

October 24, 2019

VIA E-MAIL NPDES.Generalpermits@epa.gov

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Coordinator 5 Post Office Square - Suite 100 (OEP06-01) Boston, MA 02109-3912

Re: Remediation General Permit (RGP) – Notice of Intent (NOI)
Commercial Property
100 Simplex Drive
Westminster, Massachusetts 01473

To Whom It May Concern:

On behalf of Great Northern Dunnage, LLC, EnviroTrac Ltd. (EnviroTrac) is submitting the attached RGP – NOI for the above-referenced location (hereafter referred to as the Site). A locus map (**Figure 1**) provides the regional location of the Site. The RGP-NOI form is included as **Attachment A**.

### I. Introduction

The Site is a commercial/industrial property developed with two structures. The main building is approximately 520,000 square feet, which is divided into four sections, with each section occupied by a tenant. Construction activities related to exterior improvements of the main building were initiated in August 2019, which includes the construction of eight loading bays at the southwestern portion of the main building (**Figure 2**). Based on previous environmental investigations, the depth to the water table at the Site ranges from approximately three to 13 feet below ground surface (bgs). Excavation to approximately seven to eight feet bgs will be required for the construction of the loading bays; therefore, temporary dewatering of groundwater will be necessary.

Chlorinated volatile organic compound (CVOC) impacts to soil and groundwater exist at the Site. The Massachusetts Department of Environmental Protection (MassDEP) assigned Release Tracking Number (RTN) 2-10229 to the Site in 1993. Response Actions in accordance with the Massachusetts Contingency Plan (MCP) for RTN 2-10229 were conducted from 1993 to 2018. A Permanent Solution Statement was submitted to MassDEP in July 2019.

The Town of Westminster Department of Public Works informed EnviroTrac via email on August 29, 2019 that the discharge of dewatered groundwater to the municipal sanitary sewer system is prohibited, as flow from the system is conveyed to the City of Fitchburg Wastewater Treatment Plant (WWTP). EnviroTrac spoke with a representative from the Fitchburg WWTP on September 30, 2019, who also stated that discharge into the sanitary sewer system is prohibited. Therefore, this RGP-NOI is required to discharge to the stormwater system.

### II. Treatment System

During construction dewatering, groundwater will be pumped from the excavation into a fractionation (frac) tank for sediment collection and settlement. If necessary, dewatered groundwater may be pumped through a water aeration system, which consists of two parallel aerators, to aid in precipitating iron, zinc, and other residual metals.

From the frac tank, groundwater will be pumped and treated through two parallel multi-bag filter housing units equipped with bag filters ranging in size to a maximum of 50 microns to remove suspended solids, as shown in **Figure 3**. After the bag filters, groundwater will be processed through two 2,000-pound granulated activated carbon filter units to remove any potential dissolved CVOCs. Groundwater will then flow through two parallel cartridge filter units equipped with cartridge filters ranging in size to a maximum of five microns as a final process to remove suspended solids. Following the cartridge filters, groundwater will flow through a totalizer prior to discharge to a receiving catch basin located in the vicinity of the proposed loading bays, as shown in **Figure 2**.

The design capacity of the treatment system is 100 gallons per minute (gpm). Based on subsurface investigations completed at the Site, soil in the area of the proposed loading bays generally consists of medium-coarse to coarse sand with gravel to a depth of approximately 15 feet bgs. The expected discharge rate of treated groundwater, therefore, is expected to be approximately 50 to 75 gpm to maintain sufficient local groundwater depression to complete the proposed construction activities in dry conditions.

In summary, dewatering will occur as needed to keep excavations free of standing groundwater. Treatment of dewatered groundwater will occur as needed to empty the frac tank. It is anticipated that discharge of the treated groundwater will occur during periods without storm or rain events. A schematic of the proposed treatment system is included as **Figure 3**.

### III. Discharge

The treated effluent will be discharged via a catch basin located at the southeastern corner of the manufacturing building as shown on the Site Plan (**Figure 2**) and the Discharge Map (**Figure 4**).

The catch basin discharges through a series of drainpipes and drain manholes to a drainage swale located behind (north of) the warehouse building, across Simplex Drive. Water from the drainage swale flows east-southeast through wetlands and two fire ponds before flowing off the Site. Once off the Site, water flows through other streams, tributaries, and/or wetlands before ultimately connecting to Round Meadow Pond (Segment MA81114, Class B). Round Meadow Pond is not an Outstanding Resource Water and it is not listed under Category 5 of the 303(d) list ("Waters Requiring a TMDL"). The location of the drainage swale is depicted on **Figure 4**. Receiving waters are depicted on **Figure 5**.

### IV. Source Area Sampling and Dilution Factor Calculation

On August 30, 2019, a groundwater sample was collected from a monitoring well (ETMW-1) located adjacent to the proposed excavation area. Based on analytical data, volatile organic compounds (VOCs), ammonia, chloride, total suspended solids (TSS), cyanide and metals were



detected in groundwater. Concentrations of several metals (arsenic, cadmium, trivalent chromium, copper, lead, nickel, selenium, and zinc) exceeded applicable Effluent Limits listed in the RGP under the National Pollutant Discharge Elimination System (NPDES) for Discharges in Massachusetts. Analytical data are summarized in **Table 1**. The laboratory analytical reports supporting this NOI is included as **Attachment B**.

No dilution factor was calculated for metals which exceeded applicable Effluent Limitations (refer to **Attachment C**). As shown in **Table 1**, concentrations of arsenic, cadmium, chromium, copper, iron, lead, nickel, selenium and zinc exceeded applicable Total Recoverable Metal Limits as established in the RGP.

Please note that the required ethanol analysis was conducted using method 624.1 and not one of the specified methods in Appendix VII. In accordance with the existing data substitution section in Part 4.1.5.a of the RGP, the data obtained by method 624.1 is sufficient for the EPA to make a determination of coverage because the analysis meets the minimum level (ML) requirement. For ethanol, the detection limit must be 400  $\mu$ g/L or less or ethanol is clearly detected. The analytical report states the detection limit for ethanol was 10.5  $\mu$ g/L and the reporting limit was 100  $\mu$ g/L.

### V. Historic Places

According to the National Park Service's National Register Information System (NRIS) (http://www.nps.gov/history) four historical sites are located in Westminster, Massachusetts. Three of the sites are located approximately 2.5 miles from the Site. The remaining site (Westminster Village - Academy Hill Historic District) is located approximately 0.8 miles southeast of the Site and encompasses the first town center of Westminster. Given the nature of the discharge it is unlikely that there will be any adverse effects to federal or state-listed historical sites. NRIS listings in Massachusetts have not yet been digitized; however, the National Register properties spreadsheet of listed can be accessed http://nps.gov/nr/research. A copy of the NRIS listing for Westminster is included in **Attachment** D.

The Massachusetts Historical Commission's Massachusetts Cultural Resource Information System (MACRIS) (http://mhc-macris.net/index.htm) listed 229 historical sites in Westminster. Of those, the nearest historic sites are approximately 38 locations, located approximately 1,800 feet south of the Site. These 38 historic sites consist of houses, buildings, and/or monuments, all of which are located along Main Street (Route 2A). Given the nature of the discharge and the distances of these historic locations to the Site, the discharge will not likely adversely affect federal or state-listed historical sites. A copy of the MACRIS listing is included in **Attachment D**.

### VI. Endangered Species

As described in Appendix I of the RGP, in order to determine if the discharge meets the Endangered Species Act (ESA) Eligibility Criteria for the U. S. Fish and Wildlife Service (FWS), the FWS Information, Planning, and Conservation (IPaC) online system was used. According to the IPaC system, the Site is located within a county (Worcester) listed by the FWS as a habitat of the federally threatened northern long-eared bat. During the summer, this species can be found in cavities or crevices of both live and dead trees. During the winter, they are found in



caves or mines. The bat emerges to feed at dusk, primarily flying throughout the understory of wooded and/or forested areas.

No caves or mines are located within proximity of the discharge area. Also, as depicted in the MCP Priority Resource Map provided as Figure 6, the Site is not located within a Natural Heritage Endangered Species Program Estimated or Priority Habitat or within an Area of Critical Concern. Further, Figures 4 and 5 show the area of discharge as wooded marsh and/or wetlands. Based on the foregoing and the nature of the discharge, it is unlikely that discharge will adversely affect this species or its critical habitat. A copy of the IPaC Resource List from the FWS is included in **Attachment E**.

#### VII. State and Local Requirements

The excavation and dewatering will be conducted as a Release Abatement Measure (RAM) pursuant to MCP 310 CMR 40.0440. A RAM Plan will be submitted to MassDEP as BWSC Form 106; therefore, completion and submittal of Massachusetts Application Form BRPWM 12 or payment of a state fee are not required.

In accordance with the Town of Westminster Conservation Commission Bylaws, a NOI was filed with the Town of Westminster Conservation Commission on September 17, 2019. The NOI is expected to be approved at the October 24, 2019 Conservation Commission meeting. An Order of Conditions will be issued shortly thereafter.

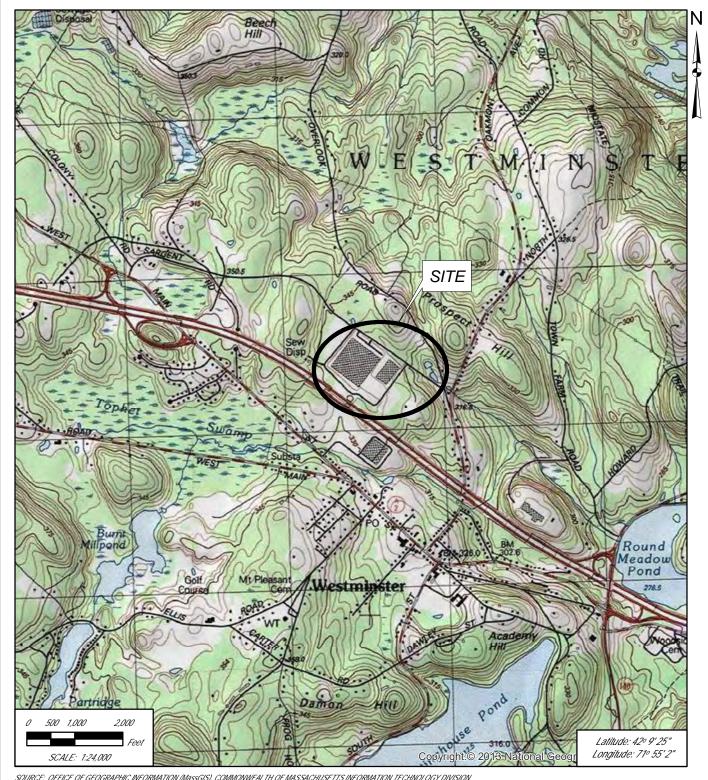
If you have any questions or require further information, please contact the undersigned at (781) 793-0074.

Sincerely.

EnviroTrac Ltd.

Dena Tomassi **Project Manager** 

MassDEP Central Regional Office cc:


Town of Westminster Board of Selectmen

Town of Westminster Conservation Commission

Attachments



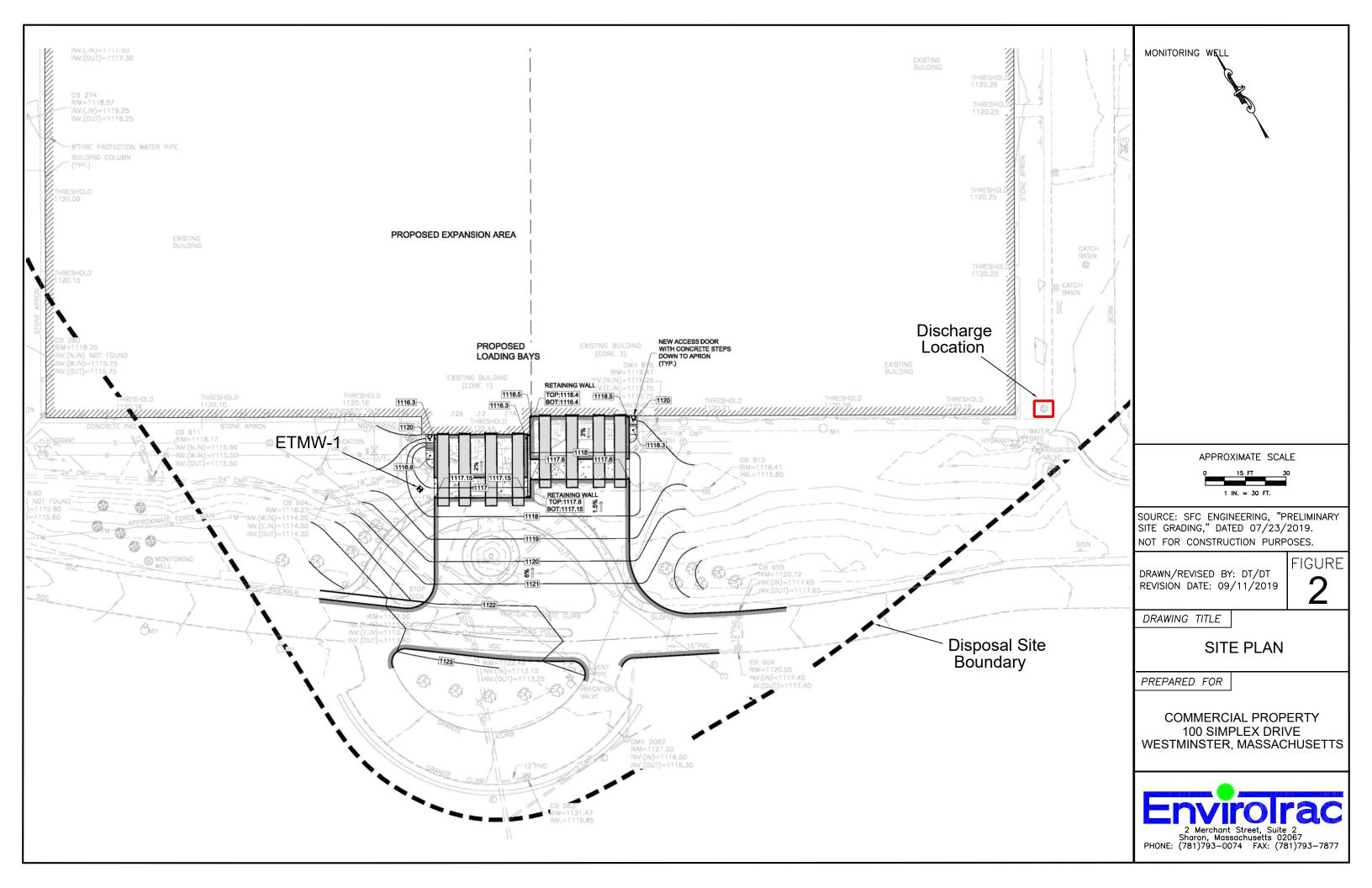
**FIGURES** 



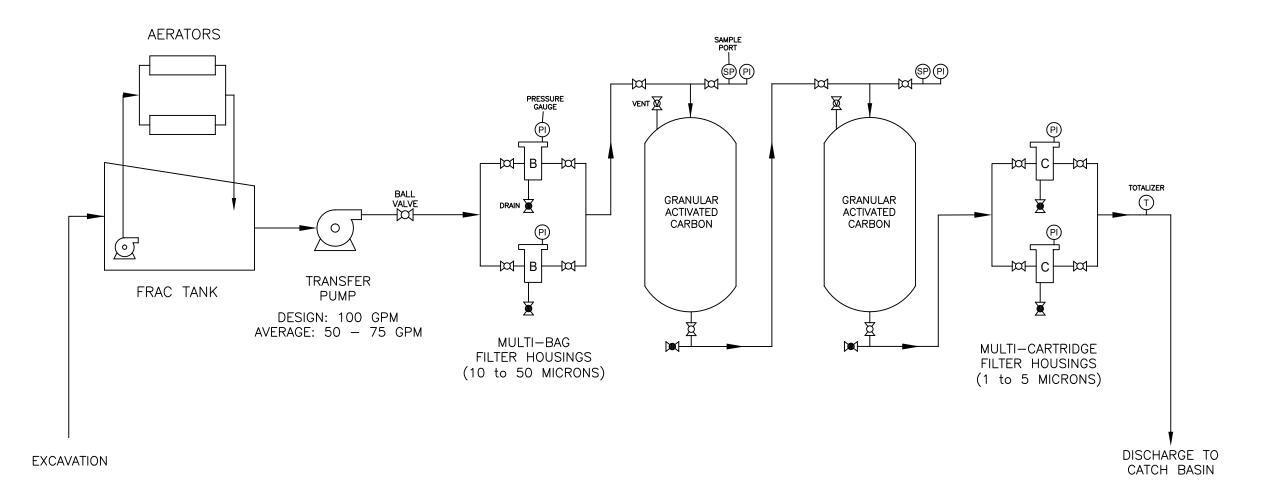
SOURCE: OFFICE OF GEOGRAPHIC INFORMATION (MassGIS), COMMONWEALTH OF MASSACHUSETTS INFORMATION TECHNOLOGY DIVISION USGS TOPOGRAPHIC MAPS: GARDNER, ASHBY, FITCHBURG, AND WACHUSETT MIN, MA QUADRANGLES



Environmental Services


2 Merchant Street, Suite 2 Sharon, Massachusetts 02067 P: (781) 793-0074 F: (781) 793-7877

www.EnviroTrac.com


### **LOCUS MAP**

COMMERCIAL PROPERTY 100 SIMPLEX DRIVE WESTMINSTER, MASSACHUSETTS

| DRAWN BY | PROJECT         | DATE      | FIGURE |
|----------|-----------------|-----------|--------|
| DT       | GFI WESTMINSTER | 9/17/2019 | 1      |



