: L1632355-	01 Client ID	: MS Sample)
Nitrogen, Nitrite	ND	4	4.2	105		-	-	80-120	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941084	-4 Q(C Sample: L1632408-	01 Client ID	: VES-J/K-2	15 (MW)
Chromium, Hexavalent	ND	0.1	0.108	108		-	-	85-115	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941257	-4 Q	C Sample: L1632408-	01 Client ID	: VES-J/K-2	15 (MW)
Alkalinity, Total	235	100	333	98		-	-	86-116	-	10
Anions by Ion Chromatograph	hy - Westborou	gh Lab Asso	ciated sar	nple(s): 01 Q	C Batch ID:	WG94	1476-3 QC Sample	: L1632451-0	2 Client ID:	MS Samp
Chloride	ND	4	4.50	113		-	-	40-151	-	18
Nitrogen, Nitrate	ND	0.4	0.388	97		-	-	80-122	-	15
Sulfate	ND	8	9.15	114		-	-	60-140	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941637	-3 Q(C Sample: L1631797-	01 Client ID	: MS Sample)
Phosphorus, Total	49.9	0.5	48.6	0	Q	-	-	75-125	-	20
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941664	-4 Q	C Sample: L1632260-	02 Client ID	: MS Sample)
Cyanide, Total	ND	0.2	0.191	96		-	-	90-110	-	30
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG941679	-4 Q(C Sample: L1600010-	50 Client ID	: MS Sample)
Phenolics, Total	0.033	0.4	0.39	89		-	-	70-130		20
General Chemistry - Westbor	ough Lab Asso	ciated samp	le(s): 01	QC Batch ID:	WG942306	-4 Q(C Sample: L1632356-	01 Client ID	: MS Sample)
TPH	ND	20.4	17.1	84		-	-	64-132	-	34

Matrix Spike Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number:

35663

Lab Number:

L1632408

Report Date:

10/19/16

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Foun	10100	Recovery Limits	RPD	RPD Limits
General Chemistry - Westbord	ough Lab Asso	ciated samp	ole(s): 01	QC Batch ID:	WG942777-3	QC Sample: L1632345	-10 Client II	D: MS Sa	mple
Phosphorus, Soluble	0.025	0.5	0.561	107		-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408

Report Date: 10/19/16

Parameter	Nati	ve S	ample	Duplicate Sa	mple Units	RP	D Qua	al RP	D Limits
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941035-3	QC Sample: L1	632355-01	Client ID:	DUP Sar	mple
Nitrogen, Nitrite		ND		ND	mg/l	NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941052-2	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Specific Conductance @ 25 C		1100	0	11000	umhos/cr	m 0			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941055-2	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
рН (Н)		8.0		8.0	SU	0			5
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941059-3	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Chlorine, Total Residual		ND		ND	mg/l	NO			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941084-3	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Chromium, Hexavalent		ND		ND	mg/l	NC			20
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941142-3	QC Sample: L1	632185-01	Client ID:	DUP Sar	mple
Solids, Total Dissolved		9800)	10000	mg/l	2			17
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941252-2	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Alkalinity, Carbonate		ND		ND	mg CaCO	3/L NO			
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941254-2	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Alkalinity, Bicarbonate		234		234	mg CaCO	3/L 0			
General Chemistry - Westborough Lab	Associated sample(s):	01	QC Batch ID:	WG941256-2	QC Sample: L1	632408-01	Client ID:	VES-J/K	-215 (MW)
Alkalinity, Hydroxide		ND		ND	mg CaCO	3/L NO			

L1632408

Lab Duplicate Analysis Batch Quality Control

Project Name: NORTHPOINT

10/19/16

Lab Number:

Project Number: 35663 Report Date:

Parameter	Nati	ve S	ample	Duplicate Sa	mple Uni	its RF	סי	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG941257-2	QC Sample:	L1632408-01	Client ID:	VES-J/K-215 (MW)
Alkalinity, Total		235	5	234	mg Ca	CO3/L	0	10
Anions by Ion Chromatography - Westbo Sample	rough Lab Associated	d sam	nple(s): 01 C	C Batch ID: W	G941476-4 (QC Sample: I	_1632451-02	2 Client ID: DUP
Chloride		ND		ND	mg	g/l N	С	18
Nitrogen, Nitrate		ND		ND	mg	g/l N	С	15
Sulfate		ND		1.00	mg	g/l N	С	20
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG941637-4	QC Sample:	L1631797-01	Client ID:	DUP Sample
Phosphorus, Total		49.9)	44.9	mg	g/l 1	1	20
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG941646-2	QC Sample:	L1632412-01	Client ID:	DUP Sample
Solids, Total Suspended		32		38	mg	g/l 1	7	29
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG941679-3	QC Sample:	L1600010-50	Client ID:	DUP Sample
Phenolics, Total		0.03	3	0.034	mg	g/l :	3	20
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG942306-3	QC Sample:	L1632356-01	Client ID:	DUP Sample
TPH		ND		ND	mg	g/l N	С	34
General Chemistry - Westborough Lab A	Associated sample(s):	01	QC Batch ID:	WG942777-4	QC Sample:	L1632345-06	Client ID:	DUP Sample
Phosphorus, Soluble		0.01	7	0.014	mg	g/l 1	9	20

Project Name: NORTHPOINT

Lab Number: L1632408 **Report Date:** 10/19/16 Project Number: 35663

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1632408-01A	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	624(3)
L1632408-01B	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	624(3)
L1632408-01C	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	624(3)
L1632408-01D	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	504(14)
L1632408-01E	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	504(14)
L1632408-01F	Plastic 250ml HNO3 preserved	Α	<2	2.9	Y	Absent	SE-6020T(180),CA-6020T(180),K-6020T(180),CR-6020T(180),NA-6020T(180),PE-UI(180),HARDU(180),PB-6020T(180),BE-6020T(180),BE-6020T(180),BE-6020T(180),AS-6020T(180),B-UI(180),CD-6020T(180),MG-6020T(180),MG-6020T(180)
L1632408-01G	Plastic 250ml NaOH preserved	Α	<2	2.9	Υ	Absent	TCN-4500(14)
L1632408-01H	Plastic 250ml H2SO4 preserved	Α	<2	2.9	Υ	Absent	TPHOS-4500(28)
L1632408-01I	Amber 1000ml unpreserved	Α	8	2.9	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1632408-01J	Amber 1000ml unpreserved	Α	8	2.9	Υ	Absent	8270TCL(7),8270TCL-SIM(7)
L1632408-01K	Amber 1000ml HCl preserved	Α	N/A	2.9	Υ	Absent	TPH-1664(28)
L1632408-01L	Amber 1000ml HCl preserved	Α	N/A	2.9	Υ	Absent	TPH-1664(28)
L1632408-01M	Amber 1000ml Na2S2O3	Α	8	2.9	Υ	Absent	PESTICIDE-608(7)
L1632408-01N	Amber 1000ml Na2S2O3	Α	8	2.9	Υ	Absent	PESTICIDE-608(7)
L1632408-01O	Amber 950ml H2SO4 preserved	Α	<2	2.9	Υ	Absent	TPHENOL-420(28)
L1632408-01P	Plastic 950ml unpreserved	A	8	2.9	Y	Absent	SO4-300(28),CL- 300(28),HEXCR-3500(1),NO2- 353(2),NO3-300(2),TRC- 4500(1),COND-2510(1),PH- 4500(.01),TDS-2540(7)
L1632408-01Q	Amber 1000ml unpreserved	A	8	2.9	Y	Absent	SO4-300(28),CL- 300(28),HEXCR-3500(1),NO2- 353(2),NO3-300(2),TRC- 4500(1),COND-2510(1),PH- 4500(.01),TDS-2540(7)
L1632408-01R	Plastic 950ml unpreserved	Α	8	2.9	Υ	Absent	TSS-2540(7)
L1632408-01S	Plastic 250ml unpreserved w/No H	Α	N/A	2.9	Υ	Absent	ALK-T-2320(14),ALK-HCO3- 2320(14),ALK-OH- 2320(14),ALK-CO3-2320(14)

