

ConsultingJuly 29, 2019, Revised August 13, 2019Engineers andProject 1703581ScientistsVia E-mail: NPDES.Generalpermits@epa.gov

Ms. Shelly Puleo Environmental Protection Agency RGP NOI Processing 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, MA 02109-3912

Dear Ms. Puleo:

Re: Notice of Intent NPDES Remediation General Permit New Inpatient Building Beth Israel Deaconess Medical Center 111 Francis Street Boston, Massachusetts

On behalf of Beth Israel Deaconess Medical Center (BIDMC), GEI Consultants, Inc. has prepared this Notice of Intent (NOI) for coverage under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP), Massachusetts General Permit (MAG910000). This NOI was prepared in accordance with the general requirements of the NPDES RGP under Federal Register, Vol. 82, No. 12, dated January 19, 2017, and related guidance documentation provided by the U.S. Environmental Protection Agency (EPA). The completed NOI form is in Appendix A.

A copy of this NOI is being sent to the MassDEP Bureau of Resource Protection Water along with a check in the amount of \$500 payable to the Commonwealth of Massachusetts for the required compliance fee. A copy of the check and fee transmittal form are in Appendix B. Once EPA issues an RGP authorization for this project, and before the start of work, we will apply for a Boston Water and Sewer Commission (BWSC) Dewatering Discharge Permit.

Site Information

This NOI has been prepared for the discharge of dewatering effluent during construction of the proposed New Inpatient Building (NIB) located at the intersection of Deaconess and Pilgrim Roads on the BIDMC West Campus in Boston, Massachusetts (the Property; Fig. 1). The NIB will be a 10- to 12-story building with a 2-level basement (Fig. 2). The footprint of the proposed NIB is was formerly occupied by the Emergency Department Entrance and Ambulance Bays of the Rosenberg Building, which are currently being relocated to the northwest side of the building on Pilgrim Street.

A historical Massachusetts Department of Environmental Protection (MassDEP) disposal site (Release Tracking Number [RTN] 3-1470) is located in the southwest portion of the NIB footprint. A gasoline service station had been located on the property, and the disposal site (RTN 3-1470) was closed with a Waiver Completion Statement in 1996. The remainder of the NIB footprint is not currently a MassDEP disposal site.

Construction dewatering will be necessary during subsurface construction and excavation for the NIB. Dewatering effluent will be discharged to nearby BWSC catch basins, which discharge to the Muddy River via Outfall SDO161 (Fig. 3), in accordance with the RGP.

Owner and Operator Information Owner

Owner	Operator
BIDMC	J. Derenzo Co.
200 Brookline Avenue, Suite OV-400B	338 Howard Street
Boston, MA 02215	Brockton, MA 02302
Contact: David M. Flanagan	Contact: Peter Burch
Senior Director of Capital Facilities	Project Executive
(617) 975-9931	(508) 328-5241
jdmflanag@bidmc.harvard.edu	pburch@jderenzo.com

As the owner, BIDMC has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications. J. Derenzo Co. of Brockton, Massachusetts, as the operator, will direct the personnel responsible for the implementation and day-to-day operations and activities that are necessary to ensure compliance with the NPDES RGP, including operation, inspection, monitoring, and reporting. The owner and operator are applying for coverage under the RGP as co-permittees.

Receiving Water Information

Receiving water quality data, collected by GEI on June 21, 2019 on behalf of BIDMC supports this NOI. A sample from the Muddy River, the receiving water, was collected approximately 250 feet southwest of the BWSC outfall (SDO161). The sample was submitted to ESS Laboratory, Inc. (ESS) of Cranston, Rhode Island for analysis of metals, hardness, ammonia, and pH. The results are summarized in Table 1 and the associated laboratory data report is in Appendix C. Receiving water temperature was obtained in the field and is noted on the effluent limitations input calculation page in Appendix A.

The seven-day-ten-year flow 7Q10 of the receiving water (Muddy River) was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by the MassDEP on July 3, 2019. The StreamStats report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix A. The 7Q10 of the Muddy River is 0.547 ft³/s and the Dilution Factor is 3.5.

The effluent limits were generated using the NPDES RGP NOI Dilution Factor Calculation spreadsheet. Copies of the "EnterData" and "FreshwaterResults" tabs from the spreadsheet are provided in Appendix A. The resulting calculated effluent limits are in Table 2.

Source Water Information

We evaluated the proposed influent by collecting two groundwater samples from the Property. The groundwater samples were collected from monitoring wells B202(OW) and B203(OW) on June 21, 2019 (Fig. 2) and submitted to ESS for analysis of the parameters required under the NPDES RGP. In addition, the pH and temperature of the proposed influent was measured in the field to evaluate existing conditions. The results are in Table 2 and the associated laboratory data report for these samples are provided in Appendix D.

The analytical results indicated the presence of ammonia, chloride, metals (antimony, iron, lead, and zinc), 1,4-dioxane (a volatile organic compound [VOC]), and methyl-tert-butyl ether (MTBE; a fuel parameter). The measured pH range of the groundwater within the project site was approximately

7.0 to 7.7 standard units (s.u.). The pH range detected is within the RGP effluent limit for Massachusetts waters (6.5 to 8.3 s.u.).

Treatment System Information

During construction, the collected water will be treated to remove suspended solids using a sedimentation tank and bag filters. The proposed conceptual treatment system is shown in the process flow diagram in Fig. 4. Additional treatment may include granulated activated carbon (GAC), ion exchange, and pH adjustment, if necessary.

Although final products for additional treatment will be determined by the operator or their designated contractor, example product information, including Safety Data Sheets (SDSs), associated hazards, operation recommendations, and product information for GAC and ion exchange systems adjustment are in Appendix A. These systems will be mobilized as necessary to achieve effluent limitations.

If required, pH adjustment will consist of using a metered sulfuric acid (70-100%) system to maintain pH within the effluent discharge limits of 6.5 to 8.3 S.U., and dosing will be automatically controlled using a meter pump, pH controller, and probe. In accordance with Part 2.5.3.d.i of the RGP, the product information, including dosing and metering are in Appendix A. . The sulfuric acid will be stored in 55-gallon drums with secondary containment systems. Procedures for proper handling and spill prevention are included in the project-specific Best Management Practices Plan (BMPP).

The estimated maximum magnitude of application (i.e. "ceiling value") would be 48 gallons of sulfuric acid per day at a flow rate of 0.144 million gallons per day (MGD), which results in a concentration of 333 parts per million. The lethal concentration to kill 50% of the fish population (LC50) in a receiving water is 510 ppm per the SDS in Appendix A. Therefore the "ceiling value" is less than the LC50 value. Actual daily application of sulfuric acid is anticipated to be less than 0.5 gallons per day.

Part F of the RGP requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- The addition of pH conditioner will not add any pollutants in concentrations which exceed permit effluent limitations;
- The use of this chemical will not result in exceedance of applicable water quality standard; and
- This chemical will not add any pollutants that would justify the application of permit conditions that are different from or absent in the permit.

The addition of sulfuric acid to reduce pH levels is an established practice for temporary construction dewatering, and is not expected to exceed applicable effluent limits, water quality standards, or alter conditions in the receiving water. Therefore, it is our opinion, that no additional testing is necessary for use of sulfuric acid or to demonstrate that use of this product will adversely affect the receiving water.

Discharge Information

We anticipate treated effluent discharge rates to be about 50 gallons per minute (gpm) or less, with occasional peak flows of approximately 100 gpm during significant precipitation events. The treated water will be discharged to any of four catch basins surrounding the NIB. These discharge locations are on Fig. 2 and the catch basins are identified in Appendix E as Proposed Discharge Points 1 through 4. According to plans we reviewed from BWSC's Engineering Department on June 18, 2019, these catch basins are part of the BWSC storm water drainage system that discharges to an outfall (SDO161) at the Muddy River, approximately 0.1 mile from the Site. An annotated copy of the BWSC plan showing the discharge path and ultimate discharge outfall at the Muddy River is in Appendix E.

Endangered Species Act Eligibility

We reviewed the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online database for the site and receiving water ("project action area"). A copy of the database report is in Appendix F. Based on this report, the project action area meets FWS Criterion A (i.e., no listed species or critical habitats are within the project action area).

National Historic Preservation Requirements

We reviewed online records from the U.S. National Register of Historic Places database and the Massachusetts Cultural Resource Information System (MACRIS). Maps of the Property and surrounding areas obtained from both databases are included in Appendix G. Based on the review, the Property is not a listed as a National Historic Place. Portions of the BIDMC campus adjacent to the Property have been inventoried by the Massachusetts Historic Commission; however, the Property is not included in these areas.

The point where the discharge reaches the receiving water (i.e., Outfall SDO161 to the Muddy River) is not listed as a National Historic Place. However, the Olmsted Park System, which includes the banks of the Muddy River where the outfall is located, is a listed National Historic Place, but includes the upland riverbanks and adjacent buildings and structures, not the river itself. The inventory listing from the MACRIS database is included in Appendix G. Files related to the district have not yet been digitized on the National Register of Historic Places database, but the National Register of Historic Places Inventory-Nomination Form is included in Appendix G.

Coverage Under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP based on the requirements of the NPDES RGP and our evaluation of the available project-specific information. On behalf of BIDMC, we are requesting coverage under the NPDES RGP for the discharge of treated construction dewatering effluent to the surface waters of the Muddy River via the BWSC storm water drainage system.

The attached NOI form and supporting documentation provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services (Appendices A through G). A Best Management Practice Plan (BMPP), to be implemented at the Site during construction dewatering, treatment, and discharge is in Appendix H. Discharge of treated water is scheduled to begin in August 2019.

Please contact me at 781.721.4012 or <u>igladstone@geiconsultants.com</u> or Heather Ballantyne at 781.721.406 or <u>hballantyne@geiconsultants.com</u> if you have any questions.

Sincerely,

GEI CONSULTANTS, INC.

Ileen S. Gladstone, P.E., LSP, LEED AP Senior Vice President HBallontyne

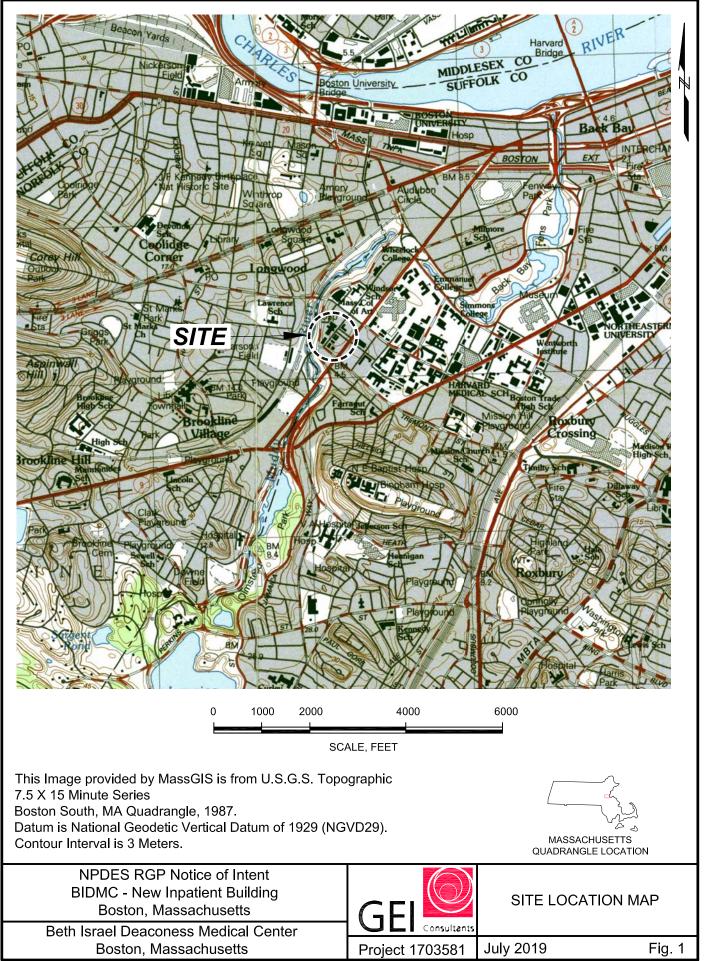
Heather A. Ballantyne, P.G., LSF Project Manager

JLE/ISG/HBH:jam Attachments c: David M. Flanagan, BIDMC Peter Burch, J. Derenzo Co. Surface Water Discharge Program, MassDEP B:\Working\BETH ISRAEL DEACONESS\1703581 NIB\01_ADMIN\RGP NOI\BIDMC NPDES RGP NOI Ltr_Rev1.docx Table 1. Chemical Testing Results - Receiving Water (Muddy River) **New Inpatient Building Beth Israel Deaconess Medical Center Boston, Massachusetts**

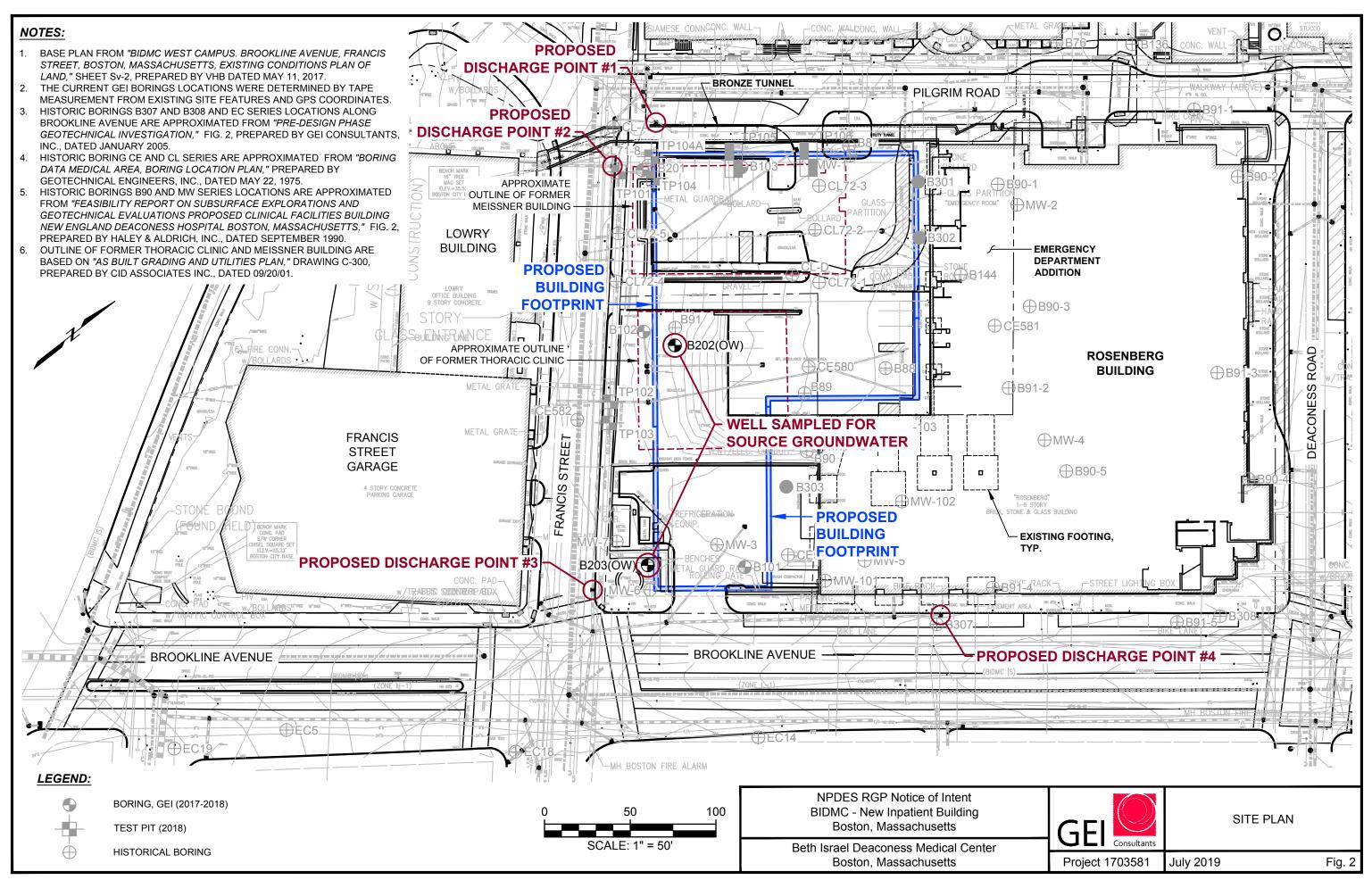
	SW-1			
	Sample Date:			
Analyte	Method	Units		
Total Metals		ug/l		
Antimony	6020A		1.2	
Arsenic	7010		1.3	
Copper	6010C		11.5	
Iron	6010C		1750	
Lead	6010C		9.8	
Zinc	6010C		39	
Other				
Hardness	6010C	ug/l	47900	
Ammonia as Nitrogen	350.1	ug/l	0.24	
рН	9040	S.U.	6.87	

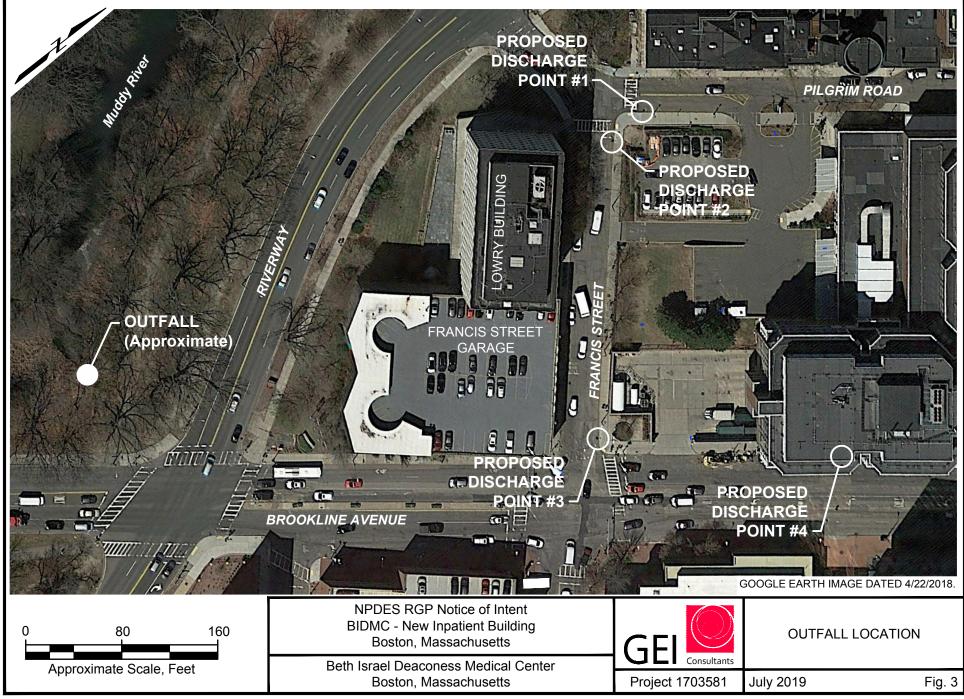
General Notes:

1. Only analytes detected in at least one sample are reported here. For a complete list of analytes, see the laboratory data sheets.

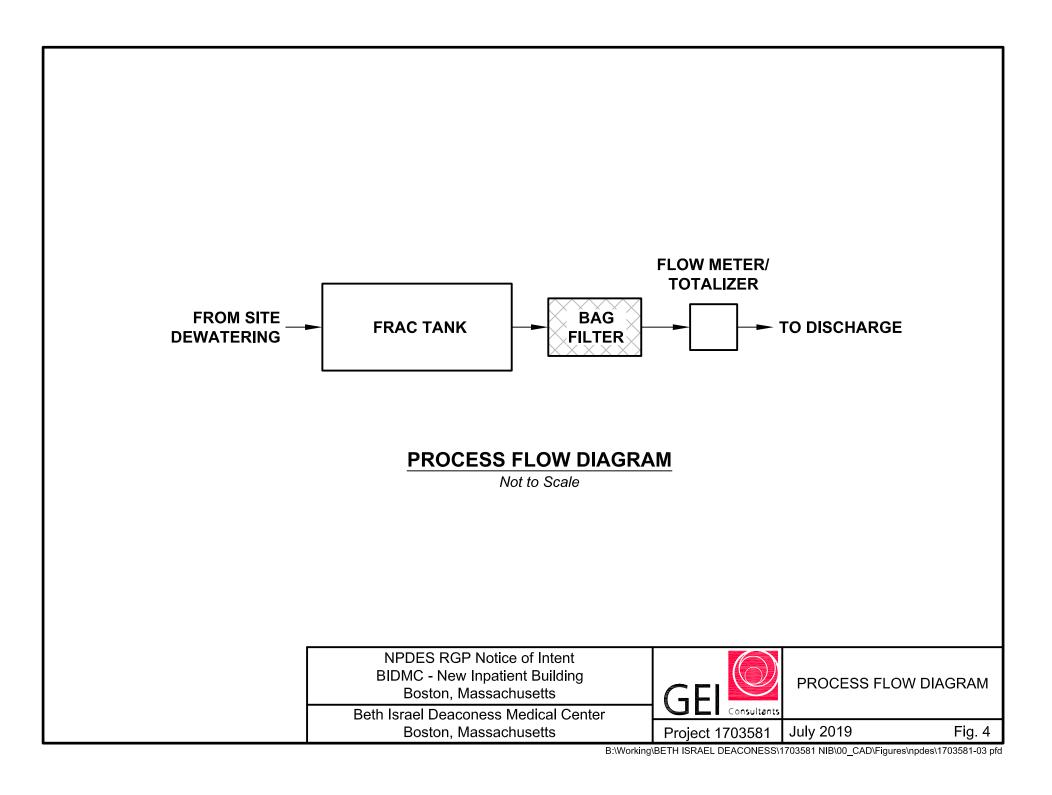

2. "<" = Analyte not detected at a concentration above the laboratory reporting limit. 3. $\mu g/l = micrograms per liter.$

4. S.U. = standard units.


				ple Location:	B202(OW)	B203(OW)
	Screen Int			Sample Date: reen Interval:	6/21/2019 45-65	6/21/2019 40-50
Analyte	Method	Units	MCP RCGW-2	Sne Specific Effluent Limits		
Volatile Organic Compounds (VOCs)		ug/l				
Total BTEX	524.2		NS	100	ND	ND
1,4-Dioxane	8270D-SIM		6,000	200	0.312	0.307
Total Non-Halogenated VOCs	524.2		NS	NS	ND	ND
Total Halogenated VOCs	524.2		NS	NS	ND	ND
Semivolatile Organic Compounds (SVOCs)	625.1 SIM	ug/l				
Total Phthalates			NS	190	ND	ND
Total Group I PAHs			NS	1	ND	ND
Total Group II PAHs			NS	100	ND	ND
Fuel Parameters		ug/l				
Total Petroleum Hydrocarbons	1664A	0	5,000	5,000	< 5,000	< 5,000
Methyl-tert-Butyl Ether	524.2		50,000	70	5.8	< 0.5
Ethanol	ASTM D3695		NS	Report	< 10.000	< 10.000
Inorganic Compounds	710111120000	ug/L	110	Roport	(10,000	(10,000
Antimony	200.8	ug/L	8,000	206	0.3	0.3
Arsenic	3113B		900	104	< 2.5	< 2.5
Cadmium	200.8		300	104	< 0.5	< 0.2
Chromium, Total	200.8		300	NS	< 2.0	< 2.0
Chromium III	200.7		600	323	< 10.0	< 10.0
			-			
Chromium VI	3500Cr B-2009		300	323	< 10.0	< 10.0
Copper	200.7		100,000	242	< 2.0	< 2.0
Iron	200.7		NS	5,000	318	130
Lead	200.8		10	160	< 0.5	0.1
Mercury	245.1		20	0.739	< 0.2	< 0.2
Nickel	200.7		200	1,450	< 5.0	< 5.0
Selenium	3113B		100	235.8	< 5.0	< 5.0
Silver	200.7		7	35.1	< 0.5	< 1.0
Zinc	200.7		900	420	10.4	10.1
Cyanide	4500 CN CE		30	178	< 5.0	< 5.0
Polychlorinated Biphenlyls (PCBs)	608.3	ug/l				
Total PCBs			5	0.5	< 0.09	< 0.09
Other			-			
Ammonia as Nitrogen	350.1	mg/L	NS	Report	0.11	< 0.10
Chloride	300.0	mg/L	NS	Report	162	379
Phenols	420.1	ug/l	NS	NS	< 100	< 100
Hardness	200.7	ug/l	NS	NS	317000	533000
Total Residual Chloride	4500CL D	ug/l	NS	39	< 20.0	< 20.0
Total Suspended Solids	2540D	mg/l	NS	30	5	< 5
Temperature	Field	Deg C	NS	NS	14.3	15.1
рН	Field	S.U.	NS	6.5 to 8.3	7.7	7.0


General Notes:

- 1. For a complete list of analytes, see the laboratory data sheets.
- 2. "<" = Analyte not detected at a concentration above the laboratory reporting limit.
- 3. MCP = 310 CMR 40.0000 Massachusetts Contingency Plan with revisions effective June 20, 2014.
- 4. RCGW-2 = Reportable Concentration for category GW-2 Groundwater.
- 5. $\mu g/I = micrograms per liter.$
- 6. mg/l = milligram per liter.
- 7. deg C = Degrees Celsius.
- 8. S.U. = standard units.
- 9. Dilution Factor of 3.5 used to establish effluent limits.
- 10. Effluent limits calculated using NPDES RGP NOI Dilution Factor Spreadsheet.
- 11. Temperature and pH were measured in the field.



B:\Working\BETH ISRAEL DEACONESS\1703581 NIB\00_CAD\Figures\npdes\1703581-01 slm

\\geiconsulta B:\Working\BETH ISRAEL DEACONESS\1703581 NIB\00_CAD\Figures\npdes\1703581-04.dwg - 7/23/2019

Appendix A

Remediation General Permit

Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 111 Francis Street					
Beth Israel Deaconess Medical Center New Inpatient Building	Street:					
	^{City:} Boston		State: MA	^{Zip:} 02215		
2. Site owner Beth Israel Deaconess Medical Center	Contact Person: David Flanagan, Senior Director	of Capital F	acilities			
Beth Israel Deaconess Medical Center	Telephone: 617-975-9931	Email: dm	flanag@bid	mc.harvard.edu		
	Mailing address: Beth Israel Deaconess Medical Center 200 Brookline Avenue, Suite OV-400B					
Owner is (check one): □ Federal □ State/Tribal ■ Private □ Other; if so, specify:	City: Boston	State: MA	Zip: 02215			
3. Site operator, if different than owner	Contact Person: Peter Burch	Contact Person: Peter Burch				
J Derenzo Co.	Telephone: 508-328-5241	burch@jderenzo.com				
	Mailing address: 338 Howard Street Street:					
	City: Brockton		State: MA	Zip: 02302		
4. NPDES permit number assigned by EPA: MAR100236	5. Other regulatory program(s) that apply to the siteMA Chapter 21e; list RTN(s):	her regulatory program(s) that apply to the site (check all that apply): A Chapter 21e; list RTN(s):				
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	 3-1470 □ NH Groundwater Management Permit or Groundwater Release Detection Permit: 	rogram Pretreatment Section 404				

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):	Class	ification of receiving water(s):							
Muddy River	MA72-11	В								
Receiving water is (check any that apply): Outstanding Resource Water Ocean Sanctuary Uterritorial sea Wild and Scenic River										
2. Has the operator attached a location map in accordance	with the instructions in B, above? (check one):	No								
Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:										
3. Indicate if the receiving water(s) is listed in the State's I pollutants indicated. Also, indicate if a final TMDL is avai 4.6 of the RGP. Impaired water body - see attached Table	lable for any of the indicated pollutants. For more inform									
4. Indicate the seven day-ten-year low flow (7Q10) of the Appendix V for sites located in Massachusetts and Append		ctions in	0.547 cfs							
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire. 3.5										
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? (check one): \blacksquare Yes \Box No If yes, indicate date confirmation received: $07/03/2019$										
7. Has the operator attached a summary of receiving water	sampling results as required in Part 4.2 of the RGP in ac	cordance with th	ne instruction in Appendix VIII?							
(check one): \blacksquare Yes \Box No										

C. Source water information:

1. Source water(s) is (check any that apply):			
Contaminated groundwater	□ Contaminated surface water	■ The receiving water	□ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	\Box A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	□ Other; if so, specify:
■ Yes □ No	\Box Yes \Box No		

a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): \Box Yes \blacksquare No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): \Box Yes \Box No
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): Ves No

D. Discharge information

1. The discharge(s) is $a(n)$ (check any that apply): \Box Existing discharge \blacksquare New disc	harge \Box New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
SDO161 (BWSC)	42.33584 degrees N 71.11102 degrees W
Discharges enter the receiving water(s) via (check any that apply): Direct discharges enter the receiving water(s) and the set of t	ge to the receiving water 🔳 Indirect discharge, if so, specify:

 \Box A private storm sewer system \blacksquare A municipal storm sewer system

If the discharge enters the receiving water via a private or municipal storm sewer system:

Has notification been provided to the owner of this system? (check one): ■ Yes □ No

Has the operator has received permission from the owner to use such system for discharges? (check one): \Box Yes \blacksquare No, if so, explain, with an estimated timeframe for obtaining permission: When issued, the RGP Authorization will be submitted to the Boston Water and Sewer Commission for Dewatering Discharge Permit Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): \Box Yes \blacksquare No

Provide the expected start and end dates of discharge(s) (month/year):

August 2019

Indicate if the discharge is expected to occur over a duration of: \blacksquare less than 12 months \Box 12 months or more \Box is an emergency discharge

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)					
 I – Petroleum-Related Site Remediation II – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	□ C. Halogenated Volatile Organic Co. □ D. Non-Halogenated Semi-Volatile O	 B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds 				
	G. Sites with Known	 /, V, VI, VII or VIII: (check either G or H) □ H. Sites with Unknown Contamination 				
	Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)					
	 A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Volatile Organic Compounds 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				
	 D. Non-Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters 					

4. Influent and Effluent Characteristics

Parameter Known or believed absent	Known	Known				Influent		Effluent Limitations	
	or believed	or d believed	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	2	350.1	100	110	55	Report mg/L	
Chloride		~	2	300.0	50000	379000	271000	Report µg/l	
Total Residual Chlorine	~		2	4500CLD	20.0	< 20.0	0	0.2 mg/L	39
Total Suspended Solids		~	2	2540D	0.005	0.005	0.0025	30 mg/L	
Antimony		~	2	200.8	0.2	0.3	0.3	206 µg/L	2237
Arsenic	~		2	3113B	2.5	<2.5	0	104 µg/L	32
Cadmium	~		2	200.8	0.5	< 0.5	0	10.2 µg/L	0.4294
Chromium III	~		2	200.7	10.0	<10.0	0	323 μg/L	502.5
Chromium VI	~		2	3500Cr	10.0	<10.0	0	323 µg/L	40.0
Copper	~		2	200.7	2.0	< 2.0	0	242 µg/L	26.9
Iron		~	2	200.7	20.0	318	224	5,000 μg/L	1000
Lead		~	2	200.8	0.5	0.1	0.05	160 µg/L	7.03
Mercury	~		2	245.1	0.2	< 0.2	0	0.739 μg/L	3.17
Nickel	~		2	200.7	5.0	< 5.0	0	1,450 µg/L	309.3
Selenium	~		2	3113B	5.0	< 5.0	0	235.8 μg/L	17.5
Silver	~		2	200.7	1.0	< 1.0	0	35.1 µg/L	38.7
Zinc		~	2	200.7	5	10.4	10.25	420 μg/L	614.1
Cyanide	~		2	4500CNC	5.0	<5.0	0	178 mg/L	18.2
B. Non-Halogenated VOCs	3		_			-	-		_
Total BTEX	~		2	524.2	0.5	< 0.5	0	100 µg/L	
Benzene	~		2	524.2	0.5	< 0.5	0	5.0 µg/L	
1,4 Dioxane		~	2	8270DSIM		0.312	03095	200 µg/L	
Acetone	~		2	524.2	5.0	< 5.0	0	7.97 mg/L	
Phenol	~		2	420.1	100	< 100	0	1,080 µg/L	1050

Parameter	Known	Known	or # of believed samples	Test method (#)	Detection limit (µg/l)	Influent		Effluent Limitations	
	or believed absent	believed believed				Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	~		2	524.2	0.3	< 0.3	0	4.4 μg/L	5.6
1,2 Dichlorobenzene	~		2	524.2	0.5	< 0.5	0	600 μg/L	
1,3 Dichlorobenzene	~		2	524.2	0.5	< 0.5	0	320 µg/L	
1,4 Dichlorobenzene	~		2	524.2	0.5	< 0.5	0	5.0 µg/L	
Total dichlorobenzene	~		2	524.2	0.5	< 0.5	0	763 µg/L in NH	
1,1 Dichloroethane	~		2	524.2	0.5	< 0.5	0	70 μg/L	
1,2 Dichloroethane	~		2	524.2	0.5	< 0.5	0	5.0 µg/L	
1,1 Dichloroethylene	~		2	524.2	0.5	< 0.5	0	3.2 µg/L	
Ethylene Dibromide	~		2	504.1	0.015	< 0.015	0	0.05 μg/L	
Methylene Chloride	~		2	524.2	0.5	< 0.5	0	4.6 μg/L	
1,1,1 Trichloroethane	~		2	524.2	0.5	< 0.5	0	200 μg/L	
1,1,2 Trichloroethane	~		2	524.2	0.5	< 0.5	0	5.0 µg/L	
Trichloroethylene	~		2	524.2	0.5	< 0.5	0	5.0 μg/L	
Tetrachloroethylene	~		2	524.2	0.5	< 0.5	0	5.0 µg/L	11.6
cis-1,2 Dichloroethylene	~		2	524.2	0.5	< 0.5	0	70 μg/L	
Vinyl Chloride	V		2	524.2	0.2	< 0.2	0	2.0 µg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates	~		2	625.1 SIM	2.34	< 2.34	0	190 µg/L	
Diethylhexyl phthalate	~		2	625.1 SIM	2.34	< 2.34	0	101 µg/L	7.7
Total Group I PAHs	~		2	625.1 SIM	0.05	< 0.05	0	1.0 µg/L	
Benzo(a)anthracene	~		2	625.1 SIM	0.05	< 0.05	0		0.0133
Benzo(a)pyrene	~		2	625.1 SIM	0.05	< 0.05	0	1	0.0133
Benzo(b)fluoranthene	~		2	625.1 SIM	0.05	< 0.05	0	1	0.0133
Benzo(k)fluoranthene	~		2	625.1 SIM	0.05	< 0.05	0	As Total PAHs	0.0133
Chrysene	~		2	625.1 SIM	0.05	< 0.05	0	1	0.0133
Dibenzo(a,h)anthracene	~		2	625.1 SIM	0.05	< 0.05	0	1	0.0133
Indeno(1,2,3-cd)pyrene	~		2	625.1 SIM	0.05	< 0.05	0	1	0.0133

	Known	Known				In	fluent	Effluent Li	mitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	~		2	625.1 SIM	0.19	< 0.19	0	100 µg/L	
Naphthalene	v		2	625.1 SIM	0.19	< 0.19	0	20 µg/L	
E. Halogenated SVOCs									
Total PCBs	~		2	608.3	0.09	<0.09	0	0.000064 µg/L	
Pentachlorophenol	~		2	625.1 SIM	0.86	<0.86	0	1.0 µg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons	v		2	1664A	0.005	<0.005	0	5.0 mg/L	
Ethanol	~		2	D3695	0.010	< 0.010	0	Report mg/L	
Methyl-tert-Butyl Ether		~	2	524.2	0.5	5.8	2.9	70 μg/L	70
tert-Butyl Alcohol	~		2	524.2	25	<25.0	0	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		2	524.2	1.0	< 1.0	0	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu pH	re, hardness, s	salinity, LC	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nal pollutan NA	ts present); NA	if so, specify: 7.68 S.U.	7.32 S.U.		
Temp			2	NA	NA	59.1 deg F	58.4 deg F		
Hardness		~	2	200.7	824	533000	425000		
	_								

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
🗆 Adsorption/Absorption 🗆 Advanced Oxidation Processes 🗆 Air Stripping 🔳 Granulated Activated Carbon ("GAC")/Liquid Phase Carbon	Adsorption
□ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	
Granulated activated carbon, ion exchange, and other treatments as need to meet effluent limits.	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, dewatering effluent will be routed through a fractionation tan, bag filters, and other treatment as need to meet effluent requirements. See a	attached Figure 4.
Identify each major treatment component (check any that apply):	
Fractionation tanks \square Equalization tank \square Oil/water separator \square Mechanical filter \square Media filter	
\Box Chemical feed tank \Box Air stripping unit \blacksquare Bag filter \blacksquare Other; if so, specify: Granulated activated carbon, ion exchange, and other treatments as n	
Chemical feed tank in An suppling unit is bag mer is other, in so, specify. Granulated activated carbon, ion exchange, and other treatments as n	leed to meet effluent limits.
Indicate if either of the following will occur (check any that apply):	
Chlorination De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component: Flowmeter	250
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	200
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): I Yes D No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)

□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □

scavengers 🗏 pH conditioners 🗆 Bioremedial agents, including microbes 🗆 Chlorine or chemicals containing chlorine 🗏 Other; if so, specify:

pH conditioners, granular activated carbon (GAC), and ion exchange may be added to the treatment system if necessary to meet effluent limits

2. Provide the following information for each chemical/additive, using attachments, if necessary:

a. Product name, chemical formula, and manufacturer of the chemical/additive;

b. Purpose or use of the chemical/additive or remedial agent;

c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;

d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;

e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and

f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).