# PROCESS FLOW DIAGRAM DEWATERING TREATMENT SYSTEM (TYP.)



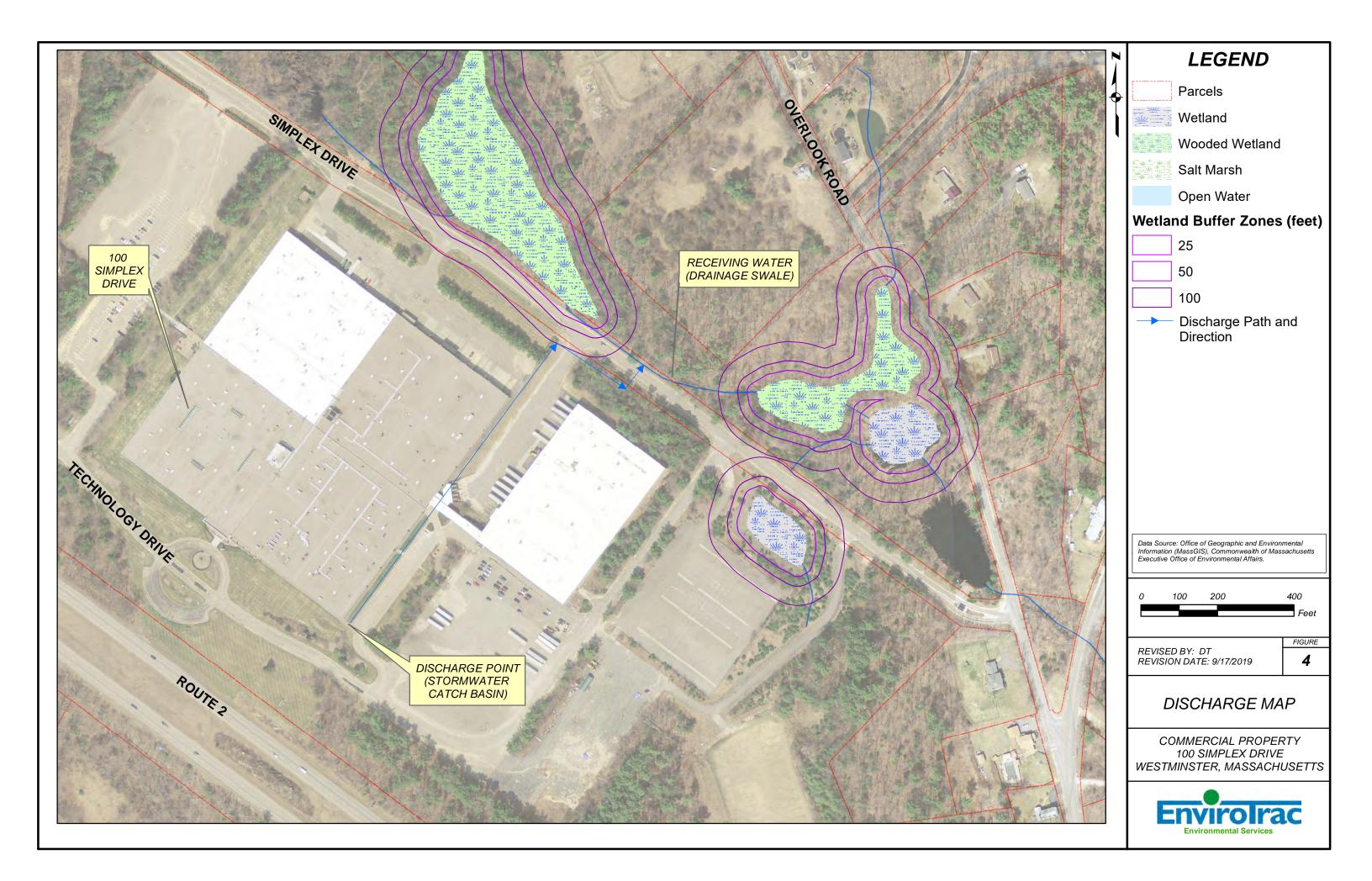
NOT TO SCALE

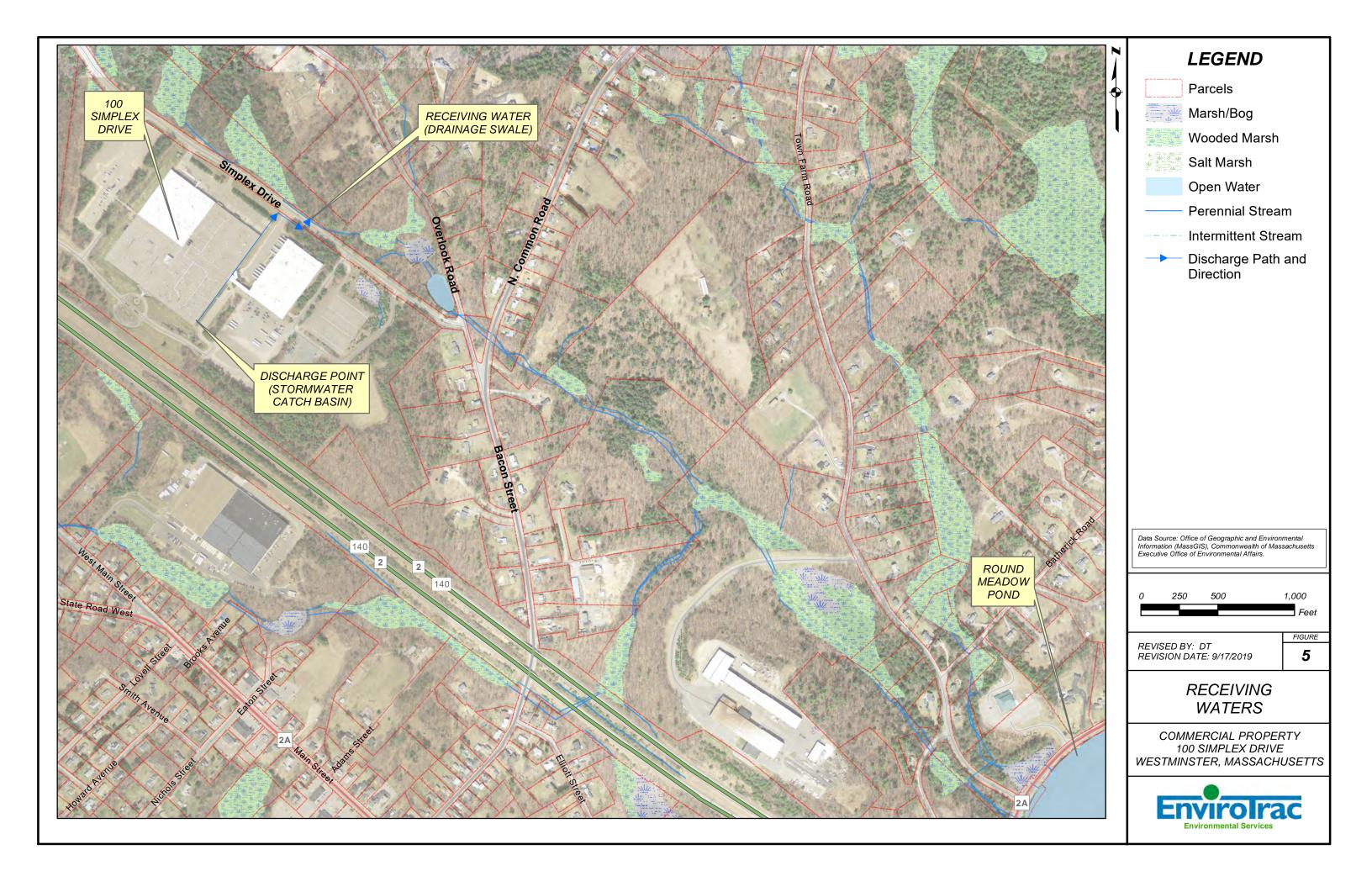
DRAWN BY: DT

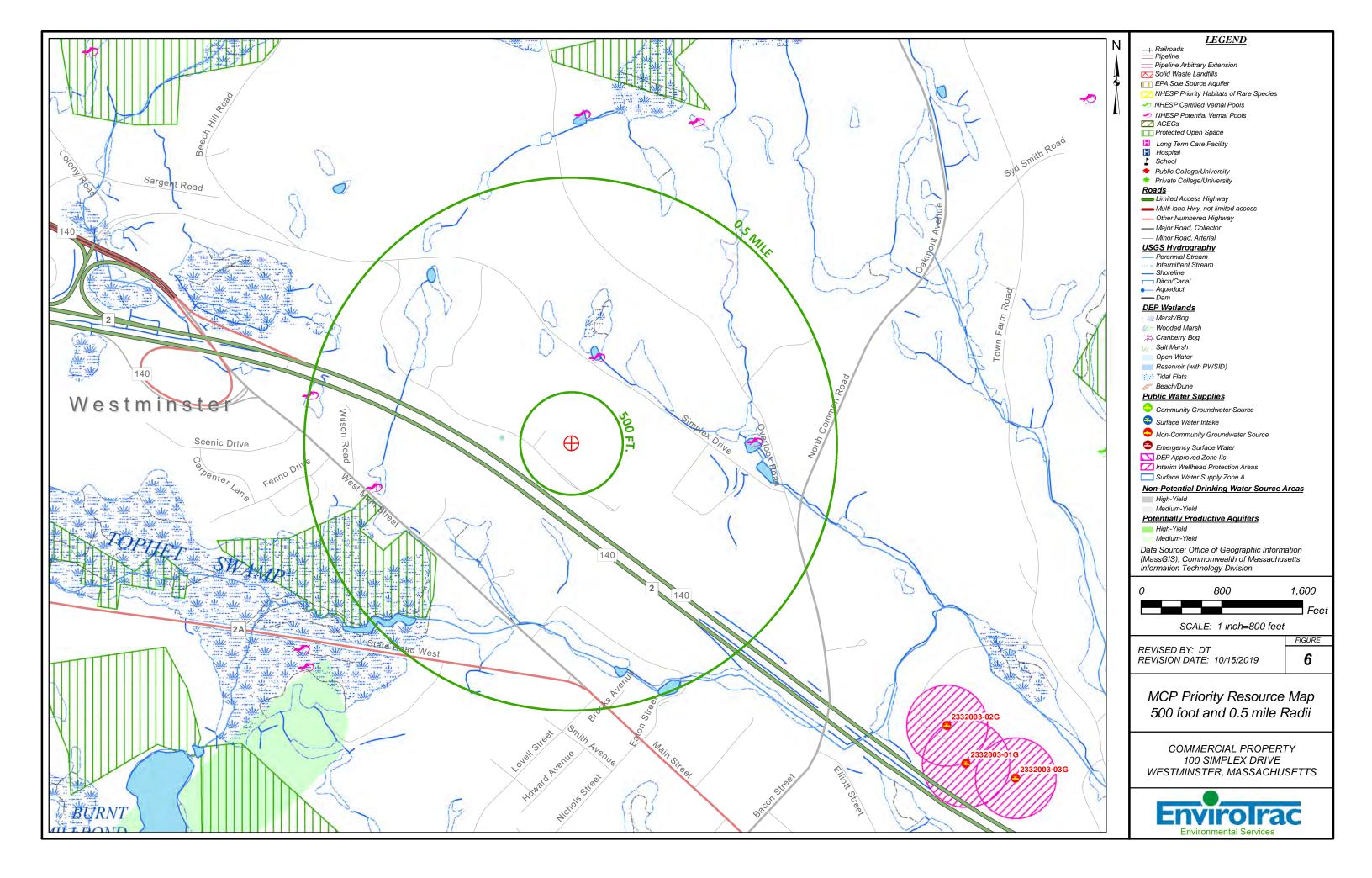
REVISION DATE: 09/10/2019

**FIGURE** 

DRAWING TITLE


PROCESS FLOW DIAGRAM


PREPARED FOR


COMMERCIAL PROPERTY 100 SIMPLEX DRIVE WESTMINSTER, MASSACHUSETTS



2 MERCHANT STREET, SUITE 2, SHARON, MA PHONE: (781) 793-0074 FAX: (781) 793-7877







**TABLE** 

TABLE 1
SUMMARY OF GROUNDWATER ANALYTICAL DATA

Commercial Property 100 Simplex Drive Westminster, Massachusetts

| Sample Date                                 | August      | 30, 2019 | DOD Dod 0 F(f)                    |
|---------------------------------------------|-------------|----------|-----------------------------------|
| Sample ID                                   |             | SW-1     | RGP Part 2 Effluent Limits (µg/L) |
| VOLATILE ORGANIC COMPOUNDS by 624.1 (µg/L)  |             |          |                                   |
| Acetone                                     | <50.0       |          | 7,970                             |
| tert-Amyl Methyl Ether                      | <0.5        |          | 90                                |
| Benzene                                     | <1.0        |          | 5                                 |
| Tertiary Butyl Alcohol                      | <20         |          | 120                               |
| Carbon Tetrachloride                        | <2.0        |          | 1.6                               |
| 1,2-Dichlorobenzene                         | <2.0        |          | 600                               |
| 1,3-Dichlorobenzene                         | <2.0        |          | 320                               |
| 1,4-Dichlorobenzene                         | 0.29        |          | 5                                 |
| 1,2-Dichloroethane                          | <2.0        |          | 5                                 |
| cis-1,2-Dichloroethane                      | 2.72        |          | 70                                |
| 1,1-Dichloroethane                          | <2.0        |          | 70                                |
| 1,1-Dichloroethylene                        | <2.0        |          | 3.2                               |
| 1,2-Dibromoethane (EDB)                     | <0.019      |          | 0.05                              |
| Ethanol                                     | <100        |          | (Report mg/L)                     |
| Ethylbenzene                                | <2.0        |          | (Report riig/L)                   |
| Methyl Tert Butyl Ether                     | <2.0        |          | 20                                |
|                                             |             |          | · ·                               |
| Methylene Chloride                          | <5.0        |          | 4.6                               |
| Tetrachloroethylene                         | <2.0        |          | 3.3                               |
| Toluene                                     | <1.0        |          | NE                                |
| 1,1,1-Trichloroethane                       | <2.0        |          | 200                               |
| 1,1,2-Trichloroethane                       | <2.0        |          | 5                                 |
| Trichloroethylene                           | <2.0        |          | 5                                 |
| Vinyl Chloride                              | 1.15        |          | 2                                 |
| Total Xylenes                               | <2.0        |          | NE                                |
| Total BTEX                                  | ND          |          | 100                               |
| SEMIVOLATILE ORGANIC COMPOUNDS by 625 (µg/l | _)          |          |                                   |
| Total Group I PAHs                          | ND          |          | 1                                 |
| Benzo(a)anthracene                          | <0.052      |          | 0.0038                            |
| Benzo(a)pyrene                              | <0.10       |          | 0.0038                            |
| Benzo(b)fluoranthene                        | <0.052      |          | 0.0038                            |
| Benzo(k)fluoranthene                        | <0.21       |          | 0.0038                            |
| Chrysene                                    | <0.21       |          | 0.0038                            |
| Dibenzo(a,h)anthracene                      | <0.10       |          | 0.0038                            |
| Indeno(1,2,3-cd)pyrene                      | <0.10       |          | 0.0038                            |
|                                             |             |          |                                   |
| Total Group II PAHs                         | ND<br>- 1 - |          | 100                               |
| Acenaphthene                                | <5.15       |          | NE                                |
| Acenaphthylene                              | <5.15       |          | NE                                |
| Anthracene                                  | <5.15       |          | NE                                |
| Benzo(g,h,i)perylene                        | <5.15       |          | NE                                |
| Fluoranthene                                | <5.15       |          | NE                                |
| Fluorene                                    | <5.15       |          | NE                                |
| Naphthalene                                 | <1.0        |          | 20                                |
| Phenanthrene                                | <5.15       |          | NE                                |
| Pyrene                                      | <5.15       |          | NE                                |

### NOTES:

-- is not sampled.

RGP is Remediation General Permit.

mg/L is milligrams per liter.

µg/L is micrograms per liter.

su is standard units.

°F is degrees Fahrenheit.

ND is not detected.

NA is not applicable.

NE is not established.

TPH is total petroleum hydrocarbons.

SVOC is semivolatile organic compounds.

PAH is polycyclic aromatic hydrocarbon.

BTEX is benzene, toluene, ethylbenzene, and xylenes.

Silver (200.8) indicates that the result for silver was obtained via method 200.8.

ETMW-1 is a monitoring well located within the construction work zone.

SW-1 is the surface water sample location, located upgradient of the storm water system discharge.

BOLD indicates concentrations greater than the laboratory detection limit.

**RED** indicates concentrations greater than applicable RGP Effluent limits.

ITALICS indicates laboratory detection limit is greater than applicable RGP Effluent limit.

< Indicates that the compound was not detected at the laboratory detection limit listed.



# TABLE 1 SUMMARY OF GROUNDWATER ANALYTICAL DATA

Commercial Property 100 Simplex Drive Westminster, Massachusetts

| Sample Date                                 | August 3   | RGP Part 2 Effluent Limits (µg/L) |                                  |
|---------------------------------------------|------------|-----------------------------------|----------------------------------|
| Sample ID                                   | ETMW-1     | SW-1                              | RGP Part 2 Emident Limits (μg/L) |
| TOTAL PETROLEUM HYDROCARBONS by 1664A (µg/  | L)         |                                   |                                  |
| TPH                                         | <1,500     |                                   | 5,000                            |
| INORGANICS (µg/L)                           |            |                                   |                                  |
| Ammonia (4500B)                             | 0.492 mg/L | 0.068 mg/L                        | (Report mg/L)                    |
| Chloride (300.0)                            | 390        |                                   | (Report)                         |
| Total Residual Chlorine (4500 CL G)         | <40        |                                   | 11                               |
| Total Suspended Solids (2540D)              | 3,700,000  |                                   | 30,000                           |
| Cyanide (335.4)                             | 4.1        |                                   | 5.2                              |
| INORGANICS (µg/L)                           |            |                                   |                                  |
| Antimony (200.8)                            | <1.0       | <1.0                              | 206                              |
| Arsenic (200.8)                             | 360        | 2.1                               | 10                               |
| Cadmium (200.8)                             | 2.2        | <0.20                             | 0.25                             |
| Chromium III                                | 560        | 1.4                               | 74                               |
| Chromium VI (3500 Cr B)                     | <4.0       | <4.0                              | 11                               |
| Copper (200.8)                              | 390        | 3.9                               | 9                                |
| Iron (200.7)                                | 47,000     | 2.5                               | 1,000                            |
| Lead (200.8)                                | 250        | 1.8                               | 2.5                              |
| Mercury (245.1)                             | <0.10      | <0.10                             | 0.739                            |
| Nickel (200.8)                              | 400        | <5.0                              | 52                               |
| Selenium (200.8)                            | 5.6        | <5.0                              | 5                                |
| Silver (200.8)                              | 0.37       | <0.20                             | 3.2                              |
| Zinc (200.8)                                | 1,000      | 38                                | 120                              |
| GENERAL CHEMISTRY                           |            |                                   |                                  |
| Hardness, Total as CaCO <sub>3</sub> (mg/L) | 420        | 35                                | NE                               |
| pH (su)                                     | 6.4        | 6.6                               | 6.5-8.3                          |
| Temperature (°F)                            |            | 73                                | 83                               |

### NOTES:

-- is not sampled.

RGP is Remediation General Permit.

mg/L is milligrams per liter.

μg/L is micrograms per liter.

su is standard units.

°F is degrees Fahrenheit.

ND is not detected.

NA is not applicable.

NE is not established.

TPH is total petroleum hydrocarbons.

SVOC is semivolatile organic compounds.

PAH is polycyclic aromatic hydrocarbon.

BTEX is benzene, toluene, ethylbenzene, and xylenes.

Silver (200.8) indicates that the result for silver was obtained via method 200.8.

ETMW-1 is a monitoring well located within the construction work zone.

SW-1 is the surface water sample location, located upgradient of the storm water system discharge.

BOLD indicates concentrations greater than the laboratory detection limit.

RED indicates concentrations greater than applicable RGP Effluent limits.

ITALICS indicates laboratory detection limit is greater than applicable RGP Effluent limit.

< Indicates that the compound was not detected at the laboratory detection limit listed.



ATTACHMENT A RGP – NOI Form

### II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

### A. General site information:

| 1. Name of site:                                                                                                                                            | Site address: 100 Simplex Drive                                                                                                                |               |                  |                       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|-----------------------|--|--|
| 100 Simplex Drive                                                                                                                                           | Street:                                                                                                                                        |               |                  |                       |  |  |
|                                                                                                                                                             | City: Westminster                                                                                                                              |               | State: MA        | <sup>Zip:</sup> 01473 |  |  |
| 2. Site owner                                                                                                                                               | Contact Person: William Deshler                                                                                                                |               |                  |                       |  |  |
| 100 Simplex LLC                                                                                                                                             | Telephone: 617-292-0101                                                                                                                        | Email:        |                  |                       |  |  |
|                                                                                                                                                             | Mailing address: 133 Pearl Street, Suite 300                                                                                                   |               |                  |                       |  |  |
|                                                                                                                                                             | Street:                                                                                                                                        |               |                  |                       |  |  |
| Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:                                                                           | City: Boston                                                                                                                                   |               | State: MA        | Zip: 02110            |  |  |
| 3. Site operator, if different than owner                                                                                                                   | Contact Person: Dena Tomassi                                                                                                                   |               |                  |                       |  |  |
| EnviroTrac Ltd.                                                                                                                                             | Telephone: 781-793-0074                                                                                                                        | Email: der    | nat@envirot      | rac.com               |  |  |
|                                                                                                                                                             |                                                                                                                                                |               |                  |                       |  |  |
|                                                                                                                                                             | Mailing address:                                                                                                                               | •             |                  |                       |  |  |
|                                                                                                                                                             | Mailing address:  2 Merchant Street, Suite 2 Street:                                                                                           |               |                  |                       |  |  |
|                                                                                                                                                             | 2 Merchant Street, Suite 2                                                                                                                     |               | State: MA        | Zip: 02067            |  |  |
| 4. NPDES permit number assigned by EPA:                                                                                                                     | Street: 2 Merchant Street, Suite 2                                                                                                             | (check all th |                  | Zip: 02067            |  |  |
| 4. NPDES permit number assigned by EPA:                                                                                                                     | 2 Merchant Street, Suite 2  City: Sharon                                                                                                       | (check all th | at apply):       | Zip: 02067            |  |  |
|                                                                                                                                                             | 2 Merchant Street, Suite 2  Street:  City: Sharon  5. Other regulatory program(s) that apply to the site  MA Chapter 21e; list RTN(s): 2-10229 |               | at apply):<br>.A | Zip: 02067            |  |  |
| 4. NPDES permit number assigned by EPA:  NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify: | 2 Merchant Street, Suite 2  Street:  City: Sharon  5. Other regulatory program(s) that apply to the site  MA Chapter 21e; list RTN(s):         | □ CERCL       | at apply):<br>.A | -                     |  |  |

| B. Receiving water information:                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| 1. Name of receiving water(s):                                                                                                                                                                                                                                                                                                                                                                                                                        | Waterbody identification of receiving water                                                     | (s): Classi                                       | fication of receiving water(s):                          |  |  |  |  |  |  |
| Round Meadow Pond                                                                                                                                                                                                                                                                                                                                                                                                                                     | Segment MA81114                                                                                 | Class I                                           | 3                                                        |  |  |  |  |  |  |
| Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River                                                                                                                                                                                                                                                                                                                   |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| 2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| Are sensitive receptors present near the site? (check one): ■ Yes □ No If yes, specify: Wetland area around receiving water                                                                                                                                                                                                                                                                                                                           |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| 3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. Receiving water is not listed in the State's Integrated List of Waters (303(d)). |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| 4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.                                                                                                                                                                                                                         |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| 5. Indicate the requested dilution factor for the calculated accordance with the instructions in Appendix V for significant contents.                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                   | No dilution                                              |  |  |  |  |  |  |
| <ul> <li>6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:</li> <li>7. Has the operator attached a summary of receiving (check one): ■ Yes □ No</li> </ul>                                                                                                                                                                                                                                           |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| C. Source water information:                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| 1. Source water(s) is (check any that apply):                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |                                                   |                                                          |  |  |  |  |  |  |
| ■ Contaminated groundwater                                                                                                                                                                                                                                                                                                                                                                                                                            | ☐ Contaminated surface water                                                                    | ☐ The receiving water                             | ☐ Potable water; if so, indicate municipality or origin: |  |  |  |  |  |  |
| Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP                                                                                                                                                                                                                                                                                                                                                   | Has the operator attached a summary of influent sampling results as required in Part 4.2 of the | ☐ A surface water other                           |                                                          |  |  |  |  |  |  |
| in accordance with the instruction in Appendix VIII? (check one):                                                                                                                                                                                                                                                                                                                                                                                     | RGP in accordance with the instruction in Appendix VIII? (check one):                           | than the receiving water; so, indicate waterbody: | ☐ Other; if so, specify:                                 |  |  |  |  |  |  |
| ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                            | □ Yes □ No                                                                                      |                                                   |                                                          |  |  |  |  |  |  |

| 2. Source water contaminants: halogenated VOCs, non-halogenated VOCs                                                                                                                                                     | s, inorganics                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in                                                                     | b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance. |
| the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.                                                         | with the instructions in Appendix VIII? (check one): □ Yes □ No                                                                                                                     |
| 3. Has the source water been previously chlorinated or otherwise contains resid                                                                                                                                          | dual chlorine? (check one): □ Yes ■ No                                                                                                                                              |
| D. Discharge information                                                                                                                                                                                                 |                                                                                                                                                                                     |
| 1.The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New                                                                                                                                            | w discharge □ New source                                                                                                                                                            |
| Outfall(s):                                                                                                                                                                                                              | Outfall location(s): (Latitude, Longitude)                                                                                                                                          |
| One stormwater outfall north of Simplex Drive                                                                                                                                                                            | 42.556781, 71.914537                                                                                                                                                                |
|                                                                                                                                                                                                                          |                                                                                                                                                                                     |
| Discharges enter the receiving water(s) via (check any that apply): ■ Direct di                                                                                                                                          | scharge to the receiving water □ Indirect discharge, if so, specify:                                                                                                                |
| The discharge pathway is via a catch basin that drains to wetlands nort ■ A private storm sewer system □ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew | th of the property, from which an intermittent stream flows to Round Meadow Pondwer system:                                                                                         |
| Has notification been provided to the owner of this system? (check one): ■ Ye                                                                                                                                            | es □ No                                                                                                                                                                             |
| Has the operator has received permission from the owner to use such system for obtaining permission:                                                                                                                     | or discharges? (check one): ■ Yes □ No, if so, explain, with an estimated timeframe for                                                                                             |
| Has the operator attached a summary of any additional requirements the owner                                                                                                                                             | of this system has specified? (check one): $\square$ Yes $\square$ No                                                                                                               |
| Provide the expected start and end dates of discharge(s) (month/year): Octobe                                                                                                                                            | er 2019 - November 2019                                                                                                                                                             |
| Indicate if the discharge is expected to occur over a duration of: ■ less than 1                                                                                                                                         | 2 months □ 12 months or more □ is an emergency discharge                                                                                                                            |
| Has the operator attached a site plan in accordance with the instructions in D, a                                                                                                                                        | above? (check one): ■ Yes □ No                                                                                                                                                      |

| 2. Activity Category: (check all that apply)                                                                                                                                                                                                                | 3. Contamination Type Category: (check all that apply)                                                                                                                                                                                                                                                                                       |                                                                                                        |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                             | a. If Activity Category I or II: (check all that apply)                                                                                                                                                                                                                                                                                      |                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                                             | <ul> <li>■ A. Inorganics</li> <li>■ B. Non-Halogenated Volatile Organic Compounds</li> <li>■ C. Halogenated Volatile Organic Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile Organic Compounds</li> <li>■ F. Fuels Parameters</li> </ul>                                     |                                                                                                        |  |  |  |
| ☐ I – Petroleum-Related Site Remediation ■ II – Non-Petroleum-Related Site Remediation                                                                                                                                                                      | b. If Activity Category III, IV                                                                                                                                                                                                                                                                                                              | 7, V, VI, VII or VIII: (check either G or H)                                                           |  |  |  |
| <ul> <li>□ III – Contaminated Site Dewatering</li> <li>□ IV – Dewatering of Pipelines and Tanks</li> <li>□ V – Aquifer Pump Testing</li> <li>□ VI – Well Development/Rehabilitation</li> <li>□ VII – Collection Structure Dewatering/Remediation</li> </ul> | ☐ G. Sites with Known Contamination  c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)                                                                                                                                                                                                                          | ☐ H. Sites with Unknown Contamination                                                                  |  |  |  |
| □ VIII – Dredge-Related Dewatering                                                                                                                                                                                                                          | <ul> <li>□ A. Inorganics</li> <li>□ B. Non-Halogenated Volatile</li> <li>Organic Compounds</li> <li>□ C. Halogenated Volatile Organic</li> <li>Compounds</li> <li>□ D. Non-Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ E. Halogenated Semi-Volatile</li> <li>Organic Compounds</li> <li>□ F. Fuels Parameters</li> </ul> | d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply |  |  |  |

### 4. Influent and Effluent Characteristics

|                         | Known                    | Known                     |                 | Test          | D 4 4                        | In                         | fluent                     | Effluent Li | imitations  |
|-------------------------|--------------------------|---------------------------|-----------------|---------------|------------------------------|----------------------------|----------------------------|-------------|-------------|
| Parameter               | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(μg/l) | TBEL        | WQBEL       |
| A. Inorganics           |                          |                           |                 |               |                              |                            |                            |             |             |
| Ammonia                 | ~                        | ~                         | 1               | 4500NH3       | 375                          | 492                        | 492                        | Report mg/L |             |
| Chloride                | ~                        |                           | 1               | 300           | 10,000                       | 390,000                    | 390,000                    | Report μg/l |             |
| Total Residual Chlorine | ~                        |                           | 1               | 4500CL G      | 40                           | <40                        | <40                        | 0.2 mg/L    | 16 ug/L     |
| Total Suspended Solids  |                          | V                         | 1               | 2540D         | 10,000                       | 3,700,000                  | 3,700,000                  | 30 mg/L     |             |
| Antimony                | ~                        |                           | 1               | 200.8         | 1                            | <1                         | <1                         | 206 μg/L    | 946 ug/L    |
| Arsenic                 |                          | V                         | 1               | 200.8         | 8                            | 360                        | 360                        | 104 μg/L    | 14 ug/L     |
| Cadmium                 | ~                        |                           | 1               | 200.8         | 0.20                         | 2.2                        | 2.2                        | 10.2 μg/L   | 0.6038 ug/L |
| Chromium III            | V                        |                           | 1               | 200.8         | N/A                          | 560                        | 560                        | 323 μg/L    | 308.7 ug/L  |
| Chromium VI             | ~                        |                           | 1               | 3500Cr B      | 4.0                          | <4.0                       | <4.0                       | 323 μg/L    | 16.9 ug/L   |
| Copper                  | ~                        |                           | 1               | 200.8         | 10                           | 390                        | 390                        | 242 μg/L    | 32.9 ug/L   |
| Iron                    |                          | ~                         | 1               | 200.8         | 50                           | 47,000                     | 47,000                     | 5,000 μg/L  | 1,477 ug/L  |
| Lead                    |                          | ~                         | 1               | 200.8         | 5.0                          | 25                         | 250                        | 160 μg/L    | 17.82 ug/L  |
| Mercury                 | ~                        |                           | 1               | 245.1         | 0.10                         | < 0.10                     | < 0.10                     | 0.739 μg/L  | 1.34 ug/L   |
| Nickel                  | ~                        |                           | 1               | 200.8         | 50                           | 400                        | 400                        | 1,450 μg/L  | 192.8 ug/L  |
| Selenium                | ~                        |                           | 1               | 200.8         | 5.0                          | 5.6                        | 5.6                        | 235.8 μg/L  | 7.4 ug/L    |
| Silver                  | V                        |                           | 1               | 200.8         | 0.20                         | 0.37                       | 0.37                       | 35.1 μg/L   | 36.1 ug/L   |
| Zinc                    | ~                        |                           | 1               | 200.8         | 100                          | 1,000                      | 1,000                      | 420 μg/L    | 425.3 ug/L  |
| Cyanide                 | V                        |                           | 1               | 335.4         | 10                           | 4.1                        | 4.1                        | 178 mg/L    | 7.7 ug/L    |
| B. Non-Halogenated VOC  | s                        |                           |                 |               |                              |                            | •                          |             |             |
| Total BTEX              |                          | V                         | 1               | 624           | 6.0                          | <6.0                       | <6.0                       | 100 μg/L    |             |
| Benzene                 |                          | V                         | 1               | 624           | 1.0                          | <1.0                       | <1.0                       | 5.0 μg/L    |             |
| 1,4 Dioxane             | ~                        |                           | 0               | N/A           | N/A                          | N/A                        | N/A                        | 200 μg/L    |             |
| Acetone                 | ~                        |                           | 1               | 624           | 50                           | <50                        | <50                        | 7.97 mg/L   |             |
| Phenol                  | ~                        |                           | 0               | N/A           | N/A                          | N/A                        | N/A                        | 1,080 μg/L  |             |

