

REPORT ON

NPDES RGP APPLICATION FOR TEMPORARY CONSTRUCTION DEWATERING 50 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS

by Haley & Aldrich, Inc. Boston, Massachusetts

for Environmental Protection Agency (EPA) Region 1 Boston, Massachusetts

File No. 131188-006 May 2019

HALEY & ALDRICH, INC. 465 Medford St. Suite 2200 Boston, MA 02129 617.886.7400

22 May 2019 Revised 25 June 2019 File No. 131188-006

Environmental Protection Agency (EPA) Region 1 5 Post Office Square, Suite 100 Mail Code OEP06-4 Boston, Massachusetts 02129

Attention: Shauna Little

Subject: NPDES RGP Application for Temporary Construction Dewatering

50 Cambridgepark Drive Cambridge, Massachusetts

Ladies and Gentlemen:

On behalf of our client, 50 CP Development Limited Partnership (c/o Hanover RS Construction, LLC), Haley & Aldrich, Inc. (Haley & Aldrich) is submitting this application to request authorization under the National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) for off-site discharge of temporary construction dewatering during construction activities at the planned redevelopment project located at 50 Cambridgepark Drive in Cambridge, Massachusetts (herein referred to as the "Site"). A copy of the Notice of Intent (NOI) is included in Appendix A.

A. GENERAL SITE INFORMATION

Site Conditions and History

The Site is comprised of three parcels of land totaling approximately 1.5 acres currently occupied by three buildings with surface parking and landscaped areas. The Site has historically been operated as warehouses for printing operations and lubricating systems, and offices and laboratory space for pharmaceutical companies. The Site was most recently occupied by Vecna, a developer of technology software and autonomous robotics, who is currently in the process of vacating the Site. Until recently, the three Site buildings were addressed as 32, 34, and 36 Cambridgepark Drive and were operated by Vecna as mechanical engineering and research and development laboratories, a machine shop, and office space for software development. The 32 and 34 Cambridgepark Drive buildings are one story structures constructed in 1966 with no basements. The 36 Cambridgepark Drive building is a two-story structure with a basement, originally constructed in 1966 with an addition constructed in 1972. The new address for the property is 50 Cambridgepark Drive. Demolition of the existing structures is planned for June 2019.

The Site is bound to the north by Cambridgepark Drive, beyond which is a newly constructed office building (35 Cambridgepark Drive); to the east and south by the multi-family residential developments; and to the west by an access roadway beyond which is a commercial office building (100 Cambridgepark Drive).

Proposed Construction

Based on drawings provided by the Site developer and new owner, redevelopment of the Site includes a proposed 8-story mixed-use building. The ground level will include retail, lobby and amenity space, bike storage and parking. The second floor will include parking space and residential units, and the remaining levels 3 through 8 will include residential apartments and associated amenities. The remainder of the Site will be improved with hard and soft landscaped areas, and flood storage will be provided beneath the structure.

Dewatering is anticipated to be required for construction of the building foundations, utilities, and drainage improvements. Groundwater has been encountered at the site at depths ranging from approximately 5 to 8 feet. Excavations for building foundations and utilities are expected to extend through fill and organic deposits and into marine sand and clay deposits, up to 15 feet below existing site grade, or approximately 10 to 13 feet below the groundwater table.

Additional water may also be generated from surface runoff from precipitation, groundwater seepage, and construction-generated water (e.g., wheel washes, dust control, decontamination activities, water utility testing, etc.). Temporary construction dewatering is anticipated to begin in July 2019 and is estimated to occur intermittently over a period of approximately 12 months until June 2020.

Regulatory Status

The subject site is underlain by urban fill, comprised of varying amounts of cinders and ash, containing chemical constituents, including petroleum hydrocarbons (TPH), metals, and polycyclic aromatic hydrocarbons (PAHs), at levels typical of urban fill and this area of Cambridge.

As part of due diligence activities in preparation for Site redevelopment, Haley & Aldrich has conducted several limited subsurface investigations since 2017 to assess soil and groundwater conditions. In 2017, low levels of total petroleum hydrocarbons (TPH), lead, mercury, zinc, and polycyclic aromatic hydrocarbons (PAHs) were identified comingled in urban fill soil in excess of applicable MCP RCS-1 Reportable Concentrations.

In addition, the limited testing program in 2017 identified concentrations of dissolved zinc in groundwater at the Site, which slightly exceeded the applicable MCP RCGW-2 Reportable Concentrations. Haley & Aldrich noted that zinc in soil and groundwater is common in this area of Cambridge and the groundwater detection may have been the result of turbidity in the sample. As part of a June/July 2018 soil and groundwater characterization program, three newly-installed observation wells were developed and sampled on 12 and 13 July 2018 to assess the extent of dissolved zinc.

Although dissolved zinc in well HA17-GP6 (OW) slightly exceeded the applicable Reportable Concentrations (RCGW-2) in 2017, the new wells installed and sampled in July 2018 indicated zinc ranging from ND to 0.42 mg/l which were below the applicable Reportable Concentration for dissolved zinc (0.9 mg/l) therefore the impact of this condition is very localized.

Analytical results of the 2018 soil samples identified detectable concentrations of PAHs, total petroleum hydrocarbons (TPH), and metals (lead, mercury, and zinc) in soil exceeding applicable MCP RCS-1 thresholds.

On behalf of 50 CP Development Limited Partnership, who plans to take ownership of the Site in late May 2019, Haley & Aldrich submitted a Release Notification Form (RNF) to the MassDEP on 26 April 2019. MassDEP subsequently assigned Release Tracking Number (RTN) 3-35590 to the Site. Impacted soil and groundwater identified at the Site is likely attributable to historical Site use and the presence of urban fill, common for this area of Cambridge.

During Site redevelopment, soil and groundwater management will be conducted in accordance with the Release Abatement Measure (RAM) Plan and the soil management provisions of the MCP contained in 310 CMR 40.0030. Additional sampling is planned following demolition of current site buildings and will further inform options for soil management and the future regulatory pathway. It is anticipated that the RAM activities will achieve a condition of "No Significant Risk" for unrestricted future use (residential).

B. RECEIVING WATER INFORMATION

Receiving water quality data was collected in support of this NOI on 1 February 2019, the results of which are summarized in Table I. Receiving water temperature was obtained in the field at 7.1 °C, noted on the effluent limitations input calculation page in Appendix B. The sample was collected from Alewife Brook approximately 100 feet upstream from the discharge point to Alewife Brook of the proposed outfall D45. The laboratory data report is provided in Appendix F.

The seven-day-ten-year flow (7Q10) of the receiving water was established using the U.S. Geological Survey (USGS) StreamStats program and confirmed by Massachusetts Department of Environmental Protection (MassDEP) on 16 May 2019. The StreamStats report, Dilution Factor calculations, and MassDEP confirmation of the 7Q10 and Dilution Factor are included in Appendix B.

Copies of the "EnterData" and "FreshwaterResults" tabs from the excel file provided as an additional resource by EPA are included in Appendix B and will be transmitted electronically with the NOI. The effluent limitations calculated are included for reference in Table I.

C. SOURCE WATER INFORMATION

For preliminary Site characterization and groundwater sampling in 2017 and 2018, Haley & Aldrich installed three monitoring wells, HA17-GP1(OW), HA17-GP4(OW), and HA17-GP6(OW), shown on

Figure 2. To evaluate groundwater (source water) quality at the Site with respect to National Pollution Discharge Elimination System (NPDES) Remediation General Dewatering Permit (RGP) dewatering effluent criteria, Haley & Aldrich collected a representative groundwater sample on 1 February 2019 from the monitoring well designated HA17-GP4 (OW).

The groundwater sample was sent to a MassDEP-certified laboratory, Alpha Analytical, for analysis of constituents consistent with requirements for a NPDES RGP. The groundwater samples were analyzed for one or more of the following parameters: TPH, VOCs, SVOCs, PCBs, Total and Dissolved Metals, and Waste Characteristics.

A summary of the groundwater chemical analytical data is provided as Table I. Copies of the laboratory data reports are provided in Appendix F. The analytical data results from the 2017 and 2018 investigations are also included in Table I.

The data are compared to the applicable 2014 MCP Reportable Groundwater Concentrations (RCGW-2) criteria and the Site-Specific 2017 NPDES RGP Fresh Water Effluent Limits concentrations as determined in the WQBEL calculations. The 2019 sampling data exceed the Site-Specific NPDES RGP criteria for total iron, and two groundwater samples collected in 2017 and 2018 contained reportable concentrations of dissolved zinc. These metals exceedances will require dewatering treatment, as discussed below.

D. DISCHARGE INFORMATION

Dewatering will be conducted from sumps or well points located inside the excavations. Dewatering is currently anticipated to begin in July 2019 and is anticipated to be required for up to 12 months. On average, we estimate effluent discharge rates of about 50 gallons per minute (gpm), with occasional peak flows of approximately 100 gpm during significant precipitation events.

Construction dewatering under this RGP will include piping and discharging to storm drains located within and near the Site. The storm drains travel a short distance north and discharge to Alewife Brook via Outfall 45. The proposed discharge route is shown on Figure 3.

The proposed outfall location to Alewife Brook is owned and operated by the City of Cambridge. An application to discharge is being submitted to the City of Cambridge concurrently with this NOI.

A Best Management Practices Plan (BMPP), which outlines the proposed discharge operations covered under the RGP, will be available at the Site and is not being submitted with this NOI.

E. DEWATERING TREATMENT SYSTEM INFORMATION

An effluent treatment system will be designed and implemented by the Contractor to meet the applicable 2017 RGP Discharge Effluent Criteria. Prior to discharge, collected water will be routed through a sedimentation tank and bag filters to remove suspended solids and undissolved chemical constituents, as shown on Figure 4. The treatment system is expected to include ion exchange resin as

required to meet the discharge criteria (product information is included in Appendix C). The use of a resin for ion exchange is a standard treatment for temporary construction dewatering and is not expected to exceed applicable permit limitations and water quality standards or alter conditions in the receiving water. The ion exchange system will be self-contained and resin is not expected to enter the dewatering stream. No additional testing is considered necessary for use of this product or to demonstrate that use of this product will not adversely affect the receiving water.

F. TREATMENT CHEMICALS AND ADDITIVES

The use of chemicals or additives is not currently planned for the treatment system. If additional treatment is needed to meet necessary effluent limits, a Notice of Change (NOC) will be submitted to the EPA for review and approval, including proposed product information (e.g. Safety Data Sheets, associated hazards, manufacturer, and proper system operation, etc.).

G. DETERMINATION OF ENDANGERED SPECIES ACT ELIGIBILITY

According to the guidelines outlined in Appendix I of the 2017 NPDES RGP, a preliminary determination for the action area associated with this project was established using the U.S. Fish and Wildlife Service (FWS) Information, Planning, and Conservation (IPAC) online system; a copy of the determination is attached in Appendix D. Based on the results of the determination, the project and action area are considered to meet FWS Criterion A as no critical habitats have been established to be present within the project action area.

H. DOCUMENTATION OF NATIONAL HISTORIC PRESERVATION ACT REQUIREMENTS

Based on a review of the resources provided by the U.S. National Register of Historic Places and a review of the Massachusetts Cultural Resource Information System (MACRIS), no historic properties have been established to be present at the Site, and due to the planned treatment process, discharges and discharge-related activities are not considered to have the potential to affect historic properties downgradient. The discharge is considered to meet Criterion A. Documentation is included in Appendix E.

I. SUPPLEMENTAL INFORMATION

Owner and operator information are provided below for reference:

Owner/Operator:

50 CP Development Limited Partnership 1780 S. Post Oak Lane Houston, TX 77056 Attn: Kathy Binford

CLOSING

Thank you very much for your consideration. Please feel free to contact us should you wish to discuss the information contained herein or if you need additional information.

Sincerely yours, HALEY & ALDRICH, INC.

Kimberly Scalise Senior Geologist Keith E. Johnson, P.E., LSP

Technical Expert

Enclosures:

Table I – Summary of Water Quality Data

Figure 1 – Project Locus

Figure 2 – Site Plan

Figure 3 – Discharge Route

Figure 4 – Proposed Treatment System Schematic

Appendix A – Notice of Intent (NOI)

Appendix B – Effluent Limitations Documentation

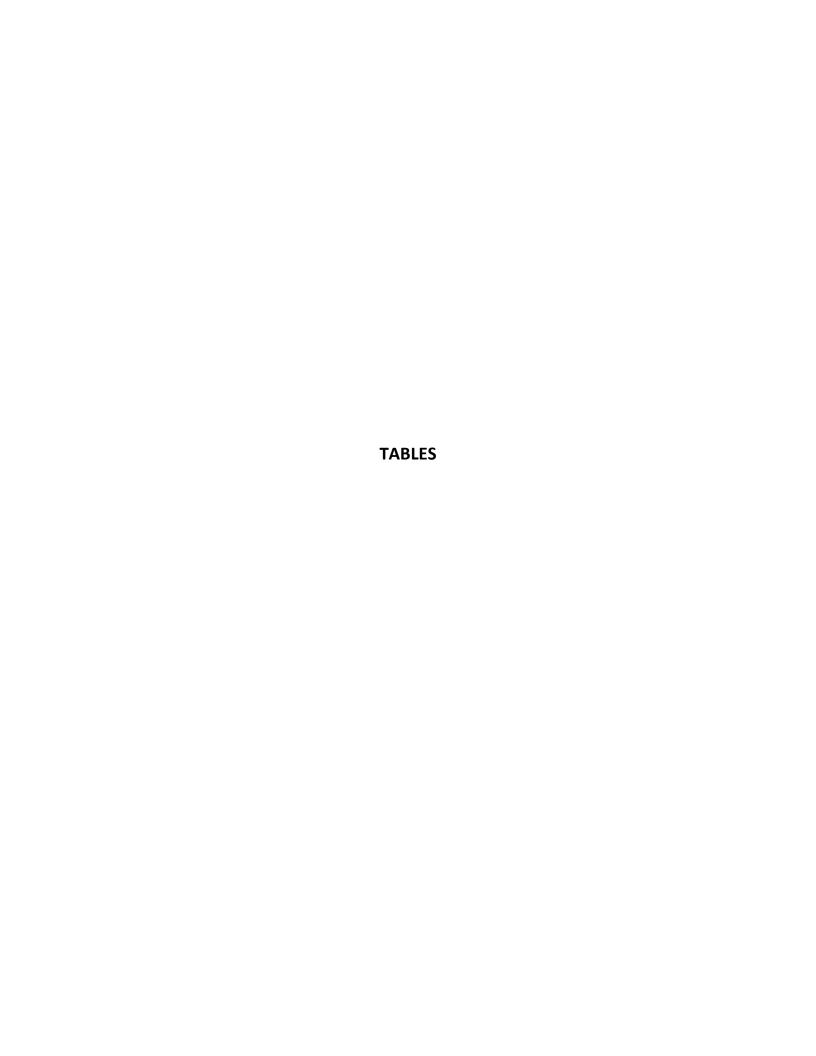
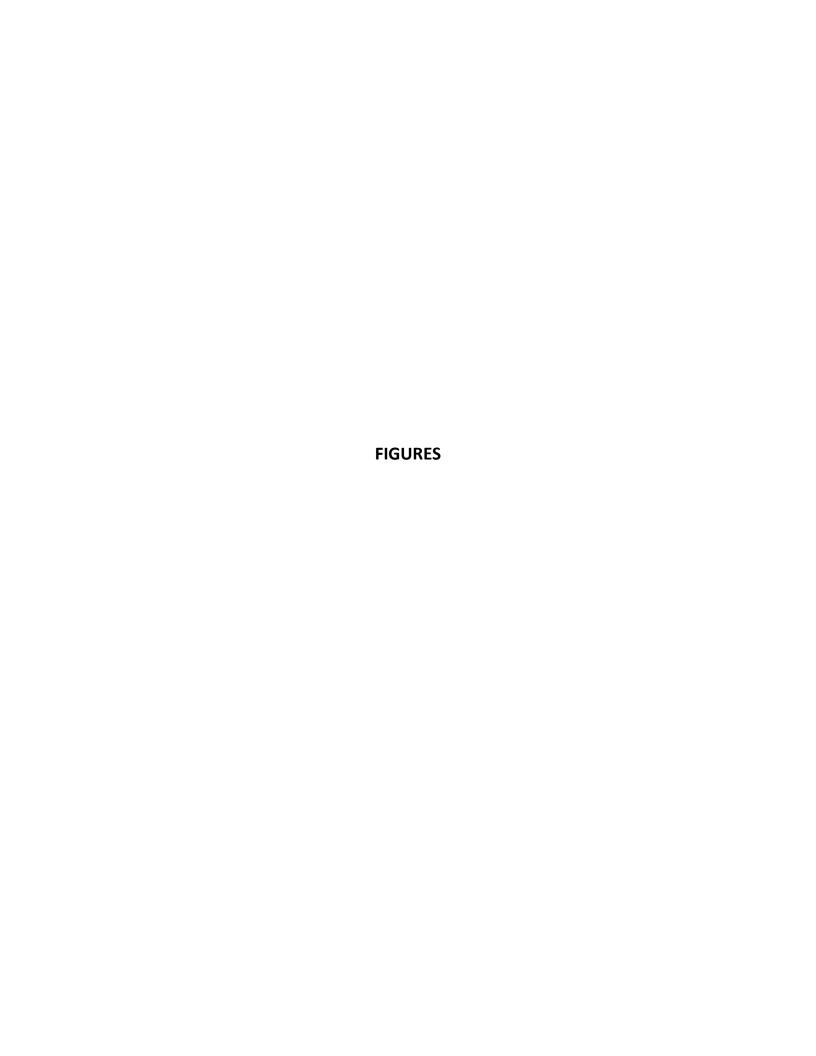
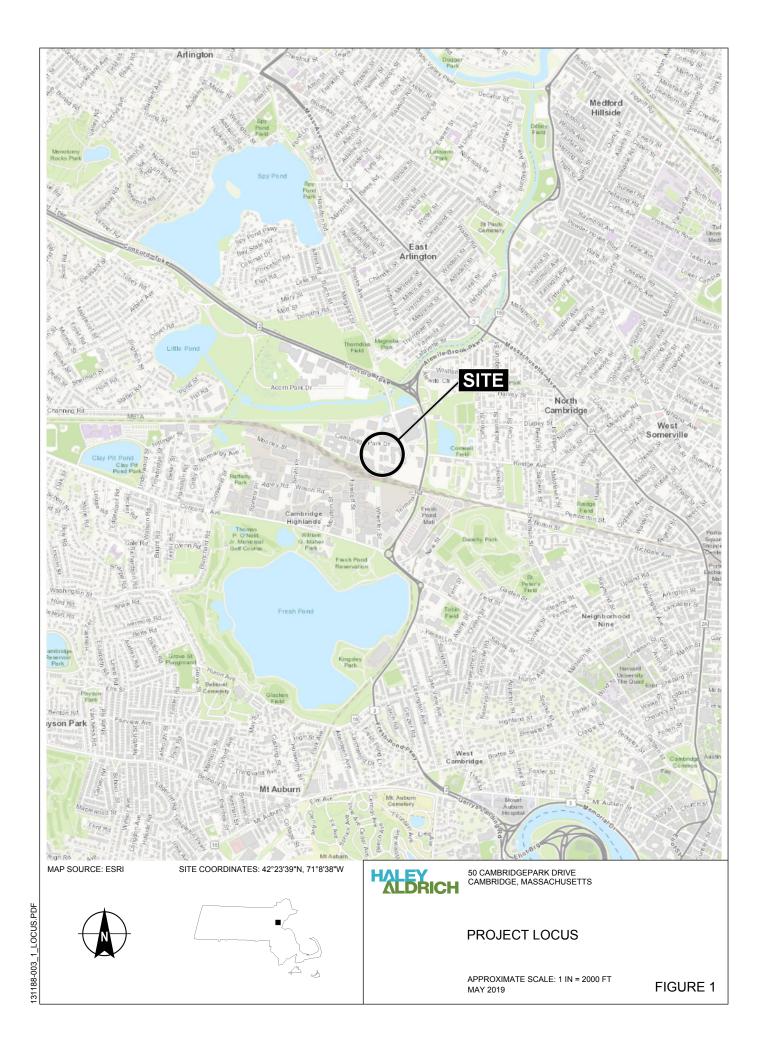
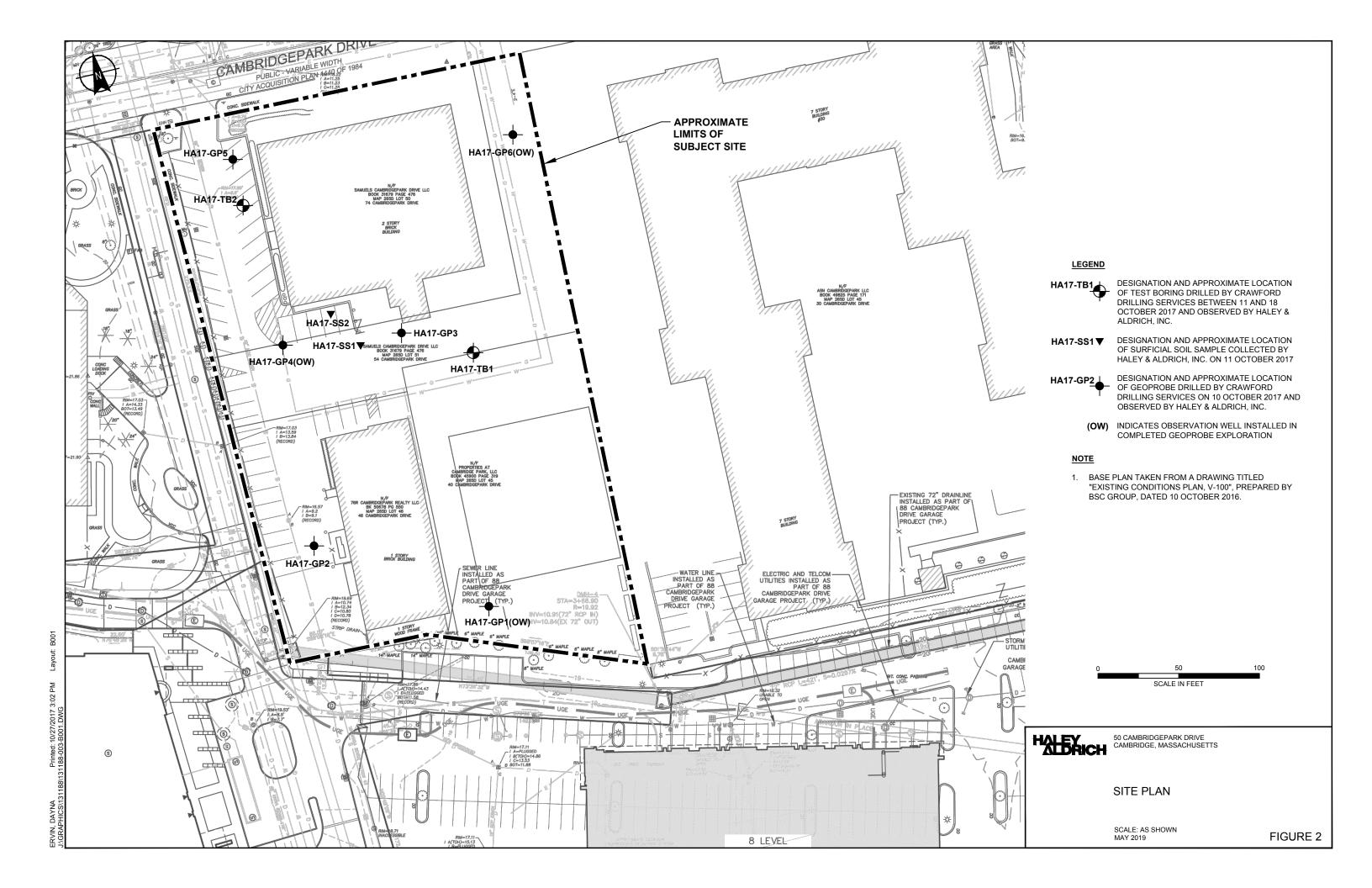
Appendix C – Additional Treatment Information

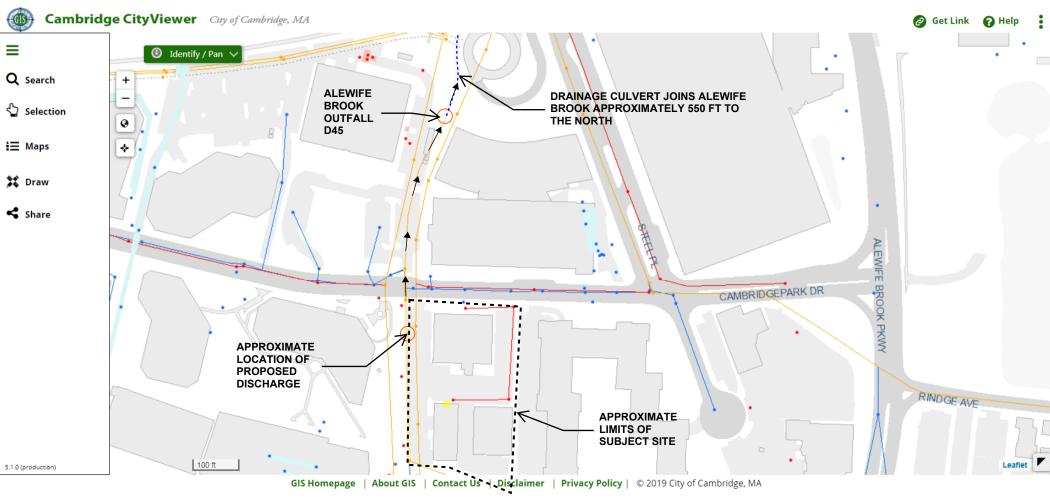
Appendix D – Endangered Species Act Assessment

Appendix E – National Historic Preservation Act Review

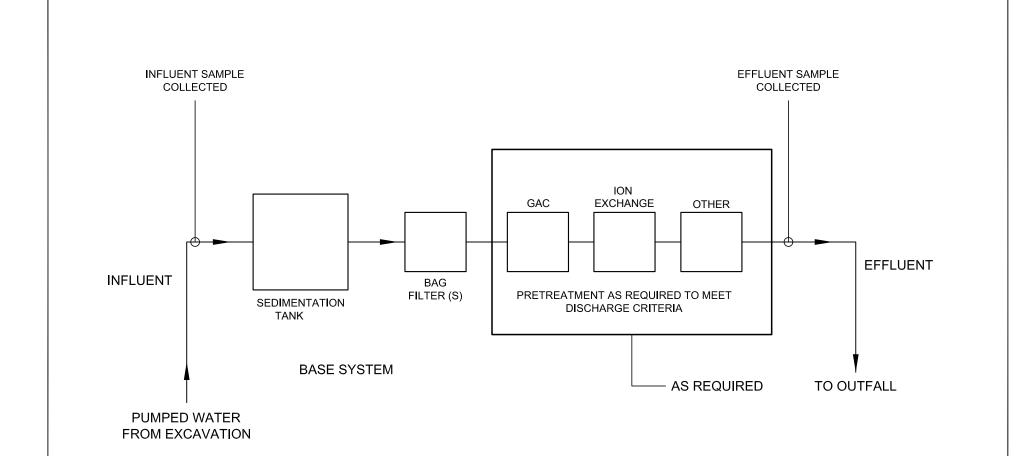
Appendix F – Laboratory Data Reports

c: 50 CP Development Limited Partnership; Attn: Kathy Binford, Kristen Gates, Tom Denney


TABLE I SUMMARY OF WATER QUALTIY DATA 50 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS FILE NO. 131188-006

LOCATION	2017 NPDES RGP	MassDEP	HA17-GP4 OW	OUTFALL			HA17-GP6(OW)-20171019	HA17-GP6(OW)-20180328	HA18-GP-D1 (OW)-20180713	HA18-GP-D1N (OW)-20180713	
SAMPLING DATE		MCP	2/1/2019	2/1/2019	10/19/2017	10/19/2017	10/19/2017	03/28/2018	07/13/2018	07/13/2018	07/13/2018
LAB SAMPLE ID	Site-Specific	RCGW-2	L1904244-01	L1904244-02	L1738018-01	L1738018-03	L1738018-02	L1810684-01	L1826894-01	L1826894-02	L1826894-03
SAMPLE TYPE	Criteria	2014	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Volatile Organics (µg/l)											
Toluene	*100	40000	ND(1)	_	1.7	ND (1)	ND (1)	_	_	_	_
Total BTEX	100	NA	ND	-	1.7	ND ND	ND ND	-		-	
SUM of Volatile Organic Compoun		NA NA	ND ND		1.7	ND ND	ND ND				
SOM OF VOIAGIE Organic Compoun	NA NA	INA	ND	-	1.7	ND	ND	-	-	-	-
14 - 1 - 12 - 0 1 - 1 Class (n - M)											
Volatile Organics by SIM (µg/I)	200	5000	ND(FO)		ND (250)	ND (250)	ND (250)				
1,4-Dioxane	200	6000	ND(50)	-	ND (250)	ND (250)	ND (250)	-	-	-	-
Semivolatile Organics (µg/I)											
Total Phthalates	190	NA	ND	-	-	-	-	-	-	-	-
SUM of Semivolatile Organic Comp	n NA	NA	ND	-	-	-	-	-	-	-	-
Semivolatile Organics by SIM (µg/											
Naphthalene	20	700	0.11	-	=	-	-	-	-	-	-
SUM of Group I PAHs	1	NA	ND	-	-	-	-	-	-	-	-
SUM of Group II PAHs	100	NA	ND	-	-	-	-	-	-	-	-
SUM of Semivolatile Organic Comp	NA NA	NA	0.11	-	-	-	-	-		-	-
Total Petroleum Hydrocarbons (µg	g/I)									I	1
TPH, SGT-HEM	5000	5000	ND(4000)	-		-				I -	
1 -	1		,	1						I	I
1										I	1
Total Metals (µg/l)			1	1						I	I
Antimony, Total	206	8000	ND(4)	ND(4)					_	1	1
Arsenic, Total	104	900	ND(4) 3.28	1.47						1	1
		4		0.2	-	-	-	-	-	-	-
Cadmium, Total	10.2		ND(0.2)		-	-	-	-	-	-	-
Chromium, Total	NA 242	300	1.15	ND(1)	-	-	-	-	-	-	-
Copper, Total	242	100000	1.37	3.21	-	-	-	-	-	-	-
Iron, Total	1000	NA	6990	2160	-	-	-	-	-	-	-
Lead, Total	160	10	ND(1)	ND(1)	-	-	-	-	-	-	-
Mercury, Total	0.739	20	ND(0.2)	ND(0.2)	-	-	-	-	-	-	-
Nickel, Total	1450	200	ND(2)	ND(2)	-	-	-	-	-	-	-
Selenium, Total	235.8	100	ND(5)	ND(5)	-	-	-	-	-	-	-
Silver, Total	35.1	7	ND(0.4)	ND(0.4)	-	-	-	-	-	-	-
Zinc, Total	420	900	93.54	19.62	-	-	-	-	-	-	-
Inorganic Compounds (mg/L)											
Arsenic, Dissolved	NA	0.9	-	-	0.009	0.012	ND (0.005)	-	-	-	-
Barium, Dissolved	NA	50	-	-	0.055	0.037	0.34	-	-	-	-
Nickel, Dissolved	NA	0.2	-	-	ND (0.025)	ND (0.025)	0.031	-	-	-	-
Zinc, Dissolved	NA	0.9	-	-	ND (0.05)	ND (0.05)	1.01	1.9	ND (0.05)	0.419	0.114
Polychlorinated Biphenyls (µg/I)										I	1
Aroclor 1016	0.000064	5	ND(0.25)	-	-	-	-		-	-	-
Aroclor 1221	0.000064	5	ND(0.25)	-	_	_	_	_	_	-	I -
Aroclor 1232	0.000064	5	ND(0.25)	-	_	_	_	_	_	_	_
Aroclor 1242	0.000064	5	ND(0.25)	_	_	_	_		_	1 -	1 -
Aroclor 1248	0.000064	5	ND(0.25)	1 -					_	1	1
Aroclor 1254	0.000064	5	ND(0.25)							1 1	1 :
Aroclor 1260	0.000064	5	ND(0.23) ND(0.2)						<u> </u>	I i	I I
Total PCBs	0.000064	5	ND(0.2)	1				-		 	
TOTAL F CDS	0.000064		NU	- -	-	-	-	-	-	1	· -
			1	1						I	I
Microextractables (µg/l)		1000	ND(0.01)	1						I	I
1,2-Dibromo-3-chloropropane	NA 0.05	1000	ND(0.01)	-	-	-	-	-	-	1 -	1 -
1,2-Dibromoethane (Ethylene Dibro	0.05	2	ND(0.01)	-	-	-	-	-	-	1 -	1 -
			1	1						I	I
General Chemistry (µg/I)	l			1						I	I
Chloride	Report	NA	314000	-	-	-	-	-	-	1 -	-
Chlorine, Total Residual	21	NA	ND(20)	1	-	-	-	-	-	-	-
Chromium, Hexavalent	323	300	ND(10)	ND(10)	-	-	-	-	-	-	-
Chromium, Trivalent	323	600	ND(10)	ND(10)	-	-	-	-	-	-	-
Cyanide, Total	178	30	ND(5)	-	-	-	-	-	-	-	-
Ethanol	Report	NA	ND(500)	-	-	-	-	-	-	-	-
Hardness	NA	NA	155000	242000	-	-	-	-	-	-	-
Nitrogen, Ammonia	Report	NA	428	2600	-	-	-	-		-	-
pH (H)	NA	NA	6.6	7.3	-	-	-	-	-	-	-
Phenolics, Total	NA	NA	ND(30)	-	-	-	-	-	-	-	-
Total Suspended Solids	30000	NA	5300	-	-	-	-	-	-	-	-
ABBREVIATIONS NOTES:											



NOTES:

1. SITE PLAN EXTRACTED FROM CAMBRIDGE CITYVIEWER GIS, CITY OF CAMBRDIGE, MA, ACCESSED MAY 2019.

INDICATES PROPOSED DISCHARGE ROUTE

NOTE:

DETAILS OF TREATMENT SYSTEM MAY VARY FROM SYSTEM INDICATED ABOVE. SPECIFIC MEANS AND METHODS OF TREATMENT TO BE SELECTED BY CONTRACTOR. WATER WILL BE TREATED TO MEET REQUIRED EFFLUENT STANDARDS.

