

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMDEIATION GENERAL PERMIT MAG9100000

3 AND 5 WASHINGTON STREET, 165 COREY ROAD, AND 43 & 51 BARTLETT CRESCENT

BRIGHTON & BROOKLINE, MASSACHUSETTS

AUGUST 30, 2019

Prepared For:

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF ECOSYSTEM PROTECTION 5 POST OFFICE SQUARE, SUITE 100 BRIGHTON, MA 02109-3912

On Behalf Of:

5 Washington Square Owner LLC c/o Goulston & Storrs PC & Callahan Construction, Inc.

PROJECT NO. 5822

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

August 30, 2019

U.S. Environmental Protection Agency Office of Ecosystem Protection 5 Post Office Square, Suite 100 Brighton, MA 02109-3912

Attention: To Whom It May Concern

Reference: 3 and 5 Washington Street, 165 Corey Road, and 43 & 51 Bartlett Crescent;

Brighton and Brookline, Massachusetts

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

In accordance with the provisions of the Remediation General Permit MAG9100000 (RGP) that was issued to the Commonwealth of Massachusetts, the following is a summary of the site and groundwater quality information in support of a Notice of Intent (NOI) for the discharge of construction dewatering into the Charles River via the City of Brookline storm drain system. The temporary discharge of construction dewatering will occur during redevelopment of the 3 and 5 Washington Street and 165 Corey Road in Brighton, Massachusetts and the development of 43 & 51 Bartlett Crescent in Brookline, Massachusetts (the "subject site"). Refer to **Figure 1,** Project Location Plan for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated February 11, 2019, and the subsequent authorization of 5 Washington Square Owner, LLC c/o Goulston & Storrs PC. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit and the Boston Water and Sewer Commission (BWSC) Discharge Permit are included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Remediation General Permit is:

Callahan Construction, Inc. 80 First Street Bridgewater, MA 02324

Attention: Mr. Robert Sanda

Tel: (508) 279 9524

Email: rsanda@callahin-inc.com

Existing Conditions

The subject site is bounded by Washington Street to the southeast, Corey Road to the northwest, 169 Corey Road to the northeast, the Foley Abrams Building at 45 Bartlett Crescent to the west and Bartlett Crescent to the south. The southeastern corner of the subject site along Bartlett Crescent is situated within the Town of Brookline. The subject site has an approximate 43,300 square-foot footprint that includes a gas station/auto repair facility at 3 and 5 Washington Street and an office building at 165 and 167 Corey Road, Brighton, Massachusetts. Both of the above referenced buildings are currently vacant. Portions of the subject site not occupied by a building are covered by bituminous pavement. The limits of the subject site are shown on **Figure 2**.

Existing ground surface at the subject site slopes from the northern corner of 167 Corey Road, Elevation +144, to the corner of Bartlett Crescent and Washington Street, Elevation +132, to the south. Elevations as referenced herein are in feet and refer to the Boston City Base datum, which is 5.65 feet below the National Geodetic Vertical Datum of 1929 (NGVD).

Proposed Scope of Site Development

Prior to the redevelopment, demolition of the existing site buildings and the decommissioning of at least three (3) underground storage tanks (USTs) will be completed. It is understood that the current scope of development will include the construction of a rectangle-shaped, 5-story, mixed-use building within the southern portion of the site. The mixed-used building is planned to have 1-level of below-parking with a lowest level footprint of about 33,000 square feet. It is understood that the proposed basement, garage, finished floor elevations are at Elevation +121, Elevation +131.5 and Elevation +133.5, respectively.

Outside of the proposed structures, it is understood that site improvements will generally consist of paved surface parking, walkways, and a landscaped park area.

Temporary construction dewatering is anticipated to be required to facilitate excavation to the basement subgrade, which will extend about 11 to 16 feet below the existing ground surface at the site.

Site Release History

According to a Class B-2 RAO submitted by Corporate Environmental Advisors, Inc. (CEA) to the MADEP in April 2013, laboratory analyses of soil samples collected as part of a due diligence environmental assessment indicated concentrations of C5-C8 aliphatics, C9-C10 aromatics, benzene, toluene, ethylbenzene, naphthalene and/or 2-methylnaphthalene MCP RCS-1 Reportable Concentrations (RCs) constituting a 120-day reporting condition. On April 9, 2012, a Release Notification Form was submitted to MADEP for the reporting condition by

CEA, on behalf of Brighton Auto Clinic (the former site owner), and RTN 3-30762 was assigned to the subject site.

Between November 7, 2012 and March 5, 2013, CEA conducted assessment activities at the subject site including advancement of soil borings, installation of three (3) monitoring wells and three (3) soil gas monitoring points, and sampling and analysis of soil, soil gas and groundwater. In November 2012, the results of soil samples indicated concentrations of C5-C8 aliphatic and C9-C10 aromatics above the MCP S-1/GW-2, GW-3 standards. The analytical results of the remaining VPH, EPH, VOCs and Metals were below the applicable MCP Method 1 S-1 standards. On November 28, 2012 and January 30, 2013, groundwater samples were collected from monitoring wells and were submitted for analysis of VPH, EPH, VOCs and/or Metals. Concentrations of C5-C8 aliphatics and/or benzene were detected above the Method 1 GW-2 standard in the groundwater samples collected from monitoring wells MW-101 and MW-103.

On April 14, 2013, a Class B-2 RAO was submitted to the MADEP in which CEA and EnviroBusiness, Inc (EBI) determined that a condition of No Significant Risk (NSR) exists the implementation of an Activity and Use Limitation (AUL) that restricts potential future exposures to oil and/or hazardous material (OHM) in indoor air on the 3 Washington Street and 5 Washington Street properties.

As a result of the regulatory status, a Release Abatement Measure (RAM) Plan will be prepared in accordance with the Massachusetts Contingency Plan to manage contaminated soil during excavation activities associated with the proposed redevelopment.

Construction Site Dewatering

Groundwater was observed within explorations that were completed at the site at depths ranging from about 9 to 13 feet below the existing ground surface or from Elevation +119 to Elevation +123. It is anticipated that future groundwater levels across the site may vary from those reported herein due to factors such as normal seasonal changes, periods of heavy precipitation, and alterations of existing drainage patterns. Groundwater monitoring reports documenting levels observed within the groundwater observation wells at the site are included in **Appendix C**.

It is likely that during the proposed decommissioning of the USTS, groundwater will be encountered and dewatering under this RGP may be necessary. Additionally, in order to facilitate the construction of the basement level, a solider pile and timber lagging excavation support system will be installed around the perimeter of the basement foundation wall. Thus, construction dewatering will be generally required within the footprint of the excavation to facilitate construction of the proposed basement level of the building, but may also be required within other areas of the site during and following precipitation events.

It is anticipated that rate of construction dewatering during excavation of the fill soils will initially be on the order about 50 gallons per minute (gpm). However, over the course of the excavation, it anticipated that rate of construction dewatering will decrease to approximately 25 gallons per minute. These estimates do not include surface run-off which will be removed from the excavation during and following precipitation events.

Given that the area of the foundation occupies a majority of the subject site, temporary onsite collection and recharge of groundwater is not considered feasible. As a result, construction dewatering will require the discharge of collected groundwater into the storm drain system.

A review of storm water and sewer plans available on the City of Boston and City of Brookline Sewer and Storm water database indicates dedicated storm drains located beneath Washington Street, Corey Road, and Bartlett Crescent. The storm drains flow east and outfalls into the Muddy River near the intersection of River Road and Brookline Avenue. The location of the catch basin in relation to the subject site is indicated on **Figure 2**. The flow path of the discharge is shown on **Figure 3A and 3B**.

<u>Site Environmental Setting, Nearby DEP-listed Disposal Sites, Endangered Species and Surrounding Historical Places</u>

Based on an on-line edition of the Massachusetts Geographic Information Systems MassDEP Phase I Site Assessment Map (GIS Map) viewed on July 19, 2019 the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within 500 feet of the subject site.

The GIS Map indicates that there are no water bodies or wetland areas at the subject site. The nearest water body is the Chestnut Hill Reservoir which is located approximately 4,000 feet to the west of the subject site. No areas designated as solid waste sites (landfills) are noted as being located within 1,000 feet of the site. A copy of the GIS Map is included in **Appendix C**. In addition, a report prepared by Environmental Database Resource, Inc. (EDR) was reviewed for this study. Based on EDR's search of FEMA Flood Plain Maps, the subject site is not located within a 100 year or 500 year flood plain.

As indicated above, this site is a release site and in 2013, a Class B-2 RAO was submitted for this RTN because a Condition of No Significant Risk exists at the parcels, which is contingent upon maintaining an Activity and Use Limitation (AUL).

A review of information provided in an Information for Planning and Conservation Trust Resource Report (IPaC Report) prepared by the U.S. Fish and Wildlife Service for the subject

site identified the presence of one (1) threatened species in the vicinity of the discharge location and/or discharge outfall. The report identifies the Northern Long-Eared Bat as a threatened species; however, it is unlikely that demolition of existing buildings or construction of new buildings will impact the Northern Long-Eared Bate. Further, the IPaC Report did not identify the presence of a critical habitat in the vicinity of the discharge location and/or discharge outfall. Based upon the above, the site is considered a Criterion C pursuant to Appendix IV of the RGP. A copy of the IPaC Report is included in **Appendix C**.

A review of the most recent National Register of Historical Places for Suffolk County in Brighton, Massachusetts as well as the online Massachusetts Cultural Resource Information System (MACRIS) did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site or at the subject site.

Summary of Groundwater Analysis

On April 12, 2019 McPhail Associates, LLC obtained a sample of groundwater at the subject site from monitoring well B-117(OW). The groundwater sample was submitted to a certified laboratory for analysis for the presence of compounds required under the EPA's RGP application, including total suspended solids (TSS), pH, total residual chlorine, and zinc), semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including total benzene, toluene, ethylbenzene and xylenes (BTEX), and total recoverable metals. Analytical results of the testing of groundwater samples obtained in 2019 are summarized in **Table 1** and the laboratory data are enclosed in **Appendix D**.

In conjunction with the updated 2017 NPDES RGP, a sample of water from the Muddy River was obtained on April 25, 2019 and analyzed for recoverable metals, ammonia, pH, and hardness and is summarized in **Table 2**. The analytical test results are included in the enclosed **Appendix E**.

In summary, groundwater testing performed at the subject site has detected concentrations of suspended solids, ammonia, chloride, copper, chromium, iron, lead, and nickel. The Appendix V calculations indicate Technology-Based Effluent Limitations (TBELs) apply for all testing parameters except iron and TRC which triggered WQBELs. However, it is noted that the WQBEL for TRC is not applicable because groundwater at the subject site has not, nor will not be treated with chlorine in accordance with the development or previous environmental activities.

Additionally, as discussed above, previous groundwater testing completed at the subject site in connection with RTN 3-30762 indicate detectable levels of EPH and VPH in four (4) observation wells in March 2019. The results of the laboratory analysis exceeded cleanup standards. Specifically, Method 1 GW-2-14 Standards were exceeded in monitoring well B-117(OW) for C9-C10 Aromatics and monitoring wells B-117(OW) and B-121(OW) for C5-C8

Aliphatics. The groundwater data is summarized in **Table 3**, and laboratory data is included in **Appendix E.**

Groundwater Treatment

The results of groundwater testing indicate the presence of metals, petroleum hydrocarbons, semivolatile organic compounds, and volatile organic compounds which require treatment prior to leaving the site. In summary, the Appendix V calculations indicate Technology-Based Effluent Limitations (TBELs) apply for all Inorganics except iron and TRC. However, historical release conditions at the subject site indicate concentrations of petroleum hydrocarbons, semivolatile organics, and volatile organics in soil which are likely to be encountered during construction dewatering discharge.

Based on the results of the above referenced groundwater analyses, it is our opinion that a 10,000-gallon capacity settling tank, bag filter, and a granular activated carbon (GAC) filter in series will be required to settle and filter out suspended inorganic metals and to reduce potential presence of petroleum hydrocarbons, semivolatile organic compounds, and volatile organic compounds in the discharge during construction dewatering to meet applicable effluent limits established by the US EPA prior to off-site discharge. A schematic of the treatment system is shown on **Figure 4**.

A Best Management Practices Plan (BMPP) has been prepared as **Appendix F** for the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring.

Summary and Conclusions

The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit, for off-site discharge of dewatered groundwater which will be encountered during the redevelopment at 3 and 5 Washington Street and 165 Corey Road in Brighton, Massachusetts and the development of 43 & 51 Bartlett Crescent in Brookline, Massachusetts. The groundwater testing results reported in this application have been provided to the site owner.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable TBELS for inorganics established by the US EPA prior to off-site discharge. The proposed construction dewatering treatment system will consist of one settling tank (10,000-gallons in capacity), bag filter, and a granular activated carbon (GAC) filter in series to filter out sediment containing elevated levels of metals as well as potential concentrations of petroleum related contaminants that may be encountered in soil. However, should the effluent monitoring results indicate levels in excess of the applicable

TBELs and/or WQBEL established in the Massachusetts RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,

McPHAIL ASSOCIATES, LLC

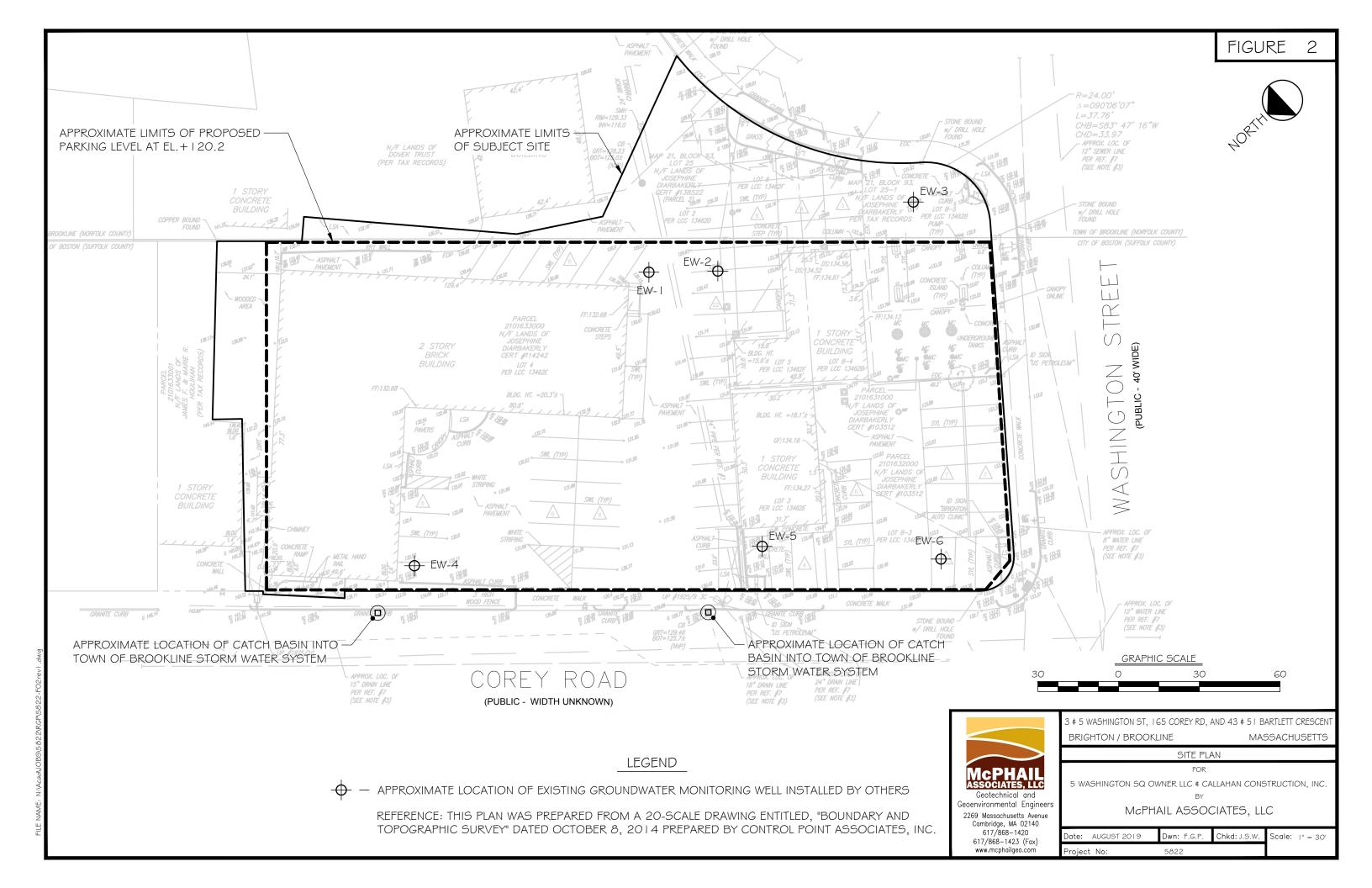
Joseph S. Wold

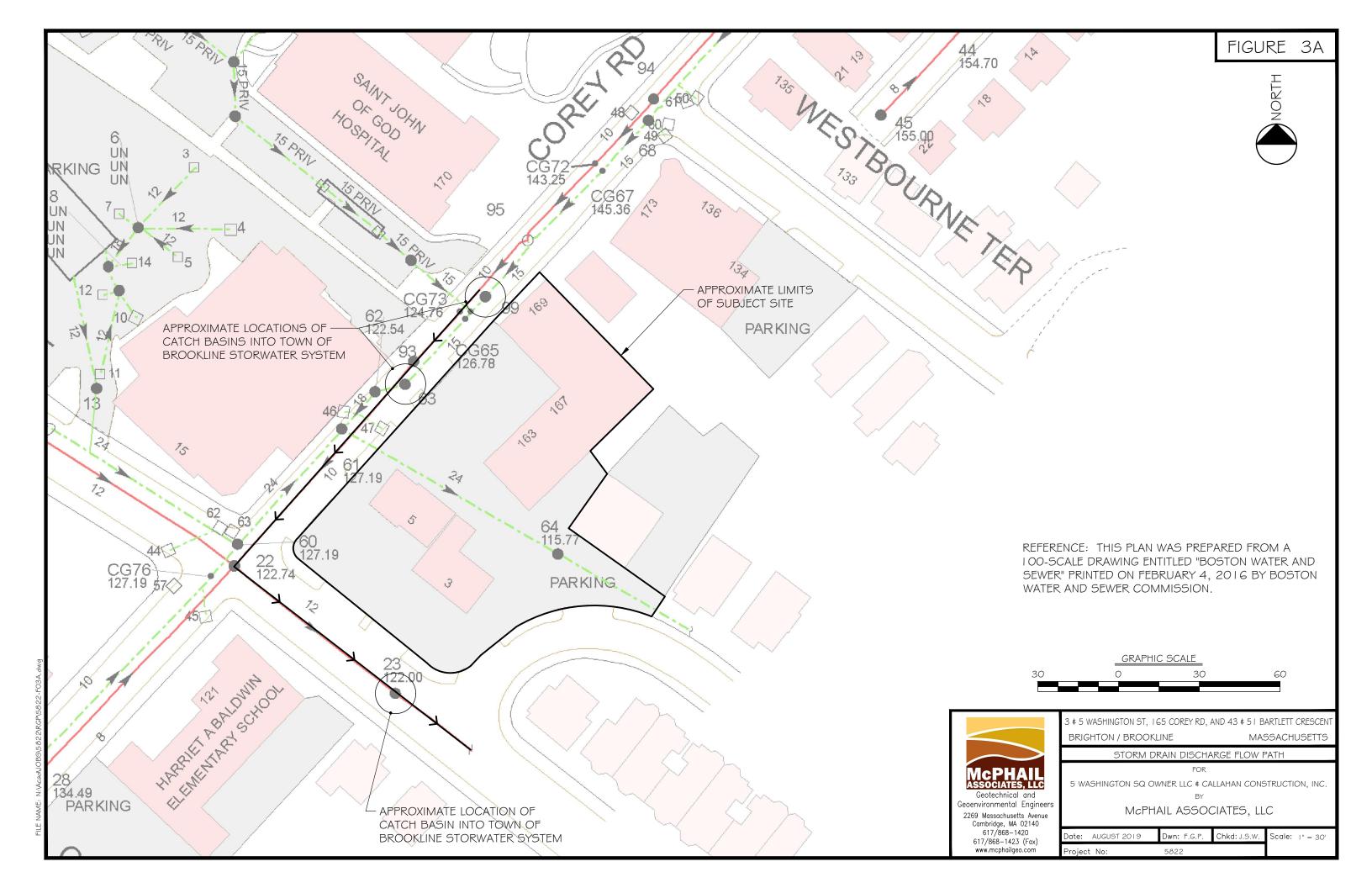
William J. Burns, L.S.P.