Project Name: NORTHPOINT

Project Number: 35663

Lab Number: L1632408 **Report Date:** 10/19/16

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1632408-01T	Plastic 250ml unpreserved w/No H	Α	N/A	2.9	Y	Absent	ALK-T-2320(14),ALK-HCO3- 2320(14),ALK-OH- 2320(14),ALK-CO3-2320(14)
L1632408-01U	Plastic 250ml unpreserved	Α	8	2.9	Υ	Absent	SPHOS-4500(28)
L1632408-01U9	Plastic 250ml H2SO4 preserved Fi	Α	N/A	2.9	Υ	Absent	SPHOS-4500(28)
L1632408-01V	Plastic 250ml unpreserved	Α	8	2.9	Υ	Absent	ARCHIVE()
L1632408-01W	Plastic 250ml unpreserved	Α	8	2.9	Υ	Absent	ARCHIVE()
L1632408-01X	Plastic 250ml unpreserved	Α	8	2.9	Υ	Absent	ARCHIVE()
L1632408-02A	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	HOLD-624(3)
L1632408-02B	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	HOLD-624(3)
L1632408-02C	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	HOLD-504/8011(14)
L1632408-02D	Vial Na2S2O3 preserved	Α	N/A	2.9	Υ	Absent	HOLD-504/8011(14)

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: Data Usability Report

Project Name:NORTHPOINTLab Number:L1632408Project Number:35663Report Date:10/19/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: NORTHPOINT Lab Number: L1632408

Project Number: 35663 Report Date: 10/19/16

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; Azobenzene; Azobenzene;

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

ALPHA Job #	o#: L1632408
Project Information Report Information - Data Deliverables Billing Inform	mation
Westboro, MA 01581 Mansfield, MA 02048 Tel: 508-898-9220 Tel: 508-892-9300 Project Name: North point ADEX ADEX	ent info PO #:
Client Information Project Location: Cambridge MA Regulatory Requirements & Project Information Requ	
Client: No Metrix Spike Required on this SDG? (Required for MCI Address: Compess St. 1947 F1 Project Manager: Tesse Freeman Styles No NPDES RGP ALPHA Quote #: 2013 Project Mix MCF Analytical Methods Project Mix MCF Analytical Me	h Targets)
Phone: (1)7 - Turn-Around Time	27
Additional Project Information: A enly run 624 2-Chloroethyl vinyl ether, acrolen screen, +acrylonitiste screen from the 624 list	SAMPLE INFO Filtration Field Lab to do Preservation Fresh
ALPHA Lab ID (Lab Use Only) Sample ID Collection Sample Sampler Matrix Initials Sampler Matrix Initials	3
32408-0) VES-J/K-215 (MW) XX XXXXXX	X Sample Comments S
Container Type Preservative P= Plastic A= None Container Type Container Type	
A= Amber glass B= HCi V= Vial C= HNO ₃ G= Glass D= H ₂ SO ₄ Preservative D	
B= Bacteria cup	
E= Encore $H = Na_2 S_2 O_3$ $I= Ascorbic Acid$ I	imples submitted are subject to a's Terms and Conditions.
	everse side. NO: 01-01 (rev. 12-Mar-2012)

ALPHA	CHAIN O	= CU	STO	DY P	AGE 2	OF_3	Date	e Rec'o	d in La	p: 10	olu	116			-	ALPI	lA J	ob #:	116	3240	હ	
ANALYTICAL	200 Fasher Blad	Project	Informat	ion			Re	port Ir	nform	ation	- Dat	a Del	ivera	bles		Billin	g Inf	orma	tion			
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project I	Name: \(Ythr	int		X	ADEx		XE	MAIL				3	(Sam	e as (Client i	nfo F	O #:		
Client Information	on	Project L	ocation: (Ambr	da	MA	Reg	gulato	ry Re	quire	ment	s &	Pr	ojec	t Info	orma	tion F	Requi	remen	ts		
Client: TW VE Address: COYC	Crtex Companies Cress st. 10th F1.	Project # Project N ALPHA	Name: () Location: () t: 35 Manager: () Quote #:	WO3	reem	an	□ Ye	es Nes Nes Nes Nes Nes Nes Nes Nes Nes N	lo Matr lo GW lo NPI	ix Spil 1 Stan DES R	ke Red dards GP	uired	on th	is SD		Requir	ed for	MCP with Ta	Inorgar	Analytical I	Methods	
Phone:		Turn-	Around Tir	ne				7			5 S	/_	1	1	1	/ /		7	4	W/		
Email: Freem Ys nelli) Additional F	Chevertexeng cop ng @ vertexeng.co Project Information:	O □ Stand	dard C	I RUSH (only)	confirmed if pre-ag	oproved!)	D822 ANALYOL	.: D ABN D 524.2	METALS: CINCP 12	EPH. C. DRCRAS C. DRCP 14 DRCP 1	VPH; C Panges & Targets C PP13	D PCB Targets C Targets C T	TPH: DQuant	TOS Ch. I DFingerori	has poride sult	duchitich are	The Asia	Glinit Gill	Snafe + billends	SAMPLE Filtration Field Lab to Preserval	do	TOTAL # BOTTLE
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler	ا کې	Shoc.	WETA	EPH.	Hay.	O PC	Hali	É	1.	3	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3	<u> </u>	ımple Comr	monto	L E S
32408-01	VES-J/K-215(M	w)												* 1	()	k ×	X	×				
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 73 of 74	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other	Relinqu	uished By:	FAL 10	Date	iner Type eservative e/Time 1/(0/H/5) 1/7:20	0,4	en en	Becei Pul	ved By		AAL	10/		A A A A A A A A A A A A A A A A A A A		A	oha's T e reve	erms a	mitted are s ind Conditio e. v 12-Mar-2012	ons.)