3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): I Yes I No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?

(check one): \Box Yes \Box No

G. Endangered Species Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- **FWS Criterion A**: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
- □ FWS Criterion B: Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat (informal consultation). Has the operator completed consultation with FWS? (check one): □ Yes □ No; if no, is consultation underway? (check one): □ Yes □ No
- □ **FWS Criterion C**: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes □ No

2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): 🔳 Yes 🗆 No

Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🗆 Yes 🔳 No; if yes, attach.

H. National Historic Preservation Act eligibility determination

1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:

- □ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
- **Criterion B**: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
- Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.

2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): 🔳 Yes 🗆 No

Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \blacksquare No

I. Supplemental information

Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. See attached letter report prepared by GEI.

Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \blacksquare Yes \Box No Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): \blacksquare Yes \Box No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP meeting the requirements of this general permit will be implemented on the Site.

BMPP certification statement:

Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes 🔳	No 🗆
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆 NA 🗆
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes 🔳	
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box MSGP \Box Individual NPDES permit	Charles and Mar C	
\Box Other; if so, specify: /	Check one: Yes 🗆	No 🗇 NA 🔳
Signature: Dat	e: 7/25	/19
Print Name and Title: David Flanagan Director of Facilities	^	

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

A BMPP meeting	the requirements of this	general permit will be im	plemented on the Site.

BMPP certification statement:

Notification provided to the appropriate State, including a copy of this NOI, if requ	ired.	Check one: Yes 🔳	No 🗆	
Notification provided to the municipality in which the discharge is located, includir	ng a copy of this NOI, if requested.	Check one: Yes 🔳	No 🗆	
Notification provided to the owner of a private or municipal storm sewer system, if discharges, including a copy of this NOI, if requested.	such system is used for site	Check one: Yes 🔳	No 🗆 NA 🗆	
Permission obtained from the owner of a private or municipal storm sewer system,	if such system is used for site			
discharges. If yes, attach additional conditions. If no, attach explanation and timefra		Check one: Yes 🔳	No 🗆 NA 🗆	
Notification provided to the owner/operator of the area associated with activities co	vered by an additional discharge			
permit(s). Additional discharge permit is (check one): \Box RGP \Box DGP \Box CGP \Box I	MSGP 🛛 Individual NPDES permit	Check one: Yes \Box	No 🗆 NA 🔳	
\Box Other; if so, Apecify:				
Signature: Dt B Date: 7-29-19				
Print Name and Title: Peter Burch, J Derenzo Co. Project executive				

Table 1. Water Quality Assessment Status for Reporting Year 2014 Muddy River

Designated Use	Designated Use Group	Status
Aesthetic	Aesthetic Value	Impaired
Fish Consumption	Aquatic Life Harvesting	Impaired
Fish, Other Aquatic Life and Wildlife	Fish, Shellfish, And Wildlife Protection And Propagation	Impaired
Primary Contact Recreation	Recreation	Impaired
Secondary Contact Recreation	Recreation	Impaired

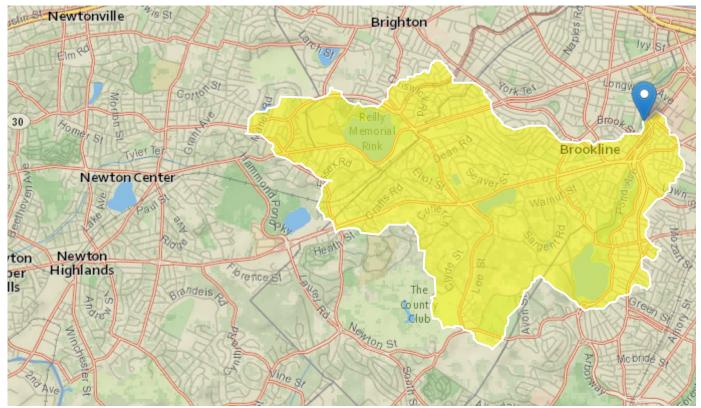
Causes of Impairment for Reporting Year 2014

Cause of Impairment	Cause of Impairment Group	Designated Use(s)	State TMDL Development Status
Bottom Deposits	Sediment	Fish, Other Aquatic Life and Wildlife	Non-pollutant impairement
DDT	Pesticides	Fish Consumption	TMDL needed
Dissolved Oxygen	Organic Enrichment/Oxygen Depletion	Fish, Other Aquatic Life And Wildlife	TMDL needed
Escherichia Coli (E. Coli)	Pathogens	Primary Contact Recreation	TMDL completed
Non-Native Aquatic Plants	Nuisance Exotic Species	Fish, Other Aquatic Life And Wildlife	Non-pollutant impairment
Oil and Grease	Oil and Grease	Fish, Other Aquatic Life And Wildlife	TMDL needed
Other (Unspecified Metals in Sediments)	Other Cause	Fish, Other Aquatic Life And Wildlife	TMDL needed
Other Flow Regime Alterations	Flow Alteration(s)	Fish, Other Aquatic Life And Wildlife	Non-pollutant impairment
PCBs in Fish Tissue	Polychlorinated Biphenyls (PCBs)	Fish Consumption	TMDL needed
Phosphorus, Total	Nutrients	Fish, Other Aquatic Life And Wildlife	TMDL needed
Physical Substrate Habitat Alterations	Habitat Alterations	Fish, Other Aquatic Life And Wildlife	Non-pollutant impairment
Taste and Odor	Taste, Color and Odor	Aesthetic	TMDL needed
Turbidity	Turbidity	Primary and Secondary Contact Recreation, Aesthetic	TMDL needed

Sources:

1. Information obtained from EPA website: https://ofmpub.epa.gov/waters10/attains_index.home on July 1, 2019.

2. Massachusetts Year 2016 Integrated List of Waters, Massachusetts Division of Watershed Management Watershed Planning Program, June 2017.


StreamStats Report

 Region ID:
 MA

 Workspace ID:
 MA20190701203029912000

 Clicked Point (Latitude, Longitude):
 42.33680, -71.11126

 Time:
 2019-07-01 16:31:14 -0400

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	4.86	square miles		
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.328	percent		
DRFTPERSTR	Area of stratified drift per unit of stream length	0.53	square mile per mile		
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless		

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.86	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.328	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.53	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.963	ft^3/s	0.224	3.98	49.5	49.5
7 Day 10 Year Low Flow	0.547	ft^3/s	0.103	2.7	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.8

7/1/2019

StreamStats

Remediation General Permit – Notice of Intent

Dilution Factor Calculation

Purpose and Approach:

Calculate the Dilution Factor (DF) for project based on 7 Day 10 Year (7Q10) Low Flow values and EPA formula:

DF = (Qd + Qs)/Qd where: Qd = Maximum flow rate of discharge in cubic feet per second (cfs)

Qs = Receiving water 7Q10 flow in cfs

Assumptions:

- 1. 7Q10 is 0.55 cfs (from StreamStats 4.3.8)
- 2. A conversion of 7.48 is used to convert cubic feet to gallons.
- 3. A design discharge flowrate of 100 gpm is assumed.

Calculations:

7Q10 Low Flow value (Qs):

$$Qs = \frac{0.55 ft3}{S} X \frac{7.48 gal}{ft3} X \frac{86,400 s}{day} X \frac{1 MG}{1,000,000 gallons}$$
$$Qs = 0.36 MGD$$

Discharge Flow Rate (Qd):

$$Qd = \frac{100 \text{ gallons}}{\min} X \frac{1,440 \min}{day} X \frac{1MG}{1,000,000 \text{ gallons}}$$
$$Qd = 0.144 \text{ MGD}$$

Dilution Factor (DF):

$$DF = \frac{Qs + Qd}{Qd} = \frac{0.36 \, MGD + 0.144 \, MG}{0.144 \, MGD} = 3.5$$

Hi Jessica,

I can confirm that the 7Q10 value of 0.547 cfs and the dilution factor of 3.5 for the proposed discharge to the Muddy River (via an outfall from Brookline Ave, near the intersection with Parkway Road) are correct.

To assist you with filling out the NOI for coverage under the RGP, this segment of the Muddy River is identified as MA72-11, classified as Class B, and is not listed as an Outstanding Resource Water. There are two approved TMDLs for pathogens and nutrients. To see the causes of impairments, go to: <u>https://www.mass.gov/files/documents/2016/08/sa/14list2_0.pdf</u> and search for "MA72-11".

Note that if this is not a *current* MCP site, you must apply to MassDEP alongside submittal of the NOI by following the instructions at: <u>https://www.mass.gov/how-to/wm-15-npdes-general-permit-notice-of-intent</u>. There is a \$500 fee unless the applicant is fee-exempt (e.g. a municipality).

Please let me or Cathy (617-348-4026) know if you have any questions.

Jennifer Wood 617-654-6536

From: Vakalopoulos, Catherine (DEP) Sent: Wednesday, July 03, 2019 9:44 AM To: jenglehart@geiconsultants.com Cc: Wood, Jennifer (DEP) Subject: FW: NPDES RGP NOI - 7Q10 and DF

Hi Jessica, I'm cc-ing Jennifer Wood who will be able to help you. Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026 Please consider the environment before printing this e-mail

From: Englehart, Jessica [mailto:jenglehart@geiconsultants.com]
Sent: Tuesday, July 02, 2019 9:46 AM
To: Ruan, Xiaodan (DEP)
Cc: Vakalopoulos, Catherine (DEP); Ballantyne, Heather
Subject: NPDES RGP NOI - 7Q10 and DF

Hi Xiaodan,

I'm preparing an RGP NOI for upcoming construction in the Longwood area of Boston. Dewatering effluent would discharge to BWSC catch basins and ultimately the Muddy River (via an outfall from Brookline Ave, near the intersection with Parkway Road). From StreamStats, I have a 7Q10 of 0.547 cfs. I calculated a dilution factor (DF) of 3.5 using a design flow rate of 100 gpm.

Could you please confirm the 7Q10 and DF? Let me know if you need any additional information.

Thanks, Jess

Enter number values in green boxes below

Enter values in the units specified

Y 0.36 $Q_R = Enter upstream flow in MGD$ 0.144 $Q_P =$ Enter discharge flow in **MGD** 0 Downstream 7Q10

Enter a dilution factor, if other than zero

 \downarrow

533

Enter values in the units specified

 C_d = Enter influent hardness in mg/L CaCO₃ 47.9 $C_s =$ Enter receiving water hardness in mg/L CaCO₃

Enter receiving water concentrations in the units specified

\checkmark	_
6.87	pH in Standard Units
17.9	Temperature in °C
0.24	Ammonia in mg/L
47.9	Hardness in mg/L CaCO3
0	Salinity in ppt
1.2	Antimony in µg/L
1.3	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
11.5	Copper in µg/L
1750	Iron in µg/L
9.8	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
38.8	Zinc in µg/L

Enter influent concentrations in the units specified

\downarrow	
0	TRC in µg/L
0.11	Ammonia in mg/L
0.3	Antimony in µg/L
0	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
0	Copper in µg/L
318	Iron in µg/L
0.1	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
0	Selenium in µg/L
0	Silver in µg/L
10.4	Zinc in µg/L
0	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0	Benzo(b)fluoranthene in $\mu g/L$
0	Benzo(k)fluoranthene in µg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
5.8	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

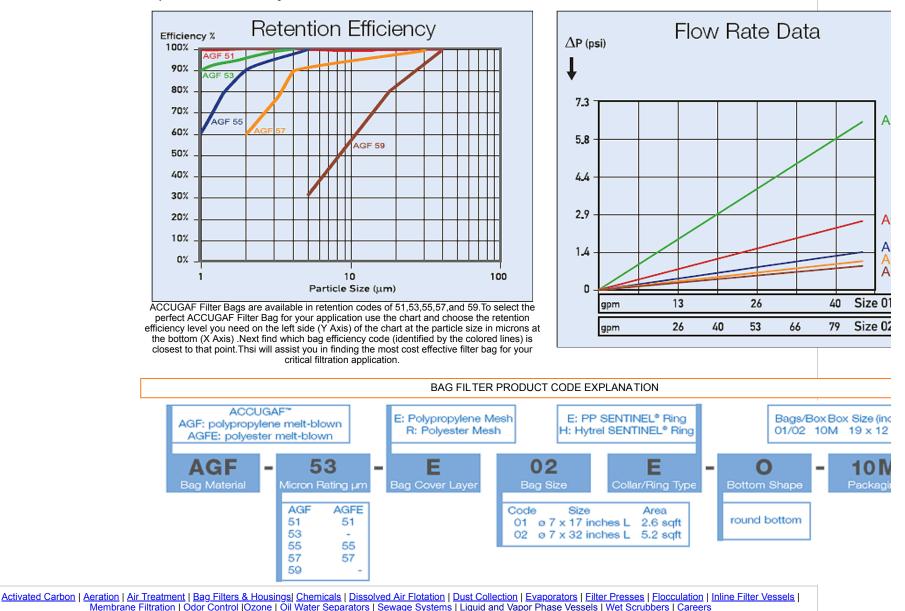
Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater Salinity required for saltwater (estuarine and marine) Metals required for all discharges if present and if dilution factor is > 1 Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor	3.5					
A. Inorganics	TBEL applies if bolded		WQBEL applies i	f bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	39	μg/L	50	µg/L
Total Suspended Solids	30	mg/L mg/L		μ ₆ , Ε	50	μ6/12
Antimony	206	μg/L	2237	μg/L		
Arsenic	104	μg/L	32	μg/L		
Cadmium	10.2	μg/L	0.4294	μg/L		
Chromium III	323	μg/L	502.5	μg/L		
Chromium VI	323	μg/L	40.0	μg/L		
Copper	242	μg/L	26.9	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	7.03	μg/L		
Mercury	0.739	μg/L μg/L	3.17	μg/L μg/L		
Nickel	1450	μg/L μg/L	309.3	μg/L μg/L		
Selenium	235.8	μg/L μg/L	17.5			
Silver			38.7	µg/L		
Zinc	35.1 420	μg/L	614.1	μg/L		
Cyanide		μg/L ma/I		μg/L		<u>на/</u> Г
B. Non-Halogenated VOCs	178	mg/L	18.2	μg/L		µg/L
Total BTEX	100	μg/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone	7970	μg/L		æ		
Phenol C. Halogenated VOCs	1,080	μg/L	1050	μg/L		
Carbon Tetrachloride	4.4	μg/L	5.6	μg/L		
1,2 Dichlorobenzene	600	μg/L		10		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene	 70	μg/L				
1,1 Dichloroethane 1,2 Dichloroethane	5.0	μg/L μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane Trichloroethylene	5.0 5.0	μg/L μg/L				
Tetrachloroethylene	5.0	μg/L μg/L	11.6	μg/L		
cis-1,2 Dichloroethylene	70	μg/L		10		
Vinyl Chloride	2.0	μg/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	7.7	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L		_		_
Benzo(a)anthracene	1.0	μg/L	0.0133	µg/L		μg/L
Benzo(a)pyrene Benzo(b)fluoranthene	1.0 1.0	μg/L μg/L	0.0133 0.0133	μg/L μg/L		μg/L μg/L
Benzo(k)fluoranthene	1.0	μg/L μg/L	0.0133	μg/L μg/L		μg/L μg/L
Chrysene	1.0	μg/L	0.0133	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0133	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0133	μg/L		μg/L
Total Group II Polycyclic Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L μg/L				
E. Halogenated SVOCs	_ ~	r.a.2				
Total Polychlorinated Biphenyls						
	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L mg/L				
Methyl-tert-Butyl Ether	70	μg/L	70	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	µg/L				

Home ECOLOGIX S Y S T E M S Forms Contact Us About Us) 326-2020 / (678) 514-2		ons		ck to Find Us		
 Applications Automotive Biodiesel Dairy Industry Industrial Wastewater Food Processing Industry 	rom FDA compliant n Bags Hayflow Filter ACCUGAF TM The ACCUGAF filte	Element Lofclea , Filter Bags er bag pushes the st-effective filtratio	Relat ar Filter Bags Filtrati S for Appl e boundaries of on solutions for	ed Product I <u>Nylon & Po</u> ion Media O ications of bag filtration of bag filtration	inks lyester Mesh verview Demandi on technolog	ng Efficie	er Bags Ser ency >99 ^r traditional de	ntinel® Filter Ba % signs. With effic	
Food Processing Industry Iron Removal Latex Removal	Material	Filter Model		Particle Size at Common Removal Efficiencies (µm)				es (µm)	ΔP (psi) Size 02
Metals Treatment			Buy non	>60%	>90%	>95%	>99%	>99.9%	@ 45 gpm
■ Mining Industry		AGF 51	*	0.2	0.6	0.8	1.5	5	1.30
Municipal Wastewater		AGF 53	*	0.8	1	2	3	5	3.20
Odor Control	Dehmenulana		1				5		
Petrochemical Industry Revitev Industry	Polypropylene	AGF 55	*	1	2	3		15	0.73
Poultry Industry		AGF 57	*	2	4	5	10	25	0.60
→ Products		AGF 59	88	10	25	30	25	35	0.44
Activated Carbon Bag Filtration		AGFE 51	*	0.2	0.6	0.8	1.5	5	1.30
■ Bag Filter Housings			1				1.5	<u> </u>	
Bag Filter Media	Polyester	AGFE 55	*	1	2	3	5	15	0.73
Biological Treatment		AGFE 57	88	2	4	5	10	25	0.60
 Chemicals (Specialty) Clarifiers Controls Dissolved Air Flotation Dewatering Evaporators Membrane Filtration Microbial Bacteria Oil/Water Separators Ozone Pressure Filtration Screens Separators/Strainers Tanks 	Meltblown No additive FDA Compliant M ACCUGAF Polypro materials conform f Applications Although ideally su as: Beer, wine Fina partic Final filtrati Final filtrati	<u>gs feature</u> : ed seams ENTINEL® seal filtration media in es, such as resins laterials pylene filter bags o US Code of Fe	a polypropylen s, binders or s s are construc deral Regulat beverages, A rage filtration ts cleaning	urface treatr ted entirely o ions 21 CFR	nents of materials c Part 177 an	d EU Directiv	re 2002/72/E	С.	ls in contact with food of demanding applica


OPERATIONALCONSIDERATIONS

Bag Positioner

ACCUGAF filter bags must be used with the Eaton bagpositioner. This eases insertion and assures correct alignment of the filter bag inside the restrainer basket. In addition, the be protected against damage to inadvertent back-flow.

Pre-Wetting in Aqueous Solutions

ACCUGAF polypropylene filter bags are fabricated from microfiber filtration media. These materials are hydro-phobic, indicating that water will not wet the fiber surfaces. As will a polypropylene filters, a lower surface tension fluid (wetting agent) must be used to wet the media prior to introducing water. Prior to service, the filter bags must be immersed in a solution compatible with the process fluid. After wetting, an aqueous fluid will be drawn into the media through capillary action. Full details about installation and wetting are provey box of ACCUGAF filter bags.

http://old.ecologixsystems.com/bag_filters_accugaf.php

Accugaf Filter Bags

FC	LOGIX Water & WasteWater	Treatme	nt Solutio	ons		Click to	Find Us C	Dn:
S Y	IRONMENTAL (888) 326-2020 / S T E M S	(678) 514-:	2100				in	
Home Forms	Contact Us About Us Calculators Site M	ap Sea	arch Site			Go	Onlin	e Store
	Bag Filter Media / Lofclear Absolute Rate Oil Removal Filter B	ags						
and the second se	Accugaf filter bags are constructed from FDA compliant materials. They a to 25 microns with 99% efficiency	re ideal for fo	od processing	applicatio	ns and wi	ll filter par	ticulate fro	om 1 micron
Applications	Relate Accugaf Filter Bags <u>Duragaf Filter Bags</u> <u>Hayflow Filter Element</u> <u>Lofcle</u> & Seal <u>Snap Ring Filte</u>	d Product Linl ear Filter Bags r Bags I Filtra	s Nvlon & Poly	<u>yester Me</u>	<u>sh Proga</u>	af Filter Ba	ags <u>Sent</u>	inel® Filter Bags
 Automotive Biodiesel 	LOFCLEAR: Cost Effective Filter Ba				Applica	tions		
 Dairy Industry Industrial Wastewater Food Processing Industry Iron Removal Latex Removal 		LOFCLEAR where only s pure polypro bags contain excellent oil	filter bags now tandard bags o	make ab could be u ls complia or lubrica akes LOF	solute filtra ised due to ant with fo ants such CLEAR filt	ation viabl o cost cor od require as silicone ter bags id	nstraints. Á ements, L(e oils. In a	Made from 100% OFCLEAR filter Iddition, their
Metals Treatment	LOFCLEAR™Filter Bag Filtration Ratings							
Mining Industry	Particle Size at Common Removal Efficiencies AP (psi) Size							
Municipal Wastewater		Filter Model		1	(µm)			02 @ 45 gpm
Odor Control Detreshaming Industry			Buy Now	>60%	>90%	>95%	>99%	@ 45 gpm
 Petrochemical Industry Poultry Industry 	A CONTRACTOR OF A CONTRACTOR O	113/123	*	0.5	1	2	4	0.36
Products		114/124	*	0.75	2	3	5	0.30
Activated Carbon		115/125	*	1.5	3.5	8	10	0.15
Bag Filtration		116/126	*	2	6	13	15	<0.15
 Bag Filter Housings Bag Filter Media 		118/128	*	25	35	37	40	<0.15
Biological Treatment								
Chemicals (Specialty)		119/129	*	15	25	27	30	<0.15
Clarifiers		130	*	6	14	15	20	0.72
Controls		135	*	1	6	8	10	0.29
Dissolved Air Flotation		522	*	0.5	1	1.5	2.6	1.45
Dewatering		525	*	1	2	3.5	6	0.26
Evaporators	A pleated prefilter provides a very large surface (about 32 sq ft) to collect							
Membrane Filtration		527	*	2	5	9	13	0.15
Microbial Bacteria		529	*	10	20	23	32	<0.15

- Ozone
- Pressure Filtration

Two Series to Match Filters to Applications

3/15/2018

- Screens
- Separators/Strainers
- Tanks

Lofclear Absolute Rate Oil Removal Filter Bags

gels and solids before it reaches the final filter layers.

LOFCLEAR filter bags are available in two styles, Series100 and Series 500. These two styles make it possible to match the requirements of a wide range of applications, depending on the needs for efficiency and long life. The Series 100 filters use a multi-layer construction for applications where high efficiency is of prime importance. The Series 500 filters utilize a patent pending pleated construction to increase surface area for applications requiring high dirt capacities and long life.

Perfect for Removal of Gelatinous Materials

LOFCLEAR filter bags have proven to be highly effective in the removal of gelatinous contaminants. The combination of deep micro fiber filtration media breaks up gels and retains them within the media depth. These features prevent surface blockage and breakthrough typical of standard filter bag materials.

LOFCLEAR™Series 100 Filter Bags

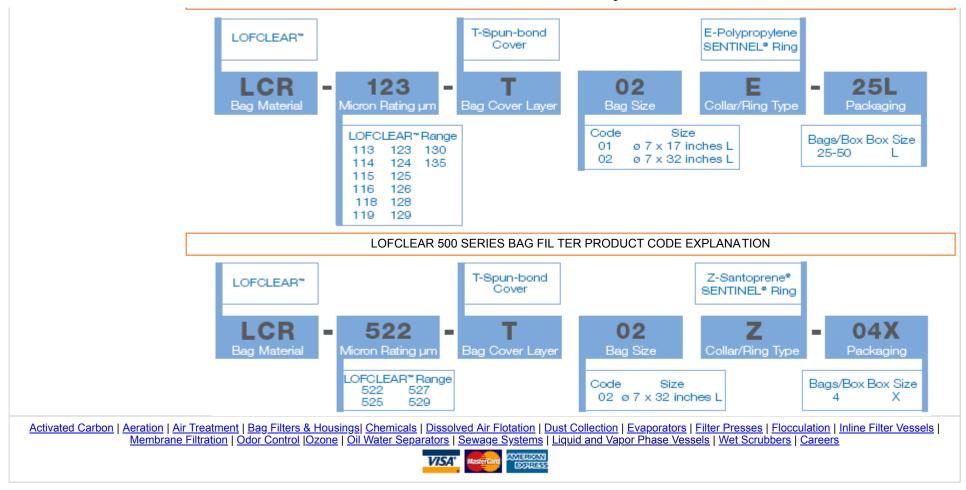
LOFCLEAR Series 100 Filter Bags feature a proven three layer construction with a sewn filter welded to the SENTINEL® seal. They feature efficiencies >99% over a wide range of particle sizes, with dirt capacities up to 1/2pound. The seven models feature:

- Polypropylene pre filter
- Meltblown polypropylene microfiber final filter
- · Polypropylene outer migration barrier

LOFCLEAR Series 100 filter bags are an excellent choice for application such as high purity fluids with low particulate concentration, first pass guard filtration, oil adsorption and activated carbon removal.

The LOFCLEAR 128 and 129 were especially developed for the filtration of electro-coatings in the automotive industry. The filtration design allows pigments to pass through the filtration layers, while retaining impurities and removing silicones and other crater forming substances. The LOFCLEAR 130 filter bag adds extra adsorption capacity for retaining high amounts of oils or other crater forming substances. The LOFCLEAR 135 delivers high removal of particulate and oils for clear coat applications where pigment removal is not an issue.

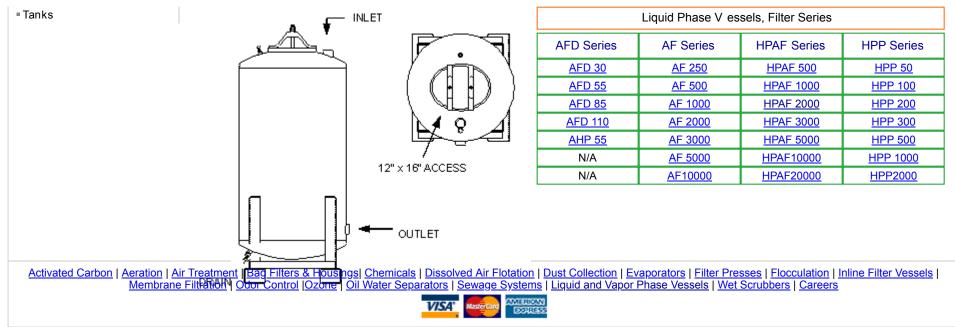
LOFCLEAR™Series 500 Filter Bags


LOFCLEAR Series 500 Filter Bags have an all welded multi-pleated construction for high efficiency and long life. This series of bags has a pleated prefiltration layer and a complex design of final filtration layers, allowing the removal of difficult to filter gels and deformable particles with a high capacity of solids loading. The outer web covering eliminates any downstream fiber migration.

LOFCLEAR Series 500 Filter Bags are available in four different efficiency ratings so you can choose your exact required filtration efficiency. LOFCLEAR Filter Bags have filtration efficiencies from 95 to 99%, with a dirt holding capacity of over 2 pounds.

Among the many applications for LOFCLEAR Series 500 Filter Bags are oils, slurries, dilute oil removal, re-circulating batch systems, and systems with heavy contamination.

Operational Considerations


LOFCLEAR Series 500 Filter Bags must be used with a bag positioner. This eases insertion and assures correct alignment of the filter bag inside the restrainer basket. In addition, the positioner protects the filter bag from potential damage that could be caused by inadvertent back flow.

FCC	LOGIY	Water & WasteWa	ter Treatment Sol	utions	Click to Find Us	On:
S Y					1	
Home Forms	Contact Us About Us	Calculators	Site Map Search Site		Go On	ine Store
and an and a state of the state of the	Liquid Phase V essels > HPAF 2	2000				
 Applications Automotive Biodiesel Dairy Industry Industrial Wastewater Food Processing Industry Iron Removal 	General Description The HPAF-2000 filter is a media filter filter can easily accommodate many n Dissolved Organic Removal (Suspended Solids Removal (Dissolved Minerals (Softener Oil and Grease Removal (Org Dissolved and Precipitated M Special Organics (Resin/Carb Catalytic Reactor (Chlorine ar Bio-Remediation Contactor U	nedias. Some applications inc Activated Carbon) Sand Filter) Resin) gano-Clays) etals Removal pon Blend) nd Peroxide Removal)	streams. While the typical de lude:	esign applicati	ion is a activated carbon ad	sorbtion unit, the
■ Latex Removal ■ Metals Treatment						
Mining Industry	HPA PRESSURE D	F-2000		Standard	Specifications	
 Municipal Wastewater 	0 As Filled -	8*30 GAC		HPAF-2000	SPECIFICATIONS	
Odor Control	ě 5				1	
Petrochemical Industry			Overall Height	8'6"	Vessel/Internal Piping	CS(SA-36) /
Poultry Industry			o i ci cii i i ci gi i		Materials	SCH 40 PVC
→ Products			Dismotor	40"		Polyamide
Activated Carbon	€ 0 20 40 ELOW RA	60 80 100 120 TE (GPM)	Diameter	48"	Internal Coating	Epoxy Resin
Bag Filtration						
Biological Treatment			Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Chemicals (Specialty)						
Clarifiers			Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure /	75PSIG / 140°
Controls				3/4 / 1/2	Temp	F
Dissolved Air Flotation						
Dewatering			GAC Fill (lbs)	2,000	Cross Sectional Bed	12.5 FT ²
Evaporators				_,	Area	12.011
Membrane Filtration						
Microbial Bacteria			Shipping / Operational	3,020/6.775	Bed Depth/Volume	5.5 FT / 68.7
 Oil/Water Separators 			Weight (lbs)			FT ³
Ozone Prosouro Eiltration					Flow rate based on 5-10	
 Pressure Filtration 			Capacity in gallons	570	min. contact time	57 - 114 GPM
 Screens Separators/Strainers 						
Separators/Strainers	haaa haaf2000 nha					

Liquid Phase Vessels - HPAF 2000

"CLEANING THE WORLD WITH ACTIVATED CARBON"

SAFETY DATA SHEET

Section 1 - Identity

Identity (As Used on Label and List): GC Activated Carbon (Including, but not limited to GC C-40, GC 4 x 8B, GC 4 x 8S, GC 6 x 12, GC 6 x 12S, GC 8 x 30, GC 8 x 30AW, GC 8 x 30S, GC 8 x 30SAW, GC 12 x 40, GC 12 x 40AW, GC 12x40SAW, GC 20 x 50, GC 20 x 50S, GC Powdered, GC WDC activated carbons)

Manufacturers Name: General Carbon Corporation 33 Paterson Street Paterson, NJ 07501 Tel: (973)523-2223 www.generalcarbon.com Date Prepared: February 16, 2017

Section 2 - Hazardous Identification

2.1 GHS-US Classification

Eye Irritation 2B H320 STOT SE 3 H335

Hazards not otherwise classified: Combustible dust. May form combustible dust concentrations in air. All powdered activated carbons are classified as weakly explosive (Dust explosion class St1): Given the necessary conditions of a strong ignition source, right concentrations of airborne carbon dust, adequate oxygen levels, and confinement, the potential for a deflagration event exists. A combustible dust hazard assessment and employee training should be carried out. See sections 7 and 9 for further information on combustible dust precautions.