JSW/wjb

N:\Working Documents\Reports\5822_RGP_083019.docx

Geotechnical and Geoenvironmental Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868-1420 617/868-1423 (Fax) www.mcphailgeo.com




PROJECT LOCATION PLAN

3 \$ 5 WASHINGTON ST, 165 COREY RD AND 43 \$ 5 | BARTLETT CRESCENT

BROOKLINE

MASSACHUSETTS

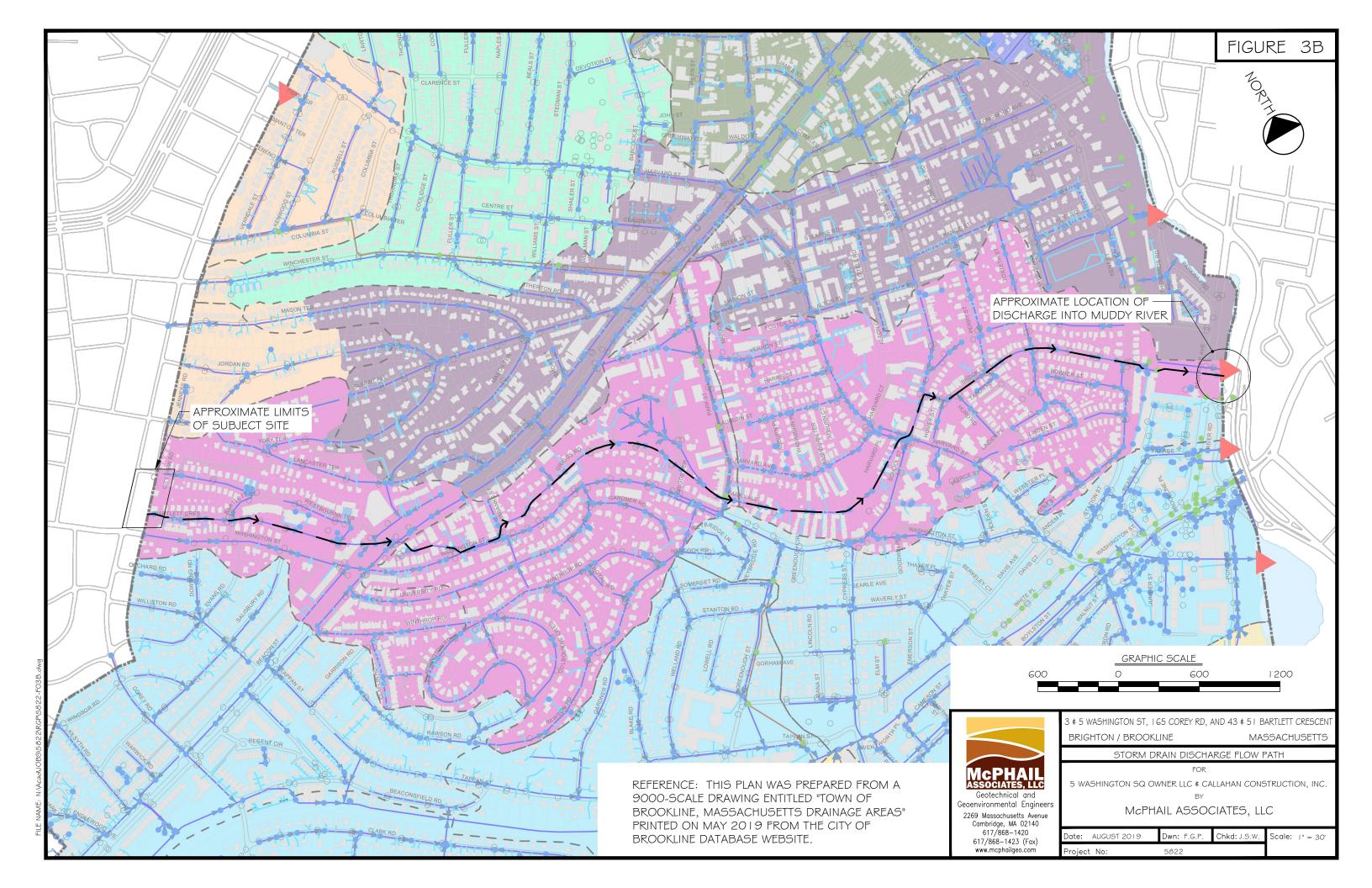
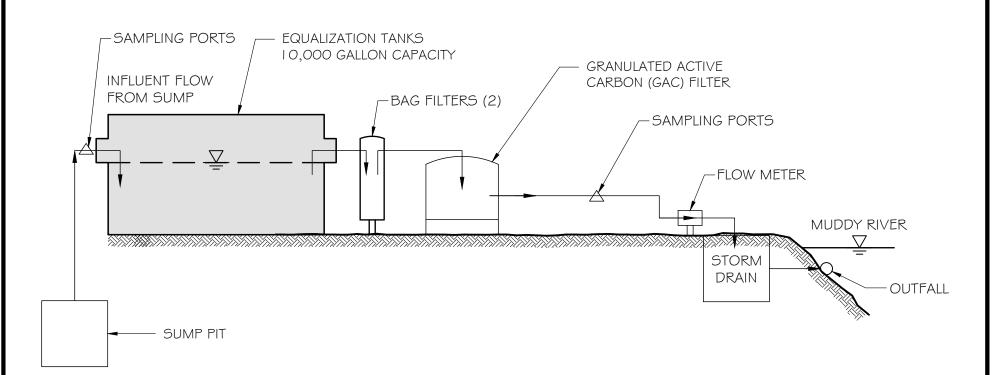



FIGURE 4

Geotechnical and Geoenvironmental Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868-1420 617/868-1423 (Fax) www.mcphailgeo.com 3 \$ 5 WASHINGTON ST, 165 COREY RD, AND 43 \$ 5 | BARTLETT CRESCENT BRIGHTON / BROOKLINE MASSACHUSETTS

SCHEMATIC OF TREATMENT SYSTEM

FOR

5 WASHINGTON SQ OWNER LLC & CALLAHAN CONSTRUCTION, INC.

McPHAIL ASSOCIATES, LLC CONSULTING GEOTECHNICAL ENGINEERS

 Date:
 AUGUST 2019
 Dwn: F.G.P.
 Chkd: K.S.W.
 Scale: N.T.S.

 Project No:
 5822

Table 1 **Labratory Analytical Results - Groundwater** B-117 (OW)

3 and 5 Washington Street Brookline and Brighton, MA Project No.5822

LOCATION	EPA - Freshwater	B-117 (OW)	B-117 (OW)
SAMPLING DATE	Aquatic Life	4/12/2019	4/12/2019
LAB SAMPLE ID	Chronic	L1915179-01	L1915179-01 R1
SAMPLE TYPE	- Criteria	GROUNDWATER	GROUNDWATER
General Chemistry (ug/l)			
Chlorine, Total Residual		ND(20)	-
Chromium, Hexavalent	11	ND(10)	-
Chromium, Trivalent	74	ND(10)	-
Cyanide, Total	5.2	ND(5)	-
Nitrogen, Ammonia		1470	-
pH (SU)		6.8	-
Phenolics, Total		ND(30)	-
Solids, Total Suspended		21000	-
TPH, SGT-HEM		ND(4000)	-
Chloride	230000	875000	-
Hardness		285000	
Total Metals (ug/l)			
Antimony, Total		ND(4)	-
Arsenic, Total	150	4.09	-
Cadmium, Total	0.25	ND(0.2)	-
Chromium, Total		ND(1)	-
Copper, Total		ND(2)	-
Iron, Total	1000	10900	-
Lead, Total	2.5	2	-
Mercury, Total	0.77	ND(0.2)	-
Nickel, Total	52	ND(2)	-
Selenium, Total	5	ND(5)	-
Silver, Total		ND(0.4)	-
Zinc, Total	120	ND(10)	-
Semivolatile Organics (ug/l)			
Naphthalene		490	390
SUM		490	390
Volatile Organics (ug/l)			
Benzene		27	-
Ethylbenzene		390	-
o-xylene		300	-
p/m-Xylene		1300	-
SUM		2017	

ND - Not detected in excess of the detection limit (#) - Detection limit Bold - Exceeds EPA -

Table 2 Labratory Analytical Results - Surface Water Muddy River

3 and 5 Washington Street Brighton and Brookline, MA Project No.5822

LOCATION SAMPLING DATE LAB SAMPLE ID SAMPLE TYPE	EPA - Freshwater Aquatic Life Chronic Criteria	Muddy River RGP Sample 4/25/2019 L1917134-01 WATER
General Chemistry (ug/l)		
Nitrogen, Ammonia		259
pH (SU)		6.9
Hardness		133000
Total Metals (ug/l)		
Antimony, Total		ND(4)
Arsenic, Total	150	ND(1)
Cadmium, Total	0.25	ND(0.2)
Chromium, Total		ND(1)
Copper, Total		7.29
Iron, Total	1000	694
Lead, Total	2.5	3.88
Mercury, Total	0.77	ND(0.2)
Nickel, Total	52	ND(2)
Selenium, Total	5	ND(5)
Silver, Total		ND(0.4)
Zinc, Total	120	20.5

1

Table 3 Labratory Analytical Results - Historical Groundwater

3 and 5 Washington Street Brighton and Brookline, MA Project No.5822

LOCATION	Masabeb			B-116 (OW)	B-117 (OW)	B-117(OW)	B-119 (OW)	B-120 (OW)	B-121 (OW)	B-121 (OW)
SAMPLING DATE	MassDEP	MassDEP	MassDEP Method 1 Cleanup Standards		3/19/2019		3/19/2019			3/28/2019
LAB SAMPLE ID	Reportable	Cleanup S								
SAMPLE TYPE	Concentrations	i -			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	Groudnwater
	RCGW-2-14	GW-2-14	GW-3-14							
EPH w/MS Targets (ug/l)										
C9-C18 Aliphatics	5000	5000	50000	ND(98)	2540	-	ND(98)	ND(98)	359	-
C19-C36 Aliphatics	50000		50000	ND(98)	583	-	ND(98)	ND(98)	ND(98)	-
C11-C22 Aromatics, Adjusted	5000	50000	5000	ND(98)	1030	-	ND(98)	181	265	-
Naphthalene	700	700			454	-	4.17	6.52	215	-
2-Methylnaphthalene	2000	2000			246	-	1.5	19	72.2	-
Acenaphthylene	40	10000	40	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Acenaphthene	10000		10000	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Fluorene	40		40	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Phenanthrene	10000		10000	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Anthracene	30		30	` ,	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Fluoranthene	200		200	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Pyrene	20		20	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Benzo(a)anthracene	1000		1000	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Chrysene	70		70	, ,	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Benzo(b)fluoranthene	400		400	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Benzo(k)fluoranthene	100		100	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Benzo(a)pyrene	500		500	` ,	ND(3.92)	-	ND(0.196)	ND(0.196)	ND(1.96)	-
Indeno(1,2,3-cd)Pyrene	100		100		ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Dibenzo(a,h)anthracene	40		40	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Benzo(ghi)perylene	20		20	ND(0.392)	ND(7.84)	-	ND(0.392)	ND(0.392)	ND(3.92)	-
Volatile Petroleum Hydroca	arbons (ug/l)									
C9-C10 Aromatics	4000	4000	50000		10600	14500	230	627	3840	3660
C5-C8 Aliphatics, Adjusted	3000	3000	50000	ND(50)	2810	5070	664	1240	4710	5000
C9-C12 Aliphatics, Adjusted	5000	5000	50000	\ /	2040	3380	79.3	191	1220	992
Benzene	1000	1000	10000	ND(2)	53.5	-	28.4	106	312	-
Toluene	40000	50000	40000	ND(2)	ND(40)	-	2.01	10.3	ND(20)	-
Ethylbenzene	5000	20000	5000		391	-	10.6	67	1300	-
p/m-Xylene	3000	3000	5000		1260	-	12.5	51.7	786	-
o-Xylene	3000	3000	5000	2.76	335	-	ND(2)	5.92	26.7	-
Methyl tert butyl ether	5000	50000	50000	ND(3)	ND(60)	-	5.48	19.2	35.4	-
Naphthalene	700	700	20000	7.71	659	-	5.92	21.5	312	-

GW-2-14: MCP 2014 Method 1 GW-2 Groundwater Standards Criteria effective June 20, 2014. GW-3-14: MCP 2014 Method 1 GW-3 Groundwater Standards Criteria effective June 20, 2014. RCGW-2-14: MCP 2014 RCGW-2 Reportable Concentrations Criteria effective April 25, 2014.

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from groundwater monitoring wells on the property located at 3 and 5 Washington Street and 165 Corey Road in Brighton, Massachusetts and the development of 43 & 51 Bartlett Crescent in Brookline, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of 5 Washington Square Owner LLC c/o Glouston and Storrs PC. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B: NOTICE OF INTENT TRANSMITTAL FORM BWSC DEWATERING PERMIT

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

Name of site: Washington Street	Site address: 3 and 5 Washington Street and 165 Corey Road in Brighton Street: 43 & 51 Bartlett Crescent in Brookline							
	City: Brighton and Brookline		State: MA	Zip: 02446				
Site owner Washington Square Owner LLC	Contact Person: Justin Krebs							
c/o Goulston & Storrs PC	Telephone: 617-795-4201	Email: jkre	ebs@kigadv	visors.com				
	Mailing address: 257 Hillside Avenue	Mailing address: 257 Hillside Avenue						
	Street:							
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Needham	State: MA	Zip: 02494					
3. Site operator, if different than owner	Contact Person: Robert Sanda							
Callahan Construction Inc	Telephone: 508-279-9524	Email: rsa	anda@callahan-inc.com					
	Mailing address:							
	80 First Street Street:							
	City: Bridgewater		State: MA	Zip: 02324				
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):							
	■ MA Chapter 21e; list RTN(s): 3-30762	□ CERCL	LA					
		□ UIC Pro	UIC Program					
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or Groundwater Release Detection Permit:	☐ POTW Pretreatment						
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Resease Detection Fermit.	☐ CWA Section 404						

B. Receiving water information:									
1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classi	fication of receiving water(s):						
Muddy River	MA72-11 B								
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: ■ Yes □ No							
Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:									
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Muddy River TMDL 156.0 - See Appendix C for further information									
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		n the instructions in	0.557						
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s	· · · · · · · · · · · · · · · · · · ·	- ,	6						
6. Has the operator received confirmation from the application of the									
7. Has the operator attached a summary of receiving (check one): ■ Yes □ No	water sampling results as required in Part 4.2 of the	RGP in accordance with th	e instruction in Appendix VIII?						
C. Source water information: 1. Source water(s) is (check any that apply):									
■ Contaminated groundwater	Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, municipality or origin:								
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	☐ A surface water other than the receiving water; so, indicate waterbody:							
■ Yes □ No	□ Yes □ No								

2. Source water contaminants: TSS, ammonia, arsenic, lead, iron, chloride	, naphthalene, benzene, ethylebenzene, o-xylene, p/m-Xylene
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ☐ Yes ■ No
D. Discharge information	
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	w discharge □ New source
Outfall(s): Muddy River	Outfall location(s): (Latitude, Longitude) 42.334523, -71.111519
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	ischarge to the receiving water Indirect discharge, if so, specify:
Discharge indirectly into Muddy River through Brookline Stormdrain sys	stem
☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ■ Ye	es No See Appendix B for further information
Has the operator has received permission from the owner to use such system for obtaining permission: Upon approval of this NOI	or discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner See Appe	r of this system has specified? (check one): ■ Yes □ No endix B for further information
Provide the expected start and end dates of discharge(s) (month/year): Tempo	prary Treatment System 07/2019 - 05/2020
Indicate if the discharge is expected to occur over a duration of: ■ less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): ■ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 ■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	■ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ D. Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile	☐ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			
	Organic Compounds □ F. Fuels Parameters				

4. Influent and Effluent Characteristics

	Known	Known		Toot	.	In	fluent	Effluent L	imitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		~	1	121,4500NH3	75	1.47	1.47	Report mg/L	
Chloride		~	1	443000	230,000	875000	875000	Report µg/l	
Total Residual Chlorine	~		1	121,4500C	50	<dl< td=""><td><dl< td=""><td>0.2 mg/L</td><td>57</td></dl<></td></dl<>	<dl< td=""><td>0.2 mg/L</td><td>57</td></dl<>	0.2 mg/L	57
Total Suspended Solids		~	1	1212540D	30,000	21	21	30 mg/L	
Antimony	~		1	3,200.8	206	<dl< td=""><td><dl< td=""><td>206 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>206 μg/L</td><td></td></dl<>	206 μg/L	
Arsenic		~	1	3,200.8	10	4.09	4.09	104 μg/L	
Cadmium		~	1	3,200.8	0.25	<dl< td=""><td><dl< td=""><td>10.2 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>10.2 μg/L</td><td></td></dl<>	10.2 μg/L	
Chromium III	~		1	107,-	74	<dl< td=""><td><dl< td=""><td>323 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 µg/L</td><td></td></dl<>	323 µg/L	
Chromium VI	~		1	1,7196A	11	<dl< td=""><td><dl< td=""><td>323 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>323 µg/L</td><td></td></dl<>	323 µg/L	
Copper	~		1	3,200.8	9	<dl< td=""><td><dl< td=""><td>242 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>242 μg/L</td><td></td></dl<>	242 μg/L	
Iron		~	1	19200.7	1,000	10900	10900	5,000 μg/L	2271
Lead		~	1	3,200.8	2.5	2	2	160 μg/L	
Mercury	~		1	3,245.1	0.77	<dl< td=""><td><dl< td=""><td>0.739 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.739 μg/L</td><td></td></dl<>	0.739 μg/L	
Nickel	~		1	3,200.8	52	<dl< td=""><td><dl< td=""><td>1,450 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,450 µg/L</td><td></td></dl<>	1,450 µg/L	
Selenium	~		1	3,200.8	5	<dl< td=""><td><dl< td=""><td>235.8 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>235.8 μg/L</td><td></td></dl<>	235.8 μg/L	
Silver	~		1	3,200.8	3.2	<dl< td=""><td><dl< td=""><td>35.1 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>35.1 μg/L</td><td></td></dl<>	35.1 μg/L	
Zinc	~		1	3,200.8	120	<dl< td=""><td><dl< td=""><td>420 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>420 μg/L</td><td></td></dl<>	420 μg/L	
Cyanide	~		1	121,4500C	5.2	<dl< td=""><td><dl< td=""><td>178 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>178 mg/L</td><td></td></dl<>	178 mg/L	
B. Non-Halogenated VOC	s								
Total BTEX		~	1	128,624.1	100	2017	2017	100 μg/L	
Benzene		~	1	128,624.1	_5	27	27	5.0 μg/L	
1,4 Dioxane	~		1	128,624.1	50	<dl< td=""><td><dl< td=""><td>200 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>200 μg/L</td><td></td></dl<>	200 μg/L	
Acetone	~		1	128,624.1	7.97	<dl< td=""><td><dl< td=""><td>7.97 mg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>7.97 mg/L</td><td></td></dl<>	7.97 mg/L	
Phenol	~		1	128,624.1	300	<dl< td=""><td><dl< td=""><td>1,080 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1,080 µg/L</td><td></td></dl<>	1,080 µg/L	

	Known	Known		_		Inf	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride	V		0					4.4 μg/L	
1,2 Dichlorobenzene	~		0					600 μg/L	
1,3 Dichlorobenzene	~		0					320 μg/L	
1,4 Dichlorobenzene	~		0					5.0 μg/L	
Total dichlorobenzene	~		0					763 μg/L in NH	
1,1 Dichloroethane	~		0					70 μg/L	
1,2 Dichloroethane	~		0					5.0 μg/L	
1,1 Dichloroethylene	~		0					3.2 μg/L	
Ethylene Dibromide	~		0					0.05 μg/L	
Methylene Chloride	~		0					4.6 μg/L	
1,1,1 Trichloroethane	~		0					200 μg/L	
1,1,2 Trichloroethane	~		0					5.0 μg/L	
Trichloroethylene	~		0					5.0 μg/L	
Tetrachloroethylene	~		0					5.0 μg/L	
cis-1,2 Dichloroethylene	~		0					70 μg/L	
Vinyl Chloride	~		0					2.0 μg/L	
D. Non-Halogenated SVO	~c								
Total Phthalates	<i>v</i>		1	18270D-SI	5.0	<dl< td=""><td><dl< td=""><td>190 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>190 μg/L</td><td></td></dl<>	190 μg/L	
Diethylhexyl phthalate	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>101 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>101 μg/L</td><td></td></dl<>	101 μg/L	
Total Group I PAHs	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>1.0 µg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 µg/L</td><td></td></dl<>	1.0 µg/L	
Benzo(a)anthracene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>, ,</td><td></td></dl<></td></dl<>	<dl< td=""><td>, ,</td><td></td></dl<>	, ,	
Benzo(a)pyrene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	
Benzo(b)fluoranthene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	
Benzo(k)fluoranthene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>As Total PAHs</td><td></td></dl<></td></dl<>	<dl< td=""><td>As Total PAHs</td><td></td></dl<>	As Total PAHs	
Chrysene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	
Dibenzo(a,h)anthracene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	
Indeno(1,2,3-cd)pyrene	~		1	18270D-SI		<dl< td=""><td><dl< td=""><td>7</td><td></td></dl<></td></dl<>	<dl< td=""><td>7</td><td></td></dl<>	7	

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs	×	~	1	18270D-SI	0.10	<dl< td=""><td><dl< td=""><td>100 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>100 μg/L</td><td></td></dl<>	100 μg/L	
Naphthalene		'	2	129,625.1	2.5	490	440	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	~		1	127,608.3	0.250	<dl< td=""><td><dl< td=""><td>0.000064 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>0.000064 μg/L</td><td></td></dl<>	0.000064 μg/L	
Pentachlorophenol	V		1	18270D-SI		<dl< td=""><td><dl< td=""><td>1.0 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>1.0 μg/L</td><td></td></dl<>	1.0 μg/L	
F. Fuels Parameters Total Petroleum								.	
Hydrocarbons		~	1	74,1664A	400	<di.< td=""><td><dl< td=""><td>5.0 mg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>5.0 mg/L</td><td></td></dl<>	5.0 mg/L	
Ethanol	V		0					Report mg/L	
Methyl-tert-Butyl Ether	V		1	1,8260C	1.0	<dl< td=""><td><dl< td=""><td>70 μg/L</td><td></td></dl<></td></dl<>	<dl< td=""><td>70 μg/L</td><td></td></dl<>	70 μg/L	
tert-Butyl Alcohol	~		1	1,8260C	10	<dl< td=""><td><dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>120 μg/L in MA 40 μg/L in NH</td><td></td></dl<>	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	~		1	1,8260C	2.0	<dl< td=""><td><dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<></td></dl<>	<dl< td=""><td>90 μg/L in MA 140 μg/L in NH</td><td></td></dl<>	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	e, hardness,	salinity, LC	C50, addition	nal pollutan	ts present);	if so, specify:	<u> </u>		
pH - Influent		~	1	121,4500H		6.8	6.8		
Hardness - Influent		✓	1		660	285000	285000		
Temp - Influent		<i>'</i>	1			12.84			
pH - Receiving Water		~	1	121,4500H		6.9	6.9		
Hardness - Receiving Water		V	1			133000	133000		
Temn - Receiving Water		✓	1			11.68 C			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:	n Adsorption
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank and bag filters, and granulated activated carbon filter	
Identify each major treatment component (check any that apply):	
■ Fractionation tanks □ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit ■ Bag filter ■ Other; if so, specify: Granulated Activated Carbon	
Indicate if either of the following will occur (check any that apply): ☐ Chlorination ☐ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac Tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	50
Provide the proposed maximum effluent flow in gpm.	50
Provide the average effluent flow in gpm.	25
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No	