|                          | Known                    | Known                     |                 | _                     |                              | In                         | fluent                     | Effluent Li    | mitations   |
|--------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|----------------|-------------|
| Parameter                | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(μg/l) | TBEL           | WQBEL       |
| C. Halogenated VOCs      |                          |                           |                 |                       |                              |                            |                            |                |             |
| Carbon Tetrachloride     |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 4.4 μg/L       | 2.4 ug/L    |
| 1,2 Dichlorobenzene      |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 600 μg/L       |             |
| 1,3 Dichlorobenzene      |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 320 μg/L       |             |
| 1,4 Dichlorobenzene      |                          | ~                         | 1               | 624                   | 2.00                         | 0.290                      | 0.290                      | 5.0 μg/L       |             |
| Total dichlorobenzene    |                          | ~                         | 1               | 624                   | 6.00                         | 0.290                      | 0.290                      | 763 μg/L in NH |             |
| 1,1 Dichloroethane       |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 70 μg/L        |             |
| 1,2 Dichloroethane       |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 5.0 μg/L       |             |
| 1,1 Dichloroethylene     |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 3.2 μg/L       |             |
| Ethylene Dibromide       | ~                        |                           | 1               | 504.1                 | 0.019                        | < 0.019                    | <0.019                     | 0.05 μg/L      |             |
| Methylene Chloride       | ~                        |                           | 1               | 624                   | 5.00                         | < 5.00                     | <5.00                      | 4.6 μg/L       |             |
| 1,1,1 Trichloroethane    | ~                        |                           | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 200 μg/L       |             |
| 1,1,2 Trichloroethane    | ~                        |                           | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 5.0 μg/L       |             |
| Trichloroethylene        |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 5.0 μg/L       |             |
| Tetrachloroethylene      |                          | ~                         | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 5.0 μg/L       | 4.9 ug/L    |
| cis-1,2 Dichloroethylene |                          | ~                         | 1               | 624                   | 1.00                         | 2.72                       | 2.72                       | 70 μg/L        |             |
| Vinyl Chloride           |                          | ~                         | 1               | 624                   | 2.00                         | 1.15                       | 1.15                       | 2.0 μg/L       |             |
| D. Non-Halogenated SVOC  | 'e                       |                           |                 |                       |                              |                            |                            |                |             |
| Total Phthalates         | <i>v</i>                 |                           | 0               | N/A                   | N/A                          | N/A                        | N/A                        | 190 μg/L       |             |
| Diethylhexyl phthalate   | ~                        |                           | 0               | N/A                   | N/A                          | N/A                        | N/A                        | 101 μg/L       |             |
| Total Group I PAHs       | ~                        |                           | 1               | 625                   | N/A                          | 0                          | 0                          | 1.0 μg/L       |             |
| Benzo(a)anthracene       | ~                        |                           | 1               | 625                   | 0.052                        | < 0.052                    | < 0.052                    | 1.5            | 0.0056 ug/L |
| Benzo(a)pyrene           | ~                        |                           | 1               | 625                   | 0.10                         | < 0.10                     | < 0.10                     | 1              | 0.0056 ug/L |
| Benzo(b)fluoranthene     | ~                        |                           | 1               | 625                   | 0.052                        | < 0.052                    | < 0.052                    | 1              | 0.0056 ug/L |
| Benzo(k)fluoranthene     | ~                        |                           | 1               | 625                   | 0.21                         | < 0.21                     | < 0.21                     | As Total PAHs  | 0.0056 ug/L |
| Chrysene                 | ~                        |                           | 1               | 625                   | 0.21                         | < 0.21                     | < 0.21                     | 1              | 0.0056 ug/L |
| Dibenzo(a,h)anthracene   | ~                        |                           | 1               | 625                   | 0.10                         | < 0.10                     | < 0.10                     | 1              | 0.0056 ug/L |
| Indeno(1,2,3-cd)pyrene   | ~                        |                           | 1               | 625                   | 0.10                         | < 0.10                     | < 0.10                     | 1              | 0.0056 ug/L |

|                             | Known                    | Known                     |                 |                       |                              | In                         | fluent                     | Effluent Li                     | mitations |
|-----------------------------|--------------------------|---------------------------|-----------------|-----------------------|------------------------------|----------------------------|----------------------------|---------------------------------|-----------|
| Parameter                   | or<br>believed<br>absent | or<br>believed<br>present | # of<br>samples | Test<br>method<br>(#) | Detection<br>limit<br>(µg/l) | Daily<br>maximum<br>(µg/l) | Daily<br>average<br>(µg/l) | TBEL                            | WQBEL     |
| al Group II PAHs            | ~                        |                           | 1               | 625                   | N/A                          | 0                          | 0                          | 100 μg/L                        |           |
| ohthalene                   | <b>v</b>                 |                           | 1               | 625                   | 1.0                          | <1.0                       | <1.0                       | 20 μg/L                         |           |
| Halogenated SVOCs           |                          |                           |                 |                       |                              |                            |                            |                                 |           |
| al PCBs                     | <b>✓</b>                 |                           | 0               | N/A                   | N/A                          | N/A                        | N/A                        | 0.000064 μg/L                   |           |
| tachlorophenol              | V                        |                           | 0               | N/A                   | N/A                          | N/A                        | N/A                        | 1.0 μg/L                        |           |
| Fuels Parameters            |                          |                           |                 |                       |                              |                            |                            |                                 |           |
| al Petroleum drocarbons     | V                        |                           | 1               | 1664A                 | 1,500                        | <1,500                     | <1,500                     | 5.0 mg/L                        |           |
| anol                        | ~                        |                           | 1               | 624                   | 100                          | <100                       | <100                       | Report mg/L                     |           |
| thyl-tert-Butyl Ether       | ~                        |                           | 1               | 624                   | 2.00                         | <2.00                      | <2.00                      | 70 μg/L                         | 30 ug/L   |
| -Butyl Alcohol              | V                        |                           | 1               | 624                   | 20.0                         | <20.0                      | <20.0                      | 120 μg/L in MA<br>40 μg/L in NH |           |
| -Amyl Methyl Ether          | V                        |                           | 1               | 624                   | 0.500                        | <0.500                     | <0.500                     | 90 μg/L in MA<br>140 μg/L in NH |           |
| ner (i.e., pH, temperature, | , hardness,              | salinity, LC              | C50, addition   | nal pollutar<br>200.7 | nts present);                | if so, specify: 420,000    | 420,000                    |                                 |           |
|                             |                          | ~                         | 1               | 4500HB                | N/A                          | 6.4                        | 6.4                        |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |
|                             |                          |                           |                 |                       |                              |                            |                            | 1                               |           |
|                             |                          |                           |                 |                       |                              |                            |                            |                                 |           |

# E. Treatment system information

| 1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| ☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| ☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |
| Aerators may be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Groundwater will be pumped into a frac tank for settlement. If necessary, groundwater may be pumped through a water aeratino system (consisting of two parallel aerators precipitating metals, prior to exiting the frac tank. From the frac tank, groundwater will be pumped through two parallel bag filter units equipped with 10-50 micron filters excess suspended solids. After bag filters, groundwater will go through two 2,000-pound liquid-phase carbon units arranged in-series to remove potential dissolved CVOC Groundwater will then flow through two cartridge filters units with 1-5 micron filters to remove suspended sediments. | to remove |
| Identify each major treatment component (check any that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |
| ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| ☐ Chemical feed tank ☐ Air stripping unit ■ Bag filter ■ Other; if so, specify: Cartridge filters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| Indicate if either of the following will occur (check any that apply):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| ☐ Chlorination ☐ De-chlorination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |
| 3. Provide the <b>design flow capacity</b> in gallons per minute (gpm) of the most limiting component.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| Indicate the most limiting component: Cartridge filters (are designed in parallel however, to minimize limitations on flow)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100       |
| Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100       |
| Provide the proposed maximum effluent flow in gpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100       |
| Provide the average effluent flow in gpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50-75     |
| If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
| 4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |

### F. Chemical and additive information

| 1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| □ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □                                                                                                                                                                                                                                                                                                                                  |
| scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                             |
| No chemical additives will be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2. Provide the following information for each chemical/additive, using attachments, if necessary:                                                                                                                                                                                                                                                                                                                                                                                      |
| No chemical additives will be used.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| a. Product name, chemical formula, and manufacturer of the chemical/additive;                                                                                                                                                                                                                                                                                                                                                                                                          |
| b. Purpose or use of the chemical/additive or remedial agent;                                                                                                                                                                                                                                                                                                                                                                                                                          |
| c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;                                                                                                                                                                                                                                                                                                                                                                  |
| d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and                                                                                                                                                                                                        |
| f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).                                                                                                                                                                                                                                                                                                                                                                        |
| 1. If available, the vehdor's reported aquatic toxicity (NOALL and/or Leso in percent for aquatic organism(s)).                                                                                                                                                                                                                                                                                                                                                                        |
| 3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance                                                                                                                                                                                                                                                                                                                 |
| with the instructions in F, above? (check one): $\square$ Yes $\square$ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section                                                                                                                                                                                                                                                                                                 |
| 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?                                                                                                                                                                                                                                                                                                                                                                  |
| (check one): □ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| G. Endangered Species Act eligibility determination                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                                                                                                                                                                                 |
| □ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the                                                                                                                                                                                                                                                                                                                        |
| "action area".                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| □ <b>FWS Criterion B</b> : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation)                                                                                                                                                                                                                                                                                                                      |
| or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat                                                                                                                                                                                                                                                                                                                        |
| (informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐                                                                                                                                                                                                                                                                                                                                    |
| Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the |
| FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                         |

| □ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No                                                                                                                                                                                                                          |
| 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one):   Yes  No                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                |
| Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ■ No; if yes, attach.                                                                                                                                                                                |
| H. National Historic Preservation Act eligibility determination                                                                                                                                                                                                                                                                |
| 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:                                                                                                                                                                                                                         |
| ■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.                                                                                                                                             |
| ☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.                                                                                                                                                                 |
| ☐ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.                                                                                                                                    |
| 2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                |
| Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or                                                                                                                                                           |
| other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one):   Yes  No                                                                                                                                                       |
| I. Supplemental information                                                                                                                                                                                                                                                                                                    |
| Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.                                                                                                                                                                                                     |
| Describe any supplemental information being provided with the Not. include attachments if required of otherwise necessary.                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                |
| Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one):   Yes  No                                                                                                                                                                           |
| Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No                                                                                                                                                                                                 |

### J. Certification requirement

|     | I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. |        |                  |           |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------|-----------|--|--|--|--|--|--|
|     | I certify that a BMPP meeting the requirements of this general per BMPP certification statement: implemented upon initiation of discharge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mit wi | ill be developed | d and     |  |  |  |  |  |  |
|     | Notification provided to the appropriate State, including a copy of this NOI, if required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C      | Check one: Yes ■ | No □      |  |  |  |  |  |  |
|     | Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . (    | Check one: Yes ■ | No □      |  |  |  |  |  |  |
|     | Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C      | Check one: Yes   | No □ NA □ |  |  |  |  |  |  |
| J   | Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C      | Check one: Yes □ | No ■ NA □ |  |  |  |  |  |  |
|     | Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): $\square$ RGP $\square$ DGP $\square$ CGP $\square$ MSGP $\square$ Individual NPDES perm $\square$ Other; if so, specify:                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nit C  | Check one: Yes □ | No □ NA ■ |  |  |  |  |  |  |
| Sig | nature: Jeur Janan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Date:  | 10/24/2          | 019       |  |  |  |  |  |  |
| Pri | nt Name and Title: Dena Tomassi, Project Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                  |           |  |  |  |  |  |  |

ATTACHMENT B Laboratory Reports



September 26, 2019

Dena Tomassi EnviroTrac Ltd. 2 Merchant Street, Suite 2 Sharon, MA 02067

Project Location: 100 Simplex Drive, Westminster, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 19H1713

Enclosed are results of analyses for samples received by the laboratory on August 30, 2019. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kaitlyn A. Feliciano Project Manager

# Table of Contents

| Sample Summary                                                       | 4  |
|----------------------------------------------------------------------|----|
| Case Narrative                                                       | 5  |
| Sample Results                                                       | 8  |
| 19H1713-01                                                           | 8  |
| 19H1713-02                                                           | 15 |
| Sample Preparation Information                                       | 18 |
| QC Data                                                              | 20 |
| Volatile Organic Compounds by GC/MS                                  | 20 |
| B239548                                                              | 20 |
| B239686                                                              | 21 |
| Semivolatile Organic Compounds by GC/MS                              | 23 |
| B239937                                                              | 23 |
| Semivolatile Organic Compounds by - GC/MS                            | 24 |
| B239765                                                              | 24 |
| Metals Analyses (Total)                                              | 26 |
| B239843                                                              | 26 |
| B239844                                                              | 26 |
| B240040                                                              | 27 |
| Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) | 28 |
| B239496                                                              | 28 |
| B239498                                                              | 28 |
| B239501                                                              | 28 |
| B239647                                                              | 28 |
| B239783                                                              | 28 |
| B239970                                                              | 29 |

# Table of Contents (continued)

| Drinking Water Organics EPA 504.1 | 30 |
|-----------------------------------|----|
| B240078                           | 30 |
| Dual Column RPD Report            | 31 |
| Flag/Qualifier Summary            | 33 |
| Certifications                    | 34 |
| Chain of Custody/Sample Receipt   | 36 |



EnviroTrac Ltd.
2 Merchant Street, Suite 2
Sharon, MA 02067

ATTN: Dena Tomassi

REPORT DATE: 9/26/2019

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

#### ANALYTICAL SUMMARY

WORK ORDER NUMBER: 19H1713

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 100 Simplex Drive, Westminster, MA

| FIELD SAMPLE # | LAB ID:    | MATRIX           | SAMPLE DESCRIPTION | TEST               | SUB LAB                           |
|----------------|------------|------------------|--------------------|--------------------|-----------------------------------|
| ETMW-1         | 19H1713-01 | Ground Water     |                    | 121,4500NH3-BH     | MA M-MA-086/CT<br>PH-0574/NY11148 |
|                |            |                  |                    | 624.1              |                                   |
|                |            |                  |                    | 625.1              |                                   |
|                |            |                  |                    | EPA 1664B          |                                   |
|                |            |                  |                    | EPA 200.7          |                                   |
|                |            |                  |                    | EPA 200.8          |                                   |
|                |            |                  |                    | EPA 245.1          |                                   |
|                |            |                  |                    | EPA 300.0          |                                   |
|                |            |                  |                    | EPA 504.1          |                                   |
|                |            |                  |                    | SM19-22 4500 NH3 C | MA M-MA-086/CT<br>PH-0574/NY11148 |
|                |            |                  |                    | SM21-22 2540D      |                                   |
|                |            |                  |                    | SM21-22 3500 Cr B  |                                   |
|                |            |                  |                    | SM21-22 4500 CL G  |                                   |
|                |            |                  |                    | SM21-22 4500 H B   |                                   |
|                |            |                  |                    | Tri Chrome Calc.   |                                   |
| SW-1           | 19H1713-02 | Ground Water     |                    | 121,4500NH3-BH     | MA M-MA-086/CT<br>PH-0574/NY11148 |
|                |            |                  |                    | EPA 200.7          |                                   |
|                |            |                  |                    | EPA 200.8          |                                   |
|                |            |                  |                    | EPA 245.1          |                                   |
|                |            |                  |                    | SM19-22 4500 NH3 C | MA M-MA-086/CT<br>PH-0574/NY11148 |
|                |            |                  |                    | SM21-22 3500 Cr B  |                                   |
|                |            |                  |                    | SM21-22 4500 H B   |                                   |
|                |            |                  |                    | Tri Chrome Calc.   |                                   |
| Trip Blank     | 19H1713-03 | Trip Blank Water |                    | 624.1              |                                   |



#### CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

REVISED REPORT 09-26-19: Per client request the phenol results have been removed from the 625 results.

REVISED REPORT 09-19-19: The 624.1 results have been revised to the MDL and to include acetone, 1,1-DCE and MTBE.

Per client request the trip blank results have been removed from the final report.

The 625 results have been revised to the MDL and the phthalates have been removed per the CoC.

The 200.8 metals results have been revised to the MDL..



625.1

### Qualifications:

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

#### Analyte & Samples(s) Qualified:

#### 2,4,6-Tribromophenol

B239765-BS1

V-35

Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated

# estimated. Analyte & Samples(s) Qualified:

Benzidine

S040203-CCV1

EPA 200.8

#### Qualifications:

R-04

Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).

# limit (RL). Analyte & Samples(s) Qualified:

Chromium

19H1713-02[SW-1], B239844-DUP1

SM21-22 4500 CL G

#### Qualifications:

DL-03

Elevated reporting limit due to matrix interference.

### Analyte & Samples(s) Qualified:

### Chlorine, Residual

19H1713-01[ETMW-1], B239498-DUP1, B239498-MS1

Z-01

SM 4500 test had calibration points outside of acceptable back calculated recoveries. Reanalysis yielded similar non-conformance.

### Analyte & Samples(s) Qualified:

### Chlorine, Residual

19H1713-01[ETMW-1], B239498-BLK1, B239498-BS1, B239498-BSD1, B239498-DUP1, B239498-MS1

SM21-22 4500 H B

### Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.

## exceeded. Analyte & Samples(s) Qualified:

рΗ

19H1713-01[ETMW-1], 19H1713-02[SW-1]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

Field Sample #: ETMW-1 Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

4-Bromofluorobenzene

| Volatile Organic Compounds by GC/ |
|-----------------------------------|
|-----------------------------------|

| Analyte                        | Results | RL     | DL    | Units           | Dilution | Flag/Qual | Method | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|--------------------------------|---------|--------|-------|-----------------|----------|-----------|--------|------------------|-----------------------|---------|
| Acetone                        | <50.0   | 50.0   | 3.79  | μg/L            | 1        | -         | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| tert-Amyl Methyl Ether (TAME)  | < 0.500 | 0.500  | 0.140 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Benzene                        | <1.00   | 1.00   | 0.180 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| tert-Butyl Alcohol (TBA)       | <20.0   | 20.0   | 4.17  | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Carbon Tetrachloride           | < 2.00  | 2.00   | 0.110 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,2-Dichlorobenzene            | < 2.00  | 2.00   | 0.160 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,3-Dichlorobenzene            | < 2.00  | 2.00   | 0.120 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,4-Dichlorobenzene            | 0.290   | 2.00   | 0.130 | μg/L            | 1        | J         | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,2-Dichloroethane             | < 2.00  | 2.00   | 0.410 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| cis-1,2-Dichloroethylene       | 2.72    | 1.00   | 0.130 | μg/L            | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,1-Dichloroethane             | < 2.00  | 2.00   | 0.160 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,1-Dichloroethylene           | < 2.00  | 2.00   | 0.320 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Ethanol                        | <100    | 100    | 10.5  | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Ethylbenzene                   | < 2.00  | 2.00   | 0.130 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Methyl tert-Butyl Ether (MTBE) | < 2.00  | 2.00   | 0.250 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Methylene Chloride             | < 5.00  | 5.00   | 0.340 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Tetrachloroethylene            | < 2.00  | 2.00   | 0.180 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Toluene                        | <1.00   | 1.00   | 0.140 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,1,1-Trichloroethane          | < 2.00  | 2.00   | 0.200 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| 1,1,2-Trichloroethane          | < 2.00  | 2.00   | 0.160 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Trichloroethylene              | < 2.00  | 2.00   | 0.240 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Vinyl Chloride                 | 1.15    | 2.00   | 0.450 | $\mu g/L$       | 1        | J         | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| m+p Xylene                     | < 2.00  | 2.00   | 0.300 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| o-Xylene                       | < 2.00  | 2.00   | 0.170 | $\mu g/L$       | 1        |           | 624.1  | 9/3/19           | 9/3/19 12:37          | LBD     |
| Surrogates                     |         | % Reco | very  | Recovery Limits | s        | Flag/Qual |        |                  |                       |         |
| 1,2-Dichloroethane-d4          |         | 96.3   |       | 70-130          |          |           |        |                  | 9/3/19 12:37          |         |
| Toluene-d8                     |         | 103    |       | 70-130          |          |           |        |                  | 9/3/19 12:37          |         |

70-130

103

9/3/19 12:37

9/10/19 10:20



39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

60.5

Sample ID: 19H1713-01
Sample Matrix: Ground Water

p-Terphenyl-d14

| Analyte                      | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method | Date<br>Prepared | Date/Time<br>Analyzed | Analyst |
|------------------------------|---------|--------|-------|----------------|----------|-----------|--------|------------------|-----------------------|---------|
| Benzo(a)anthracene (SIM)     | < 0.052 | 0.052  | 0.016 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Benzo(a)pyrene (SIM)         | < 0.10  | 0.10   | 0.012 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Benzo(b)fluoranthene (SIM)   | < 0.052 | 0.052  | 0.015 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Benzo(k)fluoranthene (SIM)   | < 0.21  | 0.21   | 0.012 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Chrysene (SIM)               | < 0.21  | 0.21   | 0.015 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Dibenz(a,h)anthracene (SIM)  | < 0.10  | 0.10   | 0.018 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Indeno(1,2,3-cd)pyrene (SIM) | < 0.10  | 0.10   | 0.019 | μg/L           | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Naphthalene (SIM)            | <1.0    | 1.0    | 0.26  | $\mu g/L$      | 1        |           | 625.1  | 9/4/19           | 9/10/19 10:20         | IMR     |
| Surrogates                   |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |        |                  |                       |         |
| 2-Fluorophenol (SIM)         |         | 41.9   |       | 15-110         |          |           |        |                  | 9/10/19 10:20         |         |
| Phenol-d6 (SIM)              |         | 32.1   |       | 15-110         |          |           |        |                  | 9/10/19 10:20         |         |
| Nitrobenzene-d5              |         | 70.5   |       | 30-130         |          |           |        |                  | 9/10/19 10:20         |         |
| 2-Fluorobiphenyl             |         | 49.1   |       | 30-130         |          |           |        |                  | 9/10/19 10:20         |         |
| 2,4,6-Tribromophenol (SIM)   |         | 80.4   |       | 15-110         |          |           |        |                  | 9/10/19 10:20         |         |

30-130



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

|                      |         |        | Sciiivo | intile Organic Co | inpounds by | GC/MB     |        |          |               |         |
|----------------------|---------|--------|---------|-------------------|-------------|-----------|--------|----------|---------------|---------|
|                      |         |        |         |                   |             |           |        | Date     | Date/Time     |         |
| Analyte              | Results | RL     | DL      | Units             | Dilution    | Flag/Qual | Method | Prepared | Analyzed      | Analyst |
| Acenaphthene         | <5.15   | 5.15   | 2.51    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Acenaphthylene       | <5.15   | 5.15   | 2.45    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Anthracene           | <5.15   | 5.15   | 2.79    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Benzo(g,h,i)perylene | <5.15   | 5.15   | 3.47    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Fluoranthene         | <5.15   | 5.15   | 2.42    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Fluorene             | <5.15   | 5.15   | 2.55    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Naphthalene          | <5.15   | 5.15   | 2.74    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Phenanthrene         | <5.15   | 5.15   | 2.82    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Pyrene               | <5.15   | 5.15   | 3.63    | $\mu g/L$         | 1           |           | 625.1  | 9/4/19   | 9/11/19 11:48 | imr     |
| Surrogates           |         | % Reco | very    | Recovery Limit    | s           | Flag/Qual |        |          |               |         |
| 2-Fluorophenol       |         | 48.0   |         | 15-110            |             |           |        |          | 9/11/19 11:48 |         |
| Phenol-d6            |         | 35.3   |         | 15-110            |             |           |        |          | 9/11/19 11:48 |         |
| Nitrobenzene-d5      |         | 78.1   |         | 30-130            |             |           |        |          | 9/11/19 11:48 |         |
| 2-Fluorobiphenyl     |         | 77.0   |         | 30-130            |             |           |        |          | 9/11/19 11:48 |         |
| 2,4,6-Tribromophenol |         | 97.8   |         | 15-110            |             |           |        |          | 9/11/19 11:48 |         |
| p-Terphenyl-d14      |         | 90.9   |         | 30-130            |             |           |        |          | 9/11/19 11:48 |         |
|                      |         |        |         |                   |             |           |        |          |               |         |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

| Metals Analyses (Total | alyses (Total) |
|------------------------|----------------|
|------------------------|----------------|

|                     |         |         |       |           |          |           |                  | Date     | Date/Time    |         |
|---------------------|---------|---------|-------|-----------|----------|-----------|------------------|----------|--------------|---------|
| Analyte             | Results | RL      | DL    | Units     | Dilution | Flag/Qual | Method           | Prepared | Analyzed     | Analyst |
| Antimony            | ND      | 1.0     | 0.35  | μg/L      | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:17 | QNW     |
| Arsenic             | 360     | 8.0     | 6.4   | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Cadmium             | 2.2     | 0.20    | 0.038 | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:17 | QNW     |
| Chromium            | 560     | 10      | 2.4   | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Chromium, Trivalent | 0.56    |         |       | mg/L      | 1        |           | Tri Chrome Calc. | 9/5/19   | 9/6/19 11:17 | QNW     |
| Copper              | 390     | 10      | 8.7   | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Iron                | 47      | 0.050   |       | mg/L      | 1        |           | EPA 200.7        | 9/5/19   | 9/6/19 14:42 | TBC/QNW |
| Lead                | 250     | 5.0     | 0.85  | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Mercury             | ND      | 0.00010 |       | mg/L      | 1        |           | EPA 245.1        | 9/9/19   | 9/9/19 15:18 | CJV     |
| Nickel              | 400     | 50      | 6.2   | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Selenium            | 5.6     | 5.0     | 1.6   | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:17 | QNW     |
| Silver              | 0.37    | 0.20    | 0.18  | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:17 | QNW     |
| Zinc                | 1000    | 100     | 23    | $\mu g/L$ | 10       |           | EPA 200.8        | 9/5/19   | 9/6/19 13:55 | QNW     |
| Hardness            | 420     |         |       | mg/L      | 1        |           | EPA 200.7        | 9/5/19   | 9/6/19 14:42 | TBC/ONW |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|                                  |         |        |    |          |          |             |                   | Date     | Date/Time     |         |
|----------------------------------|---------|--------|----|----------|----------|-------------|-------------------|----------|---------------|---------|
| Analyte                          | Results | RL     | DL | Units    | Dilution | Flag/Qual   | Method            | Prepared | Analyzed      | Analyst |
| Chloride                         | 390     | 10     |    | mg/L     | 10       |             | EPA 300.0         | 9/7/19   | 9/7/19 18:29  | MMH     |
| Chlorine, Residual               | ND      | 0.040  |    | mg/L     | 2        | DL-03, Z-01 | SM21-22 4500 CL G | 8/30/19  | 8/30/19 20:45 | MJG     |
| Hexavalent Chromium              | ND      | 0.0040 |    | mg/L     | 1        |             | SM21-22 3500 Cr B | 8/30/19  | 8/30/19 19:15 | IS      |
| pH @20.7°C                       | 6.4     |        |    | pH Units | 1        | H-05        | SM21-22 4500 H B  | 9/3/19   | 9/3/19 19:29  | SLB     |
| Total Suspended Solids           | 3700    | 10     |    | mg/L     | 1        |             | SM21-22 2540D     | 8/31/19  | 8/31/19 12:13 | LL      |
| Silica Gel Treated HEM (SGT-HEM) | ND      | 1.5    |    | mg/L     | 1        |             | EPA 1664B         | 9/5/19   | 9/5/19 11:30  | LL      |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

#### **Drinking Water Organics EPA 504.1**

|                             |         |        |       |                |          |           |           | Date     | Date/Time    |         |
|-----------------------------|---------|--------|-------|----------------|----------|-----------|-----------|----------|--------------|---------|
| Analyte                     | Results | RL     | DL    | Units          | Dilution | Flag/Qual | Method    | Prepared | Analyzed     | Analyst |
| 1,2-Dibromoethane (EDB) (1) | ND      | 0.019  | 0.012 | μg/L           | 1        |           | EPA 504.1 | 9/9/19   | 9/9/19 19:44 | PJG     |
| Surrogates                  |         | % Reco | very  | Recovery Limit | s        | Flag/Qual |           |          |              |         |
| 1.2 Dibramanranana (1)      |         | 107    |       | 70.120         |          |           |           |          | 0/0/10 10:44 |         |