ALPHA	CHA	IN OF CU	STO)Y P	AGE_3_	of_3	Date Re	c'd in	Lab:					ALPI	HA Jo	ob #:	UC324	108	
A HAL Y TICAL	200 5 4 -		Informati	on			Repor	t Infor	mation	- Dat	a Deliv	/erab	les	Billir	ng Info	ormati	ion		
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 0	2048 Project N	ame: N	Xthvo	oint		ALADE	x	×	EMAIL				Sam	ne as C	Client in	fo PO#	1	
Client Information	on	Project L	ame: N(ocation: () : 350(lmhy	ida	MA		ALC: NAME OF TAXABLE PARTY.		-			ject li				ements		
Client: The VP	Xex Compa	nies Project#	35/01	03	reige		☐ Yes f	No M	IA MCP	Analyti ike Red	cal Met	hods in this	SDG?	(Requi	Yes A	No C	T RCP Ana norganics)	alytical Metho	ds
Address: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	rress.st. 10	The Project N	lanager:	sse Fre	PPM C	in	☐ Yes 🎾	No G	W1 Star	ndards									
Rest	tex Compa gress st., 10 on, MA	ALPHA		905 111			Yes D								_ Criter	ria			
Phone:		Turn-A	round Tin	ne				7	/ /.	13	131	/_/		//	7			/	
Email: Frepm	one vertex	rng.com		DUOL	Make Papager	1870	(0)	/ /		2 4	80	NO S		//		/ /	' / /		
rsnullin	ng e vertice	NG.COM Date D	ard u	RUSH (only o	confirmed if pre-app	proved!)	ANALYSIS	U 524.2 AH	77	48	Rang	8	Print	phosphons	/ /				T
Additional P	Project Informat	ion:	ue:				ZA .	PAH	DMCP 14	RCR	1 2	/ /	Finge	how			/ /	AMPLE INFO	O T A
							/ ~	10	73	Targe	Targe /	L /2		10		/ /	Fi	Itration Field	#
							7 09,	18N	ACP.	Jes &	Jes &	nt On	10	Jos.	/ /	/ /	1	Lab to dop	В
							C 8260	0 0	1 3	Rang	Rang	Odua	90	7/	/ /		/ Pr	eservation Lab to do	T
ALPHA Lab ID (Lab Use Only)	San	nple ID	Colle Date	ction Time	Sample Matrix	Sampler Initials	Noc.	METALS: CO ABN	METALS: URCRAS UMCP 14	VPH. CRanges & Targets CPP13	D PCB DPS & Targets D Ranges Only	IPH: Couant Only	20406			//	Sampl	e Comments	BOTTLES
32468-9	VES-5/K-	215 (MW)										X							
	==																		
													+				ÿ		+
			7-17-	el — II						+		-						_	+
			100-333									-	+		-			No.	+
											-		1		-	-			+
										-	_		-			-			+
												-	-		-				
												p	-						
Container Type P= Plastic A= Amber glass	Preservative A= None				Contai	iner Type						r	P						
V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄					servative						A	K		1		*		
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relingu	ished By:	-	1000	Time	210	Re	ceived E		001:		Date	Time 4:50				ed are subject	ct to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Âcid J = NH ₄ Cl	ON S	JO 4	AL 101	1/16)	7:20	Shil	und	公	B	AALI	1/10	1/1/	7 17			erms and (se side.	Conditions.	
Page 74 of 74	K= Zn Acetate O= Other	h. The state of	7 1		11/10		1			~ 1			/ · / · (70		1-01 (rew. 12-	Mar-2012)	

ANALYTICAL REPORT

Lab Number: L1806947

Client: Vertex Environmental Services, Inc.

100 North Washington Street

Suite 302

Boston, MA 02114

ATTN: Jesse Freeman Phone: (781) 952-6000

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 Report Date: 11/27/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:11271811:23

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1806947-01	VES-E/F-225(MW)	WATER	CAMBRIDGE, MA	02/28/18 13:55	02/28/18

Serial_No:11271811:23

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please con	tact Client Se	ervices at 800	0-624-9220 v	with any que	estions.

Serial_No:11271811:23

Project Name:CAMBRIDGE CROSSING-E/FLab Number:L1806947Project Number:35663Report Date:11/27/18

Case Narrative (continued)

Report Revision

November 27, 2018: The Semivolatile Organics reporting list has been amended.

Hexavalent Chromium

L1806947-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

The WG1093332-4 MS recovery, performed on L1806947-01, is outside the acceptance criteria for (0%);

however, the associated LCS recovery is within criteria. No further action was taken.

Report Submission

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Hexavalent Chromium

L1806947-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

The WG1093332-4 MS recovery (0%), performed on L1806947-01, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 11/27/18

ORGANICS

VOLATILES

L1806947

11/27/18

Project Name: CAMBRIDGE CROSSING-E/F

L1806947-01

VES-E/F-225(MW)

CAMBRIDGE, MA

Project Number: 35663

SAMPLE RESULTS

Date Collected: 02/28/18 13:55

Lab Number:

Report Date:

Date Received: 02/28/18 Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 03/06/18 10:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Acetone	ND		ug/l	5.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Project Name: Lab Number: CAMBRIDGE CROSSING-E/F L1806947

Project Number: Report Date: 35663 11/27/18

SAMPLE RESULTS

Lab ID: L1806947-01 Date Collected: 02/28/18 13:55

Date Received: Client ID: VES-E/F-225(MW) 02/28/18 Sample Location: Field Prep: CAMBRIDGE, MA Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
1,2-Dichloroethane-d4	107	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	101	70-130
Dibromofluoromethane	102	70-130

Project Name: CAMBRIDGE CROSSING-E/F **Lab Number:** L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

Lab ID: L1806947-01 Date Collected: 02/28/18 13:55

Client ID: VES-E/F-225(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Analytical Method: 1,8260C-SIM(M)
Analytical Date: 03/06/18 10:04

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM - Westbo	rough Lab					
1,4-Dioxane	ND		ug/l	3.0		1

Lab Number: **Project Name:** CAMBRIDGE CROSSING-E/F L1806947

Project Number: Report Date: 35663 11/27/18

SAMPLE RESULTS

03/05/18 12:38

Date Collected:

Lab ID: L1806947-01 02/28/18 13:55 Date Received: Client ID: VES-E/F-225(MW) 02/28/18 Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 03/05/18 10:19 Analytical Method: 14,504.1

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	А

Project Name: CAMBRIDGE CROSSING-E/F **Lab Number:** L1806947

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 03/05/18 11:50 Extraction Date: 03/05/18 10:19

Analyst: NS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westboro	ough Lab fo	r sample(s)	: 01	Batch: WG109	94492-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C-SIM(M) Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1094887-5	
1,4-Dioxane	ND		ug/l		3.0		

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier Un	its	RL	MDL
Volatile Organics by GC/MS - Wes	stborough Lab	for sample(s)	: 01	Batch:	WG1094892-5
Methylene chloride	ND	u	ıg/l	3.0	
1,1-Dichloroethane	ND	U	ıg/l	0.75	
Carbon tetrachloride	ND	U	ıg/l	0.50	
1,1,2-Trichloroethane	ND	U	ıg/l	0.75	
Tetrachloroethene	ND	U	ıg/l	0.50	
1,2-Dichloroethane	ND	U	ıg/l	0.50	
1,1,1-Trichloroethane	ND	u	ıg/l	0.50	
Benzene	ND	U	ıg/l	0.50	
Toluene	ND	U	ıg/l	0.75	
Ethylbenzene	ND	U	ıg/l	0.50	
Vinyl chloride	ND	U	ıg/l	1.0	
1,1-Dichloroethene	ND	U	ıg/l	0.50	
Trichloroethene	ND	U	ıg/l	0.50	
1,2-Dichlorobenzene	ND	U	ıg/l	2.5	
1,3-Dichlorobenzene	ND	U	ıg/l	2.5	
1,4-Dichlorobenzene	ND	u	ıg/l	2.5	
Methyl tert butyl ether	ND	u	ıg/l	1.0	
p/m-Xylene	ND	u	ıg/l	1.0	
o-Xylene	ND	u	ıg/l	1.0	
Xylenes, Total	ND	U	ıg/l	1.0	
cis-1,2-Dichloroethene	ND	U	ıg/l	0.50	
Acetone	ND	U	ıg/l	5.0	
Tert-Butyl Alcohol	ND	U	ıg/l	10	
Tertiary-Amyl Methyl Ether	ND	U	ıg/l	2.0	

L1806947

Project Name: CAMBRIDGE CROSSING-E/F Lab Number:

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 03/06/18 06:17

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough La	ab for sampl	e(s): 01	Batch:	WG1094892-5	

		Acceptance	
Surrogate	%Recovery Qu	alifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	103	70-130	

Project Name: CAMBRIDGE CROSSING-E/F Lab Number:

L1806947

Project Number: 35663

Report Date:

11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough Lab	Associated sam	nple(s): 01	Batch: WG1094	4492-2					
1,2-Dibromoethane	90		-		80-120	-			Α

Project Name: CAMBRIDGE CROSSING-E/F

Lab Number:

L1806947

Project Number: 35663

Report Date:

11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	% Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbo	orough Lab Associat	ed sample(s):	01 Batch:	WG1094887-3	WG1094887-4				
1,4-Dioxane	100		110		70-130	10		25	

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s): 01	Batch: WG1	094892-3	WG1094892-4		
Methylene chloride	110		110		70-130	0	20
1,1-Dichloroethane	100		100		70-130	0	20
Carbon tetrachloride	100		110		63-132	10	20
1,1,2-Trichloroethane	100		110		70-130	10	20
Tetrachloroethene	91		99		70-130	8	20
1,2-Dichloroethane	100		100		70-130	0	20
1,1,1-Trichloroethane	100		100		67-130	0	20
Benzene	100		100		70-130	0	25
Toluene	93		99		70-130	6	25
Ethylbenzene	92		96		70-130	4	20
Vinyl chloride	100		110		55-140	10	20
1,1-Dichloroethene	100		110		61-145	10	25
Trichloroethene	100		110		70-130	10	25
1,2-Dichlorobenzene	93		96		70-130	3	20
1,3-Dichlorobenzene	98		98		70-130	0	20
1,4-Dichlorobenzene	94		92		70-130	2	20
Methyl tert butyl ether	100		110		63-130	10	20
p/m-Xylene	95		100		70-130	5	20
o-Xylene	90		95		70-130	5	20
cis-1,2-Dichloroethene	98		100		70-130	2	20
Acetone	130		130		58-148	0	20
Tert-Butyl Alcohol	108		108		70-130	0	20
Tertiary-Amyl Methyl Ether	100		100		66-130	0	20

Project Name: CAMBRIDGE CROSSING-E/F Lab Number:

L1806947

Project Number: 35663

Report Date:

11/27/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1094892-3 WG1094892-4

Surrogate	LCS %Recovery Qu	LCSD nal %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	104	70-130
Toluene-d8	99	101	70-130
4-Bromofluorobenzene	101	101	70-130
Dibromofluoromethane	104	99	70-130

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

Parameter	Native Sample	MS Added	MS Found %	MS Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	RPE Qual Limi	
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG10	94492-3	QC Sample:	L1806948-	-01 Clier	nt ID: M	/IS Sample	
1,2-Dibromoethane	ND	0.254	0.270	106		-	-		80-120	-	20	Α
1,2-Dibromo-3-chloropropane	ND	0.254	0.277	109		-	-	:	80-120	-	20	Α

SEMIVOLATILES

Project Name: CAMBRIDGE CROSSING-E/F **Lab Number:** L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

Lab ID: L1806947-01 Date Collected: 02/28/18 13:55

Client ID: VES-E/F-225(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1,8270D Extraction Date: 03/01/18 01:42

Analytical Date: 03/06/18 05:12

Analyst: TT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS -	Westborough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1	
Butyl benzyl phthalate	ND		ug/l	5.0		1	
Di-n-butylphthalate	ND		ug/l	5.0		1	
Di-n-octylphthalate	ND		ug/l	5.0		1	
Diethyl phthalate	ND		ug/l	5.0		1	
Dimethyl phthalate	ND		ug/l	5.0		1	
Phenol	10.		ug/l	5.0		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	76		21-120	
Phenol-d6	58		10-120	
Nitrobenzene-d5	134	Q	23-120	
2-Fluorobiphenyl	107		15-120	
2,4,6-Tribromophenol	109		10-120	
4-Terphenyl-d14	93		41-149	

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

Lab ID: L1806947-01 Date Collected: 02/28/18 13:55

Client ID: VES-E/F-225(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 03/01/18 01:46
Analytical Date: 03/03/18 19:07

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-S	SIM - Westborough La	ıb					
Acenaphthene	13		ug/l	0.10		1	
Fluoranthene	4.0		ug/l	0.10		1	
Naphthalene	34	E	ug/l	0.10		1	
Benzo(a)anthracene	0.64		ug/l	0.10		1	
Benzo(a)pyrene	0.51		ug/l	0.10		1	
Benzo(b)fluoranthene	0.61		ug/l	0.10		1	
Benzo(k)fluoranthene	0.20		ug/l	0.10		1	
Chrysene	0.59		ug/l	0.10		1	
Acenaphthylene	0.31		ug/l	0.10		1	
Anthracene	3.2		ug/l	0.10		1	
Benzo(ghi)perylene	0.31		ug/l	0.10		1	
Fluorene	8.2		ug/l	0.10		1	
Phenanthrene	12		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	0.37		ug/l	0.10		1	
Pyrene	2.8		ug/l	0.10		1	
Pentachlorophenol	ND		ug/l	0.80		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	65		21-120	
Phenol-d6	50		10-120	
Nitrobenzene-d5	104		23-120	
2-Fluorobiphenyl	101		15-120	
2,4,6-Tribromophenol	142	Q	10-120	
4-Terphenyl-d14	118		41-149	

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

Lab ID: L1806947-01 D Date Collected: 02/28/18 13:55

Client ID: VES-E/F-225(MW) Date Received: 02/28/18
Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270D-SIM Extraction Date: 03/01/18 01:46
Analytical Date: 03/03/18 19:36

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - West	borough Lab					
Naphthalene	40		ug/l	0.20		2

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 03/04/18 18:15

Analyst: PS

Extraction Method: EPA 3510C Extraction Date: 02/28/18 16:16

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for sample(s): 01 Batch:	WG1093149-1	
Bis(2-ethylhexyl)phthalate	ND	ug/l	3.0		
Butyl benzyl phthalate	ND	ug/l	5.0		
Di-n-butylphthalate	ND	ug/l	5.0		
Di-n-octylphthalate	ND	ug/l	5.0		
Diethyl phthalate	ND	ug/l	5.0		
Dimethyl phthalate	ND	ug/l	5.0		
Phenol	ND	ug/l	5.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	85	15-120
2,4,6-Tribromophenol	82	10-120
4-Terphenyl-d14	98	41-149

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D-SIM Analytical Date: 03/04/18 11:55

Analyst: KL

Extraction Method: EPA 3510C Extraction Date: 02/28/18 16:16

arameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	orough Lab	for samp	le(s): 01	Batch: WG1093	150-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	0.80		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	42	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	69	15-120
2,4,6-Tribromophenol	83	10-120
4-Terphenyl-d14	83	41-149

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
arameter	/artecovery	Quai	70.1000.0.9	Quai	Lilinto	Krb	Quai	Lillito
Semivolatile Organics by GC/MS -	Westborough Lab Associat	ed sample(s):	01 Batch:	WG1093149-2	WG1093149-3			
Bis(2-ethylhexyl)phthalate	96		96	1	40-140	0		30
Butyl benzyl phthalate	96		92		40-140	4		30
Di-n-butylphthalate	92		87		40-140	6		30
Di-n-octylphthalate	100		100		40-140	0		30
Diethyl phthalate	88		86		40-140	2		30
Dimethyl phthalate	100		95		40-140	5		30
Phenol	40		38		12-110	5		30

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2-Fluorophenol	51	47	21-120
Phenol-d6	40	38	10-120
Nitrobenzene-d5	92	89	23-120
2-Fluorobiphenyl	86	85	15-120
2,4,6-Tribromophenol	84	83	10-120
4-Terphenyl-d14	81	78	41-149

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits			
Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1093150-2 WG1093150-3										
Acenaphthene	71		68		40-140	4	40			
Fluoranthene	75		72		40-140	4	40			
Naphthalene	64		63		40-140	2	40			
Benzo(a)anthracene	73		71		40-140	3	40			
Benzo(a)pyrene	80		78		40-140	3	40			
Benzo(b)fluoranthene	79		78		40-140	1	40			
Benzo(k)fluoranthene	83		82		40-140	1	40			
Chrysene	76		74		40-140	3	40			
Acenaphthylene	74		72		40-140	3	40			
Anthracene	76		73		40-140	4	40			
Benzo(ghi)perylene	78		77		40-140	1	40			
Fluorene	77		74		40-140	4	40			
Phenanthrene	72		70		40-140	3	40			
Dibenzo(a,h)anthracene	84		82		40-140	2	40			
Indeno(1,2,3-cd)pyrene	81		80		40-140	1	40			
Pyrene	74		72		40-140	3	40			
Pentachlorophenol	79		75		40-140	5	40			