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers \square pH conditioners \square Bioremedial agents, including microbes \square Chlorine or chemicals containing chlorine \square Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

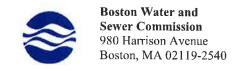
□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
NMFS Supporting Information
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those information, including the possibility of fine and imprisonment for knowing violations. no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have

It Name and Title: Justin Krebs	nature: Date:	Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): \square RGP \square DGP \square CGP \square MSGP \square Individual NPDES permit \square Other; if so, specify:		Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Notification provided to the appropriate State, including a copy of this NOI, if required.	A BMPP Statement has been implemented in accordance with good engineering practices following BMPP certification statement: Part 2.5 of the RGP.	
	Date: 8//2/19	Check one: Yes □ No ■ NA □	Check one: Yes □ No ■ NA □	Check one: Yes ■ No □ NA □	Check one: Yes ■	Check one: Yes ■ No 🏽	gineering prac	
	9	No ■ NA □	No ■ NA □	No □ NA □	No 🗆	No 🗆	tices following:	

Pri

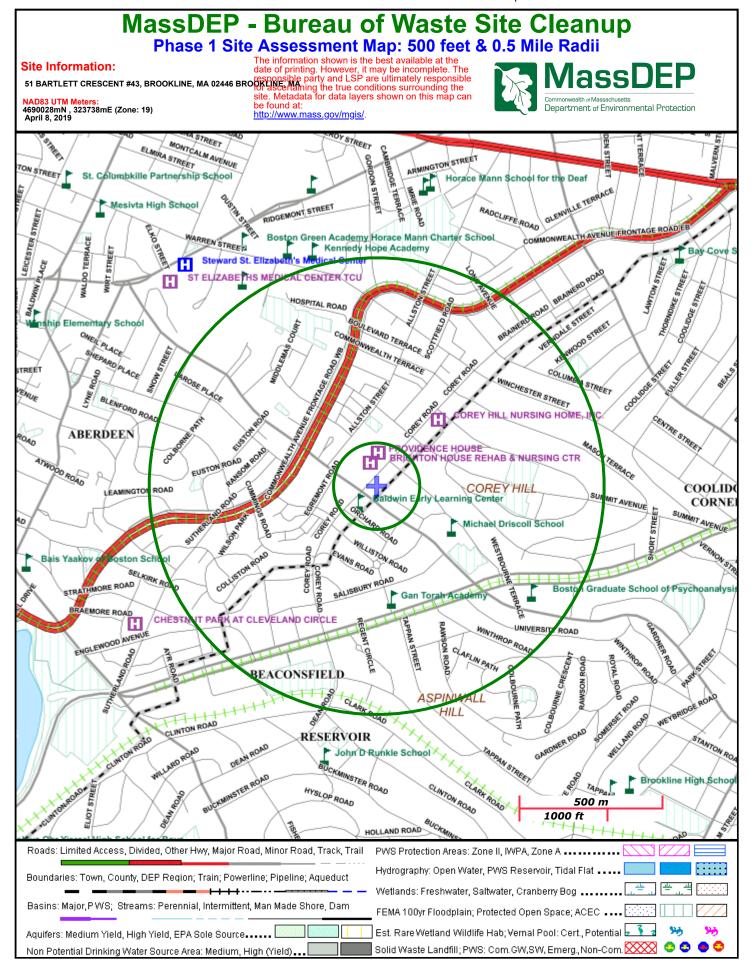

Sig

Massachusetts Category 5 Waters "Waters requiring a TMDL"

NAME	SEGMENT ID	DESCRIPTION	SIZE	UNITS	IMPAIRMENT CAUSE	EPA TMDL
Muddy River	MA72-11	Headwaters, outlet Ward Pond in Olmstead Park, Boston through Leverett Pond,	3.6	MILES	(Bottom Deposits*)	110.
					(Non-Native Aquatic Plants*)	
		Boston/Brookline to confluence with Charles River, Boston.			(Other flow regime alterations*)	
		NVGI, BOSIOII.			(Physical substrate habitat alterations*)	
					DDT	
					Escherichia coli	32383
					Oil and Grease	
					Other	
					Oxygen, Dissolved	
					PCB in Fish Tissue	
					Phosphorus (Total)	
					Taste and Odor	
					Turbidity	
Populatic Pond	MA72096	Norfolk	41.911	ACRES	Chlordane	
					DDT	
					Dissolved oxygen saturation	40319
					Excess Algal Growth	40319
					Mercury in Fish Tissue	33880
					Nutrient/Eutrophication Biological Indicators	40319
					Oxygen, Dissolved	40319
Powissett Brook	MA72-20	Headwaters, outlet Noannet Pond, Westwood to confluence with Charles River, Dover.	1.849	MILES	Combined Biota/Habitat Bioassessments	
Rock Meadow Brook	MA72-21	Headwaters in Fisher Meadow, Westwood through Stevens Pond and Lee Pond, Westwood to confluence with Charles River, Dedham.	3.771	MILES	Aquatic Macroinvertebrate Bioassessments	
					Aquatic Plants (Macrophytes)	40317
					Excess Algal Growth	40317
					Nutrient/Eutrophication Biological Indicators	40317
					Oxygen, Dissolved	40317
					Phosphorus (Total)	40317
Sawmill Brook	MA72-23	Headwaters, Newton to confluence with Charles River, Boston.	2.397	MILES	Chloride	
					Escherichia coli	32376
					Organic Enrichment (Sewage) Biological Indicators	40317
					Oxygen, Dissolved	40317
					Phosphorus (Total)	40317

Final Massachusetts Year 2014 Integrated List of Waters December, 2015 (2) CN 450.1

* TMDL not required (Non-pollutant)

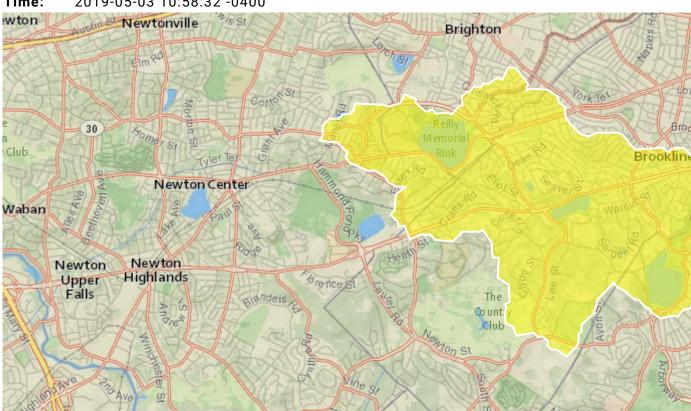

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVIDE INFORMATION HERE: Callahan Construction Inc Address: 80 First Street Bridgewater MA 02324 Phone Number: 508 279 0012 ___ Fax number: ___ ___ _{Title:} Project Executive Robert Sanda Contact person name: Email address: _rsanda@callahan-inc.com Cell number: ___508 279 9524 Permit Request (check one): ☑ New Application ☐ Permit Extension ☐ Other (Specify):__ Owner's Information (if different from above): Owner of property being dewatered: 5 Washington Square Owner LLC Phone number: 617 795 4201 Owner's mailing address: 257 Hillside Avenue Needham MA 02494 Location of Discharge & Proposed Treatment System(s): 5 Washington Street _____Neighborhood_Brighton Street number and name: Discharge is to a: ☐ Sanitary Sewer ☐ Combined Sewer ☒ Storm Drain ☐ Other (specify): Describe Proposed Pre-Treatment System(s): Frac Tank, Bag Filters and GAC Filter Through Town of Brookline Storm System and outfalls through BWSC Outfall No. Muddy River Receiving Waters Area 2 "Tannery Brook" into the Muddy River at Brookline Ave. Temporary Discharges (Provide Anticipated Dates of Discharge): From 08/2019 To 06/2020 ☐ Groundwater Remediation M Tank Removal/Installation ¥ Foundation Excavation □ Utility/Manhole Pumping □ Test Pipe ☐ Trench Excavation X Accumulated Surface Water □ Hydrogeologic Testing □ Other _ **Permanent Discharges** ☐ Foundation Drainage □ Crawl Space/Footing Drain □ Accumulated Surface Water □ Non-contact/Uncontaminated Cooling □ Non-contact/Uncontaminated Process □ Other; 1. Attach a Site Plan showing the source of the discharge and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter number, size, make and start reading. Note. All discharges to the Commission's sewer system will be assessed current sewer charges. 2. If discharging to a sanitary or combined sewer, attach a copy of MWRA's Sewer Use Discharge permit or application. If discharging to a separate storm drain, attach a copy of EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as well as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked if applicant fails to obtain the necessary permits from MWRA or EPA. Submit Completed Application to: Boston Water and Sewer Commission Engineering Customer Services 980 Harrison Avenue, Boston, MA 02119 Attn: Matthew Tuttle, Engineering Customer Service E-mail: tuttlemp@bwsc.org Phone: 617-989-7204 Fax: 617-989-7716 Date: 8/15/19 Signature of Authorized Representative for Property Owner:

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

5/3/2019 StreamStats


3&5 Washington Street StreamStats Report

Region ID: MA

Workspace ID: MA20190503145817794000

Clicked Point (Latitude, Longitude): 42.33255, -71.11324

Time: 2019-05-03 10:58:32 -0400

<1 acre

Basin Characteristics						
Parameter Code	Parameter Description	Value	Unit			
DRNAREA	Area that drains to a point on a stream	4.66	square miles			
BSLDEM250	Mean basin slope computed from 1:250K DEM	3.295	percent			
DRFTPERSTR	Area of stratified drift per unit of stream length	0.57	square mile per mile			
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionless			

5/3/2019 StreamStats

v WRIR00 4135]
v

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	4.66	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	3.295	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.57	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionless	0	1

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SE	SEp
7 Day 2 Year Low Flow	0.966	ft^3/s	0.215	4.19	49.5	49.5
7 Day 10 Year Low Flow	0.557	ft^3/s	0.101	2.88	70.8	70.8

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		
Ammonia	Report	mg/L			
Chloride	Report	μg/L			
Total Residual Chlorine	0.2	mg/L	85	μg/L	
Total Suspended Solids	30	mg/L		MØL	
Antimony	206	μg/L	4951	u α/I	
Arsenic	104		77	μg/L	
Cadmium		μg/L	2.4377	μg/L	
	10.2	μg/L		μg/L	
Chromium III	323	μg/L	788.8	μg/L	
Chromium VI	323	μg/L	88.5	μg/L	
Copper	242	μg/L	49.6	$\mu g/L$	
Iron	5000	$\mu g/L$	4266	$\mu g/L$	
Lead	160	$\mu g/L$	12.57	$\mu g/L$	
Mercury	0.739	$\mu g/L$	7.01	$\mu g/L$	
Nickel	1450	μg/L	480.1	μg/L	
Selenium	235.8	μg/L	38.7	μg/L	
Silver	35.1	μg/L	41.7	μg/L	
Zinc	420	μg/L	1000.6	μg/L	
Cyanide	178	mg/L	40.2	μg/L	
B. Non-Halogenated VOCs	170	mg/L	.0.2	MS E	
Total BTEX	100	μg/L			
Benzene	5.0	μg/L			
1,4 Dioxane	200	$\mu g/L$			
Acetone	7970	$\mu g/L$			
Phenol	1,080	$\mu g/L$	2321	$\mu g/L$	
C. Halogenated VOCs		~		_	
Carbon Tetrachloride	4.4	μg/L	12.4	μg/L	
1,2 Dichlorobenzene	600	μg/L			
1,3 Dichlorobenzene1,4 Dichlorobenzene	320 5.0	μg/L			
Total dichlorobenzene		μg/L			
1,1 Dichloroethane	70	μg/L μg/L			
1,2 Dichloroethane	5.0	μg/L μg/L			
1,1 Dichloroethylene	3.2	μg/L μg/L			
Ethylene Dibromide	0.05	μg/L			
Methylene Chloride	4.6	μg/L			
1,1,1 Trichloroethane	200	μg/L			
1,1,2 Trichloroethane	5.0	μg/L			
Trichloroethylene	5.0	μg/L			
Tetrachloroethylene	5.0	μg/L	25.5	$\mu g/L$	
cis-1,2 Dichloroethylene	70	$\mu g/L$			

Vinyl Chloride	2.0	μg/L		
D. Non-Halogenated SVOCs				
Total Phthalates	190	μg/L		μg/L
Diethylhexyl phthalate	101	μg/L	17.0	μg/L
Total Group I Polycyclic				
Aromatic Hydrocarbons	1.0	μg/L		
Benzo(a)anthracene	1.0	μg/L	0.0294	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0294	$\mu g/L$
Benzo(b)fluoranthene	1.0	μg/L	0.0294	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0294	μg/L
Chrysene	1.0	μg/L	0.0294	$\mu g/L$
Dibenzo(a,h)anthracene	1.0	μg/L	0.0294	$\mu g/L$
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0294	μg/L
Total Group II Polycyclic				
Aromatic Hydrocarbons	100	μg/L		
Naphthalene	20	μg/L		
E. Halogenated SVOCs				
Total Polychlorinated Biphenyls	0.000064	μg/L		
Pentachlorophenol	1.0	μg/L		
F. Fuels Parameters				
Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	155	μg/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: April 09, 2019

Consultation Code: 05E1NE00-2019-SLI-1355

Event Code: 05E1NE00-2019-E-03191

Project Name: 3 & 5 Washington Street, 165 Corey Road, and 43 & 51 Bartlett Crescent

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1355

Event Code: 05E1NE00-2019-E-03191

Project Name: 3 & 5 Washington Street, 165 Corey Road, and 43 & 51 Bartlett Crescent

Project Type: DEVELOPMENT

Project Description: <1 Acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.34238160446451N71.13992435546436W

Counties: Norfolk, MA | Suffolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

MACRIS Search Results

Search Criteria: Town(s): Brookline; Street No: 43; Street Name: Bartlett Crescent; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Brookline; Street No: 51; Street Name: Bartlett Crescent; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Brighton; Street No: 3; Street Name: Washington St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Brighton; Street No: 5; Street Name: Washington St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Brighton; Street No: 165; Street Name: Corey Rd; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

APPENDIX D:

LABORATORY ANALYTICAL DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1915179

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Report Date: 04/22/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date:

04/22/19

Alpha Sample ID Client ID Matrix Sample Location Collection Date/Time

L1915179-01 B-117 (OW) GROUNDWATER BRIGHTON, MA

04/12/19 11:00

Receive Date

04/12/19

Project Name: 3&5 WASHINGTON STREET Lab Number: L1915179
Project Number: 5822.9.01 Report Date: 04/22/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 3&5 WASHINGTON STREET Lab Number: L1915179 **Project Number:** 5822.9.01 **Report Date:** 04/22/19

Case Narrative (continued)

Report Submission

April 22, 2019: This final report includes the results of all requested analyses.

April 22, 2019: This is a preliminary report.

The analysis of Ethanol was subcontracted. A copy of the laboratory report is included as an addendum.

Please note: This data is only available in PDF format and is not available on Data Merger.

Sample Receipt

All sample information was obtained from the container labels.

Volatile Organics by Method 624

L1915179-01: The sample has elevated detection limits due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Volatile Organics by SIM

L1915179-01: The sample has an elevated detection limit due to the dilution required by the elevated concentrations of non-target compounds in the sample.

Semivolatile Organics by Method 625

L1915179-01: The sample has elevated detection limits due to the dilution required by the sample matrix.

Semivolatile Organics by SIM

L1915179-01: The sample has elevated detection limits due to the dilution required by the sample matrix.

Chlorine, Total Residual

The WG1226125-4 MS recovery (60%), performed on L1915179-01, is outside the acceptance criteria; however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

tirbelle M. Morris

Date: 04/22/19 Title: Technical Director/Representative

ORGANICS

VOLATILES

L1915179

04/12/19

Not Specified

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Date Collected: 04/12/19 11:00

Report Date: 04/22/19

Lab Number:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1915179-01 D

Client ID: B-117 (OW) BRIGHTON, MA Sample Location:

Sample Depth:

Matrix: Groundwater Analytical Method: 128,624.1 Analytical Date: 04/16/19 19:40

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor				
Volatile Organics by GC/MS - Westborough Lab										
Danasa	27		//	20		20				
Benzene	27		ug/l	20		20				
Toluene	ND		ug/l	20		20				
Ethylbenzene	390		ug/l	20		20				
p/m-Xylene	1300		ug/l	40		20				
o-xylene	300		ug/l	20		20				
Acetone	ND		ug/l	200		20				
Methyl tert butyl Ether	ND		ug/l	200		20				
Tert-Butyl Alcohol	ND		ug/l	2000		20				
Tertiary-Amyl Methyl Ether	ND		ug/l	400		20				

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	96		60-140	
Fluorobenzene	89		60-140	
4-Bromofluorobenzene	104		60-140	

L1915179

04/22/19

Project Name: Lab Number: **3&5 WASHINGTON STREET**

Project Number: 5822.9.01

SAMPLE RESULTS

Date Collected: 04/12/19 11:00

Report Date:

Lab ID: L1915179-01 D Client ID: Date Received: 04/12/19 B-117 (OW) BRIGHTON, MA Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Groundwater Analytical Method: 128,624.1-SIM Analytical Date: 04/16/19 19:40

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-SIM - West	borough Lab						
1,4-Dioxane	ND		ug/l	1000		20	
Surrogate			% Recovery	Qualifier	Accept Crite		
Fluorobenzene			97		60-	140	
4-Bromofluorobenzene			104		60-	140	

L1915179

Project Name: 3&5 WASHINGTON STREET Lab Number:

Project Number: 5822.9.01 **Report Date:** 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 04/16/19 17:49

Analyst: NLK

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab	for sample(s): 01	Batch:	WG1226796-16
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Acetone	ND	ug/l	10	
Methyl tert butyl Ether	ND	ug/l	10	
Tert-Butyl Alcohol	ND	ug/l	100	
Tertiary-Amyl Methyl Ether	ND	ug/l	20	

		Acceptance	
Surrogate	%Recovery Qu	ualifier Criteria	_
Pentafluorobenzene	93	60-140	
Fluorobenzene	87	60-140	
4-Bromofluorobenzene	103	60-140	

Project Name: 3&5 WASHINGTON STREET **Lab Number:** L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 04/16/19 17:49

Analyst: NLK

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westboroug	h Lab for s	ample(s):	01	Batch:	WG1227304-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Qualif	ier Criteria
Fluorobenzene	94	60-140
4-Bromofluorobenzene	107	60-140

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date:

04/22/19

nrameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
platile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 0°	1 Batch: WG1	226796-15					
Benzene	85		-		65-135	-		61	
Toluene	95		-		70-130	-		41	
Ethylbenzene	95		-		60-140	-		63	
p/m-Xylene	100		-		60-140	-		30	
o-xylene	90		-		60-140	-		30	
Acetone	92		-		40-160	-		30	
Methyl tert butyl Ether	85		-		60-140	-		30	
Tert-Butyl Alcohol	92		-		60-140	-		30	
Tertiary-Amyl Methyl Ether	70		-		60-140	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Pentafluorobenzene	97		60-140
Fluorobenzene	98		60-140
4-Bromofluorobenzene	103		60-140

Project Name: 3&5 WASHINGTON STREET

Lab Number:

L1915179

Project Number: 5822.9.01

Report Date:

04/22/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS-SIM - Westbo	orough Lab Associa	ated sample(s)	: 01 Batch:	WG1227304	-3				
1.4-Dioxane	110		_		60-140	_		20	

Surrogate	LCS %Recovery Qu	LCSD al %Recovery	Qual	Acceptance Criteria
Fluorobenzene 4-Bromofluorobenzene	105 109			60-140 60-140

SEMIVOLATILES

Project Name: 3&5 WASHINGTON STREET Lab Number: L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

SAMPLE RESULTS

Lab ID: L1915179-01 D2 Date Collected: 04/12/19 11:00

Client ID: B-117 (OW) Date Received: 04/12/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 625.1
Analytical Method: 129,625.1-SIM Extraction Date: 04/18/19 08:03

Analytical Date: 04/19/19 14:50

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab)				
Naphthalene	490		ug/l	4.0		40

Project Name: Lab Number: **3&5 WASHINGTON STREET** L1915179

Project Number: Report Date: 5822.9.01 04/22/19

SAMPLE RESULTS

04/20/19 00:19

Lab ID: L1915179-01 D Date Collected: 04/12/19 11:00

Date Received: 04/12/19 Client ID: B-117 (OW) BRIGHTON, MA Sample Location: Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 625.1 Matrix: Groundwater **Extraction Date:** 04/18/19 08:02 Analytical Method: 129,625.1

Analyst: SZ

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westl	oorough Lab						
Bis(2-ethylhexyl)phthalate	ND		ug/l	4.4		2	
Butyl benzyl phthalate	ND		ug/l	10		2	
Di-n-butylphthalate	ND		ug/l	10		2	
Di-n-octylphthalate	ND		ug/l	10		2	
Diethyl phthalate	ND		ug/l	10		2	
Dimethyl phthalate	ND		ug/l	10		2	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	93	42-122	
2-Fluorobiphenyl	103	46-121	
4-Terphenyl-d14	116	47-138	

Project Name: 3&5 WASHINGTON STREET Lab Number: L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

SAMPLE RESULTS

Lab ID: L1915179-01 D Date Collected: 04/12/19 11:00

Client ID: B-117 (OW) Date Received: 04/12/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 625.1
Analytical Method: 129,625.1-SIM Extraction Date: 04/18/19 08:03