1,3-Dibromopropane (1) 107 70-130 9/9/19 19:44



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: ETMW-1** Sampled: 8/30/2019 10:15

Sample ID: 19H1713-01
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |       |      |       |          |           |                | Date     | Date/Time    |         |
|--------------|---------|-------|------|-------|----------|-----------|----------------|----------|--------------|---------|
| Analyte      | Results | RL    | DL   | Units | Dilution | Flag/Qual | Method         | Prepared | Analyzed     | Analyst |
| Ammonia as N | 0.492   | 0.375 | 0.12 | mg/L  | 5        |           | 121,4500NH3-BH |          | 9/6/19 20:51 | AAL     |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: SW-1** Sampled: 8/30/2019 11:20

Sample ID: 19H1713-02
Sample Matrix: Ground Water

#### Metals Analyses (Total)

|                     |         |         |       |           |          |           |                  | Date     | Date/Time    |         |
|---------------------|---------|---------|-------|-----------|----------|-----------|------------------|----------|--------------|---------|
| Analyte             | Results | RL      | DL    | Units     | Dilution | Flag/Qual | Method           | Prepared | Analyzed     | Analyst |
| Antimony            | ND      | 1.0     | 0.35  | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Arsenic             | 2.1     | 0.80    | 0.64  | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Cadmium             | 0.046   | 0.20    | 0.038 | $\mu g/L$ | 1        | J         | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Chromium            | 1.4     | 1.0     | 0.24  | $\mu g/L$ | 1        | R-04      | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Chromium, Trivalent | 0.0014  |         |       | mg/L      | 1        |           | Tri Chrome Calc. | 9/5/19   | 9/6/19 11:14 | QNW     |
| Copper              | 3.9     | 1.0     | 0.87  | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Iron                | 2.5     | 0.050   |       | mg/L      | 1        |           | EPA 200.7        | 9/5/19   | 9/6/19 14:50 | TBC/QNW |
| Lead                | 1.8     | 0.50    | 0.085 | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Mercury             | ND      | 0.00010 |       | mg/L      | 1        |           | EPA 245.1        | 9/9/19   | 9/9/19 15:20 | CJV     |
| Nickel              | 2.0     | 5.0     | 0.62  | $\mu g/L$ | 1        | J         | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Selenium            | ND      | 5.0     | 1.6   | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Silver              | ND      | 0.20    | 0.18  | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Zinc                | 38      | 10      | 2.3   | $\mu g/L$ | 1        |           | EPA 200.8        | 9/5/19   | 9/6/19 11:14 | QNW     |
| Hardness            | 35      |         |       | mg/L      | 1        |           | EPA 200.7        | 9/5/19   | 9/6/19 14:50 | TBC/ONW |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: SW-1** Sampled: 8/30/2019 11:20

Sample ID: 19H1713-02
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|                     |         |        |    |          |          |           |                   | Date     | Date/Time     |         |
|---------------------|---------|--------|----|----------|----------|-----------|-------------------|----------|---------------|---------|
| Analyte             | Results | RL     | DL | Units    | Dilution | Flag/Qual | Method            | Prepared | Analyzed      | Analyst |
| Hexavalent Chromium | ND      | 0.0040 |    | mg/L     | 1        |           | SM21-22 3500 Cr B | 8/30/19  | 8/30/19 19:15 | IS      |
| рН @20.4°C          | 6.6     |        |    | pH Units | 1        | H-05      | SM21-22 4500 H B  | 9/3/19   | 9/3/19 19:29  | SLB     |



Project Location: 100 Simplex Drive, Westminster, Sample Description: Work Order: 19H1713

Date Received: 8/30/2019

**Field Sample #: SW-1** Sampled: 8/30/2019 11:20

Sample ID: 19H1713-02
Sample Matrix: Ground Water

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

|              |         |      |       |       |          |           |                | Date     | Date/Time    |         |
|--------------|---------|------|-------|-------|----------|-----------|----------------|----------|--------------|---------|
| Analyte      | Results | RL   | DL    | Units | Dilution | Flag/Qual | Method         | Prepared | Analyzed     | Analyst |
| Ammonia as N | 0.068   | 0.15 | 0.048 | mg/L  | 2        |           | 121,4500NH3-BH |          | 9/6/19 20:52 | AAL     |



#### Sample Extraction Data

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239548 | 5            | 5.00       | 09/03/19 |

#### Prep Method: SW-846 3510C-625.1

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239765 | 970          | 1.00       | 09/04/19 |

#### Prep Method: SW-846 3510C-625.1

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239937 | 970          | 1.00       | 09/04/19 |

#### EPA 1664B

| Lab Number [Field ID] | Batch   | Initial [mL] | Date     |
|-----------------------|---------|--------------|----------|
| 19H1713-01 [ETMW-1]   | B239783 | 930          | 09/05/19 |

#### Prep Method: EPA 200.7-EPA 200.7

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239843 | 50.0         | 50.0       | 09/05/19 |
| 19H1713-01 [ETMW-1]   | B239843 | 50.0         |            | 09/05/19 |
| 19H1713-02 [SW-1]     | B239843 | 50.0         | 50.0       | 09/05/19 |
| 19H1713-02 [SW-1]     | B239843 | 50.0         |            | 09/05/19 |

#### Prep Method: EPA 200.8-EPA 200.8

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239844 | 50.0         | 50.0       | 09/05/19 |
| 19H1713-02 [SW-1]     | B239844 | 50.0         | 50.0       | 09/05/19 |

#### Prep Method: EPA 245.1-EPA 245.1

| Lab Number [Field ID]                    | Batch              | Initial [mL] | Final [mL]   | Date                 |
|------------------------------------------|--------------------|--------------|--------------|----------------------|
| 19H1713-01 [ETMW-1]<br>19H1713-02 [SW-1] | B240040<br>B240040 | 6.00<br>6.00 | 6.00<br>6.00 | 09/09/19<br>09/09/19 |
| 19111/15-02 [5W-1]                       | D240040            | 0.00         | 0.00         | 09/09/19             |

#### Prep Method: EPA 300.0-EPA 300.0

| Lab Number [Field ID] | Batch   | Initial [mL] | Final [mL] | Date     |
|-----------------------|---------|--------------|------------|----------|
| 19H1713-01 [ETMW-1]   | B239970 | 10.0         | 10.0       | 09/07/19 |

#### Prep Method: EPA 504 water-EPA 504.1

| Lab Number [Field ID] | Batch | Initial [mL] | Final [mL] | Date |
|-----------------------|-------|--------------|------------|------|



#### **Sample Extraction Data**

19H1713-01 [ETMW-1]

19H1713-02 [SW-1]

| Lab Number [Field ID]                   | Batch   | Initial [mL] | Final [mL] | Date     |  |
|-----------------------------------------|---------|--------------|------------|----------|--|
| 19H1713-01 [ETMW-1]                     | B240078 | 36.1         | 35.0       | 09/09/19 |  |
| SM21-22 2540D                           |         |              |            |          |  |
| Lab Number [Field ID]                   | Batch   | Initial [mL] |            | Date     |  |
| 19H1713-01 [ETMW-1]                     | B239501 | 50.0         |            | 08/31/19 |  |
| SM21-22 3500 Cr B                       |         |              |            |          |  |
| Lab Number [Field ID]                   | Batch   | Initial [mL] | Final [mL] | Date     |  |
| 19H1713-01 [ETMW-1]                     | B239496 | 50.0         | 50.0       | 08/30/19 |  |
| 19H1713-02 [SW-1]                       | B239496 | 50.0         | 50.0       | 08/30/19 |  |
| SM21-22 4500 CL G                       |         |              |            |          |  |
| Lab Number [Field ID]                   | Batch   | Initial [mL] | Final [mL] | Date     |  |
| 19H1713-01 [ETMW-1]                     | B239498 | 100          | 100        | 08/30/19 |  |
| SM21-22 4500 H B                        |         |              |            |          |  |
| Lab Number [Field ID]                   | Batch   | Initial [mL] |            | Date     |  |
| 19H1713-01 [ETMW-1]                     | B239647 | 50.0         |            | 09/03/19 |  |
| 19H1713-02 [SW-1]                       | B239647 | 50.0         |            | 09/03/19 |  |
| Prep Method: EPA 200.8-Tri Chrome Calc. |         |              |            |          |  |
| Lab Number [Field ID]                   | Batch   | Initial [mL] |            | Date     |  |

50.0

50.0

B239844

B239844

09/05/19

09/05/19



#### QUALITY CONTROL

Spike

Source

%REC

RPD

#### Volatile Organic Compounds by GC/MS - Quality Control

Reporting

| Analyte                            | Result | Limit | Units            | Level      | Result       | %REC   | Limits | RPD | Limit    | Notes    |
|------------------------------------|--------|-------|------------------|------------|--------------|--------|--------|-----|----------|----------|
| Batch B239548 - SW-846 5030B       |        |       |                  |            | <u> </u>     |        |        |     | <u> </u> | <u> </u> |
| Blank (B239548-BLK1)               |        |       |                  | Prepared & | Analyzed: 09 | /03/19 |        |     |          |          |
| Acetone                            | ND     | 50.0  | μg/L             |            |              |        |        |     |          |          |
| Benzene                            | ND     | 1.00  | $\mu \text{g/L}$ |            |              |        |        |     |          |          |
| Bromodichloromethane               | ND     | 2.00  | $\mu g/L$        |            |              |        |        |     |          |          |
| Bromoform                          | ND     | 2.00  | $\mu \text{g/L}$ |            |              |        |        |     |          |          |
| Bromomethane                       | ND     | 2.00  | $\mu g/L$        |            |              |        |        |     |          |          |
| Carbon Tetrachloride               | ND     | 2.00  | $\mu g/L$        |            |              |        |        |     |          |          |
| Chlorobenzene                      | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Chlorodibromomethane               | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Chloroethane                       | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Chloroform                         | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Chloromethane                      | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,2-Dichlorobenzene                | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,3-Dichlorobenzene                | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,4-Dichlorobenzene                | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,2-Dichloroethane                 | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,1-Dichloroethane                 | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,1-Dichloroethylene               | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| trans-1,2-Dichloroethylene         | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,2-Dichloropropane                | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| cis-1,3-Dichloropropene            | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| rans-1,3-Dichloropropene           | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Ethylbenzene                       | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Methyl tert-Butyl Ether (MTBE)     | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Methylene Chloride                 | ND     | 5.00  | μg/L             |            |              |        |        |     |          |          |
| 1,1,2,2-Tetrachloroethane          | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Tetrachloroethylene                | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Toluene                            | ND     | 1.00  | μg/L             |            |              |        |        |     |          |          |
| 1,1,1-Trichloroethane              | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| 1,1,2-Trichloroethane              | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Trichloroethylene                  | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Trichlorofluoromethane (Freon 11)  | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Vinyl Chloride                     | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| m+p Xylene                         | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| o-Xylene                           | ND     | 2.00  | μg/L             |            |              |        |        |     |          |          |
| Surrogate: 1,2-Dichloroethane-d4   | 24.1   |       | $\mu g/L$        | 25.0       |              | 96.5   | 70-130 |     |          |          |
| Surrogate: Toluene-d8              | 25.8   |       | $\mu g/L$        | 25.0       |              | 103    | 70-130 |     |          |          |
| Surrogate: 4-Bromofluorobenzene    | 25.4   |       | μg/L             | 25.0       |              | 101    | 70-130 |     |          |          |
| LCS (B239548-BS1)                  |        |       | ~                | •          | Analyzed: 09 |        |        |     |          |          |
| Acetone                            | 220    | 50.0  | μg/L             | 200        |              | 110    | 70-160 |     |          |          |
| Benzene<br>Brown disklarom ethono  | 22     | 1.00  | μg/L             | 20.0       |              | 111    | 65-135 |     |          |          |
| Bromodichloromethane               | 20     | 2.00  | μg/L             | 20.0       |              | 102    | 65-135 |     |          |          |
| Bromoform                          | 21     | 2.00  | μg/L             | 20.0       |              | 106    | 70-130 |     |          |          |
| Bromomethane                       | 16     | 2.00  | μg/L             | 20.0       |              | 79.2   | 15-185 |     |          |          |
| Carbon Tetrachloride               | 23     | 2.00  | μg/L             | 20.0       |              | 115    | 70-130 |     |          |          |
| Chlorobenzene Chlorodibromomothomo | 20     | 2.00  | μg/L             | 20.0       |              | 101    | 65-135 |     |          |          |
| Chlorodibromomethane               | 24     | 2.00  | μg/L             | 20.0       |              | 119    | 70-135 |     |          |          |
| Chloroethane                       | 20     | 2.00  | μg/L             | 20.0       |              | 97.6   | 40-160 |     |          |          |
| Chloroform                         | 21     | 2.00  | μg/L             | 20.0       |              | 105    | 70-135 |     |          |          |
| Chloromethane                      | 14     | 2.00  | μg/L             | 20.0       |              | 71.6   | 20-205 |     |          |          |
| 1,2-Dichlorobenzene                | 19     | 2.00  | μg/L             | 20.0       |              | 93.2   | 65-135 |     |          |          |
| 1,3-Dichlorobenzene                | 18     | 2.00  | μg/L             | 20.0       |              | 91.9   | 70-130 |     |          |          |



#### 39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result                                   | Reporting<br>Limit                                           | Units                                                        | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------|------------------|------------|----------------|-----|--------------|-------|
| Batch B239548 - SW-846 5030B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                              |                                                              |                |                  |            |                |     |              |       |
| .CS (B239548-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                              |                                                              | Prepared &     | Analyzed: 09/03  | /19        |                |     |              |       |
| ,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18                                       | 2.00                                                         | μg/L                                                         | 20.0           |                  | 90.4       | 65-135         |     |              |       |
| ,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 106        | 70-130         |     |              |       |
| ,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 114        | 70-130         |     |              |       |
| ,1-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 109        | 50-150         |     |              |       |
| rans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 116        | 70-130         |     |              |       |
| ,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 22                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 109        | 35-165         |     |              |       |
| is-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 104        | 25-175         |     |              |       |
| rans-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 104        | 50-150         |     |              |       |
| thylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 95.2       | 60-140         |     |              |       |
| Methyl tert-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 117        | 70-130         |     |              |       |
| fethylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                       | 5.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 105        | 60-140         |     |              |       |
| ,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 114        | 60-140         |     |              |       |
| etrachloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 114        | 70-130         |     |              |       |
| oluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                       | 1.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 103        | 70-130         |     |              |       |
| ,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 111        | 70-130         |     |              |       |
| ,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 111        | 70-130         |     |              |       |
| richloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                       | 2.00                                                         | $\mu g/L$                                                    | 20.0           |                  | 99.8       | 65-135         |     |              |       |
| richlorofluoromethane (Freon 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19                                       | 2.00                                                         | μg/L                                                         | 20.0           |                  | 95.3       | 50-150         |     |              |       |
| 'inyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19                                       | 2.00                                                         | μg/L                                                         | 20.0           |                  | 95.1       | 5-195          |     |              |       |
| n+p Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 38                                       | 2.00                                                         | μg/L                                                         | 40.0           |                  | 94.6       | 70-130         |     |              |       |
| -Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19                                       | 2.00                                                         | μg/L                                                         | 20.0           |                  | 95.7       | 70-130         |     |              |       |
| urrogate: 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.7                                     |                                                              | μg/L                                                         | 25.0           |                  | 94.8       | 70-130         |     |              |       |
| urrogate: Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.0                                     |                                                              | μg/L<br>μg/L                                                 | 25.0           |                  | 104        | 70-130         |     |              |       |
| urrogate: 4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.8                                     |                                                              | μg/L<br>μg/L                                                 | 25.0           |                  | 103        | 70-130         |     |              |       |
| eatch B239686 - SW-846 5030B<br>Elank (B239686-BLK1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                              |                                                              | Prepared: 09   | /04/19 Analyze   | d: 09/05/1 | 9              |     |              |       |
| acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                       | 50.0                                                         | μg/L                                                         |                |                  |            |                |     |              |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                                       | 1.00                                                         | $\mu g/L$                                                    |                |                  |            |                |     |              |       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND                                       | 2.00                                                         | μg/L                                                         |                |                  |            |                |     |              |       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                       | 2.00                                                         | μg/L                                                         |                |                  |            |                |     |              |       |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                       |                                                              |                                                              |                |                  |            |                |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                       | 2.00                                                         | μg/L                                                         |                |                  |            |                |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND<br>ND                                 | 2.00<br>2.00                                                 | μg/L<br>μg/L                                                 |                |                  |            |                |     |              |       |
| Carbon Tetrachloride<br>Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          |                                                              |                                                              |                |                  |            |                |     |              |       |
| arbon Tetrachloride<br>hlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                       | 2.00                                                         | $\mu g/L$                                                    |                |                  |            |                |     |              |       |
| Carbon Tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND<br>ND                                 | 2.00<br>2.00                                                 | μg/L<br>μg/L                                                 |                |                  |            |                |     |              |       |
| arbon Tetrachloride<br>hlorobenzene<br>hlorodibromomethane<br>hloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND                           | 2.00<br>2.00<br>2.00                                         | μg/L<br>μg/L<br>μg/L                                         |                |                  |            |                |     |              |       |
| arbon Tetrachloride<br>Phlorobenzene<br>Phlorodibromomethane<br>Phloroethane<br>Phloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND<br>ND<br>ND<br>ND                     | 2.00<br>2.00<br>2.00<br>2.00                                 | μg/L<br>μg/L<br>μg/L<br>μg/L                                 |                |                  |            |                |     |              |       |
| Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane Chloroform Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND<br>ND<br>ND<br>ND                     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00                         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                         |                |                  |            |                |     |              |       |
| Carbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroform Chloromethane Chloromethane Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND<br>ND<br>ND<br>ND               | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00                 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L                 |                |                  |            |                |     |              |       |
| Carbon Tetrachloride Chlorodenzene Chlorodibromomethane Chloroform Chloromethane Chloromethane C2-Dichlorobenzene C3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND ND ND ND ND ND                     | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00         | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L         |                |                  |            |                |     |              |       |
| arbon Tetrachloride Chlorobenzene Chlorodibromomethane Chloroform Chloroform Chloromethane Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND ND ND ND ND ND ND ND ND               | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |            |                |     |              |       |
| Carbon Tetrachloride Chlorodibromomethane Chlorodibromomethane Chloroform Chloroform Chloromethane Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND         | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |            |                |     |              |       |
| arbon Tetrachloride hlorobenzene hlorodibromomethane hloroform hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichlorotenzene 1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |            |                |     |              |       |
| arbon Tetrachloride hlorobenzene hlorodibromomethane hloroform hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane 1-Dichloroethane 1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L<br>μg/L |                |                  |            |                |     |              |       |
| arbon Tetrachloride hlorobenzene hlorodibromomethane hloroform hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane 1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloroethylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |
| arbon Tetrachloride hlorobenzene hlorodibromomethane hloroothane hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane 1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloropopane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |
| arbon Tetrachloride hlorobenzene hlorodibromomethane hloroform hloromethane 2-Dichlorobenzene 3-Dichlorobenzene 4-Dichlorobenzene 2-Dichloroethane 1-Dichloroethane 1-Dichloroethylene ans-1,2-Dichloropropane s-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |
| arbon Tetrachloride chlorodenzene chlorodibromomethane chloroform chloromethane chloromethane chloromethane chloromethane chlorobenzene chloro | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |
| Carbon Tetrachloride<br>Chlorobenzene<br>Chlorodibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |
| arbon Tetrachloride chlorodenzene chlorodibromomethane chloroform chloromethane chlorodenzene chlorobenzene chlorodenzene chlorodenzene chlorotethane chlorotethane chlorotethane chlorotethane chlorotethylene chloropropene chlo | ND N | 2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00<br>2.00 | μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L                      |                |                  |            |                |     |              |       |



#### QUALITY CONTROL

#### Volatile Organic Compounds by GC/MS - Quality Control

|                                                         |          | Reporting |              | Spike        | Source       |               | %REC   |     | RPD   |       |
|---------------------------------------------------------|----------|-----------|--------------|--------------|--------------|---------------|--------|-----|-------|-------|
| Analyte                                                 | Result   | Limit     | Units        | Level        | Result       | %REC          | Limits | RPD | Limit | Notes |
| Batch B239686 - SW-846 5030B                            |          |           |              |              |              |               |        |     |       |       |
| Blank (B239686-BLK1)                                    |          |           |              | Prepared: 09 | /04/19 Analy | yzed: 09/05/1 | 19     |     |       |       |
| Tetrachloroethylene                                     | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| Toluene                                                 | ND       | 1.00      | μg/L         |              |              |               |        |     |       |       |
| ,1,1-Trichloroethane                                    | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| ,1,2-Trichloroethane                                    | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| richloroethylene                                        | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| richlorofluoromethane (Freon 11)                        | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| Vinyl Chloride                                          | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| n+p Xylene                                              | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| -Xylene                                                 | ND       | 2.00      | μg/L         |              |              |               |        |     |       |       |
| surrogate: 1,2-Dichloroethane-d4                        | 25.3     |           | $\mu g/L$    | 25.0         |              | 101           | 70-130 |     |       |       |
| urrogate: Toluene-d8                                    | 24.5     |           | $\mu g/L$    | 25.0         |              | 98.0          | 70-130 |     |       |       |
| urrogate: 4-Bromofluorobenzene                          | 23.7     |           | $\mu g/L$    | 25.0         |              | 94.6          | 70-130 |     |       |       |
| CS (B239686-BS1)                                        |          |           |              | Prepared: 09 | /04/19 Analy | vzed: 09/05/1 | 19     |     |       |       |
| cetone                                                  | 170      | 50.0      | μg/L         | 200          |              | 85.9          | 70-160 |     |       |       |
| Benzene                                                 | 17       | 1.00      | μg/L         | 20.0         |              | 84.5          | 65-135 |     |       |       |
| romodichloromethane                                     | 20       | 2.00      | μg/L         | 20.0         |              | 98.4          | 65-135 |     |       |       |
| romoform                                                | 22       | 2.00      | μg/L         | 20.0         |              | 109           | 70-130 |     |       |       |
| romomethane                                             | 13       | 2.00      | μg/L         | 20.0         |              | 66.6          | 15-185 |     |       |       |
| arbon Tetrachloride                                     | 19       | 2.00      | μg/L         | 20.0         |              | 95.2          | 70-130 |     |       |       |
| Chlorobenzene                                           | 20       | 2.00      | μg/L         | 20.0         |              | 102           | 65-135 |     |       |       |
| Chlorodibromomethane                                    | 20       | 2.00      | μg/L         | 20.0         |              | 97.8          | 70-135 |     |       |       |
| hloroethane                                             | 14       | 2.00      | μg/L         | 20.0         |              | 72.0          | 40-160 |     |       |       |
| Chloroform                                              | 17       | 2.00      | μg/L         | 20.0         |              | 85.2          | 70-135 |     |       |       |
| Chloromethane                                           | 14       | 2.00      | μg/L         | 20.0         |              | 70.7          | 20-205 |     |       |       |
| ,2-Dichlorobenzene                                      | 20       | 2.00      | μg/L         | 20.0         |              | 97.9          | 65-135 |     |       |       |
| ,3-Dichlorobenzene                                      | 21       | 2.00      | μg/L         | 20.0         |              | 103           | 70-130 |     |       |       |
| ,4-Dichlorobenzene                                      | 20       | 2.00      | μg/L         | 20.0         |              | 98.6          | 65-135 |     |       |       |
| ,2-Dichloroethane                                       | 20       | 2.00      | μg/L         | 20.0         |              | 97.5          | 70-130 |     |       |       |
| ,1-Dichloroethane                                       | 18       | 2.00      | μg/L         | 20.0         |              | 91.6          | 70-130 |     |       |       |
| ,1-Dichloroethylene                                     | 15       | 2.00      | μg/L         | 20.0         |              | 76.6          | 50-150 |     |       |       |
| rans-1,2-Dichloroethylene                               | 18       | 2.00      | μg/L         | 20.0         |              | 88.6          | 70-130 |     |       |       |
| ,2-Dichloropropane                                      | 18       | 2.00      | μg/L         | 20.0         |              | 89.9          | 35-165 |     |       |       |
| is-1,3-Dichloropropene                                  | 18       | 2.00      | μg/L         | 20.0         |              | 87.6          | 25-175 |     |       |       |
| rans-1,3-Dichloropropene                                | 16       | 2.00      | μg/L         | 20.0         |              | 79.2          | 50-150 |     |       |       |
| Ethylbenzene                                            | 20       | 2.00      | μg/L         | 20.0         |              | 102           | 60-140 |     |       |       |
| Methyl tert-Butyl Ether (MTBE)                          | 18       | 2.00      | μg/L         | 20.0         |              | 89.4          | 70-130 |     |       |       |
| Methylene Chloride                                      | 16       | 5.00      | μg/L         | 20.0         |              | 79.1          | 60-140 |     |       |       |
| ,1,2,2-Tetrachloroethane                                | 23       | 2.00      | μg/L         | 20.0         |              | 113           | 60-140 |     |       |       |
| etrachloroethylene                                      | 23       | 2.00      | μg/L<br>μg/L | 20.0         |              | 105           | 70-130 |     |       |       |
| oluene                                                  | 19       | 1.00      | μg/L<br>μg/L | 20.0         |              | 97.4          | 70-130 |     |       |       |
| ,1,1-Trichloroethane                                    | 18       | 2.00      | μg/L<br>μg/L | 20.0         |              | 90.9          | 70-130 |     |       |       |
| ,1,2-Trichloroethane                                    | 20       | 2.00      | μg/L<br>μg/L | 20.0         |              | 100           | 70-130 |     |       |       |
| richloroethylene                                        | 18       | 2.00      | μg/L<br>μg/L | 20.0         |              | 92.2          | 65-135 |     |       |       |
| richlorofluoromethane (Freon 11)                        | 15       | 2.00      | μg/L<br>μg/L | 20.0         |              | 74.4          | 50-150 |     |       |       |
| 'inyl Chloride                                          | 32       | 2.00      | μg/L<br>μg/L | 20.0         |              | 159           | 5-195  |     |       |       |
| n+p Xylene                                              | 32<br>41 | 2.00      | μg/L<br>μg/L | 40.0         |              | 103           | 70-130 |     |       |       |
| -Xylene                                                 | 21       | 2.00      | μg/L<br>μg/L | 20.0         |              | 105           | 70-130 |     |       |       |
|                                                         |          | 2.00      |              |              |              |               |        |     |       |       |
|                                                         | 23.5     |           | μg/L         | 25.0         |              | 94.2          | 70-130 |     |       |       |
| urrogate: 1,2-Dichloroethane-d4<br>urrogate: Toluene-d8 | 24.5     |           | μg/L         | 25.0         |              | 97.9          | 70-130 |     |       |       |