50 CAMBRIDGEPARK DRIVE CAMBRIDGE, MASSACHUSETTS

PROPOSED
TREATMENT SYSTEM
SCHEMATIC

SCALE: NONE MAY 2019

FIGURE 4

APPENDIX A

Notice of Intent

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 32-36 Cambridgepark Drive							
50 Cambridgepark Drive	Street:							
	City: Cambridge		State: MA	Zip: 02140				
 Site owner CP Development Limited Partnership 	Contact Person: Kathy Binford							
oo or bevelopment Emilieu'r arthership	Telephone: 713-267-2100	Email: kbir	inford@hanoverco.com					
	Mailing address: 5847 San Felipe, Suite 3600							
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Houston		State: TX	Zip: 77057				
3. Site operator, if different than owner	Contact Person:							
	Telephone:	Email:						
	Mailing address:							
	Street:							
	City:		State:	Zip:				
4. NPDES permit number assigned by EPA: not applicable	5. Other regulatory program(s) that apply to the site (check all that apply):							
постиррисион	■ MA Chapter 21e; list RTN(s):	□ CERCLA						
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	3-35590 ☐ NH Groundwater Management Permit or	☐ UIC Program☐ POTW Pretreatment☐ CWA Section 404						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:							

B	Receiving water information:
1	Name of receiving water(s).

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	Classification of receiving water(s):					
Receiving water is (check any that apply): □ Outstar	nding Resource Water □ Ocean Sanctuary □ territo	rial sea □ Wild and Scenic Ri	ver					
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No						
Are sensitive receptors present near the site? (check of the sensitive receptors) that is the sensitive receptors present near the site?	one): □ Yes □ No							
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.								
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.								
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s								
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:7. Has the operator attached a summary of receiving	-							
(check one): ☐ Yes ☐ No								
C. Source water information:								
1. Source water(s) is (check any that apply):								
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:					
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other						
in accordance with the instruction in Appendix VIII? (check one): sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): than the receiving water; if so, indicate waterbody:								
□ Yes □ No	□ Yes □ No							

2. Source water contaminants: Iron, Zinc, Hydrocarbons				
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance			
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No			
3. Has the source water been previously chlorinated or otherwise contains resid	lual chlorine? (check one): ☐ Yes ■ No			
D. Discharge information				
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	v discharge □ New source			
Outfall(s): Alewife Brook Outfall D45	Outfall location(s): (Latitude, Longitude) 42.3957, -71.1440			
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water Indirect discharge, if so, specify:			
Pump to catch basin, through Cambridge City combined sewer to outfa	Il to Alewife Brook.			
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	rer system:			
Has notification been provided to the owner of this system? (check one): ■ Ye	es 🗆 No			
Has the operator has received permission from the owner to use such system for obtaining permission: Application to City of Cambridge submitted concurr	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for rently with NOI to EPA.			
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): ☐ Yes ■ No			
Provide the expected start and end dates of discharge(s) (month/year): July 20	19 through June 2020			
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge			
Has the operator attached a site plan in accordance with the instructions in D, a	bove? (check one): ■ Yes □ No			

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Categ	ory I or II: (check all that apply)			
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)			
 III – Non-Petroleum-Related Site Remediation III – Contaminated Site Dewatering IV – Dewatering of Pipelines and Tanks V – Aquifer Pump Testing VI – Well Development/Rehabilitation VII – Collection Structure Dewatering/Remediation VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Infl	uent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known				Inf	luent	Effluent Limitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations	
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL	
Total Group II PAHs								100 μg/L		
Naphthalene								20 μg/L		
E. Halogenated SVOCs										
Total PCBs								0.000064 µg/L		
Pentachlorophenol								1.0 μg/L		
	1			•						
F. Fuels Parameters Total Petroleum		1	1	1		1 1				
Hydrocarbons								5.0 mg/L		
Ethanol								Report mg/L		
Methyl-tert-Butyl Ether								70 μg/L		
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH		
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH		
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	on
■ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:	
Ion exchange to address dissolved metals. Other treatments to be applied as necessary to meet necessary effluent limits	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Prior to discharge, collected water will be routed through a sedimentation tank, bag filters, and an ion exchange tank to remove suspended solids, undissolved chemical dissolved/undissolved metals. If additional treatment is needed to meet necessary effluent limits, a Notice of Change (NOC) will be submitted to the EPA for review at treatment, constituent concentrations in effluent are expected to range from non-detectable to less than effluent criteria. If authorized under the RGP, parameters to be one or more VOCs, SVOCs, metals/inorganics, pH, and other compounds known or believed present in the source water.	nd approval. After
Identify each major treatment component (check any that apply):	
■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Flowmeter	150
Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	100
Provide the proposed maximum effluent flow in gpm.	100
Provide the average effluent flow in gpm.	50
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	NA
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
TI Nistra Litta ta Danis and a Asia Pallina Lanca ta day
 H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Please refer to attached Haley & Aldrich, Inc. letter
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

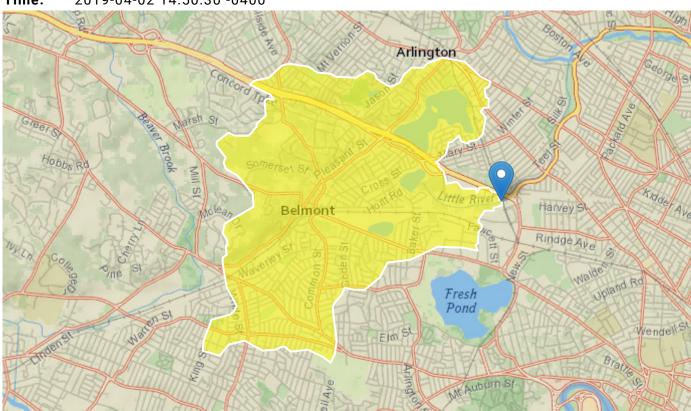
J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in at that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	persons who manage the system, or those elief, true, accurate, and complete. I have
A BMPP meeting the requirements of this general permit will be imple BMPP certification statement: discharge, and available for review at the site.	mented upon initiation of
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □ N/A
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site	Check one: Yes ■ No □ NA □
discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site	Application to discharge submitted concurrently
discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	with this NOI to the City of Cambridge. Check one: Yes □ No ■ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □ No □ NA ■
☐ Other; if so, specify:	
Signature: Kathy K. Binford Dat VICE PRESIDENT	e: 5-21-19
Print Name and Title: Kathy Binford, 50 CP Development Limited F	Partnership

APPENDIX B

Effluent Limitations Documentation

4/2/2019 StreamStats


StreamStats Report - CPD

Region ID: MA

Workspace ID: MA20190402185016422000

Clicked Point (Latitude, Longitude): 42.39728, -71.14383

Time: 2019-04-02 14:50:30 -0400

Basin Characteristics					
Parameter Code	Parameter Description	Value	Unit		
DRNAREA	Area that drains to a point on a stream	4.24	square miles		
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.568	percent		
DRFTPERSTR	Area of stratified drift per unit of stream length	0.39	square mile per mile		
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless		

4/2/2019 StreamStats

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.24	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.568	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.39	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.62	ft^3/s	0.185	2	49.5	49.5
7 Day 10 Year Low Flow	0.303	ft^3/s	0.0726	1.18	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

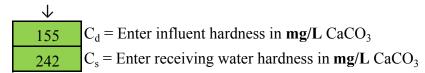
Application Version: 4.3.0

4/2/2019 StreamStats

HALEY & ALDRIC	CH, INC.			CALC	JLATIONS	FILE SHE		131188-006 1	of	1
CLIENT PROJECT SUBJECT	50 CP DEVELOPMI 50 CAMBRIDGEPA DILUTION FACTOR	RK DRIVE				DAT CON		16-May-19 KCS CV	-	-
PURPOSE:	Calculate Dilution	Factor (DF)	for project based on 7 [Day 10 Y	ear (7Q10) Low Flow	values.				
APPROACH:	Calculate DF based MGD.	d on EPA fo	rmula $(Q_S + Q_D)/Q_D$, who	ere Q _s is	s 7Q10 in million gallor	ns per day (MGD) and Q_D is	discharge flow ir	ı	
ASSUMPTIONS:	1. 7Q10 is 0.303 cf 2. A conversion of 3. A discharge flow	7.48 is use	d to convert cubic feet t	o gallon	s					
CALCULATIONS: 7Q10 Low Flow \	Value (Q _s)									
Q _S =	0.303 ft ³ sec	Х	7.48 gallons ft ³	Х	<u>86,400 sec</u> day	X 1	<u>1 MG</u> ,000,000 gallons	S		
Q _s =	0.196 MGD									
Discharge Flowr	ate (Q D)									
$Q_D =$	<u>150 gallons</u> min	Х	<u>1,440 min</u> day	Х	<u>1 MG</u> 1,000,000 gallons					
$Q_D =$	0.216 MGD									
Dilution Factor (I	•									
DF =	$\frac{Q_c + Q_D}{QD}$	= 0.3	0.216 MGD 0.216 MGD	=	1.91					
CONCLUSION	The dilution factor	for this ar	oject is calculated to be	1 01 ha	sad on the provided 7	O10 low fla	wyaluo and			

discharge flowrate.

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0.196	Q_R = Enter upstream flow in MGD
0.216	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

\downarrow	
7.3	pH in Standard Units
7.1	Temperature in °C
2.6	Ammonia in mg/L
242	Hardness in mg/L CaCO ₃
0	Salinity in ppt
0	Antimony in μg/L
1.47	Arsenic in μg/L
0.2	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in μg/L
3.21	Copper in µg/L
2160	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in µg/L
0	Silver in µg/L
19.62	Zinc in μg/L

Enter **influent** concentrations in the units specified

\downarrow	_
0	TRC in µg/L
428	Ammonia in mg /L
0	Antimony in μg/L
3.28	Arsenic in μg/L
0	Cadmium in μg/L
0	Chromium III in μg/L
0	Chromium VI in µg/L
1.37	Copper in µg/L
6990	Iron in μg/L
0	Lead in μg/L
0	Mercury in μg/L
0	Nickel in μg/L
0	Selenium in μg/L
0	Silver in μg/L
93.54	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in $\mu g/L$

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded	
Ammonia	Report	mg/L		
Chloride	Report	μg/L		
Total Residual Chlorine	0.2	mg/L	21	μg/L
Total Suspended Solids	30	mg/L		μg/L
Antimony Antimony	206	_	1221	~/T
Arsenic		μg/L	18	μg/L
	104	μg/L		μg/L
Cadmium	10.2	μg/L	0.4462	μg/L
Chromium III	323	μg/L	285.7	μg/L
Chromium VI	323	$\mu g/L$	21.8	$\mu g/L$
Copper	242	$\mu g/L$	28.8	$\mu g/L$
Iron	5000	μg/L	1000	μg/L
Lead	160	μg/L	14.33	μg/L
Mercury	0.739	μg/L	1.73	μg/L
Nickel	1450	μg/L	176.1	μg/L
Selenium	235.8	μg/L	9.5	μg/L
Silver	35.1	μg/L	23.0	μg/L
Zinc	420	μg/L	387.1	μg/L μg/L
Cyanide	178	mg/L	9.9	μg/L
B. Non-Halogenated VOCs	170	mg/L	7.7	μ5/Ε
Total BTEX	100	μg/L		
Benzene	5.0	μg/L		
1,4 Dioxane	200	$\mu g/L$		
Acetone	7970	$\mu g/L$		
Phenol	1,080	$\mu g/L$	572	$\mu g/L$
C. Halogenated VOCs				
Carbon Tetrachloride	4.4	μg/L	3.1	μg/L
1,2 Dichlorobenzene	600	μg/L		
1,3 Dichlorobenzene	320 5.0	μg/L		
1,4 Dichlorobenzene	5.0	μg/L		
Total dichlorobenzene 1,1 Dichloroethane	70	μg/L		
1,2 Dichloroethane	5.0	μg/L μg/L		
1,1 Dichloroethylene	3.2	μg/L μg/L		
Ethylene Dibromide	0.05	μg/L μg/L		
Methylene Chloride	4.6	μg/L		
1,1,1 Trichloroethane	200	μg/L		
1,1,2 Trichloroethane	5.0	μg/L		
Trichloroethylene	5.0	μg/L		
Tetrachloroethylene	5.0	μg/L	6.3	$\mu g/L$

cis-1,2 Dichloroethylene	70	μg/L		
Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	4.2	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	$\mu g/L$		
Benzo(a)anthracene	1.0	$\mu g/L$	0.0072	μg/L
Benzo(a)pyrene	1.0	$\mu g/L$	0.0072	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0072	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0072	μg/L
Chrysene	1.0	$\mu g/L$	0.0072	μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0072	μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0072	$\mu g/L$
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	$\mu g/L$		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	$\mu g/L$		
Pentachlorophenol	1.0	$\mu g/L$		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	38	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

Compliance Level applies if shown

 $\mu g/L$

--- $\mu g/L$

 $\begin{array}{lll} --- & \mu g/L \\ --- & \mu g/L \end{array}$

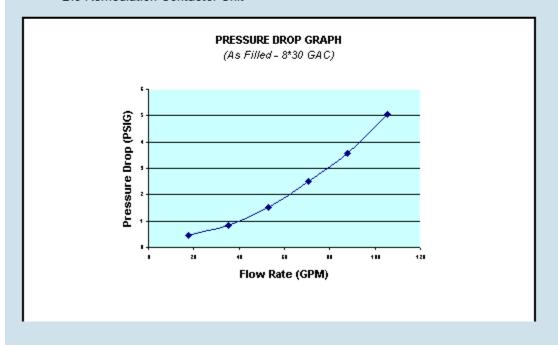
 $0.5 \hspace{1cm} \mu g/L$

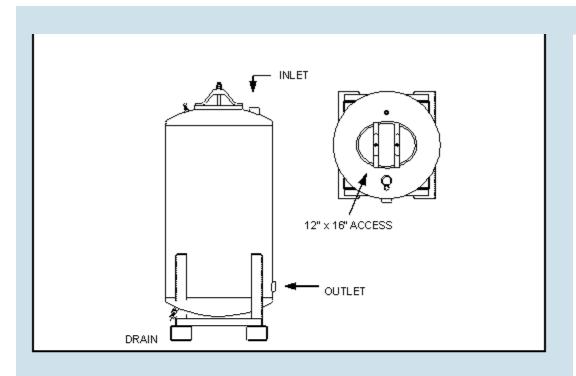
APPENDIX C

Additional Treatment Information

89 Crawford Street

Leominster, Massachusetts 01453


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net


HPAF SERIES FILTERS MODEL HPAF-2000

The HPAF-2000 filter is a media filter vessel designed to treat liquid streams. While the typical design application is a activated carbon adsorbtion unit, the filter can easily accommodate many medias. Some applications include:

- · Dissolved Organic Removal (Activated Carbon)
- Suspended Solids Removal (Sand Filter)
- · Dissolved Minerals (Softener Resin)
- Oil and Grease Removal (Organo-Clays)
- · Dissolved and Precipitated Metals Removal
- · Special Organics (Resin/Carbon Blend)
- · Catalytic Reactor (Chlorine and Peroxide Removal)
- · Bio-Remediation Contactor Unit

HPAF-2000 SPECIFICATIONS			
Overall Height	8'6"	Vessel/Internal Piping Materials	CS (SA-36) / SCH 40 PVC
Diameter	48"	Internal Coating	Polyamide Epoxy Resin
Inlet / Outlet (FNPT)	3"	External Coating	Epoxy Mastic
Drain / Vent (FNPT)	3/4" / 1/2"	Maximum Pressure / Temp	75 PSIG / 140° F
GAC Fill (lbs)	2,000	Cross Sectional Bed Area	12.5 FT ²
Shipping / Operational Weight (lbs)	3,020/6,775	Bed Depth/Volume	5.5 FT / 68.7 FT ³

RESINTECH CGS is a high purity, light colored, high capacity, gel type sulfonated polystyrene cation resin supplied in the sodium form as moist, tough uniform spherical beads. *ResinTech CGS* specifically is intended for use in all water softening applications, including beverages, potable water and water used for food processing. It's high capacity and high DVB content provide long life and good chlorine resistance in all potable water applications. (It is also available as a dark colored product *ResinTech CGS-BL* with identical properties.)

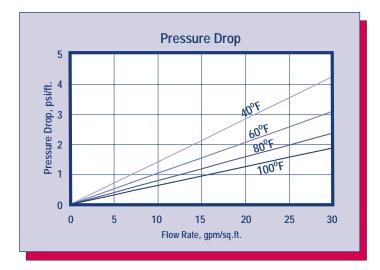
FEATURES & BENEFITS

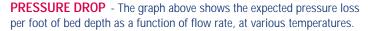
- COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS
 Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the F.D.A.*
- EXCELLENT REGENERATION EFFICIENCY

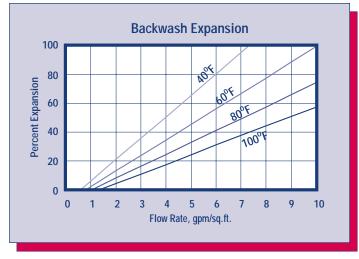
 Virtually the same operating capacity as premium grade ResinTech CG8-BL
- NSF/ANSI-61 VALIDATED

UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY


90% plus sphericity and high crush strengths together with a very uniform particle size provide greater resistance to bead breakage while maintaining low pressure drops.


LOW COLOR THROW

*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to insure compliance with extractable levels.

HYDRAULIC PROPERTIES

BACKWASH - After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH CGS* in the sodium form.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group R-(SO₃)⁻M⁺

Ionic Form, as shipped Sodium

Physical Form Tough, Spherical Beads

Screen Size Distribution
+16 mesh (U.S. Std)
-50 mesh (U.S. Std)

PH Range
90+ percent

16 to 50

5 percent

1 percent

90+ percent

Sphericity 90+ percent
Uniformity Coefficient Approx. 1.6
Water Retention

Sodium Form 48 to 54 percent blubility Insoluble

Solubility Insoluble
Shipping Weight

Sodium Form 48 lbs./cu.ft. Total Capacity

Sodium Form 1.8 meg/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Temperature
Sodium Form 250° F

Minimum Bed Depth 24 inches
Backwash Rate 50 to 75% Bed Expansion

Regenerant (NaCl or KCl)

Service Flow Rate

Concentration 10 to 15 percent 0.5 to 1.5 gpm/cu.ft. Flow Rate Contact Time > 20 minutes Level 4 to 15 pounds/cu.ft. Displacement Rate Same as Regen Flow Rate Volume 10 to 15 gallons/cu.ft. Same as Service Flow Rate Fast Rinse Rate 35 to 60 gallons/cu.ft. Volume

2 to 10 gpm/cu.ft.

OPERATING CAPACITY

Sodium Chloride (NaCl) Regeneration

The sodium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	20.0
7.5	25.4
10	29.0
15	33.0

Potassium Chloride (KCI) Regeneration

The potassium cycle operating capacity of $RESINTECH\ CGS$ for hardness removal at various regeneration levels with an influent calcium/magnesium ratio of 2/1 and a hardness level of 500 ppm, as $CaCO_3$, is shown in the following table:

Pounds NaOH/cu.ft.	Capacity Kilograins/cu.ft.
5	16.6
7.5	21.8
10	26.6
15	31.2

APPLICATIONS

Softening

RESINTECH CGS is ideally suited for industrial, commercial, or residential softening applications where free chlorine is not present because of its high capacity, uniform particle size and good physical stability.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy. contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *ResinTech SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *ResinTech SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *ResinTech SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

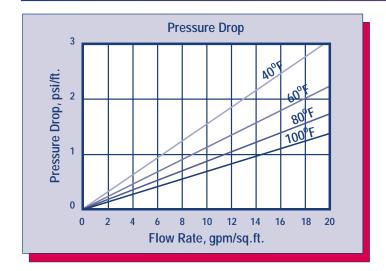
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

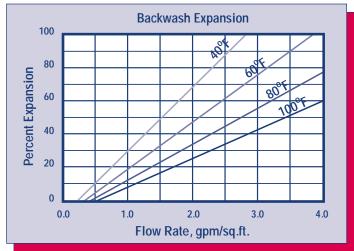
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure Styrene Crosslinked with DVB Functional Group $R-N-(CH_3)_3+CI-$ Ionic Form, as shipped Chloride or Hydroxide Physical Form Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.

OH Form 41 lbs/cu.ft.

Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140° F alt Form 170° F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.

Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of *RESINTECH SBG1* for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Cap	Capacity Kilograms per cubic foot			
NaOH/ft ³ HCI		H ₂ SO ₄	H ₂ SiO ₃	H_2CO_3	
4	11.3	14.0	14.7	18.6	
6	12.8	16.3	17.3	19.8	
8	14.3	13.3	19.5	21.6	
10	15.5	20.0	22.2	22.2	

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°DF and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form)
Effective date 31 March 2015

Section 1: Identification

10	Product Names	Design Teach CDC1	CDC1 UD C	SBG1-UPS, SBG1-C.
1a	Floudet Names	Resilitecti SBG I.	300 I-HF, 3	30G1-UP3, 30G1-C,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do – continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

3a Chemical name Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.

3b Ingredients

Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the CAS# 60177-39-1 (35 - 65%)

Chloride form

Water CAS# 7732-18-5 (35 – 65%)

Section 4: First Aid Measures

4a	Inhalation	No adverse effects expected- normal use of p	product
T a	IIIIalation	The adverse effects expected-fibrillar use of p	,

does not produce odors or vapors.

4b Skin Wash with soap and water- seek medical attention if a

rash develops.

4c Eye contact Wash immediately with water-seek attention if

discomfort continues.

4d Ingestion No adverse effects expected for small amounts, larger

amounts can cause stomach irritation. Seek medical

attention if discomfort occurs.

Section 5: Fire Fighting Measures

5a Flammability	NFPA Fire rating = 1
-----------------	----------------------

5b Extinguishing media Water, CO2, foam, dry powder.

5c Fire fighting Procedures Follow general fire fighting procedures indicated in the

work place. Seek medical attention if discomfort

continues.

5d Protective Equipment MSHA/NIOSH approved self-contained breathing

gear, full protective clothing.

5e Combustion Products Carbon oxides and other toxic gasses and vapors.

5f Unusual Hazards Product is not combustible until moisture is removed.

Resin begins to burn at approximately 230° C. Auto

ignition can occur above 500° C.

Section 6: Accidental Release Measures Personal Precautions Keep people away, spilled resin can be a slipping 6a hazard, wear gloves and safety glasses to minimize skin or eye contact. **Incompatible Chemicals** Strong oxidants can create risk of combustion 6b products similar to burning, exposure to strong bases can cause a rapid temperature increase. 6c **Environmental Precautions** Keep out of public sewers and waterways. Use plastic or paper containers, unlined metal **Containment Materials** 6d containers not recommended. Methods of Clean-up Sweep up material and transfer to containers. 6e

Section 7: Handling and Storage

7a	Handling	Avoid prolonged skin contact. Keep resin moist and avoid allowing resin to completely dry.
7b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.

Section 8: Exposure Controls/Personal Protection

8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Not required for limited exposure but recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, yellow, or red beads approx. 0.6 mm

diameter.

Flammability or explosive limits Flammable above 500° C

Odor Little or no odor

Physical State Solid

Vapor pressure

Odor threshold

Vapor density

Not available

Not available

pH Near neutral (6 to 8 typical)

Relative density Approx 710 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Solubility Insoluble in water and most solvents

Boiling point Does not boil
Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water)

Auto-ignition temperature

Approx 500° C

Decomposition temperature

Above 230° C

Viscosity

Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

10c Hazardous by-products Trimethylamine, charred polystyrene, aromatic acids

and hydrocarbons, organic amines, nitrogen oxides,

carbon oxides, chlorinated hydrocarbons,

10d Incompatible materials Strong oxidizing agents, e.g. nitric acid

(such as HNO₃)

10e Hazardous Polymerization Does not occur

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption
Unlikely, some transfer of acidity is possible.
Ingestion
Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild Rash.

Ingestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not acutely harmful to plant or animal life.

12b Mobility Insoluble, acidity or causticity may escape if wet.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 13: Disposal Considerations

13a General considerations Material is non-hazardous. However, unused material

can cause a pH change when wetted.

13b Disposal Containers Most plastic and paper containers are suitable. Avoid

use of unlined metal containers.

13c Disposal methods No specific method necessary.

13d Sewage Disposal Not recommended.

13e Precautions for incineration May release trimethylamine and toxic vapors when

burned.

13f Precautions for landfills Resins used to remove hazardous materials may then

become hazardous mixtures

Section 14: Transportation Information

14a Transportation Class Not classified as a dangerous good for transport by

land, sea, or air.

14b TDG Not regulated.

14c IATA Not regulated.

14d DOT (49 CFR 172.101) Not Regulated.

Section 15: Regulatory Information

15a CERCLA Not regulated

15b SARA Title III Not regulated

15c Clean Air act Not regulated

15d Clean Water Act Not regulated

15e TSCA Not regulated

15f Canadian Regulations

WHMIS Not a controlled product

TDG Not regulated

15g Mexican Regulations Not Dangerous

Section 16: Other Information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

Lockwood Remediation Technologies, LLC

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

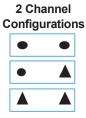
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous I	Models		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's Broad Range of Digital and Analog Sensors							
Parameter	Sensor	Digital or Analog					
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•					
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•					
Chlorine Dioxide	9185 sc	•					
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A					
Dissolved Oxygen	LDO® Model 2, 5740 sc	•					
Dissolved Oxygen	5500	A					
Flow	U53, F53 Sensors	A					
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•					
Oil in Water	FP360 sc	•					
Organics	UVAS sc	•					
Ozone	9187 sc	•					
pH/ORP	pHD	•					
pH/ORP	pHD, pH Combination, LCP						
Phosphate	PHOSPHAX™ sc	•					
Sludge Level	SONATAX™sc	•					
Suspended Solids	SOLITAX™ sc, TSS sc	•					
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•					
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A					
Ultra Pure pH/ORP	8362						

● = Digital ▲ = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

Display

backlighting, transreflective

Display Size

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

Power Requirements (Hz)

Operating

Temperature Range

Analog Outputs

Analog Output Functional Mode

Security Levels Mounting **Configurations**

Enclosure Rating Conduit Openings Relay: Operational

Mode

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm)

Graphic dot matrix LCD with LED

1.9 x 2.7 in. (48 mm x 68 mm)

100 - 240 V AC, 24 V DC

50/60 Hz

-20 to 60 °C, 0 to 95% RH non-condensing

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy: ± 0.1% of FS (20mA) at 25 °C, \pm 0.5% of FS over -20 °C to 60 °C

range

Operational Mode: measurement

or calculated value

Linear, Logarithmic, Bi-linear, PID

2 password-protected levels Wall, pole, and panel mounting

NEMA 4X/IP66 1/2 in NPT Conduit

Primaryorsecondary

measurement, calculated value (dual channel only) or timer

Relay Functions

Communication

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT Relays (Form C) contacts, 1200 W, 5 A

MODBUS RS232/RS485,

PROFIBUS DPV1, or HART 7.2

optional

Memory Backup Flash memory

Electrical Certifications **EMC**

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

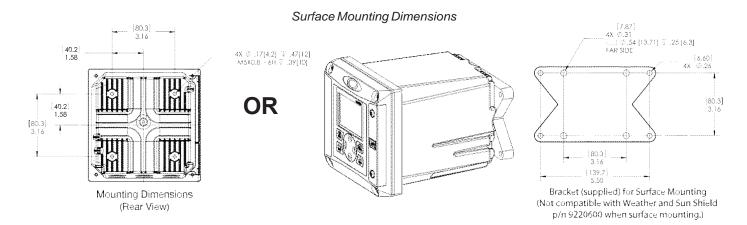
- EMC Immunity EN 61326-1 (Industrial limits)

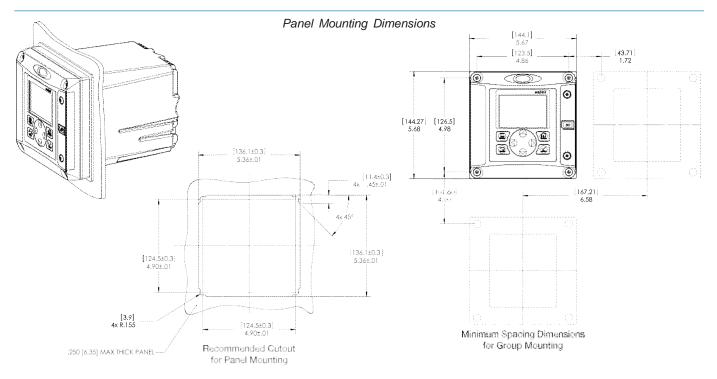
Safety

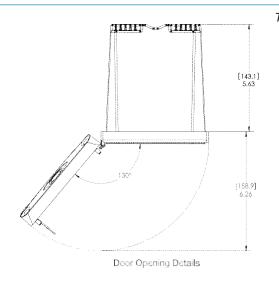
cETLus safety mark for:

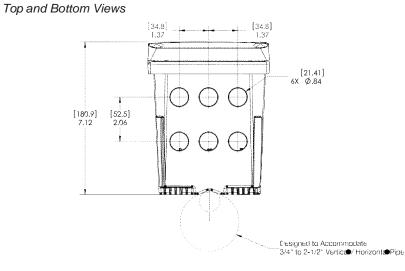
- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.


sc200™ Universal Controller

Dimensions

DW

PW

Lockwood Remediation Technologies, LLC

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS[®] (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton $^{\circledR}$ O-rings

Warranty

90 days

*Specifications subject to change without notice.