2.2 Label Elements

Hazard Pictograms

Signal word (GHS-US) Hazard Statements

Precautionary statements (GHS-US)

- : Warning
- : H320- Causes eye irritation
- : H335- May cause respiratory irritation
- : P261- Avoid breathing dust
- : P264- Wash thoroughly after handling
- : P271- Use in well-ventilated area
- : P280- Wear protective gloves/clothing/eye & face protect
- : P304&340: IF INHALED: Remove person to fresh air

 P305&351&P338: If in eyes, Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do so. Continue rinsing. P312- Call Poison Control Center/Doctor if you feel sick P403& P233- Store in well-ventilated place. Keep container tightly closed P405- Store locked up P501- Dispose of container to appropriate receptacle 2.3 Other Hazards No additional information available A Unknown acute toxicity (GHS-US) No data available 					
Section 3: Composition/information on ingre 3.1 Substances	<u>edients</u>				
Not applicable					
<u>3.2 Mixture</u>					
Name	CAS #	%	GHS_US classification		
Carbon	7440-44-0	100	Not classified		
Section 4 – First Aid Measures					
4.1 Description of first aid measures					
First aid after inhalation	First aid after inhalation Remove person to fresh air. If not breathing, administer CPR or artific respiration. Get immediate medical attention.				
First aid after skin contact	•		velops, seek medical attention		
First aid after eye contact	Immediately flush eye	es with ple	nty of water for at least 15 minutes.		
First aid after ingestion	If irritation persists, get medical attention. If the material is swallowed, get immediate medical attention or advice. DO NOT induce vomiting unless directed to do so by medical personnel.				
4.2 Most important symptoms and effects, bo	oth acute and delayed				
ymptoms/injuries after inhalation May cause respiratory irritation					
Symptoms/injuries after skin contact	May cause skin irritation				
Symptoms/injuries after eye contact	Causes serious eye damage				
Symptoms/injuries after ingestion	May be harmful is sw	allowed			
4.3 Indication of any immediate medical attention and special treatment needed No additional information available.					
Section 5: Firefighting measures 5.1 Extinguishing media					
Suitable extinguishing media	If involved with fire, f	lood with p	plenty of water		
Unsuitable extinguishing media	None				
5.2 Special hazards arising from substance or	mixture				
Fire hazard	None known				
Explosion hazard	None known				
Reactivity		oxidizers su	ch as ozone, liquid oxygen, chlorine, etc.		
	may result in fire.				
5.3 Advice for firefighters	Eirofightors should	oor full are	tactive goar		
Frotection during intelignting	ection during firefighting Firefighters should wear full protective gear				

Section 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

General measures	Avoid contact with the skin and eyes
6.1.1 For non-emergency personnel No additional information available	
6.1.2 For emergency responders No additional information available	
6.2 Environmental precautions None	
<u>6.3 Methods and material for containment and</u> For containment	<u>d cleaning up</u> If possible, stop flow of product
Methods for cleaning up	Shovel or sweep up and put in closed container for disposal
<u>6.4 Reference to other sections</u> No additional information available	
Section 7: Handling and storage 7.1 Precautions for safe handling Precautions for safe handling	Avoid contact with eyes. Wet activated carbon removes oxygen from air
Ŭ	causing severe hazard to workers inside carbon vessels or confined spaces
7.2 Conditions for safe storage including any in	ncompatibilities

7.2 Conditions for safe storage, including any incompatibilities

 Storage conditions
 Protect containers from physical damage. Store in dry, cool, well-ventilated area. Store away from strong oxidizers, strong acids, ignition sources, combustible materials, and heat. An adequate air gap between packages is recommended to reduce propagation in the case of fire .

Handling: A hazard assessment should be carried out. As with all finely divided materials, ground all transfer, blending, and dust collecting equipment to prevent static discharge. Remove all strong ignition sources from material handling, transfer, and processing areas where dust may be present or accumulate. Practice good housekeeping. Excessive accumulations of dust or dusty conditions can create the potential of secondary explosions. Inspection of hidden surfaces for dust accumulation should be made routinely. If possible, eliminate the pathways for dust to accumulate in hidden areas. Fine carbon dust may penetrate electrical equipment and cause electrical shorts. Where dusting is unavoidable, dust-proof boxes and regular electrical line maintenance are recommended. Refer to NFPA standards 654 for guidance.

Caution employees-no smoking in carbon storage and handling areas. Carbon is difficult to ignite, however, cutting and welding operations should be carried out using hot work permit systems where precautions are taken not to ignite carbon, which may smolder undetected.

7.3 Specific end use(s) No additional information available

Section 8: Exposure controls/ personal protection

8.1 Control parameters

No additional information available

8.2 Exposure controls

Appropriate engineering controls : Lo

Hand Protection Eye Protection Skin and body protection Respiratory protection : Local exhaust and general ventilation must be adequate to meet exposure standards

- : None required under normal product handling conditions
- : safety glasses
- : Wear suitable working clothes

: If airborne concentrations are above the applicable exposure limits, use NIOSH approved respiratory protection

Section 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state	: Solid
Appearance	: Particulate
Color	: Black
Odor	: No data available
Odor threshold	: No data available
Ph	: No data available
Relative evaporation rate	: No data available
Melting point	: No data available
Freezing point	: No data available
Boiling point	: No data available
Flash point	: No data available
Self ignition temperature	: No data available
Decomposition temperature	: No data available
Flammability (solid, gas)	: No data available
Vapor Pressure	: No data available
Relative Vapor density @ 20 deg C	: No data available
Relative Density	: 28-33 lb/ cubic foot
Solubility	: No data available
Log Pow	: No data available
Log Kow	: No data available
Viscosity, kinematic	: No data available
Viscosity, dynamic	: No data available
Explosive properties	: No data available
Oxidizing properties	: No data available
Explosive limits	: No data available

Combustible dust- These products may contain combustible dusts. May form combustible dust concentrations in air. All powdered activated carbons are weakly explosive. No specific information on these carbons are available.

Typical combustible dust data for a variety of activated carbons:

Kst values reported between 43-113 (various sources).

Dust explosion class St1 (Kst values < 200 are Class St1-weakly explosive).

MEC (minimum explosible concentration) in air 50 and 60 g/m₃ (two reports)

Volatile content (by weight): < 8% ASTM D3175-11 (Watercarb)

MIT (minimum ignition temperature) values reported between 400-680°C (752-1256°F) (four reports)

Maximum Absolute Explosion pressure values reported between 6.0-8.6 bar (four reports)

<u>9.2 Other information</u> No additional information available

Section 10: Stability and reactivity

10.1 Reactivity

Contact with strong oxidizers such as ozone, liquid oxygen, chlorine, etc. may result in fire

<u>10.2 Chemical stability</u> Stable under normal conditions

<u>10.3 Possibility of hazardous reactions</u> Will not occur

<u>10.4 Conditions to avoid</u> None

<u>10.5 Incompatible materials</u> Strong oxidizing and reducing agents such as ozone, liquid oxygen or chlorine.

10.6 Hazardous decomposition products

Carbon monoxide may be generated in the event of a fire.

Section 11: Toxicological information

11.1 Information on toxicological effects

Acute toxicity	: Not classified
----------------	------------------

LD50 oral rat: >10000 mg/kgSkin corrosion/irritation: Not classifiedSerious eye damage/irritation: Causes eye irritation			
·			
Serious eve damage/irritation : Causes eve irritation			
senous eye damage, mitation i eauses eye mitation			
Respiratory or skin sensitization : Not classified			
Germ cell mutagenicity : Not classified			
Carcinogenicity : Not classified			
Reproductive toxicity : Not classified			
Specific target organ toxicity : May cause respiratory irritation (single exposure)			
Specific target organ toxicity : Not classified (repeated exposure)			
Aspiration hazard : Not classified			

Section 12: Ecological Information

<u>12.1 Toxicity</u> No additional information available

<u>12.2 Persistence and degradability</u> No additional information available

<u>12.3 Bioaccumulative potential</u> No additional information available

<u>12.4 Mobility in soil</u> No additional information available

12.5 Other adverse effects

No additional information available

Section 13: Disposal concerns

<u>13.1 Waste treatment methods</u> Waste Disposal recommendations

: Dispose of contents/container in accordance with local/ regional/ international regulations

Section 14: Transportation information

In accordance with DOT/ADR/RID/ADNR/IMDG/ICAO/IATA

<u>14.1 UN Number</u> Not applicable. See Note 1 below.

<u>14.2 UN proper shipping name</u> Not applicable

Note 1: Under the UN classification for activated carbon, all activated carbons have been identified as a class 4.2 product. However, This product has been tested according to the United Nations Transport of Dangerous Goods test protocol for a "self-heating substance" (United Nations Transportation of Dangerous Goods, Manual of Tests and Criteria, Part III, Section 33.3.1.6 - Test N.4 - Test Method for Self Heating Substances) and it has been specifically determined that this product does not meet the definition of a self heating substance (class 4.2) or any other hazard class, and therefore should not be listed as a hazardous material. This information is applicable only for the Activated Carbon Product identified in this document.

Section 15: Regulatory information

15.1 US Federal regulations

Carbon (7440-44-0) Listed on the United States TSCA inventory

<u>15.3 US State regulations</u> No additional information available

Section 16: Other information

Full text of H-phrases:

Eye Irrit. 2B	Serious eye damage/eye irritation Category 2B
STOT SE 3	Specific target organ toxicity (single exposure) Category 3
H335	May cause respiratory irritation

NFPA®

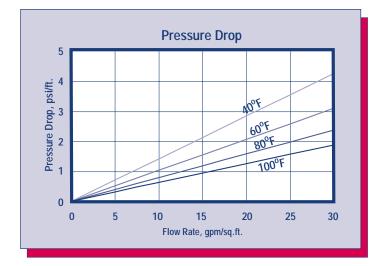
NFPA health hazard
 : 1-Exposure could cause irritation but only minor residual injury even if no treatment is given
 : 1- Materials that require considerable preheating, under all ambient temperature
 conditions, before ignition and combustion can occur (e.g. <u>mineral oil</u>). Includes some finely
 divided suspended solids that do not require heating before ignition can occur. Flash point at
 or above 93.3 °C (200 °F)
 : 0- Normally stable, even under fire exposure conditions, and are not reactive with water

The information contained herein is accurate to the best of our knowledge. General Carbon Corporation makes no warranty with respect hereto said information and disclaims all liability from reliance there in.

RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResiNTech CGS-BL* with identical properties.)

FEATURES & BENEFITS

- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED



UNIFORM PARTICLE SIZE 16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.

- SUPERIOR PHYSICAL STABILITY
 90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.
- LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

PRESSURE DROP - The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure
Functional Group
Ionic Form, as shipped
Physical Form
Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)
pH Range
Sphericity
Uniformity Coefficient
Water Retention
Sodium Form
Solubility
Shipping Weight
Sodium Form
Total Capacity
Sodium Form

Styrene Crosslinked with DVB R-(SO₃)⁻M⁺ Sodium Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to 14 90+ percent Approx. 1.6 48 to 54 percent Insoluble

48 lbs./cu.ft.

1.8 meq/ml min

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of *ResinTech CGS* for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

SUGGESTED OPERATING CONDITIONS

250⁰ F 24 inches 50 to 75% Bed Expansion

10 to 15 percent 0.5 to 1.5 gpm/cu.ft. > 20 minutes 4 to 15 pounds/cu.ft. Same as Regen Flow Rate 10 to 15 gallons/cu.ft. Same as Service Flow Rate 35 to 60 gallons/cu.ft. 2 to 10 gpm/cu.ft.

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH is a registered trademark [®] of RESINTECH INC

ANION EXCHANGE RESIN TYPE ONE GEL CI OR OH FORM

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

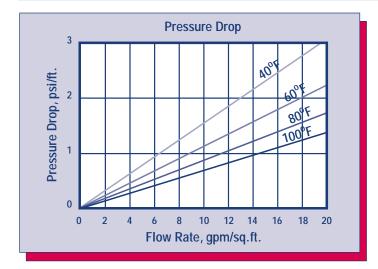
• **COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.** Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

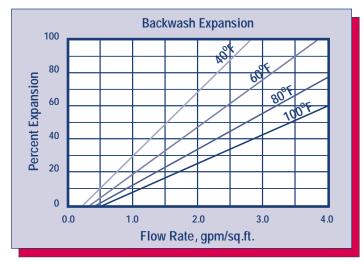
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

PRESSURE DROP

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *ResinTech SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Functional Group Ionic Form, as shipped Physical Form Screen Size Distribution +16 mesh (U.S. Std) -50 mesh (U.S. Std) pH Range Sphericity **Uniformity Coefficient** Water Retention Chloride Form Hydroxide Form Solubility Approximate Shipping Weight CI Form **OH Form** Swelling CI- to OH-**Total Capacity** CI Form **OH Form**

Styrene Crosslinked with DVB R-N-(CH₃)₃+CI-Chloride or Hydroxide Tough, Spherical Beads 16 to 50 < 5 percent < 1 percent 0 to14 > 93 percent Approx. 1.6 43 to 50 percent Approx. 53 to 60 percent Insoluble 44 lbs/cu.ft. 41 lbs/cu.ft 18 to 25 percent

1.45 meq/ml min 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature	
Hydroxide Form	140°F
alt Form	170°F
Minimum Bed Depth	24 inches
Backwash Rate	50 to 75 percent Bed Expansion
Regenerant Concentration*	2 to 6 percent
Regenerant Flow Rate	0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time	At least 40 Minutes
Regenerant Level	4 to 10 pounds/cu.ft.
Displacement Rinse Rate	Same as Regenerant Flow Rate
Displacement Rinse Volume	10 to 15 gals/cu.ft.
Fast Rinse Rate	Same as Service Flow Rate
Fast Rinse Volume	35 to 60 gals/cu.ft.
Service Flow Rates	
Polishing Mixed Beds	3 to 15 gpm/cu.ft.
Non-Polishing Apps.	2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot			
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – *RESINTECH SBG1* is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and *RESINTECH SBG1* are quite similar; the difference between them is the degree of porosity. *RESINTECH SBG1P* has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern *RESINTECH SBG1P*, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers *RESINTECH SBG1* provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH is a registered trademark [®] of RESINTECH INC

Safety Data Sheet Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form) Effective date 31 March 2015

Se	ection 1: Identification	
1a	Product Names	ResinTech SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS
1b	Common Name	Type I Strong base anion resin in the chloride form.
1c	Intended use	All general purpose anion exchanges for general use including salt form and demineralization.
1d	Manufacturer Address	ResinTech, Inc. 160 Cooper Road, West Berlin, NJ 08091 USA
	Phone Email	856-768-9600 ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification

Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

White, yellow, or orange colored solid beads 2b Product description approximately 0.6 mm diameter with little or no odor. Safety glasses and gloves recommended. 2c Precautions for use Slipping hazard if spilled. Will cause eye irritation. 2c Potential health effects Will cause skin skin irritation. Ingestion is not likely to pose a health risk. **Environmental effects** 2d This product may alter the pH of any water that contacts it.

ION EXCHANGE RESINS

Product Name: CG10-H, CG10-H-ULTRA, CG10-H-LTOC, CG10-H-SC, CG10-H-NG, CG10-H-C, CG10-H-F, CG10-H-UPS, CG8-H, CG8-H-ULTRA, CG8-H-LTOC, CG8-H-SC, CG8-H-NG, CG8-H-C, CG8-H-F, CG8-H-UPS, CGS-H, CGS-H-C, CGS-H-F, CGS-H-UPS, CG6-H, GP-SAC-H

Cation Exchange Resin, Hydrogen Form

Effective Date: 11/1/07

1. Company Information:

Company Address:

ResinTech, Inc. 1 ResinTech Plaza 160 Cooper Road West Berlin, NJ 08091 USA

Information Numbers:

Phone Number:856-768-9600Fax Number:856-768-9601Email:ixresin@resintech.comWebsite:www.resintech.com

2. Composition/Ingredients:

Sulfonated copolymer of styrene and divinylbenzene in the hydrogen form.	CAS#	<u>69011-20-7 (35 – 65%)</u>
Water	CAS#	<u> 7732-18-5 (35 – 65%)</u>

This document is prepared pursuant to the OSHA Hazard Communication Standard (29CFR 1910.1200). In addition, other substances not 'Hazardous' per this OSHA Standard may be listed. Where proprietary ingredient shows, the identity may be made available as provided in this standard.

3. Physical/Chemical Data:

Boiling Point:	Not Applicable
Vapor Pressure (MM HG):	Not Applicable
Evaporation Rate (water = 1):	1
Appearance & Odor:	Amber solid beads. No to low odor.
Specific Gravity:	1.2 (water = 1)
Melting Point (deg. F)	Not applicable
Solubility in Water:	Insoluble
Thermal:	May yield oxides of carbon and nitrogen
Vapor Density:	Not Applicable
i 	

Product Hazard Rating	Scale
Toxicity = 0	0 = Negligible
Fire = 0	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

4. Fire & Explosion Hazard Data

Flammable Limits: Unusual Fire & Explosion Hazards: 800 ° Deg. F Product is not combustible until moisture is removed, then resin starts to burn in flame at

Ion Exchange Resins

Combustion Products:

Extinguishing Media: Special Fire Fighting Procedures:

5. Reactivity Data

Stability: Conditions to Avoid: Hazardous by Products:

Materials to avoid contact with: Hazardous Polymerization: Storage:

6. Health Hazards & Sara (Right to Know)

Emergency First Aid Procedures: Skin Absorption: Ingestion:

Inhalation: Systemic & Other Effects:

Carcinogenicity: Sara – title 3, sections 311 & 312:

7. First Aid

Eyes:

Skin:

Ingestion:

Inhalation:

8. Control Measures

Respiratory protection:

Eye protection: Ventilation: Protective Gloves:

9. Safe handling procedures

In Case of Spills:

230 C. Autoignition occurs above 500C. Possible fire. Hazardous combustion products may include and are not limited to: hydrocarbons, sulfur oxides, organic sulfonates, carbon monoxide, carbon dioxide, benzene compounds. Water, CO₂, Talc, Dry Chemical MSHA/NIOSH approved self-contained breathing gear.

Stable

Temperatures above 400° F See Section 3 above for possible combustion products. Strong oxidizing agents (i.e. nitric acid) Material does not polymerize Store in a cool dry place

Contact with eyes can and skins can cause irritation. Skin absorption is unlikely due to physical properties. Single dose oral LD50 has not been determined. Single does oral toxicity is believed to be low. No hazards anticipated from ingestion incidental to industrial exposure. Vapors are unlikely due to physical properties. No specific data available, however, repeated exposures are not anticipated to cause any significant adverse effects. Not Applicable All ingredients are non-hazardous

Irrigate immediately with water for at least 5 minutes. Mechanical irritation only. No adverse effects anticipated by this route of exposure.

No adverse effects anticipated by this route of exposure incidental to proper industrial handling. No adverse effects anticipated by this route of

No adverse effects anticipated by this route of exposure.

Not required for normal uses if irritation occurs from breathing-get fresh air! Splash goggles Normal Not required.

Sweep up material and transfer to containers. Use caution – the floor will be slippery!

sc200[™] UNIVERSAL CONTROLLER

Applications

- Drinking Water
- Wastewater
- Industrial Water
- Power

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 different parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader offers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison

	Previous I	Vodels		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	 Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART 7.2	 Unprecedented combination of sensor breadth and digital communication options

Choose from Hach's Broad Range of Digital and Analog Sensors

Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	
Chlorine Dioxide	9185 sc	
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	\bigtriangleup
Dissolved Oxygen	LDO® Model 2, 5740 sc	
Dissolved Oxygen	5500	\bigtriangleup
Flow	U53, F53 Sensors	\bigtriangleup
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	
Oil in Water	FP360 sc	
Organics	UVAS sc	
Ozone	9187 sc	
pH/ORP	pHD	
pH/ORP	pHD, pH Combination, LCP	\bigtriangleup
Phosphate	PHOSPHAX™ sc	
Sludge Level	SONATAX™ sc	
Suspended Solids	SOLITAX™ sc, TSS sc	
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	\bigtriangleup
Ultra Pure pH/ORP	8362	\bigtriangleup

 \blacksquare = Digital \triangle = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module. 2 Channel Configurations 1 Channel Configurations

sc200[™] Universal Controller

Specifications*

opeenieutions	
Dimensions (H x W x D)	5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm)
Display	Graphic dot matrix LCD with LE backlighting, transreflective
Display Size	1.9 x 2.7 in. (48 mm x 68 mm)
Display Resolution	240 x 160 pixels
Weight	3.75 lbs. (1.70 kg)
Power Requirements (Voltage)	100 - 240 V AC, 24 V DC
Power Requirements (Hz)	50/60 Hz
Operating Temperature Range	-20 to 60 °C , 0 to 95% RH non-condensing
Analog Outputs	Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: $\pm 0.1\%$ of FS (20mA) at 25 °C, $\pm 0.5\%$ of FS over -20 °C to 60 range
	Operational Mode: measuremen or calculated value
Analog Output Functional Mode	Linear, Logarithmic, Bi-linear, PI
Security Levels	2 password-protected levels
Mounting Configurations	Wall, pole, and panel mounting
Enclosure Rating	NEMA 4X/IP66
Conduit Openings	1/2 in NPT Conduit
Relay: Operational Mode	Primary or secondary measurement, calculated value (dual channel only) or timer

1 in m x 181 mm)	Relay Functions
x LCD with LED preflective	
ım x 68 mm)	Relays
1	Communication
24 V DC	Momory Poolsup
	Memory Backup Electrical Certifications
95% RH	
ional expansion d current Ω , Accuracy: nA) at 25 °C, r -20 °C to 60 °C	
: measurement e	
c, Bi-linear, PID	
cted levels	
nel mounting	
uit	
lan	

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control, and Warning
Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

MODBUS RS232/RS485, PROFIBUS DPV1, or HART 7.2 optional

Flash memory

EMC

CE compliant for conducted and radiated emissions:

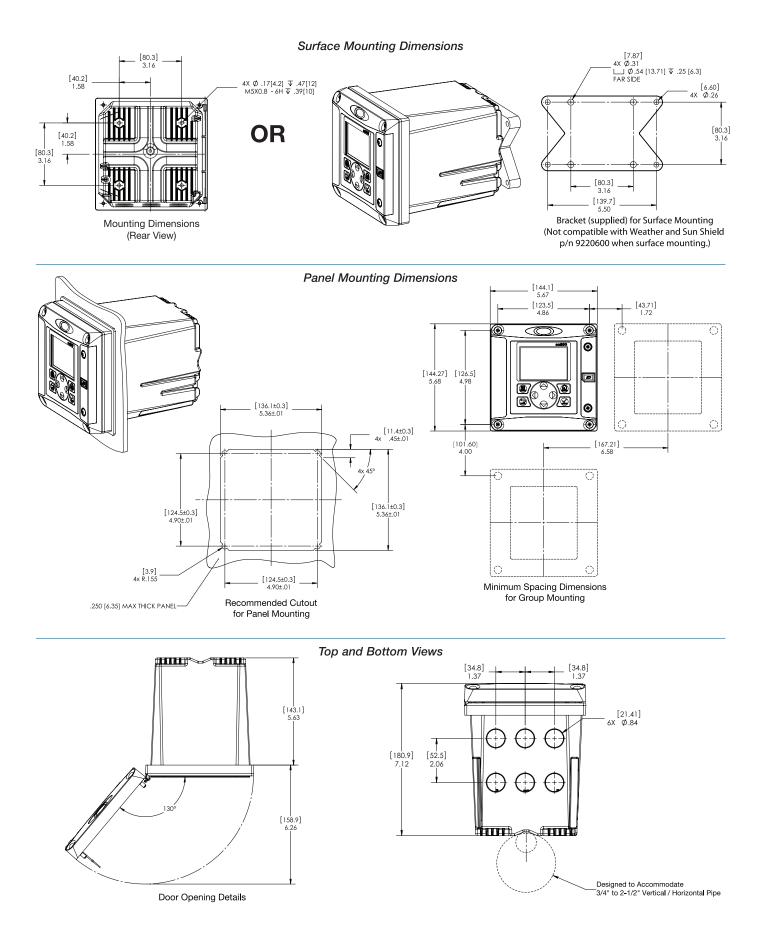
- CISPR 11 (Class A limits)

- EMC Immunity EN 61326-1 (Industrial limits)

Safety

cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1
- Hazardous Location Class I, Division 2, Groups A,B,C & D
 (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213
 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark

- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1

*Subject to change without notice.

4

Dimensions

5

Ordering Information

sc200 for Hach Digital and Analog Sensors

LXV404.99.00552	sc200 controller, 2 channels, digital
LXV404.99.00502	sc200 controller, 1 channel, digital
LXV404.99.00102	sc200 controller, 1 channel, pH/DO
LXV404.99.00202	sc200 controller, 1 channel, Conductivity
LXV404.99.01552	sc200 controller, 2 channels, digital, Modbus RS232/RS485
LXV404.99.00112	sc200 controller, 2 channel, pH/DO

Note: Other Sensor combinations are available. Please contact Hach Technical Support or your Hach representative.

Note: Communication options (MODBUS, Profibus DPV1, and HART) are available. Please contact Hach Technical Support or your Hach representative.

sc200 for Ultrapure Sensors

9500.99.00602	sc200 controller, 1 channel, ultrapure conductivity
9500.99.00702	sc200 controller, 1 channel, ultrapure pH
9500.99.00662	sc200 controller, 2 channel, ultrapure conductivity
9500.99.00772	sc200 controller, 2 channel, ultrapure pH

Sensor and Communication Modules

9012900	Analog pH/ORP and DO module for GLI Sensors
9013000	Analog Conductivity module for GLI Sensors
9012700	Flow module
9012800	4-20 mA Input Module
9525700	Analog pH/ORP Module for Polymetron Sensors
9525800	Analog Conductivity Module for Polymetron Sensors
9013200	Modbus 232/485 Module
9173900	Profibus DP Module
9328100	HART Module
9334600	4-20 mA Output Module (Provides 3 additional mA Outputs)

Accessories

9220600	sc200 Weather and Sun Shield with UV Protection Screen
8809200	sc200 UV Protection Screen
9218200	SD card reader (USB) for connection to PC
9218100	4 GB SD card

HACH COMPANY World Headquarters: Loveland, Colorado USA

United States: Outside United States: **hach.com** 800-227-4224 tel 970-669-2932 fax 970-669-3050 tel 970-461-3939 fax

orders@hach.com int@hach.com

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton[®] or PVDF, and the reference junction is coaxial porous PTFE. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Digital combination pH and ORP sensors are available

in convertible, insertion, and sanitary mounting

styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

DW

DW = drinking water WW = wastewater municipal PW = pure water / power IW = industrial water E = environmental C = collections FB = food and beverage

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range 0 to 14 pH

Accuracy Less than 0.1 pH under reference conditions

Temperature Range 0 to 105°C (32 to 221°F)

Flow Rate 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range 0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton[®] body (glass filled)

Insertion style: PVDF body (Kynar[®])

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE double junction, glass process electrode, and Viton $^{\textcircled{B}}$ O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range -2000 to +2000 millivolts

Accuracy Limited to calibration solution accuracy (± 20 mV)

Temperature Range 0 to 105°C (32 to 221°F)

Flow Rate 0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton[®] body (glass filled)

Insertion style: PVDF body (Kynar[®])

Common materials for all sensor styles include PTFE double junction, glass with platinum process electrode, and $\mathsf{Viton}^{\texttt{®}}$ Orings

Warranty

90 days

*Specifications subject to change without notice.

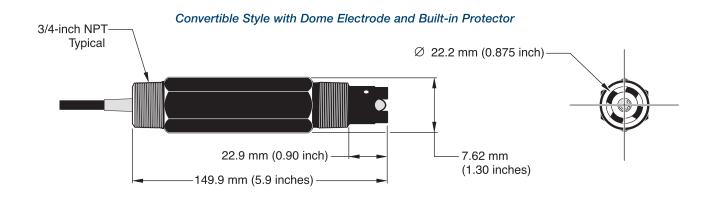
Ryton[®] is a registered trademark of Phillips 66 Co.; Viton[®] is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar[®] is a registered trademark of Pennwalt Corp.

Engineering Specifications

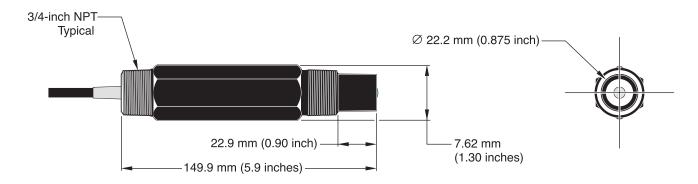
- 1. The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- 5. The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor

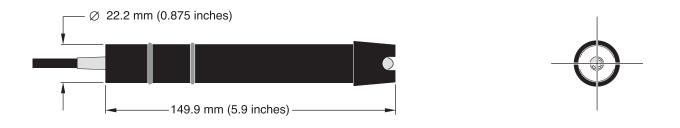

The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor

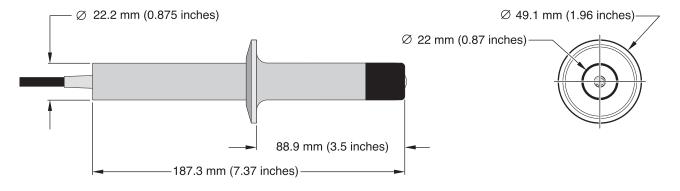

Insertion style sensors feature a longer, non-threaded PVDF body with two Viton[®] O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.



Convertible Style with Flat Electrode



Dimensions continued

Insertion Style with Dome Electrode and Built-In Protector

Sanitary Style

Digital PC sc and RC sc 3/4-inch Combination pH/ORP Sensors

All PC sc and RC sc 3/4-inch combination sensors come complete with an integral 4.5 m (15 ft.) sensor cable, Digital Gateway, and 1 m (3.3 ft.) digital extension cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	Electrode Type	<u>Temp. Comp.</u>
DPC1R1N	рН	Convertible	Ryton	General purpose glass	None
DPC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
DPC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
DPC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
DPC1R3A	рН	Convertible	Ryton	HF-resistant glass (see Note)	Pt 1000 ohm RTD
DPC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
DPC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
DPC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
DRC1R5N	ORP	Convertible	Ryton	Platinum	None
DRC2K5N	ORP	Insertion	PVDF	Platinum	None

NOTE

The HF (hydrofluoric acid) resistant glass electrode reduces the HF dissolution of the complete glass surface to extend the lifetime of the electrode in acid fluoride solutions. The electrode will last longer than conventional glass pH electrodes. How much longer depends on the HF concentration and temperature of the solution.

Replacement Digital Gateway

6120600 Use the Digital Gateway to connect analog PC and RC sensors to a Hach sc Digital Controller.

Ordering Information continued

Analog PC and RC 3/4-inch Combination pH/ORP Sensors

All PC and RC 3/4-inch combination sensors come with an integral 4.5 m (15 ft.) standard length sensor cable.

<u>Product Number</u>	<u>Measurement</u>	<u>Sensor Style</u>	<u>Body Material</u>	<u>Electrode Type</u>	<u>Temp. Comp.</u>
PC1R1N	рН	Convertible	Ryton	General purpose glass	None
PC1R1A	рН	Convertible	Ryton	General purpose glass	Pt 1000 ohm RTD
PC1R2N	рН	Convertible	Ryton	Flat glass, general purpose	None
PC1R2A	рН	Convertible	Ryton	Flat glass, general purpose	Pt 1000 ohm RTD
PC1R3A	рН	Convertible	Ryton	HF-resistant glass	Pt 1000 ohm RTD
PC2K1A	рН	Insertion	PVDF	General purpose glass	Pt 1000 ohm RTD
PC2K2A	рН	Insertion	PVDF	Flat Glass	Pt 1000 ohm RTD
PC3K2A	рН	Sanitary	316 SS/PVDF	General purpose glass	Pt 1000 ohm RTD
RC1R5N	ORP	Convertible	Ryton	Platinum	None
RC2K5N	ORP	Insertion	PVDF	Platinum	None

Accessories for Digital and Analog 3/4-inch combination pH/ORP Sensors

Cables

Digital cables are used only with digital sensors or gateways when connecting to a Hach sc Digital Controller.

6122400	Digital	Extension	Cable, 1	m	(3.3 ft)

5796000 Digital Extension Cable, 7.7 m (25 ft)

5796100 Digital Extension Cable, 15 m (50 ft)

5796200 Digital Extension Cable, 31 m (100 ft)

Analog cables are used only with analog sensors, junction box, and controller.

1W1100 Analog Interconnect Cable (order per foot)

Digital Termination Box

Used with digital extension cables when the desired cable length between the digital sensor/digital gateway and the Hach sc Digital Controller is between 100 m (328 ft) and 1000 m (3280 ft).

5867000 Digital Termination Box

Analog Junction Box

Used with analog interconnect cable when the desired cable length between analog sensor and analog controller is greater than the standard length of sensor cable. Each junction box includes terminal strip and gasket.


60A2053	Junction Box,	Surface-mount,	aluminum	(includes	mounting	hardware)

60A9944 Junction Box, Pipe-mount, PVC, for 1/2-inch diameter pipe (includes mounting hardware)

60G2052 Junction Box, Pipe-mount, PVC, for 1-inch diameter pipe (includes mounting hardware)

76A4010-001 Junction Box, NEMA 4X (no mounting hardware included)

Ordering Information continued

1. Sanitary Mounting

2. Immersion Mounting

3. Flow-through Mounting

4. Insertion Mounting

Mounting Hardware for PC sc and RC sc Combination Sensors

Sanitary Mount Hardware

9H1310	2-inch Sanitary Tee
9H1132	2-inch Sanitary Clamp
9H1384	2-inch Sanitary Viton Gasket

Immersion Mount Hardware

Each immersion hardware includes a 1/2-inch diameter x 4 foot long pipe, $1/2 \times 3/4$ -inch NPT coupling, and plastic pipe-mount junction box with terminal strip. **MH432G** CPVC Pipe

Flow-through Mount Hardware

Each tee is a standard 3/4-inch tee with 3/4-inch NPT threads on all three openings.