#### QUALITY CONTROL

#### Semivolatile Organic Compounds by GC/MS - Quality Control

| Analyte                               | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC         | %REC<br>Limits | RPD  | RPD<br>Limit | Notes    |
|---------------------------------------|--------|--------------------|-------------------|----------------|------------------|--------------|----------------|------|--------------|----------|
| Batch B239937 - SW-846 3510C          |        |                    |                   |                |                  |              |                |      |              |          |
| Blank (B239937-BLK1)                  |        |                    |                   | Prepared: 09   | /04/19 Anal      | yzed: 09/06/ | 19             |      |              |          |
| Benzo(a)anthracene (SIM)              | ND     | 0.050              | $\mu g/L$         |                |                  |              |                |      |              |          |
| Benzo(a)pyrene (SIM)                  | ND     | 0.10               | $\mu g/L$         |                |                  |              |                |      |              |          |
| Benzo(b)fluoranthene (SIM)            | ND     | 0.050              | $\mu g/L$         |                |                  |              |                |      |              |          |
| Benzo(k)fluoranthene (SIM)            | ND     | 0.20               | $\mu g/L$         |                |                  |              |                |      |              |          |
| Chrysene (SIM)                        | ND     | 0.20               | $\mu g/L$         |                |                  |              |                |      |              |          |
| Dibenz(a,h)anthracene (SIM)           | ND     | 0.10               | $\mu g/L$         |                |                  |              |                |      |              |          |
| Indeno(1,2,3-cd)pyrene (SIM)          | ND     | 0.10               | $\mu g/L$         |                |                  |              |                |      |              |          |
| Naphthalene (SIM)                     | ND     | 1.0                | $\mu g/L$         |                |                  |              |                |      |              |          |
| Surrogate: 2-Fluorophenol (SIM)       | 84.3   |                    | μg/L              | 200            |                  | 42.1         | 15-110         |      |              |          |
| Surrogate: Phenol-d6 (SIM)            | 63.9   |                    | μg/L              | 200            |                  | 31.9         | 15-110         |      |              |          |
| Surrogate: Nitrobenzene-d5            | 70.8   |                    | μg/L              | 100            |                  | 70.8         | 30-130         |      |              |          |
| Surrogate: 2-Fluorobiphenyl           | 49.7   |                    | μg/L              | 100            |                  | 49.7         | 30-130         |      |              |          |
| Surrogate: 2,4,6-Tribromophenol (SIM) | 165    |                    | μg/L              | 200            |                  | 82.3         | 15-110         |      |              |          |
| Surrogate: p-Terphenyl-d14            | 66.7   |                    | $\mu g/L$         | 100            |                  | 66.7         | 30-130         |      |              |          |
| LCS (B239937-BS1)                     |        |                    |                   | Prepared: 09   | /04/19 Anal      | yzed: 09/06/ | 19             |      |              |          |
| Benzo(a)anthracene (SIM)              | 42.9   | 1.0                | μg/L              | 50.0           |                  | 85.9         | 33-143         |      |              |          |
| Benzo(a)pyrene (SIM)                  | 40.4   | 2.0                | $\mu g/L$         | 50.0           |                  | 80.8         | 17-163         |      |              |          |
| Benzo(b)fluoranthene (SIM)            | 45.0   | 1.0                | $\mu g/L$         | 50.0           |                  | 89.9         | 24-159         |      |              |          |
| Benzo(k)fluoranthene (SIM)            | 46.8   | 4.0                | $\mu g/L$         | 50.0           |                  | 93.6         | 11-162         |      |              |          |
| Chrysene (SIM)                        | 34.4   | 4.0                | $\mu g/L$         | 50.0           |                  | 68.8         | 17-168         |      |              |          |
| Dibenz(a,h)anthracene (SIM)           | 42.5   | 2.0                | $\mu g/L$         | 50.0           |                  | 85.0         | 10-227         |      |              |          |
| Indeno(1,2,3-cd)pyrene (SIM)          | 45.4   | 2.0                | $\mu g/L$         | 50.0           |                  | 90.7         | 10-171         |      |              |          |
| Naphthalene (SIM)                     | 35.5   | 20                 | $\mu g/L$         | 50.0           |                  | 71.0         | 21-133         |      |              |          |
| Surrogate: 2-Fluorophenol (SIM)       | 92.1   |                    | μg/L              | 200            |                  | 46.1         | 15-110         |      |              |          |
| Surrogate: Phenol-d6 (SIM)            | 72.0   |                    | $\mu g/L$         | 200            |                  | 36.0         | 15-110         |      |              |          |
| Surrogate: Nitrobenzene-d5            | 74.3   |                    | $\mu g/L$         | 100            |                  | 74.3         | 30-130         |      |              |          |
| Surrogate: 2-Fluorobiphenyl           | 60.7   |                    | μg/L              | 100            |                  | 60.7         | 30-130         |      |              |          |
| Surrogate: 2,4,6-Tribromophenol (SIM) | 179    |                    | $\mu g/L$         | 200            |                  | 89.6         | 15-110         |      |              |          |
| Surrogate: p-Terphenyl-d14            | 58.1   |                    | μg/L              | 100            |                  | 58.1         | 30-130         |      |              |          |
| LCS Dup (B239937-BSD1)                |        |                    |                   | Prepared: 09   | /04/19 Anal      | yzed: 09/06/ | 19             |      |              |          |
| Benzo(a)anthracene (SIM)              | 37.5   | 1.0                | $\mu g/L$         | 50.0           |                  | 75.0         | 33-143         | 13.5 | 53           |          |
| Benzo(a)pyrene (SIM)                  | 35.3   | 2.0                | $\mu g \! / \! L$ | 50.0           |                  | 70.6         | 17-163         | 13.4 | 72           |          |
| Benzo(b)fluoranthene (SIM)            | 39.8   | 1.0                | μg/L              | 50.0           |                  | 79.5         | 24-159         | 12.3 | 71           |          |
| Benzo(k)fluoranthene (SIM)            | 41.9   | 4.0                | μg/L              | 50.0           |                  | 83.8         | 11-162         | 11.1 | 63           |          |
| Chrysene (SIM)                        | 31.2   | 4.0                | μg/L              | 50.0           |                  | 62.4         | 17-168         | 9.88 | 87           |          |
| Dibenz(a,h)anthracene (SIM)           | 39.0   | 2.0                | μg/L              | 50.0           |                  | 78.0         | 10-227         | 8.64 | 126          |          |
| Indeno(1,2,3-cd)pyrene (SIM)          | 40.9   | 2.0                | μg/L              | 50.0           |                  | 81.8         | 10-171         | 10.4 | 99           |          |
| Naphthalene (SIM)                     | 31.5   | 20                 | μg/L              | 50.0           |                  | 63.0         | 21-133         | 11.9 | 65           |          |
| Surrogate: 2-Fluorophenol (SIM)       | 79.1   | <u> </u>           | μg/L              | 200            |                  | 39.5         | 15-110         |      |              | <u> </u> |
| Surrogate: Phenol-d6 (SIM)            | 62.3   |                    | $\mu g/L$         | 200            |                  | 31.2         | 15-110         |      |              |          |
| Surrogate: Nitrobenzene-d5            | 64.0   |                    | $\mu g/L$         | 100            |                  | 64.0         | 30-130         |      |              |          |
| Surrogate: 2-Fluorobiphenyl           | 54.8   |                    | $\mu g/L$         | 100            |                  | 54.8         | 30-130         |      |              |          |
| Surrogate: 2,4,6-Tribromophenol (SIM) | 157    |                    | $\mu g/L$         | 200            |                  | 78.6         | 15-110         |      |              |          |
| Surrogate: p-Terphenyl-d14            | 50.5   |                    | μg/L              | 100            |                  | 50.5         | 30-130         |      |              |          |



#### QUALITY CONTROL

#### Semivolatile Organic Compounds by - GC/MS - Quality Control

| Analyte                        | Result | Reporting<br>Limit | Units             | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD | RPD<br>Limit | Notes |
|--------------------------------|--------|--------------------|-------------------|----------------|------------------|---------------|----------------|-----|--------------|-------|
| Batch B239765 - SW-846 3510C   |        |                    |                   |                |                  |               |                |     |              |       |
| Blank (B239765-BLK1)           |        |                    |                   | Prepared: 09   | /04/19 Analy     | yzed: 09/06/1 | 9              |     |              |       |
| Acenaphthene                   | ND     | 5.00               | μg/L              |                |                  |               |                |     |              |       |
| Acenaphthylene                 | ND     | 5.00               | μg/L              |                |                  |               |                |     |              |       |
| Anthracene                     | ND     | 5.00               | μg/L              |                |                  |               |                |     |              |       |
| Benzo(g,h,i)perylene           | ND     | 5.00               | μg/L              |                |                  |               |                |     |              |       |
| utylbenzylphthalate            | ND     | 10.0               | $\mu g/L$         |                |                  |               |                |     |              |       |
| Pi-n-butylphthalate            | ND     | 10.0               | $\mu g/L$         |                |                  |               |                |     |              |       |
| riethylphthalate               | ND     | 10.0               | $\mu g/L$         |                |                  |               |                |     |              |       |
| imethylphthalate               | ND     | 10.0               | μg/L              |                |                  |               |                |     |              |       |
| i-n-octylphthalate             | ND     | 10.0               | μg/L              |                |                  |               |                |     |              |       |
| is(2-Ethylhexyl)phthalate      | ND     | 10.0               | $\mu g/L$         |                |                  |               |                |     |              |       |
| luoranthene                    | ND     | 5.00               | $\mu g/L$         |                |                  |               |                |     |              |       |
| luorene                        | ND     | 5.00               | $\mu \text{g/L}$  |                |                  |               |                |     |              |       |
| aphthalene                     | ND     | 5.00               | $\mu g/L$         |                |                  |               |                |     |              |       |
| henanthrene                    | ND     | 5.00               | $\mu g/L$         |                |                  |               |                |     |              |       |
| henol                          | ND     | 10.0               | $\mu g \! / \! L$ |                |                  |               |                |     |              |       |
| yrene                          | ND     | 5.00               | $\mu g/L$         |                |                  |               |                |     |              |       |
| urrogate: 2-Fluorophenol       | 97.7   |                    | μg/L              | 200            |                  | 48.9          | 15-110         |     |              |       |
| urrogate: Phenol-d6            | 71.3   |                    | $\mu g/L$         | 200            |                  | 35.6          | 15-110         |     |              |       |
| nrrogate: Nitrobenzene-d5      | 78.8   |                    | $\mu g/L$         | 100            |                  | 78.8          | 30-130         |     |              |       |
| urrogate: 2-Fluorobiphenyl     | 80.4   |                    | $\mu g/L$         | 100            |                  | 80.4          | 30-130         |     |              |       |
| urrogate: 2,4,6-Tribromophenol | 190    |                    | $\mu g/L$         | 200            |                  | 94.8          | 15-110         |     |              |       |
| urrogate: p-Terphenyl-d14      | 92.3   |                    | $\mu g/L$         | 100            |                  | 92.3          | 30-130         |     |              |       |
| CS (B239765-BS1)               |        |                    |                   | Prepared: 09   | /04/19 Analy     | zed: 09/06/1  | 9              |     |              |       |
| cenaphthene                    | 47.3   | 5.00               | μg/L              | 50.0           |                  | 94.7          | 47-145         |     |              |       |
| cenaphthylene                  | 46.8   | 5.00               | $\mu g/L$         | 50.0           |                  | 93.5          | 33-145         |     |              |       |
| nthracene                      | 48.7   | 5.00               | $\mu g/L$         | 50.0           |                  | 97.4          | 27-133         |     |              |       |
| enzo(g,h,i)perylene            | 50.9   | 5.00               | $\mu g/L$         | 50.0           |                  | 102           | 10-219         |     |              |       |
| utylbenzylphthalate            | 50.9   | 10.0               | $\mu g/L$         | 50.0           |                  | 102           | 10-152         |     |              |       |
| i-n-butylphthalate             | 50.2   | 10.0               | $\mu \text{g/L}$  | 50.0           |                  | 100           | 10-120         |     |              |       |
| Piethylphthalate               | 51.5   | 10.0               | $\mu g/L$         | 50.0           |                  | 103           | 10-120         |     |              |       |
| imethylphthalate               | 49.6   | 10.0               | $\mu g/L$         | 50.0           |                  | 99.1          | 10-120         |     |              |       |
| i-n-octylphthalate             | 51.5   | 10.0               | $\mu g/L$         | 50.0           |                  | 103           | 4-146          |     |              |       |
| is(2-Ethylhexyl)phthalate      | 50.7   | 10.0               | $\mu g/L$         | 50.0           |                  | 101           | 8-158          |     |              |       |
| luoranthene                    | 50.5   | 5.00               | $\mu g \! / \! L$ | 50.0           |                  | 101           | 26-137         |     |              |       |
| luorene                        | 49.1   | 5.00               | $\mu g/L$         | 50.0           |                  | 98.3          | 59-121         |     |              |       |
| aphthalene                     | 45.4   | 5.00               | $\mu g/L$         | 50.0           |                  | 90.9          | 21-133         |     |              |       |
| henanthrene                    | 48.0   | 5.00               | $\mu g/L$         | 50.0           |                  | 96.1          | 54-120         |     |              |       |
| henol                          | 22.5   | 10.0               | $\mu g/L$         | 50.0           |                  | 44.9          | 5-120          |     |              |       |
| yrene                          | 50.4   | 5.00               | $\mu g/L$         | 50.0           |                  | 101           | 52-120         |     |              |       |
| urrogate: 2-Fluorophenol       | 125    |                    | μg/L              | 200            |                  | 62.3          | 15-110         |     |              |       |
| urrogate: Phenol-d6            | 94.3   |                    | μg/L              | 200            |                  | 47.2          | 15-110         |     |              |       |
| urrogate: Nitrobenzene-d5      | 95.5   |                    | μg/L              | 100            |                  | 95.5          | 30-130         |     |              |       |
| urrogate: 2-Fluorobiphenyl     | 98.2   |                    | μg/L              | 100            |                  | 98.2          | 30-130         |     |              |       |
| urrogate: 2,4,6-Tribromophenol | 235    |                    | μg/L              | 200            |                  | 117 *         | 15-110         |     |              | S-07  |
| urrogate: p-Terphenyl-d14      | 109    |                    | μg/L              | 100            |                  | 109           | 30-130         |     |              |       |



#### QUALITY CONTROL

#### Semivolatile Organic Compounds by - GC/MS - Quality Control

| Analyte                         | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC          | %REC<br>Limits | RPD  | RPD<br>Limit | Notes |
|---------------------------------|--------|--------------------|-----------|----------------|------------------|---------------|----------------|------|--------------|-------|
| Batch B239765 - SW-846 3510C    |        |                    |           |                |                  |               |                |      |              |       |
| LCS Dup (B239765-BSD1)          |        |                    |           | Prepared: 09   | 0/04/19 Anal     | yzed: 09/06/1 | 19             |      |              |       |
| Acenaphthene                    | 40.8   | 5.00               | μg/L      | 50.0           |                  | 81.7          | 47-145         | 14.7 | 48           |       |
| Acenaphthylene                  | 40.5   | 5.00               | $\mu g/L$ | 50.0           |                  | 81.1          | 33-145         | 14.2 | 74           |       |
| Anthracene                      | 43.0   | 5.00               | $\mu g/L$ | 50.0           |                  | 86.1          | 27-133         | 12.4 | 66           |       |
| Benzo(g,h,i)perylene            | 45.6   | 5.00               | $\mu g/L$ | 50.0           |                  | 91.2          | 10-219         | 10.9 | 97           |       |
| Butylbenzylphthalate            | 44.3   | 10.0               | $\mu g/L$ | 50.0           |                  | 88.6          | 10-152         | 13.8 | 60           |       |
| Di-n-butylphthalate             | 44.0   | 10.0               | $\mu g/L$ | 50.0           |                  | 88.1          | 10-120         | 13.1 | 47           |       |
| Diethylphthalate                | 44.6   | 10.0               | $\mu g/L$ | 50.0           |                  | 89.2          | 10-120         | 14.2 | 100          |       |
| Dimethylphthalate               | 43.1   | 10.0               | $\mu g/L$ | 50.0           |                  | 86.1          | 10-120         | 14.0 | 183          |       |
| Di-n-octylphthalate             | 45.0   | 10.0               | $\mu g/L$ | 50.0           |                  | 90.0          | 4-146          | 13.5 | 69           |       |
| Bis(2-Ethylhexyl)phthalate      | 44.2   | 10.0               | $\mu g/L$ | 50.0           |                  | 88.5          | 8-158          | 13.5 | 82           |       |
| Fluoranthene                    | 43.8   | 5.00               | $\mu g/L$ | 50.0           |                  | 87.6          | 26-137         | 14.3 | 66           |       |
| Fluorene                        | 42.7   | 5.00               | $\mu g/L$ | 50.0           |                  | 85.4          | 59-121         | 14.0 | 38           |       |
| Naphthalene                     | 39.3   | 5.00               | $\mu g/L$ | 50.0           |                  | 78.6          | 21-133         | 14.4 | 65           |       |
| Phenanthrene                    | 42.4   | 5.00               | $\mu g/L$ | 50.0           |                  | 84.9          | 54-120         | 12.4 | 39           |       |
| Phenol                          | 18.8   | 10.0               | $\mu g/L$ | 50.0           |                  | 37.6          | 5-120          | 17.8 | 64           |       |
| Pyrene                          | 42.8   | 5.00               | $\mu g/L$ | 50.0           |                  | 85.5          | 52-120         | 16.4 | 49           |       |
| Surrogate: 2-Fluorophenol       | 107    |                    | μg/L      | 200            |                  | 53.5          | 15-110         |      |              |       |
| Surrogate: Phenol-d6            | 80.4   |                    | $\mu g/L$ | 200            |                  | 40.2          | 15-110         |      |              |       |
| Surrogate: Nitrobenzene-d5      | 83.0   |                    | $\mu g/L$ | 100            |                  | 83.0          | 30-130         |      |              |       |
| Surrogate: 2-Fluorobiphenyl     | 85.8   |                    | $\mu g/L$ | 100            |                  | 85.8          | 30-130         |      |              |       |
| Surrogate: 2,4,6-Tribromophenol | 200    |                    | $\mu g/L$ | 200            |                  | 100           | 15-110         |      |              |       |
| Surrogate: p-Terphenyl-d14      | 93.8   |                    | $\mu g/L$ | 100            |                  | 93.8          | 30-130         |      |              |       |



#### QUALITY CONTROL

#### Metals Analyses (Total) - Quality Control

| Analyta                     | D14    | Reporting | I In-id-         | Spike        | Source        | 0/DEC       | %REC   | DDD    | RPD   | Net   |
|-----------------------------|--------|-----------|------------------|--------------|---------------|-------------|--------|--------|-------|-------|
| Analyte                     | Result | Limit     | Units            | Level        | Result        | %REC        | Limits | RPD    | Limit | Notes |
| Batch B239843 - EPA 200.7   |        |           |                  |              |               |             |        |        |       |       |
| Blank (B239843-BLK1)        |        |           |                  | Prepared: 09 | /05/19 Analy  | zed: 09/06/ | 19     |        |       |       |
| Iron                        | ND     | 0.050     | mg/L             |              |               |             |        |        |       |       |
| LCS (B239843-BS1)           |        |           |                  | Prepared: 09 | /05/19 Analy  | zed: 09/06/ | 19     |        |       |       |
| Iron                        | 4.05   | 0.050     | mg/L             | 4.00         |               | 101         | 85-115 |        |       |       |
| I CS Dum (D220042 DSD1)     |        |           |                  | Drangrad: 00 | /05/19 Analy  | zad: 00/06/ | 10     |        |       |       |
| LCS Dup (B239843-BSD1) Iron | 4.22   | 0.050     | mg/L             | 4.00         | 703/19 Allaly | 106         | 85-115 | 4.13   | 20    |       |
|                             | 4.23   | 0.030     | mg/L             | 4.00         |               | 100         | 65-115 | 4.13   | 20    |       |
| Batch B239844 - EPA 200.8   |        |           |                  |              |               |             |        |        |       |       |
| Blank (B239844-BLK1)        |        |           |                  | Prepared: 09 | /05/19 Analy  | zed: 09/06/ | 19     |        |       |       |
| Antimony                    | ND     | 1.0       | μg/L             |              |               |             |        |        |       |       |
| Arsenic                     | ND     | 0.80      | $\mu g/L$        |              |               |             |        |        |       |       |
| Cadmium                     | ND     | 0.20      | $\mu \text{g/L}$ |              |               |             |        |        |       |       |
| Chromium                    | 0.30   | 1.0       | $\mu g/L$        |              |               |             |        |        |       | J     |
| Copper                      | ND     | 1.0       | $\mu g/L$        |              |               |             |        |        |       |       |
| Lead                        | ND     | 0.50      | $\mu g\!/\!L$    |              |               |             |        |        |       |       |
| Nickel                      | ND     | 5.0       | μg/L             |              |               |             |        |        |       |       |
| Selenium                    | ND     | 5.0       | $\mu g/L$        |              |               |             |        |        |       |       |
| Silver                      | ND     | 0.20      | $\mu g/L$        |              |               |             |        |        |       |       |
| Zinc                        | ND     | 10        | $\mu g/L$        |              |               |             |        |        |       |       |
| LCS (B239844-BS1)           |        |           |                  | Prepared: 09 | /05/19 Analy  | zed: 09/06/ | 19     |        |       |       |
| Antimony                    | 503    | 10        | μg/L             | 500          |               | 101         | 85-115 |        |       |       |
| Arsenic                     | 490    | 8.0       | $\mu g/L$        | 500          |               | 98.1        | 85-115 |        |       |       |
| Cadmium                     | 500    | 2.0       | $\mu g/L$        | 500          |               | 100         | 85-115 |        |       |       |
| Chromium                    | 519    | 10        | μg/L             | 500          |               | 104         | 85-115 |        |       |       |
| Copper                      | 1000   | 10        | μg/L             | 1000         |               | 100         | 85-115 |        |       |       |
| Lead                        | 492    | 5.0       | μg/L             | 500          |               | 98.4        | 85-115 |        |       |       |
| Nickel                      | 508    | 50        | μg/L             | 500          |               | 102         | 85-115 |        |       |       |
| Selenium                    | 483    | 50        | μg/L             | 500          |               | 96.5        | 85-115 |        |       |       |
| Silver                      | 497    | 2.0       | μg/L             | 500          |               | 99.5        | 85-115 |        |       |       |
| Zinc                        | 968    | 100       | μg/L             | 1000         |               | 96.8        | 85-115 |        |       |       |
| LCS Dup (B239844-BSD1)      |        |           |                  | Prepared: 09 | /05/19 Analy  | zed: 09/06/ | 19     |        |       |       |
| Antimony                    | 500    | 10        | μg/L             | 500          |               | 100         | 85-115 | 0.564  | 20    |       |
| Arsenic                     | 500    | 8.0       | μg/L             | 500          |               | 100         | 85-115 | 1.93   | 20    |       |
| Cadmium                     | 500    | 2.0       | μg/L             | 500          |               | 100         | 85-115 | 0.0162 | 20    |       |
| Chromium                    | 501    | 10        | μg/L             | 500          |               | 100         | 85-115 | 3.37   | 20    |       |
| Copper                      | 956    | 10        | μg/L             | 1000         |               | 95.6        | 85-115 | 4.85   | 20    |       |
| Lead                        | 493    | 5.0       | μg/L             | 500          |               | 98.6        | 85-115 | 0.246  | 20    |       |
| Nickel                      | 492    | 50        | μg/L             | 500          |               | 98.4        | 85-115 | 3.33   | 20    |       |
| Selenium                    | 492    | 50        | μg/L             | 500          |               | 98.4        | 85-115 | 1.89   | 20    |       |
|                             |        |           |                  |              |               |             |        |        |       |       |
| Silver                      | 497    | 2.0       | μg/L             | 500          |               | 99.3        | 85-115 | 0.155  | 20    |       |