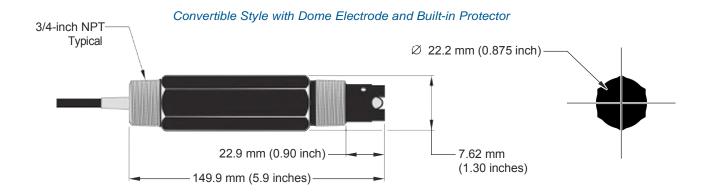
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

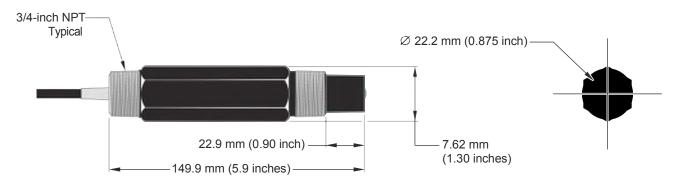
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- 4. The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

Lockwood Remediation Technologies, LLC

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within \pm 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- · Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

Manual Stroke Rate

Manual Stroke Length

External Pacing-Optional

External Pace With Stop-Optional (125 SPM only)

Controls Options							
F4	Standard	Optional					
Feature	Configuration	Configuration ¹					
External Pacing		Auto / Manual Selection /					
External Pace w/ Stop		Auto / Manual Selection 2					
(125SPMonly)							
Manual Stroke Rate	10:1Ratio	100:1 Raio					
Manual Stroke Length	10:1Ratio	10:1 Ratio					
Total Turndown Ratio	1001 Ratio	1000:1 Ratio					

Note 1:On S2,S3 & S4 sizes only.

Note 2:Not available on 1000:1turndown pumps.

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- · High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers

(PULSAblue, MicroVision)

Series A Plus Electronic Metering Pumps

Lockwood Remediation Technologies, LLC

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wTFE Seats) PVC (V code) Vion or CSPE Seats IDegas Liquid End	PSIG (Bar)	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina			114'IDX	318' OD			318'DX 112'OD	114	'D X 318' OI)
		Pioina					1	14'FNPT				
Strokes/Minute		SPM				125					250	

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC PVDF 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available: **PVC**

PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capacty

Viscosity Max CPS: 1000 CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

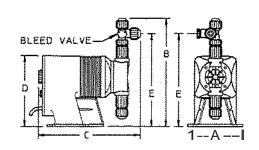
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

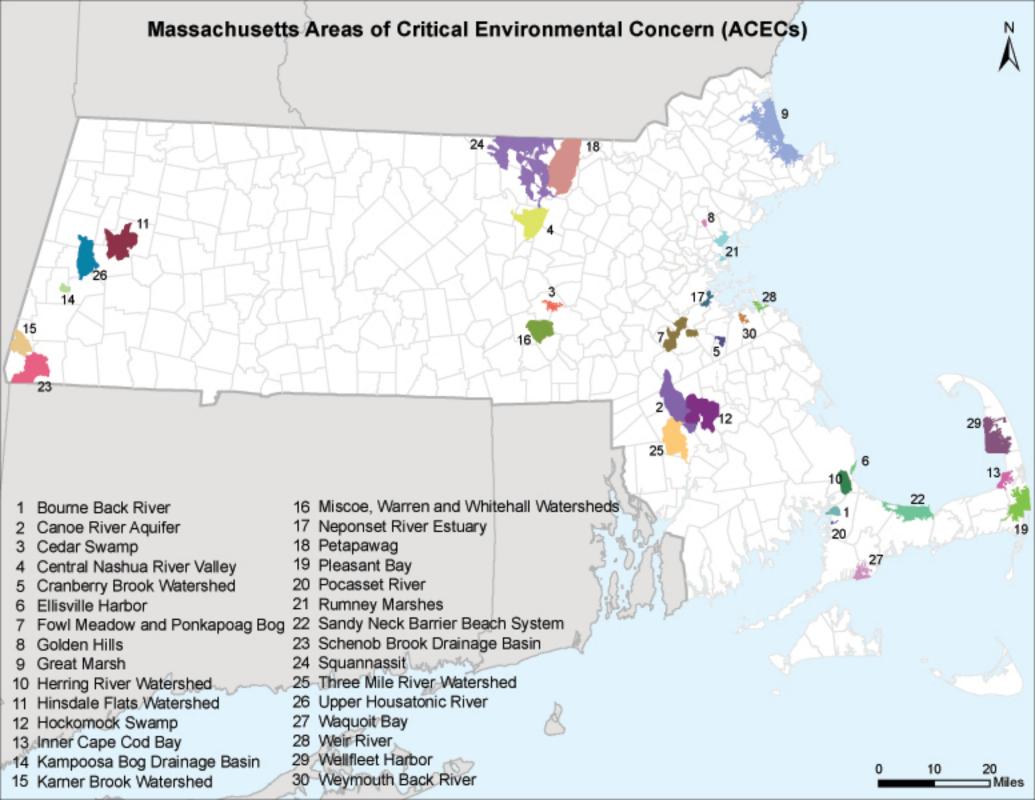
@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions


Series A PLUS Dimensions (inches)								
	Shippi							
Model No.	Α	В	С	D	Е	Weight		
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10		
LBC2	5.0	9.9	9.5	6.5	8.5	10		
LBC3	5.0	9.9	9.5	6.5	8.5	10		
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10		
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10		
LB64	5.0	9.9	9.5	6.5	8.5	10		
LBC4	5.0	9.9	9.5	6.5	8.5	10		

NOTE: hches X 2.54 cm

APPENDIX D

Endangered Species Act Assessment

Rare Species by Town Viewer

We maintain a list of all documented MESA-listed species observations in the Commonwealth.

This Town Species Viewer provides the ability to:

- 1. Select a town from the dropdown to see a table of which rare species have been observed in that town. The selected town will also be highlighted on the map.
- 2. Select the Common Name or Scientific Name of a species to see it's distribution on the map and table showing the towns it has been observed in.

Clicking on a column header in the table will sort the column. Clicking again on the same column heading will reverse the sort order.

The Town List and Species Viewer are updated at regular intervals as new data is accepted and entered into the NHESP database.

Town	Taxonomic Group	Scientific Name	Common Name	MESA Status	Most Recent Obs
CAMBRIDGE	Amphibian	Ambystoma laterale	Blue-spotted Salamander	SC	1917
CAMBRIDGE	Bird	Botaurus lentiginosus	American Bittern	E	1906
CAMBRIDGE	Vascular Plant	Carex gracilescens	Slender Woodland Sedge	E	1891
CAMBRIDGE	Beetle	Cicindela duodecimguttata	Twelve-spotted Tiger Beetle	SC	1932
CAMBRIDGE	Bird	Cistothorus platensis	Sedge Wren	E	1840
CAMBRIDGE	Vascular Plant	Cyperus engelmannii	Engelmann's Umbrella- sedge	T	2008
CAMBRIDGE	Butterfly/Moth	Eacles imperialis	Imperial Moth	T	Historic
CAMBRIDGE	Bird	Falco peregrinus	Peregrine Falcon	T	2017
CAMBRIDGE	Bird	Gallinula chloropus	Common Moorhen	SC	1890
CAMBRIDGE	Vascular Plant	Gentiana andrewsii	Andrews' Bottle Gentian	E	2017
CAMBRIDGE	Reptile	Glyptemys insculpta	Wood Turtle	SC	Historic
CAMBRIDGE	Vascular Plant	Isoetes lacustris	Lake Quillwort	E	Historic
CAMBRIDGE	Bird	Ixobrychus exilis	Least Bittern	E	1890
CAMBRIDGE	Mussel	Ligumia nasuta	Eastern Pondmussel	SC	1941
CAMBRIDGE	Segmented Worm	Macrobdella sestertia	New England Medicinal Leech	SC	Historic
CAMBRIDGE	Fish	Notropis bifrenatus	Bridle Shiner	SC	1928
CAMBRIDGE	Vascular Plant	Platanthera flava var. herbiola	Pale Green Orchis	T	Historic
CAMBRIDGE	Vascular Plant	Potamogeton friesii	Fries' Pondweed	E	1880
CAMBRIDGE	Amphibian	Scaphiopus holbrookii	Eastern Spadefoot	T	1892
CAMBRIDGE	Vascular Plant	Scirpus longii	Long's Bulrush	T	1913
CAMBRIDGE	Vascular Plant	Suaeda calceoliformis	American Sea-blite	SC	1912
CAMBRIDGE	Reptile	Terrapene carolina	Eastern Box Turtle	SC	1892
CAMBRIDGE	Bird	Tyto alba	Barn Owl	SC	Historic
CAMBRIDGE	Vascular Plant	Viola brittoniana	Britton's Violet	T	1843

Additional Information

Status

- E = Endangered
- T = Threatened

• SC = Special Concern

Most Recent Observation

This field represents the most recent observation of that species in a town. However, because they are rare, many MESA-listed species are difficult to detect even when they are present. Natural Heritage does not have the resources to be able to conduct methodical species surveys in each town on a regular basis. Therefore, the fact that the 'Most Recent Observation' recorded for a species may be several years old should not be interpreted as meaning that the species no longer occurs in a town. However, Natural Heritage regards records older than twenty-five years historic.

For more information about a particular species, view the list of <u>Natural Heritage Fact Sheets</u> (/service-details/list-of-endangered-threatened-and-special-concern-species).

Additional Resources

Generate a .csv of NHESP Town List

Request Rare Species Information (/how-to/request-rare-species-information)

Report rare species & vernal pool observations (/how-to/report-rare-species-vernal-pool-observations)

CONTACT

Natural Heritage & Endangered Species Program

Address

MassWildlife Field Headquarters

1 Rabbit Hill Road, Westborough, MA 01581

directions (https://maps.google.com/?q=1+Rabbit+Hill+Road%2C+Westborough%2C+MA+01581)

Phone

Main (508) 389-6360 (tel:5083896360)

Open M-F, 8am-4:30pm

Regulatory Review Inquiries (508) 389-6357 (tel:5083896357)

North/Central/Western Massachusetts

(508) 389-6385 (tel:5083896385)

Southeastern Massachusetts/Cape & Islands

RELATED

List of Endangered, Threatened, and Special Concern species (/service-details/list-of-endangered-threatened-and-special-concern-species)

Did you find what you were looking for on this webpage? * Yes No
SEND FEEDBACK

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Chatham
Barnstable	Sandplain gerardia	Endangered	Open areas with sandy soils.	Sandwich and Falmouth.
	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Bourne (north of the Cape Cod Canal)
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Bog Turtle	Threatened	Wetlands	Egremont and Sheffield
Berkshire	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Fairhaven, Dartmouth, Westport
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Fairhaven, New Bedford, Dartmouth, Westport
Bristol	Northern Red- bellied Cooter	Endangered	Inland Ponds and Rivers	Taunton
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	All Towns
	Piping Plover	Threatened	Coastal Beaches	All Towns
	Northeastern beach tiger beetle	Threatened	Coastal Beaches	Aquinnah and Chilmark
Dukes	Sandplain gerardia	Endangered	Open areas with sandy soils.	West Tisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Gloucester, Essex and Manchester
Essex	Piping Plover	Threatened	Coastal Beaches	Gloucester, Essex, Ipswich, Rowley, Revere, Newbury, Newburyport and Salisbury
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Northeastern bulrush	Endangered	Wetlands	Montague, Warwick
Franklin	Dwarf wedgemussel	Endangered	Mill River	Whately
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Hadley
	Puritan tiger beetle	Threatened	Sandy beaches along the Connecticut River	Northampton and Hadley
Hampshire	Dwarf wedgemussel	Endangered	Rivers and Streams.	Hatfield, Amherst and Northampton
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Southwick
Hampden	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Groton
Middlesex	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Nantucket
	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Nantucket
Nantucket	American burying beetle	Endangered	Upland grassy meadows	Nantucket
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

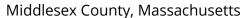
FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN MASSACHUSETTS

COUNTY	SPECIES	FEDERAL STATUS	GENERAL LOCATION/HABITAT	TOWNS
	Piping Plover	Threatened	Coastal Beaches	Scituate, Marshfield, Duxbury, Plymouth, Wareham and Mattapoisett
	Northern Red- bellied Cooter	Endangered Inland Ponds and Rivers		Kingston, Middleborough, Carver, Plymouth, Bourne, Wareham, Halifax, and Pembroke
Plymouth	Roseate Tern	Endangered	Coastal beaches and the Atlantic Ocean	Plymouth, Marion, Wareham, and Mattapoisett.
	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Piping Plover	Threatened	Coastal Beaches	Revere, Winthrop
Suffolk	Red Knot ¹	Threatened	Coastal Beaches and Rocky Shores, sand and mud flats	Coastal Towns
	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide
	Small whorled Pogonia	Threatened	Forests with somewhat poorly drained soils and/or a seasonally high water table	Leominster
Worcester	Northern Long- eared Bat	Threatened Final 4(d) Rule	Winter- mines and caves, Summer – wide variety of forested habitats	Statewide

¹Migratory only, scattered along the coast in small numbers

- -Eastern cougar and gray wolf are considered extirpated in Massachusetts.
- -Endangered gray wolves are not known to be present in Massachusetts, but dispersing individuals from source populations in Canada may occur statewide.
- -Critical habitat for the Northern Red-bellied Cooter is present in Plymouth County.

IPaC


U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- 1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened**

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act^{1} and the Bald and Golden Eagle Protection Act^{2} .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Measures for avoiding and minimizing impacts to birds
 http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Nationwide conservation measures for birds http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

IPaC: Explore Location

5/6/2019

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

Bobolink Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Cerulean Warbler Dendroica cerulea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska. https://ecos.fws.gov/ecp/species/2974

Dunlin Calidris alpina arcticola

This is a Bird of Conservation Concern (BCC) only in particular Bird Conservation Regions (BCRs) in the continental USA

Breeds Oct 15 to Aug 31

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

Breeds Apr 29 to Jul 20

Breeds elsewhere

Evening Grosbeak Coccothraustes vespertinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Kentucky Warbler Oporornis formosus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 20 to Aug 20

Lesser Yellowlegs Tringa flavipes

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9679

Breeds elsewhere

Nelson's Sparrow Ammodramus nelsoni

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 15 to Sep 5

Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 1 to Jul 31

Prothonotary Warbler Protonotaria citrea

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Apr 1 to Jul 31

Red-headed Woodpecker Melanerpes erythrocephalus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Sep 10

Red-throated Loon Gavia stellata

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Saltmarsh Sparrow Ammospiza caudacuta

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9719

Breeds May 15 to Sep 5

Semipalmated Sandpiper Calidris pusilla

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Snowy Owl Bubo scandiacus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds elsewhere

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

Probability of Presence Summary

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

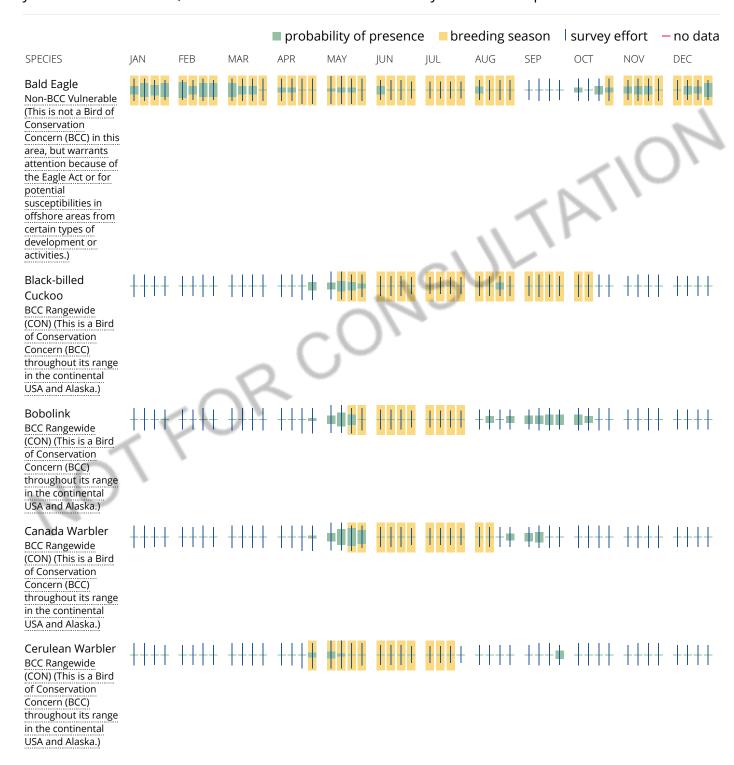
To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

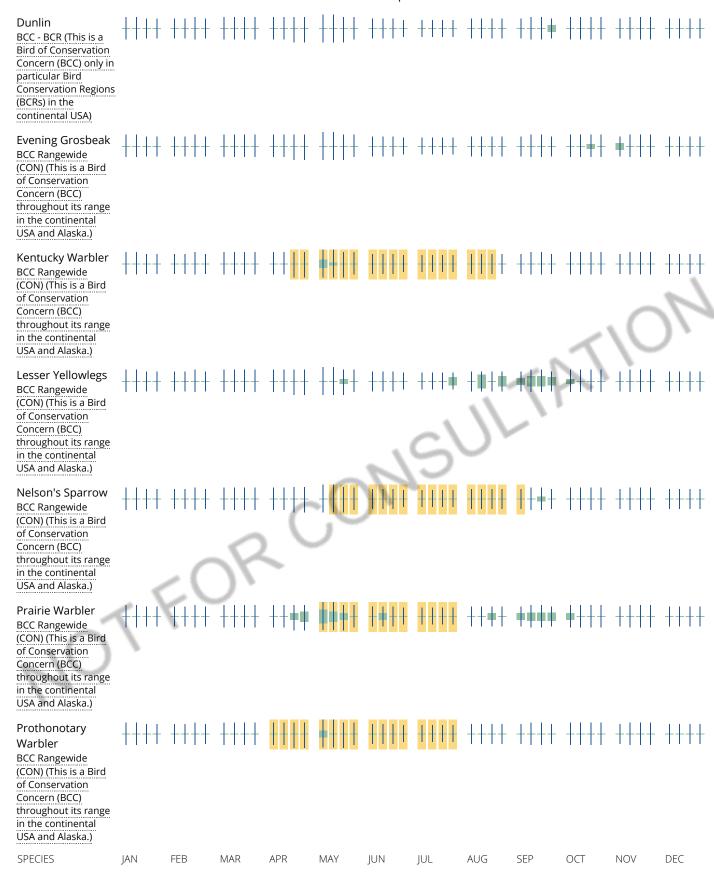
Breeding Season (=)

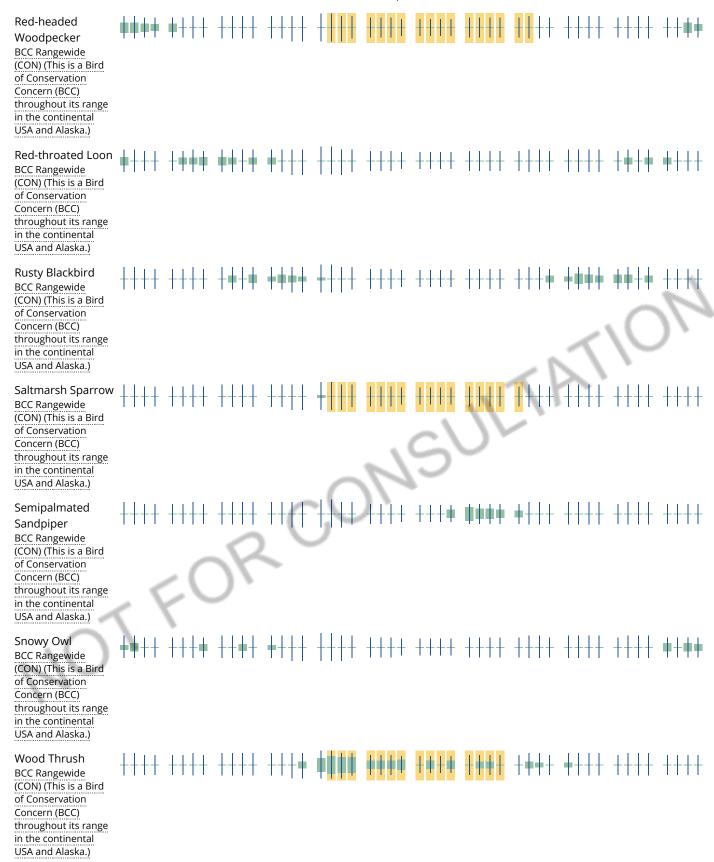
Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


No Data (-)


A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

<u>Nationwide Conservation Measures</u> describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to

occur and be breeding in your project area, view the Probability of Presence Summary. <u>Additional measures</u> and/or <u>permits</u> may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the <u>AKN Phenology Tool</u>.

What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey</u>, <u>banding</u>, <u>and citizen science datasets</u>.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the <u>Northeast Ocean Data Portal</u>. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the <u>NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.</u>

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

Facilities

National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

RIVERINE

R2UBHx

A full description for each wetland code can be found at the National Wetlands Inventory website

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

JT FOR CONSULTATIO

Summary of the MESA list

Taxonomic Group	Endangered	Threatened	Special Concern	TOTALS
Mammals	11	0	3	14
(including 6 whales)	(7 FE, 1 FT)			
Birds	9	8	10	27
(breeding)	(1 FE)	(1 FT)		
Reptiles	8	5	2	15
(including 5 sea turtles)	(4 FE, 1 FT)	(2 FT)		
Amphibians	0	2	2	4
Fish	4	2	4	10
	(1 FE, 1 FT)			
Invertebrates	30	24	45	99
(non-marine only)	(2 FE, 2 FT)			
Plants	153	64	41	258
(vascular)	(2 FE, 1 FT)			
TOTALS	215	105	107	427
	(17 FE, 6 FT)	(3 FT)	0	(26 FE or FT)

FE = species listed under the U.S. Endangered Species Act as Federally Endangered as of February 27, 2012.

FT = species listed under the U.S. Endangered Species Act as Federally Threatened as of April 2, 2015.

List of Vertebrates

Fish

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
American Brook Lamprey	Lampetra appendix	Т		
Shortnose Sturgeon	Acipenser brevirostrum	E	Е	
			E (CT River), T	
Atlantic Sturgeon	Acipenser oxyrinchus	E	(Merrimack River)	
Lake Chub	Couesius plumbeus	E		
Eastern Silvery Minnow	Hybognathus regius	SC		
Bridle Shiner	Notropis bifrenatus	SC		
Northern Redbelly Dace	Phoxinus eos	E		
Longnose Sucker	Catostomus catostomus	SC		
Burbot	Lota lota	SC		
				Trimorphic freshwater
Threespine Stickleback	Gasterosteus aculeatus	T		population only.

Amphibians

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Jefferson Salamander	Ambystoma jeffersonianum	SC		Including triploid and other polyploid forms within the Ambystoma jeffersonianum / Ambystoma laterale complex.
Blue-spotted Salamander	Ambystoma laterale	SC		Including triploid and other polyploid forms within the Ambystoma jeffersonianum / Ambystoma laterale complex.
Marbled Salamander	Ambystoma opacum	Т		
Eastern Spadefoot	Scaphiopus holbrookii	Т		

Reptiles

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Loggerhead Seaturtle	Caretta caretta	Т	Т	
Green Seaturtle	Chelonia mydas	Т	Т	
Hawksbill Seaturtle	Eretmochelys imbricata	E	E	
Kemp's Ridley Seaturtle	Lepidochelys kempii	E	E	
Leatherback Seaturtle	Dermochelys coriacea	E	E	

Wood Turtle	Glyptemys insculpta	SC		
Bog Turtle	Glyptemys muhlenbergii	E	Т	
Blanding's Turtle	Emydoidea blandingii	Т		
Diamond-backed Terrapin	Malaclemys terrapin	Т		
Northern Red-bellied Cooter	Pseudemys rubriventris	E	E	This species is listed by the U. S. Fish and Wildlife Service as P. r. bangsi (Plymouth Redbelly Turtle) in 50 CFR 17.11.
Eastern Box Turtle	Terrapene carolina	SC		
Eastern Wormsnake	Carphophis amoenus	Т		
Eastern Ratsnake	Pantherophis alleghaniensis	E		
Copperhead	Agkistrodon contortrix	E		
Timber Rattlesnake	Crotalus horridus	Е		

Birds

Common Name	Scientific Name	MA Status	Fed Status	Notes
Common Loon	Gavia immer	SC		
Pied-billed Grebe	Podilymbus podiceps	E		
Leach's Storm-petrel	Oceanodroma leucorhoa	E		
American Bittern	Botaurus lentiginosus	E		
Least Bittern	Ixobrychus exilis	E		
Bald Eagle	Haliaeetus leucocephalus	Т		
Northern Harrier	Circus cyaneus	Т		
Peregrine Falcon	Falco peregrinus	Т		
King Rail	Rallus elegans	Т		
Common Moorhen	Gallinula chloropus	SC		
Piping Plover	Charadrius melodus	Т	Т	
Upland Sandpiper	Bartramia longicauda	E		
Roseate Tern	Sterna dougallii	E	E	
Common Tern	Sterna hirundo	SC		
Arctic Tern	Sterna paradisaea	SC		
Least Tern	Sternula antillarum	SC		
Barn Owl	Tyto alba	SC		
Long-eared Owl	Asio otus	SC		
Short-eared Owl	Asio flammeus	E		
Sedge Wren	Cistothorus platensis	E		
Golden-winged Warbler	Vermivora chrysoptera	E		
Northern Parula	Parula americana	Т		
Blackpoll Warbler	Dendroica striata	SC		
Mourning Warbler	Oporornis philadelphia	SC		
Vesper Sparrow	Pooecetes gramineus	Т		

Grasshopper Sparrow	Ammodramus savannarum	Т	
Whip-poor-will	Caprimulgus vociferus	SC	

Mammals

Common Name	Scientific Name	MA Status	Fed Status	Notes
Water Shrew	Sorex palustris	SC		
Rock Shrew	Sorex dispar	SC		
Indiana Myotis	Myotis sodalis	E	E	
Small-footed Myotis	Myotis leibii	E		
Little Brown Myotis	Myotis lucifugus	Е		
Tricolored Bat	Perimyotis subflavus	E		
Northern Long-eared Bat	Myotis septentrionalis	Е	Т	
Southern Bog Lemming	Synaptomys cooperi	SC		
Sperm Whale	Physeter macrocephalus	E	E	
Fin Whale	Balaenoptera physalus	E	E	
Sei Whale	Balaenoptera borealis	E	E	
Blue Whale	Balaenoptera musculus	E	E	
Humpback Whale	Megaptera novaeangliae	E	E	
Northern Right Whale	Eubalaena glacialis	E	E	

List of Invertebrates

Sponges

Common Name	Scientific Name	MA Status	Fed Status	Notes
Smooth Branched Sponge	Spongilla aspinosa	SC		

Flatworms

Common Name	Scientific Name	MA Status	Fed Status	Notes
New England Medicinal Leech	Macrobdella sestertia	SC		

Snails

Common Name	Scientific Name	MA Status	Fed Status	Notes
New England Siltsnail	Floridobia winkleyi	SC		
Coastal Marsh Snail	Littoridinops tenuipes	SC		
Slender Walker	Pomatiopsis lapidaria	Е		
Boreal Marstonia	Marstonia lustrica	Е		
Boreal Turret Snail	Valvata sincera	E		

Mussels

Common Name	Scientific Name	MA Status	Fed Status	Notes
Dwarf Wedgemussel	Alasmidonta heterodon	E	E	
Brook Floater (Swollen Wedgemussel)	Alasmidonta varicosa	E		
Yellow Lampmussel	Lampsilis cariosa	E		
Tidewater Mucket	Leptodea ochracea	SC		
Eastern Pondmussel	Ligumia nasuta	SC		
Creeper	Strophitus undulatus	SC		

Crustaceans

Common Name	Scientific Name	MA Status	Fed Status	Notes
Intricate Fairy Shrimp	Eubranchipus intricatus	SC		
Agassiz's Clam Shrimp	Eulimnadia agassizii	E		
Northern Spring Amphipod	Gammarus pseudolimnaeus	SC		
American Clam Shrimp	Limnadia lenticularis	SC		
Taconic Cave Amphipod	Stygobromus borealis	Е		
Piedmont Groundwater				
Amphipod	Stygobromus tenuis tenuis	SC		
Coastal Swamp Amphipod	Synurella chamberlaini	SC		

Dragonflies

Common Name	Scientific Name	MA Status	Fed Status	Notes
Subarctic Darner	Aeshna subarctica	Е		
Ocellated Darner	Boyeria grafiana	SC		
Spine-crowned Clubtail	Gomphus abbreviatus	SC		
Harpoon Clubtail	Gomphus descriptus	E		
Midland Clubtail	Gomphus fraternus	Е		
Rapids Clubtail	Gomphus quadricolor	E		
Cobra Clubtail	Gomphus vastus	SC		
Skillet Clubtail	Gomphus ventricosus	Т		
Umber Shadowdragon	Neurocordulia obsoleta	SC		
Stygian Shadowdragon	Neurocordulia yamaskanensis	SC		
Brook Snaketail	Ophiogomphus aspersus	SC		
Riffle Snaketail	Ophiogomphus carolus	Т		
Ski-tipped Emerald	Somatochlora elongata	SC		
Forcipate Emerald	Somatochlora forcipata	Е		
Coppery Emerald	Somatochlora georgiana	E		
Incurvate Emerald	Somatochlora incurvata	Е		
Kennedy's Emerald	Somatochlora kennedyi	E		
Mocha Emerald	Somatochlora linearis	SC		
Riverine Clubtail	Stylurus amnicola	E		
Ebony Boghaunter	Williamsonia fletcheri	E		
Ringed Boghaunter	Williamsonia lintneri	Т		

Damselflies

		MA		
Common Name	Scientific Name	Status	Fed Status	Notes
Tule Bluet	Enallagma carunculatum	SC		
Attenuated Bluet	Enallagma daeckii	Т		
Scarlet Bluet	Enallagma pictum	Т		
Pine Barrens Bluet	Enallagma recurvatum	Т		

Beetles

Common Name	Scientific Name	MA Status	Fed Status	Notes
Twelve-spotted Tiger Beetle	Cicindela duodecimguttata	SC		
Hentz's Redbelly Tiger Beetle	Cicindela rufiventris hentzii	Т		
Northeastern Beach Tiger Beetle	Cicindela dorsalis dorsalis	E	Т	
Bank Tiger Beetle	Cicindela limbalis	Т		
Cobblestone Tiger Beetle	Cicindela marginipennis	E		
Barrens Tiger Beetle	Cicindela patruela	Е		

Puritan Tiger Beetle	Cicindela puritana	E	Т	
Purple Tiger Beetle	Cicindela purpurea	SC		
American Burying Beetle	Nicrophorus americanus	E	E	

Butterflies and Moths

Common Name	Scientific Name	MA Status	Fed Status	Notes
Coastal Heathland Cutworm	Abagrotis nefascia	SC		
Barrens Daggermoth	Acronicta albarufa	Т		
Drunk Apamea Moth	Apamea inebriata	SC		
New Jersey Tea Inchworm	Apodrepanulatrix liberaria	Е		
Hessel's Hairstreak	Callophrys hesseli	SC		
Frosted Elfin	Callophrys irus	SC		
Bog Elfin	Callophrys lanoraieensis	Т		
Gerhard's Underwing	Catocala herodias gerhardi	SC		
Precious Underwing Moth	Catocala pretiosa pretiosa	Е		
Waxed Sallow Moth	Chaetaglaea cerata	SC		
Melsheimer's Sack Bearer	Cicinnus melsheimeri	Т		
Chain Dot Geometer	Cingilia catenaria	SC		
Unexpected Cycnia	Cycnia inopinatus	Т		
The Pink Streak	Dargida rubripennis	Т		
Imperial Moth	Eacles imperialis	Т		
Early Hairstreak	Erora laeta	Т		
Persius Duskywing	Erynnis persius persius	Е		
Sandplain Euchlaena	Euchlaena madusaria	SC		
Dion Skipper	Euphyes dion	Т		
Phyllira Tiger Moth	Grammia phyllira	Е		
Slender Clearwing Sphinx Moth	Hemaris gracilis	SC		
Barrens Buckmoth	Hemileuca maia	SC		
Sandplain Heterocampa	Heterocampa varia	Т		
Buchholz's Gray	Hypomecis buchholzaria	E		
Pale Green Pinion Moth	Lithophane viridipallens	SC		
Twilight Moth	Lycia rachelae	E		
Pine Barrens Lycia	Lycia ypsilon	Т		
Barrens Metarranthis	Metarranthis apiciaria	E		
Coastal Swamp Metarranthis	Metarranthis pilosaria	SC		
Northern Brocade Moth	Neoligia semicana	SC		
Pitcher Plant Borer	Papaipema appassionata	Т		
				Undescribed species near
Ostrich Fern Borer	Papaipema sp. 2	SC		P. pterisii
Chain Fern Borer	Papaipema stenocelis	T		