L1806947

Lab Control Sample Analysis

Project Name: CAMBRIDGE CROSSING-E/F

Batch Quality Control Lab Number:

Project Number: 35663 Report Date: 11/27/18

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1093150-2 WG1093150-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	45	46	21-120
Phenol-d6	33	33	10-120
Nitrobenzene-d5	71	71	23-120
2-Fluorobiphenyl	69	68	15-120
2,4,6-Tribromophenol	85	81	10-120
4-Terphenyl-d14	74	72	41-149

PCBS

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

 Lab ID:
 L1806947-01
 Date Collected:
 02/28/18 13:55

 Client ID:
 VES-E/F-225(MW)
 Date Received:
 02/28/18

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 608

Analytical Method: 5,608 Extraction Date: 03/01/18 01:56
Analytical Date: 03/02/18 09:54 Cleanup Method: EPA 3665A

Analytical Date: 03/02/18 09:54 Cleanup Method: EPA 3665A
Analyst: JW Cleanup Date: 03/01/18
Cleanup Method: EPA 3660B

Cleanup Method: EPA 3660 Cleanup Date: 03/02/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	94		30-150	Α
Decachlorobiphenyl	57		30-150	Α

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 Report Date: 11/27/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 5,608

Analytical Date: 03/01/18 05:56

Analyst: HT

Extraction Method: EPA 608
Extraction Date: 02/28/18 04:27
Cleanup Method: EPA 3665A
Cleanup Date: 02/28/18
Cleanup Method: EPA 3660B
Cleanup Date: 02/28/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestborough	Lab for s	ample(s):	01 Batch	n: WG1092967-	1
Aroclor 1016	ND		ug/l	0.250		А
Aroclor 1221	ND		ug/l	0.250		А
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

		e	
Surrogate	%Recovery Qualifie	r Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	99	30-150	Α
Decachlorobiphenyl	99	30-150	Α

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

_		LCS		LCSD	0.1	%Recovery			RPD	
Para	meter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polyd	chlorinated Biphenyls by GC - Westborou	igh Lab Associa	ated sample(s)	: 01 Batch:	WG1092967-	-2				
А	roclor 1016	93		-		30-150	-		30	Α
Α	roclor 1260	95		-		30-150	-		30	Α

Surrogate	LCS %Recovery	Qual %	LCSD %Recovery	Qual	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene Decachlorobiphenyl	102 93				30-150 30-150	A A

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	v Qual	MSD Found	MSD %Recove	ry Qual	Recovery Limits	RPD G	RPD Qual Limits	<u>Colum</u> n
Polychlorinated Biphenyls by	GC - Westbor	ough Lab	Associated san	nple(s): 01 (QC Batch II	D: WG109	2967-3 Q	C Sample	: L1800002-0	1 Client	ID: MS Samp	ole
Aroclor 1016	ND	3.12	3.00	96		-	-		40-126	-	30	Α
Aroclor 1260	ND	3.12	2.83	91		-	-		40-127	-	30	Α

	MS	MSD	Acceptance	
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	104		30-150	А
Decachlorobiphenyl	74		30-150	Α

L1806947

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Quality Control Lab Number:

Report Date: 11/27/18

						RPD	
Parameter	Native Sample	Duplicate Samp	le Units	RPD	Qual	Limits	
Polychlorinated Biphenyls by GC - Westborough Lab Sample	Associated sample(s): 0	1 QC Batch ID:	WG1092967-4	QC Sample:	L1800002-01	Client ID:	DUP
Aroclor 1016	ND	ND	ug/l	NC		30	Α
Aroclor 1221	ND	ND	ug/l	NC		30	Α
Aroclor 1232	ND	ND	ug/l	NC		30	Α
Aroclor 1242	ND	ND	ug/l	NC		30	Α
Aroclor 1248	ND	ND	ug/l	NC		30	Α
Aroclor 1254	ND	ND	ug/l	NC		30	Α
Aroclor 1260	ND	ND	ug/l	NC		30	Α

			Acceptance	
Surrogate	%Recovery Qualifie	er %Recovery Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	95	107	30-150	А
Decachlorobiphenyl	83	88	30-150	Α

METALS

Not Specified

Field Prep:

Project Name:CAMBRIDGE CROSSING-E/FLab Number:L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

 Lab ID:
 L1806947-01
 Date Collected:
 02/28/18 13:55

 Client ID:
 VES-E/F-225(MW)
 Date Received:
 02/28/18

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field I ab										
Antimony, Total	ND		mg/l	0.00400		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00225		mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Copper, Total	0.00285		mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Iron, Total	18.9		mg/l	0.050		1	03/01/18 15:40	03/06/18 15:16	EPA 3005A	19,200.7	LC
Lead, Total	0.00764		mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	03/01/18 10:43	3 03/01/18 19:13	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	03/01/18 15:40	03/02/18 12:56	EPA 3005A	3,200.8	AM
General Chemistry -	- Mansfield	d Lab									
Chromium, Trivalent	ND		mg/l	0.050		1		03/02/18 12:56	NA	107,-	

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663 **Report Date:** 11/27/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	h: WG10	093482-	·1				
Mercury, Total	ND	mg/l	0.00020		1	03/01/18 10:43	03/01/18 18:36	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	nsfield Lab for sample(s):	01 Batch	h: WG10	093586-	1				
Iron, Total	ND	mg/l	0.050		1	03/01/18 15:40	03/06/18 13:22	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sample(s):	01 Bato	h: WG10	93588	-1				
Antimony, Total	ND	mg/l	0.00400		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Lead, Total	ND	mg/l	0.00050		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	03/01/18 15:40	03/02/18 12:00	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1093482	-2					
Mercury, Total	102		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1093586	i-2					
Iron, Total	103		-		85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: '	WG1093588	-2					
Antimony, Total	102		-		85-115	-		
Arsenic, Total	105		-		85-115	-		
Cadmium, Total	107		-		85-115	-		
Chromium, Total	100		-		85-115	-		
Copper, Total	102		-		85-115	-		
Lead, Total	99		-		85-115	-		
Nickel, Total	101		-		85-115	-		
Selenium, Total	111		-		85-115	-		
Silver, Total	100		-		85-115	-		
Zinc, Total	108		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery (MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD C	RPD Qual Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093482-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00506	101	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093482-	5 QC Sample	: L1806885-02	Client ID: MS Sa	ample	
Mercury, Total	ND	0.005	0.00494	99	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch II	D: WG1093586-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Iron, Total	0.918	1	2.04	112	-	-	75-125	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch II	D: WG1093588-	3 QC Sample	: L1806885-01	Client ID: MS Sa	ample	
Antimony, Total	0.00577	0.5	0.5537	110	-	-	70-130	-	20
Arsenic, Total	0.00406	0.12	0.1372	111	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05827	114	-	-	70-130	-	20
Chromium, Total	0.00161	0.2	0.2141	106	-	-	70-130	-	20
Copper, Total	0.00407	0.25	0.2776	109	-	-	70-130	-	20
Lead, Total	0.00359	0.51	0.5508	107	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5397	108	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1382	115	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05410	108	-	-	70-130	-	20
Zinc, Total	0.03678	0.5	0.6062	114	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