#### QUALITY CONTROL

#### Metals Analyses (Total) - Quality Control

|                            |         | Reporting    |                   | Spike        | Source         |             | %REC   |        | RPD   |       |
|----------------------------|---------|--------------|-------------------|--------------|----------------|-------------|--------|--------|-------|-------|
| Analyte                    | Result  | Limit        | Units             | Level        | Result         | %REC        | Limits | RPD    | Limit | Notes |
| Satch B239844 - EPA 200.8  |         |              |                   |              |                |             |        |        |       |       |
| Ouplicate (B239844-DUP1)   | Sour    | ce: 19H1713- | 02                | Prepared: 09 | /05/19 Analy:  | zed: 09/06/ | 19     |        |       |       |
| Antimony                   | ND      | 1.0          | $\mu \text{g/L}$  |              | ND             |             |        | NC     | 20    |       |
| Arsenic                    | 1.96    | 0.80         | $\mu \text{g/L}$  |              | 2.09           |             |        | 6.42   | 20    |       |
| Cadmium                    | 0.0519  | 0.20         | μg/L              |              | 0.0462         |             |        | 11.6   | 20    | J     |
| Chromium                   | 1.03    | 1.0          | μg/L              |              | 1.40           |             |        | 30.7 * | 20    | R-04  |
| Copper                     | 3.61    | 1.0          | $\mu \text{g/L}$  |              | 3.89           |             |        | 7.44   | 20    |       |
| Lead                       | 1.71    | 0.50         | $\mu \text{g/L}$  |              | 1.83           |             |        | 6.83   | 20    |       |
| Nickel                     | 1.80    | 5.0          | $\mu \text{g/L}$  |              | 2.01           |             |        | 11.3   | 20    | J     |
| Selenium                   | ND      | 5.0          | $\mu \text{g/L}$  |              | ND             |             |        | NC     | 20    |       |
| Silver                     | ND      | 0.20         | $\mu g/L$         |              | ND             |             |        | NC     | 20    |       |
| Zinc                       | 36.7    | 10           | $\mu g/L$         |              | 38.0           |             |        | 3.37   | 20    |       |
| Matrix Spike (B239844-MS1) | Sour    | ce: 19H1713- | 02                | Prepared: 09 | /05/19 Analy:  | zed: 09/06/ | 19     |        |       |       |
| Antimony                   | 488     | 10           | $\mu g/L$         | 500          | ND             | 97.7        | 70-130 |        |       |       |
| Arsenic                    | 481     | 8.0          | $\mu g\!/\!L$     | 500          | ND             | 96.3        | 70-130 |        |       |       |
| Cadmium                    | 481     | 2.0          | $\mu g\!/\!L$     | 500          | ND             | 96.3        | 70-130 |        |       |       |
| Chromium                   | 493     | 10           | $\mu g\!/\!L$     | 500          | ND             | 98.7        | 70-130 |        |       |       |
| Copper                     | 959     | 10           | $\mu g/L$         | 1000         | ND             | 95.9        | 70-130 |        |       |       |
| Lead                       | 487     | 5.0          | $\mu g \! / \! L$ | 500          | 1.83           | 97.0        | 70-130 |        |       |       |
| Nickel                     | 485     | 50           | $\mu g/L$         | 500          | ND             | 96.9        | 70-130 |        |       |       |
| Selenium                   | 470     | 50           | $\mu g \! / \! L$ | 500          | ND             | 94.1        | 70-130 |        |       |       |
| Silver                     | 480     | 2.0          | $\mu g \! / \! L$ | 500          | ND             | 96.0        | 70-130 |        |       |       |
| Zinc                       | 1000    | 100          | $\mu g/L$         | 1000         | 38.0           | 96.5        | 70-130 |        |       |       |
| Batch B240040 - EPA 245.1  |         |              |                   |              |                |             |        |        |       |       |
| Blank (B240040-BLK1)       |         |              |                   | Prepared & A | Analyzed: 09/0 | 09/19       |        |        |       |       |
| Mercury                    | ND      | 0.00010      | mg/L              |              |                |             |        |        |       |       |
| LCS (B240040-BS1)          |         |              |                   | Prepared & A | Analyzed: 09/0 | 09/19       |        |        |       |       |
| Mercury                    | 0.00375 | 0.00010      | mg/L              | 0.00400      |                | 93.8        | 85-115 |        |       |       |
| LCS Dup (B240040-BSD1)     |         |              |                   | Prepared & A | Analyzed: 09/0 | 09/19       |        |        |       |       |
| Mercury                    | 0.00369 | 0.00010      | mg/L              | 0.00400      |                | 92.1        | 85-115 | 1.76   | 20    |       |



#### QUALITY CONTROL

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                           | Result | Reporting<br>Limit | Units    | Spike<br>Level                | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes       |
|-----------------------------------|--------|--------------------|----------|-------------------------------|------------------|--------|----------------|-------|--------------|-------------|
| Batch B239496 - SM21-22 3500 Cr B |        |                    |          |                               |                  |        |                |       |              |             |
| Blank (B239496-BLK1)              |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Hexavalent Chromium               | ND     | 0.0040             | mg/L     |                               | <del>-</del>     |        |                |       |              |             |
| LCS (B239496-BS1)                 |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Hexavalent Chromium               | 0.10   | 0.0040             | mg/L     | 0.100                         | <del>-</del>     | 103    | 83.9-121       |       |              |             |
| LCS Dup (B239496-BSD1)            |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Hexavalent Chromium               | 0.11   | 0.0040             | mg/L     | 0.100                         | ·                | 113    | 83.9-121       | 8.65  | 10           |             |
| Batch B239498 - SM21-22 4500 CL G |        |                    |          |                               |                  |        |                |       |              |             |
| Blank (B239498-BLK1)              |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Chlorine, Residual                | ND     | 0.020              | mg/L     |                               |                  |        |                |       |              | Z-01        |
| LCS (B239498-BS1)                 |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Chlorine, Residual                | 1.3    | 0.020              | mg/L     | 1.29                          |                  | 102    | 66.3-134       |       |              | Z-01        |
| LCS Dup (B239498-BSD1)            |        |                    |          | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Chlorine, Residual                | 1.4    | 0.020              | mg/L     | 1.29                          |                  | 105    | 66.3-134       | 2.66  | 9.96         | Z-01        |
| Duplicate (B239498-DUP1)          | Sour   | rce: 19H1713-      | -01      | Prepared & Analyzed: 08/30/19 |                  | /30/19 |                |       |              |             |
| Chlorine, Residual                | ND     | 0.040              | mg/L     |                               | ND               | )      |                | NC    | 32.5         | DL-03, Z-01 |
| Matrix Spike (B239498-MS1)        | Sour   | rce: 19H1713-      | -01      | Prepared &                    | Analyzed: 08     | /30/19 |                |       |              |             |
| Chlorine, Residual                | 1.2    | 0.040              | mg/L     | 1.00                          | ND               | 124    | 10-167         |       |              | DL-03, Z-01 |
| Batch B239501 - SM21-22 2540D     |        |                    |          |                               |                  |        |                |       |              |             |
| Blank (B239501-BLK1)              |        |                    |          | Prepared &                    | Analyzed: 08     | /31/19 |                |       |              |             |
| Total Suspended Solids            | ND     | 2.5                | mg/L     |                               |                  |        |                |       |              |             |
| LCS (B239501-BS1)                 |        |                    |          | Prepared &                    | Analyzed: 08     | /31/19 |                |       |              |             |
| Total Suspended Solids            | 138    | 10                 | mg/L     | 200                           |                  | 69.0   | 57.6-118       |       |              |             |
| Batch B239647 - SM21-22 4500 H B  |        |                    |          |                               |                  |        |                |       |              |             |
| Duplicate (B239647-DUP1)          | Sour   | rce: 19H1713-      | -01      | Prepared &                    | Analyzed: 09     | /03/19 |                |       |              |             |
| рН                                | 6.4    |                    | pH Units |                               | 6.4              |        |                | 0.234 | 5            |             |
| Batch B239783 - EPA 1664B         |        |                    |          |                               |                  |        |                |       |              |             |
| Blank (B239783-BLK1)              |        |                    |          | Prepared &                    | Analyzed: 09     | /05/19 |                |       |              |             |
| Silica Gel Treated HEM (SGT-HEM)  | ND     | 1.4                | mg/L     |                               |                  |        |                |       |              |             |



#### QUALITY CONTROL

#### Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

| Analyte                          | Result | Reporting<br>Limit | Units                         | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD    | RPD<br>Limit | Notes |
|----------------------------------|--------|--------------------|-------------------------------|----------------|------------------|--------|----------------|--------|--------------|-------|
| Batch B239783 - EPA 1664B        |        |                    |                               |                |                  |        |                |        |              |       |
| Blank (B239783-BLK2)             |        |                    |                               | Prepared & A   | Analyzed: 09     | /05/19 |                |        |              |       |
| Silica Gel Treated HEM (SGT-HEM) | ND     | 5.6                | mg/L                          |                |                  |        |                |        |              |       |
| LCS (B239783-BS1)                |        |                    |                               | Prepared & A   | Analyzed: 09     | /05/19 |                |        |              |       |
| Silica Gel Treated HEM (SGT-HEM) | 9.7    |                    | mg/L                          | 10.0           |                  | 97.0   | 64-132         |        |              |       |
| LCS (B239783-BS2)                |        |                    | Prepared & Analyzed: 09/05/19 |                |                  |        |                |        |              |       |
| Silica Gel Treated HEM (SGT-HEM) | 38     |                    | mg/L                          | 40.0           |                  | 95.0   | 64-132         |        |              |       |
| Batch B239970 - EPA 300.0        |        |                    |                               |                |                  |        |                |        |              |       |
| Blank (B239970-BLK1)             |        |                    |                               | Prepared & A   | Analyzed: 09     | /07/19 |                |        |              |       |
| Chloride                         | ND     | 1.0                | mg/L                          |                |                  |        |                |        |              |       |
| LCS (B239970-BS1)                |        |                    | Prepared & Analyzed: 09/07/19 |                |                  |        |                |        |              |       |
| Chloride                         | 4.8    | 1.0                | mg/L                          | 5.00           |                  | 96.7   | 90-110         |        |              |       |
| LCS Dup (B239970-BSD1)           |        |                    |                               | Prepared & A   | Analyzed: 09     | /07/19 |                |        |              |       |
| Chloride                         | 4.8    | 1.0                | mg/L                          | 5.00           |                  | 96.7   | 90-110         | 0.0455 | 20           |       |



#### QUALITY CONTROL

#### **Drinking Water Organics EPA 504.1 - Quality Control**

| Analyte                            | Result | Reporting<br>Limit | Units     | Spike<br>Level | Source<br>Result | %REC   | %REC<br>Limits | RPD   | RPD<br>Limit | Notes |
|------------------------------------|--------|--------------------|-----------|----------------|------------------|--------|----------------|-------|--------------|-------|
| Batch B240078 - EPA 504 water      |        |                    |           |                |                  |        |                |       |              |       |
| Blank (B240078-BLK1)               |        |                    |           | Prepared &     | Analyzed: 09     | /09/19 |                |       |              |       |
| 1,2-Dibromoethane (EDB)            | ND     | 0.021              | μg/L      |                |                  |        |                |       |              |       |
| 1,2-Dibromoethane (EDB) [2C]       | ND     | 0.021              | $\mu g/L$ |                |                  |        |                |       |              |       |
| Surrogate: 1,3-Dibromopropane      | 1.12   |                    | μg/L      | 1.07           |                  | 105    | 70-130         |       |              |       |
| Surrogate: 1,3-Dibromopropane [2C] | 1.12   |                    | $\mu g/L$ | 1.07           |                  | 105    | 70-130         |       |              |       |
| LCS (B240078-BS1)                  |        |                    |           | Prepared &     | Analyzed: 09     | /09/19 |                |       |              |       |
| 1,2-Dibromoethane (EDB)            | 0.185  | 0.021              | μg/L      | 0.185          |                  | 100    | 70-130         |       |              |       |
| 1,2-Dibromoethane (EDB) [2C]       | 0.190  | 0.021              | $\mu g/L$ | 0.185          |                  | 103    | 70-130         |       |              |       |
| Surrogate: 1,3-Dibromopropane      | 1.13   |                    | μg/L      | 1.05           |                  | 107    | 70-130         |       |              |       |
| Surrogate: 1,3-Dibromopropane [2C] | 1.14   |                    | $\mu g/L$ | 1.05           |                  | 108    | 70-130         |       |              |       |
| LCS Dup (B240078-BSD1)             |        |                    |           | Prepared &     | Analyzed: 09     | /09/19 |                |       |              |       |
| 1,2-Dibromoethane (EDB)            | 0.184  | 0.021              | μg/L      | 0.182          |                  | 101    | 70-130         | 0.478 |              |       |
| 1,2-Dibromoethane (EDB) [2C]       | 0.193  | 0.021              | $\mu g/L$ | 0.182          |                  | 106    | 70-130         | 1.67  |              |       |
| Surrogate: 1,3-Dibromopropane      | 1.04   |                    | μg/L      | 1.04           |                  | 100    | 70-130         |       |              |       |
| Surrogate: 1,3-Dibromopropane [2C] | 1.05   |                    | $\mu g/L$ | 1.04           |                  | 102    | 70-130         |       |              |       |



1,2-Dibromoethane (EDB)

39 Spruce Street \* East Longmeadow, MA 01028 \* FAX 413/525-6405 \* TEL. 413/525-2332

# IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

| LCS |  |  |
|-----|--|--|

EPA 504.1

3.069

2.974

<u>1</u> 2

| La | ab Sample ID: B  | 240078-BS | 1  | Da    | ate(s) Analy | zed: 09/09/2019 | 09/0 | 9/2019 |
|----|------------------|-----------|----|-------|--------------|-----------------|------|--------|
| In | strument ID (1): |           |    | In    | strument ID  | (2):            |      |        |
| G  | C Column (1):    | ID:       | (n | nm) G | C Column (2  | 2):             | ID:  | (mm)   |
|    | ANALYTE          | COL       | RT | RT WI | NDOW<br>TO   | CONCENTRATION   | %RPD |        |

0.000

0.000

0.000

0.000

0.185

0.190

0.0



0.193

7.0

### **IDENTIFICATION SUMMARY** FOR SINGLE COMPONENT ANALYTES

| LCS Dup |  |
|---------|--|

EPA 504.1

| Lab Sample ID: B240 |                         | 078-BSD | 1     | D     | Date(s) Analyzed: 09/09/2 |               |       | 09/0     | 09/09/2019 |  |
|---------------------|-------------------------|---------|-------|-------|---------------------------|---------------|-------|----------|------------|--|
| Ins                 | strument ID (1):        |         |       | In    |                           |               |       |          |            |  |
| GC Column (1):      |                         | ID:     | (m    | ım) G | C Column (2               | 2):           |       | ID:      | (mm)       |  |
|                     | ANALYTE                 | COL     | RT    | RT W  | INDOW                     | CONCENTRATION |       | %RPD     |            |  |
|                     | ,                       | ""      |       | FROM  | ТО                        |               |       | 701 11 2 |            |  |
|                     | 1,2-Dibromoethane (EDB) | 1       | 3.071 | 0.000 | 0.000                     |               | 0.184 |          |            |  |

0.000

0.000

2

2.975



#### FLAG/QUALIFIER SUMMARY

| *     | QC result is outside of established limits.                                                                                                                |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| †     | Wide recovery limits established for difficult compound.                                                                                                   |
| ‡     | Wide RPD limits established for difficult compound.                                                                                                        |
| #     | Data exceeded client recommended or regulatory level                                                                                                       |
| ND    | Not Detected                                                                                                                                               |
| RL    | Reporting Limit is at the level of quantitation (LOQ)                                                                                                      |
| DL    | Detection Limit is the lower limit of detection determined by the MDL study                                                                                |
| MCL   | Maximum Contaminant Level                                                                                                                                  |
|       | Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.     |
|       | No results have been blank subtracted unless specified in the case narrative section.                                                                      |
| DL-03 | Elevated reporting limit due to matrix interference.                                                                                                       |
| H-05  | Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.                   |
| J     | Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).                        |
| R-04  | Duplicate relative percent difference (RPD) is a less useful indicator of sample precision for sample results that are <5 times the reporting limit (RL).  |
| S-07  | One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.                   |
| V-35  | Initial calibration verification (ICV) did not meet method specifications and was biased on the high side for this compound. Reported result is estimated. |
| Z-01  | SM 4500 test had calibration points outside of acceptable back calculated recoveries. Reanalysis yielded similar non-conformance.                          |
|       |                                                                                                                                                            |



#### CERTIFICATIONS

#### Certified Analyses included in this Report

EPA 200.8 in Water

| Analyte                        | Certifications          |
|--------------------------------|-------------------------|
| 624.1 in Water                 |                         |
| Acetone                        | CT,NY,MA,NH             |
| tert-Amyl Methyl Ether (TAME)  | MA                      |
| Benzene                        | CT,NY,MA,NH,RI,NC,ME,VA |
| tert-Butyl Alcohol (TBA)       | NY,MA                   |
| Carbon Tetrachloride           | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,2-Dichlorobenzene            | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,3-Dichlorobenzene            | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,4-Dichlorobenzene            | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,2-Dichloroethane             | CT,NY,MA,NH,RI,NC,ME,VA |
| cis-1,2-Dichloroethylene       | NY,MA                   |
| 1,1-Dichloroethane             | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1-Dichloroethylene           | CT,NY,MA,NH,RI,NC,ME,VA |
| Ethanol                        | NY,MA,NH                |
| Ethylbenzene                   | CT,NY,MA,NH,RI,NC,ME,VA |
| Methyl tert-Butyl Ether (MTBE) | NY,MA,NH,NC             |
| Methylene Chloride             | CT,NY,MA,NH,RI,NC,ME,VA |
| Naphthalene                    | NY,MA,NC                |
| Tetrachloroethylene            | CT,NY,MA,NH,RI,NC,ME,VA |
| Toluene                        | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1,1-Trichloroethane          | CT,NY,MA,NH,RI,NC,ME,VA |
| 1,1,2-Trichloroethane          | CT,NY,MA,NH,RI,NC,ME,VA |
| Trichloroethylene              | CT,NY,MA,NH,RI,NC,ME,VA |
| Vinyl Chloride                 | CT,NY,MA,NH,RI,NC,ME,VA |
| m+p Xylene                     | CT,NY,MA,NH,RI,NC       |
| o-Xylene                       | CT,NY,MA,NH,RI,NC       |
| 625.1 in Water                 |                         |
| Acenaphthene                   | CT,MA,NH,NY,NC,RI,ME,VA |
| Acenaphthylene                 | CT,MA,NH,NY,NC,RI,ME,VA |
| Anthracene                     | CT,MA,NH,NY,NC,RI,ME,VA |
| Benzo(g,h,i)perylene           | CT,MA,NH,NY,NC,RI,ME,VA |
| 1,3-Dichlorobenzene            | MA,NC                   |
| 1,4-Dichlorobenzene            | MA,NC                   |
| 1,2-Dichlorobenzene            | MA,NC                   |
| Fluoranthene                   | CT,MA,NH,NY,NC,RI,ME,VA |
| Fluorene                       | CT,MA,NH,NY,NC,RI,ME,VA |
| Naphthalene                    | CT,MA,NH,NY,NC,RI,ME,VA |
| Phenanthrene                   | CT,MA,NH,NY,NC,RI,ME,VA |
| Pyrene                         | CT,MA,NH,NY,NC,RI,ME,VA |
| 2-Fluorophenol                 | NC                      |
| 2-Fluorophenol                 | NC,VA                   |
| Phenol-d6                      | VA                      |
| Nitrobenzene-d5                | VA                      |
| EPA 200.7 in Water             |                         |
| Iron                           | CT,MA,NH,NY,RI,NC,ME,VA |
| Hardness                       | CT,MA,NH,NY,RI,VA       |
|                                |                         |



#### CERTIFICATIONS

#### Certified Analyses included in this Report

| Analyte                     | Certifications          |
|-----------------------------|-------------------------|
| EPA 200.8 in Water          |                         |
| Antimony                    | CT,MA,NH,NY,RI,NC,ME,VA |
| Arsenic                     | CT,MA,NH,NY,RI,NC,ME,VA |
| Cadmium                     | CT,MA,NH,NY,RI,NC,ME,VA |
| Chromium                    | CT,MA,NH,NY,RI,NC,ME,VA |
| Copper                      | CT,MA,NH,NY,RI,NC,ME,VA |
| Lead                        | CT,MA,NH,NY,RI,NC,ME,VA |
| Nickel                      | CT,MA,NH,NY,RI,NC,ME,VA |
| Selenium                    | CT,MA,NH,NY,RI,NC,ME,VA |
| Silver                      | CT,MA,NH,NY,RI,NC,ME,VA |
| Zinc                        | CT,MA,NH,NY,RI,NC,ME,VA |
| EPA 245.1 in Water          |                         |
| Mercury                     | CT,MA,NH,RI,NY,NC,ME,VA |
| EPA 300.0 in Water          |                         |
| Chloride                    | NC,NY,MA,VA,ME,NH,CT,RI |
| SM19-22 4500 NH3 C in Water |                         |
| Ammonia as N                | NY,MA,CT,RI,VA,NC,ME    |
| SM21-22 2540D in Water      |                         |
| Total Suspended Solids      | CT,MA,NH,NY,RI,NC,ME,VA |
| SM21-22 3500 Cr B in Water  |                         |
| Hexavalent Chromium         | NY,CT,NH,RI,ME,VA,NC    |
| SM21-22 4500 CL G in Water  |                         |
| Chlorine, Residual          | CT,MA,RI,ME             |
| SM21-22 4500 H B in Water   |                         |
| pH                          | CT,MA,RI                |

Expires

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

 Code
 Description
 Number

 AIHA
 AIHA-LAP, LLC - ISO17025:2017
 100033

| AIHA  | AIHA-LAP, LLC - ISO17025:2017                | 100033        | 03/1/2020  |
|-------|----------------------------------------------|---------------|------------|
| MA    | Massachusetts DEP                            | M-MA100       | 06/30/2020 |
| CT    | Connecticut Department of Publile Health     | PH-0567       | 09/30/2021 |
| NY    | New York State Department of Health          | 10899 NELAP   | 04/1/2020  |
| NH-S  | New Hampshire Environmental Lab              | 2516 NELAP    | 02/5/2020  |
| RI    | Rhode Island Department of Health            | LAO00112      | 12/30/2019 |
| NC    | North Carolina Div. of Water Quality         | 652           | 12/31/2019 |
| NJ    | New Jersey DEP                               | MA007 NELAP   | 06/30/2020 |
| FL    | Florida Department of Health                 | E871027 NELAP | 06/30/2020 |
| VT    | Vermont Department of Health Lead Laboratory | LL015036      | 07/30/2020 |
| ME    | State of Maine                               | 2011028       | 06/9/2021  |
| VA    | Commonwealth of Virginia                     | 460217        | 12/14/2019 |
| NH-P  | New Hampshire Environmental Lab              | 2557 NELAP    | 09/6/2020  |
| VT-DW | Vermont Department of Health Drinking Water  | VT-255716     | 06/12/2020 |
| NC-DW | North Carolina Department of Health          | 25703         | 07/31/2020 |
| PA    | Commonwealth of Pennsylvania DEP             | 68-05812      | 06/30/2020 |