Analytical Date: 04/19/19 14:22

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM -	Westborough La	ab				
Acenaphthene	ND		ug/l	1.0		10
Fluoranthene	ND		ug/l ug/l	1.0	 	10
Naphthalene	390	E	ug/l	1.0		10
Benzo(a)anthracene	ND		ug/l	1.0		10
Benzo(a)pyrene	ND		ug/l	1.0		10
Benzo(b)fluoranthene	ND		ug/l	1.0		10
Benzo(k)fluoranthene	ND		ug/l	1.0		10
Chrysene	ND		ug/l	1.0		10
Acenaphthylene	ND		ug/l	1.0		10
Anthracene	ND		ug/l	1.0		10
Benzo(ghi)perylene	ND		ug/l	1.0		10
Fluorene	ND		ug/l	1.0		10
Phenanthrene	ND		ug/l	1.0		10
Dibenzo(a,h)anthracene	ND		ug/l	1.0		10
Indeno(1,2,3-cd)pyrene	ND		ug/l	1.0		10
Pyrene	ND		ug/l	1.0		10
Pentachlorophenol	ND		ug/l	10		10

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	51	25-87	
Phenol-d6	38	16-65	
Nitrobenzene-d5	103	42-122	
2-Fluorobiphenyl	108	46-121	
2,4,6-Tribromophenol	87	45-128	
4-Terphenyl-d14	136	47-138	

L1915179

04/22/19

Lab Number:

Report Date:

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1-SIM Analytical Date: 04/19/19 03:37

Analyst: DV

Extraction Method: EPA 625.1 04/18/19 08:03 **Extraction Date:**

arameter	Result	Qualifier	Units	RL	MDL	
emivolatile Organics by GC/M	S-SIM - Westbo	rough Lab	for sample(s): 01 I	Batch: WG1227664-1	1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		
Pentachlorophenol	ND		ug/l	1.0		

		Acceptance	
%Recovery	Qualifier	Criteria	
46		25-87	
27		16-65	
72		42-122	
70		46-121	
63		45-128	
92		47-138	
	46 27 72 70 63	%Recovery Qualifier 46 27 72 70 63 63	%Recovery Qualifier Criteria 46 25-87 27 16-65 72 42-122 70 46-121 63 45-128

Project Name: 3&5 WASHINGTON STREET **Lab Number:** L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

Method Blank Analysis Batch Quality Control

Analytical Method: 129,625.1 Extraction Method: EPA 625.1
Analytical Date: 04/19/19 17:41 Extraction Date: 04/18/19 08:02

Analyst: SZ

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS - V	Westborougl	n Lab for s	ample(s):	01	Batch:	WG1227665-1	
Bis(2-ethylhexyl)phthalate	ND		ug/l		2.2		
Butyl benzyl phthalate	ND		ug/l		5.0		
Di-n-butylphthalate	ND		ug/l		5.0		
Di-n-octylphthalate	ND		ug/l		5.0		
Diethyl phthalate	ND		ug/l		5.0		
Dimethyl phthalate	ND		ug/l		5.0		

		Α	cceptance	
Surrogate	%Recovery	Qualifier	Criteria	
Nitrobenzene-d5	73		42-122	
2-Fluorobiphenyl	78		46-121	
4-Terphenyl-d14	83		47-138	

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L1915179

Report Date: 04/22/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM - Wes	tborough Lab As	sociated san	nple(s): 01 Batc	h: WG12	27664-3				
Acenaphthene	72		-		60-132	-		30	
Fluoranthene	78		-		43-121	-		30	
Naphthalene	65		-		36-120	-		30	
Benzo(a)anthracene	72		-		42-133	-		30	
Benzo(a)pyrene	72		-		32-148	-		30	
Benzo(b)fluoranthene	71		-		42-140	-		30	
Benzo(k)fluoranthene	73		-		25-146	-		30	
Chrysene	73		-		44-140	-		30	
Acenaphthylene	74		-		54-126	-		30	
Anthracene	78		-		43-120	-		30	
Benzo(ghi)perylene	74		-		1-195	-		30	
Fluorene	74		-		70-120	-		30	
Phenanthrene	76		-		65-120	-		30	
Dibenzo(a,h)anthracene	76		-		1-200	-		30	
Indeno(1,2,3-cd)pyrene	72		-		1-151	-		30	
Pyrene	87		-		70-120	-		30	
Pentachlorophenol	65		-		38-152	-		30	

Project Name: 3&5 WASHINGTON STREET

Lab Number:

L1915179

Project Number: 5822.9.01

Report Date:

04/22/19

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1227664-3

Surrogate	LCS %Recovery Qual %F	LCSD Acceptance Recovery Qual Criteria
2-Fluorophenol	48	25-87
Phenol-d6	29	16-65
Nitrobenzene-d5	70	42-122
2-Fluorobiphenyl	70	46-121
2,4,6-Tribromophenol	66	45-128
4-Terphenyl-d14	89	47-138

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date:

04/22/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Associa	ated sample(s)	: 01 Batch:	WG1227665	5-2				
Bis(2-ethylhexyl)phthalate	97		-		29-137	-		30	
Butyl benzyl phthalate	109		-		1-140	-		30	
Di-n-butylphthalate	103		-		8-120	-		30	
Di-n-octylphthalate	105		-		19-132	-		30	
Diethyl phthalate	96		-		1-120	-		30	
Dimethyl phthalate	96		-		1-120	-		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	86		42-122
2-Fluorobiphenyl	85		46-121
4-Terphenyl-d14	89		47-138

METALS

Project Name: Lab Number: **3&5 WASHINGTON STREET** L1915179 Report Date: 04/22/19

Project Number: 5822.9.01

SAMPLE RESULTS

Lab ID: L1915179-01 Date Collected: 04/12/19 11:00 Client ID: B-117 (OW) Date Received: 04/12/19 Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater

						Dilution	Date	Date	Prep	Analytical	
Parameter	Result	Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Method	Analyst
Total Metals - Mansfield Lab											
Antimony, Total	ND		mg/l	0.00400		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Arsenic, Total	0.00409		mg/l	0.00100		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Copper, Total	ND		mg/l	0.00200		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Iron, Total	10.9		mg/l	0.050		1	04/15/19 13:20	04/15/19 19:22	EPA 3005A	19,200.7	МС
Lead, Total	0.00217		mg/l	0.00100		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/15/19 12:37	04/15/19 19:47	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	04/15/19 13:20	04/15/19 22:16	EPA 3005A	3,200.8	AM
Total Hardness by	Total Hardness by SM 2340B - Mansfield Lab										
Hardness	285		mg/l	0.660	NA	1	04/15/19 13:20	04/15/19 19:22	EPA 3005A	19,200.7	MC
General Chemistry - Mansfield Lab											
Chromium, Trivalent	ND		mg/l	0.010		1		04/15/19 22:16	NA	107,-	

Serial_No:04221921:13

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s): 01 Batcl	h: WG12	26480-	1				
Antimony, Total	ND	mg/l	0.00400		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Copper, Total	ND	mg/l	0.00200		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	04/15/19 13:20	04/15/19 20:17	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	I Analyst
Total Metals - Mansfie	eld Lab for sample(s):	01 Bato	h: WG12	226481-	1				
Mercury, Total	ND	mg/l	0.00020		1	04/15/19 12:37	04/15/19 19:38	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansf	ield Lab for sample(s):	01 Batcl	h: WG12	226484-	·1				
Iron, Total	ND	mg/l	0.050		1	04/15/19 13:20	04/15/19 18:13	19,200.7	MC

Prep Information

Digestion Method: EPA 3005A

Serial_No:04221921:13

Project Name: 3&5 WASHINGTON STREET **Lab Number:** L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** RLMDL **Factor Prepared** Analyzed Units Total Hardness by SM 2340B - Mansfield Lab for sample(s): 01 Batch: WG1226484-1 Hardness ND mg/l 0.660 NA 04/15/19 18:13 19,200.7 MC 04/15/19 13:20

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L

L1915179

Report Date:

04/22/19

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1226480-2				
Antimony, Total	90	-	85-115	-		
Arsenic, Total	101	-	85-115	-		
Cadmium, Total	110	-	85-115	-		
Chromium, Total	100	-	85-115	-		
Copper, Total	99	-	85-115	-		
Lead, Total	110	-	85-115	-		
Nickel, Total	101	-	85-115	-		
Selenium, Total	105	-	85-115	-		
Silver, Total	101	-	85-115	-		
Zinc, Total	110	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1226481-2				
Mercury, Total	103	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch:	WG1226484-2				
Iron, Total	105	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01 Batch: WG122648	4-2			
Hardness	101	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L1915179

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qua	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Γotal Metals - Mansfield L	ab Associated sar	nple(s): 01	QC Batch	ID: WG122648	0-3	QC Sample:	: L1915030-01	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.6431	129		-	-		70-130	-		20
Arsenic, Total	0.01500	0.12	0.1409	105		-	-		70-130	-		20
Cadmium, Total	ND	0.051	0.04804	94		-	-		70-130	-		20
Chromium, Total	0.01660	0.2	0.2290	106		-	-		70-130	-		20
Copper, Total	0.07948	0.25	0.2972	87		-	-		70-130	-		20
Lead, Total	0.2915	0.51	0.8599	111		-	-		70-130	-		20
Nickel, Total	0.02906	0.5	0.5028	95		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.1367	114		-	-		70-130	-		20
Silver, Total	ND	0.05	0.05032	101		-	-		70-130	-		20
Zinc, Total	0.1172	0.5	0.5582	88		-	-		70-130	-		20
otal Metals - Mansfield L	ab Associated sar	nple(s): 01	QC Batch	ID: WG122648	0-5	QC Sample:	: L1915054-09	Clien	t ID: MS Sa	ample		
Antimony, Total	ND	0.5	0.6516	130		-	-		70-130	-		20
Arsenic, Total	0.0406	0.12	0.1724	110		-	-		70-130	-		20
Cadmium, Total	0.00259	0.051	0.06013	113		-	-		70-130	-		20
Chromium, Total	0.0058	0.2	0.2110	103		-	-		70-130	-		20
Copper, Total	0.0976	0.25	0.3507	101		-	-		70-130	-		20
Lead, Total	0.0115	0.51	0.5901	113		-	-		70-130	-		20
Nickel, Total	0.0120	0.5	0.5231	102		-	-		70-130	-		20
Selenium, Total	0.0173	0.12	0.1639	122		-	-		70-130	-		20
Silver, Total	0.0005	0.05	0.05230	104		-	-		70-130	-		20
Zinc, Total	0.1637	0.5	0.7290	113		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L1915179

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG122648	31-3	QC Sample	: L1915197-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00486	97		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch	ID: WG122648	31-5	QC Sample	: L1915179-01	Client ID: B-117	(OW)	
Mercury, Total	ND	0.005	0.00489	98		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch	ID: WG122648	34-3	QC Sample	e: L1915030-01	Client ID: MS S	ample	
Iron, Total	11.7	1	12.2	50	Q	-	-	75-125	-	20
Total Hardness by SM 23	340B - Mansfield Lal	b Associate	ed sample(s)	: 01 QC Bat	ch ID:	WG1226484	4-3 QC Samp	le: L1915030-01	Client ID:	MS Sample
Hardness	4060	66.2	4090	45	Q	-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1226480-4	QC Sample:	L1915030-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.01500	0.01475	mg/l	2		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.01660	0.01710	mg/l	3		20
Copper, Total	0.07948	0.07540	mg/l	5		20
Lead, Total	0.2915	0.2951	mg/l	1		20
Nickel, Total	0.02906	0.02800	mg/l	4		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.1172	0.1166	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1226480-6	QC Sample:	L1915054-09	Client ID:	DUP Sample	
Cadmium, Total	0.00259	0.00257	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1226481-4	QC Sample:	L1915197-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1226481-6	QC Sample:	L1915179-01	Client ID:	B-117 (OW)	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1226484-4	QC Sample:	L1915030-01	Client ID:	DUP Sample	
Iron, Total	11.7	11.1	mg/l	5		20

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name: 3&5 WASHINGTON STREET** L1915179

Project Number: Report Date: 04/22/19 5822.9.01

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab	Associated sample(s): 01	QC Batch ID: WG1226484-4	QC Sample:	L1915030-01	Client ID: DUP Sample
Hardness	4060	4020	mg/l	1	20

INORGANICS & MISCELLANEOUS

Serial_No:04221921:13

Project Name: 3&5 WASHINGTON STREET Lab Number: L1915179

Project Number: 5822.9.01 **Report Date:** 04/22/19

SAMPLE RESULTS

 Lab ID:
 L1915179-01
 Date Collected:
 04/12/19 11:00

 Client ID:
 B-117 (OW)
 Date Received:
 04/12/19

 Sample Location:
 BRIGHTON, MA
 Field Prep:
 Not Specified

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	ıb								
Solids, Total Suspended	21.		mg/l	5.0	NA	1	-	04/16/19 15:45	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	04/14/19 17:50	04/15/19 12:47	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/13/19 05:41	121,4500CL-D	JW
pH (H)	6.8		SU	-	NA	1	-	04/13/19 09:04	121,4500H+-B	JW
Nitrogen, Ammonia	1.47		mg/l	0.075		1	04/15/19 14:32	04/15/19 22:13	121,4500NH3-BH	l AT
TPH, SGT-HEM	ND		mg/l	4.00		1	04/15/19 16:15	04/15/19 22:45	74,1664A	ML
Phenolics, Total	ND		mg/l	0.030		1	04/17/19 03:40	04/18/19 04:15	4,420.1	GD
Chromium, Hexavalent	ND		mg/l	0.010		1	04/13/19 05:00	04/13/19 05:18	1,7196A	JW
Anions by Ion Chromato	graphy - Wes	stborough	Lab							
Chloride	875.		mg/l	12.5		25	-	04/16/19 20:16	44,300.0	AU

Serial_No:04221921:13

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date: 04/22/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG12	26073-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/13/19 05:00	04/13/19 05:17	1,7196A	JW
General Chemistry -	Westborough Lab for	or sam	ple(s): 01	Batch:	WG12	26125-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	04/13/19 05:41	121,4500CL-D	JW
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG12	26303-1				
Cyanide, Total	ND		mg/l	0.005		1	04/14/19 17:50	04/15/19 12:28	121,4500CN-CE	LH
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG12	26445-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/15/19 14:32	04/15/19 22:01	121,4500NH3-BH	H AT
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG12	26558-1				
TPH, SGT-HEM	ND		mg/l	4.00		1	04/15/19 16:15	04/15/19 22:45	74,1664A	ML
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG12	26887-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/16/19 15:45	121,2540D	DR
Anions by Ion Chrom	atography - Westbo	rough l	Lab for sar	nple(s):	01 B	atch: WG1	227082-1			
Chloride	ND		mg/l	0.500		1	-	04/16/19 16:52	44,300.0	AU
General Chemistry -	Westborough Lab f	or sam	ple(s): 01	Batch:	WG12	27221-1				
Phenolics, Total	ND		mg/l	0.030		1	04/17/19 03:40	04/18/19 04:11	4,420.1	GD

Lab Control Sample Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date:

04/22/19

Parameter	LCS %Recovery Qu	LCSD al %Recovery <u>Qual</u>	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226073-2				
Chromium, Hexavalent	96		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226125-2				
Chlorine, Total Residual	108	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226144-1				
рН	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226303-2				
Cyanide, Total	96		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226445-2				
Nitrogen, Ammonia	91	-	80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1226558-2				
ТРН	90	-	64-132	-		34
Anions by Ion Chromatography - Westbo	orough Lab Associated sa	ample(s): 01 Batch: WG1227082	2-2			
Chloride	104	-	90-110	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Lab Number: L1915179

Project Number: 5822.9.01

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	Batch: WG1227221-2			
Phenolics, Total	101	-	70-130	-	

Matrix Spike Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L1915179

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qua	Recovery Il Limits	RPD Qual	RPD Limits
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1226073-4	QC Sample: L191517	9-01 Client II	D: B-117 (O\	N)
Chromium, Hexavalent	ND	0.1	0.086	86	-	-	85-115	-	20
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1226125-4	QC Sample: L191517	9-01 Client II	D: B-117 (O	N)
Chlorine, Total Residual	ND	0.25	0.15	60	Q -	-	80-120	-	20
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1226303-4	QC Sample: L191471	7-02 Client II	D: MS Samp	le
Cyanide, Total	0.005	0.2	0.190	92	-	-	90-110	-	30
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1226445-4	QC Sample: L191503	30-02 Client II	D: MS Samp	le
Nitrogen, Ammonia	ND	4	3.71	93		-	80-120	-	20
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1226558-4	QC Sample: L191458	32-01 Client II	D: MS Samp	le
TPH	ND	22.2	19.0	86	-	-	64-132	-	34
Anions by Ion Chromatogra Sample	phy - Westborouç	gh Lab Asso	ciated sar	nple(s): 01 Q(C Batch ID: WG	1227082-3 QC Sam	ple: L1915345-	02 Client IE	D: MS
Chloride	25.2	4	28.4	78	Q -	-	90-110	-	18
General Chemistry - Westb	orough Lab Asso	ciated samp	le(s): 01	QC Batch ID: \	WG1227221-4	QC Sample: L191517	9-01 Client II	D: B-117 (O\	N)
Phenolics, Total	ND	0.4	0.42	106	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1915179

Report Date:

04/22/19

Parameter	Nati	ive Sample	Duplicate Sam	nple Units	RPD	Qual	al RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226073-3	QC Sample: L1915	5179-01	Client ID:	B-117 (OW)	
Chromium, Hexavalent		ND	ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226125-3	QC Sample: L1915	179-01	Client ID:	B-117 (OW)	
Chlorine, Total Residual		ND	ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226144-2	QC Sample: L1914	766-01	Client ID:	DUP Sample	
рН		7.1	7.1	SU	0		5	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226303-3	QC Sample: L1914	717-01	Client ID:	DUP Sample	
Cyanide, Total		0.006	0.005	mg/l	10		30	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226445-3	QC Sample: L1915	5030-02	Client ID:	DUP Sample	
Nitrogen, Ammonia		ND	ND	mg/l	NC		20	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226558-3	QC Sample: L1914	1582-01	Client ID:	DUP Sample	
TPH	. , , ,	ND	ND	mg/l	NC		34	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1226887-2	QC Sample: L1915	5121-01	Client ID:	DUP Sample	
Solids, Total Suspended	. , ,	320	320	mg/l	0		29	
Anions by Ion Chromatography - Westbo Sample	orough Lab Associated	d sample(s): 01 C	C Batch ID: WG	1227082-4 QC Sa	mple: L	1915345-0	2 Client ID: DUP	
Chloride		25.2	25.3	mg/l	0		18	
General Chemistry - Westborough Lab	Associated sample(s):	01 QC Batch ID:	WG1227221-3	QC Sample: L1915	5179-01	Client ID:	B-117 (OW)	
Phenolics, Total		ND	ND	mg/l	NC		20	

Serial_No:04221921:13

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number: L1915179
Report Date: 04/22/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Info	Container Information		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1915179-01A	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01A1	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01B	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01B1	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01C	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01C1	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01D	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01D1	Vial Na2S2O3 preserved	Α	NA		3.6	Υ	Absent		624.1-RGP(7),624.1-SIM-RGP(7)
L1915179-01E	Vial HCl preserved	Α	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L1915179-01E1	Vial HCl preserved	Α	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L1915179-01E2	Vial HCI preserved	Α	NA		3.6	Υ	Absent		SUB-ETHANOL(14)
L1915179-01F	Plastic 250ml HNO3 preserved	Α	<2	<2	3.6	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1915179-01G	Plastic 250ml NaOH preserved	Α	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L1915179-01H	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.6	Υ	Absent		NH3-4500(28)
L1915179-01I	Plastic 950ml unpreserved	Α	7	7	3.6	Υ	Absent		CL-300(28),HEXCR-7196(1),TRC-4500(1),PH-4500(.01)
L1915179-01J	Plastic 950ml unpreserved	Α	7	7	3.6	Υ	Absent		TSS-2540(7)
L1915179-01K	Amber 950ml H2SO4 preserved	Α	<2	<2	3.6	Υ	Absent		TPHENOL-420(28)
L1915179-01L	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		TPH-1664(28)
L1915179-01M	Amber 1000ml HCl preserved	Α	NA		3.6	Υ	Absent		TPH-1664(28)
L1915179-01N	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1915179-01P	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Serial_No:04221921:13

Lab Number: L1915179

Report Date: 04/22/19

Project Name: 3&5 WASHINGTON STREET

Project Number: 5822.9.01

Container Information			Initial Final		Тетр			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1915179-01Q	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1915179-01R	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1915179-01S	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)
L1915179-01T	Amber 1000ml Na2S2O3	Α	7	7	3.6	Υ	Absent		625.1-RGP(7),625.1-SIM-RGP(7)

Project Name:3&5 WASHINGTON STREETLab Number:L1915179Project Number:5822.9.01Report Date:04/22/19

GLOSSARY

Acronyms

EDL

LOD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

omy.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:3&5 WASHINGTON STREETLab Number:L1915179Project Number:5822.9.01Report Date:04/22/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:3&5 WASHINGTON STREETLab Number:L1915179Project Number:5822.9.01Report Date:04/22/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 4 Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.
- Method 625.1: Base/Neutrals and Acids by GC/MS, EPA 821-R-16-007, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:04221921:13