Water-willow Stem Borer	Papaipema sulphurata	Т	
Spartina Borer	Photedes inops	SC	
Mustard White	Pieris oleracea	Т	
Pink Sallow Moth	Psectraglaea carnosa	SC	
Southern Ptichodis	Ptichodis bistrigata	Т	
Orange Sallow Moth	Pyrrhia aurantiago	SC	
Pine Barrens Speranza	Speranza exonerata	SC	
Faded Gray Geometer	Stenoporpia polygrammaria	Т	
Dune Noctuid Moth	Sympistis riparia	SC	
	_ , , , , ,		True Z. lunifera, sensu
Pine Barrens Zale	Zale lunifera	SC	Schmidt (2010)
Pine Barrens Zanclognatha	Zanclognatha martha	SC	

List of Plants

Plants

Piaiits			MA	Fed	
Taxonomic Group	Common Name	Scientific Name	Status	Status	Notes
Adiantaceae (Cliff					
Ferns)	Fragile Rock-brake	Cryptogramma stelleri	Е		
Alismataceae					
(Arrowheads)	Wapato	Sagittaria cuneata	Т		
Alismataceae		Sagittaria montevidensis ssp.			
(Arrowheads)	Estuary Arrowhead	spongiosa	E		
Alismataceae					
(Arrowheads)	Terete Arrowhead	Sagittaria teres	SC		
Apiaceae (Parsleys,					
Angelicas)	Hemlock Parsley	Conioselinum chinense	SC		
Apiaceae (Parsleys,					
Angelicas)	Saltpond Pennywort	Hydrocotyle verticillata	Т		
Apiaceae (Parsleys,					
Angelicas)	Canadian Sanicle	Sanicula canadensis	Т		
Apiaceae (Parsleys,					
Angelicas)	Long-styled Sanicle	Sanicula odorata	Т		
Aquifoliaceae	Mountain				
(Hollies)	Winterberry	Ilex montana	E		
Araceae (Arums)	Green Dragon	Arisaema dracontium	Т		
Araceae (Arums)	Golden Club	Orontium aquaticum	E		
Araliaceae	C '	December 1997	66		
(Ginsengs)	Ginseng	Panax quinquefolius	SC		
Asclepiadaceae	D. sala Addi.	And the state of t	_		
(Milkweeds)	Purple Milkweed	Asclepias purpurascens	E		
Asclepiadaceae	Linear-leaved	And a single state that	_		
(Milkweeds)	Milkweed	Asclepias verticillata	Т		
Aspleniaceae	Manustain Colorani	A	_		
(Spleenworts)	Mountain Spieenwort	Asplenium montanum	E		
Aspleniaceae	Mall mus Collegen	Applanium muta accessia	_		
(Spleenworts)	Wall-rue Spleenwort	Asplenium ruta-muraria	Т		
Asteraceae (Asters,	Lancar Construction	A manufin manager (Co.	_		
Composites)	Lesser Snakeroot	Ageratina aromatica	E		
Asteraceae (Asters,	Estable Daniel Col	Didana satanii	_		
Composites)	Eaton's Beggar-ticks	Bidens eatonii	E		
Asteraceae (Asters,	Fatura Danier Col	Didana humanka asa	_		
Composites)	Estuary Beggar-ticks	Bidens hyperborea	E		

Asteraceae (Asters,				
Composites)	Cornel-leaved Aster	Doellingeria infirma	E	
Asteraceae (Asters,				
Composites)	New England Boneset	Eupatorium novae-angliae	E	
Asteraceae (Asters,				
Composites)	Purple Cudweed	Gamochaeta purpurea	E	
Asteraceae (Asters,	New England Blazing	Liatris scariosa var. novae-		
Composites)	Star	angliae	SC	
Asteraceae (Asters,				
Composites)	Lion's Foot	Nabalus serpentarius	E	
Asteraceae (Asters,				
Composites)	Upland White Aster	Oligoneuron album	E	
Asteraceae (Asters,		Petasites frigidus var.		
Composites)	Sweet Coltsfoot	palmatus	E	
Asteraceae (Asters,				
Composites)	Sclerolepis	Sclerolepis uniflora	E	
Asteraceae (Asters,	Large-leaved			
Composites)	Goldenrod	Solidago macrophylla	SC	
Asteraceae (Asters,		Solidago simplex ssp. randii		
Composites)	Rand's Goldenrod	var. monticola	E	
Asteraceae (Asters,				
Composites)	Eastern Silvery Aster	Symphyotrichum concolor	E	
Asteraceae (Asters,		Symphyotrichum		
Composites)	Crooked-stem Aster	prenanthoides	SC	
Asteraceae (Asters,				
Composites)	Tradescant's Aster	Symphyotrichum tradescantii	Т	
Betulaceae (Birches,				
Alders)	Mountain Alder	Alnus viridis ssp. crispa	SC	
Betulaceae (Birches,				
Alders)	Swamp Birch	Betula pumila	E	
Boraginaceae	Northern Wild	Cynoglossum virginianum		
(Borages)	Comfrey	var. boreale	E	
Boraginaceae				
(Borages)	Oysterleaf	Mertensia maritima	E	
Brassicaceae	Lyre-leaved Rock-			
(Mustards)	cress	Arabidopsis lyrata	E	
Brassicaceae	Cmooth Dody areas	Doochora la quie et e	20	
(Mustards) Brassicaceae	Smooth Rock-cress	Boechera laevigata	SC	
(Mustards)	Green Rock-cress	Boechera missouriensis	т	
Brassicaceae	GICCH NOCK CIESS	Documera missouriensis	•	
(Mustards)	Fen Cuckoo Flower	Cardamine dentata	Т	
Brassicaceae	Purple Cress	Cardamine douglassii	Е	
<u>l</u>	· ·	<u>, </u>	l l	1

(Mustards)				
Brassicaceae				
(Mustards)	Long's Bitter-cress	Cardamine longii	E	
Cactaceae (Cacti)	Prickly Pear	Opuntia humifusa	E	
Campanulaceae (Bluebells, Lobelias)	Great Blue Lobelia	Lobelia siphilitica	E	
Caprifoliaceae (Honeysuckles)	Hairy Honeysuckle	Lonicera hirsuta	E	
Caprifoliaceae (Honeysuckles)	American Twinflower	Linnaea borealis ssp. americana	SC	
Caprifoliaceae (Honeysuckles)	Snowberry	Symphoricarpos albus var. albus	E	
Caprifoliaceae (Honeysuckles)	Broad Tinker's-weed	Triosteum perfoliatum	E	
Caprifoliaceae (Honeysuckles)	Downy Arrow-wood	Viburnum rafinesquianum	E	
Caryophyllaceae (Pinks, Sandworts)	Nodding Chickweed	Cerastium nutans	E	
Caryophyllaceae (Pinks, Sandworts)	Michaux's Sandwort	Minuartia michauxii	Т	
Caryophyllaceae (Pinks, Sandworts)	Large-leaved Sandwort	Moehringia macrophylla	E	
Caryophyllaceae (Pinks, Sandworts)	Silverling	Paronychia argyrocoma	E	
Celastraceae (Staff Tree Family)	American Bittersweet	Celastrus scandens	Т	
Chenopodiaceae (Saltworts)	Fogg's Goosefoot	Chenopodium foggii	E	
Chenopodiaceae (Saltworts)	American Sea-blite	Suaeda calceoliformis	SC	
Cistaceae (Rockroses, Pinweeds)	Beaded Pinweed	Lechea pulchella var. moniliformis	E	
Clusiaceae (St. John's-worts)	Creeping St. John's- wort	Hypericum adpressum	Т	
Clusiaceae (St. John's-worts)	Giant St. John's-wort	Hypericum ascyron	E	
Clusiaceae (St. John's-worts)	St. Andrew's Cross	Hypericum stragulum	E	
Convolvulaceae (Morning Glories)	Low Bindweed	Calystegia spithamaea	E	
Crassulaceae (Sedums)	Pygmyweed	Crassula aquatica	Т	

Cuprossasaa			1 1	1
Cupressaceae	Arboniitaa	Thuis oscidentalis		
(Cedars, Junipers)	Arborvitae	Thuja occidentalis	E	
Cyperaceae (Sedges)	Foxtail Sedge	Carex alopecoidea	Т	
	roxtall Seuge	Carex aiopecolaea		
Cyperaceae (Sodges)	Pack's Sadge	Carex backii	_	
(Sedges)	Back's Sedge	Curex buckii	E	
Cyperaceae (Sodges)	Pailoy's Sadga	Caray hailayi	Т	
(Sedges) Cyperaceae	Bailey's Sedge	Carex baileyi		
(Sedges)	Bush's Sedge	Carex bushii	E	
Cyperaceae	Chestnut-colored	Curex busilii	L .	
(Sedges)	Sedge	Carex castanea	E	
Cyperaceae	Jeuge	Carex castanea	<u> </u>	
(Sedges)	Creeping Sedge	Carex chordorrhiza	E	
Cyperaceae	Creeping seage	Carex enoraditing		
(Sedges)	Davis' Sedge	Carex davisii	E	
Cyperaceae	Davis Seage	Carex advisii		
(Sedges)	Handsome Sedge	Carex formosa	Т	
Cyperaceae	Transcome Coage	- Carex Jermosa		
(Sedges)	Glaucescent Sedge	Carex glaucodea	E	
Cyperaceae	Slender Woodland			
(Sedges)	Sedge	Carex gracilescens	E	
Cyperaceae		<u> </u>		
(Sedges)	Gray's Sedge	Carex grayi	Т	
Cyperaceae	, ,	, ,		
(Sedges)	Hitchcock's Sedge	Carex hitchcockiana	SC	
Cyperaceae				
(Sedges)	Shore Sedge	Carex lenticularis	Т	
Cyperaceae				
(Sedges)	Glaucous Sedge	Carex livida	E	
Cyperaceae				
(Sedges)	False Hop-sedge	Carex lupuliformis	E	
Cyperaceae				
(Sedges)	Midland Sedge	Carex mesochorea	E	
Cyperaceae				
(Sedges)	Michaux's Sedge	Carex michauxiana	E	
Cyperaceae				
(Sedges)	Mitchell's Sedge	Carex mitchelliana	T	
Cyperaceae				
(Sedges)	Rich Woods Sedge	Carex oligocarpa	Т	
Cyperaceae				
(Sedges)	Few-seeded Sedge	Carex oligosperma	E	
Cyperaceae				
(Sedges)	Few-flowered Sedge	Carex pauciflora	E	
Cyperaceae			_	
(Sedges)	Variable Sedge	Carex polymorpha	E	
Cyperaceae	Schweinitz's Sedge	Carex schweinitzii	E	

(Sedges)					
Cyperaceae					
(Sedges)	Dioecious Sedge	Carex sterilis	Т		
Cyperaceae					
(Sedges)	Walter's Sedge	Carex striata	E		
Cyperaceae	Ū				
(Sedges)	Fen Sedge	Carex tetanica	SC		
Cyperaceae					
(Sedges)	Hairy-fruited Sedge	Carex trichocarpa	SC		
Cyperaceae	, , , , , , , , , , , , , , , , , , , ,				
(Sedges)	Tuckerman's Sedge	Carex tuckermanii	E		
Cyperaceae	- racine man e ceage				
(Sedges)	Cat-tail Sedge	Carex typhina	Т		
		Carex cyprima	•		
Cyperaceae	Engelmann's	6	_		
(Sedges)	Umbrella-sedge	Cyperus engelmannii	Т		
Cyperaceae			_		
(Sedges)	Houghton's Flatsedge	Cyperus houghtonii	E		
Cyperaceae					
(Sedges)	Wright's Spike-rush	Eleocharis diandra	E		
Cyperaceae	Intermediate Spike-				
(Sedges)	sedge	Eleocharis intermedia	T		
Cyperaceae	Tiny-fruited Spike-	Eleocharis microcarpa var.			
(Sedges)	rush or Spike-sedge	filiculmis	E		
Cyperaceae	Ovate Spike-rush or				
(Sedges)	Spike-sedge	Eleocharis ovata	E		
Cyperaceae	Few-flowered Spike-				
(Sedges)	sedge	Eleocharis quinqueflora	E		
Cyperaceae	Three-angled Spike-				
(Sedges)	sedge	Eleocharis tricostata	E		
Cyperaceae	36486				
(Sedges)	Slender Cotton-grass	Eriophorum gracile	T		
Cyperaceae	Sichael Cotton grass	2.110phorain graene	'		
(Sedges)	Dwarf Bulrush	Lipocarpha micrantha	Т		
Cyperaceae	Dwarr Bairasir	Lipocurpiia imeranciia	<u>'</u>		
(Sedges)	Capillary Beak-sedge	Rhynchospora capillacea	E		
Cyperaceae	Inundated Horned-	Maynenospora capillacea	<u> </u>		
''		Physichospara inundata	_		
(Sedges)	sedge Short-beaked Bald-	Rhynchospora inundata	Т		
Cyperaceae		Physichochora nitana	_		
(Sedges)	sedge	Rhynchospora nitens	Т		
Cyperaceae	Long-beaked Bald-	Dhunghaga are saire side	50		
(Sedges)	sedge	Rhynchospora scirpoides	SC		
Cyperaceae	To see to Do do	St. automorphis	_		
(Sedges)	Torrey's Beak-sedge	Rhynchospora torreyana	E		
Cyperaceae			_	_	
(Sedges)	Northeastern Bulrush	Scirpus ancistrochaetus	E	E	
Cyperaceae	Long's Bulrush	Scirpus longii	T		

(Sedges)				
Cyperaceae (Sedges)	Papillose Nut-sedge	Scleria pauciflora	E	Includes s.p. var. pauciflora and s.p. var. caroliniana
Cyperaceae (Sedges)	Tall Nut-sedge	Scleria triglomerata	E	
Dryopteridaceae (Wood Ferns)	Braun's Holly-fern	Polystichum braunii	E	
Dryopteridaceae (Wood Ferns)	Smooth Woodsia	Woodsia glabella	E	
Elatinaceae (Waterworts)	American Waterwort	Elatine americana	E	
Equisetaceae (Horsetails)	Dwarf Scouring-rush	Equisetum scirpoides	SC	
Ericaceae (Laurels, Blueberries)	Pink Pyrola	Pyrola asarifolia ssp. asarifolia	E	
Ericaceae (Laurels, Blueberries)	One-flowered Pyrola	Moneses uniflora	SC	
Ericaceae (Laurels, Blueberries)	Great Laurel	Rhododendron maximum	Т	
Ericaceae (Laurels, Blueberries)	Mountain Cranberry	Vaccinium vitis-idaea ssp. minus	E	
Eriocaulaceae (Pipeworts)	Parker's Pipewort	Eriocaulon parkeri	E	
Fabaceae (Beans, Peas, Clovers)	Large-bracted Tick- trefoil	Desmodium cuspidatum	Т	
Fabaceae (Beans, Peas, Clovers)	Wild Senna	Senna hebecarpa	E	
Fagaceae (Oaks, Beeches)	Bur Oak	Quercus macrocarpa	SC	
Fagaceae (Oaks, Beeches)	Yellow Oak	Quercus muehlenbergii	Т	
Fumariaceae (Fumitories)	Climbing Fumitory	Adlumia fungosa	SC	
Gentianaceae (Gentians)	Andrews' Bottle Gentian	Gentiana andrewsii	E	
Gentianaceae (Gentians)	Spurred Gentian	Halenia deflexa	E	_
Gentianaceae (Gentians)	Slender Marsh Pink	Sabatia campanulata	E	
Gentianaceae (Gentianaceae	Plymouth Gentian	Sabatia kennedyana	SC	
Gentianaceae (Gentians)	Sea Pink	Sabatia stellaris	E	

Grossulariaceae (Currants)	Bristly Black Currant	Ribes lacustre	sc	
,	Bristly Black Currant	Nibes ideastre	30	
Haemodoraceae (Redroots)	Redroot	Lachnanthes caroliana	sc	
Haloragaceae (Water-milfoils)	Alternate-flowered Water-milfoil	Myriophyllum alterniflorum	E	
Haloragaceae (Water-milfoils)	Farwell's Water- milfoil	Myriophyllum farwellii	E	
Haloragaceae (Water-milfoils)	Pinnate Water-milfoil	Myriophyllum pinnatum	SC	
Haloragaceae (Water-milfoils)	Comb Water-milfoil	Myriophyllum verticillatum	E	
Hydrophyllaceae (Waterleaves)	Broad Waterleaf	Hydrophyllum canadense	E	
Hymenophyllaceae (Filmy-ferns)	Appalachian Bristle- fern	Trichomanes intricatum	E	
Iridaceae (Irises)	Sandplain Blue-eyed Grass	Sisyrinchium fuscatum	SC	
Iridaceae (Irises)	Slender Blue-eyed Grass	Sisyrinchium mucronatum	E	
Isoetaceae (Quillworts)	Acadian Quillwort	Isoetes acadiensis	E	
Isoetaceae (Quillworts)	Lake Quillwort	Isoetes lacustris	E	
Juncaceae (Rushes)	Weak Rush	Juncus debilis	E	
Juncaceae (Rushes)	Thread Rush	Juncus filiformis	Е	
Juncaceae (Rushes)	Black-fruited Woodrush	Luzula parviflora ssp. melanocarpa	E	
Lamiaceae (Mints)	Purple Giant-hyssop	Agastache scrophulariifolia	E	
Lamiaceae (Mints)	Downy Wood-mint	Blephilia ciliata	E	
Lamiaceae (Mints)	Hairy Wood-mint	Blephilia hirsuta	E	
Lamiaceae (Mints)	Gypsywort	Lycopus rubellus	E	
Lamiaceae (Mints)	False Pennyroyal	Trichostema brachiatum	E	
Lentibulariaceae (Bladderworts)	Resupinate Bladderwort	Utricularia resupinata	Т	
Lentibulariaceae (Bladderworts)	Subulate Bladderwort	Utricularia subulata	SC	
Liliaceae (Lilies)	Devil's-bit	Chamaelirium luteum	E	
Linaceae (Flaxes)	Rigid Flax	Linum medium var. texanum	Т	
Lycopodiaceae (Clubmosses)	Foxtail Clubmoss	Lycopodiella alopecuroides	E	

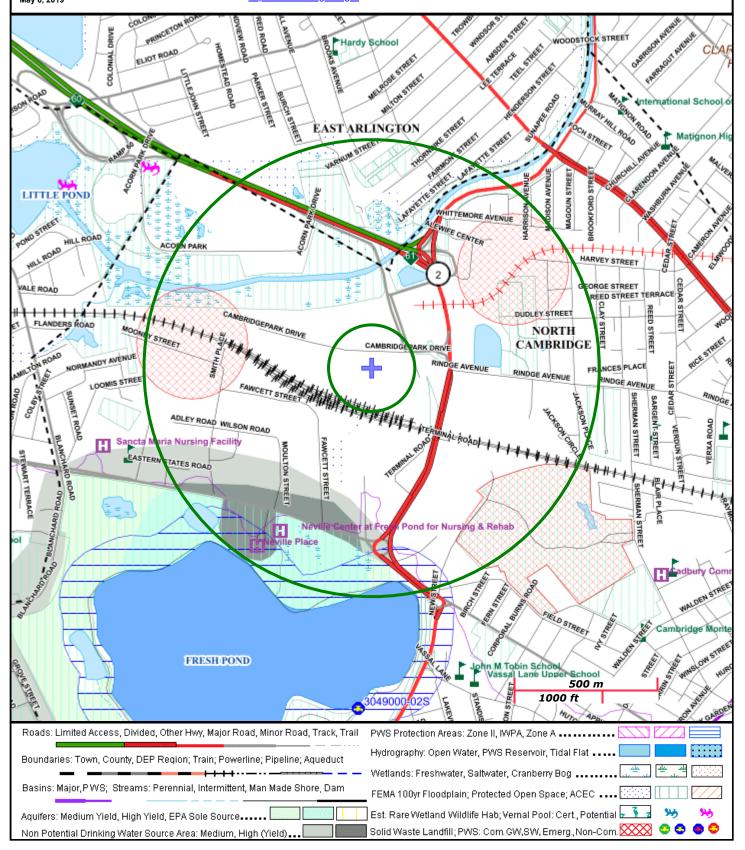
Lycopodiaceae (Clubmosses)	Appalachian Firmoss	Huperzia appressa	E		
Lycopodiaceae					
(Clubmosses)	Mountain Firmoss	Huperzia selago	E		
Lythraceae					
(Loosestrifes)	Toothcup	Rotala ramosior	E		
Magnoliaceae					
(Magnolias)	Sweetbay Magnolia	Magnolia virginiana	E		
Melastomataceae	Maryland Meadow				
(Meadow Beauties)	Beauty	Rhexia mariana	E		
Moraceae					
(Mulberries)	Red Mulberry	Morus rubra	E		
Nymphaeaceae					
(Water Lilies)	Tiny Cow-lily	Nuphar microphylla	E		
Onagraceae	Many-fruited False-				
(Evening Primroses)	loosestrife	Ludwigia polycarpa	E	1	
Onagraceae	Round-fruited False-				
(Evening Primroses)	loosestrife	Ludwigia sphaerocarpa	E		
Ophioglossaceae					
(Grape Ferns)	Adder's-tongue Fern	Ophioglossum pusillum	T		
Orchidaceae					
(Orchids)	Putty-root	Aplectrum hyemale	E		
Orchidaceae (Orchids)	Arethusa	Arethusa bulbosa	Т		
Orchidaceae	Aletiiusa	Arethusu bulbosu	'		
(Orchids)	Autumn Coralroot	Corallorhiza odontorhiza	sc		
Orchidaceae	Ram's-head Lady's-				
(Orchids)	slipper	Cypripedium arietinum	E		
Orchidaceae					
(Orchids)	Yellow Lady's-slipper	Cypripedium parviflorum	E		
Orchidaceae			_		
(Orchids)	Showy Lady's-slipper	Cypripedium reginae	E		
Orchidaceae	Dwarf Rattlesnake-				
(Orchids)	plantain	Goodyera repens	E	-	
Orchidaceae (Orchids)	Small Whorled	Isotria medeoloides	E	_	
Orchidaceae	Pogonia	isotria medeoloides		T	
(Orchids)	Lily-leaf Twayblade	Liparis liliifolia	_T		
Orchidaceae			<u> </u>		
(Orchids)	Heartleaf Twayblade	Listera cordata	E		
Orchidaceae	Bayard's Green				
(Orchids)	Adder's-mouth	Malaxis bayardii	E		
Orchidaceae		Malaxis monophyllos var.			
(Orchids)	White Adder's-mouth	brachypoda	E		

Orchidaceae		I		
(Orchids)	Green Adder's Mouth	Malaxis unifolia	т	
Orchidaceae	Green / tader 5 model	manasis amjona		
(Orchids)	Southern Twayblade	Neottia bifolia	т	
Orchidaceae	Crested Fringed			
(Orchids)	Orchid	Platanthera cristata	E	
Orchidaceae				
(Orchids)	Leafy White Orchis	Platanthera dilatata	Т	
Orchidaceae		Platanthera flava var.		
(Orchids)	Pale Green Orchis	herbiola	т	
Orchidaceae	Hooded Ladies'-			
(Orchids)	tresses	Spiranthes romanzoffiana	E	
Orchidaceae	Grass-leaved Ladies'-	,		
(Orchids)	tresses	Spiranthes vernalis	т	
Orchidaceae	11 2323	Spirantines vernans	·	
(Orchids)	Cranefly Orchid	Tipularia discolor	E	
Orchidaceae	Graneny Grania		_	
(Orchids)	Nodding Pogonia	Triphora trianthophora	E	
Oxalidaceae (Wood-	<u> </u>	p		
sorrels)	Violet Wood-sorrel	Oxalis violacea	E	
30110137	VIOICE WOOD SOITE	Oxans violacca	_	
Descess (Crasses)	Annual Doonutarass	Amphicaroum amphicaroon	_	
Poaceae (Grasses)	Annual Peanutgrass	Amphicarpum amphicarpon	E	
Poaceae (Grasses)	Purple Needlegrass	Aristida purpurascens	T	
Poaceae (Grasses)	Seabeach Needlegrass	Aristida tuberculosa	T	
Poaceae (Grasses)	Reed Bentgrass	Calamagrostis pickeringii	E	
	New England	Calamagrostis stricta ssp.		
Poaceae (Grasses)	Northern Reedgrass	inexpansa	E	
		Deschampsia cespitosa ssp.		
Poaceae (Grasses)	Tufted Hairgrass	glauca	E	
	Mattamuskeet Panic-	Dichanthelium dichotomum		
Poaceae (Grasses)	grass	ssp. mattamuskeetense	E	
(Commons's Panic-	Dichanthelium ovale ssp.		
Poaceae (Grasses)	grass	pseudopubescens	sc	
Toaceae (Grasses)	g1 033	pseudopubescens	30	
December (Crosses)	Davidh David avecs	Dish sinth alivers asshrive and vers	т	
Poaceae (Grasses)	Rough Panic-grass	Dichanthelium scabriusculum	1	
Poaceae (Grasses)	Wright's Panic-grass	Dichanthelium wrightianum	SC	
Poaceae (Grasses)	Hairy Wild Rye	Elymus villosus	E	
Poaceae (Grasses)	Frank's Lovegrass	Eragrostis frankii	SC	
		Leptochloa fusca ssp.		
Poaceae (Grasses)	Saltpond Grass	fascicularis	Т	
Poaceae (Grasses)	Sea Lyme-grass	Leymus mollis	E	

Poaceae (Grasses)	Woodland Millet	Milium effusum	Т	
	Gattinger's Panic-	Panicum philadelphicum ssp.		
Poaceae (Grasses)	grass	gattingeri	SC	
	Philadelphia Panic-	Panicum philadelphicum ssp.		
Poaceae (Grasses)	grass	philadelphicum	SC	
	Long-leaved Panic-	Panicum rigidulum ssp.		
Poaceae (Grasses)	grass	pubescens	Т	
Poaceae (Grasses)	Drooping Speargrass	Poa saltuensis ssp. languida	E	
Poaceae (Grasses)	Bristly Foxtail	Setaria parviflora	SC	
Poaceae (Grasses)	Salt Reedgrass	Spartina cynosuroides	Т	
Poaceae (Grasses)	Shining Wedgescale	Sphenopholis nitida	Т	
Poaceae (Grasses)	Swamp Oats	Sphenopholis pensylvanica	Т	
Poaceae (Grasses)	Small Dropseed	Sporobolus neglectus	E	
Poaceae (Grasses)	Northern Gama-grass	Tripsacum dactyloides	E	
Poaceae (Grasses)	Spiked False-oats	Trisetum spicatum	E	
Polygonaceae				
(Docks, Knotweeds)	Pondshore Knotweed	Persicaria puritanorum	SC	
Polygonaceae				
(Docks, Knotweeds)	Strigose Knotweed	Persicaria setacea	Т	
Polygonaceae				
(Docks, Knotweeds)	Sea-beach Knotweed	Polygonum glaucum	SC	
Polygonaceae				
(Docks, Knotweeds)	Seabeach Dock	Rumex pallidus	Т	
Polygonaceae				
(Docks, Knotweeds)	Swamp Dock	Rumex verticillatus	Т	
Portulacaceae	Narrow-leaved Spring			
(Spring Beauties)	Beauty	Claytonia virginica	E	
Potamogetonaceae				
(Pondweeds)	Algae-like Pondweed	Potamogeton confervoides	Т	
Potamogetonaceae				
(Pondweeds)	Fries' Pondweed	Potamogeton friesii	Е	
Potamogetonaceae				
(Pondweeds)	Hill's Pondweed	Potamogeton hillii	SC	
Potamogetonaceae				
(Pondweeds)	Ogden's Pondweed	Potamogeton ogdenii	Е	
Potamogetonaceae	Straight-leaved			
(Pondweeds)	Pondweed	Potamogeton strictifolius	Е	
Potamogetonaceae				
(Pondweeds)	Vasey's Pondweed	Potamogeton vaseyi	Е	
Ranunculaceae				
(Buttercups)	Black Cohosh	Actaea racemosa	E	

Ranunculaceae					
(Buttercups)	Purple Clematis	Clematis occidentalis	SC		
Ranunculaceae			_		
(Buttercups)	Golden Seal	Hydrastis canadensis	E		
Ranunculaceae (Buttercups)	Tiny-flowered Buttercup	Ranunculus micranthus	E		
Ranunculaceae	Вищегсир	Kununculus IIIIcruntilus	<u> </u>		
(Buttercups)	Bristly Buttercup	Ranunculus pensylvanicus	sc		
Rosaceae (Roses,	Small-flowered	namenas pensylvameas	50		
Shadbushes)	Agrimony	Agrimonia parviflora	Е		
Rosaceae (Roses,					
Shadbushes)	Hairy Agrimony	Agrimonia pubescens	Т		
Rosaceae (Roses,					
Shadbushes)	Bartram's Shadbush	Amelanchier bartramiana	Т		
Rosaceae (Roses,					
Shadbushes)	Roundleaf Shadbush	Amelanchier sanguinea	SC		
Rosaceae (Roses,			_		
Shadbushes)	Bicknell's Hawthorn	Crataegus bicknellii	E		
Rosaceae (Roses,	Darron Ctrowborn	Cours fragarioides	SC		
Shadbushes)	Barren Strawberry	Geum fragarioides	3C		
Rosaceae (Roses, Shadbushes)	Sandbar Cherry	Prunus pumila var. depressa	Т		
Rosaceae (Roses,	Sanasar Cherry	Tranas panna var. acpressa	'		
Shadbushes)	Northern Prickly Rose	Rosa acicularis ssp. sayi	E		
Rosaceae (Roses,	Northern Mountain-	, ,			
Shadbushes)	ash	Sorbus decora	Е		
Rubiaceae					
(Bedstraws, Bluets)	Northern Bedstraw	Galium boreale	E		
Rubiaceae					
(Bedstraws, Bluets)	Labrador Bedstraw	Galium labradoricum	Т		
Rubiaceae					
(Bedstraws, Bluets)	Long-leaved Bluet	Houstonia longifolia	E		
Salicaceae (Willows) Salicaceae (Willows)	Swamp Cottonwood Sandbar Willow	Populus heterophylla	E		
, ,	Sandbar Willow	Salix exigua ssp. interior	T		
Scheuchzeriaceae (Pod-grasses)	Pod-grass	Scheuchzeria palustris	E		
Schizaeaceae	1 00 51033	Jenedenzena palasans	_		
(Climbing Ferns)	Climbing Fern	Lygodium palmatum	SC		
Scrophulariaceae	Ŭ	, , ,			
(Figworts)	Sandplain Gerardia	Agalinis acuta	Е	E	
Scrophulariaceae	Winged Monkey-				
(Figworts)	flower	Mimulus alatus	E		

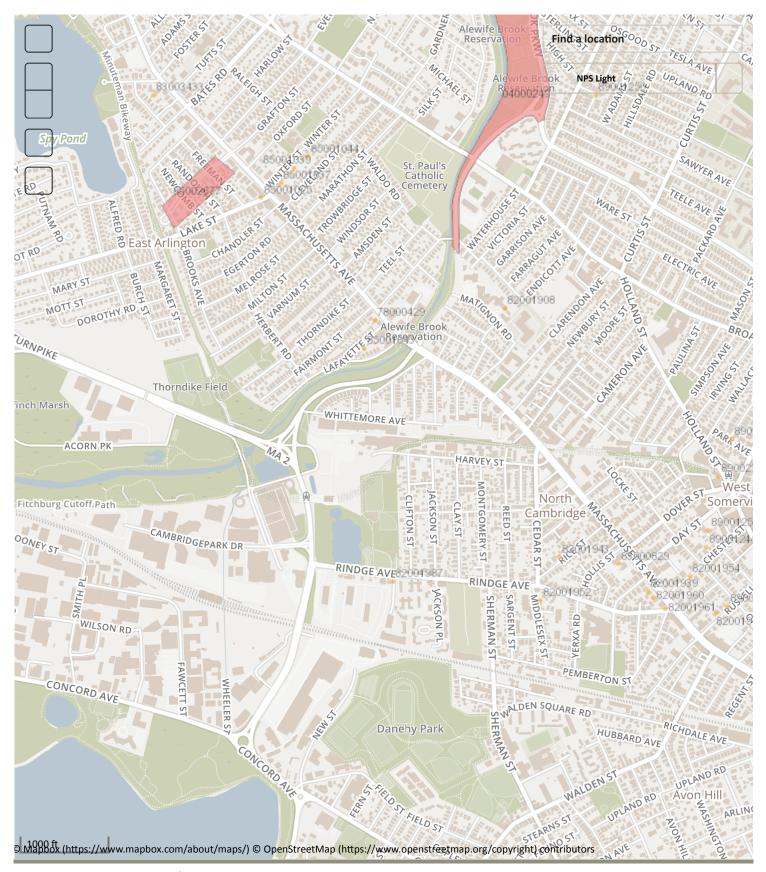
Muskflower	Mimulus moschatus	Т	
Swamp Lousewort	Pedicularis lanceolata	E	
Hairy Beardtongue	Penstemon hirsutus	E	
Sessile Water- speedwell	Veronica catenata	E	
Culver's-root	Veronicastrum virginicum	Т	
Small Bur-reed	Sparganium natans	E	
Narrow-leaved Vervain	Verbena simplex	E	
Sand Violet	Viola adunca	SC	
Britton's Violet	Viola brittoniana	T	
Dwarf Mistletne	Arceuthohium nusillum	sc	
	Swamp Lousewort Hairy Beardtongue Sessile Water- speedwell Culver's-root Small Bur-reed Narrow-leaved Vervain Sand Violet	Swamp Lousewort Pedicularis lanceolata Hairy Beardtongue Penstemon hirsutus Sessile Water- speedwell Veronica catenata Culver's-root Veronicastrum virginicum Small Bur-reed Sparganium natans Narrow-leaved Vervain Verbena simplex Sand Violet Viola adunca Britton's Violet Viola brittoniana	Swamp Lousewort Pedicularis lanceolata E Hairy Beardtongue Penstemon hirsutus E Sessile Water- speedwell Veronica catenata E Culver's-root Veronicastrum virginicum T Small Bur-reed Sparganium natans E Narrow-leaved Vervain Verbena simplex E Sand Violet Viola adunca SC Britton's Violet Viola brittoniana T


MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information:

32 CAMBRIDGEPARK DRIVE CAMBRIDGE, MA

NAD83 UTM Meters: 4695763mN , 323545mE (Zone: 19) May 6, 2019 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: http://www.mass.gov/mgis/.