MH313N3NZ	316 SS Tee
MH333N3NZ	CPVC Tee
MH373N3NZ	PVC Tee

Insertion Mount Hardware

The insertion hardware includes a 1-1/2 inch ball valve, 1-1/2 inch NPT close nipple for process connection, sensor connection tube, stainless steel extension pipe, and stainless steel compression fitting with washer and lock nut. **MH116M3MZ** 316 SS Hardware

To complete your pH and ORP measurement system, choose from these Hach controllers...

Model sc200 Controller

(see Lit. #2665)

The sc200 controller platform can be configured to operate either 2 Digital Sensor Inputs, or 1 or 2 Analog Sensor Inputs, or a combination of Digital and Analog Sensor Inputs. Customers may choose their communication options from a variety of offerings ranging from MODBUS RTU to Profibus DPV1.

sc200 for Hach Digital Sensors

LXV404.99.00552sc200 controller, 2 channel, digitalLXV404.99.00502sc200 controller, 1 channel, digitalLXV404.99.00542sc200 controller, 2 channel, digital & mA inputSc200 controller, 2 channel, digital & pH/DOLXV404.99.00522LXV404.99.00532Sc200 controller, 2 channel, digital & Conductivitysc200 controller, 2 channel, digital & Flow

sc200 for Hach Analog Sensors

LXV404.99.00102sc200 controller, 1 channel, pH/DOLXV404.99.00112sc200 controller, 2 channel, pH/DOLXV404.99.00202sc200 controller, 1 channel, ConductivityLXV404.99.00212sc200 controller, 2 channel, ConductivityLXV404.99.00302sc200 controller, 2 channel, pH/DO & ConductivityLXV404.99.00302sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00312sc200 controller, 2 channel, FlowLXV404.99.00322sc200 controller, 2 ch

or your Hach representative. Note: Communication options (MODBUS and Profibus DPV1) are available.

Model sc1000 Controller

(see Lit. #2403)

Each sc1000 Probe Module provides power to the system and can accept up to 8 digital sensors/expansion boards. Probe Modules can be networked together to accommodate up to 32 digital sensors/expansion boards attached to the same network.

	sc1000 Display Module
LXV400.99.1R572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays,
	110-230V
LXV400.99.1B572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays, RS-485
	(MODBUS), 110-230V
LXV400.99.1F572	sc1000 Probe Module, 4 sensors,
	4 mA Out, 4 mA In, 4 Relays, PROFIBUS DP, 110-230V
LXV400.99.1R582	sc1000 Probe Module, 6 sensors,
	4 mA Out, 4 mA In, 4 Relays, 110-230V

At Hach, it's about learning from our customers and providing the right answers. It's more than ensuring the quality of water—it's about ensuring the quality of life. When it comes to the things that touch our lives...

Keep it pure. Make it simple. Be right.

For current price information, technical support, and ordering assistance, contact the Hach office or distributor serving your area.

In the United States, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 800-227-4224 Fax: 970-669-2932 E-mail: orders@hach.com **www.hach.com**

U.S. exporters and customers in Canada, Latin America, sub-Saharan Africa, Asia, and Australia/New Zealand, contact:

HACH COMPANY World Headquarters P.O. Box 389 Loveland, Colorado 80539-0389 U.S.A. Telephone: 970-669-3050 Fax: 970-461-3939 E-mail: intl@hach.com **www.hach.com**

In Europe, the Middle East, and Mediterranean Africa, contact:

HACH LANGE GmbH Willstätterstraße 11 D-40549 Düsseldorf GERMANY Tel: +49 (0) 211 5288-0 Fax: +49 (0) 211 5288-143 E-mail: info@hach-lange.de **www.hach-lange.com**

95-Gallon OverPack Salvage Drum #A95OVER - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A95OVER Specifications

Dimensions:	ext. dia. 32" x 41.5" H
Shipping	31.75" W x 41.5" L x 31.75" H
Dimensions:	
Sold as:	1 per package
Color:	Yellow
Composition:	Polyethylene
Weight:	48 lbs.
# per Pallet:	3
Incinerable:	No
UN RATING:	1H2/X295/S
Ship Class:	250

Metric Equivalent Specifications

Dimensions:	ext. dia. 81.3cm x 105.4cm H
Shipping	80.6cm W x 105.4cm L x 80.6cm H
Dimensions:	
Weight:	21.8 kg

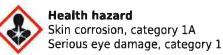
Online: spilltech.com Phone: 1-800-228-3877 (N.Am.) 1-770-475-3877 (Other) Fax: 1-800-872-3764 (N.Am.) 1-770-410-1812 (Other) Email: sales@spilltech.com

Safety Data Sheet

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015

Sulfuric Acid, 3M


SECTION 1 : Identification of the substance/mixture and of the supplier			
Product name :	Sulfuric Acid, 3M		
Manufacturer/Supplier Trade name:			
Manufacturer/Supplier Article number:	S25899		
Recommended uses of the product and uses res Manufacturer Details:	strictions on use:		
AquaPhoenix Scientific 9 Barnhart Drive, Hanover, PA 17331			
Supplier Details:			
Fisher Science Education 15 Jet View Drive, Rochester, NY 14624			

Emergency telephone number:

Fisher Science Education Emergency Telephone No.: 800-535-5053

SECTION 2 : Hazards identification

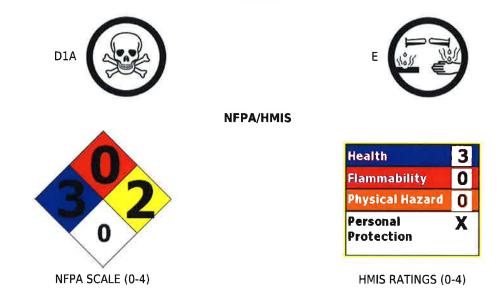
Classification of the substance or mixture:

Corrosive to metals, category 1 skin corr./irrit. 1A Corrosive to metals. 1 Eye corr. 1

Signal word : Danger

Hazard statements: May be corrosive to metals Causes severe skin burns and eye damage Causes serious eye damage **Precautionary statements:** If medical advice is needed, have product container or label at hand Keep out of reach of children Read label before use Wear protective gloves/protective clothing/eye protection/face protection Wash ... thoroughly after handling Do not breathe dust/fume/gas/mist/vapours/spray Keep only in original container IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing Immediately call a POISON CENTER or doctor/physician IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower Wash contaminated clothing before reuse

according to 29CFR1910/1200 and GHS Rev. 3


Effective date : 02.15.2015

Sulfuric Acid, 3M

IF SWALLOWED: Rinse mouth. Do NOT induce vomiting Specific treatment (see ... on this label) Absorb spillage to prevent material damage Store locked up Dispose of contents/container to ...

Other Non-GHS Classification:

WHMIS

SECTION 3 : Composition/information on ingredients

Ingredients:					
CAS 7664-93-9	Sulfuric Acid, ACS	31.004 %			
CAS 7732-18-5	Water	68.996 %			
		Percentages are by weight			

SECTION 4 : First aid measures

Description of first aid measures

After inhalation: Loosen clothing as necessary and position individual in a comfortable position. Move exposed to fresh air. Give artificial respiration if necessary. If breathing is difficult give oxygen. Get medical assistance if cough or other symptoms appear.

After skin contact: Rinse/flush exposed skin gently using soap and water for 15-20 minutes.Seek medical advice if discomfort or irritation persists.

After eye contact: Protect unexposed eye.Rinse/flush exposed eye(s) gently using water for 15-20 minutes.Remove contact lens(es) if able to do so during rinsing.Seek medical attention if irritation persists or if concerned.

After swallowing: Rinse mouth thoroughly. Do not induce vomiting. Seek medical attention if irritation, discomfort, or vomiting persists.

Most important symptoms and effects, both acute and delayed:

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015

Sulfuric Acid, 3M

Irritation.Headache.Nausea.Shortness of breath.;

Indication of any immediate medical attention and special treatment needed:

If seeking medical attention provide SDS document to physician. Physician should treat symptomatically.

SECTION 5 : Firefighting measures

Extinguishing media

Suitable extinguishing agents: Use water, dry chemical, chemical foam, carbon dioxide, or alcohol-resistant foam.

For safety reasons unsuitable extinguishing agents:

Special hazards arising from the substance or mixture:

Thermal decomposition can lead to release of irritating gases and vapors.

Advice for firefighters:

Protective equipment: Wear protective eyeware, gloves, and clothing. Refer to Section 8.Use NIOSHapproved respiratory protection/breathing apparatus.

Additional information (precautions): Avoid inhaling gases, fumes, dust, mist, vapor, and aerosols. Avoid contact with skin, eyes, and clothing.

SECTION 6 : Accidental release measures

Personal precautions, protective equipment and emergency procedures:

Ensure adequate ventilation. Ensure that air-handling systems are operational.

Environmental precautions:

Should not be released into environment.Prevent from reaching drains, sewer, or waterway.

Methods and material for containment and cleaning up:

Wear protective eyeware, gloves, and clothing. Refer to Section 8.Always obey local regulations.Containerize for disposal. Refer to Section 13.If necessary use trained response staff or contractor. Evacuate personnel to safe areas. Keep in suitable closed containers for disposal.

Reference to other sections:

SECTION 7 : Handling and storage

Precautions for safe handling:

Avoid contact with skin, eyes, and clothing.Follow good hygiene procedures when handling chemical materials. Refer to Section 8.Follow proper disposal methods. Refer to Section 13.Do not eat, drink, smoke, or use personal products when handling chemical substances.

Conditions for safe storage, including any incompatibilities:

Store in a cool location. Keep away from food and beverages.Protect from freezing and physical damage.Provide ventilation for containers. Keep container tightly sealed.Store away from incompatible materials.

SECTION 8 : Exposure controls/personal protection

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015	Page 4 of 7
	Sulfuric Acid, 3M
Control Parameters:	7664-93-9, Sulfuric Acid, ACS, OSHA PEL: 1mg/m3 7664-93-9, Sulfuric Acid, ACS, ACGIH TLV: 1 mg/m3
Appropriate Engineering controls:	Emergency eye wash fountains and safety showers should be available in the immediate vicinity of use or handling. Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapor and mists below the applicable workplace exposure limits (Occupational Exposure Limits-OELs) indicated above.
Respiratory protection:	Not required under normal conditions of use. Where risk assessment shows air-purifying respirators are appropriate use a full-face particle respirator type N100 (US) or type P3 (EN 143) respirator cartridges as a backup to engineering controls. When necessary use NIOSH approved breathing equipment.
Protection of skin:	Select glove material impermeable and resistant to the substance.Select glove material based on rates of diffusion and degradation. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices.Use proper glove removal technique without touching outer surface. Avoid skin contact with used gloves.Wear protective clothing.
Eye protection:	Wear equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).Safety glasses or goggles are appropriate eye protection.
General hygienic measures:	Perform routine housekeeping. Wash hands before breaks and at the end of work. Avoid contact with skin, eyes, and clothing.Before wearing wash contaminated clothing.

SECTION 9 : Physical and chemical properties

Appearance (physical state,color):	Clear, colorless liquid.	Explosion limit lower: Explosion limit upper:	Not Determined Not Determined	
Odor:	Odorless	Vapor pressure:	<0.00120mmHg	
Odor threshold:	Not Determined	Vapor density:	Not Determined	
pH-value:	< 0.03	Relative density:	Not Determined	
Melting/Freezing point:	11C	Solubilities:	Miscible	
Boiling point/Boiling range:	105 - 325C	Partition coefficient (n- octanol/water):		
Flash point (closed cup):	Not Determined	Auto/Self-ignition temperature:	Not Determined	
Evaporation rate:	Not Determined	Decomposition temperature:	Not Determined	
Flammability (solid,gaseous):	Not Determined	Viscosity:	a. Kinematic:Not Determined b. Dynamic: Not Determined	
Density: Not Determined				

SECTION 10 : Stability and reactivity

Reactivity: Nonreactive under normal conditions. Chemical stability:Stable under normal conditions. Possible hazardous reactions:None under normal processing.

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015

Page 5 of 7

Sulfuric Acid, 3M

Conditions to avoid: Incompatible materials.

Incompatible materials:Organics. Metals. Chlorates. Alkalines. Carbides. Fulminates. Reducing agents. Nitrates. Acetic acid. Oxidizing agents

Hazardous decomposition products:Oxides of sulfur.

SECTION 11 : Toxicological information

Acute Toxicity:		
Inhalation:	510 mg/m3 2 h	Inhalation LC50 Rat
Oral:	2140 mg/kg	Oral LD50 Rat
Chronic Toxicity:	No additional information,	с. Г
Corrosion Irritati	on: No additional information.	
Sensitization:		No additional information.
Single Target Or	gan (STOT):	No additional information.
Numerical Measu	ires:	No additional information.
Carcinogenicity:		No additional information.
Mutagenicity:		No additional information.
Reproductive Toxicity:		No additional information.

SECTION 12 : Ecological information

Ecotoxicity

Freshwater Fish: 96 Hr LC50 Brachydanio rerio: >500 mg/L [static] Fish: LC50 - Gambusia affinis (Mosquito fish) - 42 mg/l - 96 h Invertebrates: EC50 - Daphnia magna (Water flea) - 29 mg/l - 24 h Persistence and degradability: Bioaccumulative potential: Mobility in soil:

Other adverse effects:

SECTION 13 : Disposal considerations

Waste disposal recommendations:

Contact a licensed professional waste disposal service to dispose of this material.Dispose of empty containers as unused product.It is the responsibility of the waste generator to properly characterize all waste materials according to applicable regulatory entities (US 40CFR262.11). Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations. Ensure complete and accurate classification.

SECTION 14 : Transport information

UN-Number

1830

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015

Sulfuric Acid, 3M

UN proper shipping name

Sulfuric Acid Solution

Transport hazard class(es)

Class: 8 Corrosive substances

Packing group:// Environmental hazard: Transport in bulk: Special precautions for user:

SECTION 15 : Regulatory information

United States (USA)

SARA Section 311/312 (Specific toxic chemical listings):

Acute, Chronic

SARA Section 313 (Specific toxic chemical listings):

7664-93-9 Sulfuric Acid

RCRA (hazardous waste code):

None of the ingredients is listed

TSCA (Toxic Substances Control Act):

All ingredients are listed.

CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act):

7664-93-9 Sulfuric Acid 1000 lbs

Proposition 65 (California):

Chemicals known to cause cancer:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for females:

None of the ingredients is listed

Chemicals known to cause reproductive toxicity for males:

None of the ingredients is listed

Chemicals known to cause developmental toxicity:

None of the ingredients is listed

Canada

Canadian Domestic Substances List (DSL):

All ingredients are listed.

Canadian NPRI Ingredient Disclosure list (limit 0.1%):

None of the ingredients is listed

Canadian NPRI Ingredient Disclosure list (limit 1%):

None of the ingredients is listed

SECTION 16 : Other information

This product has been classified in accordance with hazard criteria of the Controlled Products Regulations and the

according to 29CFR1910/1200 and GHS Rev. 3

Effective date : 02.15.2015

Page 7 of 7

Sulfuric Acid, 3M

SDS contains all the information required by the Controlled Products Regulations.Note:. The responsibility to provide a safe workplace remains with the user.The user should consider the health hazards and safety information contained herein as a guide and should take those precautions required in an individual operation to instruct employees and develop work practice procedures for a safe work environment.The information contained herein is, to the best of our knowledge and belief, accurate.However, since the conditions of handling and use are beyond our control, we make no guarantee of results, and assume no liability for damages incurred by the use of this material.It is the responsibility of the user to comply with all applicable laws and regulations applicable to this material.

GHS Full Text Phrases:

Abbreviations and acronyms:

IMDG: International Maritime Code for Dangerous Goods PNEC: Predicted No-Effect Concentration (REACH) CFR: Code of Federal Regulations (USA) SARA: Superfund Amendments and Reauthorization Act (USA) RCRA: Resource Conservation and Recovery Act (USA) TSCA: Toxic Substances Control Act (USA) NPRI: National Pollutant Release Inventory (Canada) DOT: US Department of Transportation IATA: International Air Transport Association GHS: Globally Harmonized System of Classification and Labelling of Chemicals ACGIH: American Conference of Governmental Industrial Hygienists CAS: Chemical Abstracts Service (division of the American Chemical Society) NFPA: National Fire Protection Association (USA) HMIS: Hazardous Materials Identification System (USA) WHMIS: Workplace Hazardous Materials Information System (Canada) DNEL: Derived No-Effect Level (REACH)

Effective date : 02.15.2015 **Last updated** : 03.19.2015

Appendix B

MassDEP Transmittal Form

Enter your transmittal number

X283840 Transmittal Number

Your unique Transmittal Number can be accessed online:

http://www.mass.gov/eea/agencies/massdep/service/approvals/transmittal-form-for-payment.html Massachusetts Department of Environmental Protection

Transmittal Form for Permit Application and Payment

2. Make your check payable to the Commonwealth of Massachusetts and mail it with a copy of this form to: MassDEP, P.O. Box 4062, Boston, MA 02211.

3. Three copies of this form will be needed.

Copy 1 - the original must accompany your permit application. Copy 2 must accompany your fee payment. Copy 3 should be retained for your records

4. Both fee-paying and exempt applicants must mail a copy of this transmittal form to:

MassDEP P.O. Box 4062 Boston, MA 02211

* Note: For BWSC Permits, enter the LSP.

WM 15 1. Permit Code: 4 to 7 character code from permit instructions Construction Dewatering 3. Type of Project or Activity NPDES General Permit Notice of Intent 2. Name of Permit Category

B. Applicant Information – Firm or Individual

Beth Israel Deaconess Medical Center 1. Name of Firm - Or, if party needing this approval is an individual enter name below:

2. Last Name of Individual 200 Brookline Avenue, Suite OV-400B	3. First	4. MI		
5. Street Address				
Boston	MA	02215	617-975-9921	
6. City/Town	7. State	8. Zip Code	9. Telephone #	10. Ext. #
Jarrod Dore		jdeange3@bid	mc.harvard.edu	
11. Contact Person		12. e-mail address		

permit application. C. Facility, Site or Individual Requiring Approval

Beth Israel Deaconness Medical Center -	New Inpati	ent Building			
1. Name of Facility, Site Or Individual					
111 Francis Street					
2. Street Address					
Boston	MA	02215			
3. City/Town	4. State	5. Zip Code	6.	Telephone #	7. Ext. #
RTN 3-1470					
8. DEP Facility Number (if Known)	9. Federa	I I.D. Number (if Kno	own)	10. BWSC Trac	king # (if Known)

D. Application Prepared by (if different from Section B)*

GEI Consultants, Inc. 1. Name of Firm Or Individual				
400 Unicorn Park Drive				
2. Address				
Woburn	MA	01801	781-721-4000	
3. City/Town	4. State	5. Zip Code	6. Telephone #	7. Ext. #
lleen Gladstone, P.E., LSP, LEED AP		9719		
8. Contact Person			VSC Permits only)	

E. Permit - Project Coordination

 Is this project subject to MEPA review? □ yes ⊠ no If yes, enter the project's EOEA file number - assigned when an Environmental Notification Form is submitted to the MEPA unit:

F. Amount Due

Special Provisions:

DEP Us	e Only
--------	--------

- Fee Exempt (city, town or municipal housing authority)(state agency if fee is \$100 or less). There are no fee exemptions for BWSC permits, regardless of applicant status.
 Hardship Request - payment extensions according to 310 CMR 4.04(3)(c).
 - Alternative Schedule Project (according to 310 CMR 4.05 and 4.10).
 - Homeowner (according to 310 CMR 4.02).

Reviewer:

Permit No:

Rec'd Date:

\$500.00

Check Number

Dollar Amount

Date

EOEA File Number

Appendix C

Receiving Water Laboratory Data Report

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Molly Greer GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Beth Isreal Deaconess (1703581) ESS Laboratory Work Order Number: 19F0747

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 5:44 pm, Jun 28, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

SAMPLE RECEIPT

The following samples were received on June 21, 2019 for the analyses specified on the enclosed Chain of Custody Record.

Lab Number 19F0747-01

Sample Name 1703581-SW-1 Matrix Ground Water Analysis 350.1, 6010C, 6020A, 7010, 7196A, 7470A, 9040

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

PROJECT NARRATIVE

Total Metals CF92434-BSD1

4-BSD1 <u>Blank Spike recovery is above upper control limit (B+).</u> Antimony (122% @ 80-120%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

CURRENT SW-846 METHODOLOGY VERSIONS

Prep Methods

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5030C - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess Client Sample ID: 1703581-SW-1 Date Sampled: 06/21/19 10:00 Percent Solids: N/A

ESS Laboratory Work Order: 19F0747 ESS Laboratory Sample ID: 19F0747-01 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analys		<u>I/V</u>	<u>F/V</u>	Batch
Antimony	1.2 (0.2)	6020A		1	KJK	06/25/19 11:45	100	10	CF92434
Arsenic	1.3 (0.5)	7010		1	KJK	06/26/19 23:00	100	10	CF92434
Cadmium	ND (0.5)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Chromium	ND (2.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Copper	11.5 (2.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Hardness	47900 (82.4)	6010C		1	KJK	06/25/19 21:28	1	1	[CALC]
Iron	1750 (50.0)	6010C		5	BJV	06/28/19 11:20	100	10	CF92434
Lead	9.8 (2.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Mercury	ND (0.20)	7470A		1	MKS	06/28/19 10:38	20	40	CF92741
Nickel	ND (5.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Selenium	ND (1.0)	7010		1	KJK	06/26/19 18:41	100	10	CF92434
Silver	ND (1.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434
Zinc	38.8 (5.0)	6010C		1	KJK	06/25/19 21:28	100	10	CF92434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess Client Sample ID: 1703581-SW-1 Date Sampled: 06/21/19 10:00 Percent Solids: N/A

ESS Laboratory Work Order: 19F0747 ESS Laboratory Sample ID: 19F0747-01 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Ammonia as N	Results (MRL)	<u>MDL</u> <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	<u>Analys</u> JLK	<u>t</u> <u>Analyzed</u> 06/27/19 17:58	<u>Units</u>	<u>Batch</u> CF92628
Ammonia as Iv	0.24 (0.10)	550.1		1	JLK	00/2//19 17.38	mg/L	CF92028
Hexavalent Chromium	ND (10)	7196A		1	CCP	06/21/19 19:22	ug/L	CF92150
рН	6.87 (N/A)	9040		1	PMH	06/21/19 20:25	S.U.	CF92152
pH Sample Temp	Aqueous pH measu	red in water at 19.2 °C. (N/A	A)					

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Meta	als						
atch CF92434 - 3005A/200.7										
lank										
Intimony	ND	0.2	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.5	ug/L							
Calcium	ND	0.020	mg/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
ron	ND	10.0	ug/L							
Lead	ND	2.0	ug/L							
lagnesium	ND	0.020	mg/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	1.0	ug/L							
Zinc	ND	5.0	ug/L							
.cs										
ntimony	51.8	1.0	ug/L	50.00		104	80-120			
Arsenic	49.6	12.5	ug/L	50.00		99	80-120			
Cadmium	24.5	0.5	ug/L	25.00		98	80-120			
Calcium	0.470	0.020	mg/L	0.5000		94	80-120			
Chromium	50.0	2.0	ug/L	50.00		100	80-120			
Copper	50.5	2.0	ug/L	50.00		101	80-120			
ron	218	10.0	ug/L	250.0		87	80-120			
ead	53.7	2.0	ug/L	50.00		107	80-120			
lagnesium	0.457	0.020	mg/L	0.5000		91	80-120			
lickel	50.4	5.0	ug/L	50.00		101	80-120			
Selenium	103	25.0	ug/L	100.0		103	80-120			
Silver	24.9	1.0	ug/L	25.00		100	80-120			
linc	52.2	5.0	ug/L	50.00		104	80-120			
.CS Dup										
Antimony	61.0	1.0	ug/L	50.00		122	80-120	16	20	B+
Arsenic	53.2	12.5	ug/L	50.00		106	80-120	7	20	
Cadmium	22.6	0.5	ug/L	25.00		91	80-120	8	20	
Calcium	0.441	0.020	mg/L	0.5000		88	80-120	6	20	
Chromium	47.9	2.0	ug/L	50.00		96	80-120	4	20	
Copper	48.8	2.0	ug/L	50.00		98	80-120	3	20	
ron	199	10.0	ug/L	250.0		80	80-120	9	20	
ead	49.5	2.0	ug/L	50.00		99	80-120	8	20	
lagnesium	0.423	0.020	mg/L	0.5000		85	80-120	8	20	
lickel	47.8	5.0	ug/L	50.00		96	80-120	5	20	
Selenium	104	25.0	ug/L	100.0		104	80-120	1	20	
Silver	23.5	1.0	ug/L	25.00		94	80-120	6	20	
Zinc	49.6	5.0	ug/L	50.00		99	80-120	5	20	
atch CF92741 - 245.1/7470A										
lank										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
			Total Met	als						
Batch CF92741 - 245.1/7470A										
Mercury	ND	0.20	ug/L							
LCS										
Mercury	6.14	0.20	ug/L	6.042		102	80-120			
LCS Dup										
Mercury	6.11	0.20	ug/L	6.042		101	80-120	0.4	20	
		Cl	assical Che	mistry						
Batch CF92150 - General Preparation										
Blank										
Hexavalent Chromium	ND	10	ug/L							
LCS										
Hexavalent Chromium	0.5		mg/L	0.4998		97	90-110			
LCS Dup										
Hexavalent Chromium	0.5		mg/L	0.4998		98	90-110	0.5	20	
Batch CF92628 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		86	80-120			
LCS										
Ammonia as N	1.14	0.10	mg/L	0.9994		114	80-120			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

Notes and Definitions

Z16	Aqueous pH measured in water at 19.2 °C.
U	Analyte included in the analysis, but not detected
D	Diluted.
B+	Blank Spike recovery is above upper control limit (B+).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V F/V	Initial Volume Final Volume
§	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2 3	Range result excludes concentrations of target analytes eluting in that range. Range result excludes the concentration of the C9-C10 aromatic range.
-	
Avg NR	Results reported as a mathematical average. No Recovery
[CALC] SUB	Calculated Analyte Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
EDL MF	Membrane Filtration
MPN	Most Probably Number
TNTC	Too numerous to Count
CFU	Colony Forming Units

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Isreal Deaconess

ESS Laboratory Work Order: 19F0747

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

Shipped/Delivered Vis: ESS Courier Date Received: 6212019 1. Air bill manifest present? No Received: 62232019 2. Were custody seals present? No 8. Does COC match balles? Yes 3. Is radiation custod visits of DPM? Yes No 7. Is COC complete and correct? Yes 3. Is radiation custod visits of DPM? Yes No 3. Ware samples received intat?? Yes Yes 3. Is addiation custod visits of Protect: Tomp: 10. Were any analyses received outside of hold time? Yes (No) 5. Was COC signed and dated by dent? Yes No 12. Were VOAs received? Yes (No) 4. In addiator screet to contact Project Manager? Yes (No) No 12. Were VOA's received? Yes (No) 5. Sample Receiving Modes: Time: By: By: Sample Receiving Modes: Yes (No) 14. Was there a need to contact Project Manager? Yes / No Yes / No Time: By: By: Sample Receiving Modes: 01 Sold Sold Sold Sold Sold Sold Sold Sold	Client:	GEI	Consultants	s, Inc TB/N	<u>/M</u>			roject ID:		0747	
1. Air bill manifest present? No Bord Protect: 5 Day 2. Were custody seals present? No 8. Does COC match battles? Yes 3. Is radiation count < 100 CPM?	Shinnod/D	elivered Via:	,	ESS Courier							
	Shippedid	envereu via.	•								
2. Were custody seals present? No 3. Is radiation count <100 CPM?				E	No		6. Does COC r	match bottles?	•		Yes
Subscription count <100 CPM? Yes Subscription count <100 CPM? Yes Yes					Na		7. Is COC corr	nplete and corr	ect?		Yes
	2. Were cu	istody seals pr	esent?	L			8. Were sampl	les received in	tact?		Yes
Temp: 1.9 Lod with: Log 10. Were any analyses received outside of hold time? Yes 11. Any Subcontracing needed? Yes No 12. Were VOAs received? Yes 13. Are the samples property preserved? a. Air bubbles in aqueous VOAs? Yes 13. Are the samples property preserved? a. Air bubbles in aqueous VOAs? Yes 14. Was there a need to contact Project Manager? Yes / No Time: By: 14. Was there a need to contact the client? Date: Time: By: 14. Was there a need to contact the client? Date: Time: By: 14. Was there a need to contact the client? Date: Time: By: 14. Was there a need to contact the client? Date: Time: By: 15. Stample Container Property Bubbles Sufficient Container Type Preservative Record pH (Cyanide and 608 16. Was there a need to contact the client? Date: Time: By: By: 13. Stotic for was the a need to contact the client? Date: Time: By: By: 13. Was there a need to contact the client? Date: Stotii Cervi - Hory - Horo	3. Is radiat	ion count <10	D CPM?	L	Yes		9. Were labs i	informed abo	ut <u>short hold</u>	<u>s & rushes</u> ?	Yes / No / NA
11. Ary Subcontracting needed? Yes No 12. Were VOAs received? Yes			Iced with:	lce [Yes		10. Were any	analyses rece	ived outside o	f hold time?	Yes No
11. My dock and bits 1.00001 1	5. Was CC	C signed and	dated by cli	ent? [Yes				·····		
11. My dock and bits 1.00001 1											
a. If netalls preserved upon receipt: Date: Time: By: By: By: By: By: Sample Receiving Notes: Ime: By: By: 14. Was there a need to contact Project Manager? Yes / No Yes / No a. Was there a need to contact the client? Yes / No By: By: Who was contacted? Date: Time: By: By: Who was contacted? Date: Time: By: By: Sample Container Proper Air Ves / No Number ID Container Present Volume Container Type Preservative Record pH (Cyanide and 608 01 359016 Yes NA Yes 250 ntt Poly - Unpres NP 01 359017 Yes NA Yes 250 ntt Poly - Unpres NP 01 359018 Yes NA Yes 250 ntt Poly - Unpres NP 01 359019 Yes NA Yes 250 ntt Poly - Unpres NP 01 359019 Yes NA Yes <td< td=""><td></td><td>Sample IDs: Analysis:</td><td></td><td></td><td></td><td></td><td>a. Air bubbles</td><td>in aqueous V</td><td></td><td></td><td>Yes / No</td></td<>		Sample IDs: Analysis:					a. Air bubbles	in aqueous V			Yes / No
14. Was there a need to contact Project Manager? Yes / No Was there a need to contact the client? Date: Time: By: Who was contacted? Date: Time: By: Date: Date: Time: By: Sample Container Proper Air Number ID Container Proper Air Volume Container Type Preservative Record pH (Cyanide and 608 Pesticides) 01 359015 Yes NA Yes 250 mL Poly - H2SO4 H2SO4 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - Unpres NP 01 359019 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 359016 Yes NA Yes 500 mL Poly - HNO3 HNO3	a. If metal	s preserved up	on receipt:	/ed?	Date:		Time:		Ву: Ву:		
a. Was there a need to contact the client? Yes / No Who was contacted? Date: Time: By: Sample Container Proper Air Bubbles Sufficient Container Type Preservative Record pH (Cyanide and 608 Pesticides) 01 359015 Yes NA Yes 500 mL Poly - H2SO4 H2SO4 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359019 Yes NA Yes 500 mL Poly - Unpres NP 01 359019 Yes NA Yes S00 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes Yes Yes / No 2rd Review Were all containers scanned into storage/lab? Initials Yes / No / NA Are all QC stickers attached? Are VOA stickers attached? Pare VA No / NA Yes / No / NA Are VOA stickers attached?	Sample Re	ceiving Notes:									
Sample Number Container Proper Container Bubbles Present Sufficient Volume Container Type Preservative Record pri (Cyande and code Pesticides) 01 359015 Yes NA Yes 500 mL Poly - H2SO4 H2SO4 H2SO4 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - Unpres NP 01 359019 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Initials Initials Are all Flashpoint stickers attached? Are all Flashpoint stickers attached? Yes / No /NA Yes / No /NA Are all QC stickers attached? Date & Time: Date & Time: Initials Initials By: Date & Time: Date & Time: Initials Initials Initials Del	a. Was the	ere a need to c				Yes / No	Time:		Ву:		
Sample Number Container Proper Container Bubbles Present Sufficient Volume Container Type Preservative Record pr (Cyanter and ous Pesticides) 01 359015 Yes NA Yes 500 mL Poly - H2SO4 H2SO4 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - Unpres NP 01 359019 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Yes / No / NA Are all Flashpoint stickers attached? Yes / No / NA Yes / No / NA Are all QC stickers attached? Pate & Time: Quit Quit Quit Quit Quit Quit Quit Quit											<u> </u>
01 359015 Yes NA Yes 500 mL Poly - H2SO4 H2SO4 01 359016 Yes NA Yes 250 mL Poly - Unpres NP 01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Initials Yes / No Are all Flashpoint stickers attached/container ID # circled? Yes / No / IA Yes / No / IA Are all QC stickers attached? Yes / No / NA Yes / No / NA Are VOA stickers attached? Yes / No / NA Yes / No / NA By: Date & Time: Date & Time: Date & Time: Date & Time: Delivered Date & Time: Cort I/O 1759 IO	•			Bubbles		Contai	ner Type	Preserva	tive		
01 359017 Yes NA Yes 250 mL Poly - Unpres NP 01 359018 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Initials Initials Are barcode labels on correct containers? Are all Flashpoint stickers attached/container ID # circled? Initials Yes / No / NA Are all QC stickers attached? Yes / No / NA Yes / No / NA Yes / No / NA Are VOA stickers attached? Are VOA stickers attached? Date & Time: Initials Reviewed By: Date & Time: Initials Initials Delivered Initials Date & Time: Initials Initials	01	359015	Yes		Yes	500 mL P	oly - H2SO4	H2SO	4		
01 359018 Yes NA Yes 250 mL Poly - HNO3 HNO3 01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Initials Initials Are all Flashpoint stickers attached/container ID # circled? Are all QC stickers attached? Initials Yes / No / NA Are all QC stickers attached? Yes / No / NA Yes / No / NA Yes / No / NA Are all QC stickers attached? Yes / No / NA Yes / No / NA Are VOA stickers attached? Date & Time: Initials By: Date & Time: Inite: Inite: By: Delivered Date & Time: Inite: Inite: Mate & Time: Inite: Inite: Inite: Inite:											
01 359019 Yes NA Yes 500 mL Poly - HNO3 HNO3 2nd Review Were all containers scanned into storage/lab? Initials Initials Initials Are barcode labels on correct containers? Are all Flashpoint stickers attached/container ID # circled? Initials Yes / No Are all Plashpoint stickers attached? Are all QC stickers attached? Yes / No / NA Are all QC stickers attached? Yes / No / NA Are VOA stickers attached? Yes / No / NA Are VOA stickers attached? Date & Time: By: Date & Time: Delivered Completed									3		
Were all containers scanned into storage/lab? Initials Are barcode labels on correct containers? Initials Are all Flashpoint stickers attached/container ID # circled? Yes / No / NA Are all QC stickers attached? Yes / No / NA Are VOA stickers attached? Yes / No / NA Are VOA stickers attached? Yes / No / NA By: Date & Time: Delivered Initials					Yes	500 mL F	oly - HNO3	HNO	3		
By: Date & Time: Optimize Reviewed By: Date & Time: C2x1 (2) (759) Delivered Date & Time: C2x1 (2) (759)	Were all c Are barcoc Are all Flas Are all He Are all QC	containers sc le labels on co shpoint sticker (Chrome stick stickers attac	rrect contair s attached/c ers attached hed?	ners? container ID : 1?		Initials(Yes / No / NA Yes / No / NA Yes / No / NA)			
Reviewed By: Delivered Date & Time: Call (9 (759)		. (M				CL	21/19	177	ζ	
Delivered			<i>∠</i> [SVI ``	\sim		Date & Time		ו וור	10	/	
			50			•		71/1	 (7<0)	