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	PAGE C	rF)	Date	Rec'd i	in Lab:		4/1	21	19		ALP	HA J	ob #:	1	1915179
ALPHA		Project Inform	nation			Report Information Data Deliverables					les	Billin	ng Ini ame as	orma	tion	PO#:		
Annussmentanno		THE REAL PROPERTY.		*	ABBLEW	1000	ADEx			Inches I lines		liverab	les				99176	7,650,053
TEL: 508-898-9220 TE	ansfield, MA EL: 508-822-9300	Project Name: 3	3&5 Washing	ton Street		-	TECHNICA .	ry Re	quire	UB-UD-W	Self-	ABOVE DUC	5595	ioi,	#Z-Q	Tay.	W.J.	
Client Information	AX: 508-822-3288	Project Location	: Brighton, M	ΛA		7500000	Fed P	-						Criteri	ia			
Client: McPhail Asso	ociates, LLC	Project #: 5822.	9.01					68	Marie .		Ne	W.	10	Si de		THE STATE OF		To be seen to
Address: 2269 Mass	achusetts Avenue	Project Manager: KWS																
Cambridge, MA 0214	40	ALPHA Quote #:																
Phone: (617) 868-1420 Turn-Around Time				AN	ALYS	IS										SAMPLE HANDLING T		
Fax:			☐ Rus	sh (ONLY IF PI	RE-APPROVED)													Filtration A
Email: Kseaman@m	cphailgeo.com										_							□ Done □ Not Needed ■
☐ These samples have be	een Previously analyzed by Alpha	Due Date:	Time:							1	cane		h ,		-			☐ Lab to do ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
Other Project Specific Requirements/Comments/Detection Limits: Circle the following if required: SALINITY HARDNESS PH Sect. A inorganics: Ammonia, Chloride, TRC, TSS, CrVI, CrIII, Tot-CN, RGP Metals					RGP Metals (200.8) (A)		Ammonia (4500 (A))			RGP (1,4-Dioxane)	55			0, Sub-Ethanol			Lab to do (Please specify below)	
B- Non-Hal- VOC- 82 D: 8270/8270-SIM: 1	260, 8260-SIM, Tot. Phenol. Sec E- PCB's, PCP(8270/8270-SIM):	F-TPH, 8260, Sub-	-Ethanol			Aetak	8	nia (4	8	į	624.1-SIM-RGP	Hardness			, 8260,			
ALPHA Lab ID	Sample ID	Colle	ection	Sample	Sampler's	GP I	TSS-(A)	l i	TCN (A)	CrVI,CrIII,	24.1-	ph/ Ha	625.1		F-TPH,			Sample Specific Comments
(Lab Use Only)		Date	Time	Matrix	Initials	28/20				. ASS	_35			-				Comments
15/79-01				GW	1	X		\boxtimes								브		
						H	님	님	님	님	님	무		님	님	님	님	
					+	H-	Η	님	님	Η	井	Η	ㅂ	Η	H	片	片	
					+	-	片	H	片	片	井	片	님	H	님	片	片	
						H	H	H	H	H	+	片	П	H	H	H	H	
					+		H	H	H	H	౼	H	H	H	H	Ħ	Ħ	
						-	ī	T	Ħ	H	H	Ħ	П	ī	ī	ī	Ħ	
ATRIJO SAL											\exists							
TWINTED WITH																		
				С	ontainer Type	Р	Р	Р	P	Р	v	Р	Α		Α			
		10			Preservative	С	Α	D	E	Α	В	Α	Н		Α		æ	Please print clearly, legibly and completely. Samples can
Relinquished By: Tin Beach, a			Di	ate/Tim	е			Receiv	ed By:			1111111	ate/Tin	ne	not be logged in and turnaround time clock will not			
		- V									4/12/14 12:30			start until any ambiguities are resolved. All samples submitted are subject to				
FORM NO: 01-01(1-NJ) (rev. 5-JAN-12)		John	John Sing AAL 4			111 - 11		6115	Jel	1-	>~	7	40	AAL	7/12	14 K	15	Alpha's Payment Terms.
		- De		300	AAC 4	12/9	18	109	1	m	n	N	1	4	11/1	9 1	004	

Subcontract Chain of Custody

World Class Ch		Tes 296 Na	st America (Na 80 Foster Creic shville, TN 372		Alpha Job Number L1915179			
C	lient Information	6. 1. 学品 1.36	Project Inf	ormation	Regulatory Requ	uirements/Report Limits		
	nalytical Labs Valkup Drive rough, MA 01581-1019	Project Location Project Manage Turnaro Due Date:	und & Delive	i erables Information				
Phone: 603.319 Email: mgulli@	Email: mgulli@alphalab.com Deliverables:							
400	THE RESIDENCE OF	Project Specif	ic Requireme	ents and/or Report I	Requirements			
	Reference following Alpha Job	Number on final repor	t/deliverables:	L1915179	Report to include Method Blan	k, LCS/LCSD:		
Additional Com	ments: Send all results/reports t	o subreports@alphala	ab.com	8t*				
Me district								
Lab ID	Client ID	Collection Date/Time	Sample Matrix	Ar	Analysis			
	B-117 (OW)	04-12-19 11:00	Groundwater	Ethanol by EPA 1671 Revi	sian A			
	Relinquishe	ed Bv:		Date/Time:	Received By:	Date/Time:		
		>-		4/15/19				
Form No: Al su	hene							

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-172181-1 Client Project/Site: L1915179

For:

Alpha Analytical Inc 145 Flanders Road Westborough, Massachusetts 01581-1019

Attn: Melissa Gulli

Authorized for release by: 4/22/2019 2:15:58 PM

Kuth Haye

Ken Hayes, Project Manager II

(615)301-5035

ken.hayes@testamericainc.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at:

www.testamericainc.com Page 46 of 58

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 490-172181-1

Client: Alpha Analytical Inc Project/Site: L1915179

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	
Definitions	5
Client Sample Results	
QC Sample Results	
QC Association	8
Chronicle	9
Method Summary	10
Certification Summary	11
Chain of Custody	

3

4

5

7

8

9

. .

Sample Summary

Client: Alpha Analytical Inc Project/Site: L1915179

Job ID: 490-172181-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-172181-1	B-117 (OW)	Water	04/12/19 11:00	04/16/19 09:00

_

5

7

8

9

4 4

11

Case Narrative

Client: Alpha Analytical Inc Job ID: 490-172181-1

Project/Site: L1915179

Job ID: 490-172181-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-172181-1

Comments

No additional comments.

Receipt

The sample was received on 4/16/2019 9:00 AM; the sample arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.0° C.

GC Semi VOA

Method 1671A: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with analytical batch 490-588914.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Definitions/Glossary

Client: Alpha Analytical Inc Job ID: 490-172181-1

Project/Site: L1915179

Glossary

DLC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DI RA RE IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

	,
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry)
MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Decision Level Concentration (Radiochemistry)

PQL Practical Quantitation Limit

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

3

4

5

8

9

1 1

Client Sample Results

Client: Alpha Analytical Inc Job ID: 490-172181-1

Project/Site: L1915179

Client Sample ID: B-117 (OW)

Lab Sample ID: 490-172181-1

Date Collected: 04/12/19 11:00 Matrix: Water Date Received: 04/16/19 09:00

Method: 1671A - Ethanol (GC/FID) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Ethanol 2000 500 ug/L 04/18/19 12:17 ND Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Isopropyl acetate (Surr) 73 70 - 130 04/18/19 12:17

5

6

0

9

11

. .

QC Sample Results

Client: Alpha Analytical Inc Job ID: 490-172181-1

Project/Site: L1915179

Method: 1671A - Ethanol (GC/FID)

Lab Sample ID: MB 490-588914/4 **Client Sample ID: Method Blank Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 588914

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethanol	ND		2000	500	ug/L			04/18/19 11:52	1

MB MB

Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed Isopropyl acetate (Surr) 95 70 - 130 04/18/19 11:52

Lab Sample ID: LCS 490-588914/5 **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analysis Batch: 588914

LCS LCS Spike %Rec. Analyte Added Result Qualifier Unit D %Rec Limits

Ethanol 50200 49350 ug/L 70 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits Isopropyl acetate (Surr) 92 70 - 130

Lab Sample ID: LCSD 490-588914/6 **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA **Matrix: Water**

Analysis Batch: 588914

Spike LCSD LCSD %Rec. **RPD** Analyte Added Result Qualifier Unit Limits RPD Limit D %Rec

Ethanol 50200 46610 ug/L 93 70 - 130

LCSD LCSD %Recovery Qualifier Surrogate

Limits Isopropyl acetate (Surr) 95 70 - 130

QC Association Summary

Client: Alpha Analytical Inc
Project/Site: L1915179

Job ID: 490-172181-1

GC VOA

Analysis Batch: 588914

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-172181-1	B-117 (OW)	Total/NA	Water	1671A	
MB 490-588914/4	Method Blank	Total/NA	Water	1671A	
LCS 490-588914/5	Lab Control Sample	Total/NA	Water	1671A	
LCSD 490-588914/6	Lab Control Sample Dup	Total/NA	Water	1671A	

1

4

6

_

0

10

11

Lab Chronicle

Client: Alpha Analytical Inc Job ID: 490-172181-1

Project/Site: L1915179

Client Sample ID: B-117 (OW)

Lab Sample ID: 490-172181-1

Date Collected: 04/12/19 11:00 Matrix: Water Date Received: 04/16/19 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	1671A		1			588914	04/18/19 12:17	AAB	TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

3

4

5

U

8

9

Method Summary

Client: Alpha Analytical Inc Project/Site: L1915179 Job ID: 490-172181-1

Method
1671AMethod DescriptionProtocol
EPALaboratoryTAL NSH

A

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

4

6

8

4.0

7 7

Accreditation/Certification Summary

Client: Alpha Analytical Inc
Project/Site: L1915179

Job ID: 490-172181-1

Laboratory: Eurofins TestAmerica, Nashville

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

_					
Authority	Program		EPA Regi	on Identification Num	ber Expiration Date
California	State Prog	ram	9	2938	06-30-19
The following analytes the agency does not o	•	t, but the laborator	y is not certified I	by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	А	nalyte	
1671A		Water	E	thanol	
Maine	State Prog	ram	1	TN00032	11-03-19
The following analytes the agency does not o	•	t, but the laborator	y is not certified I	by the governing authority.	This list may include analytes for which
Analysis Method	Prep Method	Matrix	Α	nalyte	
1671A		Water	E	thanol	

-

4

6

7

4.6

THE LEADER IN ENVIRONMENTAL TESTING **COOLER RECEIPT FORM**

TestAmerica

Nashville, TN

490-172181 Chain of Custody

Cooler Received/Opened On04-16-2019 @	YES NO(NA)
If yes, how many and where:	
5. Were the seals intact, signed, and dated correctly?	YESNO(NA)
6. Were custody papers inside cooler?	YES. NONA
I certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES CNO and Intact	YESNO.SNA
Were these signed and dated correctly?	YESNONA
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pap	er Other None
9. Cooling process: (ice lce-pack lce (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	YESNONA
11. Were all container labels complete (#, date, signed, pres., etc)?	CYESNONA
12. Did all container labels and tags agree with custody papers?	YESNONA
13a. Were VOA vials received?	ESNONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
Larger than this.	
14. Was there a Trip Blank in this cooler? YES. NONA If multiple coolers, sequen	ce #
I certify that I unloaded the cooler and answered questions 7-14 (intial)	
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNONA
b. Did the bottle labels indicate that the correct preservatives were used	(YE8NONA
16. Was residual chlorine present?	YESNO AA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	4)2+
17. Were custody papers properly filled out (ink, signed, etc)?	YES NONA
18. Did you sign the custody papers in the appropriate place?	XE8NONA
19. Were correct containers used for the analysis requested?	YESNONA
20. Was sufficient amount of sample sent in each container?	YESNONA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	2/1
I certify that I attached a label with the unique LIMS number to each container (intial)) <i>[</i> 7
21. Were there Non-Conformance issues at login? YESNO Was a NCM generated? YESNO	.#

BIS = Broken in shipment Cooler Receipt Form.doc

LF-1 End of Form Revised 8/23/17

		Subcon	Subcontract Chain of Custody		
MALPHA WALESTON		Test America 2960 Foster Nashville, TN	Test America (Nashville) 2960 Foster Creighton Drive Nashville, TN 37204		Alpha Job Number L1915179
Client	Client Information	Projec	Project Information	Regulatory Requirements/Report Limits	/Report Limits
Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019	ical Labs 5 Drive 1, MA 01581-1019	Project Location: MA Project Manager: Melissa Gulli Turnaround & Delive	t Location: MA t Manager: Melissa Gulli Turnaround & Deliverables Information	State/Federal Program: Regulatory Critería:	
Phone: 603.319.5010 Email: mgulli@alphalab.com	0 alab.com	Due Date: Deliverables:			
		Project Specific Requir	pecific Requirements and/or Report Requirements	ments	
Refer	Reference following Alpha Job Number on final report/deliverables: L1915179	nber on final report/deliverat		Report to include Method Blank, LCS/LCSD:	;D:
Additional Comments	Additional Comments: Send all results/reports to subreports@alphalab.com	ubreports@alphalab.com	•,		
Lab ID	Client ID	Collection Sample Date/Time Matrix	ole x		Batch QC
	8-117 (OW)	04-12-19 11:00 Groundwater	water Ethanol by EPA 1671 Revision A		
				Loc: 100	
				172181	81
			-		
		-		_	
	Relinquished By	37:	Date/Time:	Received By:	-{;≒ \ -
			, h/lc//h	Complete Soft	no Hall
Form No: AL_subcoc					
				5,5	

APPENDIX E:

LABORATORY ANALYTICAL DATA – SURFACE WATER LABORATORY ANALYTICAL DATA – HISTORICAL GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1910812

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Report Date: 03/25/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

 Lab Number:
 L1910812

 Report Date:
 03/25/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1910812-01	B-117 (OW)	GROUNDWATER	BRIGHTON	03/19/19 09:30	03/19/19
L1910812-02	B-116 (OW)	GROUNDWATER	BRIGHTON	03/19/19 10:15	03/19/19
L1910812-03	B-121 (OW)	GROUNDWATER	BRIGHTON	03/19/19 11:30	03/19/19
L1910812-04	B-120 (OW)	GROUNDWATER	BRIGHTON	03/19/19 12:00	03/19/19
L1910812-05	B-119 (OW)	GROUNDWATER	BRIGHTON	03/19/19 13:00	03/19/19

Project Name: 5 WASHINGTON ST. Lab Number: L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	A response to questions G, H and I is required for "Presumptive Certainty" status						
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO					
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO					
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES					

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 5 WASHINGTON ST. Lab Number: L1910812
Project Number: 5822.9.02 Report Date: 03/25/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:5 WASHINGTON ST.Lab Number:L1910812Project Number:5822.9.02Report Date:03/25/19

Case Narrative (continued)

MCP Related Narratives

VPH

In reference to question G:

L1910812-01 and -03: One or more of the target analytes did not achieve the requested CAM reporting limits.

EPH

L1910812-03 has elevated detection limits for the target PAH analytes only due to the dilution required by the elevated concentrations of these compounds in the sample.

In reference to question G:

L1910812-01: One or more of the target analytes did not achieve the requested CAM reporting limits.

In reference to question H:

L1910812-01: The surrogate recovery is below the acceptance criteria for o-terphenyl-ms (0%) due to the dilution required to quantitate the sample. Re-extraction was not required; therefore, the results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 03/25/19

QC OUTLIER SUMMARY REPORT

Project Name: 5 WASHINGTON ST.

Lab Number:

L1910812

Project Number: 5822.9.02

Report Date:

03/25/19

					Recovery/RPI	D QC Limits	Associated	Data Quality
Method	Client ID (Native ID)	Lab ID	Parameter	QC Type	(%)	(%)	Samples	Assessment
EPH w/MS	Targets - Westborough Lab							
EPH-04-1.1	B-117 (OW)	L1910812-01 D	O-Terphenyl-MS	Surrogate	0	40-140	-	potential low bias

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: 5 WASHINGTON ST. Lab Number: L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-01 D Date Collected: 03/19/19 09:30

Client ID: B-117 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 03/23/19 00:07

Analyst: KJD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - W	estborough Lab					
C5-C8 Aliphatics	2860		ug/l	1000		20
C9-C12 Aliphatics	14600		ug/l	1000		20
C9-C10 Aromatics	10600		ug/l	1000		20
C5-C8 Aliphatics, Adjusted	2810		ug/l	1000		20
C9-C12 Aliphatics, Adjusted	2040		ug/l	1000		20
Benzene	53.5		ug/l	40.0		20
Toluene	ND		ug/l	40.0		20
Ethylbenzene	391		ug/l	40.0		20
p/m-Xylene	1260		ug/l	40.0		20
o-Xylene	335		ug/l	40.0		20
Methyl tert butyl ether	ND		ug/l	60.0		20
Naphthalene	659		ug/l	80.0		20

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	89		70-130			
2,5-Dibromotoluene-FID	96		70-130			

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-01 D Date Collected: 03/19/19 09:30

Client ID: B-117 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/21/19 07:51

Analytical Date: 03/24/19 23:03 M.S. Analytical Date: 03/25/19 12:43 Cleanup Method1: EPH-04-1

Analyst: DG M.S. Analyst: DV Cleanup Date1: 03/23/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	2540		ug/l	490		5
C19-C36 Aliphatics	583		ug/l	490		5
C11-C22 Aromatics	1730		ug/l	490		5
C11-C22 Aromatics, Adjusted	1030		ug/l	490		5
Naphthalene	454		ug/l	7.84		20
2-Methylnaphthalene	246		ug/l	7.84		20
Acenaphthylene	ND		ug/l	7.84		20
Acenaphthene	ND		ug/l	7.84		20
Fluorene	ND		ug/l	7.84		20
Phenanthrene	ND		ug/l	7.84		20
Anthracene	ND		ug/l	7.84		20
Fluoranthene	ND		ug/l	7.84		20
Pyrene	ND		ug/l	7.84		20
Benzo(a)anthracene	ND		ug/l	7.84		20
Chrysene	ND		ug/l	7.84		20
Benzo(b)fluoranthene	ND		ug/l	7.84		20
Benzo(k)fluoranthene	ND		ug/l	7.84		20
Benzo(a)pyrene	ND		ug/l	3.92		20
Indeno(1,2,3-cd)Pyrene	ND		ug/l	7.84		20
Dibenzo(a,h)anthracene	ND		ug/l	7.84		20
Benzo(ghi)perylene	ND		ug/l	7.84		20

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-01 D Date Collected: 03/19/19 09:30

Client ID: B-117 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	66		40-140	
o-Terphenyl	60		40-140	
2-Fluorobiphenyl	75		40-140	
2-Bromonaphthalene	70		40-140	
O-Terphenyl-MS	0	Q	40-140	

Project Name: 5 WASHINGTON ST. Lab Number: L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-02 Date Collected: 03/19/19 10:15

Client ID: B-116 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 03/22/19 23:36

Analyst: KJD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	ND		ug/l	50.0		1
C9-C12 Aliphatics	179		ug/l	50.0		1
C9-C10 Aromatics	136		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0		1
Benzene	ND		ug/l	2.00		1
Toluene	ND		ug/l	2.00		1
Ethylbenzene	3.57		ug/l	2.00		1
p/m-Xylene	12.7		ug/l	2.00		1
o-Xylene	2.76		ug/l	2.00		1
Methyl tert butyl ether	ND		ug/l	3.00		1
Naphthalene	7.71		ug/l	4.00		1

Surrogata	9/ Booyery	Qualifier	Acceptance Criteria	
Surrogate	% Recovery	Qualifier		
2,5-Dibromotoluene-PID	88		70-130	
2,5-Dibromotoluene-FID	96		70-130	

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-02 Date Collected: 03/19/19 10:15

Client ID: B-116 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Groundwater Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/21/19 07:51
Analytical Date: 03/23/19 19:46 M.S. Analytical Date: 03/23/19 21:03 Cleanup Method1: EPH-04-1

Analyst: DG M.S. Analyst: DV Cleanup Date1: 03/23/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough L	ab					
C9-C18 Aliphatics	ND		ug/l	98.0		1
C19-C36 Aliphatics	ND		ug/l	98.0		1
C11-C22 Aromatics	ND		ug/l	98.0		1
C11-C22 Aromatics, Adjusted	ND		ug/l	98.0		1
Naphthalene	5.18		ug/l	0.392		1
2-Methylnaphthalene	2.00		ug/l	0.392		1
Acenaphthylene	ND		ug/l	0.392		1
Acenaphthene	ND		ug/l	0.392		1
Fluorene	ND		ug/l	0.392		1
Phenanthrene	ND		ug/l	0.392		1
Anthracene	ND		ug/l	0.392		1
Fluoranthene	ND		ug/l	0.392		1
Pyrene	ND		ug/l	0.392		1
Benzo(a)anthracene	ND		ug/l	0.392		1
Chrysene	ND		ug/l	0.392		1
Benzo(b)fluoranthene	ND		ug/l	0.392		1
Benzo(k)fluoranthene	ND		ug/l	0.392		1
Benzo(a)pyrene	ND		ug/l	0.196		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.392		1
Dibenzo(a,h)anthracene	ND		ug/l	0.392		1
Benzo(ghi)perylene	ND		ug/l	0.392		1

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-02 Date Collected: 03/19/19 10:15

Client ID: B-116 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	66		40-140	
o-Terphenyl	68		40-140	
2-Fluorobiphenyl	86		40-140	
2-Bromonaphthalene	87		40-140	
O-Terphenyl-MS	86		40-140	

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-03 Date Collected: 03/19/19 11:30

Client ID: B-121 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Groundwater Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/21/19 07:51

Analytical Date: 03/23/19 20:24 M.S. Analytical Date: 03/25/19 13:13 Cleanup Method1: EPH-04-1 Analyst: DV Cleanup Date1: 03/23/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier L	Jnits	RL	MDL	Dilution Factor
		Qualifier C	Jillis	KL .	MIDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	359	1	ug/l	98.0		1
C19-C36 Aliphatics	ND		ug/l	98.0		1
C11-C22 Aromatics	552	ı	ug/l	98.0		1
C11-C22 Aromatics, Adjusted	265		ug/l	98.0		1
Naphthalene	215	ı	ug/l	3.92		10
2-Methylnaphthalene	72.2		ug/l	3.92		10
Acenaphthylene	ND		ug/l	3.92		10
Acenaphthene	ND	ı	ug/l	3.92		10
Fluorene	ND	ı	ug/l	3.92		10
Phenanthrene	ND	1	ug/l	3.92		10
Anthracene	ND	ı	ug/l	3.92		10
Fluoranthene	ND		ug/l	3.92		10
Pyrene	ND	1	ug/l	3.92		10
Benzo(a)anthracene	ND	ı	ug/l	3.92		10
Chrysene	ND	ı	ug/l	3.92		10
Benzo(b)fluoranthene	ND	1	ug/l	3.92		10
Benzo(k)fluoranthene	ND	ı	ug/l	3.92		10
Benzo(a)pyrene	ND		ug/l	1.96		10
Indeno(1,2,3-cd)Pyrene	ND		ug/l	3.92		10
Dibenzo(a,h)anthracene	ND		ug/l	3.92		10
Benzo(ghi)perylene	ND		ug/l	3.92		10