APPENDIX E

National Historic Preservation Act Review

National Register of Histori...

National Park Service U.S. Department of the Interior

Public, non-restricted data depicting National Register spatial data proce...

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm)

Website Policies (https://www.nps.gov/aboutus/website-policies.htm) Contact Us (https://www.nps.gov/contacts.htm)

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Street Name: Cambridgepark Dr; Resource Type(s): Area, Building, Object, Burial Ground, Structure;

Inv. No. Property Name Street Town Year

Monday, May 6, 2019 Page 1 of 1

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Cambridge; Place: North Cambridge; Resource Type(s): Building, Area, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
CAM.101	Kingsley, Chester House	10 Chester St	Cambridge	1866
CAM.910	Fitchburg Railroad Signal Bridge	Fitchburg Railroad	Cambridge	c 1930
CAM.1383	Chadwick, Samuel E. House	10 Hollis St	Cambridge	1853
CAM.245	Henderson Carriage Repository	2067-2089 Massachusetts Ave	Cambridge	1892
CAM.247	Mead, Alpheus House	2200 Massachusetts Ave	Cambridge	1867
CAM.248	Snow, Daniel House	2210 Massachusetts Ave	Cambridge	1868
CAM.249	McLean, Isaac House	2218 Massachusetts Ave	Cambridge	1894
CAM.250	Farwell, R. H. Double House	2222-2224 Massachusetts Ave	Cambridge	1891
CAM.251	Saint John's Roman Catholic Church	2270 Massachusetts Ave	Cambridge	1904
CAM.301		59 Rice St	Cambridge	1847
CAM.306	Soule, Lawrence Porter House	11 Russell St	Cambridge	1879

Monday, May 6, 2019 Page 1 of 1

APPENDIX F

Laboratory Data Reports

ANALYTICAL REPORT

Lab Number: L1904244

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Report Date: 02/12/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date:

02/12/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1904244-01	HA17-GP4 OW	WATER	CAMBRIDGE, MA	02/01/19 12:00	02/01/19
L1904244-02	OUTFALL	WATER	CAMBRIDGE, MA	02/01/19 13:00	02/01/19

Project Name: 50 CAMBRIDGEPARK DR. Lab Number: L1904244

Project Number: 131188-005 Report Date: 02/12/19

Project Number: 131188-005 **Report Date:** 02/12/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 50 CAMBRIDGEPARK DR. Lab Number: L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

Case Narrative (continued)

Report Submission

February 12, 2019: This final report includes the results of all requested analyses.

February 07, 2019: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 02/12/19

tishelle M. Morris

ORGANICS

VOLATILES

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

SAMPLE RESULTS

Lab Number: L1904244

Report Date: 02/12/19

Lab ID: L1904244-01

Client ID: HA17-GP4 OW Sample Location:

Date Received: Field Prep:

Date Collected:

02/01/19 12:00 02/01/19

CAMBRIDGE, MA

Refer to COC

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 02/04/19 18:42

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	gh Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1
Methyl tert butyl ether	ND		ug/l	10		1
Tert-Butyl Alcohol	ND		ug/l	100		1
Tertiary-Amyl Methyl Ether	ND		ug/l	20		1

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Client ID: Date Received: 02/01/19
Sample Location: CAMBRIDGE, MA
Date Received: 02/01/19
Field Prep: Refer to COC

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Pentafluorobenzene	95	60-140	
Fluorobenzene	106	60-140	
4-Bromofluorobenzene	99	60-140	

Project Name: Lab Number: 50 CAMBRIDGEPARK DR. L1904244

Project Number: Report Date: 131188-005 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Client ID: Date Received: 02/01/19 HA17-GP4 OW Field Prep: Sample Location: CAMBRIDGE, MA Refer to COC

Sample Depth:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 02/04/19 18:42

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	I - Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance iteria
Fluorobenzene			116		(60-140
4-Bromofluorobenzene			74		(60-140

Project Name: Lab Number: 50 CAMBRIDGEPARK DR. L1904244

Project Number: Report Date: 131188-005 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Date Received: Client ID: HA17-GP4 OW 02/01/19 CAMBRIDGE, MA Sample Location: Field Prep: Refer to COC

Sample Depth:

Extraction Method: EPA 504.1 Matrix: Water **Extraction Date:** 02/07/19 11:16

Analytical Method: 14,504.1 Analytical Date: 02/07/19 13:11

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab)						
1,2-Dibromoethane	ND		ug/l	0.010		1	Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		1	Α

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 02/04/19 17:29

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for s	ample(s):	01	Batch:	WG1203299-8	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualifi	er Criteria
Fluorobenzene	117	60-140
4-Bromofluorobenzene	74	60-140

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/04/19 17:29

Analyst: GT

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01 Batch: WG1203459-8 Methylene chloride ND ug/l 1.0 1,1-Dichloroethane ND ug/l 1.5 Carbon tetrachloride ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 1.5 1,2-Dichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 1,1,1-Trichloroethane ND ug/l 1.0 1,1-Trichloroethane ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,2-Dichloroethene ND ug/l	Parameter	Result	Qualifier Units	RL	MDL
1,1-Dichloroethane	olatile Organics by GC/MS - W	estborough Lab	for sample(s): 0	1 Batch:	WG1203459-8
Carbon tetrachloride ND ug/l 1.0 1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 2.0 1,1,1-Trichloroethane ND ug/l 1.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 <	Methylene chloride	ND	ug/l	1.0	
1,1,2-Trichloroethane ND ug/l 1.5 Tetrachloroethane ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 1.0	1,1-Dichloroethane	ND	ug/l	1.5	
Tetrachloroethene ND ug/l 1.0 1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 1.0 0-xylene ND ug/l 1.0	Carbon tetrachloride	ND	ug/l	1.0	
1,2-Dichloroethane ND ug/l 1.5 1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 Cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 5.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 1.0 0-xylene ND ug/l 1.0	1,1,2-Trichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane ND ug/l 2.0 Benzene ND ug/l 1.0 Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 1.0 xylenes, Total ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Methyl tert butyl ether ND ug/l 10	Tetrachloroethene	ND	ug/l	1.0	
Benzene ND	1,2-Dichloroethane	ND	ug/l	1.5	
Toluene ND ug/l 1.0 Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 p/m-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,1,1-Trichloroethane	ND	ug/l	2.0	
Ethylbenzene ND ug/l 1.0 Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 5.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Benzene	ND	ug/l	1.0	
Vinyl chloride ND ug/l 1.0 1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 p/m-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 1.0 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Toluene	ND	ug/l	1.0	
1,1-Dichloroethene ND ug/l 1.0 cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 p/m-Xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Ethylbenzene	ND	ug/l	1.0	
cis-1,2-Dichloroethene ND ug/l 1.0 Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Vinyl chloride	ND	ug/l	1.0	
Trichloroethene ND ug/l 1.0 1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,1-Dichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene ND ug/l 5.0 1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	cis-1,2-Dichloroethene	ND	ug/l	1.0	
1,3-Dichlorobenzene ND ug/l 5.0 1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Trichloroethene	ND	ug/l	1.0	
1,4-Dichlorobenzene ND ug/l 5.0 p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,2-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene ND ug/l 2.0 o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,3-Dichlorobenzene	ND	ug/l	5.0	
o-xylene ND ug/l 1.0 Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	1,4-Dichlorobenzene	ND	ug/l	5.0	
Xylenes, Total ND ug/l 1.0 Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	p/m-Xylene	ND	ug/l	2.0	
Acetone ND ug/l 10 Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	o-xylene	ND	ug/l	1.0	
Methyl tert butyl ether ND ug/l 10 Tert-Butyl Alcohol ND ug/l 100	Xylenes, Total	ND	ug/l	1.0	
Tert-Butyl Alcohol ND ug/l 100	Acetone	ND	ug/l	10	
· · · · · · · · · · · · · · · · · · ·	Methyl tert butyl ether	ND	ug/l	10	
Tartiany-Amyl Mathyl Ether ND ug/l 20	Tert-Butyl Alcohol	ND	ug/l	100	
retually-fully) inetally) Luter ND ug/i 20	Tertiary-Amyl Methyl Ether	ND	ug/l	20	

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 02/04/19 17:29

Analyst: GT

		Acceptance	
Surrogate	%Recovery Q	ualifier Criteria	
Pentafluorobenzene	95	60-140	
Fluorobenzene	107	60-140	
4-Bromofluorobenzene	96	60-140	

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1 Analytical Date: 02/07/19 12:00 Extraction Date: 02/07/19 11:16

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westbord	ough Lab fo	r sample(s)	: 01	Batch: WG120	4559-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α
1,2-Dibromo-3-chloropropane	ND		ug/l	0.010		Α

50 CAMBRIDGEPARK DR.

Lab Number:

L1904244

Project Number: 131188-005

Project Name:

Report Date:

02/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westboroo	ugh Lab Associat	ed sample(s)	: 01 Batch:	WG1203299-	7				
1,4-Dioxane	110		-		60-140	-		20	

Surrogate	LCS %Recovery Qua	LCSD I %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	117 75			60-140 60-140

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number: L1904244

Report Date: 02/12/19

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westboroug	h Lab Associated	sample(s): 01 Batch: WC	G1203459-7			
Methylene chloride	90	-	60-140	-	28	
1,1-Dichloroethane	90	-	50-150	-	49	
Carbon tetrachloride	105	-	70-130	-	41	
1,1,2-Trichloroethane	85	-	70-130	-	45	
Tetrachloroethene	85	-	70-130	-	39	
1,2-Dichloroethane	100	-	70-130	-	49	
1,1,1-Trichloroethane	100	-	70-130	-	36	
Benzene	100	-	65-135	-	61	
Toluene	90	-	70-130	-	41	
Ethylbenzene	90	-	60-140	-	63	
Vinyl chloride	95	-	5-195	-	66	
1,1-Dichloroethene	90	-	50-150	-	32	
cis-1,2-Dichloroethene	85	-	60-140	-	30	
Trichloroethene	95	-	65-135	-	48	
1,2-Dichlorobenzene	85	-	65-135	-	57	
1,3-Dichlorobenzene	80	-	70-130	-	43	
1,4-Dichlorobenzene	85	-	65-135	-	57	
p/m-Xylene	88	-	60-140	-	30	
o-xylene	85	-	60-140	-	30	
Acetone	106	-	40-160	-	30	
Methyl tert butyl ether	95	-	60-140	-	30	
Tert-Butyl Alcohol	110	-	60-140	-	30	
Tertiary-Amyl Methyl Ether	95	-	60-140	-	30	

50 CAMBRIDGEPARK DR.

Lab Number:

L1904244

Project Number: 131188-005

Project Name:

Report Date:

02/12/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1203459-7

Surrogate	LCS %Recovery Qual	LCSD %Recovery	Qual	Acceptance Criteria
Pentafluorobenzene	99			60-140
Fluorobenzene	107			60-140
4-Bromofluorobenzene	96			60-140

Project Name: 50 CAMBRIDGEPARK DR.

Lab Number:

L1904244 02/12/19

Project Number: 131188-005

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Microextractables by GC - Westborough La	b Associated san	nple(s): 01	Batch: WG1204	4559-2					
1,2-Dibromoethane	100		-		80-120	-			Α
1,2-Dibromo-3-chloropropane	92		-		80-120	-			Α

Matrix Spike Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date:

02/12/19

	Native	MS	MS	MS	_	MSD	MSD		Recovery			RPD	
Parameter	Sample	Added	Found %	6Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual I	Limits	<u>Column</u>
Microextractables by GC -	Westborough Lab	Associate	ed sample(s): 01	QC Batch	ID: WG12	04559-3	QC Sample: I	_190408	3-01 Clie	nt ID: N	/IS Sampl	le	
1,2-Dibromoethane	ND	0.249	0.242	97		-	-		80-120	-		20	Α
1,2-Dibromo-3-chloropropane	ND	0.249	0.232	93		-	-		80-120	-		20	Α

SEMIVOLATILES

Project Name: 50 CAMBRIDGEPARK DR. Lab Number: L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Client ID: HA17-GP4 OW Date Received: 02/01/19
Sample Location: CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 625.1
Analytical Method: 129,625.1 Extraction Date: 02/05/19 09:37

Analyst: CB

02/05/19 20:17

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Bis(2-ethylhexyl)phthalate	ND		ug/l	2.2		1		
Butyl benzyl phthalate	ND		ug/l	5.0		1		
Di-n-butylphthalate	ND		ug/l	5.0		1		
Di-n-octylphthalate	ND		ug/l	5.0		1		
Diethyl phthalate	ND		ug/l	5.0		1		
Dimethyl phthalate	ND		ug/l	5.0		1		

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	72	42-122	
2-Fluorobiphenyl	72	46-121	
4-Terphenyl-d14	76	47-138	

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Client ID: HA17-GP4 OW Date Received: 02/01/19
Sample Location: CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 625.1

Analytical Method: 129,625.1-SIM Extraction Date: 02/05/19 09:35
Analytical Date: 02/06/19 17:58

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM	- Westborough La	b				
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	0.11		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
Pentachlorophenol	ND		ug/l	1.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	36	25-87	
Phenol-d6	24	16-65	
Nitrobenzene-d5	62	42-122	
2-Fluorobiphenyl	51	46-121	
2,4,6-Tribromophenol	66	45-128	
4-Terphenyl-d14	47	47-138	

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005 Lab Number:

L1904244

Report Date: 02/12/19

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date:

129,625.1-SIM 02/06/19 15:20

Analyst:

DV

Extraction Method: EPA 625.1

02/05/19 09:35 **Extraction Date:**

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/N	IS-SIM - Westbo	orough Lab f	or sample(s)	: 01	Batch:	WG1203834-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	44	25-87
Phenol-d6	31	16-65
Nitrobenzene-d5	76	42-122
2-Fluorobiphenyl	61	46-121
2,4,6-Tribromophenol	74	45-128
4-Terphenyl-d14	58	47-138

L1904244

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005 Report D

Report Date: 02/12/19

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Analytical Date: 02/05/19 19:01

Analyst: CB

Extraction Method: EPA 625.1
Extraction Date: 02/05/19 09:37

Parameter	Result	Qualifier	Units	F	RL	MDL	
Semivolatile Organics by GC/MS - V	Vestborough	Lab for sa	ample(s):	01	Batch:	WG1203837-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	2	.2		
Butyl benzyl phthalate	ND		ug/l	5	.0		
Di-n-butylphthalate	ND		ug/l	5	.0		
Di-n-octylphthalate	ND		ug/l	5	.0		
Diethyl phthalate	ND		ug/l	5	.0		
Dimethyl phthalate	ND		ug/l	5	.0		

		Acceptance	
Surrogate	%Recovery Qualifier	Criteria	
Nitrobenzene-d5	92	42-122	
2-Fluorobiphenyl	91	46-121	
4-Terphenyl-d14	94	47-138	

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number: L1904244

Report Date: 02/12/19

Parameter	LCS %Recovery		LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS-SIM - West	borough Lab Ass	sociated sample(s): 01 Batc	h: WG120)3834-3			
Acenaphthene	75		-		60-132	-		30
Fluoranthene	75		-		43-121	-		30
Naphthalene	74		-		36-120	-		30
Benzo(a)anthracene	74		-		42-133	-		30
Benzo(a)pyrene	83		-		32-148	-		30
Benzo(b)fluoranthene	80		-		42-140	-		30
Benzo(k)fluoranthene	80		-		25-146	-		30
Chrysene	73		-		44-140	-		30
Acenaphthylene	80		-		54-126	-		30
Anthracene	76		-		43-120	-		30
Benzo(ghi)perylene	76		-		1-195	-		30
Fluorene	80		-		70-120	-		30
Phenanthrene	72		-		65-120	-		30
Dibenzo(a,h)anthracene	80		-		1-200	-		30
Indeno(1,2,3-cd)pyrene	82		-		1-151	-		30
Pyrene	79		-		70-120	-		30
Pentachlorophenol	66		-		38-152	-		30

Project Name: 50 CAMBRIDGEPARK DR.

Lab Number:

L1904244

Project Number: 131188-005

Report Date:

02/12/19

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1203834-3

Surrogate	LCS %Recovery Qual %R	LCSD ecovery Qual	Acceptance Criteria
2-Fluorophenol	50		25-87
Phenol-d6	35		16-65
Nitrobenzene-d5	84		42-122
2-Fluorobiphenyl	68		46-121
2,4,6-Tribromophenol	83		45-128
4-Terphenyl-d14	64		47-138

Project Name: 50 CAMBRIDGEPARK DR.

Project Number:

131188-005

Lab Number:

L1904244

Report Date:

02/12/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	gh Lab Associa	ated sample(s)	: 01 Batch:	WG1203837	'- 2				
Bis(2-ethylhexyl)phthalate	94		-		29-137	-		30	
Butyl benzyl phthalate	103		-		1-140	-		30	
Di-n-butylphthalate	99		-		8-120	-		30	
Di-n-octylphthalate	97		-		19-132	-		30	
Diethyl phthalate	88		-		1-120	-		30	
Dimethyl phthalate	84		-		1-120	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria	
Nitrobenzene-d5	79		42-122	
2-Fluorobiphenyl	77		46-121	
4-Terphenyl-d14	78		47-138	

PCBS

Project Name: 50 CAMBRIDGEPARK DR. **Lab Number:** L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

Lab ID: L1904244-01 Date Collected: 02/01/19 12:00

Client ID: Date Received: 02/01/19
Sample Location: CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water Extraction Method: EPA 608.3
Analytical Method: 127,608.3 Extraction Date: 02/02/19 10:26

Analytical Date: 02/07/19 09:46 Cleanup Method: EPA 3665A
Analyst: WR Cleanup Date: 02/02/19

Cleanup Method: EPA 3660B Cleanup Date: 02/02/19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		ug/l	0.250		1	Α
Aroclor 1221	ND		ug/l	0.250		1	Α
Aroclor 1232	ND		ug/l	0.250		1	Α
Aroclor 1242	ND		ug/l	0.250		1	Α
Aroclor 1248	ND		ug/l	0.250		1	Α
Aroclor 1254	ND		ug/l	0.250		1	Α
Aroclor 1260	ND		ug/l	0.200		1	Α

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	84		37-123	В
Decachlorobiphenyl	73		38-114	В
2,4,5,6-Tetrachloro-m-xylene	83		37-123	Α
Decachlorobiphenyl	65		38-114	Α

L1904244

Lab Number:

Project Name: 50 CAMBRIDGEPARK DR.

127,608.3

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis
Batch Quality Control

Batch Quality Control

Analytical Date: 02/07/19 08:41 Analyst: WR

Analytical Method:

Extraction Method: EPA 608.3
Extraction Date: 02/02/19 10:26
Cleanup Method: EPA 3665A
Cleanup Date: 02/02/19
Cleanup Method: EPA 3660B
Cleanup Date: 02/02/19

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC	- Westboroug	h Lab for s	ample(s):	01 Batch:	WG1203293	-1
Aroclor 1016	ND		ug/l	0.250		Α
Aroclor 1221	ND		ug/l	0.250		Α
Aroclor 1232	ND		ug/l	0.250		Α
Aroclor 1242	ND		ug/l	0.250		Α
Aroclor 1248	ND		ug/l	0.250		Α
Aroclor 1254	ND		ug/l	0.250		Α
Aroclor 1260	ND		ug/l	0.200		Α

	Acceptance						
Surrogate	%Recovery Qualifie	r Criteria	Column				
2,4,5,6-Tetrachloro-m-xylene	94	37-123	В				
Decachlorobiphenyl	80	38-114	В				
2,4,5,6-Tetrachloro-m-xylene	92	37-123	Α				
Decachlorobiphenyl	69	38-114	Α				

Project Name: 50 CAMBRIDGEPARK DR.

Lab Number:

L1904244

Project Number: 131188-005

Report Date:

02/12/19

	LCS		LCSD	%Recovery				RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - We	stborough Lab Associa	ted sample(s):	01 Batch:	WG1203293-2	2				
Aroclor 1016	84		-		50-140	-		36	Α
Aroclor 1260	80		-		8-140	-		38	Α

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	101		37-123 B
Decachlorobiphenyl	93		38-114 B
2,4,5,6-Tetrachloro-m-xylene	100		37-123 A
Decachlorobiphenyl	76		38-114 A

METALS

Project Name: Lab Number: 50 CAMBRIDGEPARK DR. L1904244 Report Date: 02/12/19

Project Number: 131188-005

SAMPLE RESULTS

Lab ID: L1904244-01 Client ID: HA17-GP4 OW Sample Location: CAMBRIDGE, MA Date Collected: 02/01/19 12:00 Date Received: 02/01/19 Field Prep:

Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/l	0.00400		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00328		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Chromium, Total	0.00115		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Copper, Total	0.00137		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Iron, Total	6.99		mg/l	0.050		1	02/02/19 10:4	0 02/04/19 12:59	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/04/19 10:5	6 02/04/19 16:37	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Zinc, Total	0.09354		mg/l	0.01000		1	02/02/19 10:4	0 02/04/19 11:08	EPA 3005A	3,200.8	AM
Total Hardness by SM 2340B - Mansfield Lab											
Hardness	155		mg/l	0.660	NA	1	02/02/19 10:4	0 02/04/19 12:59	EPA 3005A	19,200.7	LC
General Chemistry - Mansfield Lab											
Chromium, Trivalent	ND		mg/l	0.010		1		02/04/19 11:08	NA	107,-	

Project Name: Lab Number: 50 CAMBRIDGEPARK DR. L1904244 Report Date: 02/12/19

Project Number: 131188-005

SAMPLE RESULTS

Sample Depth:

Matrix: Water

Lab ID:	L1904244-02	Date Collected:	02/01/19 13:00
Client ID:	OUTFALL	Date Received:	02/01/19
Sample Location:	CAMBRIDGE, MA	Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00147		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00020		mg/l	0.00020		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Copper, Total	0.00321		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Iron, Total	2.16		mg/l	0.050		1	02/02/19 10:4	0 02/04/19 13:04	EPA 3005A	19,200.7	LC
Lead, Total	ND		mg/l	0.00100		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	02/04/19 10:5	6 02/04/19 16:39	EPA 245.1	3,245.1	GD
Nickel, Total	ND		mg/l	0.00200		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Zinc, Total	0.01962		mg/l	0.01000		1	02/02/19 10:4	0 02/04/19 11:12	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	242		mg/l	0.660	NA	1	02/02/19 10:4	0 02/04/19 13:04	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		02/04/19 11:12	NA	107,-	

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date: 02/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualific	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s): 01-02 E	Batch: Wo	G12032	84-1				
Antimony, Total	ND	mg/l	0.00400		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	02/02/19 10:40	02/04/19 09:54	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Man	sfield Lab for sample(s)	: 01-02 I	Batch: W	'G12032	290-1				
Iron, Total	ND	mg/l	0.050		1	02/02/19 10:40	02/04/19 09:31	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Hardness by SM 2	2340B - Mansfield Lab	for samp	le(s):	01-02	Batch: WG1	203290-1			
Hardness	ND	mg/l	0.660	NA	1	02/02/19 10:40	02/04/19 09:31	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: 50 CAMBRIDGEPARK DR.

Lab Number:

L1904244

Project Number: 131188-005

Report Date:

02/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mar	nsfield Lab for sample(s):	01-02 E	Batch: W	G12035	70-1				
Mercury, Total	ND	mg/l	0.0002		1	02/04/19 10:56	02/04/19 16:06	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number: L1904244

Report Date: 02/12/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1203284-2				
Antimony, Total	96	-	85-115	-		
Arsenic, Total	107	-	85-115	-		
Cadmium, Total	111	-	85-115	-		
Chromium, Total	102	-	85-115	-		
Copper, Total	98	-	85-115	-		
Lead, Total	110	-	85-115	-		
Nickel, Total	103	-	85-115	-		
Selenium, Total	108	-	85-115	-		
Silver, Total	107	-	85-115	-		
Zinc, Total	113	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1203290-2				
Iron, Total	102	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-02 Batch: WG12032	90-2			
Hardness	99	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01-02 Bate	ch: WG1203570-2				
Mercury, Total	100	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date: 02/12/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-02	QC Bat	ch ID: WG120	3284-3	QC Sam	ple: L1904140-01	Client ID: MS	Sample	
Antimony, Total	ND	0.5	0.5527	110		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1291	108		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05460	107		-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1962	98		-	-	70-130	-	20
Copper, Total	ND	0.25	0.2440	98		-	-	70-130	-	20
Lead, Total	ND	0.51	0.5452	107		-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5018	100		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1365	114		-	-	70-130	-	20
Silver, Total	ND	0.05	0.05287	106		-	-	70-130	-	20
Zinc, Total	0.01244	0.5	0.5524	108		-	-	70-130	-	20
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-02	QC Bat	ch ID: WG120	3290-3	QC Sam	ple: L1904216-01	Client ID: MS	Sample	
Iron, Total	0.436	1	1.36	92		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield La	b Associated	sample(s)	: 01-02 QC E	Batch ID	: WG1203	290-3 QC Sampl	le: L1904216-01	Client ID:	MS Sample
Hardness	20.8	66.2	77.3	85		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-02	QC Bat	ch ID: WG120	3570-3	QC Sam	ple: L1904151-01	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0031	63	Q	-	-	70-130	-	20
Total Metals - Mansfield Lab A	Associated san	nple(s): 01-02	QC Bat	ch ID: WG120	3570-5	QC Sam	ple: L1904151-02	Client ID: MS	Sample	
Mercury, Total	ND	0.005	0.0039	77		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date:

02/12/19

Parameter	Native Sample	Duplic	ate Sample	Units	RPD	Qual F	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1203284-4	QC Sample:	L1904140-01	Client ID:	DUP Sample	е
Antimony, Total	ND		ND	mg/l	NC		20
Arsenic, Total	ND		ND	mg/l	NC		20
Cadmium, Total	ND		ND	mg/l	NC		20
Chromium, Total	ND		ND	mg/l	NC		20
Copper, Total	ND		ND	mg/l	NC		20
Lead, Total	ND		ND	mg/l	NC		20
Nickel, Total	ND		ND	mg/l	NC		20
Selenium, Total	ND		ND	mg/l	NC		20
Silver, Total	ND		ND	mg/l	NC		20
Zinc, Total	0.01244	(0.01222	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1203570-4	QC Sample:	L1904151-01	Client ID:	DUP Sample	е
Mercury, Total	ND		ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1203570-6	QC Sample:	L1904151-02	Client ID:	DUP Sample	е
Mercury, Total	ND		ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 50 CAMBRIDGEPARK DR. Lab Number: L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

 Lab ID:
 L1904244-01
 Date Collected:
 02/01/19 12:00

 Client ID:
 HA17-GP4 OW
 Date Received:
 02/01/19

Sample Location: CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	5.3		mg/l	5.0	NA	1	-	02/04/19 15:00	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	02/04/19 10:00	02/04/19 13:15	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/02/19 03:47	121,4500CL-D	MA
pH (H)	6.6		SU	-	NA	1	-	02/02/19 04:15	121,4500H+-B	MA
Nitrogen, Ammonia	0.428		mg/l	0.075		1	02/03/19 14:30	02/04/19 20:05	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	02/04/19 19:55	02/04/19 23:50	74,1664A	MM
Phenolics, Total	ND		mg/l	0.030		1	02/04/19 07:42	02/05/19 05:51	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/19 22:45	02/01/19 23:09	1,7196A	AS
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	314.		mg/l	12.5		25	-	02/02/19 18:51	44,300.0	JR

Project Name: 50 CAMBRIDGEPARK DR. Lab Number: L1904244

Project Number: 131188-005 **Report Date:** 02/12/19

SAMPLE RESULTS

 Lab ID:
 L1904244-02
 Date Collected:
 02/01/19 13:00

 Client ID:
 OUTFALL
 Date Received:
 02/01/19

Sample Location: CAMBRIDGE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result Q	Qualifier U	nits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
pH (H)	7.3	5	SU	-	NA	1	-	02/02/19 04:15	121,4500H+-B	MA
Nitrogen, Ammonia	2.60	n	ng/l	0.075		1	02/03/19 14:30	02/04/19 20:06	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND	n	ng/l	0.010		1	02/01/19 22:45	02/01/19 23:09	1,7196A	AS

L1904244

Lab Number:

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005 **Report Date:** 02/12/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: WG	1203219-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	02/01/19 22:45	02/01/19 23:06	1,7196A	AS
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG120	03253-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	02/02/19 03:47	121,4500CL-D	MA
General Chemistry -	Westborough Lab	for sam	ple(s): 01-	02 Bat	ch: WG	1203438-1	ĺ			
Nitrogen, Ammonia	ND		mg/l	0.075		1	02/03/19 14:30	02/04/19 19:25	121,4500NH3-BH	TA H
Anions by Ion Chrom	atography - Westb	orough	Lab for sar	mple(s):	01 Ba	atch: WG1	203484-1			
Chloride	ND		mg/l	0.500		1	-	02/02/19 15:27	44,300.0	JR
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG120	03529-1				
Phenolics, Total	ND		mg/l	0.030		1	02/04/19 07:42	02/05/19 05:43	4,420.1	GD
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG120	03534-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	02/04/19 15:00	121,2540D	DR
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG120	03541-1				
Cyanide, Total	ND		mg/l	0.005		1	02/04/19 10:00	02/04/19 12:52	121,4500CN-CE	LH
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG120	03698-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	02/04/19 19:55	02/04/19 23:50	74,1664A	MM