ESS Laboratory Sample and Cooler Receipt Checklist

Chain-of-Custody Red	cord		tory: ESS	en alter i have en l'her van en er		<u>(</u>	aboratory Job # 0	FOTUT
GEI	Project Name: Beth Project Number: 170		<u></u>	Project Information Project Location Project Manage	1: Boston	and the second	(Ar () (Ar ()	Page <u>)</u> of 2
400 Unicorn Park Drive Woburn, MA 01801 PH: 781.721.4000 FX: 781.721.4073	Send Report to: Send EDD to: labdata@	Molly Greer		HNO3 H2504	HN03 Won	Preservative		Sample Handling Samples Field Filtered YES (N) NA
MCP PRESUMPTIVE CERTAINTY I If Yes, Are MCP Analytical Methods If Yes, Are Drinking Water Samples If Yes, Have You Met Minimum Field	Required? Submitted? I QC Requirements?	YES NO YES NO YES NO	NA NA NA No. of Sampler(Hardeness	Hor Cr.		Sampled Shipped With Ice
Number GEI Samp 1-7035-61-500		Time Matrix (000 Gw	Bottles Initials		× ×			
MCP Level Needed: GEI requires to whenever possible: Relinquished by sampler: (signature) 1. Relinquished by: (signature) 2. Relinquished by: (signature) 3. Relinquished by: (signature)	he most stringent Method 1 M Date : Time: G -2L -16 1350 Date : Time: $J \ge 1/14$ 16 \cdot 57 Date : Time: Date : Time:	Received by: (signature)	CD1/191	7 1 *Sb, As, C	Norr 10-Da 5-Day Adc	litional Requirement	s/Comments/Remarks i, Se, Ag, Zn (1	

.

n in der actigischen stellten die seinen stellten bestellten einen stellten die stellten die stellten die stell

ice temp: 1.9

Market Market I and a start of the second start

•

Chain-of-	-Custody Reco	rd			Labora								<u> </u>	ab use only):		HOTY
C		Project Nam	e: Beth			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Project Info Project I Project	Location			UA ntyne_			<u>178-008-008-008-008</u>	Page <u>)</u> of 2
Wob PH:	Consultants icorn Park Drive urn, MA 01801 781.721.4000 781.721.4073	Project Num Send Report Send EDD to	to:	Molly Gree				HNG HNG				No~				Sample Handling Samples Field Filtered YES (NO NA
If Yes, Are MCI If Yes, Are Drin	PTIVE CERTAINTY REC P Analytical Methods Rec aking Water Samples Sub ou Met Minimum Field QC	juired? mitted?	YES NC	YES YES	NO NO NO	NA NA NA		luta (s	Aurucana	Hevelvess	4	Č				YES NO NA Sampled Shipped With Ice
Lab Sample	GEI Sample IC 17035 & - 5 W - 1		Colle Date		Matrix G-W	No. of Bottles	Sampler(s) Initials	1 5 1	+ Auru	× He	Hd X	XHox				Sample Specific Remarks
MCP Level Ne whenever pos Relinquished by (sin 2. Relinquished by: (sin 3. Relinquished by: (sin 3.	gnature)	nost stringent Date : $G - \mathcal{U} - I_{f}$ Date : $\mathcal{U} \ge 1 / I_{f}$ Date : Date :	Method 1 M(1350 Time: 16:57 Time: Time:	CP standard Received by: 1 Received by 2. Received by 3. Received by:	(signature) (signature) (signature)			2) 4			(B Normal 10-Day 5-Day	7. 3-I	ys): er Day Day	s/Comme	nts/Remarks	

•

n in der actigischen stellten die seinen stellten bestellten einen stellten die stellten die stellten die stell

ice temp: 1.9

Male as the full has a second s

.

Appendix D

Source Water Laboratory Data Report

ESS Laboratory

Division of Thielsch Engineering, Inc.

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Heather Ballantyne GEI Consultants, Inc. 400 Unicorn Park Drive Woburn, MA 01801

RE: Beth Israel - RGP (1703581) ESS Laboratory Work Order Number: 19F0748

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurei Stoddard Laboratory Director

Analytical Summary

REVIEWED By ESS Laboratory at 5:45 pm, Jun 28, 2019

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

SAMPLE RECEIPT

The following samples were received on June 21, 2019 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

<u>Lab Number</u> 19F0748-01	<u>Sample Name</u> 1703581-B202 OW	<u>Matrix</u> Ground Water	<u>Analysis</u> 1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695
19F0748-02	1703581-B203 OW	Ground Water	1664A, 200.7, 200.8, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 504.1, 524.2, 608.3, 625.1 SIM, 8270D SIM, ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

PROJECT NARRATIVE

625.1(SIM) Semi-Volatile Organic Compounds

C9F0427-CCV1Calibration required quadratic regression (Q).
2,4,6-Tribromophenol (120% @ 80-120%), Pentachlorophenol (84% @ 80-120%)C9F0427-CCV1Initial Calibration Verification recovery is above upper control limit (ICV+).
2,4,6-Tribromophenol

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint 6010C - ICP 6020A - ICP MS 7010 - Graphite Furnace 7196A - Hexavalent Chromium 7470A - Aqueous Mercury 7471B - Solid Mercury 8011 - EDB/DBCP/TCP 8015C - GRO/DRO 8081B - Pesticides 8082A - PCB 8100M - TPH 8151A - Herbicides 8260B - VOA 8270D - SVOA 8270D SIM - SVOA Low Level 9014 - Cyanide 9038 - Sulfate 9040C - Aqueous pH 9045D - Solid pH (Corrosivity) 9050A - Specific Conductance 9056A - Anions (IC) 9060A - TOC 9095B - Paint Filter MADEP 04-1.1 - EPH MADEP 18-2.1 - VPH

Prep Methods

3005A - Aqueous ICP Digestion
3020A - Aqueous Graphite Furnace / ICP MS Digestion
3050B - Solid ICP / Graphite Furnace / ICP MS Digestion
3060A - Solid Hexavalent Chromium Digestion
3510C - Separatory Funnel Extraction
3520C - Liquid / Liquid Extraction
3540C - Manual Soxhlet Extraction
3541 - Automated Soxhlet Extraction
3546 - Microwave Extraction
3580A - Waste Dilution
5030B - Aqueous Purge and Trap
5035A - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u> Antimony	<u>Results (MRL)</u> 0.3 (0.2)	<u>MDL</u>	<u>Method</u> 200.8	<u>Limit</u>	<u>DF</u> 5	<u>Analys</u> NAR	Analyzed 06/25/19 11:50	<u>I/V</u> 100	<u>F/V</u> 10	<u>Batch</u> CF92434
Arsenic	ND (2.5)		3113B		5	MKS	06/25/19 15:35	100	10	CF92434
Cadmium	ND (0.5)		200.8		5	NAR	06/25/19 11:50	100	10	CF92434
Chromium	ND (2.0)		200.7		1	KJK	06/25/19 21:32	100	10	CF92434
Chromium III	ND (10.0)		200.7		1	ССР	06/25/19 21:32	1	1	[CALC]
Copper	ND (2.0)		200.7		1	KJK	06/25/19 21:32	100	10	CF92434
Hardness	317000 (824)		200.7		10	KJK	06/26/19 23:49	1	1	[CALC]
Iron	318 (100)		200.7		10	KJK	06/26/19 23:49	100	10	CF92434
Lead	ND (0.5)	0.1	200.8		5	NAR	06/25/19 11:50	100	10	CF92434
Mercury	ND (0.2)		245.1		1	MKS	06/26/19 11:53	20	40	CF92437
Nickel	ND (5.0)		200.7		1	KJK	06/25/19 21:32	100	10	CF92434
Selenium	ND (5.0)		3113B		5	MKS	06/25/19 18:23	100	10	CF92434
Silver	ND (0.5)		200.7		1	KJK	06/25/19 21:32	100	10	CF92434
Zinc	10.4 (5.0)		200.7		1	KJK	06/25/19 21:32	100	10	CF92434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 25 Final Volume: 25 Extraction Method: 524.2

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

<u>Analyte</u> 1,1,1-Trichloroethane	<u>Results (MRL)</u> ND (0.5)	<u>MDL</u>	<u>Method</u> 524.2	<u>Limit</u>	<u>DF</u>	Analyzed 06/25/19 16:20	Sequence C9F0416	<u>Batch</u> CF92517
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,1-Dichloroethane	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,1-Dichloroethene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,2-Dichloroethane	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Acetone	ND (5.0)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Benzene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Carbon Tetrachloride	ND (0.3)		524.2		1	06/25/19 16:20	C9F0416	CF92517
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Ethylbenzene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Methyl tert-Butyl Ether	5.8 (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Methylene Chloride	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Naphthalene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Tetrachloroethene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Toluene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Trichloroethene	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Vinyl Chloride	ND (0.2)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Xylene O	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
Xylene P,M	ND (0.5)		524.2		1	06/25/19 16:20	C9F0416	CF92517
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		95 %		80-120				
Surrogate: 4-Bromofluorobenzene		97 %		80-120				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L Analyst: MJV Prepared: 6/25/19 12:03

608.3 Polychlorinated Biphenyls (PCB)

<u>Analyte</u> Aroclor 1016	Results (MRL)	MDL	<u>Method</u> 608.3	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> <u>So</u> 06/26/19 4:35	equence Batch CF92502
Aroclor 1221	ND (0.09) ND (0.09)		608.3		1	06/26/19 4:35	CF92502 CF92502
Aroclor 1232	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1242	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1248	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1254	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1260	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1262	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
Aroclor 1268	ND (0.09)		608.3		1	06/26/19 4:35	CF92502
	9	%Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		68 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		65 %		30-150			
Surrogate: Tetrachloro-m-xylene		54 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		60 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L Analyst: IBM Prepared: 6/25/19 12:33

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	Method 625.1 SIM	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 06/25/19 19:30	Sequence C9F0427	<u>Batch</u> CF92504
Acenaphthylene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Anthracene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Benzo(a)pyrene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Benzo(b)fluoranthene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Benzo(g,h,i)perylene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Benzo(k)fluoranthene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
bis(2-Ethylhexyl)phthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Butylbenzylphthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Chrysene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Dibenzo(a,h)Anthracene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Diethylphthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Dimethylphthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Di-n-butylphthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Di-n-octylphthalate	ND (2.34)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Fluoranthene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Fluorene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Naphthalene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Pentachlorophenol	ND (0.84)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Phenanthrene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
Pyrene	ND (0.19)		625.1 SIM		1	06/25/19 19:30	C9F0427	CF92504
	ç	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		41 %		30-130				
Surrogate: 2,4,6-Tribromophenol		<i>93 %</i>		15-110				
Surrogate: 2-Fluorobiphenyl		53 %		30-130				
Surrogate: Nitrobenzene-d5		55 %		30-130				
Surrogate: p-Terphenyl-d14		99 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L Analyst: IBM Prepared: 6/24/19 16:15

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MD 0.312 (0.250) MD	L Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/25/19 5:48	Sequence C9F0398	<u>Batch</u> CF92432
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	52 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Ammonia as N	<u>Results (MRL)</u> 0.11 (0.10)	<u>MDL</u> <u>Method</u> <u>Lin</u> 350.1	nit <u>DF</u>	<u>Analyst</u> JLK	Analyzed 06/27/19 17:59	<u>Units</u> mg/L	<u>Batch</u> CF92628
Chloride	162 (50.0)	300.0	100	EEM	06/26/19 16:53	mg/L	CF92615
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	CCP	06/21/19 19:22	ug/L	CF92150
Phenols	ND (100)	420.1	1	JLK	06/25/19 15:44	ug/L	CF92524
Total Cyanide	ND (5.00)	4500 CN CE	1	EEM	06/24/19 12:35	ug/L	CF92425
Total Petroleum Hydrocarbon	ND (5)	1664A	1	LAB	06/24/19 16:26	mg/L	CF92411
Total Residual Chlorine	ND (20.0)	4500Cl D	1	CCP	06/21/19 18:43	ug/L	CF92146
Total Suspended Solids	5 (5)	2540D	1	ССР	06/24/19 17:06	mg/L	CF92430

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 35 Final Volume: 2 Extraction Method: 504/8011

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: ug/L Analyst: CAD Prepared: 6/27/19 11:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.025) ND (0.015) ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1 504.1 504.1	<u>Limit</u>	DF 1 1	Analyzed 06/27/19 13:41Sequer06/27/19 13:4106/27/19 13:4106/27/19 13:41	Batch CF92724 CF92724 CF92724 CF92724
	9	%Recovery	Qualifier	Limits			
Surrogate: Pentachloroethane		74 %		30-150			
Surrogate: Pentachloroethane [2C]		84 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B202 OW Date Sampled: 06/21/19 11:55 Percent Solids: N/A Initial Volume: 1 Final Volume: 1 Extraction Method: No Prep

Analyte Ethanol ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-01 Sample Matrix: Ground Water Units: mg/L Analyst: ZLC Prepared: 6/28/19 7:55

Alcohol Scan by GC/FID

Results (MRL)	<u>MDL</u> <u>M</u>	ethod Limit	DF	<u>Analyst</u>	Analyzed	Sequence	Batch
ND (10)	ASTM	1 D3695	1	ZLC	06/28/19 10:04		CF92801

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

<u>Analyte</u> Antimony	<u>Results (MRL)</u> 0.3 (0.2)	<u>MDL</u>	<u>Method</u> 200.8	<u>Limit</u>	<u>DF</u> 5	<u>Analyst</u> NAR	Analyzed 06/25/19 11:55	<u>I/V</u> 100	<u>F/V</u> 10	<u>Batch</u> CF92434
Arsenic	× /		3113B		5	MKS	06/25/19 15:46	100	10	CF92434
	ND (2.5)									
Cadmium	ND (0.2)		200.8		5	NAR	06/25/19 11:55	100	10	CF92434
Chromium	ND (2.0)		200.7		1	KJK	06/25/19 21:37	100	10	CF92434
Chromium III	ND (10.0)		200.7		1	CCP	06/25/19 21:37	1	1	[CALC]
Copper	ND (2.0)		200.7		1	KJK	06/25/19 21:37	100	10	CF92434
Hardness	533000 (824)		200.7		10	KJK	06/26/19 23:53	1	1	[CALC]
Iron	130 (20.0)		200.7		2	KJK	06/27/19 0:05	100	10	CF92434
Lead	0.1 (0.5)	0.1	200.8		5	NAR	06/25/19 11:55	100	10	CF92434
Mercury	ND (0.2)		245.1		1	MKS	06/26/19 11:55	20	40	CF92437
Nickel	ND (5.0)		200.7		1	KJK	06/25/19 21:37	100	10	CF92434
Selenium	ND (5.0)		3113B		5	MKS	06/25/19 18:29	100	10	CF92434
Silver	ND (1.0)		200.7		2	KJK	06/27/19 0:05	100	10	CF92434
Zinc	10.1 (5.0)		200.7		1	KJK	06/25/19 21:37	100	10	CF92434

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 25 Final Volume: 25 Extraction Method: 524.2

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L Analyst: MD

524.2 Volatile Organic Compounds

<u>Analyte</u> 1,1,1-Trichloroethane	Results (MRL) ND (0.5)	<u>MDL</u>	<u>Method</u> 524.2	<u>Limit</u>	<u>DF</u>	Analyzed 06/25/19 16:55	Sequence C9F0416	<u>Batch</u> CF92517
1,1,2-Trichloroethane	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,1-Dichloroethane	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,1-Dichloroethene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,2-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,2-Dichloroethane	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,3-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
1,4-Dichlorobenzene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Acetone	ND (5.0)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Benzene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Carbon Tetrachloride	ND (0.3)		524.2		1	06/25/19 16:55	C9F0416	CF92517
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Ethylbenzene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Methyl tert-Butyl Ether	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Methylene Chloride	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Naphthalene	,		524.2		1	06/25/19 16:55	C9F0410	CF92517 CF92517
Tertiary-amyl methyl ether	ND (0.5)		524.2		1	06/25/19 16:55	C9F0410	CF92517 CF92517
Tertiary-butyl Alcohol	ND (1.0)		524.2		1	06/25/19 16:55	C9F0416	CF92517 CF92517
Tetrachloroethene	ND (25.0)		524.2		1	06/25/19 16:55	C9F0416	CF92517 CF92517
Toluene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517 CF92517
Trichloroethene	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416 C9F0416	CF92517 CF92517
Vinyl Chloride	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416 C9F0416	CF92517 CF92517
5	ND (0.2)							
Xylene O	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
Xylene P,M	ND (0.5)		524.2		1	06/25/19 16:55	C9F0416	CF92517
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		96 %		80-120				
Surrogate: 4-Bromofluorobenzene		97 %		80-120				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 1070 Final Volume: 1 Extraction Method: 3510C

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L Analyst: MJV Prepared: 6/25/19 12:03

608.3 Polychlorinated Biphenyls (PCB)

Analyte	<u>Results (MRL)</u>	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed Seque	
Aroclor 1016	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1221	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1232	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1242	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1248	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1254	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1260	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1262	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
Aroclor 1268	ND (0.09)		608.3		1	06/26/19 4:54	CF92502
	%	6Recovery	Qualifier	Limits			
Surrogate: Decachlorobiphenyl		77 %		30-150			
Surrogate: Decachlorobiphenyl [2C]		74 %		30-150			
Surrogate: Tetrachloro-m-xylene		54 %		30-150			
Surrogate: Tetrachloro-m-xylene [2C]		62 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 1050 Final Volume: 0.25 Extraction Method: 3510C

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L Analyst: IBM Prepared: 6/25/19 12:33

625.1(SIM) Semi-Volatile Organic Compounds

Analyte Acenaphthene	<u>Results (MRL)</u> ND (0.19)	<u>MDL</u>	Method 625.1 SIM	<u>Limit</u>	<u>DF</u> 1	Analyzed 06/25/19 20:17	Sequence C9F0427	<u>Batch</u> CF92504
Acenaphthylene	ND (0.19) ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Anthracene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Benzo(a)anthracene	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Benzo(a)pyrene	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Benzo(b)fluoranthene	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Benzo(g,h,i)perylene	ND (0.03)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Benzo(k)fluoranthene	ND (0.15)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
bis(2-Ethylhexyl)phthalate	< <i>, , ,</i>		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Butylbenzylphthalate	ND (2.38) ND (2.38)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Chrysene	< <i>, , ,</i>		625.1 SIM		1	06/25/19 20:17	C9F0427 C9F0427	CF92504
Dibenzo(a,h)Anthracene	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427 C9F0427	CF92504
Diethylphthalate	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427 C9F0427	CF92504
Dimethylphthalate	ND (2.38)		625.1 SIM		1	06/25/19 20:17	C9F0427 C9F0427	CF92504
	ND (2.38)							
Di-n-butylphthalate	ND (2.38)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Di-n-octylphthalate	ND (2.38)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Fluoranthene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Fluorene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Naphthalene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Pentachlorophenol	ND (0.86)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Phenanthrene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
Pyrene	ND (0.19)		625.1 SIM		1	06/25/19 20:17	C9F0427	CF92504
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		40 %		30-130				
Surrogate: 2,4,6-Tribromophenol		87 %		15-110				
Surrogate: 2-Fluorobiphenyl		53 %		30-130				
Surrogate: Nitrobenzene-d5		54 %		30-130				
Surrogate: p-Terphenyl-d14		92 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5 Extraction Method: 3535A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L Analyst: IBM Prepared: 6/24/19 16:15

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

<u>Analyte</u> 1,4-Dioxane	Results (MRL) MI 0.307 (0.250)	DL Method 8270D SIM	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 06/25/19 6:22	Sequence C9F0398	<u>Batch</u> CF92432
	%Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8	54 %		15-115				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water

Classical Chemistry

<u>Analyte</u> Ammonia as N	<u>Results (MRL)</u> ND (0.10)	MDL Method Limit	<u>DF</u> 1	Analyst Analyzed 06/27/19 18:00	<u>Units</u> mg/L	Batch CF92628
Chloride	379 (50.0)	300.0	100	EEM 06/26/19 17:09	mg/L	CF92615
Hexavalent Chromium	ND (10.0)	3500Cr B-2009	1	CCP 06/21/19 19:22	ug/L	CF92150
Phenols	ND (100)	420.1	1	JLK 06/25/19 15:44	ug/L	CF92524
Total Cyanide	ND (5.00)	4500 CN CE	1	EEM 06/24/19 12:35	ug/L	CF92425
Total Petroleum Hydrocarbon	ND (5)	1664A	1	LAB 06/24/19 16:26	mg/L	CF92411
Total Residual Chlorine	ND (20.0)	4500Cl D	1	CCP 06/21/19 18:43	ug/L	CF92146
Total Suspended Solids	ND (5)	2540D	1	CCP 06/24/19 17:06	mg/L	CF92430

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 35 Final Volume: 2 Extraction Method: 504/8011

ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: ug/L Analyst: CAD Prepared: 6/27/19 11:10

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

<u>Analyte</u> 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane	<u>Results (MRL)</u> ND (0.025) ND (0.015) ND (0.015)	<u>MDL</u>	<u>Method</u> 504.1 504.1 504.1	<u>Limit</u>	DF 1 1	<u>Analyzed</u> <u>Seq</u> 06/27/19 14:04 06/27/19 14:04 06/27/19 14:04	Batch CF92724 CF92724 CF92724 CF92724
	%	%Recovery	Qualifier	Limits			
Surrogate: Pentachloroethane		127 %		30-150			
Surrogate: Pentachloroethane [2C]		138 %		30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP Client Sample ID: 1703581-B203 OW Date Sampled: 06/21/19 12:30 Percent Solids: N/A Initial Volume: 1 Final Volume: 1 Extraction Method: No Prep

Analyte Ethanol ESS Laboratory Work Order: 19F0748 ESS Laboratory Sample ID: 19F0748-02 Sample Matrix: Ground Water Units: mg/L Analyst: ZLC Prepared: 6/28/19 7:55

Alcohol Scan by GC/FID

Results (MRL)	MDL Method	<u>Limit</u>	DF	Analyst	Analyzed	Sequence	Batch
ND (10)	ASTM D3695		1	ZLC	06/28/19 11:39		CF92801

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

				-						
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta		ittoute	/01120	2	11.2		Quanta
Batch CF92434 - 3005A/200.7										
Blank										
Antimony	ND	0.2	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.2	ug/L							
Chromium	ND	2.0	ug/L							
Copper	ND	2.0	ug/L							
Iron	ND	10.0	ug/L							
Lead	ND	0.5	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	51.8	1.0	ug/L	50.00		104	85-115			
Arsenic	49.6	12.5	ug/L	50.00		99	85-115			
Cadmium	25.9	1.0	ug/L	25.00		104	85-115			
Chromium	50.0	2.0	ug/L	50.00		100	85-115			
Copper	50.5	2.0	ug/L	50.00		101	85-115			
Iron	218	10.0	ug/L	250.0		87	85-115			
Lead	51.4	2.5	ug/L	50.00		103	85-115			
Nickel	50.4	5.0	ug/L	50.00		105	85-115			
Selenium	103	25.0	ug/L	100.0		101	85-115			
Silver	24.9	0.5		25.00		100	85-115			
Zinc	52.2	5.0	ug/L ug/L	50.00		100	85-115			
Batch CF92437 - 245.1/7470A			-3/-							
Blank	ND	0.2								
Mercury	ND	0.2	ug/L							
LCS										
Mercury	6.1	0.2	ug/L	6.042		101	85-115			
LCS Dup										
Mercury	6.1	0.2	ug/L	6.042		100	85-115	1	20	
		524.2 Vol	atile Organi	c Compou	unds					
Batch CF92517 - 524.2										
Blank										
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
1,1-Dichloroethane	ND	0.5	ug/L							
1,1-Dichloroethene	ND	0.5	ug/L							
		0.0								
	ND	0.5	ua/l							
1,2-Dichlorobenzene 1,2-Dichloroethane	ND ND	0.5 0.5	ug/L ug/L							

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181 Dependability • Quality http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	Result		atile Organi				2			Lagunier
		JZ T.Z VUI		c compot						
Batch CF92517 - 524.2										
1,4-Dichlorobenzene	ND	0.5	ug/L							
Acetone	ND	5.0	ug/L							
Benzene	ND	0.5	ug/L							
Carbon Tetrachloride	ND	0.3	ug/L							
is-1,2-Dichloroethene	ND	0.5	ug/L							
Ethylbenzene	ND	0.5	ug/L							
1ethyl tert-Butyl Ether	ND	0.5	ug/L							
1ethylene Chloride	ND	0.5	ug/L							
Naphthalene	ND	0.5	ug/L							
Tertiary-amyl methyl ether	ND	1.0	ug/L							
Tertiary-butyl Alcohol	ND	25.0	ug/L							
Tetrachloroethene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
Trichloroethene	ND	0.5	ug/L							
/inyl Chloride	ND	0.2	ug/L							
ylene O	ND	0.5	ug/L							
ylene P,M	ND	0.5	ug/L							
Surrogate: 1,2-Dichlorobenzene-d4	4.85		ug/L	5.000		97	80-120			
Surrogate: 4-Bromofluorobenzene	4.96		ug/L	5.000		99	80-120			
LCS										
I,1,1-Trichloroethane	10.6		ug/L	10.00		106	70-130			
1,1,2-Trichloroethane	9.6		ug/L	10.00		96	70-130			
,1-Dichloroethane	10.7		ug/L	10.00		107	70-130			
I,1-Dichloroethene	10.4		ug/L	10.00		104	70-130			
1,2-Dichlorobenzene	9.5		ug/L	10.00		95	70-130			
,2-Dichloroethane	10.3		ug/L	10.00		103	70-130			
I,3-Dichlorobenzene	9.6		ug/L	10.00		96	70-130			
,4-Dichlorobenzene	9.7		ug/L	10.00		97	70-130			
Acetone	49.7		ug/L	50.00		99	70-130			
Benzene	9.9		ug/L	10.00		99	70-130			
Carbon Tetrachloride	9.6		ug/L	10.00		96	70-130			
cis-1,2-Dichloroethene	10.2		ug/L	10.00		102	70-130			
Ethylbenzene	9.9		ug/L	10.00		99	70-130			
Methyl tert-Butyl Ether	10.2		ug/L	10.00		102	70-130			
Methylene Chloride	10.4		ug/L	10.00		104	70-130			
Naphthalene	9.2		ug/L	10.00		92	70-130			
ertiary-amyl methyl ether	9.7		ug/L	10.00		97	70-130			
ertiary-butyl Alcohol	48.9		ug/L	50.00		98	70-130			
Tetrachloroethene	9.9		ug/L	10.00		99	70-130			
Foluene	10.0		ug/L	10.00		100	70-130			
Frichloroethene	10.0		ug/L	10.00		100	70-130			
/inyl Chloride	10.0		ug/L	10.00		100	70-130			
(ylene O	9.8		ug/L	10.00		98	70-130			
Xylene P,M	19.8		ug/L	20.00		99	70-130			

0-2211 Tel: 401-461-7181 Dependability + Quality Fax: 401-461-4486 ht

Service

٠

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vola	atile Organi	c Compou	inds					
Batch CF92517 - 524.2										
Surrogate: 1,2-Dichlorobenzene-d4	4.96		ug/L	5.000		99	80-120			
Surrogate: 4-Bromofluorobenzene	4.94		ug/L	5.000		99	80-120			
LCS Dup										
1,1,1-Trichloroethane	10.5		ug/L	10.00		105	70-130	1	20	
1,1,2-Trichloroethane	9.7		ug/L	10.00		97	70-130	0.9	20	
1,1-Dichloroethane	10.8		ug/L	10.00		108	70-130	0.8	20	
1,1-Dichloroethene	10.2		ug/L	10.00		102	70-130	2	20	
1,2-Dichlorobenzene	9.5		ug/L	10.00		95	70-130	0.5	20	
1,2-Dichloroethane	10.4		ug/L	10.00		104	70-130	1	20	
1,3-Dichlorobenzene	9.5		ug/L	10.00		95	70-130	1	20	
1,4-Dichlorobenzene	9.7		ug/L	10.00		97	70-130	0.3	20	
Acetone	47.8		ug/L	50.00		96	70-130	4	20	
Benzene	9.9		ug/L	10.00		99	70-130	0.3	20	
Carbon Tetrachloride	9.4		ug/L	10.00		94	70-130	2	20	
cis-1,2-Dichloroethene	10.2		ug/L	10.00		102	70-130	0	20	
Ethylbenzene	10.0		ug/L	10.00		100	70-130	0.6	20	
Methyl tert-Butyl Ether	10.1		ug/L	10.00		101	70-130	0.7	20	
Methylene Chloride	10.4		ug/L	10.00		104	70-130	0.1	20	
Naphthalene	9.7		ug/L	10.00		97	70-130	5	20	
Tertiary-amyl methyl ether	9.7		ug/L	10.00		97	70-130	0	20	
Tertiary-butyl Alcohol	49.0		ug/L	50.00		98	70-130	0.2	25	
Tetrachloroethene	9.8		ug/L	10.00		98	70-130	2	20	
Toluene	9.8		ug/L	10.00		98	70-130	2	20	
Trichloroethene	9.9		ug/L	10.00		99	70-130	1	20	
Vinyl Chloride	9.7		ug/L	10.00		97	70-130	3	20	
Xylene O	9.9		ug/L	10.00		99	70-130	0.9	20	
Xylene P,M	19.5		ug/L	20.00		97	70-130	2	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.00		ug/L	5.000		100	80-120			
Surrogate: 4-Bromofluorobenzene	4.83		ug/L	5.000		97	80-120			
-		608.3 Polycl	hlorinated F	Rinhenvle	(PCB)					

Batch CF92502 - 351	10C				
Blank					
Aroclor 1016	ND	0.10	ug/L		
Aroclor 1016 [2C]	ND	0.10	ug/L		
Aroclor 1221	ND	0.10	ug/L		
Aroclor 1221 [2C]	ND	0.10	ug/L		
Aroclor 1232	ND	0.10	ug/L		
Aroclor 1232 [2C]	ND	0.10	ug/L		
Aroclor 1242	ND	0.10	ug/L		
Aroclor 1242 [2C]	ND	0.10	ug/L		
Aroclor 1248	ND	0.10	ug/L		
Aroclor 1248 [2C]	ND	0.10	ug/L		
	185 Frances Avenue, Cranston, RI)2910-2211	Tel: 401-461-7181	Fax: 401-461-4486	http://www.ESSLaboratory.com

Dependability

Quality Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
•		608.3 Polyc	hlorinated I	Biphenyls	(PCB)					
Batch CF92502 - 3510C										
Aroclor 1254	ND	0.10	ug/L							
Aroclor 1254 [2C]	ND	0.10	ug/L							
Aroclor 1260	ND	0.10	ug/L							
Aroclor 1260 [2C]	ND	0.10	ug/L							
Aroclor 1262	ND	0.10	ug/L							
Aroclor 1262 [2C]	ND	0.10	ug/L							
Aroclor 1268	ND	0.10	ug/L							
Aroclor 1268 [2C]	ND	0.10	ug/L							
Surrogate: Decachlorobiphenyl	0.0357		ug/L	0.05000		71	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0339		ug/L	0.05000		68	30-150			
Surrogate: Tetrachloro-m-xylene	0.0299		ug/L	0.05000		60	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0342		ug/L	0.05000		68	30-150			
LCS										
Aroclor 1016	0.85	0.10	ug/L	1.000		85	50-140			
Aroclor 1016 [2C]	0.89	0.10	ug/L	1.000		89	50-140			
Aroclor 1260	0.88	0.10	ug/L	1.000		88	1-164			
Aroclor 1260 [2C]	0.94	0.10	ug/L	1.000		94	1-164			
Surrogate: Decachlorobiphenyl	0.0456		ug/L	0.05000		91	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0436		ug/L	0.05000		87	30-150			
Surrogate: Tetrachloro-m-xylene	0.0329		ug/L	0.05000		66	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0340		ug/L	0.05000		68	30-150			
LCS Dup										
Aroclor 1016	0.83	0.10	ug/L	1.000		83	50-140	2	36	
Aroclor 1016 [2C]	0.87	0.10	ug/L	1.000		87	50-140	2	36	
Aroclor 1260	0.87	0.10	ug/L	1.000		87	1-164	2	38	
Aroclor 1260 [2C]	0.93	0.10	ug/L	1.000		93	1-164	2	38	
Surrogate: Decachlorobiphenyl	0.0435		ug/L	0.05000		87	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0416		ug/L	0.05000		83	30-150			
Surrogate: Tetrachloro-m-xylene	0.0301		ug/L	0.05000		60	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0325		ug/L	0.05000		65	30-150			