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-03 Date Collected: 03/19/19 11:30

Client ID: B-121 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	57		40-140	
o-Terphenyl	60		40-140	
2-Fluorobiphenyl	78		40-140	
2-Bromonaphthalene	80		40-140	
O-Terphenyl-MS	79		40-140	

Project Name: 5 WASHINGTON ST. Lab Number: L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-03 D Date Collected: 03/19/19 11:30

Client ID: B-121 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 03/23/19 00:38

Analyst: KJD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Result	Qualifier	Units	RL	MDL	Dilution Factor
estborough Lab					
5060		ug/l	500		10
7180		ug/l	500		10
3840		ug/l	500		10
4710		ug/l	500		10
1220		ug/l	500		10
312		ug/l	20.0		10
ND		ug/l	20.0		10
1300		ug/l	20.0		10
786		ug/l	20.0		10
26.7		ug/l	20.0		10
35.4		ug/l	30.0		10
312		ug/l	40.0		10
	5060 7180 3840 4710 1220 312 ND 1300 786 26.7 35.4	5060 7180 3840 4710 1220 312 ND 1300 786 26.7 35.4	Solution Solution	Some state	Solid Soli

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	89		70-130			
2,5-Dibromotoluene-FID	94		70-130			

Project Name: 5 WASHINGTON ST. Lab Number: L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-04 Date Collected: 03/19/19 12:00

Client ID: B-120 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 03/23/19 01:40

Analyst: KJD

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - W	estborough Lab					
C5-C8 Aliphatics	1370		ug/l	50.0		1
C9-C12 Aliphatics	943		ug/l	50.0		1
C9-C10 Aromatics	627		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	1240		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	191		ug/l	50.0		1
Benzene	106		ug/l	2.00		1
Toluene	10.3		ug/l	2.00		1
Ethylbenzene	67.0		ug/l	2.00		1
p/m-Xylene	51.7		ug/l	2.00		1
o-Xylene	5.92		ug/l	2.00		1
Methyl tert butyl ether	19.2		ug/l	3.00		1
Naphthalene	21.5		ug/l	4.00		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	91		70-130			
2,5-Dibromotoluene-FID	97		70-130			

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-04 Date Collected: 03/19/19 12:00

Client ID: B-120 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Groundwater Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/21/19 07:51

Analytical Date: 03/23/19 21:02 M.S. Analytical Date: 03/23/19 22:06 Cleanup Method1: EPH-04-1 Analyst: DV Cleanup Date1: 03/23/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough	Lab					
C9-C18 Aliphatics	ND		ug/l	98.0		1
C19-C36 Aliphatics	ND		ug/l	98.0		1
C11-C22 Aromatics	206		ug/l	98.0		1
C11-C22 Aromatics, Adjusted	181		ug/l	98.0		1
Naphthalene	6.52		ug/l	0.392		1
2-Methylnaphthalene	19.0		ug/l	0.392		1
Acenaphthylene	ND		ug/l	0.392		1
Acenaphthene	ND		ug/l	0.392		1
Fluorene	ND		ug/l	0.392		1
Phenanthrene	ND		ug/l	0.392		1
Anthracene	ND		ug/l	0.392		1
Fluoranthene	ND		ug/l	0.392		1
Pyrene	ND		ug/l	0.392		1
Benzo(a)anthracene	ND		ug/l	0.392		1
Chrysene	ND		ug/l	0.392		1
Benzo(b)fluoranthene	ND		ug/l	0.392		1
Benzo(k)fluoranthene	ND		ug/l	0.392		1
Benzo(a)pyrene	ND		ug/l	0.196		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.392		1
Dibenzo(a,h)anthracene	ND		ug/l	0.392		1
Benzo(ghi)perylene	ND		ug/l	0.392		1

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-04 Date Collected: 03/19/19 12:00

Client ID: B-120 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	57		40-140	
o-Terphenyl	65		40-140	
2-Fluorobiphenyl	85		40-140	
2-Bromonaphthalene	86		40-140	
O-Terphenyl-MS	83		40-140	

Project Name: Lab Number: 5 WASHINGTON ST. L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-05 Date Collected: 03/19/19 13:00

Client ID: B-119 (OW) Date Received: 03/19/19 **BRIGHTON** Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Groundwater Analytical Method: 131, VPH-18-2.1 Analytical Date: 03/23/19 02:42

Analyst: **KJD**

Restek, RTX-502.2, Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column:

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Laboratory Provided Preserved Aqueous Preservative:

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	700		ug/l	50.0		1
C9-C12 Aliphatics	332		ug/l	50.0		1
C9-C10 Aromatics	230		ug/l	50.0		1
C5-C8 Aliphatics, Adjusted	664		ug/l	50.0		1
C9-C12 Aliphatics, Adjusted	79.3		ug/l	50.0		1
Benzene	28.4		ug/l	2.00		1
Toluene	2.01		ug/l	2.00		1
Ethylbenzene	10.6		ug/l	2.00		1
p/m-Xylene	12.5		ug/l	2.00		1
o-Xylene	ND		ug/l	2.00		1
Methyl tert butyl ether	5.48		ug/l	3.00		1
Naphthalene	5.92		ug/l	4.00		1

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
2,5-Dibromotoluene-PID	84		70-130			
2,5-Dibromotoluene-FID	90		70-130			

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: L1910812-05 Date Collected: 03/19/19 13:00

Client ID: B-119 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Sample Temperature upon receipt:

Matrix: Groundwater Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 03/21/19 07:51

Analytical Date: 03/23/19 21:40 M.S. Analytical Date: 03/25/19 12:11 Cleanup Method1: EPH-04-1

Analyst: DG M.S. Analyst: DV Cleanup Date1: 03/23/19

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
EPH w/MS Targets - Westborough La	b					
C9-C18 Aliphatics	ND		ug/l	98.0		1
C19-C36 Aliphatics	ND		ug/l	98.0		1
C11-C22 Aromatics	ND		ug/l	98.0		1
C11-C22 Aromatics, Adjusted	ND		ug/l	98.0		1
Naphthalene	4.17		ug/l	0.392		1
2-Methylnaphthalene	1.50		ug/l	0.392		1
Acenaphthylene	ND		ug/l	0.392		1
Acenaphthene	ND		ug/l	0.392		1
Fluorene	ND		ug/l	0.392		1
Phenanthrene	ND		ug/l	0.392		1
Anthracene	ND		ug/l	0.392		1
Fluoranthene	ND		ug/l	0.392		1
Pyrene	ND		ug/l	0.392		1
Benzo(a)anthracene	ND		ug/l	0.392		1
Chrysene	ND		ug/l	0.392		1
Benzo(b)fluoranthene	ND		ug/l	0.392		1
Benzo(k)fluoranthene	ND		ug/l	0.392		1
Benzo(a)pyrene	ND		ug/l	0.196		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	0.392		1
Dibenzo(a,h)anthracene	ND		ug/l	0.392		1
Benzo(ghi)perylene	ND		ug/l	0.392		1

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

SAMPLE RESULTS

Lab ID: Date Collected: 03/19/19 13:00

Client ID: B-119 (OW) Date Received: 03/19/19
Sample Location: BRIGHTON Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

EPH w/MS Targets - Westborough Lab

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	
Chloro-Octadecane	47		40-140	
o-Terphenyl	57		40-140	
2-Fluorobiphenyl	71		40-140	
2-Bromonaphthalene	73		40-140	
O-Terphenyl-MS	81		40-140	

Project Name: Lab Number: 5 WASHINGTON ST. L1910812

Report Date: Project Number: 5822.9.02 03/25/19

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C Analytical Date: 03/23/19 12:07 M.S. Analytical Date: 03/23/19 15:16 Extraction Date: 03/21/19 07:51

Analyst: M.S. Analyst: DV DG Cleanup Method: EPH-04-1 Cleanup Date: 03/23/19

Parameter	Result	Qualifier	Unit	ts	RL	MDL	
EPH w/MS Targets - Westborough	n Lab for sam	ple(s): (1-05	Batch:	WG121	17891-1	
C9-C18 Aliphatics	ND		ug	/I	100		
C19-C36 Aliphatics	ND		ug	/I	100		
C11-C22 Aromatics	ND		ug	/I	100		
C11-C22 Aromatics, Adjusted	ND		ug	/I	100		
Naphthalene	ND		ug	/I	0.400		
2-Methylnaphthalene	ND		ug	/I	0.400		
Acenaphthylene	ND		ug	/I	0.400		
Acenaphthene	ND		ug	/I	0.400		
Fluorene	ND		ug	/I	0.400		
Phenanthrene	ND		ug	/I	0.400		
Anthracene	ND		ug	/I	0.400		
Fluoranthene	ND		ug	/I	0.400		
Pyrene	ND		ug	/I	0.400		
Benzo(a)anthracene	ND		ug	/I	0.400		
Chrysene	ND		ug	/I	0.400		
Benzo(b)fluoranthene	ND		ug	/I	0.400		
Benzo(k)fluoranthene	ND		ug	/I	0.400		
Benzo(a)pyrene	ND		ug	/I	0.200		
Indeno(1,2,3-cd)Pyrene	ND		ug	/I	0.400		
Dibenzo(a,h)anthracene	ND		ug	/I	0.400		
Benzo(ghi)perylene	ND		ug	/I	0.400		

Project Name: Lab Number: 5 WASHINGTON ST. L1910812

Project Number: Report Date: 5822.9.02 03/25/19

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 98,EPH-04-1.1

Extraction Method: EPA 3510C 03/23/19 15:16 Analytical Date: 03/23/19 12:07 03/21/19 07:51 **Extraction Date:**

Analyst: DV DG Cleanup Method: EPH-04-1 03/23/19 Cleanup Date:

Result Qualifier RL MDL **Parameter** Units EPH w/MS Targets - Westborough Lab for sample(s): 01-05 Batch: WG1217891-1

Acceptance Surrogate %Recovery Qualifier Criteria Chloro-Octadecane 79 40-140 73 40-140 o-Terphenyl 2-Fluorobiphenyl 40-140 83 2-Bromonaphthalene 84 40-140 O-Terphenyl-MS 40-140 88

Project Name: 5 WASHINGTON ST. **Lab Number:** L1910812

Project Number: 5822.9.02 **Report Date:** 03/25/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 03/22/19 09:03

Analyst: KJD

Parameter	Result	Qualifier	Units	RL		MDL					
Volatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	ample(s):	01-05	Batch:	WG1218972-4					
C5-C8 Aliphatics	ND		ug/l	50.0							
C9-C12 Aliphatics	ND		ug/l	50.0							
C9-C10 Aromatics	ND		ug/l	50.0							
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0							
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0							
Benzene	ND		ug/l	2.00							
Toluene	ND		ug/l	2.00							
Ethylbenzene	ND		ug/l	2.00							
p/m-Xylene	ND		ug/l	2.00							
o-Xylene	ND		ug/l	2.00							
Methyl tert butyl ether	ND		ug/l	3.00							
Naphthalene	ND		ug/l	4.00							

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
		_
2,5-Dibromotoluene-PID	87	70-130
2,5-Dibromotoluene-FID	95	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Lab Number: L1910812

Report Date: 03/25/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
EPH w/MS Targets - Westborough Lab Asso	ociated sample(s)	: 01-05	Batch: WG121789	1-2 WG1	217891-3			
C9-C18 Aliphatics	81		82		40-140	1	25	
C19-C36 Aliphatics	97		95		40-140	2	25	
C11-C22 Aromatics	70		66		40-140	6	25	
Naphthalene	75		74		40-140	1	25	
2-Methylnaphthalene	57		57		40-140	0	25	
Acenaphthylene	90		90		40-140	0	25	
Acenaphthene	86		86		40-140	0	25	
Fluorene	92		92		40-140	0	25	
Phenanthrene	80		78		40-140	3	25	
Anthracene	85		84		40-140	1	25	
Fluoranthene	100		96		40-140	4	25	
Pyrene	100		96		40-140	4	25	
Benzo(a)anthracene	107		101		40-140	6	25	
Chrysene	94		87		40-140	8	25	
Benzo(b)fluoranthene	99		95		40-140	4	25	
Benzo(k)fluoranthene	95		89		40-140	7	25	
Benzo(a)pyrene	87		82		40-140	6	25	
Indeno(1,2,3-cd)Pyrene	94		87		40-140	8	25	
Dibenzo(a,h)anthracene	91		82		40-140	10	25	
Benzo(ghi)perylene	84		76		40-140	10	25	
Nonane (C9)	61		63		30-140	3	25	
Decane (C10)	71		72		40-140	1	25	
Dodecane (C12)	77		77		40-140	0	25	

Lab Control Sample Analysis Batch Quality Control

Project Name: 5 WASHINGTON ST.

L1910812

Project Number: 5822.9.02

Lab Number: Report Date:

03/25/19

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
EPH w/MS Targets - Westborough Lab Asso	ciated sample(s)	: 01-05	Batch: WG121789	1-2 WG1	217891-3			
Tetradecane (C14)	81		81		40-140	0		25
Hexadecane (C16)	84		84		40-140	0		25
Octadecane (C18)	88		88		40-140	0		25
Nonadecane (C19)	89		89		40-140	0		25
Eicosane (C20)	90		90		40-140	0		25
Docosane (C22)	91		90		40-140	1		25
Tetracosane (C24)	90		90		40-140	0		25
Hexacosane (C26)	90		90		40-140	0		25
Octacosane (C28)	90		90		40-140	0		25
Triacontane (C30)	92		90		40-140	2		25
Hexatriacontane (C36)	86		86		40-140	0		25

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Chloro-Octadecane	83	83	40-140
o-Terphenyl	64	61	40-140
2-Fluorobiphenyl	71	67	40-140
2-Bromonaphthalene	72	68	40-140
O-Terphenyl-MS	99	97	40-140
% Naphthalene Breakthrough	0	0	
% 2-Methylnaphthalene Breakthrough	0	0	

Lab Control Sample Analysis Batch Quality Control

Project Name: 5 WASHINGTON ST.

Lab Number: L1910812

Project Number: 5822.9.02

Report Date: 03/25/19

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Petroleum Hydrocarbons - Westbord	ough Lab Associ	ated sample(s): 01-05 Batch	n: WG1218972-2 WG12189	972-3	
C5-C8 Aliphatics	111	109	70-130	2	25
C9-C12 Aliphatics	106	103	70-130	3	25
C9-C10 Aromatics	102	98	70-130	4	25
Benzene	106	102	70-130	4	25
Toluene	106	103	70-130	3	25
Ethylbenzene	109	104	70-130	5	25
p/m-Xylene	109	105	70-130	4	25
o-Xylene	104	101	70-130	3	25
Methyl tert butyl ether	110	107	70-130	3	25
Naphthalene	99	97	70-130	2	25
1,2,4-Trimethylbenzene	102	98	70-130	4	25
Pentane	112	110	70-130	2	25
2-Methylpentane	113	111	70-130	2	25
2,2,4-Trimethylpentane	108	106	70-130	2	25
n-Nonane	111	108	30-130	3	25
n-Decane	103	100	70-130	3	25
n-Butylcyclohexane	103	100	70-130	3	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	99	95	70-130
2,5-Dibromotoluene-FID	105	104	70-130

Lab Number: L1910812

Report Date: 03/25/19

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent В Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1910812-01A	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-01B	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-01C	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-01D	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-01E	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-02A	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-02B	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-02C	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-02D	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-02E	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-03A	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-03B	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-03C	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-03D	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-03E	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-04A	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-04B	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-04C	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-04D	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-04E	Amber 1000ml HCl preserved	Α	<2	<2	2.8	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-05A	Amber 1000ml HCl preserved	В	<2	<2	2.7	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)
L1910812-05B	Amber 1000ml HCl preserved	В	<2	<2	2.7	Υ	Absent		EPH-MS-10(14),EPHD-GC-10(14)

Lab Number: L1910812

Report Date: 03/25/19

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pH	deg C	Pres	Seal	Date/Time	Analysis(*)
L1910812-05C	Vial HCl preserved	В	NA		2.7	Υ	Absent		VPH-DELUX-18(14)
L1910812-05D	Vial HCl preserved	Α	NA		2.8	Υ	Absent		VPH-DELUX-18(14)
L1910812-05E	Vial HCl preserved	Α	NA		2.8	Υ	Absent		VPH-DELUX-18(14)

Project Name:5 WASHINGTON ST.Lab Number:L1910812Project Number:5822.9.02Report Date:03/25/19

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PALIs using Solid Phase Micropatrician (SDME)

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

 $\hbox{-} \ Matrix \ Spike \ Sample: A \ sample \ prepared \ by \ adding \ a \ known \ mass \ of \ target \ analyte \ to \ a \ specified \ amount \ of \ matrix \ sample \ for$

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

MS

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1910812Project Number:5822.9.02Report Date:03/25/19

original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

G

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
 - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- ${\bf S}$ Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1910812Project Number:5822.9.02Report Date:03/25/19

REFERENCES

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ДІРНА	6	OF CUS	STODY		PAGE_	OF		Dat	e Re	c'd ii	n Lat): 	3/1	9/1	9			ALPI	HA JO	19/	0	812	
8 Walkup Drive	320 Forbes Blvd		Project Inform	ation				Rep	oort I	Infor	matic	on - D	ata De	livera	bles	25			_	nform	_		
Wesiboro, MA 01 Tet: 508-898-92	581 Mansfield, MA 02046	F	Project Name: (5 h	ashing t	01 5.	+.	D AI	DEx		01	EMAIL	9					□ Sar	ne as C	Client inf	lo o	PO#:	
Client Information		N SON	Project Location:	BRI	GHTON	V														ments		E ACTION :	
Client: McPhail A	ssociates, LLC				9.07			☐ Yes												alytical N	Method	ls	
Address: 2269 Massa	achusetts Avenue	F	Project Manager:			RADI	EY	a Yes	□ No	GW1	Stand	dards (li											
Cambridg	je, MA 02140		ALPHA Quote #:	-				☐ Yes.d								Cri	teria_						
Phone: (617) 868-1	420		Turn-Around	Time	11 11 11 17			10												T	Т		
Email: MBRADL	E√ @McPhailgeo.cor	n	Standard	D. D.U.GU											□ RCRA8	Zn					ŀ		
Additional Pro	oject Information:		Date Due:	LI KUSH	(only confirmed)	if pre-approves	11)	Se I∖				sts	s)	:RAB	D R(V,F,ii		8					0 T
Run TCLP (if trig)0, S-1						ssessment Package VOC)	□ 8260	Fotal Solids	SVOC: 🗆 PAH	EPH: Q Ranges & Targets C Ranges Only	VPH: Q Ranges & Targets Q Ranges Only	TOTAL METALS: D RCRAS	DISSOLVED METALS:	LS: Total Sb,Be,Ni,TI,V,Zn	Bs 🗆 Pesticides	Section A Inorganics			0	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do	AL # BOTT
ALPHA Lab ID (Lab Use Only)	Sample ID	The state of the s	Sample			ction	Sampler	Soil A	VOC	otal	Voc	H Ra	Rai Rai	PP	SSC	METALS	PCBs	RGP 8			L		L
10812 -01	B-117 Por	1	Depth	Material Gl-	3/19/19	9:30	Initials	0.5	>	ř	Ś	100	20	F 0	00	Σ	0	œ	\vdash	\vdash	\dashv	Sample Comments	
-01	11	£1		1	1	(, ,)	1	+	\dashv			- 0	/			\vdash				\rightarrow	\dashv		3
-02	B-116 10-)				10:15		1 1	\dashv	-	_	/	/	_		-				\rightarrow	\dashv		3
-02	11	11				12113		+	\dashv	-	-		_	_		\vdash		\vdash	\vdash	\vdash	\dashv		5
-03	18-121 (04)					11:30			\neg	-	-	/	/								\forall		3
-03	11	14:				1		+				/	-					П	\Box		\dashv		5
-04	B-120(00	~\				12:00		+				-	1					\Box		-	\forall		3
-04	1,	1.1						\top				1							\Box		\forall		5
-05	B-119 (0	-)				1:00							/								\exists		3
-05	4.6	U		V	V		V	\top				/								\Box	\exists		2
Container Type A=Amber glass	Preservative A=None		on A Inorganics : Chloride, TRC, TSS	S, CrVI, C	rill, Total	C	ontainer Type					Ą	A								\exists		15
B=Bacteria cup C=Cube	B=HCI C=HNO ₃	Cyanide, To	otal RGP Metals	had By:	20704-0-003	- Di	Preservative	\perp				Barr	ß						Date/	Time	_		ट
D=BOD bottle E=Encore	D=H ₂ SO ₄		Relinquished By: Date/T			Strengthan						ived By						Dater	Time		***		
G=Glass O=Other	E=NaOH F=MeOH	Th	m 1 3/19/19 2:			4 2:30	McP	hail A	ssoci	ates s		sampl k-up	e stora	ge for I	abora	itory	3/	19/1	192	:30	All samples submitted are		
P=Plastic V=Vial	G=NaHSO ₄ H=Na ₂ S ₂ O ₃	McPhai			le storage for	20		-	alli	la	Ne		D	gc				3/	2/19	16:	30	subject to	
Sample Material F=Fill S=Sand O=Organics C=Clay	I=Ascorbix Acid J=NH ₄ CI K=Zn Acetate O=Other		jelishes	Issociates secure sample storage for laboratory pick-up		3/ig	1800	11	M	12	-/-	6	3	Islis	· ,	18	W					Alpha's Term and Condition See reverse sid	ıs.
N=Natural T=Till GM=Glaciomarine GW=Groundwater																					\exists	DOC ID: 25188 Rev (11/28/2017)	0

ANALYTICAL REPORT

Lab Number: L1912483

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Report Date: 04/03/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Lab Number: L1912483 **Report Date:** 04/03/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1912483-01	B-117 (OW)	GROUNDWATER	BRIGHTON, MA	03/28/19 11:30	03/28/19
L1912483-02	B-121 (OW)	GROUNDWATER	BRIGHTON, MA	03/28/19 12:30	03/29/19

Project Name: 5 WASHINGTON ST. **Lab Number:** L1912483

Project Number: 5822.9.02 Report Date: 04/03/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L1912483

Lab Number:

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02 **Report Date:** 04/03/19

•

Case Narrative (continued)

MCP Related Narratives

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 04/03/19

QC OUTLIER SUMMARY REPORT

Project Name: 5 WASHINGTON ST.