# KAF 19H1713

Phone: 413-525-2332

http://www.contestlabs.com CHAIN OF CUSTODY RECORD

Doc # 381 Rev 1\_03242017

39 Spruce Street
East Longmeadow, MA 01028

|      | ĺ  | 7 |
|------|----|---|
| Page | of | 4 |

| Fax: 413-525-6405                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | i december in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 March 1880 1880 1880 1880 1880 1880 1880 188 | Partie Marian Control | 0.0      |           |                                |                       | East            | Longm                 | eadow          | MAC                                   | 1028             |                                  | Page of                                                  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------|----------|-----------|--------------------------------|-----------------------|-----------------|-----------------------|----------------|---------------------------------------|------------------|----------------------------------|----------------------------------------------------------|
| Email: info@contestlabs.cor                                                           | 7-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X              | 10-D            | - Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | <b>-</b>              | r        |           |                                |                       |                 |                       |                |                                       |                  |                                  |                                                          |
| Company Name EnviroTrac Ltd.                                                          | Due Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . <del> </del> | ים-טו           | ay [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _}                                               | 3                     |          |           |                                |                       |                 | Ш                     | 1              | 2                                     | . 3              | # of Containers                  |                                                          |
| Address: / Metchant It Suite 2 (hann ma                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | entroles, en es | ANS SECTION OF THE PARTY OF THE |                                                  | Ţ                     |          |           |                                | <u> </u>              | L,5 1           | NI                    | <u> </u>       | VI                                    | 1 1,1            | <sup>2</sup> Preservation Code   |                                                          |
| 701-193-00 74                                                                         | 00007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-Day          |                 | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                  | 7                     | 2-       |           |                                |                       | 7               | Y   1                 | 1 1            | ' I †                                 | IA               | TV                               | <sup>3</sup> Container Code                              |
| Project Name: GFT Westminster                                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-Day          |                 | 3-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                       | 150      |           |                                |                       |                 | REQUI                 |                |                                       |                  | T-                               |                                                          |
| Project Location: 100 Simple X Drive, westminster                                     | - 11/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z-Day          |                 | 4-Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  |                       | Z Z      | 9         | اما                            | 34                    |                 |                       | 위.             | ન કે                                  | §                |                                  | O Field Filtered                                         |
| Project Number:                                                                       | 101/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C              |                 | i all le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                  |                       |          | 24        | 300                            | -₹\$                  | Ö               | 2 5                   | ᇵ              | 4 5                                   | -                | ၂ပ                               | O Lab to Filter                                          |
| Project Manager: D. Tom assi                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Format:        | PDF 🔀           | EXCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L D                                              | X)                    | 8        |           | <b>«</b>                       | 33                    | 위               | 8                     | ₹ <del>}</del> | 47                                    | 10               | 012                              | 330 (1112)                                               |
| Con-Test Quote Name/Number:                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other:         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ···-                                             |                       | 중        | 3         | FM                             | ğ                     | 23              | 3                     | عاد            | 7 t                                   | ःि≕              | 9.6                              | en avenesanen Samples                                    |
| Invoice Recipient:                                                                    | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLP Like L     | ata Pkg Re      | quired:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :<br>-*s>[                                       |                       | 4500HB   | 3         |                                | 질                     | Ξ               | 3                     | 3 5            | ج [ا                                  | 3 3              | 312                              | O Field Filtered                                         |
| Sampled By: A. Labella                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | lenate          | een                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | virunt                                           | xc.com                | _ [      | $\sim$    | Chlorideby                     | Total Residual Worker | TSS by SM 2540D | Ammonia by SM 4500 B. | Chamman / Para | 12#C rid Introd                       | <u>*</u>         | 1/3/                             | O Lab to Filter                                          |
| Con-Test                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fax To #:      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       | A        | fordiness | 힏                              | $\leq$                | ঠ               | .설 :                  |                | ≩   ≩                                 | <b>₹</b> } ≳     | 12                               | - Lab to Filter                                          |
| Work Order# Client Sample ID / Description                                            | Beginning<br>Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ending         | Composite       | Grab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>1</sup> Matrix                              | Conc                  | B        | 3         | 2                              | 7                     | 2               | 5 7                   | 되              | ] =                                   | ]                |                                  |                                                          |
| T-TOO I                                                                               | The state of the s |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code                                             | Code                  | 2        | - 커       | 5                              |                       |                 | 1 6                   | 3 &            | Ì                                     | 至                | 击                                | <sup>1</sup> <u>Matrix Codes</u> :<br>GW = Ground Water  |
| ETMW-                                                                                 | 8/30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10:15          |                 | 1×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GW                                               | U                     | χ        | XI        | V                              | V                     | X               | $\nabla   \nabla$     | 1              | $\dagger \overline{\nabla}$           | ╁                | <del> </del>                     | WW = Waste Water                                         |
| 5W-1                                                                                  | 8/30/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 11                    |          | $\forall$ | $\hookrightarrow$ $\downarrow$ | 4                     | 4               | $\frac{2}{2}$         | A              | A                                     | $\bot \triangle$ |                                  | DW = Drinking Water                                      |
|                                                                                       | ola L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11,50          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                | W                     | $\Delta$ | $\Delta$  |                                |                       | (               | $X \perp X$           | JX             | ľΧ                                    | .]               |                                  | A = Air<br>S = Soil                                      |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           |                                |                       | T               |                       |                | 1                                     | 1                | T-                               | SL = Sludge                                              |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          | _         | _                              | _                     | $\dashv$        |                       | +              | ┼                                     |                  | <b> </b>                         | SOL = Solid                                              |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <b></b>               | _        |           |                                |                       |                 |                       |                |                                       |                  |                                  | 0 = Other (please                                        |
|                                                                                       | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       | - 1      |           |                                |                       |                 |                       |                |                                       |                  |                                  | define)<br>5W                                            |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           | $\neg \dagger$                 |                       | -               |                       | ╫              | ┼┈                                    | ┼                | $\vdash$                         | 2 Preservation 0                                         |
| Ethanol being run by 624.1, all VOC request                                           | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           |                                |                       |                 |                       |                | <u> </u>                              | <u> </u>         |                                  | <sup>2</sup> <u>Preservation Codes</u> :<br>1 = lced     |
| compounds being run by 624 beside EDB w                                               | hich                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           |                                |                       |                 |                       |                |                                       |                  |                                  | H = HCL                                                  |
| is being lab preserved and run for 504 per D                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1                                              | j                     |          |           |                                | $\neg$                |                 |                       | 1-             | <b>!</b>                              |                  | $\vdash \dashv$                  | M = Methanol<br>N = Nitric Acid                          |
| T - MEK 9/5/19                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       | -        | $\dashv$  |                                |                       | _               |                       | —              | <u> </u>                              |                  |                                  | S = Sulfuric Acid                                        |
| -                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           |                                |                       |                 |                       |                |                                       |                  |                                  | B = Sodium Bisulfate                                     |
| Comments:                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ĺ                                                |                       | 1        | - 1       |                                |                       |                 |                       |                | T                                     |                  | $\neg \neg$                      | X = Sodium Hydroxide<br>T = Sodium                       |
| comments: Total metals: Antimony, Arrenic<br>Copper, Iron, Lead, Nickel, Selenium, Si | Cadmiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | im, Ch         | ninium!         | III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                       |          |           | L                              |                       |                 |                       | Щ_             | <u> </u>                              |                  |                                  | Thiosulfate                                              |
| Copper, Iron, Lead, Nickel, Selenium, S.                                              | Wer.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inć            |                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Please                                           | use the f             | allowir  | ng cod    | des to                         | indica                | ite po          | ssible s              | amole          | Conc                                  | entrat           | ion                              | O = Other (please                                        |
| , , , , , , , , , , , , , , , , , , , ,                                               | ,.0112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .,,            |                 | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                       | WITH     | ın the    | ∂ Conc                         | : Code                | COLU            | mn abo                | ve.            |                                       |                  | 1011                             | define)                                                  |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | H - High:             | : M - M  | lediur    | m; L -                         | Low;                  | C - C           | lean;                 | V - Un         | know                                  | п                |                                  | 30                                                       |
| Relinquished by: (signature)  8/30/19 ) 3: 8                                          | Jeres Just                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and design     | demanda.        | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | necial Re                                        | quireme               |          |           |                                |                       |                 |                       | ···            |                                       |                  |                                  | <sup>3</sup> <u>Container Codes</u> :<br>A = Amber Glass |
| 130/19 15: V                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RIGH           |                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | МА МСР І              |          |           |                                |                       |                 |                       |                |                                       |                  |                                  | G = Glass                                                |
| Received by: (signature) Date/Time: 13/8                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | MCP             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Form                                        |                       |          | .41       | 11.                            |                       |                 |                       | _              | _                                     |                  | P = Plastic<br>ST = Sterile      |                                                          |
| Relinquished by: (signature)  Date/Time:                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | П               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT RCP                                           |                       |          |           | Ш                              |                       | 0               |                       | hs             | ۲z                                    |                  | V = Vial                         |                                                          |
| Date/Time:                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | RCP             | Certifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Form                                        | Remis                 | eu i     | ₩         | ╫╨                             |                       | ALYTIC          |                       |                |                                       |                  | S = Summa Canister               |                                                          |
| Tyeg by ( signature ) Bate / Time: 1600                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | 11/2 COM              | -        | 411       | !! ,                           |                       |                 |                       |                |                                       |                  | T = Tedlar Bag O = Other (please |                                                          |
| Date/Time:  S-30-/9 / CO                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 | MA St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tate DW R                                        | eaurer                | 7        |           |                                |                       |                 |                       |                |                                       |                  | O = Other (please ଘୁ             |                                                          |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P              | WSID /          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | ,                     |          | MEI       | AC av                          | ed All                | IA-LAP          |                       |                | e e e e e e e e e e e e e e e e e e e | Section 1990     | e e                              |                                                          |
|                                                                                       | roject Entit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       | ·        |           |                                | / II- (III            | _               | ier<br>Ter            |                |                                       | arred            |                                  | of                                                       |
| ed by Signature)                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | overnment      | M               | lunicip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ality                                            |                       | MWRA     | . [       | WR                             | eTA                   | "               |                       | Chron          | ates.                                 | 'D 853           |                                  | PCB ONLY O                                               |
| 8/30/2019 1750                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ederal         | 2               | 1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  |                       | School   | . –       |                                | •                     |                 |                       | AIHA-          |                                       |                  |                                  | PCB ONLY  Soxhlet  Non Soxhlet                           |
| L - 4017 12                                                                           | LJ C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ity            | В               | rownfi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | eld                                              |                       | MBTA     |           |                                |                       |                 | 1                     |                | ∟nr,L                                 | LU               |                                  | ☐ Non Soxhlet ☐ ☐                                        |
| e e e e e e e e e e e e e e e e e e e                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                       |          |           |                                |                       |                 |                       |                |                                       |                  |                                  |                                                          |

Table of Contents

| I Have Not Confirmed Sample Container       |
|---------------------------------------------|
| Numbers With Lab Staff Before Relinquishing |
| Over Samples                                |
|                                             |



Doc# 277 Rev 5 2017

| Logir              | Sample Re<br>Stater                            | eceipt Checklist -           | (Rejection                              | Criteria Lis | ting - Usi  | na Acconta             | ince Policy) A   | Any False   |                                        |
|--------------------|------------------------------------------------|------------------------------|-----------------------------------------|--------------|-------------|------------------------|------------------|-------------|----------------------------------------|
| Client             | Envir                                          | ment will be brou            | ignit to the a                          | mention of   | the Client  | t - State Tri          | ue or False      |             |                                        |
| Recei              | ved By                                         | O.F                          | •                                       | Date         | 0/20        | 70                     |                  |             |                                        |
| How were           | the samples                                    |                              |                                         | •            | 8/30        | <del></del>            | Time             | 1750        |                                        |
|                    | ived?                                          | 500.01                       |                                         | No Cooler    |             | _ On Ice               |                  | _ No Ice    |                                        |
|                    |                                                | Direct from Sam              | •                                       |              |             | Ambient                |                  | Melted Ice  |                                        |
|                    | ples within                                    |                              | By Gun #                                | <u> </u>     |             | Actual Ter             | mp- 3.9          | _           |                                        |
| Temperature? 2-6°C |                                                |                              | By Blank #                              |              |             | Actual Ter             | ກ <sub>ກ</sub> - |             | ····                                   |
|                    | Was Custody Seal Intact? Was COC Relinquished? |                              |                                         | We           | re Sample   | s Tampere              |                  | N/A         | -                                      |
| VV a:              | s COC Relin                                    | iquished?                    | $T_{-}$                                 | Does         | Chain Ag    | ree With Sa            | amples?          | T           |                                        |
| Are the            | ere broken//<br>nk/ Legible?                   | eaking/loose caps            | on any sam                              | ples?        | F           |                        |                  |             |                                        |
| Did COC            | include all                                    | Client                       |                                         | Were sam     | iples recei | ved within h           | nolding time?    | T           |                                        |
| pertinent In       |                                                | Project                      |                                         | Analysis     | <u> </u>    | <sub>.</sub> Samp      | ler Name         |             | •                                      |
|                    |                                                | d out and legible?           |                                         | ID's         |             | Collection             | Dates/Times      |             | <del>-</del><br>-                      |
| Are there La       | b to Filters?                                  | out and legible:             | <del>-</del>                            |              | 1876        | 450 10                 |                  |             |                                        |
| Are there Ru       |                                                |                              | F                                       |              |             | s notified?            |                  |             |                                        |
| Are there Sh       | ort Holds?                                     | •                            | <u> </u>                                |              |             | notified?<br>notified? | 3                |             | <u>.</u>                               |
|                    | ugh Volume                                     |                              | <del></del>                             |              | vviio was   | s nouned?              | Irma             |             |                                        |
| s there Hea        | dspace whe                                     | re applicable?               | F                                       | ٨            | //S/MSD?    | F                      |                  |             |                                        |
| Proper Medi        | a/Containers                                   | s Used?                      | 7                                       |              | _           | samples red            | -<br>ruirod?     | _           |                                        |
|                    | inks receive                                   |                              | T                                       |              | On COC?     | rampies rec<br>T       | quired?          | <u> </u>    |                                        |
| Do all sampl       | es have the                                    | proper pH?                   | *************************************** | Acid         | T           |                        | Base             |             |                                        |
| /ials              | # 1                                            | Containers:                  | #                                       | -            |             | #                      |                  |             |                                        |
| Jnp-               |                                                | 1 Liter Amb.                 | 4                                       | 1 Liter P    | lastic      | #                      | 46               | <del></del> | #                                      |
| ICL-               | 11                                             | 500 mL Amb.                  |                                         | 500 mL F     |             | ····                   | 16 oz            |             |                                        |
| leoh-              |                                                | 250 mL Amb.                  |                                         | 250 mL F     |             | 13                     | 8oz Am<br>4oz Am |             | <del></del>                            |
| isulfate-          |                                                | Flashpoint                   |                                         | Col./Bac     |             |                        | 2oz Am           |             |                                        |
| hiosulfate-        |                                                | Other Glass                  |                                         | Other Pl     |             |                        | Enc              |             |                                        |
| ulfuric-           |                                                | SOC Kit                      |                                         | Plastic I    |             |                        | Frozen:          |             | ······································ |
| 4110               |                                                | Perchlorate                  |                                         | Ziploc       | k           |                        |                  |             |                                        |
| ials I             | - AL 1-                                        |                              |                                         | Unused Me    | edia        |                        |                  |             |                                        |
| np-                | # (                                            | Containers:                  | #                                       |              |             | #                      |                  |             | #                                      |
| CL-                | 3                                              | 1 Liter Amb.                 |                                         | 1 Liter Pl   |             |                        | 16 oz /          | Amb.        | - 11                                   |
| eoh-               |                                                | 500 mL Amb.                  |                                         | 500 mL P     |             |                        | 8oz Amb          |             |                                        |
| sulfate-           |                                                | 250 mL Amb.<br>Col./Bacteria |                                         | 250 mL P     |             |                        | 4oz Amb          |             | ······································ |
| -                  |                                                | Other Plastic                |                                         | Flashpo      |             |                        | 2oz Amb          |             | ****                                   |
| niosulfate-        |                                                | SOC Kit                      |                                         | Other GI     |             |                        | Enco             | ore         |                                        |
| Ilfuric-           |                                                | Perchlorate                  |                                         | Plastic E    |             |                        | Frozen:          |             | ···                                    |
| omments:           |                                                |                              |                                         | Ziploci      | <u> </u>    |                        |                  |             |                                        |
| Tria PL            | × 0 l -                                        |                              | ) An                                    | 1            |             |                        |                  |             |                                        |

Trip Blank. Sample #3. Analysis unknown



Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report



EnviroTrac Ltd.

GFI Westminster, 100 Simplex Drive, Westminster, MA

SGS Job Number: JC94245

**Sampling Date: 08/30/19** 



EnviroTrac, Ltd.
2 Merchant Street Suite #2
Sharon, MA 02067
DenaT@Envirotrac.com

**ATTN: Dena Tomassi** 

Total number of pages in report: 16

TNI TABORATORY

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Mike Earp General Manager

Client Service contact: Thelma Flaherty 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, FL, IL, IN, KS, KY, LA, MA, MD, ME, MN, NC, OH VAP (CL0056), AK (UST-103), AZ (AZ0786), PA, RI, SC, TX, UT, VA, WV, DoD ELAP (ANAB L2248)

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 • fax: 732-329-3499

JC94245



September 9, 2019

Ms. Dena Tomassi EnviroTrac, Ltd. 2 Merchant Street Suite #2 Sharon, MA 02067

RE: SGS - Dayton, Job # JC94245 - Reissues

Dear Ms. Tomassi,

The final report for SGS job number JC94245 has been edited to reflect corrections to the final results. These edits have been incorporated into the revised report which is attached.

Specifically, the Method Detention Limits reporting has been added to Cyanide per your request. The attached revised report incorporates these revisions.

SGS apologizes for this occurrence and for any inconvenience this situation may have caused. Please contact me if I can be of further assistance in this matter.

Sincerely,

**Report Department** 

SGS North America Inc.

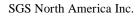


#### CONTINUOUS SERVICE IMPROVEMENT!

SGS North America Inc.

Our goal is to continuously improve our service to you. Please share your ideas about how we can serve you better at EHS.US.CustomerCare@sgs.com. Your feedback is appreciated!




Mid-Atlantic 2235 US Highway 130 Dayton, NJ 08810, USA t+1 (0)732 329 0200 www.sgs.com

### **Sections:**

# **Table of Contents**

-1-

| Section 1: Sample Summary                        | 4  |
|--------------------------------------------------|----|
| Section 2: Case Narrative/Conformance Summary    |    |
| Section 3: Summary of Hits                       | 6  |
| Section 4: Sample Results                        | 7  |
| <b>4.1:</b> JC94245-1: ETMW-1                    |    |
| Section 5: Misc. Forms                           | 9  |
| 5.1: Chain of Custody                            | 10 |
| <b>5.2:</b> MCP Form                             | 12 |
| 5.3: Sample Tracking Chronicle                   | 13 |
| 5.4: QC Evaluation: MA MCP Limits                | 14 |
| Section 6: General Chemistry - QC Data Summaries | 15 |
| 6.1: Method Blank and Spike Results Summary      | 16 |





### **Sample Summary**

EnviroTrac Ltd.

**Job No:** JC94245

GFI Westminster, 100 Simplex Drive, Westminster, MA

| Sample<br>Number | Collected<br>Date | l<br>Time By | Received | Matr<br>Code |              |   | Client<br>Sample ID |
|------------------|-------------------|--------------|----------|--------------|--------------|---|---------------------|
| JC94245-1        | 08/30/19          | 10:15 AL     | 08/30/19 | AQ           | Ground Water | I | ETMW-1              |

#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: EnviroTrac Ltd. Job No JC94245

Site: GFI Westminster, 100 Simplex Drive, Westminster, MA Report Date 9/6/2019 11:21:56 AM

On 08/30/2019, 1 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. at a maximum corrected temperature of 2.8 C. Samples were intact and chemically preserved, unless noted below. A SGS North America Inc. Job Number of JC94245 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Compounds qualified as out of range in the continuing calibration summary report are acceptable as per method requirements when there is a high bias but the sample result is non-detect.

#### General Chemistry By Method EPA 335.4/LACHAT

Matrix: AQ Batch ID: GP23454

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

SGS North America Inc. certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting the Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS North America Inc. is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by SGS North America Inc indicated via signature on the report cover

Page 1 of 1

**Summary of Hits Job Number:** JC94245

**Account:** EnviroTrac Ltd.

**Project:** GFI Westminster, 100 Simplex Drive, Westminster, MA

**Collected:** 08/30/19

Lab Sample ID Client Sample ID Result/
Analyte Qual RL MDL Units Method

JC94245-1 ETMW-1

No hits reported in this sample.





### Dayton, NJ

## Section 4

| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |

### **Report of Analysis**

Page 1 of 1

Client Sample ID: ETMW-1 Lab Sample ID: JC94245-1

 Lab Sample ID:
 JC94245-1
 Date Sampled:
 08/30/19

 Matrix:
 AQ - Ground Water
 Date Received:
 08/30/19

Percent Solids: n/a

**Project:** GFI Westminster, 100 Simplex Drive, Westminster, MA

### **General Chemistry**

| Analyte | Result   | RL    | MDL    | Units | DF | Analyzed By       | Method           |
|---------|----------|-------|--------|-------|----|-------------------|------------------|
| Cyanide | 0.0041 U | 0.010 | 0.0041 | mg/l  | 1  | 09/05/19 16:09 KI | EPA 335.4/LACHAT |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL







Dayton, NJ

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- MCP Form
- Sample Tracking Chronicle
- QC Evaluation: MA MCP Limits

らい ACCUTEST

(घा

CHAIN OF CUSTODY

SGS Accutest - Dayton

| ACCUIE                                                | .oi \              |                      | 2235 I<br>TEL. 732-32 |               | 0, Daytor          |               |              | 100     |          |          |                 |                | - 01                | r sakin | 5759      | 24       | 26         | B      | ottle Orde | er Control # |               |                 |                                                              |
|-------------------------------------------------------|--------------------|----------------------|-----------------------|---------------|--------------------|---------------|--------------|---------|----------|----------|-----------------|----------------|---------------------|---------|-----------|----------|------------|--------|------------|--------------|---------------|-----------------|--------------------------------------------------------------|
|                                                       |                    |                      | TEL. /32-32           |               | .accutest.c        |               | 499/34       | +60     |          |          |                 |                | SGS Acc             | utést Q | iote#     |          |            | S      | GS Accur   | est Job#     | 10            | 9               | 1245                                                         |
| Client / Reporting Information                        |                    |                      | Project               | Inform        | ation              |               |              | N. P.   |          |          | Mark 198        |                | 8                   | Reg     | uestec    | Anal     | /sis ( s   | ee TE  | ST CO      | DE shee      | et)           | -               | Matrix Codes                                                 |
| Envintrac Ltd.                                        | Project Name:      | I Wesh               | ninste                | x             |                    |               |              |         |          |          |                 |                |                     | *       |           |          |            |        |            |              |               |                 | DW - Drinking Water<br>GW - Ground Water                     |
| 2 marchantstreet, suite 2                             | Street<br>100 Simi | olex Dni<br>ninster  | re state              | Billing       | Information        | on ( if diffe | erent fr     | om Re   | port t   | o)       |                 | 800            |                     | 300     |           |          |            |        |            |              |               |                 | WW - Water<br>SW - Surface Water<br>SO - Soil                |
| Shuon MA 02067 Project Contact  E-mail                | Westn<br>Broject#  | nnster               | MÃ                    | Street A      |                    |               |              |         |          |          |                 |                | 7                   | ダル      |           |          |            |        |            |              |               |                 | SL- Sludge<br>SED-Sediment<br>OI - Oil<br>LIQ - Other Liquid |
| D. Tomassi denabe environme.com                       |                    |                      |                       |               |                    |               |              |         |          |          |                 |                | 35                  | ۷       |           |          |            |        |            |              |               |                 | AIR - Air<br>SOL - Other Solid                               |
| Thore # 781 - 79.3 - 00.7 4                           | Client Purchase    |                      |                       | City          |                    |               | s            | tate    |          |          | Zip             |                | by3                 | 9       |           |          |            |        |            |              |               |                 | WP - Wipe<br>FB-Field Blank<br>EB-Equipment Blank            |
| A. Labella                                            | Project Manage     |                      | Collection            | Attentio      | n:<br>—            |               |              | Numbe   | r of pre | herner   | Bottlee         |                | ·                   | rid     |           |          |            |        |            |              |               |                 | RB- Rinse Blank<br>TB-Trip Blank                             |
| SGS Accollect Sample # Field ID / Point of Collection | MEQH/DI Vial #     | Date                 | Time                  | Sampled<br>by | Matrix             | # of bottles  | Π.           | T       | H2SO4    | ě        | T.,,            | other          | Cyanide             | Ú16.    |           |          |            |        |            |              |               |                 | LAB USE ONLY                                                 |
| FTMW-1                                                |                    | 8/30/19              | 10:15                 | AL            | 6W                 | 1             |              |         | 1        | Ħ        | 1               | Ĭ              | X                   | *       | 3         |          |            |        | _          |              | $\top$        |                 |                                                              |
|                                                       |                    | 1. 1.                |                       |               |                    |               | Ш            |         |          |          |                 | П              |                     |         |           |          |            |        |            |              |               |                 | 600                                                          |
|                                                       |                    |                      | ļ                     | _             |                    |               |              | $\perp$ | 1        | Ш        | 1               | Ш              |                     |         |           |          |            |        |            |              |               |                 |                                                              |
|                                                       |                    | -                    |                       |               | ļ                  |               |              | +       | _        | $\dashv$ | +               | $\dashv$       |                     |         |           |          | -          | -      | $\dashv$   | -            | +             | -               |                                                              |
|                                                       |                    |                      |                       | <del> </del>  | -                  |               | +            | _       | +        | H        | +               | +              |                     |         |           | -        | -          | +      | +          | -            | +             | -               |                                                              |
|                                                       |                    |                      | IN                    | TIAL          | ASESS              | MENT          | T            | H       | か        | Ħ        | $\dagger$       |                |                     |         |           |          |            | _      |            |              |               |                 |                                                              |
|                                                       |                    |                      |                       | i             |                    |               |              |         | 1        | П        |                 |                |                     |         |           |          |            |        |            |              | \$G:          | -AC             | LITEST                                                       |
|                                                       |                    |                      |                       | PEL V         | ERIFIC             | AHON          | $\vdash$     | $\pm$   | =        | Ш        |                 | Ц              |                     |         |           |          |            |        |            |              | ٨             | 1ARL            | UTEST<br>OR /30                                              |
|                                                       |                    | 1                    |                       |               |                    |               | Н            | Н       | _        | Н        | +               | Н              |                     |         |           | _        |            | _      | _          | _            | 4             | ļ               | 012-                                                         |
|                                                       |                    |                      |                       | -             |                    |               | $\vdash$     | +       | +        | Н        | +               | H              |                     |         |           |          | -          | +      | +          | +            | +-            | -               |                                                              |
| Turnaround Time ( Business days)                      |                    |                      |                       |               |                    |               | Delive       |         | inform   |          |                 | - j            |                     |         |           |          |            |        |            | pecial Ins   |               |                 | 4                                                            |
| Std. 10 Business Days                                 | Approved By (SGS   | Accutest PM): / Date |                       | 🔀             | Commerc<br>Commerc | ial "B" ( L   | evel 2)      |         | E        |          | ASP C           | atego<br>atego |                     |         | oth       | ver      | = 1        | 25     | 0 m        | LN           | a OF          | 180             | <b>s</b> corbic                                              |
| 5 Day RUSH 3 Day RUSH                                 |                    |                      |                       |               | FULLT1 (           |               | 4)           |         | E        | J        | te For<br>D For |                |                     |         | aci       | d ø      | ree        | nec    | l pl       | las Hi       | c bo          | Hle             | ON HOLD                                                      |
| 2 Day RUSH 1 Day RUSH                                 |                    | <del></del>          |                       |               | Commerc<br>NJ Data |               | Ovali        | hı Pro  |          | Oth      |                 |                | -                   |         | N P       | Res      | ort        | Ra     | مهرارا     | ا SG         | S-AC<br>Mar   | (1)!!<br>  U.C. | >                                                            |
| other                                                 |                    |                      |                       | ı             | rcial "A" = F      | Results Or    | ıly, Con     | nmerci  | al "B" : | Resu     | lts + C         | C Sur          | nmary               |         | <u>RC</u> | Gu       | <u>5 –</u> | ति     |            | X C          | nlori         | de=             | ON HOLD                                                      |
| Emergency & Rush T/A data available VIA Lablink       | Sa                 | mple Custody m       | ust be)docum          |               | uced = Res         |               |              |         |          |          |                 | includ         | ding co             |         | Carrip    | e inve   | entory     | s veri | fied up    | on rece      | ∍ipt in 1     | he Lal          | ooratory                                                     |
| Religion of the Park Time                             | 9 13:30            | Received By          | ZX                    | in            | 7                  |               | Relinqu<br>2 |         |          |          | En              | 11             | _                   |         | k         | ate Ting | 9 14       | 0 2    | celved B   | Wall         | m             | £               | en.                                                          |
| 3 Relinguished Date Time:                             | 7 1900             | Received By: 7       | -cl G                 | ,             |                    |               | Relinqu<br>4 | uished  | ву:      | ed       | Œ               | 7              |                     |         | 8         | 业        | 4 8        | 3 1/1  | pelved E   | J. J.        | $\overline{}$ | _               | 1                                                            |
| Relinquished by: Date Time:                           |                    | Received By:<br>5    |                       |               |                    |               | Custod       | ly Seal | 38       | 5        |                 |                | ntact<br>Not intact |         | Preserve  |          | applicable |        |            | On<br>Y /    | low           | Coole           | r Temp: 2,9°C                                                |
| Form SM000 01 CDay Data 01/24/C                       |                    |                      |                       |               |                    |               |              | , -     |          |          |                 |                |                     |         |           |          |            |        |            |              |               | -               | Roy Fo                                                       |