QC Batch ID: WG1093482-4 ND QC Batch ID: WG1093482-6 ND QC Batch ID: WG1093586-4	ND QC Sample: ND	L1806885-01 mg/l L1806885-02 mg/l	NC		20
QC Batch ID: WG1093482-6 ND QC Batch ID: WG1093586-4	QC Sample:	L1806885-02	Client ID:	DUP Sample	
ND QC Batch ID: WG1093586-4	ND	mg/l		DUP Sample	20
QC Batch ID: WG1093586-4			NC		20
	QC Sample:	1.4000005.04			20
0.049		L1806885-01	Client ID:	DUP Sample	
0.918	0.918	mg/l	0		20
QC Batch ID: WG1093588-4	QC Sample:	L1806885-01	Client ID:	DUP Sample	
0.00577	0.00593	mg/l	3		20
0.00406	0.00410	mg/l	1		20
ND	ND	mg/l	NC		20
0.00161	0.00166	mg/l	3		20
0.00407	0.00404	mg/l	1		20
0.00359	0.00360	mg/l	0		20
ND	ND	mg/l	NC		20
ND	ND	mg/l	NC		20
ND	ND	mg/l	NC		20
0.03678	0.03753	mg/l	2		20
	0.00577 0.00406 ND 0.00161 0.00407 0.00359 ND ND ND	0.918 0.918 QC Batch ID: WG1093588-4 QC Sample: 0.00577 0.00593 0.00406 0.00410 ND ND 0.00161 0.00166 0.00407 0.00360 ND ND ND ND	0.918 0.918 mg/l QC Batch ID: WG1093588-4 QC Sample: L1806885-01 0.00577 0.00593 mg/l 0.00406 0.00410 mg/l ND ND mg/l 0.00161 0.00166 mg/l 0.00359 0.00360 mg/l ND ND mg/l ND ND mg/l ND ND mg/l ND ND mg/l ND mg/l ND mg/l ND mg/l	0.918 0.918 mg/l 0 QC Batch ID: WG1093588-4 QC Sample: L1806885-01 Client ID: 0.00577 0.00593 mg/l 3 0.00406 0.00410 mg/l 1 ND ND mg/l NC 0.00161 0.00166 mg/l 3 0.00407 0.00404 mg/l 1 0.00359 0.00360 mg/l 0 ND ND mg/l NC ND ND mg/l NC ND ND mg/l NC ND ND mg/l NC ND ND mg/l NC	0.918 0.918 mg/l 0 QC Batch ID: WG1093588-4 QC Sample: L1806885-01 Client ID: DUP Sample 0.00577 0.00593 mg/l 3 0.00406 0.00410 mg/l 1 ND ND mg/l NC 0.00161 0.00166 mg/l 3 0.00407 0.00404 mg/l 1 0.00359 0.00360 mg/l 0 ND ND mg/l NC ND ND mg/l NC ND ND mg/l NC ND ND mg/l NC

INORGANICS & MISCELLANEOUS

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

SAMPLE RESULTS

Lab ID:L1806947-01Date Collected:02/28/18 13:55Client ID:VES-E/F-225(MW)Date Received:02/28/18Sample Location:CAMBRIDGE, MAField Prep:Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	39.		mg/l	10	NA	2	-	03/02/18 11:30	121,2540D	JT
Cyanide, Total	ND		mg/l	0.005		1	02/28/18 22:52	03/01/18 10:05	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/28/18 23:30	121,4500CL-D	AS
Nitrogen, Ammonia	28.4		mg/l	0.750		10	03/01/18 02:00	03/01/18 22:06	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	03/01/18 17:00	03/01/18 21:45	74,1664A	ML
Phenolics, Total	0.045		mg/l	0.030		1	03/02/18 13:29	03/02/18 19:41	4,420.1	BR
Chromium, Hexavalent	ND		mg/l	0.050		5	03/01/18 01:13	03/01/18 02:09	1,7196A	UN
Anions by Ion Chromatog	graphy - Wes	tborough	Lab							
Chloride	1600		mg/l	25.0		50	-	03/02/18 18:33	44,300.0	JR

L1806947

Lab Number:

Project Name: CAMBRIDGE CROSSING-E/F

Report Date: Project Number: 35663 11/27/18

Method	Blank	Analysis
Batch	Quality	Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG1	093295-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/28/18 23:30	121,4500CL-D	AS
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG1	093298-1				
Cyanide, Total	ND		mg/l	0.005		1	02/28/18 22:52	03/01/18 09:47	121,4500CN-CE	E LH
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG1	093332-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	03/01/18 01:13	03/01/18 01:50	1,7196A	UN
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG1	093343-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	03/01/18 02:00	03/01/18 22:03	121,4500NH3-B	H AT
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG1	093620-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	03/01/18 17:00	03/01/18 21:45	74,1664A	ML
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG1	093770-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	03/02/18 11:30	121,2540D	JT
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG1	094008-1				
Phenolics, Total	ND		mg/l	0.030		1	03/02/18 14:45	03/02/18 19:33	4,420.1	BR
Anions by Ion Chrom	atography - Westbo	rough	Lab for sar	mple(s):	01 E	Batch: WG1	094375-1			
Chloride	ND		mg/l	0.500		1	-	03/02/18 18:09	44,300.0	JR

Lab Control Sample Analysis Batch Quality Control

CAMBRIDGE CROSSING-E/F **Project Name:**

Project Number: 35663 Lab Number:

L1806947

Report Date:

11/27/18

Parameter	LCS %Recovery Qu	LCSD al %Recovery <u>Qual</u>	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1093295-2				
Chlorine, Total Residual	101	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1093298-2				
Cyanide, Total	98	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1093332-2				
Chromium, Hexavalent	97	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1093343-2				
Nitrogen, Ammonia	101	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1093620-2				
ТРН	92	-	64-132	-		34
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1094008-2				
Phenolics, Total	92	-	70-130	-		
Anions by Ion Chromatography - Westb	orough Lab Associated sa	ample(s): 01 Batch: WG109437	75-2			
Chloride	103	-	90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947

Report Date: 11/27/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery Il Limits RPI	RPD O Qual Limits
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1093295-4	QC Sample: L180694	18-01 Client ID: N	/IS Sample
Chlorine, Total Residual	ND	0.248	0.22	89	-	-	80-120 -	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093298-4	QC Sample: L180688	35-01 Client ID: N	/IS Sample
Cyanide, Total	ND	0.2	0.210	105	-	-	90-110 -	30
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1093332-4	QC Sample: L180694	17-01 Client ID: V	/ES-E/F-225(MW)
Chromium, Hexavalent	ND	0.1	ND	0	Q -	-	85-115 -	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1093343-4	QC Sample: L180694	17-01 Client ID: V	/ES-E/F-225(MW)
Nitrogen, Ammonia	28.4	4	33.2	120	-	-	80-120 -	20
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	WG1093620-4	QC Sample: L180672	25-01 Client ID: N	/IS Sample
TPH	9.80	20.4	26.1	80	-	-	64-132 -	34
General Chemistry - Westbo	rough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: V	NG1094008-4	QC Sample: L180687	75-02 Client ID: N	/IS Sample
Phenolics, Total	ND	0.4	0.38	96	-	-	70-130 -	20
Anions by Ion Chromatograp Sample	hy - Westboroug	jh Lab Asso	ciated sar	nple(s): 01 Q(C Batch ID: WG1	094375-3 QC Sam	ple: L1807170-02	Client ID: MS
Chloride	221	100	323	102	-	-	90-110 -	18

Lab Duplicate Analysis Batch Quality Control

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number:

L1806947

Report Date:

11/27/18

Parameter	Native 9	Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093295-3	QC Sample: L18	806947-01	Client ID:	VES-E/F-225(MW)
Chlorine, Total Residual	N	D	ND	mg/l	NC		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093298-3	QC Sample: L18	806885-01	Client ID:	DUP Sample
Cyanide, Total	N	D	0.007	mg/l	NC		30
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093332-3	QC Sample: L18	806947-01	Client ID:	VES-E/F-225(MW)
Chromium, Hexavalent	N	D	ND	mg/l	NC		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093343-3	QC Sample: L18	806947-01	Client ID:	VES-E/F-225(MW)
Nitrogen, Ammonia	28	3.4	28.4	mg/l	0		20
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093620-3	QC Sample: L18	806725-01	Client ID:	DUP Sample
TPH	9.8	80	8.50	mg/l	14		34
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1093770-2	QC Sample: L18	807125-01	Client ID:	DUP Sample
Solids, Total Suspended	8	6	86	mg/l	0		29
General Chemistry - Westborough Lab As	ssociated sample(s): 01	QC Batch ID:	WG1094008-3	QC Sample: L18	806875-02	Client ID:	DUP Sample
Phenolics, Total	N	D	ND	mg/l	NC		20
Anions by Ion Chromatography - Westbord Sample	ough Lab Associated sa	mple(s): 01 Q	C Batch ID: WG	1094375-4 QC	Sample: L	1807170-0	2 Client ID: DUP
Chloride	22	21	221	mg/l	0		18

Project Name: CAMBRIDGE CROSSING-E/F

Project Number: 35663

Lab Number: L1806947 **Report Date:** 11/27/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

В Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1806947-01A	Vial HCl preserved	В	NA		2.2	Υ	Absent		8260-SIM(14),8260(14)
L1806947-01B	Vial HCl preserved	В	NA		2.2	Υ	Absent		8260-SIM(14),8260(14)
L1806947-01C	Vial HCl preserved	В	NA		2.2	Υ	Absent		8260-SIM(14),8260(14)
L1806947-01D	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		504(14)
L1806947-01E	Vial Na2S2O3 preserved	В	NA		2.2	Υ	Absent		504(14)
L1806947-01F	Vial HCl preserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L1806947-01G	Vial HCl preserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L1806947-01H	Vial HCl preserved	В	NA		2.2	Υ	Absent		SUB-ETHANOL(14)
L1806947-01I	Plastic 250ml NaOH preserved	В	>12	>12	2.2	Υ	Absent		TCN-4500(14)
L1806947-01J	Plastic 250ml HNO3 preserved	В	<2	<2	2.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE-UI(180),AG- 2008T(180),AS-2008T(180),HG-U(28),SE- 2008T(180),CR-2008T(180),PB-2008T(180),SB- 2008T(180)
L1806947-01K	Plastic 500ml H2SO4 preserved	В	<2	<2	2.2	Υ	Absent		NH3-4500(28)
L1806947-01L	Plastic 950ml unpreserved	В	7	7	2.2	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1)
L1806947-01M	Plastic 950ml unpreserved	В	7	7	2.2	Υ	Absent		TSS-2540(7)
L1806947-01N	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		TPH-1664(28)
L1806947-01O	Amber 1000ml HCl preserved	В	NA		2.2	Υ	Absent		TPH-1664(28)
L1806947-01P	Amber 950ml H2SO4 preserved	В	<2	<2	2.2	Υ	Absent		TPHENOL-420(28)
L1806947-01Q	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PCB-608(7)
L1806947-01R	Amber 1000ml Na2S2O3	В	7	7	2.2	Υ	Absent		PCB-608(7)
L1806947-01S	Amber 1000ml unpreserved	В	7	7	2.2	Υ	Absent		8270TCL(7),8270TCL-SIM(7)
L1806947-01T	Amber 1000ml unpreserved	В	7	7	2.2	Υ	Absent		8270TCL(7),8270TCL-SIM(7)

Project Name: CAMBRIDGE CROSSING-E/F Lab Number: L1806947

Project Number: 35663 Report Date: 11/27/18

GLOSSARY

Acronyms

MS

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:CAMBRIDGE CROSSING-E/FLab Number:L1806947Project Number:35663Report Date:11/27/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:CAMBRIDGE CROSSING-E/FLab Number:L1806947Project Number:35663Report Date:11/27/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	CH	IAIN OF C	JSTO	DY ,	PAGE_	_OF\	Date I	Rec'd in	n Lab:	ala	XX.)	18		ALF	PHA J	ob #:	1180	3947
8 Walkup Driv		Blvd	ct Informa				Repo			on - Da			bles			format		0111
Westboro, M/ Tel: 508-898	I-9220 Tel: 508-82	MA 02048 22-9300 Projec	Name: (XX	mbridge	CYOSS	Sira-E	E DE	DEx		XEMAI	L			₹ Sa	me as	Client in	fo PO#	
Client Informat		Project	Location:	ambr	idae. 1	UA	Regu										ements	
Address: ICO	leatex Con ngress 9 ton, MA	THE Project	t#: 350 Manager:) A Quote #:	263	10 Met 10		☐ Yes☐ Yes☐ Yes☐ Yes☐ Yes☐	No No	Matrix S GW1 S NPDES	tandard	equired s (Info	on th	s SDG	? (Requ	uired for	r MCP in with Tan	norganics)	llytical Method
Phone: U1+-	274-54	O+ Turn	-Around Ti	me					1	\$ 7	m/3	7.	1 1	1	11	7	/ /	/
Additional	Project Inform	ation: Date	Due: 5-8	RUSH (conty)	confirmed if pre-a	(cproved)	78260 C.C.	DABN DPALL	METALS: DMCP 13 DMCP 1.	EPH: DRanges & Tarras. DRCP48	C PCB Targes & Targets C Ranges Only	O PEST Canges On	NPDES OFINGERPHINE	KGP	//		Pro	MPLE INFO tration Field Lab to do
ALPHA Lab ID (Lab Use Only)	S	ample ID	Colli	ection Time	Sample Matrix	Sampler	/ SO / F	METALS.	ETAL	# 1	PCB	# C	H	//		/ /	/ 4	ab to 00
06947-01	VES-E/F-	-225(MW)	2/28/18	3:55	W	EMW							×				Sample	Comments
Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle Page 52 of 66	Preservative A= None B= HCI C= HNO ₃ D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₄ H= Na ₂ S ₂ O ₅ I= Ascorbic Acid J= NH ₄ CI K= Zn Acetate O= Other		ished By:	m 21	Pre	iner Type servative /Time 13:19	or or	fill e	feight e	ву:	n.	2	Date/	Time / 51/2	Z Alpi See	ha's Ter e reverse	ms and Co	

VISI	i a	Te	Subcontr est America (N 60 Foster Cre eshville, TN 3	act Chain of Cust	tody	Alpha Job Number
ANALVII		Na	shville, TN 3		L1806947	
C	lient Information		Project Ir	nformation	Regulatory Re	equirements/Report Limits
Client: Alpha A Address: Eight W Westbor Phone: 603.319	nalytical Labs alkup Drive rough, MA 01581-1019		ound & Deliv	erables Informatio	State/Federal Program	n:
Email: mgulli@	alphalab.com	Due Date Deliverables	: 03/07/18 (R	USH)		
		Project Specif	ic Requirem	ents and/or Report	Requirements	
Mark 100 Mark 1 205 Mark	Reference following Alpha Job			: L1806947	Report to include Method Bla	ank, LCS/LCSD:
Additional Comm	nents: Send all results/reports	s to subreports@alphala	ab.com			
Lab ID	Client ID	Collection Date/Time	Sample Matrix	A	nalysis	Batch QC
	VES-E/F-225(MW)	02-28-18 13:55	WATER	Ethanol by EPA 1671 Rev	vision A	
	Relinquish	ed By:	h	Date/Time:	Received By:	Date/Time:
	1	A RI	10	3/1/16		

Form No: AL_subcoc

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-147312-1

Client Project/Site: L1806947

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Melissa Gulli

Authorized for release by: 3/7/2018 1:56:21 PM

Kuth Hayer

Ken Hayes, Project Manager II

(615)301-5035

ken.hayes@testamericainc.com

····· Links ·····

Review your project results through

Total Access

Have a Question?