Lab Number:

L1912483

Project Number: 5822.9.02

Report Date:

04/03/19

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: 5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

SAMPLE RESULTS

Lab ID: L1912483-01 D Date Collected: 03/28/19 11:30

Client ID: B-117 (OW) Date Received: 03/28/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 04/03/19 12:01

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	5120		ug/l	1000		20
C9-C12 Aliphatics	20400		ug/l	1000		20
C9-C10 Aromatics	14500		ug/l	1000		20
C5-C8 Aliphatics, Adjusted	5070		ug/l	1000		20
C9-C12 Aliphatics, Adjusted	3380		ug/l	1000		20

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	109		70-130	
2,5-Dibromotoluene-FID	108		70-130	

Project Name: 5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

SAMPLE RESULTS

Lab ID: L1912483-02 D Date Collected: 03/28/19 12:30

Client ID: B-121 (OW) Date Received: 03/29/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 04/03/19 10:40

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - Wes	tborough Lab					
C5-C8 Aliphatics	5320		ug/l	500		10
C9-C12 Aliphatics	6510		ug/l	500		10
C9-C10 Aromatics	3660		ug/l	500		10
C5-C8 Aliphatics, Adjusted	5000		ug/l	500		10
C9-C12 Aliphatics, Adjusted	992		ug/l	500		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	109		70-130	
2,5-Dibromotoluene-FID	109		70-130	

Project Name: 5 WASHINGTON ST. **Lab Number:** L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 04/03/19 10:00

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	sample(s):	01-02	Batch:	WG1222623-4	
C5-C8 Aliphatics	ND		ug/l	50.0			
C9-C12 Aliphatics	ND		ug/l	50.0			
C9-C10 Aromatics	ND		ug/l	50.0			
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0			
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0			

		Acceptance
Surrogate	%Recovery Qualifier	Criteria
		_
2,5-Dibromotoluene-PID	98	70-130
2,5-Dibromotoluene-FID	102	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 5 WASHINGTON ST.

5822.9.02

Project Number:

WASHINGTON

Lab Number: L1912483

Report Date: 04/03/19

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Petroleum Hydrocarbons -	Westborough Lab Associate	ed sample(s): 01-02 Ba	ntch: WG1222623-2 WG12226	623-3	
C5-C8 Aliphatics	103	105	70-130	2	25
C9-C12 Aliphatics	104	107	70-130	3	25
C9-C10 Aromatics	97	101	70-130	4	25
Benzene	99	103	70-130	4	25
Toluene	99	104	70-130	5	25
Ethylbenzene	103	107	70-130	4	25
p/m-Xylene	100	104	70-130	4	25
o-Xylene	98	102	70-130	4	25
Methyl tert butyl ether	107	112	70-130	5	25
Naphthalene	98	103	70-130	5	25
1,2,4-Trimethylbenzene	97	101	70-130	4	25
Pentane	100	103	70-130	3	25
2-Methylpentane	103	107	70-130	4	25
2,2,4-Trimethylpentane	105	108	70-130	3	25
n-Nonane	108	112	30-130	4	25
n-Decane	96	100	70-130	3	25
n-Butylcyclohexane	107	111	70-130	4	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
2,5-Dibromotoluene-PID	93	98	70-130
2,5-Dibromotoluene-FID	97	102	70-130

5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent A1 Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1912483-01A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)
L1912483-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)
L1912483-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)
L1912483-02A	Vial HCl preserved	A1	NA		2.5	Υ	Absent		VPH-18(14)
L1912483-02B	Vial HCI preserved	A1	NA		2.5	Υ	Absent		VPH-18(14)

Project Name: Lab Number: 5 WASHINGTON ST. L1912483 **Project Number:** 5822.9.02 **Report Date:** 04/03/19

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHI	<u>,</u>	N OF C	JSTODY		PAGE_	OF .		Date	Re	c'd ir	n Lab	: 3	bs	1/19				ALP	HA Jo	ob#(912483
8 Walkup Drive Westboro, MA Tel: 508-898-9	320 Forbes Blvd 01581 Mansfield, MA 02048		Project Information Project Name:		ITIV T	512 5		Rep		nforr		on - Da EMAIL	ata De	elivera	bles	A.			- ATM	nforma Client info	and the same of th
Client Informatio Client: McPhail Address: 2269 Mass	n Associates, LLC		Project Name: Project Location Project #: 5 Project Manager ALPHA Quote #	822	10000 1000 1000 1000	in se	1	Yes C	No No No No No	MA M Matrix GW1 NPDE	CP Ar Spike Stand	nalytical Requir lards (Ir	Method ed on ti	ds his SDG	7 (Req	Yes uired f & EP	□ No for MC H with	CT ROP	CP Ana janics)	ments lytical Me	thods
Phone: (617) 868-	Coppy gottes of the Notice Co.		Turn-Aroun	d Time	MODEL IN	SERVICE OF	THE STATE	□ Other	State	e /Fed	Prog	ram		9 4		Cn	teria_			T	EXPLICATION A
Email: Additional Pr	@McPhailgeo.c	om	Standard Date Due:		(only confirmed i	f pre-approved	10	vage IV				gets	gets	RCRAB	S: CI RCRAB	,Ni,TI,V,Zn	ş	inics			SAMPLE INFO
☐ Run TCLP (if tri	iggered) D" Nomenclature: B-	100, S-1			,			Soil Assessment Package (less VOC)	□ 8260	Total Solids	SVOC: 🗆 PAH	EPH: ☐ Ranges & Targets ☐ Ranges Only	VPH: 🗆 Ranges & Tan 🕰 Ranges Only	TOTAL METALS: D RCRA8	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	PCBs Pesticides	Section A Inorganics			Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample	ID	Sampl Depth	e Material	Collect Date	ction Time	Sampler Initials	Soil A	Noc	Total	SVOC	EPH:	VPH:	TOTA PP	DISS(META	D PC	RGP			Sample Comments
2483-4	B-117 (01	رد		CW	3-28-19		Tore						X								
00	15-121 (ON	- 0		150	3-28-19	100000000000000000000000000000000000000	Ton						X							P.	
															h== 0						
Container Type A=Amber glass B=Bacteria cup C=Cube	Preservative A=None B=HCl C=HNO	Ammonis	tion A Inorqunics , Chloride, TRC, TS Total RGP Metals	s, crvi, c	rill, Total		Preservative					Bara	V H						Date	Time	
D=BOD bottle E=Encore G=Glass O=Other P=Plastic V=Vial Sample Material F=Fill S=Sand O=Organics C=Clay	C=Cube			Relinquished By: 3/23/19/3			McPhail Associates secure sample storage for laboratory pick-up					itory	A			All samples submitted are subject to Alpha's Terms and Conditions See reverse side					
GM=Glaciomarine GW=Groundwater																					DOC ID: 25188 Rev ((11/28/2017)

Дена		N OF CU	STODY		PAGE	OF	_	D	ate R	ec'd i	n La	b:	7	12-	/19			ALP	HA J	ob,#:	10	
ANALYTIO		112											2	129	119				6	19	12	483
8 Walkup Drive	320 Forbes Blvd		Project Inform					R	eport	Infor	mati	on - D	ata De	elivera	bles			Bi	lling l	Informa	atio	n
Westboro, MA 0 Tel: 506-898-93	1581 Mansfield, MA 02048		Project Name: 5	87.7	902				ADEx		0	EMAIL						□ Sar	me as	Client info	0	PO#:
Client Informatio	n		Project Location:	5 11	1 SUTUI	TOW	SOUN	R	egula	tory I	Requ	ireme	nts	& Pr	oject l	Infor	matic	on Re	equire	ements		STATE AND ADDRESS OF
Client: McPhail A	Associates, LLC		Project #.	711	1772	ΛΛ	0-4-7		s D No	MA N	MCP A	nalytica	Metho	ds bie SDC	? (Req	Yes	□ No	CT R	CP And	alytical M	ethoc	is
Address: 2269 Mass	achusetts Avenue							_							r Metals					10		
Cambrid	ge, MA 02140		ALPHA Quote #:	NIE	JANDU	20			s 🗆 No her Sta							Cri	teria					
Phone: (617) 868-	1420		Turn-Around	Time	- N. S. S.	-	of the last	200	100	1 00	7 7 108	I				_ (1)	iena_	_		$\overline{}$	$\overline{}$	
Email:	@McPhailgeo.c	om	- Security and access	September 1	SCHOOL ST	000		4							AB	c					-	- VAN
100 march 100 ma	A STREET, STRE	0111	Standard	□ RUSH	(only confirmed if	pre-approve	ndi)	>						œg .	D RCRAB	,V,Z						T
Additional Pr	oject Information:		Date Due:					kage IV				ets	100	CRA		F		.83			1	Ť
Run TCLP (if tri	ggered) SAMO! - 5 D* Nomenclature: B-	T .	2- 2- 1	エラ	149 O1	3 3-	28-16	acla				EPH: ☐ Ranges & Targets ☐ Ranges Only	VPH: 🛘 Ranges & Targets	ALS: D RCRA8	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	Pesticides	Section A Inorganics			110	SAMPLE INFO
	STAIN	Marin C	1 1		00	n.s.		Soil Assessment F			I	y ses &	es &	TOTAL METALS: U	MCI	al Sb	estic	A Inc			- 13	2 Field
	- 5	110000	OC 11	611	122	01 .	NR	SS (C	826(sp	D PAH	Rang	Rang	ETA	90	Tot		tion				D Lab to do
Sample "Sample II	D" Nomenclature: B-	100, S-1	L1	-11 C	105	TILLY	~ You	Voc	VOC: 🗆 8260	Total Solids	3	EPH: D Range	D of	₽ K	73	ALS:	PCBs	Sec			112	Lab to do
ALPHA Lab ID (Lab Use Only)	Sample	iD	Sample Depth	Material	Collec	tion Time	Sampler Initials	Soil /	8	ofal	SVOC:	H 2	HH.	TOT	SSIC	AET.	D PC	RGP			-	Sample Comments
12483 - 02	B-121 (0)	15			3-28-14		TC	100	-		V/		X			-		111	\Box	\vdash	\top	Sample Comments 6
		J		-	3-6-11	1650	10	+	\vdash				-						\vdash	\vdash	+	
				_				+	\vdash							-		_	\vdash	+	+	
				-	-		-	+	\vdash		-		_		-	-		-	-	\vdash	+	
				-				-	-	_		_		_	_		_	_	\square	\vdash	4	
				-				-	L			_							Ш	\vdash	4	
																					\Box	
																				\Box	\top	
																					\top	
Container Type	Preservative		ion A Inorganics :			C	ontainer Type	\vdash												\vdash	\dashv	
A=Amber glass B=Bacteria cup	A=None B=HCI		Chloride, TRC, TSS Total RGP Metals	, Grvi, G	rili, Total		Preservative														\top	
C=Cube D=BOD bottle	C=HNO ₃ D=H ₂ SO ₄		Relinquist	ned By:		Di	ate/Time					Rece	ived By						Date/	Time	\neg	THE PART OF
E=Encore G=Glass	E=NaOH F=MeOH	1111	1					Mc	Phail A	Associ	ates s	secure	sample	e stora	ge for la	abora	tory				\dashv	All samples
O=Other P=Plastic	G=NaHSO ₄	McPha	il Associates secu	(00)	le storage for		/		,		0	pic	k-up	erwe.			301.78A	1	,		4	submitted are
V=Vial	H=Na ₂ S ₂ O ₃ I=Ascorbix Acid		laboratory		no storago tor	3/29/1	9 1615	7	Si	we	La		an	- /	AAL	-		3/29	119	1615	*	subject to
Sample Material	J=NH _e CI K=Zn Acetate	13	miden	m	AL	12/19	1745	8		1		375		-				3/	9/10	7/74	5	Alpha's Terms and Conditions.
F=Fill S=Sand O=Organics C=Clay	O=Other							1											7		4	See reverse side.
N=Natural T=Titl GM=Glaciomarine						+		7													-	DOC ID: 25188 Rev 0
GW=Groundwater																						(11/28/2017)

ANALYTICAL REPORT

Lab Number: L1912483

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Report Date: 04/03/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02

Lab Number: L1912483 **Report Date:** 04/03/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1912483-01	B-117 (OW)	GROUNDWATER	BRIGHTON, MA	03/28/19 11:30	03/28/19
L1912483-02	B-121 (OW)	GROUNDWATER	BRIGHTON, MA	03/28/19 12:30	03/29/19

Project Name: 5 WASHINGTON ST. **Lab Number:** L1912483

Project Number: 5822.9.02 Report Date: 04/03/19

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES
ı	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	NO

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L1912483

Lab Number:

Project Name: 5 WASHINGTON ST.

Project Number: 5822.9.02 **Report Date:** 04/03/19

•

Case Narrative (continued)

MCP Related Narratives

VPH

In reference to question I:

All samples were analyzed for a subset of MCP analytes per client request.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ALPHA

Date: 04/03/19

QC OUTLIER SUMMARY REPORT

Project Name: 5 WASHINGTON ST.

Lab Number:

L1912483

Project Number: 5822.9.02

Report Date:

04/03/19

Recovery/RPD QC Limits Associated Data Quality
Method Client ID (Native ID) Lab ID Parameter QC Type (%) (%) Samples Assessment

There are no QC Outliers associated with this report.

ORGANICS

PETROLEUM HYDROCARBONS

Project Name: 5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

SAMPLE RESULTS

Lab ID: L1912483-01 D Date Collected: 03/28/19 11:30

Client ID: B-117 (OW) Date Received: 03/28/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 04/03/19 12:01

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons	- Westborough Lab					
C5-C8 Aliphatics	5120		ug/l	1000		20
C9-C12 Aliphatics	20400		ug/l	1000		20
C9-C10 Aromatics	14500		ug/l	1000		20
C5-C8 Aliphatics, Adjusted	5070		ug/l	1000		20
C9-C12 Aliphatics, Adjusted	3380		ug/l	1000		20

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	109		70-130	
2,5-Dibromotoluene-FID	108		70-130	

Project Name: 5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

SAMPLE RESULTS

Lab ID: L1912483-02 D Date Collected: 03/28/19 12:30

Client ID: B-121 (OW) Date Received: 03/29/19
Sample Location: BRIGHTON, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 131,VPH-18-2.1
Analytical Date: 04/03/19 10:40

Analyst: MKS

Trap: EST, Carbopack B/Carboxen 1000&1001 Analytical Column: Restek, RTX-502.2,

105m, 0.53ID, 3um

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Container Received on Ice

Sample Temperature upon receipt:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Petroleum Hydrocarbons - Wes	tborough Lab					
C5-C8 Aliphatics	5320		ug/l	500		10
C9-C12 Aliphatics	6510		ug/l	500		10
C9-C10 Aromatics	3660		ug/l	500		10
C5-C8 Aliphatics, Adjusted	5000		ug/l	500		10
C9-C12 Aliphatics, Adjusted	992		ug/l	500		10

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2,5-Dibromotoluene-PID	109		70-130	
2,5-Dibromotoluene-FID	109		70-130	

Project Name: 5 WASHINGTON ST. **Lab Number:** L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

Method Blank Analysis Batch Quality Control

Analytical Method: 131,VPH-18-2.1 Analytical Date: 04/03/19 10:00

Analyst: MKS

Parameter	Result	Qualifier	Units	RL		MDL	
Volatile Petroleum Hydrocarbons	- Westboroug	h Lab for s	sample(s):	01-02	Batch:	WG1222623-4	
C5-C8 Aliphatics	ND		ug/l	50.0			
C9-C12 Aliphatics	ND		ug/l	50.0			
C9-C10 Aromatics	ND		ug/l	50.0			
C5-C8 Aliphatics, Adjusted	ND		ug/l	50.0			
C9-C12 Aliphatics, Adjusted	ND		ug/l	50.0			

	Acceptance					
Surrogate	%Recovery Qualifier	Criteria				
		_				
2,5-Dibromotoluene-PID	98	70-130				
2,5-Dibromotoluene-FID	102	70-130				

Lab Control Sample Analysis Batch Quality Control

Project Name: 5 WASHINGTON ST.

Lab Number:

L1912483

Project Number: 5822.9.02

Report Date:

04/03/19

rameter	LCS %Recovery (LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
platile Petroleum Hydrocarbons -	Westborough Lab Associated	d sample(s): 01-02 Batc	h: WG1222623-2 WG12226	23-3	
C5-C8 Aliphatics	103	105	70-130	2	25
C9-C12 Aliphatics	104	107	70-130	3	25
C9-C10 Aromatics	97	101	70-130	4	25
Benzene	99	103	70-130	4	25
Toluene	99	104	70-130	5	25
Ethylbenzene	103	107	70-130	4	25
p/m-Xylene	100	104	70-130	4	25
o-Xylene	98	102	70-130	4	25
Methyl tert butyl ether	107	112	70-130	5	25
Naphthalene	98	103	70-130	5	25
1,2,4-Trimethylbenzene	97	101	70-130	4	25
Pentane	100	103	70-130	3	25
2-Methylpentane	103	107	70-130	4	25
2,2,4-Trimethylpentane	105	108	70-130	3	25
n-Nonane	108	112	30-130	4	25
n-Decane	96	100	70-130	3	25
n-Butylcyclohexane	107	111	70-130	4	25

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qua	Acceptance Criteria	
2,5-Dibromotoluene-PID	93	98	70-130	
2,5-Dibromotoluene-FID	97	102	70-130	

5 WASHINGTON ST. Lab Number: L1912483

Project Number: 5822.9.02 **Report Date:** 04/03/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Cooler Custody Seal

A Absent A1 Absent

Container Information			Initial	Final	Temp			Frozen				
Container ID	Container Type	Cooler	рН	рН	pН	рН рН	pН	deg C Pı	Pres	Seal	Date/Time	Analysis(*)
L1912483-01A	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)			
L1912483-01B	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)			
L1912483-01C	Vial HCl preserved	Α	NA		2.5	Υ	Absent		VPH-18(14)			
L1912483-02A	Vial HCl preserved	A1	NA		2.5	Υ	Absent		VPH-18(14)			
L1912483-02B	Vial HCI preserved	A1	NA		2.5	Υ	Absent		VPH-18(14)			

Project Name: Lab Number: 5 WASHINGTON ST. L1912483 **Project Number:** 5822.9.02 **Report Date:** 04/03/19

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

RPD

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:5 WASHINGTON ST.Lab Number:L1912483Project Number:5822.9.02Report Date:04/03/19

REFERENCES

Method for the Determination of Volatile Petroleum Hydrocarbons (VPH), MassDEP, February 2018, Revision 2.1 with QC Requirements & Performance Standards for the Analysis of VPH under the Massachusetts Contingency Plan, WSC-CAM-IVA, June 1, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

ID No.:17873

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II,

Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHI	<u>,</u>	N OF C	JSTODY		PAGE_	OF .		Date	Re	c'd ir	n Lab	: 3	bs	1/19				ALP	HA Jo	ob#(912483
8 Walkup Drive Westboro, MA Tel: 508-898-9	320 Forbes Blvd 01581 Mansfield, MA 02048		Project Information Project Name:		ITIV T	512 5		Rep		nforr		on - Da EMAIL	ata De	elivera	bles	A.		100	- ATM	nforma Client info	and the second s
Client Informatio Client: McPhail Address: 2269 Mass	n Associates, LLC		Project Name: Project Location Project #: 5 Project Manager ALPHA Quote #	822	10000 1000 1000 1000	in se	1	Yes C	No No No No No	MA M Matrix GW1 NPDE	CP Ar Spike Stand	nalytical Requir lards (Ir	Method ed on ti	ds his SDG	7 (Req	Yes uired f & EP	□ No for MC H with	CT ROP	CP Ana janics)	ments lytical Me	thods
Phone: (617) 868-	Coppy gottestical travers.		Turn-Aroun	d Time	MODEL IN	SERVICE OF	THE STATE	□ Other	State	e /Fed	Prog	ram		9 4		Cn	teria_			T	EXPLICATION A
Email: Additional Pr	@McPhailgeo.c	om	Standard Date Due:		(only confirmed i	f pre-approved	10	vage IV				gets	gets	RCRAB	S: CI RCRAB	,Ni,TI,V,Zn	ş	inics			SAMPLE INFO
☐ Run TCLP (if tri	iggered) D" Nomenclature: B-	100, S-1			,			Soil Assessment Package (less VOC)	□ 8260	Total Solids	SVOC: 🗆 PAH	EPH: □ Ranges & Targets □ Ranges Only	VPH: 🗆 Ranges & Tan 🕰 Ranges Only	TOTAL METALS: D RCRA8	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	PCBs Pesticides	Section A Inorganics			Filtration Field Lab to do Preservation Lab to do
ALPHA Lab ID (Lab Use Only)	Sample	ID	Sampl Depth	e Material	Collect Date	ction Time	Sampler Initials	Soil A	Noc	Total	SVOC	EPH:	VPH:	TOTA PP	DISS(META	D PC	RGP			Sample Comments
2483-4	B-117 (01	رد	_	CW	3-28-19		Tore						X								
00	15-121 (ON	- 0		150	3-28-19	100 miles	Ton						X							P.	
															h== 0						
Container Type A=Amber glass B=Bacteria cup C=Cube	Preservative A=None B=HCl C=HNO ₃	Ammonis	tion A Inorganics , Chloride, TRC, TS Total RGP Metals Relinqui	s, crvi, c	rill, Total		Preservative					Bara	V H						Date/	Time	
D=BOD bottle E=Encore G=Glass O=Other P=Plastic V=Vial Sample Material F=Fill S=Sand O=Organics C=Clay N=Natural T=Fill	C=HNO ₃ D=H ₂ SO ₄ E=NaOH F=MeOH G=NaHSO ₂ H=Na ₂ S ₂ O ₃ I=Ascorbix Acid J=NH ₄ CI K=Zn Acetate O=Other	McPh Ty	ail Associates sec laborator	cure samp	ole storage for		174p					secure pic	k-up	e stora			itory	9-2		1 600	All samples submitted are subject to Alpha's Terms and Conditions See reverse side
GM=Glaciomarine GW=Groundwater																					DOC ID: 25188 Rev ((11/28/2017)