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date:

02/12/19

Parameter	LCS %Recovery Qu	LCSD al %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	-02 Batch: WG120321	9-2			
Chromium, Hexavalent	98	-	85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	-02 Batch: WG120324	8-1			
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1203253-2				
Chlorine, Total Residual	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	-02 Batch: WG120343	8-2			
Nitrogen, Ammonia	90	-	80-120	-		20
Anions by Ion Chromatography - Westb	oorough Lab Associated sa	ample(s): 01 Batch: W	G1203484-2			
Chloride	100	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1203529-2				
Phenolics, Total	88	-	70-130	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1203541-2				
Cyanide, Total	95	-	90-110	-		

Lab Control Sample Analysis Batch Quality Control

Lab Number: L1904244

Project Number: 131188-005 Report Date: 02/12/19

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1203698-2			
ТРН	87	-	64-132	-	34

Project Name:

50 CAMBRIDGEPARK DR.

Matrix Spike Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number: L1904244

Report Date: 02/12/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery Limits RPD	RPD Qual Limits
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	2 QC Batch II	D: WG1203219-4	QC Sample: L1904	244-02 Client ID:	OUTFALL
Chromium, Hexavalent	ND	0.1	0.099	99	-	-	85-115 -	20
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	NG1203253-4	QC Sample: L1904159	9-01 Client ID: M	S Sample
Chlorine, Total Residual	ND	0.25	0.24	96	-	-	80-120 -	20
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01-02	2 QC Batch II	D: WG1203438-4	QC Sample: L1904	006-01 Client ID:	: MS Sample
Nitrogen, Ammonia	ND	4	3.60	90	-	-	80-120 -	20
Anions by Ion Chromatography Sample	- Westboroug	jh Lab Asso	ciated sam	ple(s): 01 Q0	C Batch ID: WG12	203484-3 QC Samp	le: L1904055-01	Client ID: MS
Chloride	69.2	40	108	97	-	-	90-110 -	18
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	NG1203529-4	QC Sample: L1904083	3-01 Client ID: M	S Sample
Phenolics, Total	ND	0.4	0.38	96	-	-	70-130 -	20
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	NG1203541-4	QC Sample: L1904169	9-02 Client ID: M	S Sample
Cyanide, Total	ND	0.2	0.196	98	-	-	90-110 -	30
General Chemistry - Westborou	ugh Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	NG1203698-4	QC Sample: L1904140	0-02 Client ID: M	S Sample
TPH	ND	21.1	15.5	73			64-132 -	34

Lab Duplicate Analysis Batch Quality Control

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number:

L1904244

Report Date:

02/12/19

Parameter	Native Sample	Duplicate Sample	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated sample	ple(s): 01-02 QC Batc	h ID: WG1203219-3	QC Sample:	L1904244-01	Client ID:	HA17-GP4 OW
Chromium, Hexavalent	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ple(s): 01-02 QC Batc	h ID: WG1203248-2	QC Sample:	L1904137-01	Client ID:	DUP Sample
рН	7.5	7.5	SU	0		5
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch II	D: WG1203253-3 Q0	C Sample: L1	904159-04 C	lient ID: D	JP Sample
Chlorine, Total Residual	0.30	0.30	mg/l	0		20
General Chemistry - Westborough Lab Associated samp	ple(s): 01-02 QC Batc	h ID: WG1203438-3	QC Sample:	L1904006-01	Client ID:	DUP Sample
Nitrogen, Ammonia	ND	ND	mg/l	NC		20
Anions by Ion Chromatography - Westborough Lab Assa	ociated sample(s): 01	QC Batch ID: WG120	03484-4 QC	Sample: L19	04055-01	Client ID: DUP
Chloride	69.2	69.8	mg/l	1		18
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch II	D: WG1203529-3 Q	C Sample: L1	904083-01 C	lient ID: D	JP Sample
Phenolics, Total	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch II	D: WG1203534-2 Q0	C Sample: L1	904106-01 C	lient ID: D	UP Sample
Solids, Total Suspended	60	62	mg/l	3		29
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch II	D: WG1203541-3 Q0	C Sample: L1	904166-01 C	lient ID: D	UP Sample
Cyanide, Total	ND	ND	mg/l	NC		30
General Chemistry - Westborough Lab Associated samp	ple(s): 01 QC Batch II	D: WG1203698-3 Q0	C Sample: L1	904140-01 C	lient ID: D	UP Sample
TPH	ND	ND	mg/l	NC		34

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Lab Number: L1904244 **Report Date:** 02/12/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	•	Pres	Seal	Date/Time	Analysis(*)
L1904244-01A	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1904244-01B	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1904244-01C	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1904244-01D	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1904244-01E	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L1904244-01F	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L1904244-01G	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L1904244-01H	Vial Na2S2O3 preserved	Α	NA		3.3	Υ	Absent		504(14)
L1904244-01I	Vial HCI preserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L1904244-01J	Vial HCl preserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L1904244-01K	Vial HCl preserved	Α	NA		3.3	Υ	Absent		SUB-ETHANOL(14)
L1904244-01L	Plastic 250ml NaOH preserved	Α	>12	>12	3.3	Υ	Absent		TCN-4500(14)
L1904244-01M	Plastic 250ml HNO3 preserved	A	<2	<2	3.3	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1904244-01N	Plastic 250ml HNO3 preserved	Α	<2	<2	3.3	Υ	Absent		HOLD-METAL-DISSOLVED(180)
L1904244-01O	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.3	Υ	Absent		NH3-4500(28)
L1904244-01P	Plastic 950ml unpreserved	Α	7	7	3.3	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1904244-01Q	Plastic 950ml unpreserved	Α	7	7	3.3	Υ	Absent		TSS-2540(7)
L1904244-01R	Amber 950ml H2SO4 preserved	Α	<2	<2	3.3	Υ	Absent		TPHENOL-420(28)
L1904244-01S	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1904244-01T	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1904244-01U	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Lab Number: L1904244

Report Date: 02/12/19

Project Name: 50 CAMBRIDGEPARK DR.

Project Number: 131188-005

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1904244-01V	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		PCB-608.3(7)
L1904244-01W	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		PCB-608.3(7)
L1904244-01X	Amber 1000ml Na2S2O3	Α	7	7	3.3	Υ	Absent		PCB-608.3(7)
L1904244-01Y	Amber 1000ml HCl preserved	Α	NA		3.3	Υ	Absent		TPH-1664(28)
L1904244-01Z	Amber 1000ml HCl preserved	Α	NA		3.3	Υ	Absent		TPH-1664(28)
L1904244-02A	Plastic 250ml unpreserved	Α	7	7	3.3	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L1904244-02B	Plastic 250ml HNO3 preserved	Α	<2	<2	3.3	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1904244-02C	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.3	Υ	Absent		NH3-4500(28)

Project Name:50 CAMBRIDGEPARK DR.Lab Number:L1904244Project Number:131188-005Report Date:02/12/19

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHe using Solid Phase Microsysteption (SDME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Maria C. 1. C. 1. A. 1. 11. 11. 1. C.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total'

Report Format: Data Usability Report

Project Name:50 CAMBRIDGEPARK DR.Lab Number:L1904244Project Number:131188-005Report Date:02/12/19

result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:50 CAMBRIDGEPARK DR.Lab Number:L1904244Project Number:131188-005Report Date:02/12/19

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 127 Method 608.3: Organochlorine Pesticides and PCBs by GC/HSD, EPA 821-R-16-009, December 2016.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:02121911:57

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 TEL: 508-822-9300 FAX: 508-898-9193 FAX: 508-822-3288 Project Information Project Name: 50 Cambridgepark Dr	(Criteria)	Billing Information Same as Client Info Po w Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
TEL: 508-898-9220 FAX: 508-898-9193 FAX: 508-822-3288 Project Name: 50 Cambridgepark Dr Project Location: Cambridge, MA □ EQuIS (1 File) □ EQUIS H&A Information Project # 131188-005 □ Other: H&A Client: Hanover RS Use Project name as Project #) H&A Address: 465 Medford Street, #220 Project Manager: Lee Vanzler Boston, MA 02129 H&A Phone: 617-886-7400 Turn-Around Time	(Criteria)	PO # Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
H&A Information Project Location: Cambridge, MA H&A Information Project # 131188-005 H&A Client: Hanover RS (Use Project name as Project #) Regulatory Requirements (Program/Client) H&A Address: 465 Medford Street, #220 Project Manager: Lee Vanzler Boston, MA 02129 ALPHAQuote #: H&A Phone: 617-886-7400 Turn-Around Time	(Criteria)	Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
H&A Client: Hanover RS (Use Project name as Project #) ☐ Regulatory Requirements (Program/Client) ☐ Regulatory		Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
H&A Address: 465 Medford Street, #220 Project Manager: Lee Vanzler Boston, MA 02129 ALPHAQuote #: H&A Phone: 617-886-7400 Turn-Around Time		Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
Boston, MA 02129 ALPHAQuote #: H&A Phone: 617-886-7400 Turn-Around Time	iteria.	applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration
H&A Phone: 617-886-7400 Turn-Around Time	riteria.	Disposal Facility: NJ NY Other: Sample Filtration
	riteria.	NJ NY Other: Sample Filtration
H&A Fax: Standard☑ Due Date:	riteria.	Other:
73577001=C 107072000	riteria.	Sample Filtration
H&A Email: Ivanzler, kscalise Rush (only if pre approved) # of Days: Note: Select State from menu & identify cri		Sample Filtration
These samples have been previously analyzed by Alpha ANALYSIS		- 0
Other project specific requirements/comments: Please refer to attached NPDES RGP parameters list. Total NPDES Metals: Sb, As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Ag, Zn Please specify Metals or TAL. ALPHA Lab ID ALPHA Lab ID Sample ID Collection Sample Sample's ALPHA Lab ID Sample ID Collection Sample Sample's ALPHA Lab ID Sample ID ALPHA Lab ID Sample ID Collection Sample Sample's	pH x. Cr + Tri. Cr	
ALPHA Lab ID Collection Sample Sampler's	Hex.	
(Lab Use Only) Sample ID Date Time Matrix Initials		Sample Specific Comments
04244-01 HA17-GP4OW 2/1/19 1200 aq SRP x x x x x	x	1. HOLD, field filtered 26
02 Outfall V 1300 V V x x x	x x	3
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ C = Glass Container Code Westboro: Certification No: MA935 C = Mansfield: Certification No: MA015 C = HNO ₃ D = H ₂ SO ₄ C = Container Type V P P P P P P P P P P P P P P P P P P P	P P	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. Alpha Analytical's
E = NaOH	/Time	services under this Chain of Custody shall be performed in accordance with
G = NaHSO4	16130	terms and conditions within Blanket
H = Na ₂ S ₂ O ₃ H = Na ₂ S ₂ O ₃ E = Encore M Cttis 2 1 9 9 1 1 1 1 1 1 1	1630	Analytical by and between Haley & Aldrich, Inc., its subsidiaries and
Document ID: 20455 Rev 1 (1/28/2016)		affiliates and Alpha Analytical.

specified in Parts 2.2 through 2.5 and Part 4, below. coverage, whichever occurs first. Each discharge shall be limited and monitored as specified in discharge, lasting through the expiration date of this general permit or written termination of covered under this general permit is the date indicated in EPA's written authorization to Massachusetts and New Hampshire. The effective date of authorization for each discharge will authorize the discharges under Part 1.1 of this general permit to receiving waters in Table 1 is included in footnote 2, below. Additional limitations and monitoring requirements are Table 2, below. The applicability of effluent limitations for each Activity Category listed in During the period beginning on the effective date and lasting through the expiration date, Chemical-Specific Effluent Limitations in Massachusetts and New Hampshire EPA

- 1	
1	T ₉
1	5
-	e
1	2
- 1	~
١	달
١	e
-	8
-	5
- 1	2
١	do
1	Ü
١	ec
١	=
١	E
1	-
- 1	
- 1	=
-	e
-1	크
-1	=
- 1	È
-1	8
-1	=
1	1
1	0
- 1	吕
- 1	2
-	Ξ
╛	a
-	7
- 1	5
	=
- 1	Ξ
-	2
	-
33.0	7
3	E
	~
	~
	ğ
	=
	5
	e
1	=
	Ħ
	S
4	,
4	

	Effluen	Effluent I imitation3,4
Parameter ²	TBEL ⁵	WQBEL
A. Inorganics		
Ammonia ⁷	Rej	Report mg/L
Chloride ⁸	Re	Report µg/L
Total Residual Chlorine9	0.2 mg/L	FW= 11 μg/L
		7/8H C-/- WC
Total Suspended Solids		30 mg/L
Antimony ¹⁰	206 μg/L	4.3 mg/L in NH
Arsenic ¹⁰	104 μg/L	FW= 10 μg/L SW= 36 μg/L
Cadmium ^{11,12}	10.2 μg/L	FW= 0.25 μg/L SW= 8.8 μg/L in MA SW= 9.3 μg/L in NH
Chromium III ^{11,12}	323 µg/L	
Chromium VI ^{11,13}	323 µg/L	FW= 11 μg/L SW= 50 μg/L
Copper 11,12	242 μg/L	FW= 9 μg/L SW= 3.1 μg/L
Iron ¹⁰	5,000 µg/L	$FW = 1,000 \mu g/L$
Lead ^{11,12}	160 µg/L	FW= 2.5 μg/L SW= 8.1 μg/L
Mercury ¹¹	0.739 μg/L	FW= 0.77 μg/L SW= 0.94 μg/L
Nickel ^{11,12}	1,450 μg/L	FW= 52 μg/L SW= 8.2 μg/L
Selenium	235.8 μg/L	FW= $5.0 \mu g/L^{10}$ SW= $71 \mu g/L^{11}$
Silver ^{11,12}	35.1 μg/L	FW= 3.2 μg/L SW= 1.9 μg/L
Zinc ^{11,12}	420 μg/L	FW= 120 μg/L SW= 81 μg/L

NPDES Permit No. MAG910000 and NHG910000

Page 11 of 50

•	Effluen	Effluent Limitation ^{3,4}
Parameter*	TBEL ⁵	WQBEL6
F. Fuels Parameters		
Total Petroleum Hydrocarbons ²²	5	5.0 mg/L
Ethanol ²³	Re	Report mg/L
Methyl-tert-Butyl Ether ²⁴	70 µg/L	20 μg/L in MA
tert-Butyl Alcohol		120 μg/L in MA 40 μg/L in NH
tert-Amyl Methyl Ether ²⁴	90 µ 140	90 μg/L in MA 140 μg/L in NH

Table 2 Footnotes:

¹ The following abbreviations are used in Table 2, above:

* TBEL = technology-based effluent limitation

b WQBEL = water quality-based effluent limitation

c mg/L = milligrams per liter

d avg = average

° μg/L = micrograms per liter

f FW = freshwater

g SW = saltwater

individually and cannot be composited. See Appendix IX for additional definitions. ² The sample type required for all parameters is grab. Grab samples must be analyzed

site if the given parameter is present at that site. The effluent limitations and monitor-only 3 The effluent limitation and/or monitor-only requirement for any parameter listed applies to any requirements also apply to Activity Categories as follows:

^a Activity Category I:

any present in contamination type F. fuels parameters. if present in contamination type E. halogenated SVOCs; and any present in contamination type D. non-halogenated SVOCs; if present in contamination type C. halogenated VOCs; any present in contamination type B. non-halogenated VOCs; all parameters in contamination type A. Inorganics;

any present in contamination type D. non-halogenated SVOCs; if present in contamination type E. halogenated SVOCs; and if present in contamination type F. fuels parameters. any present in contamination type C. halogenated VOCs; any present in contamination type B. non-halogenated VOCs; all parameters in contamination type A. Inorganics; ^b Activity Category II:

Subcontract Chain of Custody

ALPH World Class Ch		Te 29 Na	st America (N 60 Foster Cre shville, TN 37	ashville) ighton Drive 204		Alpha Job Number L1904244
C	lient Information		Project In	formation	Regulatory Req	uirements/Report Limits
Client: Alpha A Address: Eight W Westbo Phone: 603.31 Email: mgulli@	Analytical Labs /alkup Drive rough, MA 01581-1019 9.5010	Project Location Project Manage Turnare Due Date Deliverables	ound & Deliv	lli verables Information	State/Federal Program: Regulatory Criteria:	
Email: mgulli@	Palphalab.com					
	经专动组织分别。	Project Specif	ic Requirem	ents and/or Report Re	quirements	下 克里里克 人名英格兰
	Reference following Alpha Job			: L1904244	Report to include Method Blan	ik, LCS/LCSD:
Additional Com	ments: Send all results/reports t	o subreports@alphal	ab.com			
Na Paradysia		and Selection				
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Anal	ysis	Batch QC
	HA17-GP4 OW	02-01-19 12:00	WATER	Ethanol by EPA 1671 Revision	n A	
	Relinquishe	d By:		Date/Time:	Received By:	Date/Time:
				2/4/19 14:08		
					1	
Form No: AL_su	bcoc					

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-167916-1 Client Project/Site: L1904244

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Reports Dept.

Authorized for release by: 2/11/2019 5:11:04 PM

Kuth Haye

Ken Hayes, Project Manager II (615)301-5035

ken.hayes@testamericainc.com

·····LINKS ······

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com Page 58 of 70

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

TestAmerica Job ID: 490-167916-1

Client: Alpha Analytical Inc Project/Site: L1904244

Table of Contents

Cover Page	
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

6

8

9

10

11

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1904244

TestAmerica Job ID: 490-167916-1

3

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-167916-1	HA17-GP4 OW	Water	02/01/19 12:00	02/05/19 09:00

3

4

5

6

9

10

11

Case Narrative

Client: Alpha Analytical Inc Project/Site: L1904244 TestAmerica Job ID: 490-167916-1

Job ID: 490-167916-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-167916-1

Comments

No additional comments.

Receipt

The sample was received on 2/5/2019 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.4° C.

GC Semi VOA

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-573728.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

1

4

6

7

8

9

10

11

Definitions/Glossary

Client: Alpha Analytical Inc Project/Site: L1904244

TestAmerica Job ID: 490-167916-1

Glossary

PQL

QC

RER

RLRPD

TEF

TEQ

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Quality Control

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)

Client Sample Results

Client: Alpha Analytical Inc Project/Site: L1904244

Isopropyl acetate (Surr)

TestAmerica Job ID: 490-167916-1

Client Sample ID: HA17-GP4 OW

Date Collected: 02/01/19 12:00 Date Received: 02/05/19 09:00 Lab Sample ID: 490-167916-1

Matrix: Water

02/05/19 15:49

Method: 1671A - Ethanol (GC/FID) Analyte Result Qualifier RL **MDL** Unit D Analyzed Dil Fac Prepared Ethanol 2000 500 ug/L 02/05/19 15:49 ND Surrogate %Recovery Qualifier Limits Analyzed Dil Fac Prepared

70 - 130

87

5

6

6

9

10

QC Sample Results

Client: Alpha Analytical Inc Project/Site: L1904244

Method: 1671A - Ethanol (GC/FID)

TestAmerica Job ID: 490-167916-1

3

3

4

6

8

10

11

RPD

Limit

Lab Sample ID: MB 490-573728/4 Client Sample ID: Method Blank **Matrix: Water Prep Type: Total/NA Analysis Batch: 573728** MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 2000 500 ug/L 02/05/19 15:12 Ethanol ND MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 02/05/19 15:12 Isopropyl acetate (Surr) 89 Lab Sample ID: LCS 490-573728/5 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA** Analysis Batch: 573728 LCS LCS Spike %Rec.

Result Qualifier

LCSD LCSD

51040

Result Qualifier

53870

Unit

ug/L

Unit

ug/L

D %Rec

D %Rec

102

107

Client Sample ID: Lab Control Sample Dup

Limits

70 - 130

%Rec.

Limits

70 - 130

Prep Type: Total/NA

RPD

5

Added

50200

Limits

70 - 130

Spike

Added

Isopropyl acetate (Surr) 84
Lab Sample ID: LCSD 490-573728/6

Matrix: Water

Analysis Batch: 573728

Analyte

Ethanol

Surrogate

Analyte

 Ethanol
 50200

 LCSD
 LCSD

 Surrogate
 %Recovery
 Qualifier
 Limits

 Isopropyl acetate (Surr)
 81
 70 - 130

LCS LCS

%Recovery Qualifier

TestAmerica Nashville

QC Association Summary

Client: Alpha Analytical Inc Project/Site: L1904244 TestAmerica Job ID: 490-167916-1

GC VOA

Analysis Batch: 573728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-167916-1	HA17-GP4 OW	Total/NA	Water	1671A	
MB 490-573728/4	Method Blank	Total/NA	Water	1671A	
LCS 490-573728/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-573728/6	Lab Control Sample Dup	Total/NA	Water	1671A	

А

4

6

7

8

10

11

Lab Chronicle

Client: Alpha Analytical Inc Project/Site: L1904244 TestAmerica Job ID: 490-167916-1

Lab Sample ID: 490-167916-1

Matrix: Water

Date Collected: 02/01/19 12:00 Date Received: 02/05/19 09:00

Client Sample ID: HA17-GP4 OW

Batch Batch Dil Initial Final Batch Prepared **Prep Type** Method Run **Factor Amount Amount** or Analyzed Type Number Analyst Lab TAL NSH Total/NA Analysis 1671A 573728 02/05/19 15:49 ZXS

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

8

9

11

Method Summary

Client: Alpha Analytical Inc Project/Site: L1904244 TestAmerica Job ID: 490-167916-1

2

Method
1671AMethod DescriptionProtocol
Ethanol (GC/FID)Laboratory
TAL NSH

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

A

4

O

6

0

9

10

4 4

Accreditation/Certification Summary

Client: Alpha Analytical Inc TestAmerica Job ID: 490-167916-1

Project/Site: L1904244

Laboratory: TestAmerica Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		EPA Region	Identification Number	Expiration Date
California	State Program	1	9	2938	06-30-19 *
The following analytes the agency does not o	• •	ut the laboratory	y is not certified by the	e governing authority. This	list may include analytes for which
Analysis Method	Prep Method	Matrix	Analyt	е	
1671A		Water	Ethan	ol	
Maine	State Program	1	1	TN00032	11-03-19
The following analytes	are included in this report, bu		y is not certified by the	e governing authority. This	list may include analytes for which
The following analytes the agency does not o	s are included in this report, buffer certification.	ut the laboratory	Ţ		list may include analytes for which
The following analytes	are included in this report, bu		y is not certified by the	e	list may include analytes for which
The following analytes the agency does not o	s are included in this report, buffer certification.	ut the laboratory Matrix Water	Analyt	e	list may include analytes for which 06-30-19
The following analytes the agency does not of Analysis Method 1671A Massachusetts	s are included in this report, buffer certification. Prep Method State Program are included in this report, buffer certification.	ut the laboratory Matrix Water	Analyt Ethand	e bl M-TN032	
The following analytes the agency does not of Analysis Method 1671A Massachusetts The following analytes	s are included in this report, buffer certification. Prep Method State Program are included in this report, buffer certification.	ut the laboratory Matrix Water	Analyt Ethand	e ol M-TN032 e governing authority. This	06-30-19

TestAmerica Nashville

Page 68 of 70 Page 11 of 13 2/11/2019

J

D

7

8

9

10

<u> 11</u>

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

COOLER RECEIPT FORM Nashville, TN

Cooler Received/Opened On 2/5/2019 @ 900			
Time Samples Removed From Cooler 12:54 Time Samples Placed In Storage (3:02	(2 Hour Window)		
1. Tracking # 12 E3 065401 11 78 6686 (last 4 digits, FedEx) Courier: UPS NDA			
IR Gun ID 31470368 pH Strip Lot Chlorine Strip Lot			
2. Temperature of rep. sample or temp blank when opened: Or T Degrees Celsius			
3. If Item #2 temperature is 0°C or less, was the representative sample or temp blank frozen?	YES NO NA		
4. Were custody seals on outside of cooler?	YESNONA		
If yes, how many and where:			
5. Were the seals intact, signed, and dated correctly?	YESNO.		
6. Were custody papers inside cooler?	YESNONA		
I certify that I opened the cooler and answered questions 1-6 (intial)	<u> </u>		
7. Were custody seals on containers: YES NO and Intact	YESNO(NA		
Were these signed and dated correctly?	YESNO.		
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Paper	Other None		
9. Cooling process:	Other None		
10. Did all containers arrive in good condition (unbroken)?	KESNONA		
11. Were all container labels complete (#, date, signed, pres., etc)?	ESNONA		
12. Did all container labels and tags agree with custody papers?	ESNONA		
13a. Were VOA vials received?	ESNONA		
b. Was there any observable headspace present in any VOA vial?	YES. NONA		
Larger than this.			
14. Was there a Trip Blank in this cooler? YES. NONA If multiple coolers, sequence	#		
certify that I unloaded the cooler and answered questions 7-14 (Intial)			
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA		
b. Did the bottle labels indicate that the correct preservatives were used	YES. NONA		
16. Was residual chlorine present?	YESNONA		
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (initial)	12		
17. Were custody papers properly filled out (ink, signed, etc)?	ESNONA		
18. Did you sign the custody papers in the appropriate place?	YESNONA		
19. Were correct containers used for the analysis requested?	YESNONA		
20. Was sufficient amount of sample sent in each container?	ESNONA		
I certify that I entered this project into LIMS and answered questions 17-20 (intial)			
I certify that I attached a label with the unique LIMS number to each container (intial)			
21. Were there Non-Conformance issues at login? YESNo Was a NCM generated? YESNo#			

BIS = Broken in shipment Cooler Receipt Form.doc

LF-J End of Form Revised 8/23/17

		JS.	abcontrac	Subcontract Chain of Custody	Loc: 490	
ANARCH TICAL		Test A 2960 Nashu	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204	thville) ton Drive 34	16/916	Alpha Job Number L1904244
Client	Client Information		Project Information	rmation	Regulatory Requirements/Report Limits	ents/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	cal Labs Drive , MA 01581-1019	Project Location: MA Project Manager: Melissa Gulli Turnaround & Delive	MA Melissa Gulli nd & Delive	t Location: MA t Manager: Melissa Gulli Turnaround & Deliverables Information	State/Federal Program: Regulatory Criteria:	
Phone: 603.319.5010 Email: mgulli@alphalab.com) llab.com	Due Date: 02/12/19 Deliverables:	2/12/19			
		Project Specific	Requireme	Project Specific Requirements and/or Report Requirements	ments	
Refere Additional Comments.	Reference following Alpha Job Number on final report/deliverables: L1904244 Additional Comments: Send all results/reports to subreports@alphalab.com	nber on final report/de ubreports@alphalab.o	eliverables: com		Report to include Method Blank, LCS/LCSD:	I.CSD:
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Analysis		Batch
	HA17-GP4 OW	02-01-19 12:00	WATER	Ethanol by EPA 1671 Revision A		
	 Relinquished By	<u> </u>		Date/Time:	Received By:	Date/Time:
				2/4/19 14:08	doughing deser	02/65/19 OU.OV
Form No: AL_subcoc						
				·	TA-~AS/0.4	

ANALYTICAL REPORT

Lab Number: L1738018

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Report Date: 10/23/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018 **Report Date:** 10/23/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1738018-01	HA17-GP4(OW)	WATER	CAMBRIDGE, MA	10/19/17 10:00	10/19/17
L1738018-02	HA17-GP6(OW)	WATER	CAMBRIDGE, MA	10/19/17 11:35	10/19/17
L1738018-03	HA17-GP1(OW)	WATER	CAMBRIDGE, MA	10/19/17 14:25	10/19/17

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services	at 800	-624-9220	with a	any que	estions.	

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018
Project Number: 131188-002 Report Date: 10/23/17

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1738018-01 through -03 (all submitted samples), did not meet the method required minimum response factor on the lowest calibration standard for 1,4-dioxane (0.0013), as well as the average response factor for 1,4-dioxane.