Batch CF92504 - 3510C

Blank			
Acenaphthene	ND	0.20	ug/L
Acenaphthylene	ND	0.20	ug/L
Anthracene	ND	0.20	ug/L
Benzo(a)anthracene	ND	0.05	ug/L
Benzo(a)pyrene	ND	0.05	ug/L
Benzo(b)fluoranthene	ND	0.05	ug/L
Benzo(g,h,i)perylene	ND	0.20	ug/L

Tel: 401-461-7181 Dependability Quality

•

Fax: 401-461-4486 Service

٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	62	5.1(SIM) Sen	ni-Volatile C	rganic Co	ompounds	;				
Batch CF92504 - 3510C										
Benzo(k)fluoranthene	ND	0.05	ug/L							
is(2-Ethylhexyl)phthalate	ND	2.50	ug/L							
Butylbenzylphthalate	ND	2.50	ug/L							
Chrysene	ND	0.05	ug/L							
ibenzo(a,h)Anthracene	ND	0.05	ug/L							
iethylphthalate	ND	2.50	ug/L							
Dimethylphthalate	ND	2.50	ug/L							
i-n-butylphthalate	ND	2.50	ug/L							
i-n-octylphthalate	ND	2.50	ug/L							
luoranthene	ND	0.20	ug/L							
luorene	ND	0.20	ug/L							
ndeno(1,2,3-cd)Pyrene	ND	0.05	ug/L							
laphthalene	ND	0.20	ug/L							
entachlorophenol	ND	0.90	ug/L							
henanthrene	ND	0.20	ug/L							
yrene	ND	0.20	ug/L							
urrogate: 1,2-Dichlorobenzene-d4	0.750		ug/L	2.500		30	30-130			
urrogate: 2,4,6-Tribromophenol	3.61		ug/L	3.750		96	15-110			
urrogate: 2-Fluorobiphenyl	1.10		ug/L	2.500		44	30-130			
Surrogate: Nitrobenzene-d5	1.56		ug/L	2.500		62	30-130			
Surrogate: p-Terphenyl-d14	2.36		ug/L	2.500		94	30-130			
cs										
cenaphthene	2.37	0.20	ug/L	4.000		59	40-140			
cenaphthylene	2.48	0.20	ug/L	4.000		62	40-140			
nthracene	2.74	0.20	ug/L	4.000		68	40-140			
enzo(a)anthracene	2.96	0.05	ug/L	4.000		74	40-140			
enzo(a)pyrene	3.04	0.05	ug/L	4.000		76	40-140			
enzo(b)fluoranthene	3.24	0.05	ug/L	4.000		81	40-140			
enzo(g,h,i)perylene	3.08	0.20	ug/L	4.000		77	40-140			
enzo(k)fluoranthene	3.00	0.05	ug/L	4.000		75	40-140			
is(2-Ethylhexyl)phthalate	3.37	2.50	ug/L	4.000		84	40-140			
utylbenzylphthalate	3.44	2.50	ug/L	4.000		86	40-140			
Thrysene	3.02	0.05	ug/L	4.000		76	40-140			
ibenzo(a,h)Anthracene	3.20	0.05	ug/L	4.000		80	40-140			
iethylphthalate	2.75	2.50	ug/L	4.000		69	40-140			
imethylphthalate	3.29	2.50	ug/L	4.000		82	40-140			
i-n-butylphthalate	3.49	2.50	ug/L	4.000		87	40-140			
i-n-octylphthalate	3.41	2.50	ug/L	4.000		85	40-140			
luoranthene	2.93	0.20	ug/L	4.000		73	40-140			
luorene	2.53	0.20	ug/L	4.000		63	40-140			
ndeno(1,2,3-cd)Pyrene	3.09	0.05	ug/L	4.000		77	40-140			
laphthalene	1.74	0.20	ug/L	4.000		44	40-140			
entachlorophenol	1.78	0.90	ug/L	4.000		45	30-130			
henanthrene	2.85	0.20	ug/L	4.000		71	40-140			

2211Tel: 401-461-7181Dependability◆Quality

Fax: 401-461-4486

٠

Service

http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	625	5.1(SIM) Sen	ni-Volatile C	Organic Co	ompounds	5				
Batch CF92504 - 3510C										
Pyrene	3.24	0.20	ug/L	4.000		81	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	1.09		ug/L	2.500		44	30-130			
Surrogate: 2,4,6-Tribromophenol	3.56		ug/L	3.750		95	15-110			
Surrogate: 2-Fluorobiphenyl	1.56		ug/L	2.500		62	30-130			
Surrogate: Nitrobenzene-d5	1.63		ug/L	2.500		65	30-130			
Surrogate: p-Terphenyl-d14	2.35		ug/L	2.500		94	30-130			
.CS Dup										
Acenaphthene	2.42	0.20	ug/L	4.000		61	40-140	2	20	
Acenaphthylene	2.52	0.20	ug/L	4.000		63	40-140	2	20	
Anthracene	2.63	0.20	ug/L	4.000		66	40-140	4	20	
Benzo(a)anthracene	2.64	0.05	ug/L	4.000		66	40-140	12	20	
Benzo(a)pyrene	2.74	0.05	ug/L	4.000		69	40-140	10	20	
enzo(b)fluoranthene	3.02	0.05	ug/L	4.000		76	40-140	7	20	
enzo(g,h,i)perylene	2.79	0.20	ug/L	4.000		70	40-140	10	20	
enzo(k)fluoranthene	2.65	0.05	ug/L	4.000		66	40-140	12	20	
is(2-Ethylhexyl)phthalate	3.26	2.50	ug/L	4.000		81	40-140	3	20	
Butylbenzylphthalate	3.25	2.50	ug/L	4.000		81	40-140	6	20	
Chrysene	2.67	0.05	ug/L	4.000		67	40-140	12	20	
ibenzo(a,h)Anthracene	2.87	0.05	ug/L	4.000		72	40-140	11	20	
Diethylphthalate	2.63	2.50	ug/L	4.000		66	40-140	5	20	
Dimethylphthalate	3.19	2.50	ug/L	4.000		80	40-140	3	20	
)i-n-butylphthalate	3.31	2.50	ug/L	4.000		83	40-140	5	20	
)i-n-octylphthalate	3.45	2.50	ug/L	4.000		86	40-140	1	20	
luoranthene	2.76	0.20	ug/L	4.000		69	40-140	6	20	
luorene	2.52	0.20	ug/L	4.000		63	40-140	0.2	20	
ndeno(1,2,3-cd)Pyrene	2.68	0.05	ug/L	4.000		67	40-140	14	20	
laphthalene	1.88	0.20	ug/L	4.000		47	40-140	8	20	
Pentachlorophenol	1.86	0.90	ug/L	4.000		46	30-130	4	20	
henanthrene	2.73	0.20	ug/L	4.000		68	40-140	4	20	
yrene	3.08	0.20	ug/L	4.000		77	40-140	5	20	
Surrogate: 1,2-Dichlorobenzene-d4	1.21		ug/L	2.500		48	30-130			
Surrogate: 2,4,6-Tribromophenol	3.35		ug/L	3.750		89	15-110			
Surrogate: 2-Fluorobiphenyl	1.60		ug/L	2.500		64	30-130			
Surrogate: Nitrobenzene-d5	1.69		ug/L	2.500		67	30-130			
Surrogate: p-Terphenyl-d14	2.22		ug/L	2.500		89	30-130			

Blank						
-						
1,4-Dioxane	NE	0.250	ug/L			
Surrogate: 1,4-Dioxane-d8	2.5	5	ug/L	5.000	51	15-115
LCS						
1,4-Dioxane	9.6	9 0.250	ug/L	10.00	97	40-140
Surrogate: 1,4-Dioxane-d8	2.3	8	ug/L	5.000	48	15-115
1	85 Frances Avenue, Cranston,	RI 02910-2211	Tel: 401-46	1-7181	Fax: 401-461-4486	http://www.ESSLaboratory.com
		Dependa	ability +	Quality	 Service 	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
-	8270D(SIM) 5									
Batch CF92432 - 3535A										
LCS Dup										
1,4-Dioxane	10.1	0.250	ug/L	10.00		101	40-140	4	20	
Surrogate: 1,4-Dioxane-d8	2.98		ug/L	5.000		60	15-115			
		Cl	assical Che	mistry						
Batch CF92146 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.38		mg/L	1.390		99	85-115			
Batch CF92150 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.485		mg/L	0.4998		97	90-110			
LCS Dup										
Hexavalent Chromium	0.488		mg/L	0.4998		98	90-110	0.5	20	
Batch CF92411 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		70	66-114			
Batch CF92425 - TCN Prep										
Blank										
Total Cyanide	ND	5.00	ug/L							
LCS										
Total Cyanide	20.2	5.00	ug/L	20.06		101	90-110			
LCS										
Total Cyanide	150	5.00	ug/L	150.4		100	90-110			
LCS Dup										
Total Cyanide	149	5.00	ug/L	150.4		99	90-110	0.7	20	
Batch CF92430 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	36		mg/L	36.40		99	80-120			
Batch CF92524 - General Preparation										
Blank										
Phenols	ND	100	ug/L							

 Quality Dependability Service ٠

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Analyte	Kesuit		assical Che		Result	JUNEC	LITIUS	N D	Linit	Quanner
				msuy						
Batch CF92524 - General Preparation										
LCS										
Phenols	96	100	ug/L	100.0		96	80-120			
LCS										
Phenols	1030	100	ug/L	1000		103	80-120			
Batch CF92615 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
_CS										
Chloride	2.3		mg/L	2.500		93	90-110			
Batch CF92628 - NH4 Prep										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		86	80-120			
_CS										
Ammonia as N	1.14	0.10	mg/L	0.9994		114	80-120			
atch CF92724 - 504/8011	504.1 1,2	2-Dibromoeth	nane / 1,2-1	Dibromo-3	8-chloropr	opane				
	504.1 1,2	2-Dibromoeth	nane / 1,2-1	Dibromo-3	3-chloropr	opane				
Blank	504.1 1,2	2-Dibromoeth	ug/L	Dibromo-3	3-chloropr	opane				
Blank 1,2,3-Trichloropropane				Dibromo-3	3-chloropr	opane				
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane	ND	0.025 0.025 0.015	ug/L	Dibromo-3	3-chloropr	opane				
Blank I,2,3-Trichloropropane I,2,3-Trichloropropane [2C] I,2-Dibromo-3-Chloropropane I,2-Dibromo-3-Chloropropane [2C]	ND ND ND ND	0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L	Dibromo-3	3-chloropr	opane				
3Jank ,2,3-Trichloropropane ,2,3-Trichloropropane [2C] ,2-Dibromo-3-Chloropropane ,2-Dibromo-3-Chloropropane [2C] ,2-Dibromoethane	ND ND ND ND ND ND	0.025 0.025 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L	Dibromo-3	3-chloropr	opane				
3Jank ,2,3-Trichloropropane ,2,3-Trichloropropane [2C] ,2-Dibromo-3-Chloropropane ,2-Dibromo-3-Chloropropane [2C] ,2-Dibromoethane	ND ND ND ND	0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L	Dibromo-3	3-chloropr	opane				
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND ND ND ND ND	0.025 0.025 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L	Dibromo-3	3-chloropr	82	30-150			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane Surrogate: Pentachloroethane	ND ND ND ND ND ND	0.025 0.025 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L		3-chloropr		30-150 30-150			
Blank ,2,3-Trichloropropane [2C] ,2-Dibromo-3-Chloropropane ,2-Dibromo-3-Chloropropane [2C] ,2-Dibromoethane ,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND ND ND ND ND ND	0.025 0.025 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000	3-chloropr					
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 5urrogate: Pentachloroethane 5urrogate: Pentachloroethane 12C] LCS	ND ND ND ND ND ND ND	0.025 0.025 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000	3-chloropr					
Blank .,2,3-Trichloropropane .,2,3-Trichloropropane .,2,3-Trichloropropane .,2-Dibromo-3-Chloropropane .,2-Dibromo-3-Chloropropane .,2-Dibromoethane .,2-Jibromoethane .,2-Jibromoethan	ND ND ND ND ND 0.164 0.186	0.025 0.025 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000	3-chloropr		30-150			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2,2-Dibromoethane 2,2-Dibromoethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,2-Dibromo-3-Chloropropane	ND ND ND ND 0.164 0.186 0.068 0.058 0.057	0.025 0.025 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72	<i>30-150</i> 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] L2.3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,3-Dibrom0-3-Chloropropane 1,3-Dibrom0-3-Chloropro	ND ND ND ND 0.164 0.186 0.058 0.057 0.065	0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81	30-150 70-130 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] L2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,3-Dibromo-3-Chloropropane 1,3-Dibrom0-3-Chloropropane 1,3-Dibrom0-3-Chlo	ND ND ND ND 0.164 0.186 0.058 0.057 0.065 0.058	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81 73	30-150 70-130 70-130 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 2,2-Dibromoethane 1,2-Dibromoethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-thane 1,2-Dibromo-thane	ND ND ND ND 0.164 0.186 0.058 0.057 0.065	0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81	30-150 70-130 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromo-3-Chloropropane [2C]	ND ND ND ND 0.164 0.186 0.058 0.057 0.065 0.058	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81 73	30-150 70-130 70-130 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromo-4-Chloropropane [2C] 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND ND ND ND 0.164 0.186 0.058 0.057 0.065 0.058 0.057 0.065 0.058 0.071	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81 73 89	30-150 70-130 70-130 70-130 70-130 70-130 70-130			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoe	ND ND ND ND 0.164 0.186 0.058 0.057 0.065 0.058 0.057 0.065 0.058 0.071	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81 73 89 <i>81</i>	30-150 70-130 70-130 70-130 70-130 70-130 70-130 70-130 30-150			
Batch CF92724 - 504/8011 Blank 1,2,3-Trichloropropane [2C] 1,2-Dibromo-3-Chloropropane [2C] 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromo-3-Chloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibro	ND ND ND ND 0.164 0.186 0.058 0.057 0.065 0.058 0.057 0.065 0.058 0.071	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.025 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	<i>82</i> <i>93</i> 84 72 72 81 73 89 <i>81</i>	30-150 70-130 70-130 70-130 70-130 70-130 70-130 70-130 30-150			
Blank 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2-Dibromoethane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dibromoethane 1,2-Dib	ND ND ND ND 0.164 0.186 0.068 0.058 0.058 0.057 0.065 0.058 0.057 0.065 0.058 0.071 0.0650 0.0784	0.025 0.025 0.015 0.015 0.015 0.015 0.015 0.025 0.025 0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.2000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000 0.08000	3-chloropr	82 93 84 72 72 81 73 89 81 98	30-150 70-130 70-130 70-130 70-130 70-130 70-130 30-150 30-150			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	504.1 1,2	2-Dibromoeth	nane / 1,2-I	Dibromo-3	8-chloropi	ropane				
Batch CF92724 - 504/8011										
1,2-Dibromo-3-Chloropropane	0.200	0.015	ug/L	0.2000		100	70-130			
1,2-Dibromo-3-Chloropropane [2C]	0.219	0.015	ug/L	0.2000		110	70-130			
1,2-Dibromoethane	0.230	0.015	ug/L	0.2000		115	70-130			
1,2-Dibromoethane [2C]	0.237	0.015	ug/L	0.2000		118	70-130			
Surrogate: Pentachloroethane	0.243		ug/L	0.2000		122	30-150			
Surrogate: Pentachloroethane [2C]	0.265		ug/L	0.2000		132	30-150			
		Alcol	hol Scan by	GC/FID						
Batch CF92801 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	811	10	mg/L	1134		71	60-140			
LCS Dup										
Ethanol	852	10	mg/L	1134		75	60-140	5	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

Notes and Definitions

U	Analyte included in the analysis, but not detected
Q	Calibration required quadratic regression (Q).
ICV+	Initial Calibration Verification recovery is above upper control limit (ICV+).
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection Limit of Quantitation
LOQ	Detection Limit
DL I/V	Initial Volume
F/V	Final Volume
ş	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.
2	Range result excludes concentrations of target analytes eluting in that range.
3	Range result excludes the concentration of the C9-C10 aromatic range.
Avg	Results reported as a mathematical average.
NR	No Recovery
[CALC]	Calculated Analyte
SUB	Subcontracted analysis; see attached report
RL	Reporting Limit
EDL	Estimated Detection Limit
MF	Membrane Filtration
MPN	Most Probably Number
TNTC	Too numerous to Count
CFU	Colony Forming Units

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: GEI Consultants, Inc. Client Project ID: Beth Israel - RGP

ESS Laboratory Work Order: 19F0748

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 <u>http://www.health.ri.gov/find/labs/analytical/ESS.pdf</u>

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: GEI Consultants, Inc TB/MM		ESS Project ID:	19F0748	
Chine of Delivery d May		Date Received:	6/21/2019	
Shipped/Delivered Via: ESS Courier		Project Due Date:	6/28/2019	
		Days for Project:	5 Day	
1. Air bill manifest present? No Air No.: NA		6. Does COC match bottles	?	Yes
2. Were custody seals present? No		7. Is COC complete and con	rect?	Yes
3. Is radiation count <100 CPM? Yes		8. Were samples received in		Yes
4. Is a Cooler Present? Yes		9. Were labs informed abo	ut <u>short holds & rushes</u> ?	(res)/ No / NA
Temp: 1.9 Iced with: Ice		10. Were any analyses rece	eived outside of hold time?	Yes
5. Was COC signed and dated by client? Yes			······	
11. Any Subcontracting needed? Yes / Mo ESS Sample IDs; Analysis:	_	 Were VOAs received? Air bubbles in aqueous V Does methanol cover soil 		Yes / No Yes /No Yes / No / NA
 13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: 	No ate: ate:	Time: Time:	By: By:	
Sample Receiving Notes:				
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date	Yes / No Yes / No ate:	Time:	Ву:	

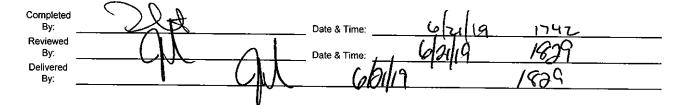
Sample Number	Container ID	Proper Container	Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide and 608 Pesticides)
01	359027	Yes	No	Yes	VOA Vial - HCI	HCI	······································
01	359028	Yes	No	Yes	VOA Vial - HCI	HCI	
01	359029	Yes	No	Yes	VOA Vial - HCI	HCI	
01	359030	Yes	No	Yes	VOA Vial - HCI	HCI	
01	359031	Yes	No	Yes	VOA Vial - HCI	HCI	
01	359033	Yes	No	Yes	VOA Vial - Unpres	NP	
01	359036	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	359037	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
01	359044	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359045	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359046	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359047	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359048	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359049	Yes	NA	Yes	1L Amber - Unpres	NP	
01	359051	Yes	NA	Yes	1L Poly - Unpres	NP	
01	359053	Yes	NA	Yes	250 mL Poly - Unpres	NP	
01	359055	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
01	359057	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12
01	359059	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	•• • -
01	359062	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
01	359063	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
02	359020	Yes	No	Yes	VOA Vial - HCI	HCI	
02	359021	Yes	No	Yes	VOA Vial - HCI	HCI	

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	GE	Consultan	<u>ts, Inc TB/</u>	<u>MM</u>	_ ES	SS Project ID:	19F0748
						ate Received:	6/21/2019
02	359022	Yes	No	Yes	VOA Vial - HCi	HCI	
02	359023	Yes	No	Yes	VOA Vial - HCI	HCI	
02	359024	Yes	No	Yes	VOA Vial - HCt	HCI	
02	359025	Yes	No	Yes	VOA Vial - HCI	HCI	
02	359032	Yes	No	Yes	VOA Vial - Unpres	NP	
02	359034	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	359035	Yes	NA	Yes	1L Amber - H2SO4	H2SO4	
02	359038	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359039	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359040	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359041	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359042	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359043	Yes	NA	Yes	1L Amber - Unpres	NP	
02	359050	Yes	NA	Yes	1L Poly - Unpres	NP	
02	359052	Yes	NA	Yes	250 mL Poly - Unpres	NP	
02	359054	Yes	NA	Yes	500 mL Poly - H2SO4	H2SO4	
02	359056	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12
02	359058	Yes	NA	Yes	250 mL Poly - HNO3	HNO3	p112 12
02	359060	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	
02	359061	Yes	NA	Yes	500 mL Poly - HNO3	HNO3	

2nd Review

Were all containers scanned into storage/lab?

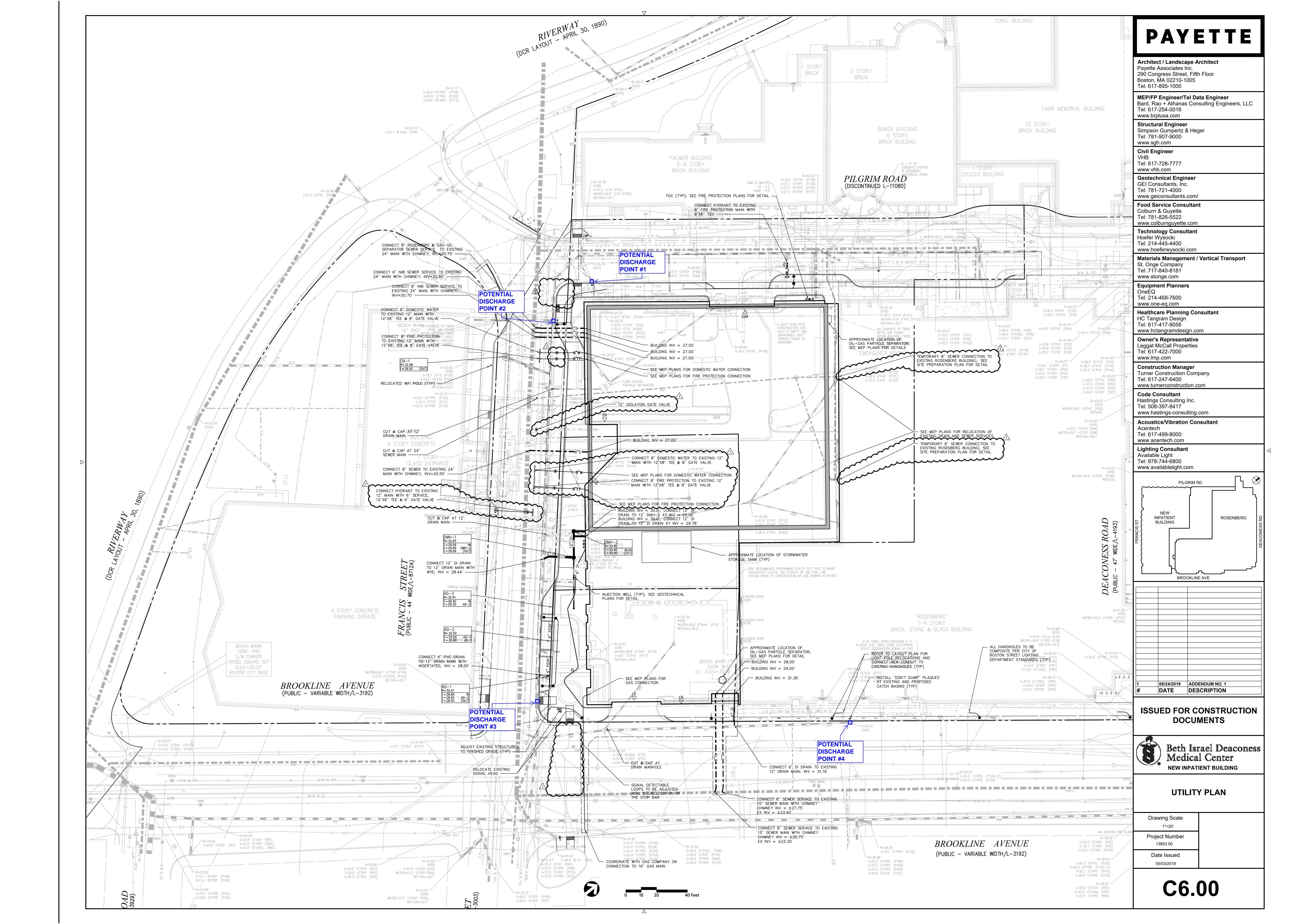

Are barcode labels on correct containers?

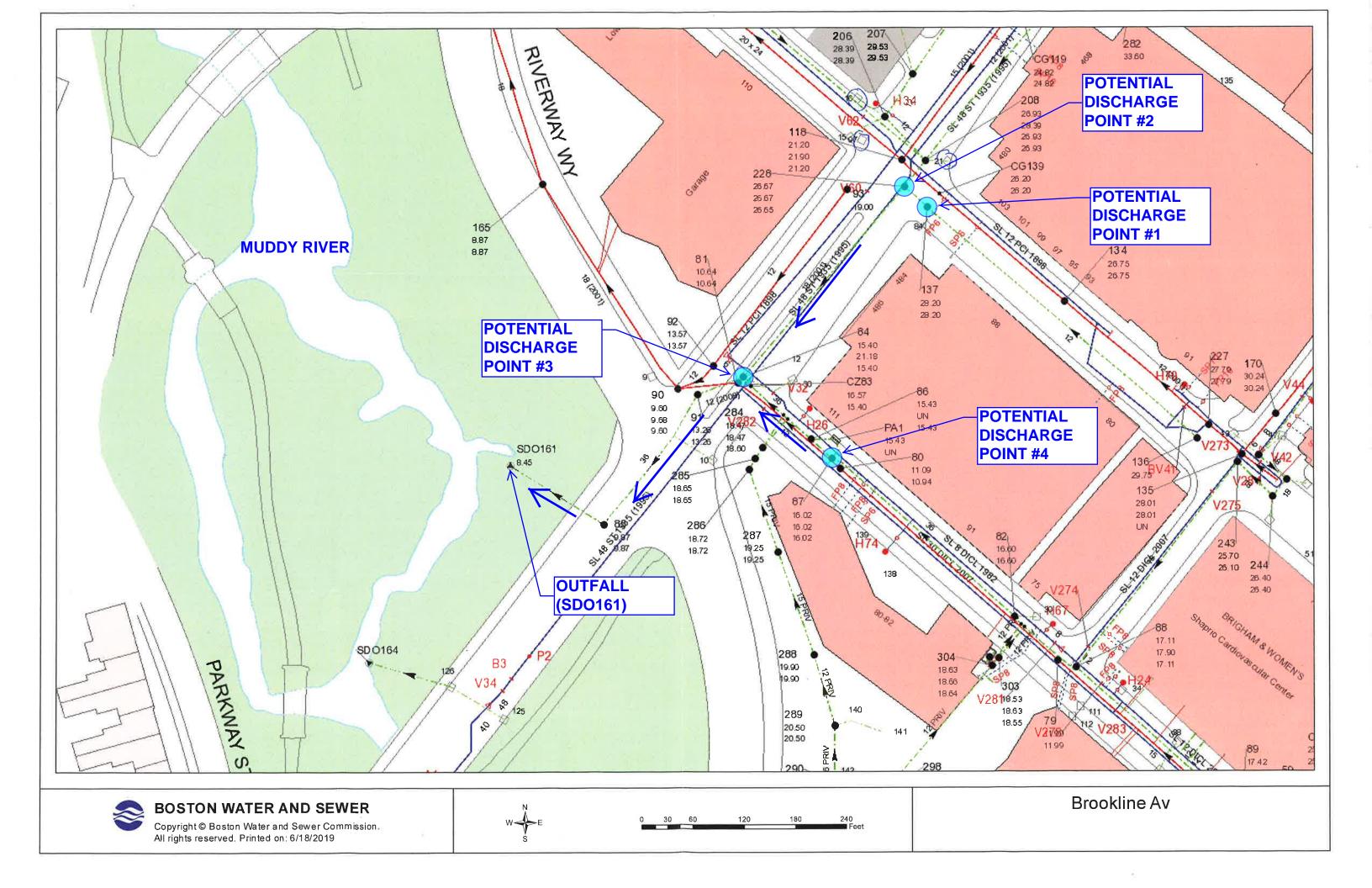
Are all Flashpoint stickers attached/container ID # circled?

Are all Hex Chrome stickers attached? Are all QC stickers attached?

Are VOA stickers attached if bubbles noted?

Yes7No. Yes / No / А Yes / No / Yes / No /




Initials

ESS Laboratory Division of Thielsch Engineering, Inc. 185 Frances Avenue, Cranston, RI 02910-2211 Tel. (401) 461-7181 Fax (401) 461-4486 www.esslaboratory.com Project Manager: <u>H. Ballent</u> Company: GEE Consultants Address: <u>How Uncom Park Da</u> Wabam, MA 01801	State where samples were collected: MP NH Is this project for: RGP	ESS LAB PROJECT ID IGFO748 ed By: Reporting Limits - Discharge into: Fresh Water Salt Water Salt Water Discharge into: Fresh Water Salt Water Sa
ESS Lab Date Collection Grab -G Sample ID Time Composite-	Matrix Sample Identification	Country the state of the state
Sample ID Time Composite-	GW 1703581-18202(0W)	22 X X X X X X X X X X X X X X X X X X
2 6-2149 1230	G-W 1703581- B203(OW)	$22 \times \times \wedge \times + \times \times$
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5	N-OH 6 MOH 7 Acorbic Acid 8 ZnAct 9	
Container Type: P-Poly G-Glass AG-Amber Glass S-S		P P P V P P AG P P P - P AG V AG V AG AG
Matrix: S-Soil SD-Solid D-Sludge WW-Wastewater C	W-Groundwater SW-Surface Water DW-Drinking Water O-Oil W-Wij Sampled by: Curs Source Base Cours Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe, P 2) Parameters in BOLD have Short hold-time * TSS, TRC and Cl taken from the same container	b, Ni, Se, Ag and Zn by 200.7/3113B and Hg by 245.1 PERMIT ATTACHED 3, Hold RGP wetch Dissolved

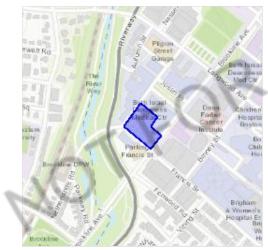
Appendix E

Detailed Plans of Proposed Discharge Points

Appendix F

Endangered Species Act Eligibility Documentation

IPaC


IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Suffolk County, Massachusetts

Local office

New England Ecological Services Field Office

└ (603) 223-2541**i** (603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and projectspecific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The <u>Bald and Golden Eagle Protection Act</u> of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <u>http://www.fws.gov/birds/management/managed-species/</u> <u>birds-of-conservation-concern.php</u>
- Measures for avoiding and minimizing impacts to birds <u>http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/</u> <u>conservation-measures.php</u>
- Nationwide conservation measures for birds <u>http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</u>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of</u> <u>Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A BREEDING SEASON IS INDICATED FOR A BIRD ON YOUR LIST, THE BIRD MAY BREED IN YOUR PROJECT AREA SOMETIME WITHIN THE TIMEFRAME SPECIFIED, WHICH IS A VERY LIBERAL ESTIMATE OF THE DATES INSIDE WHICH THE BIRD BREEDS ACROSS ITS ENTIRE RANGE. "BREEDS

ELSEWHERE" INDICATES THAT THE BIRD DOES NOT LIKELY BREED IN YOUR PROJECT AREA.)

 Bald Eagle Haliaeetus leucocephalus This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities. https://ecos.fws.gov/ecp/species/1626 	Breeds Oct 15 to Aug 31
Black-billed Cuckoo Coccyzus erythropthalmus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9399</u>	Breeds May 15 to Oct 10
Bobolink Dolichonyx oryzivorus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Jul 31
Canada Warbler Cardellina canadensis This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 20 to Aug 10
Cerulean Warbler Dendroica cerulea This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/2974</u>	Breeds Apr 29 to Jul 20
Evening Grosbeak Coccothraustes vespertinus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Kentucky Warbler Oporornis formosus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 20 to Aug 20
Lesser Yellowlegs Tringa flavipes This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9679</u>	Breeds elsewhere
Long-eared Owl asio otus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/3631</u>	Breeds elsewhere

Prairie Warbler Dendroica discolor This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 1 to Jul 31
Prothonotary Warbler Protonotaria citrea This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 1 to Jul 31
Red-headed Woodpecker Melanerpes erythrocephalus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds May 10 to Sep 10
Red-throated Loon Gavia stellata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Ruddy Turnstone Arenaria interpres morinella This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA	Breeds elsewhere
Rusty Blackbird Euphagus carolinus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Semipalmated Sandpiper Calidris pusilla This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Short-billed Dowitcher Limnodromus griseus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9480</u>	Breeds elsewhere
Snowy Owl Bubo scandiacus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds elsewhere
Whimbrel Numenius phaeopus This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. <u>https://ecos.fws.gov/ecp/species/9483</u>	Breeds elsewhere
Willet Tringa semipalmata This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.	Breeds Apr 20 to Aug 5

Breeds May 10 to Aug 31

Wood Thrush Hylocichla mustelina This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.

To see a bar's survey effort range, simply hover your mouse cursor over the bar.