Дена		N OF CU	STODY		PAGE	OF	_	D	ate R	ec'd i	n La	b:	7	12-	/19			ALP	HA J	ob,#:	10	
ANALYTIO		112											2	129	119				6	19	12	483
8 Walkup Drive	320 Forbes Blvd		Project Inform					R	eport	Infor	mati	on - D	ata De	elivera	bles			Bi	lling l	Informa	atio	n
Westboro, MA 0 Tel: 506-898-93	1581 Mansfield, MA 02048		Project Name: 5	87.7	902				ADEx		0	EMAIL						□ Sar	me as	Client info	0	PO#:
Client Informatio	n		Project Location:	5 11	1 SUTUI	TOW	SOUN	R	egula	tory I	Requ	ireme	nts	& Pr	oject l	Infor	matic	on Re	equire	ements		STATE AND ADDRESS OF
Client: McPhail A	Associates, LLC		Project #.	711	1772	ΛΛ	0-4-7		s D No	MA N	MCP A	nalytica	Metho	ds bie SDC	? (Req	Yes	□ No	CT R	CP And	alytical M	ethoc	is
Address: 2269 Mass	achusetts Avenue							_							r Metals					10		
Cambrid	ge, MA 02140		ALPHA Quote #:	NIE	JANDU	20			s 🗆 No her Sta							Cri	teria					
Phone: (617) 868-	1420		Turn-Around	Time	- N. S. S.	-	of the last	200	100	1 00	7 7 108	I				_ (1)	iena_	_		$\overline{}$	$\overline{}$	
Email:	@McPhailgeo.c	om	- Security and access	September 1	SCHOOL ST	000		4							AB	c					-	- VAN
100 march 100 ma	A STREET, STRE	0111	Standard	□ RUSH	(only confirmed if	pre-approve	ndi)	>						œg .	D RCRAB	,V,Z						T
Additional Pr	oject Information:		Date Due:					kage IV				ets	100	CRA		F		.83			1	Ť
Run TCLP (if tri	ggered) SAMO! - 5 D* Nomenclature: B-	T .	2- 2- 1	エラ	149 O1	3 3-	28-16	acla				EPH: ☐ Ranges & Targets ☐ Ranges Only	VPH: 🛘 Ranges & Targets	ALS: D RCRA8	DISSOLVED METALS:	METALS: Total Sb,Be,Ni,TI,V,Zn	Pesticides	Section A Inorganics			110	SAMPLE INFO
	STAIN	Marin C	1 1		00	n.s.		Soil Assessment F			I	y ses &	es &	TOTAL METALS: U	MCI	al Sb	estic	A Inc			- 13	2 Field
	- 5	110000	OC 11	611	122	01 .	NR	SS (C	826(sp	D PAH	Rang	Rang	ETA	90	Tot		tion				D Lab to do
Sample "Sample II	D" Nomenclature: B-	100, S-1	L1	-11 C	105	TILLY	~ You	Voc	VOC: 🗆 8260	Total Solids	3	EPH: D Range	D of	₽ K	73	ALS:	PCBs	Sec			112	Lab to do
ALPHA Lab ID (Lab Use Only)	Sample	iD	Sample Depth	Material	Collec	tion Time	Sampler Initials	Soil /	8	ofal	SVOC:	H 2	HH.	TOT	SSIC	AET.	D PC	RGP			-	Sample Comments
12483 - 02	B-121 (0)	15			3-28-14		TC	100	-		V/		X			-		111	\Box	\vdash	\top	Sample Comments 6
		J		-	3-6-11	1650	10	+	\vdash				-						\vdash	\vdash	+	
				_				+	\vdash							-		_	\vdash	\vdash	+	
				-	-		-	+	\vdash		-		_		-	-		-	-	\vdash	+	
				-				-	-	_		_		_	_		_	_	\square	\vdash	4	
				-				-	L			_							Ш	\vdash	4	
																					\Box	
																				\Box	\top	
																					\top	
Container Type	Preservative		ion A Inorganics :			C	ontainer Type	\vdash												\vdash	\dashv	
A=Amber glass B=Bacteria cup	A=None B=HCI		Chloride, TRC, TSS Total RGP Metals	, Grvi, G	rili, Total		Preservative														\top	
C=Cube D=BOD bottle	C=HNO ₃ D=H ₂ SO ₄		Relinquist	ned By:		Di	ate/Time					Rece	ived By						Date/	Time	\neg	THE PART OF
E=Encore G=Glass	E=NaOH F=MeOH	1111	1					Mc	Phail A	Associ	ates s	secure	sample	e stora	ge for la	abora	tory				\dashv	All samples
O=Other P=Plastic	G=NaHSO ₄	McPha	il Associates secu	(00)	le storage for		/		,		0	pic	k-up	erwe.			301.78A	1	,		4	submitted are
V=Vial	H=Na ₂ S ₂ O ₃ I=Ascorbix Acid		laboratory		no storago tor	3/29/1	9 1615	7	Si	we	La		an	- /	AAL	-		3/29	119	1615	*	subject to
Sample Material	J=NH _e CI K=Zn Acetate	13	miden	m	AL	72/19	1745	8		1		332		-				3/	9/10	7/74	5	Alpha's Terms and Conditions.
F=Fill S=Sand O=Organics C=Clay	O=Other							1											7		4	See reverse side.
N=Natural T=Titl GM=Glaciomarine						+		7													-	DOC ID: 25188 Rev 0
GW=Groundwater																						(11/28/2017)

ANALYTICAL REPORT

Lab Number: L1917134

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Report Date: 05/01/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1917134-01	MUDDY RIVER RGP SAMPLE	WATER	BROOKLINE, MA	04/25/19 09:00	04/25/19

Project Name:3 & 5 WASHINGTON STREETLab Number:L1917134Project Number:5822.9.01Report Date:05/01/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i lease contact i roject manage	1116111 at 000-024-3220 With	arry questions.	

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/01/19

Custen Walker Cristin Walker

ALPHA

METALS

04/25/19 09:00

Date Collected:

Project Name: Lab Number: 3 & 5 WASHINGTON STREET L1917134

Project Number: Report Date: 5822.9.01 05/01/19

SAMPLE RESULTS

Lab ID: L1917134-01

Client ID: MUDDY RIVER RGP SAMPLE Date Received: 04/25/19 Field Prep: Not Specified

Sample Location: BROOKLINE, MA

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
											,
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Copper, Total	0.00729		mg/l	0.00100		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Iron, Total	0.694		mg/l	0.050		1	04/26/19 13:5	0 04/30/19 17:27	EPA 3005A	19,200.7	AB
Lead, Total	0.00388		mg/l	0.00100		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	04/26/19 12:2	2 04/27/19 00:54	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Zinc, Total	0.02050		mg/l	0.01000		1	04/26/19 13:5	0 04/29/19 10:03	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	133		mg/l	0.660	NA	1	04/26/19 13:5	0 04/30/19 17:27	EPA 3005A	19,200.7	AB
			- J								
General Chemistry	- Mansfiel	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		04/29/19 10:03	NA	107,-	

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

05/01/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batch	h: WG12	230750-	1				
Mercury, Total	ND	mg/l	0.0002		1	04/26/19 12:22	04/27/19 00:09	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01 Batch	: WG12	230783-	1				
Iron, Total	ND	mg/l	0.050		1	04/26/19 13:50	04/30/19 17:10	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by S	SM 2340B - Mansfield L	ab for sam	ple(s): 0	1 Bato	h: WG123	0783-1			
Hardness	ND	mg/l	0.660	NA	1	04/26/19 13:50	04/30/19 17:10	19,200.7	AB

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	d Lab for sample(s):	01 Batc	h: WG12	230794	·1				
Antimony, Total	ND	mg/l	0.00400		1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM

Project Name: 3 & 5 WASHINGTON STREET **Lab Number:** L1917134

Project Number: 5822.9.01 **Report Date:** 05/01/19

Method Blank Analysis Batch Quality Control

Lead, Total	ND	mg/l	0.00100	 1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	 1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	 1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	 1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	 1	04/26/19 13:50	04/29/19 09:31	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1230750-2				
Mercury, Total	90	-	85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1230783-2				
Iron, Total	103	-	85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	associated sample	(s): 01 Batch: WG123078	3 -2 85-115	_		
			85-113	·		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: V	VG1230794-2				
Antimony, Total	85	-	85-115	-		
Antimony, Total Arsenic, Total	85 104	-	85-115 85-115	-		
				- - -		
Arsenic, Total	104	- - -	85-115	-		
Arsenic, Total Cadmium, Total	104	- - - -	85-115 85-115	-		
Arsenic, Total Cadmium, Total Chromium, Total	104 100 100	-	85-115 85-115 85-115	-		
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total	104 100 100 95		85-115 85-115 85-115 85-115	- - -		
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	104 100 100 95 104		85-115 85-115 85-115 85-115 85-115	- - - -		
Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Nickel, Total	104 100 100 95 104 99		85-115 85-115 85-115 85-115 85-115	- - - -		

Matrix Spike Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD C	RPD Qual Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1230750)-3	QC Sample:	L1917057-01	Clier	nt ID: MS S	ample	
Mercury, Total	ND	0.005	0.0052	104		-	-		70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1230750)-5	QC Sample:	L1917095-01	Clier	nt ID: MS S	ample	
Mercury, Total	ND	0.005	0.0043	86		-	-		70-130	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1230783	3-3	QC Sample:	L1917134-01	Clier	t ID: MUDI	OY RIVER	R RGP SAMPLE
Iron, Total	0.694	1	1.71	102		-	-		75-125	-	20
Total Hardness by SM 2340B RGP SAMPLE	- Mansfield Lal	o Associate	ed sample(s)	: 01 QC Batch	n ID: \	WG1230783	-3 QC Samp	ole: L19)17134-01	Client ID	: MUDDY RIVE
Hardness	133	66.2	194	92		-	-		75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01	QC Batch I	D: WG1230783	3-7	QC Sample:	L1916629-01	Clier	nt ID: MS S	ample	
Iron, Total	0.102	1	1.18	108		-	-		75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lat	o Associate	ed sample(s)	: 01 QC Batch	n ID: \	NG1230783	-7 QC Samp	ole: L19	16629-01	Client ID	: MS Sample
Hardness	227	66.2	291	97		-	-		75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
otal Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch I	D: WG1230794-3	QC Sample	: L1917134-01	Client ID: MUDI	Y RIVER	RGP SAMPLE
Antimony, Total	ND	0.5	0.6319	126	-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.1328	111	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05722	112	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.2184	109	-	-	70-130	-	20
Copper, Total	0.00729	0.25	0.2719	106	-	-	70-130	-	20
Lead, Total	0.00388	0.51	0.5455	106	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.5468	109	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1360	113	-	-	70-130	-	20
Silver, Total	ND	0.05	0.05744	115	-	-	70-130	-	20
Zinc, Total	0.02050	0.5	0.6472	125	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1230	750-4 QC Sample: I	L1917057-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1230	750-6 QC Sample:	L1917095-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1230	783-4 QC Sample:	L1917134-01	Client ID:	MUDDY RIVE	R RGP SAMPLE
Iron, Total	0.694	0.677	mg/l	2		20
Total Hardness by SM 2340B - Mansfield Lab Associate	ed sample(s): 01 QC Ba	tch ID: WG1230783-4	4 QC Sample	e: L19171	34-01 Client I	D: MUDDY RIVER
Hardness	133	132	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1230	794-4 QC Sample: I	L1917134-01	Client ID:	MUDDY RIVE	R RGP SAMPLE
Antimony, Total	ND	0.00595	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00729	0.00759	mg/l	4		20
Lead, Total	0.00388	0.00379	mg/l	2		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.02050	0.01994	mg/l	3		20

INORGANICS & MISCELLANEOUS

Project Name: 3 & 5 WASHINGTON STREET Lab Number: L1917134

Project Number: 5822.9.01 **Report Date:** 05/01/19

SAMPLE RESULTS

Lab ID: L1917134-01 Date Collected: 04/25/19 09:00

Client ID: MUDDY RIVER RGP SAMPLE Date Received: 04/25/19
Sample Location: BROOKLINE, MA Field Prep: Not Specified

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Dilution Date Units RL MDL Factor Prepare		Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - Wes	stborough Lab									
Solids, Total Suspended	8.5		mg/l	5.0	NA	1	-	04/26/19 15:55	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	04/26/19 06:17	04/26/19 12:37	121,4500CN-CE	LH
pH (H)	6.9		SU	-	NA	1	-	04/25/19 22:47	121,4500H+-B	AS
Nitrogen, Ammonia	0.259		mg/l	0.075		1	04/26/19 02:00	04/26/19 20:51	121,4500NH3-BH	H AT
Chromium, Hexavalent	ND		mg/l	0.010		1	04/25/19 23:00	04/25/19 23:29	1,7196A	JW

Project Name: 3 & 5 WASHINGTON STREET **Lab Number:** L1917134

Project Number: 5822.9.01 **Report Date:** 05/01/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	230458-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/25/19 23:00	04/25/19 23:27	1,7196A	JW
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	230492-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	04/26/19 02:00	04/26/19 20:45	121,4500NH3-B	H AT
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	230561-1				
Cyanide, Total	ND		mg/l	0.005		1	04/26/19 06:17	04/26/19 12:27	121,4500CN-CI	E LH
General Chemistry - \	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	230612-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	04/26/19 15:55	121,2540D	DR

Lab Control Sample Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

L1917134

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Ass	sociated sample(s):	: 01	Batch: WG1230452-	1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab Ass	sociated sample(s):	: 01	Batch: WG1230458-2	2				
Chromium, Hexavalent	96		-		85-115	-		20
General Chemistry - Westborough Lab Ass	sociated sample(s):	: 01	Batch: WG1230492-2	2				
Nitrogen, Ammonia	90		-		80-120	-		20
General Chemistry - Westborough Lab Ass	sociated sample(s):	: 01 l	Batch: WG1230561-2	2				
Cyanide, Total	93		-		90-110	-		

L1917134

Matrix Spike Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01

Lab Number:

Report Date: 05/01/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westbord SAMPLE	ough Lab Assoc	ciated samp	le(s): 01	QC Batch ID: \	WG1230458-4	QC Sample: L191	17134-01 Client I	D: MUDDY F	RIVER RGP
Chromium, Hexavalent	ND	0.1	0.085	85		-	85-115	-	20
General Chemistry - Westbord	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1230492-4	QC Sample: L191	16923-17 Client I	D: MS Samp	le
Nitrogen, Ammonia	0.130	4	3.67	88		-	80-120	-	20
General Chemistry - Westboro	ough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1230561-4	QC Sample: L191	17160-01 Client I	D: MS Samp	le
Cyanide, Total	ND	0.2	0.199	100		-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: 3 & 5 WASHINGTON STREET

Project Number: 5822.9.01 Lab Number: L1917134

Report Date: 05/01/19

Parameter	Native S	Sample	Duplicate Sam	ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1230452-2	QC Sample: L	_1917057-01	Client ID:	DUP Sample
рН	11.	0	10.8	SU	2		5
General Chemistry - Westborough Lab SAMPLE	Associated sample(s): 01	QC Batch ID:	WG1230458-3	QC Sample: L	_1917134-01	Client ID:	MUDDY RIVER RGP
Chromium, Hexavalent	NI)	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1230492-3	QC Sample: L	_1916923-17	Client ID:	DUP Sample
Nitrogen, Ammonia	0.1	30	0.130	mg/l	0		20
General Chemistry - Westborough Lab SAMPLE	Associated sample(s): 01	QC Batch ID:	WG1230561-3	QC Sample: L	_1917134-01	Client ID:	MUDDY RIVER RGP
Cyanide, Total	NI)	ND	mg/l	NC		30
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1230612-2	QC Sample: L	_1917079-01	Client ID:	DUP Sample
Solids, Total Suspended	730	00	7100	mg/l	3		29

Project Name: 3 & 5 WASHINGTON STREET

Lab Number: L1917134

Project Number: 5822.9.01 **Report Date:** 05/01/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1917134-01A	Plastic 250ml H2SO4 preserved	Α	<2	<2	3.2	Υ	Absent		NH3-4500(28)
L1917134-01B	Plastic 250ml NaOH preserved	Α	>12	>12	3.2	Υ	Absent		TCN-4500(14)
L1917134-01C	Plastic 250ml HNO3 preserved	А	<2	<2	3.2	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1917134-01D	Plastic 500ml unpreserved	Α	7	7	3.2	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L1917134-01E	Plastic 950ml unpreserved	Α	7	7	3.2	Υ	Absent		TSS-2540(7)

Project Name:3 & 5 WASHINGTON STREETLab Number:L1917134Project Number:5822.9.01Report Date:05/01/19

GLOSSARY

Acronyms

EDL

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:3 & 5 WASHINGTON STREETLab Number:L1917134Project Number:5822.9.01Report Date:05/01/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:3 & 5 WASHINGTON STREETLab Number:L1917134Project Number:5822.9.01Report Date:05/01/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:05011911:55

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate.

EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

CHAIN OF CUSTODY PAGE 1 OF 1								in Lab:	4/2	15/	9		To be	ALPI	HA Jo	ob #:	61	19/19/34	
ALPHA		roject Inform	nation		V A In	Rep	ort Ir	form	ation	Data	Deliv	verab	les	Billir	ng Inf	orma	tion		20
VANITA ALLE V							FAX				MAIL			Same as Client info				PO #:	
	Mansfield, MA	oject Name: 3	3 & 5 Washin	aton Street		7.57.72	ADEx			700	35.35	liverab	22						
	TEL: 508-822-9300 FAX: 508-822-3288	-1		g			COURT STATE	200000000000000000000000000000000000000	quire	ment	s/Rep	ort L	imits		MAX	1)12	Corr		
Client Informati	on Pr	oject Location	: Brookline,	МА		77.77	VFed P ES RG	<i>rogram</i> P						Criteri	a				
Client: McPhail Ass	sociates, LLC Pr	oject #: 5822.	9.01				DE.		Mod		- 60	HX	NESS						EV-
Address: 2269 Mas	ssachusetts Avenue Pr	oject Manage	r: KWS					1											
Cambridge, MA 02	140 AI	.PHA Quote #	t:													_	_	1	T
Phone: (617) 868-	1420 T	ırn-Around	Time			ANA	ALYS	IS										SAMPLE HANDLING	O
Fax:		Standard	Rus	sh (ONLY IF PRI	E-APPROVED)						ΙĤ							Filtration Done	Å
Email: kseaman@r	mcphailgeo.com																	☐ Not Needed	#
☐ These samples have	been Previously analyzed by Alpha Do	ue Date:	Time:															☐ Lab to do Preservation	B 0
	ecific Requirements/Comments/De	Limits:					_										☐ Lab to do (Please specify	0 T T L	
Circle the following Sect. A inorganics:	III. Tot-CN. RO	GP Metals			00.8)	표	3										below)	ES	
B- Non-Hal- VOC-	8260, 8260-SIM, Tot. Phenol Sect C- \ E- PCB's, PCP(8270/8270-SIM): F-TF	/OC- 8260 & 5	504			s (2)	ess,	4500											
D. GETGGETG-GIM.	1	11, 0200, 000	-Luidiloi		1	Meta	ardn	nia (₹	Ę									28
ALPHA Lab ID (Lab Use Only)	Sample ID	Colle	ection Time	Sample Matrix	Sampler's Initials	RGP Metals (200.8) (A)	TSS,hardness, pH	Ammonia (4500 (A))	TCN (A)	CrVI,CrIII,								Sample Specific	
	. 11 0 5:0 6 1			500000000	Universe													Comments	-
11/34-01	Muchly Rien RGP SAMP'S	4/25/19	7:00	SW	72M	×					님	뷰	무	님	屵	님	H		5
		+		-			H	片	片	+	님	+	片	H	H	H	H		+
		1			1	H	H	H	H	H	H	Ħ	Ħ	H	Ħ	H	H		+
											$\bar{\Box}$								
S 15 - U-1-1																			
													\boxtimes						
				Co	ntainer Type	Р	P	Р	P	Р		•	*	•	*		**	Please print clearly, legi	einiu .
					Preservative	С	Α	D	E	Α	٠,	•	*	*	*	•		and completely. Sample not be logged in and	es can
		- 1	Relin	quished By:			ate/Tim			11/	Regen	red By:	AV.		1.1	ate/Tin		turnaround time clock w start until any ambiguite	les are
m) will					(-	4/25/1			A	Mil	- 41	125	13	1720 1600				resolved. All samples submitted are subject to Alsha's Payment Terms	0
FORM NO SHANLAND SHANLAND SHANLAND ARC					7175		720	1150	erc	1/	04/	-/	100				Alpha's Payment Terms	2	

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of the 3 and 5 Washington Street and 165 Corey Road in Brighton, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. A review of available subgrade sanitary and storm sewer system plans accessed from the BWSC, a single discharge flow path adjacent to the site flow to a primary discharge outfall location. The primary discharge location is into the Muddy River near the intersection of River Road and Brookline Avenue according to the BWSC. Dewatering effluent treatment will consist of a settling tank, bag filters, and a Granulated Activated Carbon (GAC) filter to remove suspended particulates and organic compounds for off-site discharge. pH adjustment will be conducted, if necessary, through the addition of hydrochloric acid, caustic soda and carbon dioxide.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of treated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours

following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator must perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent samples dictated by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, GAC filter, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The closest body of water is the Dorchester Old Harbor located approximately 9,000 feet to

the east of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will be pumped through bag filters and GAC filter prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters will be replaced/disposed of as necessary.