Visit us at:
www.testamericainc.com
Page 54 of 66

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

Л

5

6

_

_

TestAmerica Job ID: 490-147312-1

Client: Alpha Analytical Inc Project/Site: L1806947

Table of Contents

Cover Page	
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

6

8

9

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1806947

TestAmerica Job ID: 490-147312-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-147312-1	VES-E/F-225(MW)	Water	02/28/18 13:55	03/02/18 09:00

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

Job ID: 490-147312-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-147312-1

Comments

No additional comments.

Receipt

The sample was received on 3/2/2018 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 2.7° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

1

4

J

6

o

a

1 0

11

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

Glossary

PQL

QC

RER

RL RPD

TEF

TEQ

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

12

2

4

4

7

8

9

10

11

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

Client Sample ID: VES-E/F-225(MW)

Lab Sample ID: 490-147312-1

Date Collected: 02/28/18 13:55 Date Received: 03/02/18 09:00 . Matrix: Water

Method: 1671A - Ethanol (GC/FID)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND	2000	500 ug/L			03/03/18 16:02	1

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Isopropyl acetate (Surr)
 71
 70 - 130
 03/03/18 16:02
 1

8

8

40

11

QC Sample Results

Client: Alpha Analytical Inc Project/Site: L1806947

Analysis Batch: 499157

TestAmerica Job ID: 490-147312-1

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-499157/22

Analyte Result Qualifier Ethanol

 $\overline{\mathsf{ND}}$ MB MB

Qualifier

%Recovery

73

2000

Limits

70 - 130

RL

500 ug/L

MDL Unit

D

Prepared

Prepared

Analyzed Dil Fac 03/03/18 15:43

Prep Type: Total/NA

Analyzed

03/03/18 15:43

Dil Fac

Lab Sample ID: LCS 490-499157/23

Matrix: Water

Isopropyl acetate (Surr)

Surrogate

Ethanol

Surrogate

Analyte

Ethanol

Matrix: Water

Analysis Batch: 499157

Analyte

Spike Added 50200

Limits

70 - 130

Spike

Added

50200

LCS LCS Result Qualifier 53230

MS MS

52880

Result Qualifier

Unit ug/L

Unit

ug/L

%Rec 106 %Rec. Limits 70 - 130

Client Sample ID: Lab Control Sample

Lab Sample ID: 490-147323-D-6 MS

Matrix: Water

Isopropyl acetate (Surr)

Analysis Batch: 499157

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 130

%Rec. %Rec Limits

105

MS MS

Sample Sample

ND

Result Qualifier

LCS LCS

%Recovery Qualifier

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 80 70 - 130

Lab Sample ID: 490-147323-D-6 MSD

Matrix: Water

Surrogate

Isopropyl acetate (Surr)

Analysis Batch: 499157

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec. **RPD** Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Ethanol ND 50200 47250 ug/L 94 70 - 130

> MSD MSD %Recovery Qualifier 79

Limits 70 - 130

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

GC VOA

Analysis Batch: 499157

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-147312-1	VES-E/F-225(MW)	Total/NA	Water	1671A	
MB 490-499157/22	Method Blank	Total/NA	Water	1671A	
LCS 490-499157/23	Lab Control Sample	Total/NA	Water	1671A	
490-147323-D-6 MS	Matrix Spike	Total/NA	Water	1671A	
490-147323-D-6 MSD	Matrix Spike Duplicate	Total/NA	Water	1671A	

5

6

8

9

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1806947

TestAmerica Job ID: 490-147312-1

Lab Sample ID: 490-147312-1

Matrix: Water

Date Collected: 02/28/18 13:55 Date Received: 03/02/18 09:00

Client Sample ID: VES-E/F-225(MW)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A					499157	03/03/18 16:02	MH	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Method Summary

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

Method	Method Description	Protocol	Laboratory
1671A	Ethanol (GC/FID)	EPA	TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

5

6

8

40

44

Accreditation/Certification Summary

Client: Alpha Analytical Inc Project/Site: L1806947 TestAmerica Job ID: 490-147312-1

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Program EPA		Region	Identification Number	Expiration Date
California	State Progr	State Program			2938	10-31-18
The following analyte:	s are included in this report	, but accreditation	/certification is	s not offe	ered by the governing auth	ority:
Analysis Method	Prep Method	Matrix		Analyte	е	
1671A		Water		Ethano	ol	
Maine	State Progr	ram	1		TN00032	11-03-19
The following analytes	s are included in this report	, but accreditation	/certification is	s not offe	ered by the governing auth	ority:
Analysis Method	Prep Method	Matrix		Analyte	е	
1671A		Water		Ethano	ol	

4

5

7

8

9

Nashville, TN

COOLER RECEIPT FORM

Cooler Received/Opened On03-02-2018_@	
Time Samples Removed From Cooler 13 a 5 Time Samples Placed In Storage	_ (2 Hoµr Window)
1. Tracking # 12 E 3065 6 19 (Hast 4 digits, FedEx) Courier: UPS 1 ex	.tday air
IR Gun ID31470366 pH Strip Lot A Chlorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened: 2.7 Degrees Celsius	
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NONA
4. Were custody seals on outside of cooler?	YESNONA
If yes, how many and where:	8
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	YÉSNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	Oh
7. Were custody seals on containers: YES No and Intact	YESNO
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubbleverap Plastic bag Peanuts Vermiculite Foam Insert Pap	per Other None
9. Cooling process: (ce) Ice-pack Ice (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	(YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	YESNONA
12. Did all container labels and tags agree with custody papers?	YES).NONA
13a. Were VOA vials received?	CYESNONA
b. Was there any observable headspace present in any VOA vial?	YESMDNA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES(i)NA If multiple coolers, sequen	ICE #
certify that I unloaded the cooler and answered questions 7-14 (intial)	YESNONA
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YES NO NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNONA
16. Was residual chlorine present?	34
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	χέδNONA
17. Were custody papers properly filled out (ink, signed, etc)?	(YESNONA
18. Did you sign the custody papers in the appropriate place?	(YESNONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	M
I certify that I entered this project into LIMS and answered questions 17-20 (intial) I certify that I attached a label with the unique LIMS number to each container (intial)	90
21. Were there Non-Conformance issues at login? YES(6) Was a NCM generated? YES(7)	
- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	····

Form No: AL subcoc	Parl AM 3/1/16	Relinquished By: Date/Time:		VES-E/F-225(MW) 02-28-18 13:55 WATER Ethanol by EPA 1671 Revision A	Lab ID Client ID Collection Sample Anal	naminana sommones, sema an resumentepore to suprepore e alphanascom	Reference following Alpha Job Number on final report/deliverables: L1806947	Project Specific Requirements and/or Report Requirements	Phone: 603.319.5010 Email: mgulli@alphalab.com Deliverables:	Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Turnaround & Deliverables Information	Client Information Project Information	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204
Pendel M		Received By:	1 6	evision A	Analysis		Report to include Meth	rt Reguirements			Regulato	
9-1-12 2-12 8 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Date/Time:	147312		Batch QC		to include Method Blank, LCS/LCSD:			State/Federal Program: Regulatory Criteria: GW-2-14;S1/G2-14	Regulatory Requirements/Report Limits	Alpha Job Number L1806947