No Data (–)

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

				prob	ability of	fpresend	ce 🗖 br	eeding s	eason	survey	effort ·	– no data
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Bald Eagle Non-BCC Vulnerable (This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.)	****	++++	+ ++ +	++++	++ ++	++++	+ +++	+++	* +++	++++		++++
Black-billed Cuckoo BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	TTTT	++++	++++	++++	+###	++++		•••• >>-		1) ++	++++	++++
Bobolink BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)		++++	++++ R	 C		(HH	+/11	+++#	**++	++++	++++	++++
Canada Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	C 1	} }}	łtit	++++	+ #! !	++++	++++	<mark>∳1</mark> ‡‡	₩+++	++++	++++	++++
Cerulean Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)		++++	++++	+++ <mark>+</mark>	<u></u> 	++++	<mark>┼┼┼</mark> ┼	++++	++++	++++	++++	++++
Evening Grosbeak BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)		++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++

IPaC: Explore Location

Kentucky Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	┼┼╂╋	₩₩	++++	++++	++++	++++	++++	++++	++++
Lesser Yellowlegs BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	• +++	++++	++++	++++	++++	++++	++++	++++
Long-eared Owl BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++	++++ 0	+++++
Prairie Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	+++•	••••		нн 3\	+++#	#++#	++++	++++	++++
Prothonotary Warbler BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++ >C	++++ R	IIII		NIT	++++	++++	++++	++++	++++	++++
Red-headed Woodpecker BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	+++ +	++++	++++	++++	+ <mark>╂</mark> ╂╂	╂╂╂╂	<u>₩</u> ₩₩	 	<mark>┼┼</mark> ┼┼	++++	++++	+ +∎∳
SPECIES	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
Red-throated Loon BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	+++#	* **†	++++	++++	₩ ++++	++++	++++	++++	++++	++++	++++

Ruddy Turnstone BCC - BCR (This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA)	++++	++++	++++	++++	++++	++++	+++#	++++	++++	++++	++++	++++
Rusty Blackbird BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	## ++	** ++	++++	++++	++++	++++	++++	+++∎	† ₩₩	+##+	++++
Semipalmated Sandpiper BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++	++##	++++	++++	++++ 0	++++ \/
Short-billed Dowitcher BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++ 3	++++	¥ <u>†</u> †∔	++++	++++	++++
Snowy Owl BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++ < C		++++	} <u></u>	++++	++++	++++	++++	++++	++++	++++
Whimbrel BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	++++	++++	++++	+++#	++++	++++	++++	++++
Willet BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	┼┼╂╋	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	++++	++++	<mark>+</mark> +++	++++	++++	++++	++++
Wood Thrush BCC Rangewide (CON) (This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.)	++++	++++	++++	++++	+111		****	₿┼┿ф	₩┼┼₩	++++	++++	++++

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> and/or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network</u> (<u>AKN</u>). The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian</u> <u>Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science</u> <u>datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or yearround), you may refer to the following resources: <u>The Cornell Lab of Ornithology All About Birds Bird Guide</u>, or (if you are unsuccessful in locating the bird of interest there), the <u>Cornell Lab of Ornithology Neotropical Birds guide</u>. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

IPaC: Explore Location

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS</u> <u>Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf</u> project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory birds resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers</u> <u>District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

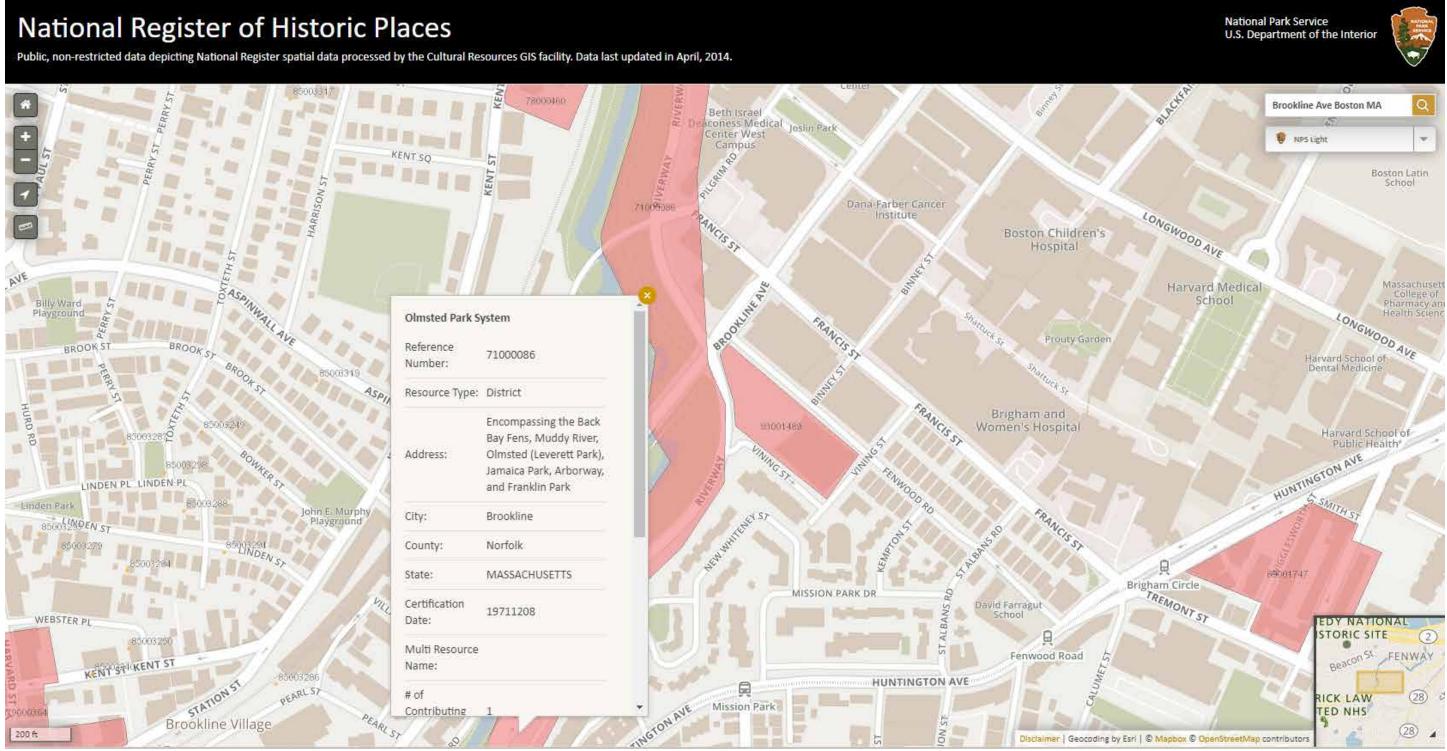
Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

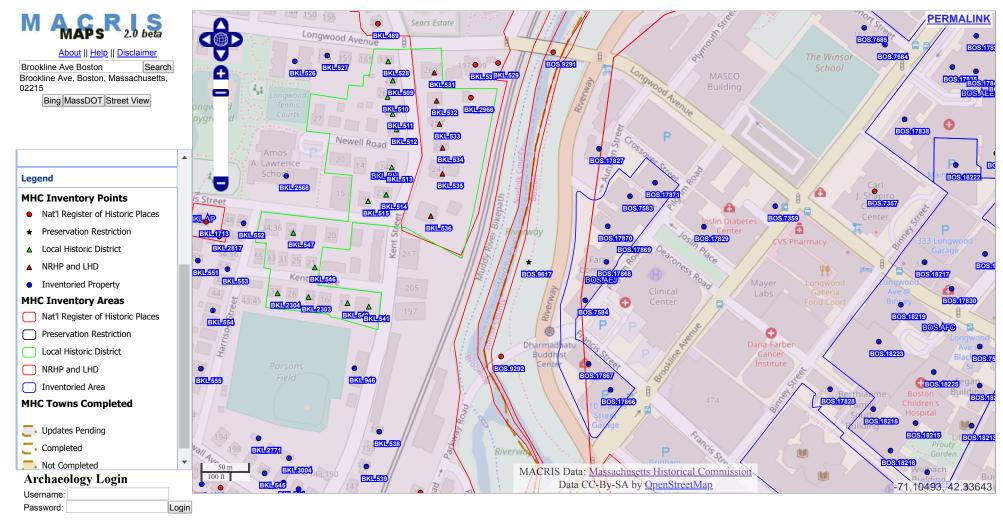

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

Appendix G

Historic Preservation Documentation



https://www.nps.gov/maps/full.html?mapId=7ad17cc9-b808-4ff8-a2f9-a99909164466

Accessed June 27, 2019

6/27/2019

MHC MACRIS Maps 2.0 Beta

MACRIS Maps Last Updated 06/18/2019

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Boston; Name: olmsted;

Inv. No.	Property Name	Street	Town	Year
BOS.IO	Olmsted Park System		Boston	
BOS.9302	Olmsted Park - Cumberland Avenue Footbridge	Cumberland Ave	Boston	1892
BOS.9310	Olmsted Park - Retaining Walls along Jamaicaway	Jamaicaway	Boston	1894
BOS.9301	Olmsted Park - Cove Bridge	Leverett Pond	Boston	1892
BOS.9309	Olmsted Park - Nickerson Hill Stone Steps	Nickerson Hill	Boston	1894
BOS.9312	Olmsted Park Electric Lights	Olmsted Park	Boston	c 1890
BOS.9311	Olmsted Park Retaining Wall and Iron Fence	Perkins St	Boston	1894
BOS.9304	Olmsted Park - Ward's Pond Footbridge	Ward's Pond	Boston	1892
BOS.9303	Olmsted Park - Willow Pond Footbridge	Willow Pond	Boston	1892
BOS.8061	Olmsted Park - Kelly Skating Rink	Willow Pond Rd	Boston	1965
BOS.9231	Olmsted Park - Daisy Field	Willow Pond Rd	Boston	

Massachusetts Cultural Resource Information System

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Fenway - Longwood; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.JE	Emerald Necklace Parks		Boston	
BOS.JG	Massachusetts Mental Health Center		Boston	
BOS.JH	Massachusetts State Hospitals and State Schools		Boston	
BOS.TC	Emmanuel College Campus		Boston	
BOS.ACA	Francis Street - Fenwood Road District		Boston	
BOS.AEE	Beth Israel Hospital		Boston	
BOS.AEF	Evans Way - Gordon College Area		Boston	
BOS.AEG	Harvard Medical School and School of Public Health		Boston	
BOS.AEH	Huntington Avenue - Longwood Avenue Area		Boston	
BOS.AEI	Louis Prang Street - Vancouver Street Residential Area		Boston	
BOS.AEJ	New England Deaconess Hospital		Boston	
BOS.AEK	Normal and Girls' Latin School Group - Massachusetts College of Art and Design		Boston	
BOS.AEL	Brigham, Peter Bent Hospital - Brigham and Women's Hospital		Boston	
BOS.AEM	Simmons College Residence Campus		Boston	
BOS.AEN	Wheelock College Area		Boston	
BOS.AFC	Boston Children's Hospital		Boston	
BOS.17827	Riverway Hall	21 Autumn St	Boston	1928
BOS.17843	Emmanuel College - Alumnae Hall	45 Ave Louis Pasteur	Boston	1948
BOS.17849	Harvard Medical School - Harvard Institutes of Medicine	77 Ave Louis Pasteur	Boston	1971
BOS.7517	Boston Public Latin School	78 Ave Louis Pasteur	Boston	1921
BOS.7516	Harvard Medical School - Vanderbilt Hall	107 Ave Louis Pasteur	Boston	1926
BOS.17828	Jimmy Fund Building and Auditorium	43 Binney St	Boston	1949
BOS.18220	Boston Children's Hospital - Karp Family	1 Blackfan Circ	Boston	2003
Thursday, Jun	e 27, 2019			Page 1 of 8

Inv. No.	Property Name	Street	Town	Year
	Research Laboratory Building			
BOS.18223	Boston Children's Hospital - James A. Mandell Building	17 Blackfan St	Boston	2013
BOS.18218	Boston Children's Hospital - Berthiaume Family South Clinical Building	29 Blackfan St	Boston	2005
BOS.9293	Riverway - Brookline Avenue Bridge	Brookline Ave	Boston	1894
BOS.17882	Simmons College Residence Campus - Morse Hall	259-275 Brookline Ave	Boston	1952
BOS.17883	Simmons College Residence Campus - Simmons Hall	259-275 Brookline Ave	Boston	1956
BOS.7413	Boston Academy of Notre Dame	264-274 Brookline Ave	Boston	1913
BOS.13247	Emmanuel College - Saint Ann Hall	264-274 Brookline Ave	Boston	1961
BOS.13249	Emmanuel College - Loretto Hall	264-274 Brookline Ave	Boston	1963
BOS.13250	Emmanuel College - Marian Hall	264-274 Brookline Ave	Boston	1954
BOS.13251	Emmanuel College - Saint Joseph Hall	264-274 Brookline Ave	Boston	1966
BOS.17844	Emmanuel College - Cardinal Cushing Library	264-274 Brookline Ave	Boston	1966
BOS.17884	Simmons College Residence Campus - Mesick Hall	291 Brookline Ave	Boston	1960
BOS.17885	Simmons College Residence Campus - Evans Hall	305 Brookline Ave	Boston	1938
BOS.17835	Beth Israel Hospital - Outpatient Department Building	320-350 Brookline Ave	Boston	1925
BOS.17836	Beth Israel Hospital - Main Hospital Building	320-350 Brookline Ave	Boston	1926
BOS.17837	Beth Israel Hospital - Service and Operating Building	320-350 Brookline Ave	Boston	1926
BOS.17838	Beth Israel Hospital - Nurses' Home	320-350 Brookline Ave	Boston	1925
BOS.17839	Beth Israel Hospital - Yamins, Nathan Research Laboratory	320-350 Brookline Ave	Boston	1948
BOS.17840	Beth Israel Hospital - Service Building	320-350 Brookline Ave	Boston	1948
BOS.17841	Beth Israel Hospital - Stoneman Building	320-350 Brookline Ave	Boston	1948
BOS.17842	Beth Israel Hospital - Rabb Building	320-350 Brookline Ave	Boston	1966
BOS.7358	Simmons College Residence Campus - South Hall	321 Brookline Ave	Boston	1905
BOS.7580	Simmons College Residence Campus - North Hall	321 Brookline Ave	Boston	1906
BOS.7581	Simmons College Residence Campus - Refectory	321 Brookline Ave	Boston	1905
BOS.17886	Simmons College Residence Campus - Bartol Dining Hall	321 Brookline Ave	Boston	1952
BOS.17887	Simmons College Residence Campus - Health Center	321 Brookline Ave	Boston	1966
BOS.18222	Boston Children's Hospital - Parking Garage	340 Brookline Ave	Boston	r 1975

Inv. No.	Property Name	Street	Town	Year
BOS.7357	Massachusetts School of Art	364 Brookline Ave	Boston	1929
BOS.7359	Boston Fire Engine House #3	411 Brookline Ave	Boston	1873
BOS.17829	Joslin Diabetes Center	415-435 BrookIne Ave	Boston	1955
BOS.17845		22 Evans Way	Boston	1916
BOS.17846		26 Evans Way	Boston	1916
BOS.17847	Gordon College - Frost Hall	30 Evans Way	Boston	1916
BOS.17848	Gordon College - Frost Hall Addition	40-48 Evans Way	Boston	1930
BOS.7414	Lyons, John B. Three-Family House	7 Fenwood Rd	Boston	1910
BOS.7410	Farragut Primary School	10 Fenwood Rd	Boston	1903
BOS.7415	Spillane, Jeremiah C. Two-Family House	11 Fenwood Rd	Boston	1903
BOS.7416	Spillane, Jeremiah C. Two-Family House	15 Fenwood Rd	Boston	1903
BOS.16666	Sheean, Benjamin Two-Family House	17 Fenwood Rd	Boston	c 1899
BOS.16667	Dunn, F. and J. L. Two-Family House	19 Fenwood Rd	Boston	c 1899
BOS.16668	Whelan, M. J. and A. J. Two-Family House	21 Fenwood Rd	Boston	c 1899
BOS.16669	Mahan, E. J. Two-Family House	24 Fenwood Rd	Boston	c 1899
BOS.16670	Barry, Anna M. Two-Family House	30 Fenwood Rd	Boston	1909
BOS.16671	Stroud, F. W. Two-Family House	31 Fenwood Rd	Boston	c 1899
BOS.16672	Lowney, J. F. Two-Family House	32 Fenwood Rd	Boston	c 1899
BOS.16673	Kilduff, M. Two-Family House	33 Fenwood Rd	Boston	c 1899
BOS.16674	Holland, J. F. Two-Family House	35 Fenwood Rd	Boston	1901
BOS.7411	Olsson, H. C. Two-Family House	36 Fenwood Rd	Boston	c 1900
BOS.16675	Bailey, N. Two-Family House	39 Fenwood Rd	Boston	1899
BOS.7412	Mead, C. E. Two-Family House	40 Fenwood Rd	Boston	1900
BOS.7417	Freiman, Max Two-Family House	43 Fenwood Rd	Boston	c 1899
BOS.16676	Hosmer, Ida A. Two-Family House	44 Fenwood Rd	Boston	c 1899
BOS.16677	Ewing, E. F. Two-Family House	47 Fenwood Rd	Boston	c 1899
BOS.7418	Spillane, Jeremiah C. Two-Family House	49 Fenwood Rd	Boston	c 1899
BOS.16678	Callahan, J. M. Two-Family House	50 Fenwood Rd	Boston	c 1899
BOS.7422	Dooley, Rose H. Three Decker	51 Fenwood Rd	Boston	c 1899
BOS.16679	Sampson, W. W. Two-Family House	52 Fenwood Rd	Boston	1899
BOS.16680	Leather, Annie Three-Decker	53 Fenwood Rd	Boston	1900
BOS.16681	Connor, Genevieve Three-Decker	54 Fenwood Rd	Boston	1904
BOS.16682	Spillane, J. C. Two-Family House	55 Fenwood Rd	Boston	c 1899
BOS.16683	Gregory, Gustina M. Two-Family House	56 Fenwood Rd	Boston	1905
BOS.16684	Moon, Patrick W. Two-Family House	57 Fenwood Rd	Boston	1902
BOS.16685	Connelly, C. J. Two-Family House	58 Fenwood Rd	Boston	c 1899
BOS.7711	Massachusetts Mental Health Center Main Building	74 Fenwood Rd	Boston	1912

Inv. No.	Property Name	Street	Town	Year
BOS.7712	Massachusetts Mental Health Center Power House	74 Fenwood Rd	Boston	1912
BOS.7713	Massachusetts Mental Health Center Research Bldg.	74 Fenwood Rd	Boston	1954
BOS.7714	Massachusetts Mental Health Center Therapeutic Blg	74 Fenwood Rd	Boston	1957
BOS.9295	Massachusetts Mental Health Center Fence	74 Fenwood Rd	Boston	1912
BOS.16686	Santander Bank	2-6 Francis St	Boston	c 1999
BOS.7497	Brigham, Peter Bent Hospital - Administration Building	5-75 Francis St	Boston	1911
BOS.17874	Brigham, Peter Bent Hospital - Ward A	5-75 Francis St	Boston	1911
BOS.17875	Brigham, Peter Bent Hospital - Ward B	5-75 Francis St	Boston	1915
BOS.17876	Brigham, Peter Bent Hospital - Surgical Building	5-75 Francis St	Boston	c 1915
BOS.17877	Brigham, Peter Bent Hospital - Coolidge House	5-75 Francis St	Boston	1962
BOS.17878	Brigham, Peter Bent Hospital - Radiology Building	5-75 Francis St	Boston	1963
BOS.16687	Donlan, D. Three-Decker	12 Francis St	Boston	1900
BOS.16688	Lindauer, Louisa Three-Decker	16 Francis St	Boston	1899
BOS.16689	Lindauer, Louisa Three-Decker	18 Francis St	Boston	c 1899
BOS.16690	Breen, Jane Three-Decker	20 Francis St	Boston	1899
BOS.16691	Cannon, P. and J. Three-Decker	22 Francis St	Boston	1900
BOS.7419	Crowley, Daniel Apartment Building	30 Francis St	Boston	c 1900
BOS.16692	Donovan, C. J. Three-Decker	32 Francis St	Boston	1898
BOS.16693	Donovan, C. J. Three-Decker	34 Francis St	Boston	1898
BOS.16694	Hourihan, J. Three-Decker	36 Francis St	Boston	1898
BOS.16695	Cole, William S. Three-Decker	38 Francis St	Boston	1900
BOS.16696	McGovern, O. Three-Decker	40 Francis St	Boston	1901
BOS.9773	Francis Street Garden	42 Francis St	Boston	r 2000
BOS.16698	Hannan, R. and M. Three-Decker	44 Francis St	Boston	1898
BOS.16699	O'Neil, M. Three-Decker	46 Francis St	Boston	1901
BOS.16700	Cole, Mary A. Three-Decker	48 Francis St	Boston	1899
BOS.7421	Ilse, Fredericka Three-Decker	50 Francis St	Boston	1900
BOS.16701	Sullivan, Mary Three-Decker	52 Francis St	Boston	1900
BOS.7423	Donovan, Jereh Three Decker	58 Francis St	Boston	1901
BOS.17866	New England Deaconess Hospital - Lowry Parking Garage	110 Francis St	Boston	1963
BOS.17867	New England Deaconess Hospital - Lowry Medical Office Building	110 Francis St	Boston	1962
BOS.7494	Bangs, Edward A Bangs, Outram Double House	553-555 Huntington Ave	Boston	c 1900

Inv. No.	Property Name	Street	Town	Year
BOS.7495	Stanley, Martha Apartment Building	641 Huntington Ave	Boston	1888
BOS.7496	Holmes, William Apartment Building	643-645 Huntington Ave	Boston	1888
BOS.17853	Harvard Medical School - Education Facilties Building	677 Huntington Ave	Boston	1969
BOS.17850	Harvard School of Public Health - Health Sciences Laboratory Building #1	689-695 Huntington Ave	Boston	1960
BOS.17851	Harvard School of Public Health - Health Sciences Laboratory Building #2	689-695 Huntington Ave	Boston	1960
BOS.9772	Hanlon Square	725 Huntington Ave	Boston	r 2000
BOS.7498	Harmon, James Apartment House and Commercial Block	733-739 Huntington Ave	Boston	1899
BOS.7499	Lyons, L. J. Apartment House	741-747 Huntington Ave	Boston	1899
BOS.16702	Avondale Chambers - Avondale Apartments	777-779 Huntington Ave	Boston	1916
BOS.9291	Longwood Avenue Bridge	Longwood Ave	Boston	c 1897
BOS.17855	Longwood Spa - Sparr's Drug Store	158 Longwood Ave	Boston	1911
BOS.7504	Carlton Building	160 Longwood Ave	Boston	1892
BOS.7505	Westcourt Apartment Building	164 Longwood Ave	Boston	1900
BOS.7514	Massachusetts College of Pharmacy - White, George Robert Building	179 Longwood Ave	Boston	1917
BOS.7506	Angell Memorial Animal Hospital	180-184 Longwood Ave	Boston	1915
BOS.7507	Harvard University Dental School	188 Longwood Ave	Boston	1908
BOS.7511	Harvard Medical School - Building D - Bacteriology and Pathology Building	210 Longwood Ave	Boston	1906
BOS.7509	Harvard Medical School - Building B - Anatomy and Histology Building	220 Longwood Ave	Boston	1906
BOS.7515	Boston Lying-in Hospital	221 Longwood Ave	Boston	1922
BOS.7510	Harvard Medical School - Building C - Physiological Chemistry and Physiology Building	240 Longwood Ave	Boston	1906
BOS.7512	Harvard Medical School - Building E - Pharmacology and Hygiene Building	260 Longwood Ave	Boston	1906
BOS.18224	Boston Children's Hospital - Patient and Family Parking Garage	283 Longwood Ave	Boston	1995
BOS.7513	Boston Children's Hospital - Hunnewell Building	300 Longwood Ave	Boston	1912
BOS.18213	Boston Children's Hospital - Ida C. Smith Ward	300 Longwood Ave	Boston	1930
BOS.18214	Boston Children's Hospital - Fegan Building	300 Longwood Ave	Boston	1966
BOS.18215	Boston Children's Hospital - Farley Building	300 Longwood Ave	Boston	1956
BOS.18216	Boston Children's Hospital - Bader Building	300 Longwood Ave	Boston	1930
BOS.18221	Boston Children's Hospital - Children's Hospital Library	300 Longwood Ave	Boston	1994
BOS.18225	Boston Children's Hospital - Radiology and Surgery Expansion Pavilion	300 Longwood Ave	Boston	1974
BOS.17830	Longwood Medical Building	319 Longwood Ave	Boston	1929
Thursday, Jun	e 27, 2019			Page 5 of 8

lnv. No.	Property Name	Street	Town	Year
BOS.18219	Boston Children's Hospital - John F. Enders Pediatric Research Laboratories	320-332 Longwood Ave	Boston	1970
BOS.18217	Boston Children's Hospital - 333 Longwood Avenue	333 Longwood Ave	Boston	1984
BOS.17831	Temple Israel	477 Longwood Ave	Boston	1928
BOS.17856		60 Louis Prang St	Boston	1899
BOS.17857		62 Louis Prang St	Boston	1899
BOS.17858		64 Louis Prang St	Boston	1899
BOS.17859		66 Louis Prang St	Boston	1899
BOS.17860		68 Louis Prang St	Boston	1906
BOS.9292	Netherlands Road Bridge	Netherlands Rd	Boston	1894
BOS.17833	Garden Hall - Worthington Hall Apartments	14 Palace Rd	Boston	1914
BOS.7533	Normal and Girls' Latin Group - Girls Latin School	115 Palace Rd	Boston	1906
BOS.7534	Normal and Girls' Latin Group - Collins, Patrick A. School	115 Palace Rd	Boston	1906
BOS.7535	Boston Normal School - Boston State College	115 Palace Rd	Boston	1906
BOS.17872	Boston Normal School and Girls' Latin School Common Building	115 Palace Rd	Boston	1905
BOS.17873	State College at Boston - Kennedy, William H. J. Building	115 Palace Rd	Boston	1964
BOS.9288	Riverway Shelter and Toolhouse	Park Dr	Boston	1893
BOS.9289	Riverway - Chapel Street Bridge	Park Dr	Boston	1890
BOS.9290	Riverway - Bridle Path Bridge	Park Dr	Boston	1892
BOS.9617	Riverway Pathway	Park Dr	Boston	
BOS.7536	Riverway Administration Building	440 Park Dr	Boston	1898
BOS.17892	Wheelock College - Wheelock, Lucy Memorial Auditorium	Pilgrim Rd	Boston	1963
BOS.17891	Wheelock College - Classroom Building	31 Pilgrim Rd	Boston	1941
BOS.17888	Simmons College Residence Campus - Dix Hall	38 Pilgrim Rd	Boston	1952
BOS.17889	Simmons College Residence Campus - Smith Hall	46 Pilgrim Rd	Boston	1963
BOS.17890	Simmons College Residence Campus - Arnold Hall	62 Pilgrim Rd	Boston	1951
BOS.7582	The Winsor School	103-117 Pilgrim Rd	Boston	1909
BOS.17894	Wheelock College - Wheelock, Lucy School	100-110 Riverway	Boston	1914
BOS.17895	Wheelock College - Pilgrim Court Apartments	114-122 Riverway	Boston	1923
BOS.17893	Wheelock College - Riverway Studio Building	132 Riverway	Boston	1915
BOS.17896	Wheelock College - Pilgrim House	154-164 Riverway	Boston	1911
BOS.17897	Wheelock College- Dining Hall	154-164 Riverway	Boston	1949
BOS.17898	Wheelock College - Longwood House	154-164 Riverway	Boston	1914
Thursday, Jun	e 27, 2019			Page 6 of 8

v. No.	Property Name	Street	Town	Year
OS.17899	Wheelock College - Riverway House	154-164 Riverway	Boston	1915
OS.17900	Riverway Manor	210-214 Riverway	Boston	1923
OS.7583	New England Deaconess Hospital	334 Riverway	Boston	1903
OS.7584	New England Deaconess Hospital - Palmer Memorial Hospital	334 Riverway	Boston	1926
OS.17868	New England Deaconess Hospital - Baker, George F. Clinic	334 Riverway	Boston	1933
OS.17869	New England Deaconess Hospital - Central Building	334 Riverway	Boston	1952
OS.17870	New England Deaconess Hospital - Dooley, Arthur T. Chapel	334 Riverway	Boston	1955
OS.17871	New England Deaconess Hospital - Maintenance Building	334 Riverway	Boston	1959
OS.9294	Route 9 Overpass and Retaining Wall	Rt 9	Boston	1936
OS.7420	Crowley, Daniel Apartment Building	5 Saint Albans Rd	Boston	1900
OS.16703	Kelley, Frank C. Two-Family House	24 Saint Albans Rd	Boston	1926
OS.16697	McInerney, Elizabeth C. Two-Family House	26-28 Saint Albans Rd	Boston	c 1906
OS.17854	Harvard Medical School - Countway, Francis A. Library of Medicine	10 Shattuck St	Boston	1963
OS.17879	Brigham, Peter Bent Hospital - Out-Door Department	20 Shattuck St	Boston	1913
OS.17880	Brigham, Peter Bent Hospital - Clinical Building	20 Shattuck St	Boston	1913
OS.17881	Brigham, Peter Bent Hospital - Pearl Memorial Geriatric Unit	20 Shattuck St	Boston	1956
OS.7508	Harvard Medical School - Building A - Administrative Building	25 Shattuck St	Boston	1906
OS.17852	Harvard Medical School - Laboratory of Human Reproduction and Reproductive Biology	45 Shattuck St	Boston	1969
OS.7683	Boston Children's Hospital - Wolbach Building	55 Shattuck St	Boston	1914
OS.7684	Hastings, Mary C. Hews House	2 Short St	Boston	c 1875
OS.7685	Pope - Hastings, Bulkley A. House	4 Short St	Boston	c 1855
OS.17832	Tetlow Hall	11 Tetlow St	Boston	1914
OS.7408	Gardner, Isabella Stewart Museum	280 The Fenway	Boston	1900
OS.7409	Simmons College - Main Building	300 The Fenway	Boston	1903
OS.17834	Simmons College - Park Science Center	300 The Fenway	Boston	1970
OS.13248	Emmanuel College - Campus Shop	400 The Fenway	Boston	1962
OS.7706	Green, Joseph House	7 Vancouver St	Boston	1900
OS.17861		9 Vancouver St	Boston	1898
OS.17862		11 Vancouver St	Boston	1898
OS.17863		15 Vancouver St	Boston	1898
OS.17864		17 Vancouver St	Boston	1898

Page 7 of 8

Inv. No.	Property Name	Street	Town	Year
BOS.17865		19 Vancouver St	Boston	1898

(101		S DEPARTMENT OF TH			Massachu.	setts		
		GISTER OF HISTO RY - NOMINATION	1960-1990-1990-1990-1990-1990-	CES	Norfolk-Suff FOR NPS U			_
	(Type all entrie	s – complete applica	able sectio	ns)	ENTRY NUMBER		DATE	-
1.	NAME		$T_{i}=\tau(T_{i})$					
	COMMON:			Cong. Dis	sts: 8+9			
	Olmsted Park Sy	stem						-
	2							
2.	LOCATION See separa							
	STREET AND NUMBERS BAC		dy River	, Olmsted	d(Leverett) Pa	rk, Ja	maica	
	Park, Arborway,	Flanklin Park			÷			_
	Boston-Brookline							
	STATE		CODE	COUNTY			COD	ε
	Massachusetts		25	Norfoll	c-Suffolk		21-2	5
3.	CLASSIFICATION	1. A. 1.	$\sum_{i=1}^{n} d_{i} = \sum_{i=1}^{n} d_{i} = \sum_{i$	$f_{\rm ext} = f_{\rm ext} \frac{1}{2} \frac{1}{2$	et organist to really because		÷	
	CATEGORY	OWN	RSHIP		STATUS		SSIBLE	
	(Check One)						E PUBLI	C
	Site Structure	CX Public Pul	blic Acquisit		X Occupied	Yes Res		- 3
	Site Structure	D Both		Considered	Unoccupied	100 1100	estricted	
					In progress			8
	PRESENT USE (Check One or)	More as Appropriate)				1		-
		overnment (X) P						-
			ork		X Transportation	C Com	nents	
		•	ork rivate Reside		Transportation		neņts	
	Commerciał Ir	ndustrial DP			Transportation Other (Specify)		neņts	_
	Commerciał Ir Educational M	ndustrial P ilitory R	rivate Reside		Einen Masser		nents	
4.	Commerciał Ir Educational M Entertainment M OWNER OF PROPERTY	ndustrial P ilitary R useum Sc	rivate Reside eligious cientific	nc• 	Einen Masser			1 1 1
4.	Commerciał Ir Educational M Entertainment M OWNER OF PROPERTY	ndustrial P ilitary R useum Sa	rivate Reside eligious cientific	nc• 	Other (Specity)			H H
4	Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow	ndustrial P ilitary R useum Sa	rivate Reside eligious cientific	nc• 	Other (Specity)			Mass
4.	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER:	ndustrial P ilitary R useum Sc n of Brookline	rivate Reside eligious cientific	nc• 	Other (Specity)			Mass.
4	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER:	ndustrial P ilitary R useum Sa	rivate Reside eligious cientific	nc• 	Other (Specity)			SS
4.	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town:	ndustrial P ilitary R useum Sa n of Brookline Town Hall	rivate Reside eligious cientific		Other (Specify)		CODE	SS
	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC	ndustrial ilitary vseum n of Brookline Town Hall rookline CRIPTION	rivate Reside eligious cientific	STATE: Norfe	Other (Specity)	2		SS
	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or Town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF	ndustriel P ilitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC:	rivate Reside eligious cientific	STATE: Norfd	Other (Specify)	2	CODE 1-25	\$\$.
	Commerciel Ir Commerciel Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry	ndustriel P ilitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC:	rivate Reside eligious cientific	STATE: Norfd	Diher (Specify)	2	соре 1-25	ss. Suff
	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER:	ndustrial P ilitary R useum Sa n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds	rivote Reside eligious cientific	STATE: Norfo	Diher (Specify)	2	соре 1-25	ss. Suff
	Commerciel Ir Commerciel Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry	ndustrial P ilitary R useum Sa n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds	rivote Reside eligious cientific	STATE: Norfo	Other (Specify)	2	соре 1-25	ss. Suffo
	Commercial Ir Commercial Ir Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour	ndustrial P ilitary R useum Sa n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds	rivote Reside eligious cientific Norf Norf	olk Count	Diher (Specify)	2	соре 1-25	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston	ndustriel Pr ilitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse	rivote Reside eligious cientific	olk Count	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, RECISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST	ndustriel Pr ilitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse	rivote Reside eligious cientific Norf Norf	olk Count	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIS TITLE OF SURVEY:	ndustrial Prilitary R illitary R useum Sa n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS	rivote Reside eligious cientific Norf Norf Dedham	olk Count STATE Mass	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST TITLE OF SURVEY: Inventory of the hi	n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS storic assets o	rivote Reside eligious cientific Norf Norf Dedham f the Co	olk Regis	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIS TITLE OF SURVEY:	ndustriel Pr ilitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse 	rivote Reside eligious cientific Norf Norf Dedham	olk Count STATE Mass	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST TITLE OF SURVEY: Inventory of the hi DATE OF SURVEY: 1971	ndustrial Prilitary R ilitary R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS storic assets o [ECORDS:	rivote Reside eligious cientific Norf Norf Dedham f the Co J Federel	olk Regis	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, RECISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST TITLE OF SURVEY: Inventory of the hi DATE OF SURVEY: 1971 DEPOSITORY FOR SURVEY RE	ndustrial Prilitary R ilitary R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS storic assets o [ECORDS:	rivote Reside eligious cientific Norf Norf Dedham f the Co J Federel	olk Regis	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial In Commercial In Educational M Entertainment M OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or Town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST TITLE OF SURVEY: Inventory of the hi DATE OF SURVEY: Massachusetts Hi STHEET AND NUMBER: Office of the Se	ndustriel Prilitory R illitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS storic assets o ECORDS: storical Commission	rivote Reside eligious cientific Norf Norf Dedham f the Co Federel sion	olk Regis	Diher (Specify)	2	CODE	ss. Suff
5.	Commercial Ir Commercial Ir Educational IM Entertainment IM OWNER OF PROPERTY OWNER'S NAME: City of Boston, Tow STREET AND NUMBER: City Hall City or town: Boston B LOCATION OF LEGAL DESC COURTHOUSE, REGISTRY OF Suffolk Registry STREET AND NUMBER: Suffolk Couty Cour CITY OR TOWN: Boston REPRESENTATION IN EXIST TITLE OF SURVEY: Inventory of the hi DATE OF SURVEY: 1971 DEPOSITORY FOR SURVEY RE Massachusetts Hi STREET AND NUMBER:	ndustriel Prilitory R illitory R useum Sc n of Brookline Town Hall rookline CRIPTION DEEDS. ETC: of Deeds thouse TING SURVEYS storic assets o ECORDS: storical Commission	rivote Reside eligious cientific Norf Norf Dedham f the Co Federel sion	olk Regis	Diher (Specify)	2	CODE	ss. Suff

7. DESCRIPTION				, i v. d. v.,	all a star	e - 1 - 1 - 1 - 1 - 1 - 1	
		•		(Check One)			
CONDITION	Excollent	Cood	🗌 Foir	Deteriorated	C Ruins	Unexposed	
CONDITION		(Check Or	ne)		(Che	ck One)	
	K) Alte	"d (addit:	ion groliere	ď	C Moved	Original Site	

DESCRIBE THE PRESENT AND ORIGINAL (II known) PHYSICAL APPEARANCE

The Olmsted Park System includes a series of parks linked by continuous parkways. It curves south from the mouth of the <u>Muddy River</u> to <u>Franklin Park</u>. When originally conceived, the System also included Boston's existing parks, the Common and the Public Garden which were linked to the Olmsted Plan by the Commonwealth Avenue mall.