The continuing calibration standard, associated with L1738018-01 through -03 (all submitted samples), is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

EPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

Dissolved Metals

In reference to question G:

L1738018-01 through -03 (all submitted samples): One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/23/17

ORGANICS

VOLATILES

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

SAMPLE RESULTS

Lab Number: L1738018

Date Collected:

Date Received:

Report Date: 10/23/17

Lab ID: L1738018-01

Client ID: HA17-GP4(OW)

Sample Location: CAMBRIDGE, MA Field Prep: Field F

Field Filtered (Dissolved

10/19/17 10:00

Metals)

10/19/17

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 10/20/17 13:37

Analyst: PK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab						
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	1.7		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE

L1738018-01

HA17-GP4(OW)

CAMBRIDGE, MA

Project Number: 131188-002

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 10/19/17 10:00

Lab Number:

Report Date:

Date Collected: 10/19/17 10:00
Date Received: 10/19/17

Field Prep: Field Filtered (Dissolved

Metals)

L1738018

10/23/17

						Metals)
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboroug	gh Lab					
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

SAMPLE RESULTS

 Lab ID:
 L1738018-01
 Date Collected:
 10/19/17 10:00

 Client ID:
 HA17-GP4(OW)
 Date Received:
 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough La	ıb						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	117	70-130	
Toluene-d8	102	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	106	70-130	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

SAMPLE RESULTS

Lab Number: L1738018

Report Date: 10/23/17

SAMPLE RESUL

Lab ID: L1738018-02 Date Collected: Client ID: HA17-GP6(OW) Date Received:

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

10/19/17

10/19/17 11:35

Matrix: Water
Analytical Method: 97,8260C
Analytical Date: 10/20/17 13:05

Analyst: PK

Chicroform ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	MCP Volatile Organics - Westborough	n Lab					
1,1-Dichloroethane ND ug/l 1.0 1 Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropene ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 2.0 1 Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	2.0		1
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1	1,1-Dichloroethane	ND			1.0		1
Carbon tetrachloride ND ug/l 1.0 1 1.2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Trichlorofubarea ND ug/l 1.0 1 Trichlorofubarea ND ug/l 1.0 1 1,2-Dichloromethane ND ug/l 1.0 1 1,2-Dichloroptopethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1	Chloroform	ND		-	1.0		1
1,2-Dichloropropane ND ug/l 1,0 1 Dibromochloromethane ND ug/l 1,0 1 1,1,2-Trichloroethane ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 Chlorobenzene ND ug/l 1,0 1 Trichlorofluoromethane ND ug/l 1,0 1 1,2-Dichloroethane ND ug/l 1,0 1 1,1-Trichloroethane ND ug/l 1,0 1 Bromodichloromethane ND ug/l 1,0 1 Bromodichloropropene ND ug/l 0,50 1 1,3-Dichloropropene ND ug/l 0,50 1 1,1-Dichloropropene, Total ND ug/l 2,0 1 Bromoform ND ug/l 2,0 1	Carbon tetrachloride	ND			1.0		1
Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroffluoromethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50	1,2-Dichloropropane	ND			1.0		1
Tetrachloroethene	Dibromochloromethane	ND			1.0		1
Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1	1,1,2-Trichloroethane	ND		ug/l	1.0		1
Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1 I,3-Dichloropropene ND ug/l 0.50 1 I,3-Dichloropropene, Total ND ug/l 0.50 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-2,2-Tetrachloroethane ND ug/l 1.0 1 Eromodorm ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 2.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Toluene ND ug/l 2.0 1	Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	1.0		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1
ND	1,2-Dichloroethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dich	1,1,1-Trichloroethane	ND		ug/l	1.0		1
ND	Bromodichloromethane	ND		ug/l	1.0		1
1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene ND	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform ND ug/l 2.0 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 1 1 1 1 1 1 1	1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1.1-Dichloroethane ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Toluene	ND		ug/l	1.0		1
Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1
1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Vinyl chloride	ND		ug/l	1.0		1
trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloroethane	ND		ug/l	2.0		1
-9.	1,1-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene ND ug/l 1.0 1	trans-1,2-Dichloroethene	ND		ug/l	1.0		1
	Trichloroethene	ND		ug/l	1.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE

L1738018-02

HA17-GP6(OW)

CAMBRIDGE, MA

Project Number: 131188-002

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 10/19/17 11:35

Date Received: 10/19/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

Metals)

L1738018

10/23/17

					Metals)
Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborou	gh Lab				
1,2-Dichlorobenzene	ND	ug/l	1.0		1
1,3-Dichlorobenzene	ND	ug/l	1.0		1
1,4-Dichlorobenzene	ND	ug/l	1.0		1
Methyl tert butyl ether	ND	ug/l	2.0		1
p/m-Xylene	ND	ug/l	2.0		1
o-Xylene	ND	ug/l	1.0		1
Xylene (Total)	ND	ug/l	1.0		1
cis-1,2-Dichloroethene	ND	ug/l	1.0		1
1,2-Dichloroethene (total)	ND	ug/l	1.0		1
Dibromomethane	ND	ug/l	2.0		1
1,2,3-Trichloropropane	ND	ug/l	2.0		1
Styrene	ND	ug/l	1.0		1
Dichlorodifluoromethane	ND	ug/l	2.0		1
Acetone	ND	ug/l	5.0		1
Carbon disulfide	ND	ug/l	2.0		1
2-Butanone	ND	ug/l	5.0		1
4-Methyl-2-pentanone	ND	ug/l	5.0		1
2-Hexanone	ND	ug/l	5.0		1
Bromochloromethane	ND	ug/l	2.0		1
Tetrahydrofuran	ND	ug/l	2.0		1
2,2-Dichloropropane	ND	ug/l	2.0		1
1,2-Dibromoethane	ND	ug/l	2.0		1
1,3-Dichloropropane	ND	ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND	ug/l	1.0		1
Bromobenzene	ND	ug/l	2.0		1
n-Butylbenzene	ND	ug/l	2.0		1
sec-Butylbenzene	ND	ug/l	2.0		1
tert-Butylbenzene	ND	ug/l	2.0		1
o-Chlorotoluene	ND	ug/l	2.0		1
p-Chlorotoluene	ND	ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.0		1
Hexachlorobutadiene	ND	ug/l	0.60		1
Isopropylbenzene	ND	ug/l	2.0		1
p-Isopropyltoluene	ND	ug/l	2.0		1
Naphthalene	ND	ug/l	2.0		1
n-Propylbenzene	ND	ug/l	2.0		1
1,2,3-Trichlorobenzene	ND	ug/l	2.0		1
1,2,4-Trichlorobenzene	ND	ug/l	2.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

SAMPLE RESULTS

 Lab ID:
 L1738018-02
 Date Collected:
 10/19/17 11:35

 Client ID:
 HA17-GP6(OW)
 Date Received:
 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborough La	ıb						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	114	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	103	70-130	
Dibromofluoromethane	108	70-130	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

SAMPLE RESULTS

L1738018

Lab Number:

Report Date: 10/23/17

Lab ID: L1738018-03

Client ID: HA17-GP1(OW)

Sample Location: CAMBRIDGE, MA Date Collected: 10/19/17 14:25

Date Received: 10/19/17

Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Water Analytical Method: 97,8260C Analytical Date: 10/20/17 12:34

Analyst: PΚ

Chicroform ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
ND	MCP Volatile Organics - Westborough	n Lab					
1,1-Dichloroethane ND ug/l 1.0 1 Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropene ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 2.0 1 Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1	Methylene chloride	ND		ug/l	2.0		1
Chloroform ND ug/l 1.0 1 Carbon tetrachloride ND ug/l 1.0 1 1,2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 1.0 1 1,1-1-Trichloroethane ND ug/l 0.50 1 1,1-1-Trichloroethane ND ug/l 0.50 1	1,1-Dichloroethane	ND			1.0		1
Carbon tetrachloride ND ug/l 1.0 1 1.2-Dichloropropane ND ug/l 1.0 1 Dibromochloromethane ND ug/l 1.0 1 1.1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Tetrachloroethane ND ug/l 1.0 1 Trichlorofubarea ND ug/l 1.0 1 Trichlorofubarea ND ug/l 1.0 1 1,2-Dichloromethane ND ug/l 1.0 1 1,2-Dichloroptopethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50 1	Chloroform	ND		-	1.0		1
1,2-Dichloropropane ND ug/l 1,0 1 Dibromochloromethane ND ug/l 1,0 1 1,1,2-Trichloroethane ND ug/l 1,0 1 Tetrachloroethane ND ug/l 1,0 1 Chlorobenzene ND ug/l 1,0 1 Trichlorofluoromethane ND ug/l 1,0 1 1,2-Dichloroethane ND ug/l 1,0 1 1,1-Trichloroethane ND ug/l 1,0 1 Bromodichloromethane ND ug/l 1,0 1 Bromodichloropropene ND ug/l 0,50 1 1,3-Dichloropropene ND ug/l 0,50 1 1,1-Dichloropropene, Total ND ug/l 2,0 1 Bromoform ND ug/l 2,0 1	Carbon tetrachloride	ND			1.0		1
Dibromochloromethane ND ug/l 1.0 1 1,1,2-Trichloroethane ND ug/l 1.0 1 Tetrachloroethene ND ug/l 1.0 1 Chlorobenzene ND ug/l 1.0 1 Trichloroffluoromethane ND ug/l 1.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 0.50	1,2-Dichloropropane	ND			1.0		1
Tetrachloroethene	Dibromochloromethane	ND			1.0		1
Chlorobenzene ND ug/l 1.0 1 Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1,1-Trichloroethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 1.0 1 Bromodichloromethane ND ug/l 0.50 1 trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 1.0 1	1,1,2-Trichloroethane	ND		ug/l	1.0		1
Trichlorofluoromethane ND ug/l 2.0 1 1,2-Dichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 1,1-Trichloroethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 1.0 1 Eromodichloromethane ND ug/l 0.50 1 Itans-1,3-Dichloropropene ND ug/l 0.50 1 I,3-Dichloropropene ND ug/l 0.50 1 I,3-Dichloropropene, Total ND ug/l 0.50 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-Dichloropropene ND ug/l 2.0 1 I,1-2,2-Tetrachloroethane ND ug/l 1.0 1 Eromodorm ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 2.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Ethylbenzene ND ug/l 2.0 1 Chloromethane ND ug/l 2.0 1 Toluene ND ug/l 2.0 1	Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	Chlorobenzene	ND		ug/l	1.0		1
1,1,1-Trichloroethane	Trichlorofluoromethane	ND		ug/l	2.0		1
ND	1,2-Dichloroethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene ND ug/l 0.50 1 cis-1,3-Dichloropropene ND ug/l 0.50 1 1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dich	1,1,1-Trichloroethane	ND		ug/l	1.0		1
ND	Bromodichloromethane	ND		ug/l	1.0		1
1,3-Dichloropropene, Total ND ug/l 0.50 1 1,1-Dichloropropene ND ug/l 2.0 1 Bromoform ND ug/l 2.0 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	trans-1,3-Dichloropropene	ND		ug/l	0.50		1
1,1-Dichloropropene ND	cis-1,3-Dichloropropene	ND		ug/l	0.50		1
Bromoform ND ug/l 2.0 1 1 1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 1 1 1 1 1 1 1	1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1,2,2-Tetrachloroethane ND ug/l 1.0 1 Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	1,1-Dichloropropene	ND		ug/l	2.0		1
Benzene ND ug/l 0.50 1 Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 1.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 1.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromoform	ND		ug/l	2.0		1
Toluene ND ug/l 1.0 1 Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1.1-Dichloroethane ND ug/l 1.0 1	1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Ethylbenzene ND ug/l 1.0 1 Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Benzene	ND		ug/l	0.50		1
Chloromethane ND ug/l 2.0 1 Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Toluene	ND		ug/l	1.0		1
Bromomethane ND ug/l 2.0 1 Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride ND ug/l 1.0 1 Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloromethane	ND		ug/l	2.0		1
Chloroethane ND ug/l 2.0 1 1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Bromomethane	ND		ug/l	2.0		1
1,1-Dichloroethene ND ug/l 1.0 1 trans-1,2-Dichloroethene ND ug/l 1.0 1	Vinyl chloride	ND		ug/l	1.0		1
trans-1,2-Dichloroethene ND ug/l 1.0 1	Chloroethane	ND		ug/l	2.0		1
-9.	1,1-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene ND ug/l 1.0 1	trans-1,2-Dichloroethene	ND		ug/l	1.0		1
	Trichloroethene	ND		ug/l	1.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE

L1738018-03

HA17-GP1(OW)

CAMBRIDGE, MA

Project Number: 131188-002

Lab ID:

Client ID:

Sample Location:

SAMPLE RESULTS

Date Collected: 10/19/17 14:25

Date Received: 10/19/17

Lab Number:

Report Date:

Field Prep: Field Filtered (Dissolved

L1738018

10/23/17

						Metals)
Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westboro	ough Lab					
1,2-Dichlorobenzene	ND		ug/l	1.0		1
1,3-Dichlorobenzene	ND		ug/l	1.0		1
1,4-Dichlorobenzene	ND		ug/l	1.0		1
Methyl tert butyl ether	ND		ug/l	2.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-Xylene	ND		ug/l	1.0		1
Xylene (Total)	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
1,2-Dichloroethene (total)	ND		ug/l	1.0		1
Dibromomethane	ND		ug/l	2.0		1
1,2,3-Trichloropropane	ND		ug/l	2.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	2.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	2.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.0		1
Tetrahydrofuran	ND		ug/l	2.0		1
2,2-Dichloropropane	ND		ug/l	2.0		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,3-Dichloropropane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0		1
Bromobenzene	ND		ug/l	2.0		1
n-Butylbenzene	ND		ug/l	2.0		1
sec-Butylbenzene	ND		ug/l	2.0		1
tert-Butylbenzene	ND		ug/l	2.0		1
o-Chlorotoluene	ND		ug/l	2.0		1
p-Chlorotoluene	ND		ug/l	2.0		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		1
Hexachlorobutadiene	ND		ug/l	0.60		1
Isopropylbenzene	ND		ug/l	2.0		1
p-Isopropyltoluene	ND		ug/l	2.0		1
Naphthalene	ND		ug/l	2.0		1
n-Propylbenzene	ND		ug/l	2.0		1
1,2,3-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trichlorobenzene	ND		ug/l	2.0		1

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 14:25

Client ID: HA17-GP1(OW) Date Received: 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	gh Lab						
1,3,5-Trimethylbenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.0		1	
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	101	70-130	
Dibromofluoromethane	106	70-130	

L1738018

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/20/17 05:14

Analyst: MM

arameter	Result	Qualifier	Units	RL	MDL
ICP Volatile Organics - Westl	borough Lab for	sample(s):	01-03	Batch: \	WG1054501-5
Methylene chloride	ND		ug/l	2.0	
1,1-Dichloroethane	ND		ug/l	1.0	
Chloroform	ND		ug/l	1.0	
Carbon tetrachloride	ND		ug/l	1.0	
1,2-Dichloropropane	ND		ug/l	1.0	
Dibromochloromethane	ND		ug/l	1.0	
1,1,2-Trichloroethane	ND		ug/l	1.0	
Tetrachloroethene	ND		ug/l	1.0	
Chlorobenzene	ND		ug/l	1.0	
Trichlorofluoromethane	ND		ug/l	2.0	
1,2-Dichloroethane	ND		ug/l	1.0	
1,1,1-Trichloroethane	ND		ug/l	1.0	
Bromodichloromethane	ND		ug/l	1.0	
trans-1,3-Dichloropropene	ND		ug/l	0.50	
cis-1,3-Dichloropropene	ND		ug/l	0.50	
1,3-Dichloropropene, Total	ND		ug/l	0.50	
1,1-Dichloropropene	ND		ug/l	2.0	
Bromoform	ND		ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0	
Benzene	ND		ug/l	0.50	
Toluene	ND		ug/l	1.0	
Ethylbenzene	ND		ug/l	1.0	
Chloromethane	ND		ug/l	2.0	
Bromomethane	ND		ug/l	2.0	
Vinyl chloride	ND		ug/l	1.0	
Chloroethane	ND		ug/l	2.0	
1,1-Dichloroethene	ND		ug/l	1.0	
trans-1,2-Dichloroethene	ND		ug/l	1.0	
Trichloroethene	ND		ug/l	1.0	

L1738018

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number:

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/20/17 05:14

Analyst: MM

arameter	Result	Qualifier	Units	RI	L MDL
CP Volatile Organics	- Westborough Lab for	sample(s):	01-03	Batch:	WG1054501-5
1,2-Dichlorobenzene	ND		ug/l	1.0)
1,3-Dichlorobenzene	ND		ug/l	1.0)
1,4-Dichlorobenzene	ND		ug/l	1.0)
Methyl tert butyl ether	ND		ug/l	2.0)
p/m-Xylene	ND		ug/l	2.0)
o-Xylene	ND		ug/l	1.0)
Xylene (Total)	ND		ug/l	1.0)
cis-1,2-Dichloroethene	ND		ug/l	1.0)
1,2-Dichloroethene (total)	ND		ug/l	1.0)
Dibromomethane	ND		ug/l	2.0)
1,2,3-Trichloropropane	ND		ug/l	2.0)
Styrene	ND		ug/l	1.0)
Dichlorodifluoromethane	ND		ug/l	2.0)
Acetone	ND		ug/l	5.0)
Carbon disulfide	ND		ug/l	2.0)
2-Butanone	ND		ug/l	5.0)
4-Methyl-2-pentanone	ND		ug/l	5.0)
2-Hexanone	ND		ug/l	5.0)
Bromochloromethane	ND		ug/l	2.0)
Tetrahydrofuran	ND		ug/l	2.0)
2,2-Dichloropropane	ND		ug/l	2.0)
1,2-Dibromoethane	ND		ug/l	2.0)
1,3-Dichloropropane	ND		ug/l	2.0)
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0)
Bromobenzene	ND		ug/l	2.0)
n-Butylbenzene	ND		ug/l	2.0)
sec-Butylbenzene	ND		ug/l	2.0)
tert-Butylbenzene	ND		ug/l	2.0)
o-Chlorotoluene	ND		ug/l	2.0)

L1738018

Lab Number:

Project Name: 60 CAMBRIDGEPARK DRIVE

> Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 97,8260C 10/20/17 05:14

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL	
MCP Volatile Organics - Westborou	gh Lab for	sample(s):	01-03	Batch: WG1	054501-5	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.60		
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		
1,4-Dioxane	ND		ug/l	250		

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130
Dibromofluoromethane	100	70-130

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG105	4501-3	WG1054501-4			
Methylene chloride	97		98		70-130	1	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	78		80		70-130	3	20	
1,2-Dichloropropane	110		110		70-130	0	20	
Dibromochloromethane	84		83		70-130	1	20	
1,1,2-Trichloroethane	110		100		70-130	10	20	
Tetrachloroethene	96		97		70-130	1	20	
Chlorobenzene	99		100		70-130	1	20	
Trichlorofluoromethane	89		88		70-130	1	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	89		90		70-130	1	20	
Bromodichloromethane	97		97		70-130	0	20	
trans-1,3-Dichloropropene	84		81		70-130	4	20	
cis-1,3-Dichloropropene	87		88		70-130	1	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	74		74		70-130	0	20	
1,1,2,2-Tetrachloroethane	110		100		70-130	10	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	85		84		70-130	1	20	
Bromomethane	86		81		70-130	6	20	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG10	54501-3	WG1054501-4			
Vinyl chloride	120		130		70-130	8	20	
Chloroethane	110		110		70-130	0	20	
1,1-Dichloroethene	96		95		70-130	1	20	
trans-1,2-Dichloroethene	100		99		70-130	1	20	
Trichloroethene	96		96		70-130	0	20	
1,2-Dichlorobenzene	99		99		70-130	0	20	
1,3-Dichlorobenzene	98		99		70-130	1	20	
1,4-Dichlorobenzene	98		97		70-130	1	20	
Methyl tert butyl ether	90		88		70-130	2	20	
p/m-Xylene	95		95		70-130	0	20	
o-Xylene	95		95		70-130	0	20	
cis-1,2-Dichloroethene	100		100		70-130	0	20	
Dibromomethane	100		100		70-130	0	20	
1,2,3-Trichloropropane	100		100		70-130	0	20	
Styrene	100		100		70-130	0	20	
Dichlorodifluoromethane	51	Q	52	Q	70-130	2	20	
Acetone	110		110		70-130	0	20	
Carbon disulfide	85		86		70-130	1	20	
2-Butanone	110		110		70-130	0	20	
4-Methyl-2-pentanone	94		89		70-130	5	20	
2-Hexanone	94		91		70-130	3	20	
Bromochloromethane	96		94		70-130	2	20	
Tetrahydrofuran	100		99		70-130	1	20	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG105	4501-3 V	NG1054501-4			
2,2-Dichloropropane	77		76		70-130	1	20	
1,2-Dibromoethane	94		91		70-130	3	20	
1,3-Dichloropropane	100		100		70-130	0	20	
1,1,1,2-Tetrachloroethane	84		84		70-130	0	20	
Bromobenzene	98		99		70-130	1	20	
n-Butylbenzene	110		110		70-130	0	20	
sec-Butylbenzene	100		100		70-130	0	20	
tert-Butylbenzene	94		96		70-130	2	20	
o-Chlorotoluene	100		99		70-130	1	20	
p-Chlorotoluene	96		96		70-130	0	20	
1,2-Dibromo-3-chloropropane	80		82		70-130	2	20	
Hexachlorobutadiene	94		94		70-130	0	20	
Isopropylbenzene	99		100		70-130	1	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	110		100		70-130	10	20	
n-Propylbenzene	100		100		70-130	0	20	
1,2,3-Trichlorobenzene	110		110		70-130	0	20	
1,2,4-Trichlorobenzene	110		110		70-130	0	20	
1,3,5-Trimethylbenzene	100		100		70-130	0	20	
1,2,4-Trimethylbenzene	110		100		70-130	10	20	
Ethyl ether	100		100		70-130	0	20	
Isopropyl Ether	110		110		70-130	0	20	
Ethyl-Tert-Butyl-Ether	92		91		70-130	1	20	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number:

L1738018

Report Date:

10/23/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP Volatile Organics - Westborough Lal	o Associated samp	le(s): 01-03	Batch: WG10	54501-3 W	/G1054501-4				
Tertiary-Amyl Methyl Ether	84		82		70-130	2		20	
1,4-Dioxane	86		96		70-130	11		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	102	101	70-130
Toluene-d8	101	101	70-130
4-Bromofluorobenzene	93	96	70-130
Dibromofluoromethane	100	98	70-130

PETROLEUM HYDROCARBONS

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: L1738018-01 Date Collected: 10/19/17 10:00

Client ID: HA17-GP4(OW) Date Received: 10/19/17
Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved)

(Dissolved Metals)

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/20/17 12:21

Analyst: MKS

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	116		70-130	
2,5-Dibromotoluene-FID	125		70-130	

Extraction Method:

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: Date Collected: 10/19/17 10:00

Client ID: HA17-GP4(OW) Date Received: 10/19/17
Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered

(Dissolved Metals)

EPA 3510C

Matrix: Water

Analytical Method: 98,EPH-04-1.1 Extraction Date: 10/20/17 03:14
Analytical Date: 10/21/17 20:44 Cleanup Method1: EPH-04-1

Analyst: DG Cleanup Date1: 10/21/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	47		40-140	
o-Terphenyl	68		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	76		40-140	

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: L1738018-02 Date Collected: 10/19/17 11:35

Client ID: HA17-GP6(OW) Date Received: 10/19/17
Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered

(Dissolved Metals)

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/20/17 13:01

Analyst: MKS

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	106		70-130	
2,5-Dibromotoluene-FID	114		70-130	

Extraction Method:

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: L1738018-02 Date Collected: 10/19/17 11:35

Client ID: HA17-GP6(OW) Date Received: 10/19/17
Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered

(Dissolved Metals)

EPA 3510C

Matrix: Water

Analytical Method: 98,EPH-04-1.1 Extraction Date: 10/20/17 03:14
Analytical Date: 10/21/17 21:15 Cleanup Method1: EPH-04-1

Analytical Date: 10/21/17 21:15 Cleanup Method1: EPH-04-1

Analyst: DG Cleanup Date1: 10/21/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough L	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	42		40-140	
o-Terphenyl	55		40-140	
2-Fluorobiphenyl	77		40-140	
2-Bromonaphthalene	79		40-140	

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: L1738018-03 Date Collected: 10/19/17 14:25

Client ID: HA17-GP1(OW) Date Received: 10/19/17
Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered

(Dissolved Metals)

Matrix: Water

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/20/17 13:41

Analyst: MKS

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	ND		ug/l	50.0		1
C9-C10 Aromatics	ND		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
2,5-Dibromotoluene-PID	95		70-130	
2,5-Dibromotoluene-FID	103		70-130	

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

Lab ID: L1738018-03 Date Collected: 10/19/17 14:25

Client ID: HA17-GP1(OW) Date Received: 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 10/20/17 03:14
Analytical Date: 10/23/17 08:36 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 10/22/17

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Extractable Petroleum Hydrocarbons - Westborough Lab								
C9-C18 Aliphatics	ND		ug/l	100		1		
C19-C36 Aliphatics	ND		ug/l	100		1		
C11-C22 Aromatics	ND		ug/l	100		1		
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1		

		Acceptance						
Surrogate	% Recovery	Qualifier	Criteria					
Chloro-Octadecane	47		40-140					
o-Terphenyl	69		40-140					
2-Fluorobiphenyl	77		40-140					
2-Bromonaphthalene	80		40-140					

L1738018

Lab Number:

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002 Report Date: 10/23/17

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 10/19/17 17:54

Analyst: SR Extraction Method: EPA 3510C 10/19/17 04:50 Extraction Date: EPH-04-1 Cleanup Method:

Cleanup Date: 10/19/17

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbon	s - Westbor	ough Lab f	or sample(s):	01-02	Batch: WG1053902-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

	Acceptance					
Surrogate	%Recovery Qua	alifier Criteria				
	00	40.440				
Chloro-Octadecane	62	40-140				
o-Terphenyl	93	40-140				
2-Fluorobiphenyl	101	40-140				
2-Bromonaphthalene	99	40-140				

L1738018

Lab Number:

Project Name: 60 CAMBRIDGEPARK DRIVE

> Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 98,EPH-04-1.1 10/23/17 09:08

Analyst: SR

Extraction Method: EPA 3510C Extraction Date: 10/19/17 04:50 Cleanup Method: EPH-04-1

Cleanup Method: EPH-04-1 Cleanup Date: 10/22/17

Parameter	Result	Qualifier	Units	RL	MDL
Extractable Petroleum Hydrocarbons	s - Westbor	ough Lab f	or sample(s):	03	Batch: WG1055008-1
C9-C18 Aliphatics	ND		ug/l	100	
C19-C36 Aliphatics	ND		ug/l	100	
C11-C22 Aromatics	ND		ug/l	100	
C11-C22 Aromatics, Adjusted	ND		ug/l	100	

	Accepta				
Surrogate	%Recovery C	Qualifier	Criteria		
			_		
Chloro-Octadecane	67		40-140		
o-Terphenyl	65		40-140		
2-Fluorobiphenyl	67		40-140		
2-Bromonaphthalene	73		40-140		

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

> Method Blank Analysis Batch Quality Control

Analytical Method: 100,VPH-04-1.1 Analytical Date: 10/20/17 11:01

Analyst: MZ

Parameter	Result	Qualifier	Units	RL		MDL
Volatile Petroleum Hydrocarbons -	Westboroug	h Lab for s	sample(s):	01-03	Batch:	WG1055141-4
C5-C8 Aliphatics	ND		ug/l	50.0		
C9-C12 Aliphatics	ND		ug/l	50.0		
C9-C10 Aromatics	ND		ug/l	50.0		
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		

	Acceptance					
Surrogate	%Recovery Qualifier	Criteria				
		_				
2,5-Dibromotoluene-PID	109	70-130				
2,5-Dibromotoluene-FID	119	70-130				

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recove	•	D (Qual	RPD Limits
Extractable Petroleum Hydrocarbons - West	borough Lab As	sociated sample(s	s): 01-02	Batch: WG	1053902-2	WG1053902-	3		
C9-C18 Aliphatics	68		75		40-140	1	0		25
C19-C36 Aliphatics	83		82		40-140	,			25
C11-C22 Aromatics	94		75		40-140	2	2		25
Naphthalene	80		69		40-140	1	5		25
2-Methylnaphthalene	83		70		40-140	1	7		25
Acenaphthylene	88		74		40-140	1	7		25
Acenaphthene	93		74		40-140	2	3		25
Fluorene	90		74		40-140	2	0		25
Phenanthrene	95		76		40-140	2	2		25
Anthracene	95		75		40-140	2	4		25
Fluoranthene	96		74		40-140	2	6	Q	25
Pyrene	100		76		40-140	2	7	Q	25
Benzo(a)anthracene	94		72		40-140	2	7	Q	25
Chrysene	101		79		40-140	2	4		25
Benzo(b)fluoranthene	91		70		40-140	2	6	Q	25
Benzo(k)fluoranthene	91		70		40-140	2	6	Q	25
Benzo(a)pyrene	87		67		40-140	2	6	Q	25
Indeno(1,2,3-cd)Pyrene	81		64		40-140	2	3		25
Dibenzo(a,h)anthracene	90		72		40-140	2	2		25
Benzo(ghi)perylene	79		62		40-140	2	4		25
Nonane (C9)	50		59		30-140	1	7		25
Decane (C10)	58		68		40-140	1	6		25
Dodecane (C12)	64		73		40-140	1	3		25

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery		LCSD Recovery	Qua	%Recove I Limits	ry RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - V	Vestborough Lab Asso	ociated sample(s)	: 01-02	Batch: \	WG1053902-2	WG1053902-3		
Tetradecane (C14)	69		76		40-140	10		25
Hexadecane (C16)	73		78		40-140	7		25
Octadecane (C18)	77		79		40-140	3		25
Nonadecane (C19)	78		79		40-140	1		25
Eicosane (C20)	79		79		40-140	0		25
Docosane (C22)	80		79		40-140	1		25
Tetracosane (C24)	80		78		40-140	3		25
Hexacosane (C26)	80		78		40-140	3		25
Octacosane (C28)	79		77		40-140	3		25
Triacontane (C30)	79		78		40-140	1		25
Hexatriacontane (C36)	77		75		40-140	3		25

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	60	58	40-140
o-Terphenyl	93	73	40-140
2-Fluorobiphenyl	100	80	40-140
2-Bromonaphthalene	101	78	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab As	sociated sample(s): 03 Ba	tch: WG1055008-2 WG1055	008-3	
C9-C18 Aliphatics	74	73	40-140	1	25
C19-C36 Aliphatics	91	81	40-140	12	25
C11-C22 Aromatics	76	76	40-140	0	25
Naphthalene	60	64	40-140	6	25
2-Methylnaphthalene	62	66	40-140	6	25
Acenaphthylene	67	71	40-140	6	25
Acenaphthene	67	71	40-140	6	25
Fluorene	70	73	40-140	4	25
Phenanthrene	73	75	40-140	3	25
Anthracene	74	76	40-140	3	25
Fluoranthene	76	77	40-140	1	25
Pyrene	77	78	40-140	1	25
Benzo(a)anthracene	77	77	40-140	0	25
Chrysene	82	83	40-140	1	25
Benzo(b)fluoranthene	78	78	40-140	0	25
Benzo(k)fluoranthene	77	77	40-140	0	25
Benzo(a)pyrene	74	75	40-140	1	25
Indeno(1,2,3-cd)Pyrene	76	77	40-140	1	25
Dibenzo(a,h)anthracene	79	82	40-140	4	25
Benzo(ghi)perylene	70	72	40-140	3	25
Nonane (C9)	56	60	30-140	7	25
Decane (C10)	66	68	40-140	3	25
Dodecane (C12)	70	72	40-140	3	25

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - Westb	orough Lab Ass	sociated sampl	le(s): 03 Batc	h: WG10550	008-2 WG1055	008-3		
Tetradecane (C14)	74		74		40-140	0		25
Hexadecane (C16)	79		75		40-140	5		25
Octadecane (C18)	86		80		40-140	7		25
Nonadecane (C19)	86		78		40-140	10		25
Eicosane (C20)	89		80		40-140	11		25
Docosane (C22)	90		80		40-140	12		25
Tetracosane (C24)	90		80		40-140	12		25
Hexacosane (C26)	91		80		40-140	13		25
Octacosane (C28)	91		81		40-140	12		25
Triacontane (C30)	90		80		40-140	12		25
Hexatriacontane (C36)	92		82		40-140	11		25

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	77	70	40-140
o-Terphenyl	73	72	40-140
2-Fluorobiphenyl	76	76	40-140
2-Bromonaphthalene	81	84	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number: L1738018

nrameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Petroleum Hydrocarbons - Westbord	ough Lab Associ	ated sample(s): 01-03 Batch	n: WG1055141-2 WG10551	41-3	
C5-C8 Aliphatics	100	99	70-130	1	25
C9-C12 Aliphatics	111	108	70-130	3	25
C9-C10 Aromatics	97	95	70-130	2	25
Benzene	92	91	70-130	1	25
Toluene	93	91	70-130	2	25
Ethylbenzene	96	94	70-130	2	25
p/m-Xylene	95	93	70-130	2	25
o-Xylene	94	92	70-130	2	25
Methyl tert butyl ether	87	88	70-130	1	25
Naphthalene	93	96	70-130	2	25
1,2,4-Trimethylbenzene	97	95	70-130	2	25
Pentane	109	106	70-130	3	25
2-Methylpentane	105	103	70-130	2	25
2,2,4-Trimethylpentane	105	103	70-130	2	25
n-Nonane	108	105	30-130	3	25
n-Decane	112	109	70-130	3	25
n-Butylcyclohexane	112	110	70-130	2	25

Surrogate	LCS	LCSD	Acceptance
	%Recovery Qua	al %Recovery 0	Qual Criteria
2,5-Dibromotoluene-PID 2,5-Dibromotoluene-FID	96	93	70-130
	103	99	70-130

METALS

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

SAMPLE RESULTS

 Lab ID:
 L1738018-01
 Date Collected:
 10/19/17 10:00

 Client ID:
 HA17-GP4(OW)
 Date Received:
 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered
Matrix: Water (Dissolved

Metals)

Dilution Date Date Prep **Analytical** Method **Prepared** Factor **Analyzed** Method Result Qualifier RL MDL **Parameter** Units **Analyst** MCP Dissolved Metals - Mansfield Lab Antimony, Dissolved ND mg/l 0.0040 1 10/20/17 10:15 10/20/17 15:25 EPA 3005A 97,6020A AM 0.009 0.005 1 97,6010C ΒV Arsenic, Dissolved mg/l 10/20/17 10:15 10/21/17 13:44 EPA 3005A 1 0.055 0.010 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C BV Barium, Dissolved mg/l Beryllium, Dissolved ND mg/l 0.0005 1 10/20/17 10:15 10/20/17 15:25 EPA 3005A 97,6020A AM 0.004 1 97,6010C Cadmium, Dissolved ND mg/l 10/20/17 10:15 10/21/17 13:44 EPA 3005A BV0.010 1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C ΒV Chromium, Dissolved ND mg/l Lead, Dissolved ND mg/l 0.010 --1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C BV Mercury, Dissolved ND mg/l 0.0002 1 10/20/17 11:07 10/21/17 15:29 EPA 7470A 97,7470A MG 1 97,6010C BV Nickel, Dissolved ND mg/l 0.025 10/20/17 10:15 10/21/17 13:44 EPA 3005A Selenium, Dissolved ND mg/l 0.010 --1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C BVSilver, Dissolved ND 0.007 1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C ΒV mg/l --Thallium, Dissolved ND mg/l 0.0005 --1 10/20/17 10:15 10/20/17 15:25 EPA 3005A 97,6020A AM Vanadium, Dissolved ND 0.010 1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97,6010C BVmg/l Zinc, Dissolved ND mg/l 0.050 1 10/20/17 10:15 10/21/17 13:44 EPA 3005A 97.6010C ΒV