One of the most heavily used portions of the System is that which comprises the Fens. Olmsted's plan eliminated the original tidal swamp with its dangers of pollution and flooding, and created an informal park. In the section of the Fens north of Boylston Street, although the boundaries remain the same, an overpass access to and from Storrow Drive has mutilated the original landscape design. However, the formal modern design and the plantings are spectacular, and the material used to face the overpass structures is compatible with Richardson's Boylston Street bridge, which was built between 1850-84. Other alterations to the Fens area have been restricted to changes in park land use and have not affected the boundaries and road patterns proposed by Olmsted in 1879. Much df the original wwamp has been filled in, although the swamplike vegetation origm inally used by Olmsted remains along a short portion of the River. Except for m a low stadium which desecrates the original design at the junction of the Fenway and Park Drive, most of the remainder of the park presently consists of grass, shade trees and gardens. West of the Muddy River are formal rose garden z and small neat gardens tended by nearby residents of the area. These plots began as "Victory Gardens" during World War II and today serve as vivid reminders of that historic preiod. The most important original structures in this area are Richardson's Boylston Street bridge and the Agessiz Bridge, built in 1887-88₹ A linear park, though which the Muddy River flows, links the Fens with

C Jamaica Pond. Various names have been given to this area, the most common of 0 which are "The Riverway", which extends from the Fins to Route 9, and "Leverett -(or Olmsted) Park". In these areas the River was an eyesore and a cause of sanitation problems. To remedy these, Olmsted created a plan for the sanitary 0 improvement of the River and to connect the Fens with Jamaica Park in 1881. The result is a greenscape which curves sinuously ∞ llowing the natural contours of the River valley. At the southern end of this portion of the System, the S River ends in a series of fresh water ponds, the largest of which is called Leverett. With the exception of a large parking ht near Brookline Avenue, some poorly designed recreational facilities near the Ponds, and a large overpass at Route 9, this section of the System retains most of its original design. The original structures date from the early to mid-1890's and were designed by Shepley, Rutan and Coolidge. These imclude 3 vehicular bridges, 2 footbridges, and a stone shelter on the Riverway-

Jamaica Park was designed in 1892, but only in 1994 was construction on it begun. Jamaica Pond, the only fresh water body of any size within the city limits, and one of the important features of the entire Park System, occupies a major portion of the Park. In his designs, Olmsted bordered the Pond with paths and shade trees. He encircled it with parkways by utilizing the existing parkway on the eastern side (Jamaicaway) and addim roads on the western side. He incorporated the Perkins Mansion ("Pine Bank" Bruse), situated at the northern end of the Pond, in his plans. This structure, the third to stand on the site, was built in 1870 in the Ruskinian Gothir style. After a fire, the City Architect Wheelwright remodelled the interior, roof, chimneys and garden terrace in 1896. The Boston Parks Department uses the house as headquarters for its recreational division. The stone steps, which lead from the house to the Pond, were taken from the John Hancock House. The Park and road patterns

Form 10-3000 (July 1969)	UND STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE	Mass.		
	NATIONAL REGISTER OF HISTORIC PLACES	Norfolk-Suffolk		
	INVENTORY - NOMINATION FORM	FOR NPS USE ON	LY	
	(Continuation Sheet)	ENTRY NUMBER	DATE	

(Number ell entries) BOSTON: Olmsted Park System

DESCRIPTION

remain intact, and the Pond is still used for its original purpose of boating and fishing. In 1906, Daniel Chester French carved the Francis Parkman Memorial which stands on a sloping lawn at the western side of the Park.

At the same time that Jamaica Park was being developed, the Parkway (Arborway) was continued frmm it along the edge of the Arnold Arboretum to Franklin Park. An overpass and new road patterns have obliterated the short portion from the east end of the Arboretum to Franklin Park. Despite the addition of two traffic rotaries, the rest of the Parkway retains not only Olmsted's street design, bua great many of the original trees which have now grown to an impressive height completely shading the Abborway.

Franklin Park, the terminus of the System, is unquestionably one of Olmsted's masterpieces. In 1885, Olmsted designed this large rural park especially for vo class people. The largest area of the property, "The Country Park"was reserved exclusively "to provide opportunity for a form of recreation to be obtained only through the influence of pleasing natural scenery upon the sensibilities of these quietly contemplating it."1 "The Country Park" has been used as a golf course since the late nineties. Although this was not the use which Olmsted intended it has ensured preservation and a standard of maintenance for at least this poit. of the Park. Other areas were set aside for sports (the Playstead, on which has been built White Stadium), a deer park, now part of the Zoo, and a playground for small children. The only formal part of the Park is a grand mall, called "The Greeting", designed for use as a promenade and meeting place. The Greeting was never completely planted as planned and has been incorporated into part of t Zoo. Two monuments that Daniel Chester French designed in 1882 for the Boston Post Office are now located at the northern entrance to the Greeting. These groups represent "Labor, Art and the Family" and "Science Controlling the Forces of Steam and Electricity."

The Park is still used for horseback riding and Olmsted's road pattern is intact. Much of the fine original stonework remains, although in bad condition. These structures include the Playstead Overlook (1885-88) and the terraces and arbors on Schoolmaster's Hill (1890=91), both of which appear on Olmsted's 1885 plan, the Valley Gate (1888-89 by Walker and Best) and several rustic fountains. A State hospital, the Shattuck, has been erected on what was formerly the Heathfield on Morton Street.

Fabos, Julius G.Y., Milde, Gordon T., and Weinmayr, V. Michael, Frederick Law Olmsted, Sr., 1968, University of Massachusetts Press.

2.NOTE: Since the Arnold Arboretum has already been declared a National Historic Landmark, it is not included in this nomination.

RIOD (Check One or More as	Appropriate)		
Pro-Columbian!	16th Century	18th Century	20th Century
15th Century	17th Century	87 1915 Century	2
SPECIFIC DATE(S) (II Applicat	ole and Known) 1879,	1881, 1885, 1892	
REAS OF SIGNIFICANCE (Ch	eck One or More as Approp	riale)	
Abor iginal	Education	Political	Viben Planning
Prehistoric	Engineering	Religion/Phi-	Other (Specify)
Historic	C Industry	losophy	
Agriculture	Invention	Science	Recreation
Architecture	1 Londscope	Sculpture	A
	Architecture	Social/Human-	
Commerce		Iterion	
Communications	Militory	Theater	
Conservation	Music	Transportation	

The comprehensive parksystem which Frederick Law Olmsted Sr. planned for the City of Boston in the late 1870's is one of the nation's outstanding examples of a multi-use open space and the landscape architect's finest design project in New. England. Olmsted's work on the system, which became known as the "Emerald Neck around Boston," created a storng precedent for it included all the design and planning elements which later landscape architects have applied to regional planning on a large scale.

Olmsted's original plans for the park system had three purposes: to creat needed municipal open space while solving an engineering problem; to link new annexed parts of the city with its historic center; to provide - as in his r earlier designs for Central Park (1857-63) - a variety of forms of recreation Olmsted established a hierarchy of uses for areas within the system, creating large- and medium-size parks for rural relaxation and picknicking, smaller landscaped areas with ponds for recreation and linear parkland for pleasure driving, riding and hiking. Though they were never carried out completely, sketches of circulation patterns suggest that Olmsted intended to separate traffic within the park system according to volume and type, again like his plans for Central Park.

The Bay Bay Fens and the Fenway were the first portions of the park system to be planned. Into the 1870's the Fens were a tidal swamp which served as a repository for sewage and were subject to violent floods. The three-man Boston Park Commission was created in 1875 primarily to find a solution to this problem. Following an unsuccessful competition for a design, Olmsted was asked to prepare a new plan for the Fens. Using swamp-like vegetation able to withstand periodic soakings with salt water, he created an informal park which was a unique feat of engineering skill and naturalistic landscapir.

Franklin Park, the terminus of thesystem, is one of Olmsted's masterpieces This large rural park, included in the earliest schemes for Boston's park' system, was financed in part by a bequest made to the city by Benjamin Frankl Olmsted's plan for the Pranklin Park area was completed and work begun in 183 Though the surrounding area was still rural, Olmsted anticipated the growth of the city in this direction and designed the Park as a retreat for working class people whose access to open space would be limited without it. In his concern for the social and humanitarian aspects of park design, Olmsted was influenced by the work of Joseph Paxton, whose "People's Park" at Birkenhead (England) he had first visited in 1850. Olmsted's plan for Franklin Park is a more elaborate and highly articulated version of Paxton's Brikenhead design.

9.	MAJOR	BIBLICGRAP	HICAL P	EFERE	NCES				· · · · · · · · · · · · · · · · · · ·			
	Board	d of Comm	issione	rs of	f the D	eparti	ne	nt of Parks, Boston	, Mass., Ana	nual		
		eports an							· · · · ·			
	Olms	ted, Fred	erick L	aw,"	Notes o	n the	P	lan of Franklin Par	k and Relate	ed		
	Ma	atters",	Elevent	h Anr	nual Re	port,	B	oston Park Departme	nt, Boston,	1886.		
						1		Weinmayr, V. Micha				
	0	Imsted, S	r. Mas	sach	setts.	Ilniv	a	sity of Massachuset	te Proce 10	A Law		
			:	Sucin	useees,	Unive	51.	sity of Massachuset	LS PIESS. IS			
		*			* *					946		
			a i					3		0		
1							-					
10		RAPHICAL D					1-	LATITUDE AND LON	and the second second second second			
		ING A RECTA					O R	DEFINING THE CENTER				
	CORNER	LATIT	UDE		LONGITUC	θÉ		LATITUDE	LONGITU	DE		
	ways in	Degrees Minut		Degree	es Minutes	Seconds		Degrees Minutes Seconds	Degrees Minute	s Seconds		
s	NW	42 ° 21	18	71	° 06 🕻	03 *		• • . •	•	•		
FENS	NE	42 ° 21	07 •	71	° 05 '	27			· · ·			
4	SE	42 ° 20	19	71	° 05 '	27						
ł	SW	MATE ACREA	· 19 ·	1 71	• 06 •	03 •			l			
ł		STATES AND				es	ti	APPING STATE OF COUNTY BO				
۰,	STATE:		COUNTE	TONT	ROPERII	CODE		COUNTY		CODE		
		Mass.			*	25	1	and a second				
ł	STATE					CODE		Norfolk county:		CODE		
		Mass.			2	25	-	1	5	25		
1	STATE:					CODE	-	Suffolk COUNTY:		CODE		
				20	2		-					
ł	STATE:					CODE		COUNTY		CODE		
							4	coontra	× 2			
11	FORM	PDEPADED	o V	S	سدارت مانوری در		1	it some were to be the state of the	Sanday St. Jan J. ang .	No and and		
		D TITLE:				1 100		10				
	Ann	e R. Ward	well. S	Surve	v Direc	tor			1			
2	ORGANIZ				/ 01200				DATE			
- 89	Mas	sachusett	s Histo	orica	1 Commi	ssion			7/1/71			
ł		AND NUMBER					-					
	Off	ice of th	e Secre	tarv	. State	Hous	P	•				
ł	CITY OR				/ Douce			STATE		CODE		
	Bos	ton			19 19		1	Mass.		25		
12.	STATE	LIAISON OF	FICER C	ERTIF	ICATION	भाषत सम्बद्ध संदर्भ	1	NATIONAL REGIST	ER VERIFICATI			
1							1					
а [8 2000 - 1000	~ ~ ~ ~		•			202			
		designated S						I hereby certify that this p	roperty is include	d in the		
	and a second second	Historic Pres			0.0000000000000000000000000000000000000			National Register.				
), I hereby no						National Register.				
		National Reg		27 A.				*				
-		ted according			aler en							
		y the Nationa				mended	l	Chiel, Ollice of Archeolog	y and Historic Pi	eservation		
		of significanc			22.00.00000	-						
	5	ational 🖸	State		Local		ł					
				$ 1\rangle$			l	Date				
	Name	Y. U	1.1	4 4	·-M.							
			1-14-	~~~				ATTEST:		ħi.		
1		votary of										
	Title	Urman, Ma	ss. His	stori	Cal Con	missi	oh	1				
	- itie		*****									
								Kceper of The I	Vational Register			
	Data	7/2/71						Tunto				
	Date							Date				

EE INSTRUCTIONS

ч

(Number all e	ntries)	BOSTON:	OLMSTED	PARK SYST	EM				-	
5			(Continua	tion Sheet)	*	EN	ITRY NUMBER	DATE	-	
			INVENTORY - NOMINATION FORM	FOR NPS USE ONLY						
		NATIONAL F				Norf	olk-Suffolk		NAME OF	
Form 10-3000 (July 1969)		UNITED STATES DEPARTMENT OF THE INTERIO, NATIONAL PARK SERVICE					Mass.			

2. Location, cont. - Note: The description below should not be considered a legal description.

Beginning at the intersection of Morton Street and Forest Hills Street; Thence turning and running westerly and northwesterly by the center line of Morton St. and the Arborway; Thence turning and running northwesterly and northerly by the southerly, southwesterly and westerly line of the Arborway to a point at the intersection of the Arborway and Centre St; Thence turning and running norther and northeasterly by the westerly and northwesterly line of the Arborway to the intersection of the Arborway and Prince St; Thence turning and running generall northwesterly by the center line of Prince St. to a point at the intersection, of Perkins St.; Thence turning and running northeasterly and northerly by the northwesterly and northerly line of Perkins St. to a point at the intersection of Perkins St. and Pond Avenue; Thence turning and running northerly, northeasterly, easterly and northerly by the westerly, northwesterly, westerly and northwesterly line of Pond Avenue and Boylston Street; Thence turning and running westerly by the center line of Boylston Street to the intersection of Boylston St. and River Road; Thence turning and running northerly, northeaster and northerly again by the center line of River Rd. to a point at the intersection of River Rd. and Brookline Avenue; Thence turning and running northeasterly by the center line of Brookline Avenue to a point at the intersection of Brookline Avenue and Parkway Road; Thence turning and running northwesterly along the center line of Parkway Rd. to the intersection of Netherlands Rd.; Thence turning and running northwesterly in a straight line to the southeastern boundary of the Massachusetts Bay Transit Authority line; Thence turning and running northwesterly by the center line of said Massachusetts Bay Transit Authority line to the intersection of said line and Park Drive; Thence turnin and running southeasterly, easterly, northeasterly and northerly by the northeasterly, northerly, northwesterly and westerly line of Park Drive to the intersection of Park Drive and Boylston St; Thence turning and running northeaster! northerly by the northwesterly line of Boylston St. and easterly line of private property to a point at the northwest side of Ipswich St. and the southerly line of Interstate Route 90; Thence turning and running easterly by the southerly line of Interstate Route 90 to a point at the northeast corner of Ipswich St. the intersection of Charlesgate East; Thence turning and running southwesterly by the southeasterly line of Charlesgate East to the intersection of Boylston St. and the Fenway; Thence turning and running southerly, southwesterly, wester: and northwesterly by the easterly, southeasterly, southerly and southwesterly line of theFenway to the intersection of the Fenway and Brookline Avenue; Theat turning and running northwesterly, westerly, southwesterly, southerly, southeas: woutherly and southwesterly by the southwesterly, southerly, southeasterly easterly, northeasterly, easterly and southeasterly line of the Riverway to the intersection of the Riverway and Huntington Avenue; Thence turning and running generally southerly, southwesterly, southerly, southeasterly, southerly, souther and easterly by the easterly, southeasterly, easterly, northeasterly, easterly northeasterly and northerly lines of Jamaicaway, Pond St. and the Arborway to the intersection of the Arborway and Forest Hills Street; Thence turning and

running northeasterly and northerly by the center line of Forest Hills Street the intersection of Forest Hills Street and Glen Road; Thence turning and Form 10-3000 (July 1969)

ED STATES DEPARTMENT OF THE INTERIO NATIONAL PARK SERVICE

NATIONAL REGISTER OF HISTORIC PLACES

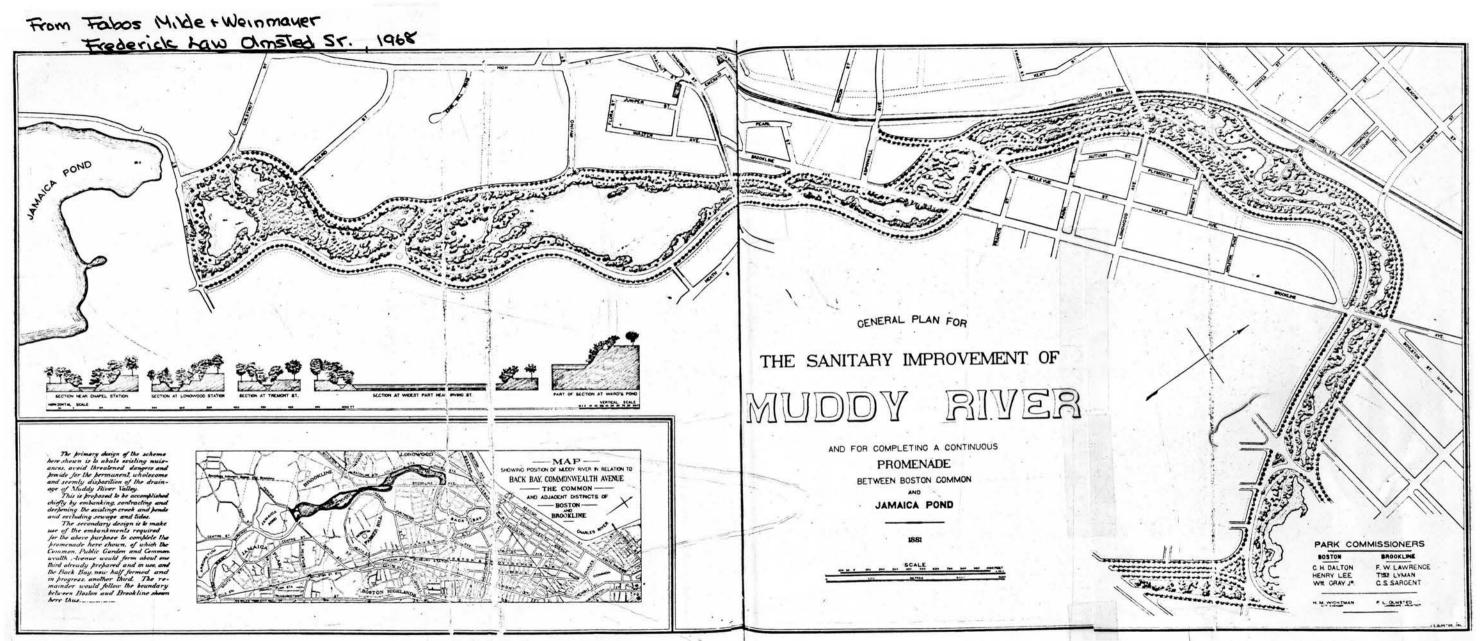
INVENTORY - NOMINATION FORM

(Continuation Sheet)

OUNTY	
Norfolk-Suffolk	
FOR NPS USE ONL	Y.
ENTRY NUMBER	DATE

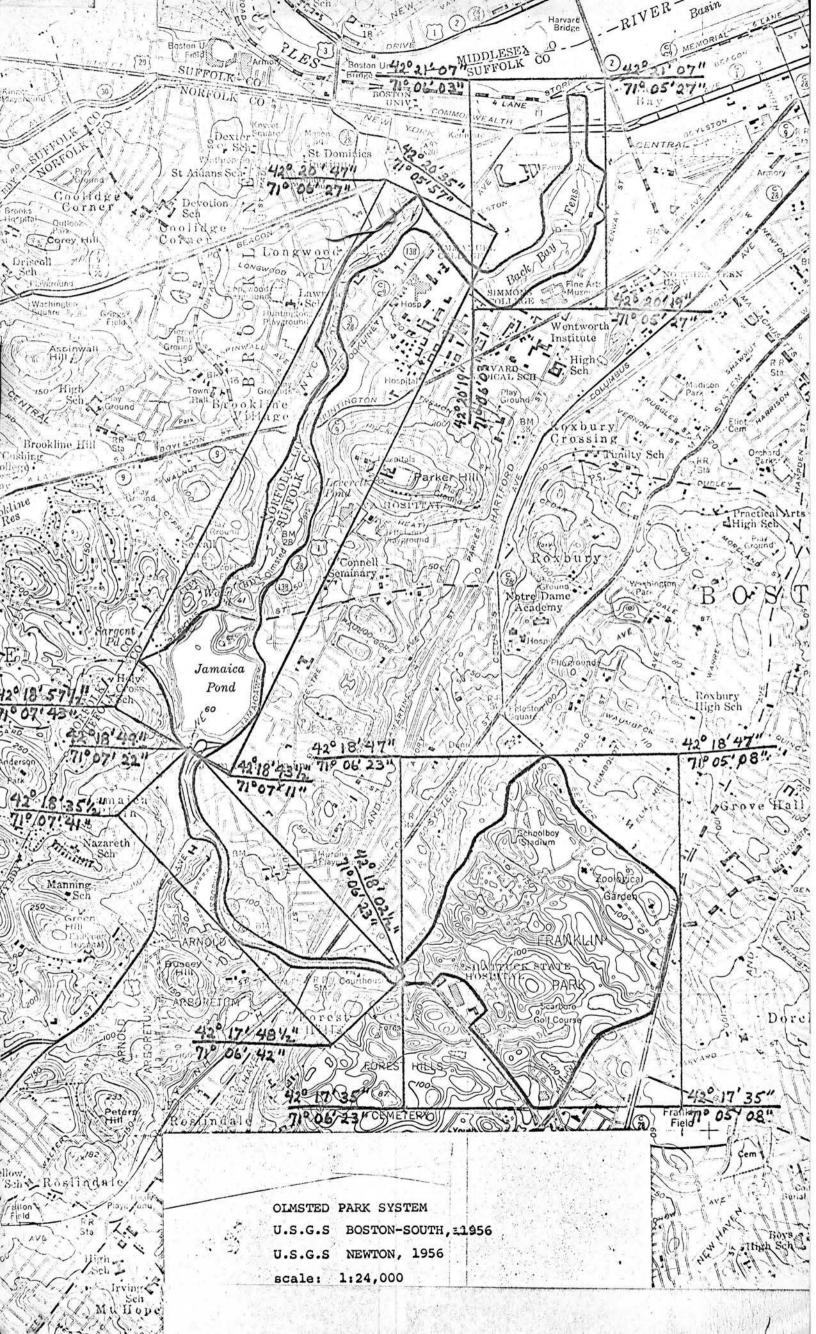
(Number all entries) BOSTON: OMSTED PARK SYSTEM, CONT.

2 LOCATION, CONT.


running southeasterly by the center line of Glen Road to the intersection of Glen Rd. and Sigourney St.; Thence turning and running northeasterly by the center line of Sigourney St. to the intersection of Sigourney St. and Peter Barley Rd.; Thence turning and running northerly and northeasterly by the center line of Walnut Avenue to the intersection of Walnut Avenue and Seaver St.; Thence turning and running southeasterly by the center line of Seaver St. to the intersection of Seaver St. and Blue Hill Avenue; Thence turning and running southeasterly by the center line of Blue Hill Avenue to the intersectio: of Blue Hill Avenue and American Legion Highway; Thence turning and running southeasterly by the center line of American Legion Highway to the intersection of American Legion Highway and Canterbury St.; Thence turning and running westerly by the center line of the intersection of Canterbury St. and Morton Street; Thence turning and running northwesterly and westerly by the

center line of Morton St. to the intersection of Forest Hills Street and Morton Street.

Northern section of the Fens


Beginning at the northwest roner of Back Street at its intersection with Charlesgate West; Thence turning and running northeasterly to the northeast corner of Back St. at its intersection with Sharlesgate East; Thence turning and running southerly by the easterly line of Charlesgate East to the northern boundary of Interstate Route 90; Thence turning and running westerly by the northerly line of Interstate Route 90; Thence turning and running northerly by the westerly line of Charlesgate West to the point of beginning.

10	Coors	nhigal 1	2040			*					
10.	10.00	phical 1					12	27			
Mud	dy River										
NW	La	t 42°2	0'47"	34	Long.	71°	06'	27"	20		(*)
NE		42 2	0.35			71	05	57	. s ²⁴ - a -		
SE		42 1	B 435			71	07	11	9.°	. *	
SW		42 1	B 575			71	07	43	(Newton	Quad)	
4						•				10-20 1	
'Arb	orway		•		. ÷						
NW	1	42 1	8 355	•	- 8	71	07	41	(Newton	Quad)	
NE		42 1	8 49			71				4	
SE		42 1	B 025			71	06	23		(4)	
SW	12 12	42 1	7 485	5		71	06	42			
		6 (S						12			
Fra	nklin Pa	rk							0	*	
NW.		42 1	B 47	4	*	ורל	06	23			
NE		42 1	B 47		•	71	05	68			
SE		42 1	7 35			71	05	08			
SW	12	42 1	7 35			71			*		
1						20107772 0 20		19 7 9792			

PLAN FOR THE MUDDY RIVER, BOSTON Olmsted was at his best when following the natural contours of a river valley [Olmsted Office Portfolio]

[73]

1. Boat house, Jamaica Pond (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

2. Muddy River at Simmons College. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)


3. Parallel to Jamaica Way. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

4. Jamiaca Pond. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

5. Looking across Jamaica Pond from Brookline side to Jamaica Way. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

6. Arborway, North view. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

7. Fenway, Muddy River at Simmons College. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

8. Leverett Pond, view northeast toward Boston. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

9. Leverett Pond, Brookline. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

10. Arborway. Northview toward Pond Street. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

11. Franklin Park: Daniel Chester French Statue at entrance to Zoo Area. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

12. Arborway. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

13. Jamaicaway and Pond. (Photographer: "W.H.", Metropolitan District Police, 22 February 1971)

Form 10-301 (Dec. 1968)	UNITED STATES DEPAR NATIONAL P	TMENT OF THE INTERIC	л к	BTATE Mass.	
	NATIONAL REGISTER	OF HISTORIC PL	ACES	Norfolk-Suff	olk
	PROPERTY	MAP FORM		FOR NPS USE O	NLY
	(Type all entries • attac	h to or enclose with	map)	ENTRY NUMBER	DAY
I. NAME		an' . 1		J	1
COMMON:	Olmsted Park Syste	m			14
AND/OR H					-74
2. LOCATION			9. 		•
	k, Jamaica Park, Arb	ens, Riverway, orway, Franklin		Olmsted (Leve	rett
and the second second in	ton, Brookline	1			97
STATE: Mas		CODE 25	Norfolk-Su	ffolk	co: 21-:
3. MAP REFE	RENCE	in charge that is a	and the second second		
SOURCE:	Geological Survey M	laps Boston-Sou	th, Newton		100
SCALE:	1:24,000		6		. 4
DATE:	1956	1			425
4. REQUIREM	ENTS And the west	The State Carlo State	state in the later in the	and the state of the second	14
TO BE INC	LUDED ON ALL MAPS	•			
1. Fr	operty broundaries where requ	ired.			
· · · · · · · · · · · · · · · · · · ·	rth orrow.				
3. Lo	titude and longitude reference	•			
		· · · · · · · · · · · · · · · · · · ·		energia energia energia e	. 4
		TMENT OF THE INTERIO		STATE	

UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE	STATE :
NATIONAL REGISTER OF HISTORIC PLACES	COUNTY Norfolk-Suffolk
PROPERTY PHOTOGRAPH FORM	FOR NPS USE ONLY
(Type all entries - attach to or enclose with photograph)	ENTRY NUMBER DAT
1. NAME	and the state of the
COMMON: Olmsted Park System	
AND/OR HISTORIC:	
2. LOCATION	a kaginaga ng kanta ang 👘 👔
STREET AND NUMBER: Back Bay Fens, Muddy River, Olms Park, Arborway, Franklin Park	ted (Leverett) Park, Jamaic
CITY OR TOWN: Boston-Brookline	•
Mass. 25 No	rfolk-Suffolk 21-2
3. PHOTO REFERENCE	,
PHOTO CREDIT: Metropolitan District Police	
DATE OF PHOTO: 2-22-71	
NEGATIVE FILED AT: Metropolitan District Commission	
4. IDENTIFICATION	
Describe view. Direction. etc. Westerly view of Riverway (Muddy River) fro	m Longwood Ave. bridge.

Appendix H

Best Management Practices Plan

Best Management Practices Plan

A Notice of Intent (NOI) for a National Pollution Discharge Elimination System (NPDES) Remediation General Permit (RGP) has been submitted to the U.S. Environmental Protection Agency (EPA) in anticipation of temporary dewatering required for the construction of the proposed New Inpatient Building (NIB) located at the intersection of Deaconess and Pilgrim Roads on the Beth Israel Deaconess Medical Center (BIDMC) West Campus in Boston, Massachusetts. This Best Management Practices Plan (BMPP) and will be posted at the Property during construction dewatering activities. Construction dewatering will be performed in accordance with Project Specifications, the NPDES RGP, and a project-specific Storm Water Pollution Prevention Plan (SWPPP). The SWPPP will also be posted at the Property.

Water Treatment and Management

Construction dewatering will be necessary during subsurface construction and excavation for the NIB. Dewatering effluent will be discharged to the nearby municipal storm water drainage system after treatment. At a minimum, treatment will consist of pumping dewatering effluent to a sedimentation tank and bag filters to remove suspended solids. If necessary, the treatment system will be expanded to include additional components to meet the effluent limits specified in the RGP.

Treated effluent will then be discharged to one of four potential catch basins in the vicinity of the project work area (see Appendix E of the attached RGP NOI). The catch basins are connected to the Boston Water and Sewer Commission (BWSC) storm drainage system and discharge to an outfall (SDO161) at the Muddy River.

Dewatering effluent will be pumped directly to the treatment system to minimize handling.

The system schematics and site plans showing the discharge points and outfall location are included in the attached RGP NOI. Contact information for the owner and operator are also included in the attached RGP NOI.

Discharge Monitoring and Compliance

If dewatering to the storm water drainage system is necessary, monitoring and compliance sampling will be required under the RGP.

The operator will perform daily monitoring consisting of checking the condition of the treatment system, recording flow rates and discharge quantities, and verifying the flow path of the discharged effluent. The flow will be measured by the flowmeter installed in the treatment system. Flow will be maintained by regularly monitoring flow and adjusting the amount of construction dewatering as needed.

Compliance sampling will include collection from the intake of the treatment system (influent) and the discharge after treatment (effluent) on:

- The first day of discharge, and on one non-consecutive day of discharge within the first week.
- Weekly for the first month (i.e. weeks 2, 3, and 4).
- Monthly after the first month.

The list of contaminants required by the U.S. EPA to be monitored under the NPDES RGP will be identified by EPA at the time the permit is issued. As required by the NPDES RGP, samples collected in the first week (a total of two influent and two effluent samples) require an expedited laboratory turnaround time of 72-hours. Subsequent samples require a standard 5-day turnaround time. Treatment system adjustments will be based on the compliance sampling results.

Monthly monitoring reports will be compiled and maintained at the Property.

Maintenance

Regular maintenance and periodic cleaning will be performed to ensure proper operation of the treatments system. Regular maintenance will include daily checks of treatment system components including the sedimentation tank, bag filters, hoses, pumps, and the flow meter. Repairs and replacement of treatment system components will be made as necessary.

Management of Treatment System Materials

Sediment from the tank used in the treatment system will be characterized and transported offsite for reuse, recycling, or disposal. Filter bags and any media added to the treatment system will be replaced and or disposed of as necessary.

Additional Site Controls

Potential runoff to and from the Site will be minimized by erosion control measures installed and maintained in accordance with project specifications and drawings, and the project-specific SWPPP. Procedures for proper handling and spill prevention are also included in the SWPPP. Staging areas for equipment or materials that may be possible sources of pollution will be established away from any dewatering activities, to the extent practicable. Security of the treatment system will be addressed within the overall site security plan for the project.