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

SAMPLE RESULTS

 Lab ID:
 L1738018-02
 Date Collected:
 10/19/17 11:35

 Client ID:
 HA17-GP6(OW)
 Date Received:
 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered

Matrix: Water (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tala Mar	ofiold Lob									
IVICE DISSUIVED IVIE	lais - iviai	isileiu Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	10/20/17 10:15	10/20/17 15:29	EPA 3005A	97,6020A	AM
Arsenic, Dissolved	ND		mg/l	0.005		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Barium, Dissolved	0.340		mg/l	0.010		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Beryllium, Dissolved	ND		mg/l	0.0005		1	10/20/17 10:15	10/20/17 15:29	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.004		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Chromium, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Lead, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Mercury, Dissolved	ND		mg/l	0.0002		1	10/20/17 11:07	10/21/17 15:31	EPA 7470A	97,7470A	MG
Nickel, Dissolved	0.031		mg/l	0.025		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Selenium, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Silver, Dissolved	ND		mg/l	0.007		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Thallium, Dissolved	ND		mg/l	0.0005		1	10/20/17 10:15	10/20/17 15:29	EPA 3005A	97,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV
Zinc, Dissolved	1.01		mg/l	0.050		1	10/20/17 10:15	10/21/17 13:49	EPA 3005A	97,6010C	BV

Project Name: 60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

SAMPLE RESULTS

 Lab ID:
 L1738018-03
 Date Collected:
 10/19/17 14:25

 Client ID:
 HA17-GP1(OW)
 Date Received:
 10/19/17

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered
Matrix: Water (Dissolved

Metals)

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved Me	tals - Mar	nsfield Lab									
Antimony, Dissolved	ND		mg/l	0.0040		1	10/20/17 10:15	5 10/20/17 15:33	EPA 3005A	97,6020A	AM
Arsenic, Dissolved	0.012		mg/l	0.005		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Barium, Dissolved	0.037		mg/l	0.010		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Beryllium, Dissolved	ND		mg/l	0.0005		1	10/20/17 10:15	5 10/20/17 15:33	EPA 3005A	97,6020A	AM
Cadmium, Dissolved	ND		mg/l	0.004		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Chromium, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Lead, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Mercury, Dissolved	ND		mg/l	0.0002		1	10/20/17 11:07	7 10/21/17 15:33	EPA 7470A	97,7470A	MG
Nickel, Dissolved	ND		mg/l	0.025		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Selenium, Dissolved	ND		mg/l	0.010		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Silver, Dissolved	ND		mg/l	0.007		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Thallium, Dissolved	ND		mg/l	0.0005		1	10/20/17 10:15	5 10/20/17 15:33	EPA 3005A	97,6020A	AM
Vanadium, Dissolved	ND		mg/l	0.0100		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV
Zinc, Dissolved	ND		mg/l	0.050		1	10/20/17 10:15	5 10/21/17 13:53	EPA 3005A	97,6010C	BV

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number:

L1738018

Report Date: 10/23/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab for	sample(s):	01-03	Batch:	WG105444	18-1			
Arsenic, Dissolved	ND	mg/l	0.005		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Barium, Dissolved	ND	mg/l	0.010		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Cadmium, Dissolved	ND	mg/l	0.004		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Chromium, Dissolved	ND	mg/l	0.010		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Lead, Dissolved	ND	mg/l	0.010		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Nickel, Dissolved	ND	mg/l	0.025		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Selenium, Dissolved	ND	mg/l	0.010		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Silver, Dissolved	ND	mg/l	0.007		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Vanadium, Dissolved	ND	mg/l	0.010		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV
Zinc, Dissolved	ND	mg/l	0.050		1	10/20/17 10:15	10/21/17 11:18	97,6010C	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab	for sample(s):	01-03	Batch:	WG1054485	5-1			
Mercury, Dissolved	ND	mg/l	0.0002		1	10/20/17 11:07	10/21/17 15:24	97,7470A	MG

Prep Information

Digestion Method: EPA 7470A

Parameter	Result Quali	fier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP Dissolved Metals	- Mansfield Lab	for sample(s):	01-03	Batch:	WG105459	95-1			
Antimony, Dissolved	ND	mg/l	0.0040		1	10/20/17 10:15	10/20/17 15:12	97,6020A	AM
Beryllium, Dissolved	ND	mg/l	0.0005		1	10/20/17 10:15	10/20/17 15:12	97,6020A	AM
Thallium, Dissolved	ND	mg/l	0.0005		1	10/20/17 10:15	10/20/17 15:12	97,6020A	AM

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1738018

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3005A

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number:

L1738018

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Associa	ted sample(s): 0	1-03 E	Satch: WG1054448-2	WG105444	18-3			
Arsenic, Dissolved	108		110		80-120	2		20
Barium, Dissolved	98		98		80-120	0		20
Cadmium, Dissolved	106		107		80-120	1		20
Chromium, Dissolved	97		98		80-120	1		20
Lead, Dissolved	99		100		80-120	1		20
Nickel, Dissolved	94		95		80-120	1		20
Selenium, Dissolved	109		109		80-120	0		20
Silver, Dissolved	101		103		80-120	2		20
Vanadium, Dissolved	99		101		80-120	2		20
Zinc, Dissolved	100		101		80-120	1		20
1CP Dissolved Metals - Mansfield Lab Associa	ted sample(s): 0°	1-03 E	satch: WG1054485-2	WG105448	35-3			
Mercury, Dissolved	104		103		80-120	1		20
ICP Dissolved Metals - Mansfield Lab Associa	ted sample(s): 0°	1-03 E	Batch: WG1054595-2	WG105459	95-3			
Antimony, Dissolved	95		96		80-120	1		20
Beryllium, Dissolved	104		102		80-120	2		20
Thallium, Dissolved	94		95		80-120	1		20

60 CAMBRIDGEPARK DRIVE **Lab Number:** L1738018

Project Number: 131188-002 **Report Date:** 10/23/17

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Project Name:

Custody Seal Cooler

В Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1738018-01A	Vial HCI preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-01B	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-01C	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-01D	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-01E	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-01F	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-01G	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Y	Absent		MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-B-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180),MCP-V-6010S-10(180)
L1738018-01H	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1738018-01I	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1738018-02A	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-02B	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-02C	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-02D	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-02E	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-02F	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-02G	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Y	Absent		MCP-BE-6020S-10(180),MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)

Lab Number: L1738018

Report Date: 10/23/17

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1738018-02H	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1738018-02I	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1738018-03A	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-03B	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-03C	Vial HCl preserved	В	NA		3.2	Υ	Absent		MCP-8260-10(14)
L1738018-03D	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-03E	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-03F	Vial HCl preserved	В	NA		3.2	Υ	Absent		VPH-10(14)
L1738018-03G	Plastic 250ml HNO3 preserved	В	<2	<2	3.2	Y	Absent		MCP-BE-6020S-10(180),MCP-CD-6010S-10(180),MCP-7470S-10(28),MCP-AG-6010S-10(180),MCP-SB-6020S-10(180),MCP-ZN-6010S-10(180),MCP-AS-6010S-10(180),MCP-CR-6010S-10(180),MCP-TL-6020S-10(180),MCP-BA-6010S-10(180),MCP-PB-6010S-10(180),MCP-NI-6010S-10(180),MCP-SE-6010S-10(180),MCP-V-6010S-10(180)
L1738018-03H	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)
L1738018-03I	Amber 1000ml HCl preserved	В	<2	<2	3.2	Υ	Absent		EPH-10(14)

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1738018Project Number:131188-002Report Date:10/23/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1738018Project Number:131188-002Report Date:10/23/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1738018Project Number:131188-002Report Date:10/23/17

REFERENCES

- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.
- Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10231714:26

ID No.:17873 Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87, 101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsmi 07430 Albany, NY 12205 Tonawanda, NY 14150 Holme	outh, NH 03801 Ma s, PA 19043	ahwah, NJ	Page					Rec'	d	10.	1191	רוי		ALPHA Job # LJ 738018	
Westborough, MA 0158 8 Walkup Dr.	1 Mansfield, MA 02048 320 Forbes Blvd	Project Information			9 9			Deliverables							91	Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:		60 Cambr	idgepark (Drive		☑ Email					Fax			Same as Client Info	
PAX: 006-890-9193	PAX. 508-622-3288	Project Location:		Camb	oridge, MA	8		☐ EQuIS (1 File) ☑ EQuIS (4 File)					e)	PO#			
H&A Information	President days	Project #		131	188-002				Othe	r:				20	0		
H&A Client: Hanove	er R.S. Limited Partnersh	(Use Project name as Pr	roject #)					Regu	latory	Requ	ireme	nts (Pr	ogram	/Criteria	a)	Disposal Site Information	
H&A Address: 465 Me	dford Street	Project Manager:		L. Vanzle	r/C. McKe	nzie		MA	MCP	RCS-1						Please identify below location of	
Boston, MA 02129		ALPHAQuote #:	•													applicable disposal facilities.	
H&A Phone: 617-88	6-7380	Turn-Around Time	48 JULY 198	No. of Con-	130		U.S.					1				Disposal Facility:	
H&A Fax: 617-88	6-7680	Standard		Due Date				1								NJ NY	
H&A Email: cmcker	nzie@haleyaldrich.com	Rush (only if pre approved)	(V	# of Days	2 DAY			Note:	Select	State f	rom me	nu & id	ientify cr	riteria.		Other:	
These samples have be	en previously analyzed t	oy Alpha 🔲						ANA	ALYSI	s						Sample Filtration	
Please specify Metals	or TAL.	-						1. VOCs	EPH Carbon Ranges	3. VPH Carbon Ranges	4. Dissolved ACP 14 Metals					✓ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	
ALPHA Lab ID	Sar	mple ID	Collec	ction	Sample	Sampler	Depth	1		VP	MC.						
(Lab Use Only)		3/5/10/200	Date,	Time	Matrix	Initials	150,000		αi	က်						Sample Specific Comments	
380 18-01	HA17-6P4		10/19/17	1000	AZ	MJD	-	X	×	X	X					9	
03	HA17-GP			1135	An	NJD	-	X	-2	1	1					9	
9.3	HA17-681	(OV)	**	1425	Ag	NJD		X		2	X					9	
Preservative Code: A = None B = HCI C = HNO ₃ D = H ₂ SO ₄ E = NaOH	P = Plastic	Westboro: Certification N Mansfield: Certification N		5.		ntainer Typ	V	B	A B	V B	PC				-	Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved Alpha Analytical's services under this Chain of Custody shall be performed in	
f = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ H = Zn Ac/NaOH	C = Cube O = Other E = Encore D = BOD Bottle	10/19/17 12/10 hhly				ceived By:				Date/Time			40	accordance with terms and conditions within Blanket Service Agreement# 2015-18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.			
) = Other		Martin AA	-6	10/19/11	1830		>	2	2.			1049	717	(83)		20 10	
ocument ID: 20455 Rev 2 (8/9/2016)	*										Avenue					

Method Blank Summary Form 4

Client : Haley & Aldrich, Inc. Lab Number : L1738018
Project Name : 60 CAMBRIDGEPARK DRIVE Project Number : 131188-002
Lab Sample ID : WG1054501-5 Lab File ID : VQ171020A05

Instrument ID : QUIMBY

Matrix : WATER Analysis Date : 10/20/17 05:14

Client Sample No.	Lab Sample ID	Analysis Date	
WG1054501-3LCS	WG1054501-3	10/20/17 03:40	
WG1054501-4LCSD	WG1054501-4	10/20/17 04:11	
HA17-GP1(OW)	L1738018-03	10/20/17 12:34	
HA17-GP6(OW)	L1738018-02	10/20/17 13:05	
HA17-GP4(OW)	L1738018-01	10/20/17 13:37	

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1738018

Project Name : 60 CAMBRIDGEPARK DRIVE Project Number : 131188-002

Instrument ID : OLIMBY Calibration Data : 10/20/17 03:44

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
Fluorobenzene	1	1	-	0	20	55	0
Dichlorodifluoromethane	0.559	0.283	-	49.4*	20	27	0
Chloromethane	0.847	0.718	-	15.2	20	46	0
Vinyl chloride	0.662	0.823	-	-24.3*	20	63	0
Bromomethane	0.411	0.356	-	13.4	20	50	01
Chloroethane	0.432	0.496	-	-14.8	20	65	01
Trichlorofluoromethane	0.703	0.626	-	11	20	46	0
Ethyl ether	0.163	0.172	-	-5.5	20	59	0
1,1-Dichloroethene	0.361	0.347	-	3.9	20	54	0
Carbon disulfide	1.159	0.984	-	15.1	20	49	0
Methylene chloride	0.488	0.475	-	2.7	20	56	0
Acetone	10	10.775	-	-7.8	20	59	0
trans-1,2-Dichloroethene	0.429	0.428	-	0.2	20	55	0
Methyl tert-butyl ether	0.805	0.724	-	10.1	20	50	0
Diisopropyl ether	1.338	1.493	-	-11.6	20	62	0
1,1-Dichloroethane	0.821	0.875	-	-6.6	20	59	0
Ethyl tert-butyl ether	1.075	0.995	-	7.4	20	52	0
cis-1,2-Dichloroethene	0.463	0.468	-	-1.1	20	57	0
2,2-Dichloropropane	0.76	0.583	-	23.3*	20	42	0
Bromochloromethane	0.163	0.156	-	4.3	20	55	0
Chloroform	0.776	0.818	-	-5.4	20	58	0
Carbon tetrachloride	0.61	0.477	-	21.8*	20	44	0
Tetrahydrofuran	10	10.564	-	-5.6	20	60	0
Dibromofluoromethane	0.196	0.196	-	0	20	54	0
1,1,1-Trichloroethane	0.739	0.656	-	11.2	20	48	0
2-Butanone	10	10.988	-	-9.9	20	65	0
1,1-Dichloropropene	0.678	0.704	-	-3.8	20	57	0
Benzene	2.019	2.106	-	-4.3	20	59	0
tert-Amyl methyl ether	0.909	0.762	-	16.2	20	48	0
1,2-Dichloroethane-d4	0.242	0.247	-	-2.1	20	55	0
1,2-Dichloroethane	0.54	0.587	-	-8.7	20	59	0
Trichloroethene	0.517	0.498	-	3.7	20	56	0
Dibromomethane	0.198	0.204	-	-3	20	59	0
1,2-Dichloropropane	0.459	0.496	-	-8.1	20	61	0
Bromodichloromethane	0.571	0.554	-	3	20	55	0
1,4-Dioxane	0.00136	0.00118*	-	13.2	20	50	0
cis-1,3-Dichloropropene	0.724	0.633	-	12.6	20	51	0
Chlorobenzene-d5	1	1	-	0	20	56	0
Toluene-d8	1.281	1.3	-	-1.5	20	56	0
Toluene	1.694	1.748	-	-3.2	20	58	0
4-Methyl-2-pentanone	0.101	0.095*	-	5.9	20	56	0
Tetrachloroethene	0.626	0.602	-	3.8	20	55	0
trans-1,3-Dichloropropene	0.714	0.598	-	16.2	20	49	0
1,1,2-Trichloroethane	0.293	0.313	-	-6.8	20	61	0
Chlorodibromomethane	0.376	0.315	-	16.2	20	49	0

^{*} Value outside of QC limits.

Continuing Calibration Form 7

Client : Haley & Aldrich, Inc. Lab Number : L1738018
Project Name : 60 CAMBRIDGEPARK DRIVE Project Number : 131188-002
Instrument ID : QUIMBY Calibration Date : 10/20/17 03:40

Channel:

Compound	Ave. RRF	RRF	Min RRF	%D	Max %D	Area%	Dev(min)
1,3-Dichloropropane	0.654	0.684	-	-4.6	20	59	0
1,2-Dibromoethane	0.333	0.314	-	5.7	20	55	0
2-Hexanone	0.2	0.187	-	6.5	20	57	0
Chlorobenzene	1.801	1.781	-	1.1	20	57	0
Ethylbenzene	3.333	3.41	-	-2.3	20	56	0
1,1,1,2-Tetrachloroethane	0.551	0.46	-	16.5	20	51	0
p/m Xylene	1.169	1.104	-	5.6	20	53	0
o Xylene	1.076	1.003	-	6.8	20	52	0
Styrene	1.7	1.685	-	0.9	20	54	0
1,4-Dichlorobenzene-d4	1	1	-	0	20	54	0
Bromoform	10	7.358	-	26.4*	20	47	0
Isopropylbenzene	7.825	7.721	-	1.3	20	53	0
4-Bromofluorobenzene	1.258	1.172	-	6.8	20	52	0
Bromobenzene	1.557	1.521	-	2.3	20	56	0
n-Propylbenzene	8.7	8.661	-	0.4	20	52	0
1,1,2,2-Tetrachloroethane	0.939	1.003	-	-6.8	20	61	0
2-Chlorotoluene	5.721	5.693	-	0.5	20	55	0
1,3,5-Trimethylbenzene	4.991	5.1	-	-2.2	20	54	0
1,2,3-Trichloropropane	0.817	0.846	-	-3.5	20	61	0
4-Chlorotoluene	5.185	4.956	-	4.4	20	53	0
tert-Butylbenzene	5.102	4.816	-	5.6	20	50	0
1,2,4-Trimethylbenzene	4.773	5.086	-	-6.6	20	55	0
sec-Butylbenzene	7.164	7.213	-	-0.7	20	52	0
p-Isopropyltoluene	5.416	5.577	-	-3	20	52	0
1,3-Dichlorobenzene	2.88	2.833	-	1.6	20	54	0
1,4-Dichlorobenzene	2.704	2.636	-	2.5	20	53	0
n-Butylbenzene	5.826	6.621	-	-13.6	20	56	0
1,2-Dichlorobenzene	2.436	2.41	-	1.1	20	54	0
1,2-Dibromo-3-chloropropan	0.118	0.095	-	19.5	20	46	0
Hexachlorobutadiene	0.602	0.566	-	6	20	53	0
1,2,4-Trichlorobenzene	1.003	1.093	-	-9	20	57	0
Naphthalene	1.786	1.925	-	-7.8	20	57	0
1,2,3-Trichlorobenzene	0.799	0.884	-	-10.6	20	57	0

^{*} Value outside of QC limits.

ANALYTICAL REPORT

Lab Number: L1810684

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Corinne McKenzie Phone: (617) 886-7380

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Report Date: 04/02/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Serial_No:04021817:09

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Lab Number:

L1810684

Report Date:

04/02/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1810684-01	HA17-GP6(OW)-20180328	WATER	CAMBRIDGE, MA	03/28/18 13:20	03/28/18

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1810684

Project Number: 131188-002 **Report Date:** 04/02/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1810684

Project Number: 431188 003

Project Number: 431188 003

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Serial_No:04021817:09

Project Name: 60 CAMBRIDGEPARK DRIVE Lab Number: L1810684

Project Number: 131188-002 **Report Date:** 04/02/18

Case Narrative (continued)

MCP Related Narratives

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per the Chain of Custody.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

A) PL: a

Date: 04/02/18

METALS

Serial_No:04021817:09

Date Collected:

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1810684Project Number:131188-002Report Date:04/02/18

SAMPLE RESULTS

Lab ID: L1810684-01

Client ID: HA17-GP6(OW)-20180328 Date Received: 03/28/18

Sample Location: CAMBRIDGE, MA Field Prep: Field Filtered (Dissolved

Metals)

03/28/18 13:20

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved N	Metals - Mar	sfield Lab									
Zinc, Dissolved	1.90		mg/l	0.050		1	03/30/18 13:2	0 03/30/18 19:01	EPA 3005A	97,6010C	AB

Serial_No:04021817:09

L1810684

Project Name: 60 CAMBRIDGEPARK DRIVE

MBRIDGEPARK DRIVE Lab Number:

Project Number: 131188-002 **Report Date:** 04/02/18

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed Units MCP Dissolved Metals - Mansfield Lab for sample(s): 01 Batch: WG1102064-1 Zinc, Dissolved ND mg/l 0.050 1 03/30/18 16:41 97,6010C ΑB 03/30/18 13:20

Prep Information

Digestion Method: EPA 3005A

Project Name: 60 CAMBRIDGEPARK DRIVE

Lab Number:

L1810684

Project Number: 131188-002

Report Date:

04/02/18

Parameter	LCS %Recovery	LC: Qual %Rec		%Recovery Limits	RPD	Qual RPD Limits	
MCP Dissolved Metals - Mansfield Lab	Associated sample(s): 01	Batch: WG11020	064-2 WG1102064	-3			
Zinc, Dissolved	102	10)2	80-120	0	20	

Serial_No:04021817:09

Lab Number: L1810684

Report Date: 04/02/18

Project Name: 60 CAMBRIDGEPARK DRIVE

Project Number: 131188-002

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info		Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pH deg C Pres		res Seal Date/Tim		Analysis(*)	
L1810684-01A	Plastic 250ml HNO3 preserved	Α	<2	<2	4.8	Y	Absent		MCP-ZN-6010S-10(180)

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1810684Project Number:131188-002Report Date:04/02/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

В

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1810684Project Number:131188-002Report Date:04/02/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:60 CAMBRIDGEPARK DRIVELab Number:L1810684Project Number:131188-002Report Date:04/02/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:04021817:09

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 H&A Information H&A Client: Hanover R.S. Limited Partners H&A Address: 465 Medford Street Boston, MA 02129 H&A Phone: 617-886-7380 H&A Fax: 617-886-7680 H&A Email: cmckenzie@haleyaldrich.com	Service Centers Brewer, ME 04412 Portsmouth, NH 03801 Mahwah, NJ 07430 Albany, NY 12205 Tonawanda, NY 14150 Holmes, PA 19043 Project Information Project Name: 60 Cambridgepark Drive Project Location: Cambridge, MA Project # 131188-002 (Use Project name as Project #) Project Manager: C. McKenzie ALPHAQuote #: Turn-Around Time Standard ☑ Due Date: Rush (only if pre approved) □ # of Days:						Date Rec'd in Lab 3/38/1/8 Deliverables ☑ Email ☐ Fax ☐ EQuIS (1 File) ☑ EQuIS (☐ Other: Regulatory Requirements (Program/C) MA MCP RCGW-2				Fax EQul	S (4 File)	Please identify below location of applicable disposal facilities. Disposal Facility:	
These samples have been previously analyzed by Alpha							ANALYSIS					Sample Filtration		
Other project specific requirements/commer	its:					16	Dissolved Zinc						✓ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below)	
ALPHA Lab ID (Lab Use Only)	nple ID Date		ection Samp		Sampler	Depth "								
7778			Time	Matrix	Initials	1.0				-		Sample Specific Comments		
10654-0 HA17-GP6(OW)-201	50026	3/24/18	1320	AQ	LCN	NA	×							
								1						
Preservative Code: Container Code A = None P = Plastic B = HCl A = Amber Glass C = HNO ₃ V = Vial	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			Container Type			10						Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved. Alpha Analytical's services under this Chain of Custody shall be performed in accordance with terms and conditions	
D = H₂SO₄ G = Glass E = NaOH B = Bacteria Cup				Preservative			4							
F = MeOH	Relinquished E	Date/Time 3-23-18 / K-00 38/18 16/2, 3/28/18 1830		M (CATA)		AAL AAL			Date/Time 3/28/18 1630 3/28/18 1630 5/28/14 1824		1630	within Blanket Service Agreement# 2015- 18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and affiliates and Alpha Analytical.		

ANALYTICAL REPORT

Lab Number: L1826894

Client: Haley & Aldrich, Inc.

465 Medford Street, Suite 2200 Charlestown, MA 02129-1400

ATTN: Lee Vanzler
Phone: (617) 886-7561

Project Name: 50 CAMBRIDGE PARK DRIVE

Project Number: 131188-004

Report Date: 07/19/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 50 CAMBRIDGE PARK DRIVE

Project Number: 131188-004

Lab Number:

L1826894

Report Date: 07/19/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1826894-01	HA18-GP-D1 (OW)-20180713	WATER	CAMBRIDGE, MA	07/13/18 08:25	07/13/18
L1826894-02	HA18-GP-D1N (OW)- 20180713	WATER	CAMBRIDGE, MA	07/13/18 09:10	07/13/18
L1826894-03	HA18-GP-D1S (OW)- 20180713	WATER	CAMBRIDGE, MA	07/13/18 10:20	07/13/18

Project Name: 50 CAMBRIDGE PARK DRIVE Lab Number: L1826894

Project Number: 131188-004 **Report Date:** 07/19/18

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
Eb.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status										
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES									
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES									
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO									

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 50 CAMBRIDGE PARK DRIVE Lab Number: L1826894

Project Number: 131188-004 **Report Date:** 07/19/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: 50 CAMBRIDGE PARK DRIVE Lab Number: L1826894

Project Number: 131188-004 **Report Date:** 07/19/18

Case Narrative (continued)

MCP Related Narratives

Dissolved Metals

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/19/18

600, Sew Kelly Stenstrom

METALS

07/13/18 08:25

Project Name: Lab Number: 50 CAMBRIDGE PARK DRIVE L1826894 **Report Date:** 07/19/18

Project Number: 131188-004

SAMPLE RESULTS

Lab ID: L1826894-01 Date Collected:

Client ID: HA18-GP-D1 (OW)-20180713 Date Received: 07/13/18 Sample Location: CAMBRIDGE, MA Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved N	Metals - Man	sfield Lab									
Zinc, Dissolved	ND		mg/l	0.050		1	07/17/18 10:3	0 07/18/18 01:33	EPA 3005A	97,6010D	MC

Project Name: Lab Number: 50 CAMBRIDGE PARK DRIVE L1826894

Project Number: 131188-004 Report Date:

SAMPLE RESULTS

07/19/18

Lab ID: L1826894-02

HA18-GP-D1N (OW)-20180713

Date Collected: Date Received: 07/13/18 09:10

Sample Location:

Client ID:

CAMBRIDGE, MA

07/13/18 Field Prep: Refer to COC

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved N	∕letals - Mar	nsfield Lab									
Zinc, Dissolved	0.419		mg/l	0.050		1	07/17/18 10:3	0 07/18/18 01:38	EPA 3005A	97,6010D	МС

07/13/18 10:20

Project Name: Lab Number: 50 CAMBRIDGE PARK DRIVE L1826894 07/19/18

Project Number: 131188-004 Report Date:

Date Collected:

SAMPLE RESULTS

Lab ID: L1826894-03

Client ID: HA18-GP-D1S (OW)-20180713 Date Received: 07/13/18 Field Prep: Refer to COC

Sample Location: CAMBRIDGE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
MCP Dissolved N	/letals - Man	nsfield Lab									
Zinc, Dissolved	0.114		mg/l	0.050		1	07/17/18 10:3	0 07/18/18 01:51	EPA 3005A	97,6010D	MC

L1826894

Project Name: 50 CAMBRIDGE PARK DRIVE Lab Number:

Project Number: 131188-004 **Report Date:** 07/19/18

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed Units MCP Dissolved Metals - Mansfield Lab for sample(s): 01-03 Batch: WG1136440-1 Zinc, Dissolved ND mg/l 0.050 1 07/18/18 00:46 97,6010D MC 07/17/18 10:30

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 50 CAMBRIDGE PARK DRIVE

Lab Number:

L1826894

Project Number: 131188-004

Report Date:

07/19/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Dissolved Metals - Mansfield Lab Asso	ciated sample(s): 01	-03 Batc	h: WG1136440-2	WG11364	140-3			
Zinc, Dissolved	108		108		80-120	0		20

50 CAMBRIDGE PARK DRIVE L1826894

Project Number: 131188-004 **Report Date:** 07/19/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L1826894-01A	Plastic 120ml HNO3 preserved	Α	<2	<2	2.1	Υ	Absent		MCP-ZN-6010S-10(180)
	L1826894-02A	Plastic 120ml HNO3 preserved	Α	<2	<2	2.1	Υ	Absent		MCP-ZN-6010S-10(180)
	L1826894-03A	Plastic 120ml HNO3 preserved	Α	<2	<2	2.1	Υ	Absent		MCP-ZN-6010S-10(180)

Project Name: Lab Number: 50 CAMBRIDGE PARK DRIVE L1826894 **Project Number: Report Date:** 131188-004 07/19/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: Data Usability Report

Project Name:50 CAMBRIDGE PARK DRIVELab Number:L1826894Project Number:131188-004Report Date:07/19/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:50 CAMBRIDGE PARK DRIVELab Number:L1826894Project Number:131188-004Report Date:07/19/18

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALRHA	CHAIN OF CUSTODY	Service Centers Brewer, ME 04412 Portsm 07430 Albany, NY 12205 Tonawanda, NY 14150 Holms	nouth, NH 03801	Mahwah, NJ	Pag	e of	1			Rec'd Lab	7/1	3/1	8	ALPHA Job # L/8 26894
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information						Deli	verable	s		-11		Billing Information
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name:		50 Camb	ridgepark i	Drive		V	Emai	ŧ		Fax	()	Same as Client Info
FAA. 508-680-8183	PAA: 308-622-3288	Project Location:		Cam	bridge, MA	V.			EQui	S (1 File)	V	EQU	IS (4 File)	PO#
H&A Information	The same of the same	Project #		131	1188-004			Other:					\	
H&A Client: Hanove	r R.S. Limited Partnersh	(Use Project name as P	roject #)					Regulatory Requirements (Program/Criteria				n/Criteria)	Disposal Site Information	
H&A Address: 465 Med	dford Street	Project Manager:		L. Vanzle	r/C. McKe	nzie		MA MCP RCGW-2						Please identify below location of
Boston, MA 02129	ALPHAQuote #:													applicable disposal facilities.
H&A Phone: 617-886	-7380	Turn-Around Time	C Treat			-	817							Disposal Facility:
H&A Fax: 617-886	-7680	Standard	d 🗹	Due Date				1						□ NJ □ NY
H&A Email: cmcken:	zie@haleyaldrich.com	Rush (only if pre approved) []	# of Days	10			Note:	Select 5	State from	menu & i	dentify	criteria.	Other
These samples have bee	en previously analyzed t	oy Alpha									Sample Filtration			
Other project specific r	equirements/commen	ts:									T	T		☑ Done
Please specify Metals o	or TAL.							Dissolved Zinc	1					Lab to do Preservation Lab to do (Please Specify below)
ALPHA Lab ID (Lab Use Only)	Sar	nple ID	- 200	ection	Sample	Sampler	Depth	+-			1			
		SM 1845COM	Date	Time	Matrix	Initials								Sample Specific Comments
26894- 01	HA18-GP-D1(OW)-20		7/13/2018	4505	AQ	000	-	Х						1
-02	HA18-GP-D1N(OW)-2		7/13/2018	910	AQ	005	-	Х						
-03	HA18-GP-D1S(OW)-2	0180713	7/13/2018	1020	AQ	as	-	Х						1
							-	_						
													>	
											-	-		
Preservative Code; A = None B = HCI C = HNO ₃ D = H ₂ SO ₄	P = Plastic A = Amber Glass V = Vial G = Glass	Westboro: Certification No: MA935 Mansfield: Certification No: MA015			1.1507.1502.1505.1504.1505			P			Please print clearly, legibly and completely. Samples can not be logged in and turnaround time clock will not start until any ambiguities are resolved Alpha Analytical's services under this			
E ≈ NaOH F = MeOH	B = Bacteria Cup C = Cube	Dolinguished F	Die.	Det - D					\perp		-	_		Chain of Custody shall be performed in accordance with terms and conditions
G = NaHSO ₄	O = Other	Dole Salty	Relinquished By: Date/Time R Le Salhor Ou S- 7/13/18 1210 N 1UUN								-	_	/Time	within Blanket Service Agreement# 2015-
H = Na ₂ S ₂ O ₃	E = Encore D = BOD Bottle	Milling W	4	11/3/18	1210	01111	W	1	<i>p</i> 1		1	3/18		18-Alpha Analytical by and between Haley & Aldrich, Inc., its subsidiaries and
- Other					S	Affiliates and Alpha A				affiliates and Alpha Analytical.				
Document ID: 20455 Rev 2 (8	V9/2016)	The second second	PART	110	000	T	~	- 6	1		1163	118	1800	-