JC94245: Chain of Custody Page 1 of 2

### **SGS Sample Receipt Summary**

| Job Number:                 | JC94245          | Client:                       |              | Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              |       |          |
|-----------------------------|------------------|-------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|----------|
| Date / Time Received:       | 8/30/2019 2:30:0 | 0 PM Deli                     | very Method: | Airbill #'s:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |       |          |
| Cooler Temps (Raw Me        | ,                | , ,                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
| Cooler Temps (Co            | rrected) C: Coo  | ier 1: (2.8);                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
| Cooler Security             | Y or N           |                               | Y or N       | Sample Integrity - Documentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Υ                                            | or N  |          |
| 1. Custody Seals Present:   | lacksquare       | <ol><li>COC Present</li></ol> | :: 🔽 🗆       | Sample labels present on bottles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>✓</b>                                     |       |          |
| 2. Custody Seals Intact:    | <b>☑</b> □ 4     | I. Smpl Dates/Time            | e OK         | Container labeling complete:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>✓</b>                                     |       |          |
| Cooler Temperature          | <u>Y or I</u>    | <u>N_</u>                     |              | 3. Sample container label / COC agree:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\checkmark$                                 |       |          |
| 1. Temp criteria achieved:  | <b>~</b> [       |                               |              | Sample Integrity - Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Y</u>                                     | or N  |          |
| 2. Cooler temp verification | n: IR Gu         | n                             |              | Sample recvd within HT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>✓</b>                                     |       |          |
| 3. Cooler media:            | Ice (Ba          | ng)                           |              | All containers accounted for:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —<br>✓                                       |       |          |
| 4. No. Coolers:             | 1                |                               |              | 3. Condition of sample:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                            | ntact |          |
| Quality Control_Preser      | vation Y or      | N N/A                         |              | Sample Integrity - Instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Υ                                            | or N  | N/A      |
| 1. Trip Blank present / coo | oler: [          |                               |              | Analysis requested is clear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>.                                    </u> |       | 14/7     |
| 2. Trip Blank listed on CO  | c: 🗆 [           |                               |              | National Street Street Street     Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Street Stree |                                              | ✓     |          |
| 3. Samples preserved pro    | perly: 🔽 [       |                               |              | Sufficient volume recvd for analysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>□</b>                                     |       |          |
| 4. VOCs headspace free:     | _                | _<br>] <b>v</b>               |              | Compositing instructions clear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       | <b>~</b> |
| voos noadopado nos.         |                  | 🔻                             |              | 5. Filtering instructions clear:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |       | <u> </u> |
|                             |                  |                               |              | 5. Tilleting instructions clear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ш                                            |       |          |
| Test Strip Lot #s:          | pH 1-12:         | 229517                        | pH 12+:      | 208717 Other: (Specify)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
| Comments                    |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
|                             |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
| SM089-03                    |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |
| Rev. Date 12/7/17           |                  |                               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                              |       |          |

JC94245: Chain of Custody

Page 2 of 2



### Massachusetts Department of Environmental Protection Bureau of Waste Site Cleanup

| WSC-CAM      | Exhibit VII A  |
|--------------|----------------|
| July 1, 2010 | Revision No. 1 |
| Final        |                |

### Exhibit VII A-2: MassDEP Analytical Protocol Certification Form

|        |                                 |                        | Ма                          | ssDEP Analytical F                                                 | Protocol Certificati                    | on Form                          |          |     |                       |    |
|--------|---------------------------------|------------------------|-----------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------|----------|-----|-----------------------|----|
| Labo   | ratory Name:                    |                        | SGS North America           | Inc Dayton                                                         |                                         | Project #:                       | JC942    | 245 |                       |    |
| Proje  | ct Location:                    |                        | GFI Westminster, 10         | 00 Simplex Drive, We                                               | estminster, MA                          | MADEP RTN                        | None     |     |                       |    |
| This f | form provides of JC94245-1      | certificat             | ions for the following      | data set: list Labora                                              | tory Sample ID Nur                      | nbers(s)                         |          |     |                       |    |
|        | Test method:                    | EPA 33                 | 5.4/LACHAT                  |                                                                    |                                         |                                  |          |     |                       |    |
|        |                                 |                        | ater/Surface Water (X)      | Soil/Sediment ()                                                   | Drinking Water (                        | ) Air ( )                        |          |     | Other                 | () |
| CAM    | Protocol (check                 | k all that a           | apply below):               |                                                                    |                                         |                                  |          |     |                       |    |
|        | 8260 VOC (                      | ()                     | 7470/7471 Hg ()             | MassDEP VPH ()                                                     | 8081 Pesticides (                       | ) 7196 Hex Cr                    | ()       |     | Mass DEP APH          | () |
|        | CAM IIA                         |                        | CAM III B                   | CAM IV A                                                           | CAM V B                                 | CAM VI B                         |          |     | CAM IX A              |    |
|        | 8270 SVOC (<br>CAM II B         | )                      | 7010 Metals ()<br>CAM III C | MassDEP EPH () CAM IV B                                            | 8151 Herbicides (<br>CAM V C            | ) 8330 Explosives<br>CAM VIII A  | ()       |     | TO-15 VOC<br>CAM IX B | () |
|        | 6010 Metals ( )<br>CAM III A    |                        | 6020 Metals ()<br>CAM III D | 8082 PCB ()<br>CAM V A                                             | 9014 Total (<br>Cyanide/PAC<br>CAM VI A | ) 6860 Perchlorate<br>CAM VIII B | ()       |     |                       |    |
|        | Affirmative R                   | Respons                | es to Questions A           | Through F are requi                                                | red for "Presump                        | ive Certainty status             | 5        |     |                       |    |
| A      | properly prese<br>method holdin | erved (in<br>ng times: | cluding temperature)<br>?   | onsistent with those in the field or labora                        | tory, and prepared/a                    | analyzed within                  | 1        | Yes | ☐ No                  |    |
|        | l .                             | •                      | ethod(s) and all asso       | ciated QC requireme                                                | ents specified in the                   | selected CAM                     |          | .,  |                       |    |
| В      | protocol(s) fol                 |                        | ective actions and ar       | nalytical response ac                                              | tions specified in the                  | e selected CAM                   | 1        | Yes | □ No                  |    |
| С      |                                 |                        |                             | erformance standard                                                |                                         |                                  | 1        | Yes | □No                   |    |
| D      |                                 | rance an               | d Quality Control Gu        | the reporting requirer<br>hidelines for the Acqu                   |                                         | AM VII A,                        | <b>√</b> | Yes | □No                   |    |
| E      |                                 | and AP                 | H Methods only: Wa          | s each method cond<br>ethod(s) for a list of s                     |                                         |                                  |          | Yes | □No                   |    |
|        | b. APH and T                    | О-15 Ме                | ethods only: Was the        | complete analyte lis                                               | t reported for each                     | method?                          |          | Yes |                       |    |
| _ ا    |                                 |                        |                             | performance standa                                                 |                                         |                                  | <b>✓</b> | Yes | □No                   |    |
| F      | •                               |                        | •                           | luding all "No" respo                                              |                                         |                                  |          |     |                       |    |
|        | Responses to                    | o questi               | ions G, H, and I belo       | ow is required for "l                                              | Presumptive Certa                       | inty" status                     |          |     |                       |    |
| G      | selected CAM                    | 1 protoco              | ols                         | M reporting limits sp                                              |                                         |                                  | 4        | Yes |                       | 1  |
|        | and represen                    | ntativene              | ess requirements de         | sumptive Certainty'<br>escribed in 310 CM                          | R 40.1056(2)(k) and                     |                                  | data ı   |     |                       |    |
| Н      |                                 |                        |                             | fied in the CAM proto                                              |                                         |                                  | 7        | Yes |                       |    |
| 1      |                                 |                        |                             | alyte list specified in t                                          | •                                       |                                  | <b>✓</b> | Yes | □ No                  | 1  |
|        | All Negative                    | respons                | ses must be addres          | sed in an attached i                                               | Environmental Lab                       | oratory case narra               | tive.    |     |                       |    |
| inqui  | iry of those re                 | esponsil               | ole for obtaining the       | penalties of perjury<br>information, the m<br>dge and belief, accu | aterial contained i                     | n this                           |          |     |                       |    |
|        | ature:                          | ., to the              | Wenn?                       | ago ana benen accu                                                 | ·                                       | eneral Manager                   |          |     |                       |    |
| Print  | ed Name:                        |                        | Mike Earp                   |                                                                    | Date:                                   | 06-Sep-19                        |          |     |                       |    |
|        |                                 |                        |                             |                                                                    |                                         |                                  |          |     |                       |    |

## **Internal Sample Tracking Chronicle**

EnviroTrac Ltd.

**Job No:** JC94245

GFI Westminster, 100 Simplex Drive, Westminster, MA

| Sample<br>Number    | Method               | Analyzed        | Ву     | Prepped     | Ву     | Test Codes |
|---------------------|----------------------|-----------------|--------|-------------|--------|------------|
| JC94245-1<br>ETMW-1 | Collected: 30-AUG-19 | 10:15 By: AL    | Receiv | ved: 30-AUG | i-19 B | y: DDH     |
| JC94245-1           | EPA 335.4/LACHAT     | 05-SEP-19 16:09 | KI     | 05-SEP-19   | JW     | CN         |

Page 1 of 1

4

**QC Evaluation: MA MCP Limits** 

Job Number: JC94245 Account: EnviroTrac Ltd.

**Project:** GFI Westminster, 100 Simplex Drive, Westminster, MA

**Collected:** 08/30/19

| QC Sample ID | CAS# | Analyte | Sample Result Result Units Limits |
|--------------|------|---------|-----------------------------------|
|              |      |         | Type Type                         |

No MA MCP Limits Found.

<sup>\*</sup> Sample used for QC is not from job JC94245



## General Chemistry

Dayton, NJ

### QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JC94245
Account: ENVMAS - EnviroTrac Ltd.
Project: GFI Westminster, 100 Simplex Drive, Westminster, MA

| Analyte | Batch ID        | RL    | MB<br>Result | Units | Spike<br>Amount | BSP<br>Result | BSP<br>%Recov | QC<br>Limits |
|---------|-----------------|-------|--------------|-------|-----------------|---------------|---------------|--------------|
| Cyanide | GP23454/GN99586 | 0.010 | 0.0          | mg/l  | 0.0833          | 0.0822        | 98.7          | 90-110%      |

Associated Samples: Batch GP23454: JC94245-1 (\*) Outside of QC limits

JC94245

ATTACHMENT C
Dilution Factor Calculations

From: Ruan, Xiaodan (DEP)
To: Dena Tomassi

Cc: Vakalopoulos, Catherine (DEP)

Subject: RE: RGP 7Q10 and Dilution Factor review Date: Friday, October 18, 2019 12:30:10 PM

Attachments: <u>image002.png</u>

image003.png image004.png

100 Simplex Drive, Westminster, MA.pdf

Hi Dena,

Based on the description and the map of the discharge location, I also run StreamStats, but using a different point (42.556501, -71.914121) that is assumed to be the closest to the point where discharge enters the daylight receiving water. The StreamStats did not generate a 7Q10 (see attached report), therefore, it is determined that there will be no dilution for this proposed discharge at 100 Simplex Drive, Westminster, MA.

To assist you with filling out the NOI for coverage under the RGP, the nearest downstream waterbody that has a segment ID is Round Meadow Pond, identified as MA81114. Round Meadow Pond is listed under Category 3 "No uses assessed" in the *Final Massachusetts Year 2014 Integrated List of Waters*.

I checked the RTN number in your original email and it appears that the site at 100 Simplex Drive, Westminster, MA is a *current* MCP site, therefore, you do not need to apply with MassDEP.

Please let me know if you have any questions.

Thanks, Xiaodan

**From:** Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@mass.gov>

Sent: Tuesday, October 15, 2019 6:41 PM

To: Ruan, Xiaodan (DEP) <xiaodan.ruan@mass.gov>

Cc: 'Dena Tomassi' <denat@envirotrac.com>

**Subject:** FW: RGP 7Q10 and Dilution Factor review

Hi Xiaodan,

Please let me know if you have time to look at this tomorrow (Wednesday).

Thanks, Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Dena Tomassi [mailto:denat@envirotrac.com]

Sent: Tuesday, October 15, 2019 4:35 PM

To: Vakalopoulos, Catherine (DEP)

**Subject:** RGP 7Q10 and Dilution Factor review

Good afternoon Catherine,

I am in the process of generating a NOI for an RGP. The RGP is needed for the treatment and discharge of dewatered groundwater during construction at a site in Westminster, MA. Treatment is required for chlorinated solvents (related to RTN 2-10229) in groundwater.

Treated water will be discharged into an on-site catch basin, which discharges to a drainage swale. Water which enters the swale migrates through wetlands, two fire suppression ponds, and other perennial/intermittent streams, which ultimately discharge to Round Meadow Pond (see attached Figures).

As described in the RGP instructions, I used StreamStats to calculate the dilution factor (both also attached). The 7Q10 is 0.128 cubic feet per second and the calculated dilution factor is 1.48.

Please review and let me know if you have any questions or if you require additional information.

Thanks,

Dena

### **Dena Tomassi**



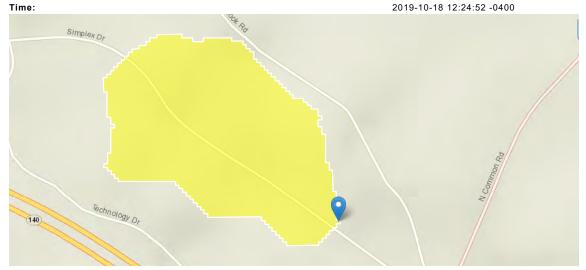
EnviroTrac Ltd.

phone: 781.793.0074 | mobile: 201.988.7888 | email: <u>denat@envirotrac.com</u> 2 Merchant Street Suite 2 Sharon, MA 02067 | <u>https://envirotrac.com</u>



StreamStats Page 1 of 3

StreamStats Page 2 of 3


### 100 Simplex Drive, Westminster, MA

Region ID:

Workspace ID:

Clicked Point (Latitude, Longitude):

MA MA20191018162435715000 42.55646, -71.91365



| Basin Characteristics |                                                     |         |                      |
|-----------------------|-----------------------------------------------------|---------|----------------------|
| Parameter Code        | Parameter Description                               | Value   | Unit                 |
| DRNAREA               | Area that drains to a point on a stream             | 0.1     | square miles         |
| BSLDEM250             | Mean basin slope computed from 1:250K DEM           | 2.637   | percent              |
| DRFTPERSTR            | Area of stratified drift per unit of stream length  | -100000 | square mile per mile |
| MAREGION              | Region of Massachusetts 0 for Eastern 1 for Western | 0       | dimensionless        |

| Parameter Code             | Parameter Name                         |       | Value   | Units                | Min Limit | Max Limit |
|----------------------------|----------------------------------------|-------|---------|----------------------|-----------|-----------|
| DRNAREA                    | Drainage Area                          |       | 0.1     | square miles         | 1.61      | 149       |
| BSLDEM250                  | Mean Basin Slope from 250K DEM         |       | 2.637   | percent              | 0.32      | 24.6      |
| DRFTPERSTR                 | Stratified Drift per Stream Length     |       | -100000 | square mile per mile | 0         | 1.29      |
| MAREGION                   | Massachusetts Region                   |       | 0       | dimensionless        | 0         | 1         |
| Low-Flow Statistics Flow R | Leport[Statewide Low Flow WRIR00 4135] | Value |         |                      | nit       |           |

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

StreamStats Page 3 of 3

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.3.9

ATTACHMENT D Historic Places

### **National Register of Historic Places**

| Ref#     | Property Name                                         | Status | Restricted<br>Address | Name of Multiple<br>Property Listing | State         | County    | City        |
|----------|-------------------------------------------------------|--------|-----------------------|--------------------------------------|---------------|-----------|-------------|
| 83000612 | Westminster Village-Academy Hill<br>Historic District | Listed | FALSE                 |                                      | MASSACHUSETTS | Worcester | Westminster |
| 87000374 | Wood, Ahijah, House                                   | Listed | FALSE                 |                                      | MASSACHUSETTS | Worcester | Westminster |
| 83000614 | Wood, Ezra-Levi Warner Place                          | Listed | FALSE                 |                                      | MASSACHUSETTS | Worcester | Westminster |
| 87000375 | Wood, Nathan, House                                   | Listed | FALSE                 |                                      | MASSACHUSETTS | Worcester | Westminster |

### **National Register of Historic Places**

| Ref#     | Property Name                                         | Street & Number                                                            | Listed<br>Date | NHL Designated<br>Date | Architects/B<br>uilders | Federal<br>Agencies |
|----------|-------------------------------------------------------|----------------------------------------------------------------------------|----------------|------------------------|-------------------------|---------------------|
| 83000612 | Westminster Village-Academy Hill<br>Historic District | Bacon, Adams, Main, Dawley, Academy Hill,<br>Leominster, and Pleasant Sts. | 30490          |                        | Multiple                |                     |
| 87000374 | Wood, Ahijah, House                                   | 174 Worcester Rd.                                                          | 32037          |                        | Unknown                 |                     |
| 83000614 | Wood, Ezra-Levi Warner Place                          | 165 Depot Rd.                                                              | 30504          |                        |                         |                     |
| 87000375 | Wood, Nathan, House                                   | 164 Worcester Rd.                                                          | 32036          |                        | Unknown                 |                     |

### **National Register of Historic Places**

| Ref#     | Property Name                                         | Other Names                                                     | Park Name | Significant<br>Persons | Notes | Link to record                           |
|----------|-------------------------------------------------------|-----------------------------------------------------------------|-----------|------------------------|-------|------------------------------------------|
| 83000612 | Westminster Village-Academy Hill<br>Historic District | Westminster Village and Academy Hill                            |           |                        |       | https://catalog.archives.gov/id/63797127 |
| 87000374 | Wood, Ahijah, House                                   |                                                                 |           |                        |       | https://catalog.archives.gov/id/63797111 |
| 83000614 | Wood, Ezra-Levi Warner Place                          | Nathaniel Merrill House; The Valley<br>Hotel; Levi Warner House |           | Multiple               |       | https://catalog.archives.gov/id/63797414 |
| 87000375 | Wood, Nathan, House                                   | notely zero manner mouse                                        |           |                        |       | https://catalog.archives.gov/id/63797286 |

### **MACRIS Search Results**

| Inv. No. | Property Name                                     | Street                | Town        | Year   |
|----------|---------------------------------------------------|-----------------------|-------------|--------|
| WST.A    | Westminster Village - Academy Hill Historic Dist. |                       | Westminster |        |
| WST.B    | Leominster State Forest - CCC Camp Area           |                       | Westminster |        |
| WST.C    | Leominster State Forest - Crow Hill Pond Area     |                       | Westminster |        |
| WST.D    | Wachusett Mountain State Reservation              |                       | Westminster |        |
| WST.918  | Cowee - Smith Farm Complex                        |                       | Westminster |        |
| WST.902  | First Meeting House Marker                        | Academy Hill          | Westminster | c 1935 |
| WST.29   | Merriam, Artemas House                            | 5 Academy Hill Rd     | Westminster | c 1870 |
| WST.34   | Peckham, Dea. Robert House                        | 12 Academy Hill Rd    | Westminster | 1820   |
| WST.176  | Upton School                                      | 13 Academy Hill Rd    | Westminster | 1912   |
| WST.30   | Wood, Abraham - Foote House                       | 19 Academy Hill Rd    | Westminster | 1829   |
| WST.911  | Westminster Academy Marker                        | 19 Academy Hill Rd    | Westminster | 1923   |
| WST.33   | Dustin, Alexander House                           | 22 Academy Hill Rd    | Westminster | c 1809 |
| WST.32   | Beaman, Silas House                               | 34 Academy Hill Rd    | Westminster | 1793   |
| WST.178  |                                                   | 6 Academy St          | Westminster | c 1894 |
| WST.187  | Whitman, Widow House                              | 10 Adams St           | Westminster | c 1845 |
| WST.903  | Ashburnham State Road Bridge over Phillips Brook  | Ashburnham State Rd   | Westminster | 1926   |
| WST.69   | Westminster Town Hall                             | 3 Bacon St            | Westminster | 1839   |
| WST.906  | Spanish - American War Memorial                   | 3 Bacon St            | Westminster | 1946   |
| WST.186  | Cutting, Nathan Howard House                      | 6 Bacon St            | Westminster | c 1830 |
| WST.182  | Minott, J. Nelson House                           | 7 Bacon St            | Westminster | c 1838 |
| WST.67   | Lamb, Greenlief House                             | 8 Bacon St            | Westminster | r 1840 |
| WST.68   | Ames, Jacob House                                 | 9 Bacon St            | Westminster | 1837   |
| WST.185  | Whitney, Jonas House                              | 10 Bacon St           | Westminster | 1834   |
| WST.132  | Whitney, Benjamin House                           | 11 Bacon St           | Westminster | c 1836 |
| WST.156  | Holden, Jonas House                               | 12 Bacon St           | Westminster | c 1814 |
| WST.183  | Merriam, Alfred - Whitney, Stillman House         | 13 Bacon St           | Westminster | 1850   |
| WST.70   | Whitman, Jerome House                             | 14 Bacon St           | Westminster | 1850   |
| WST.133  | Cowie, Joel House                                 | 15 Bacon St           | Westminster | 1850   |
| WST.71   | Darby, Joseph House                               | 16 Bacon St           | Westminster | c 1800 |
| WST.184  | Morse, Stedman House                              | 17 Bacon St           | Westminster | r 1835 |
| WST.72   | Raymond, Aretas House                             | 18 Bacon St           | Westminster | 1830   |
| WST.127  | Holden, Betsey House                              | 19 Bacon St           | Westminster | c 1836 |
| WST.157  | Lewis, John - Goodridge, John House               | 22 Bacon St           | Westminster | 1837   |
| WST.73   | Thurston, Moses House                             | 54 Bacon St           | Westminster | c 1778 |
| WST.144  | Bemis, William House                              | 23 Battles Rd         | Westminster | 1747   |
| WST.131  | Edgell, John - Sawyer, Amos House                 | 59 Bean Porridge Hill | Westminster | c 1800 |
| WST.117  | Conant, Thomas House                              | 6 Brooks Ave          | Westminster | c 1759 |
| WST.46   | White, James House                                | 10 Carter Rd          | Westminster | c 1798 |
| WST.37   | Miles, Reuben House                               | 34 Carter Rd          | Westminster | c 1754 |
| WST.38   | Damon, Timothy Jr. House                          | 53 Carter Rd          | Westminster | 1789   |
| WST.111  | Eager, Horatio House                              | 64 Carter Rd          | Westminster | c 1819 |
| WST.39   | Damon House, Old                                  | 71 Carter Rd          | Westminster | c 1771 |

### **MACRIS Search Results**

| Inv. No. | Property Name                                        | Street            | Town        | Year   |
|----------|------------------------------------------------------|-------------------|-------------|--------|
| WST.138  | Jackson, Edward House                                | 74 Chapel St      | Westminster | 1804   |
| WST.907  | Miles, Abner Grave Marker                            | Colony Rd         | Westminster | 1951   |
| WST.109  | Adams, George House                                  | 23 Cross Rd       | Westminster | c 1819 |
| WST.50   | Garfield, Benjamin House                             | 91 Davis Rd       | Westminster | c 1741 |
| WST.64   | Harrington, Daniel and Nancy White House             | 189 Davis Rd      | Westminster | 1834   |
| WST.160  | Seaver, John House                                   | 197 Davis Rd      | Westminster | c 1838 |
| WST.56   | Walker, Daniel House                                 | 218 Davis Rd      | Westminster | c 1789 |
| WST.208  | Bolton, Simeon L. House                              | 233 Davis Rd      | Westminster | r 1845 |
| WST.54   | Whitney, Nathan House                                | 260 Davis Rd      | Westminster | 1752   |
| WST.31   | Mann, Rev. Cyrus House                               | 6 Dawley Rd       | Westminster | c 1815 |
| WST.48   | Eager, Augustus House                                | 18 Dawley Rd      | Westminster | c 1849 |
| WST.910  | Westminster Town Pound                               | 18 Dawley Rd      | Westminster | 1810   |
| WST.211  | Erikson, Fred and Helen K. House                     | 30 Dawley Rd      | Westminster | c 1870 |
| WST.212  | Pierce, Lyman Brown and Carrie Elizabeth Vinal House | 34 Dawley Rd      | Westminster | c 1870 |
| WST.213  | Good, Maude M. House                                 | 36 Dawley Rd      | Westminster | c 1870 |
| WST.905  | New Meeting House Marker                             | Dean Hill Rd      | Westminster | 1904   |
| WST.139  | Laws, James Jr. House                                | 54 Dean Hill Rd   | Westminster | 1797   |
| WST.94   | Curtis House                                         | 57 Depot Rd       | Westminster | c 1761 |
| WST.148  | Curtis House                                         | 74 Depot Rd       | Westminster | c 1870 |
| WST.130  | Sanger, John House                                   | 4 East Gardner Rd | Westminster | c 1751 |
| WST.125  |                                                      | 5 East Rd         | Westminster | c 1800 |
| WST.123  | Brown, Jonathan House                                | 34 East Rd        | Westminster | c 1771 |
| WST.124  | Brown, Joseph House                                  | 40 East Rd        | Westminster | c 1800 |
| WST.62   | Hoar, Timothy - Benjamin, Ahija House                | 115 East Rd       | Westminster | c 1790 |
| WST.65   | Burpee Place                                         | 185 East Rd       | Westminster | c 1845 |
| WST.129  | Penniman, William House                              | 7 Eaton St        | Westminster | 1827   |
| WST.40   | Bigelow, Elisha House - Bigelow Tavern               | 51 Ellis Rd       | Westminster | c 1757 |
| WST.165  | Kenney, James House                                  | 87 Ellis Rd       | Westminster | r 1850 |
| WST.175  | Rice, Rev. Asaph House                               | 3 Foster St       | Westminster | c 1855 |
| WST.118  | Wyman, David - Rice, Sherman House                   | 15 Hanks Hill Rd  | Westminster | r 1860 |
| WST.52   | Sawin, Samuel House                                  | 10 Harrington Rd  | Westminster | c 1741 |
| WST.49   | Hosley, Joseph House                                 | 46 Harrington Rd  | Westminster | c 1741 |
| WST.57   | Baker, Richard House                                 | 68 Harrington Rd  | Westminster | c 1790 |
| WST.43   | Gately, Patrick House                                | 70 Knower Rd      | Westminster | c 1855 |
| WST.44   | Sawin, Luke House                                    | 129 Knower Rd     | Westminster | c 1835 |
| WST.47   | Darby, Andrew Jr. House                              | 104 Knowler Rd    | Westminster | c 1763 |

### **MACRIS Search Results**

| Inv. No. | Property Name                              | Street           | Town        | Year   |
|----------|--------------------------------------------|------------------|-------------|--------|
| WST.205  | Flagg, Edward R Lucander, Kustaa House     | 32 Lanes Rd      | Westminster | r 1865 |
| WST.204  | Merriam, Thomas House                      | 33 Lanes Rd      | Westminster | 1777   |
| WST.203  | Merriam, Jonas - Nickerson, Sarah House    | 45 Lanes Rd      | Westminster | c 1825 |
| WST.202  | Merriam, Caleb - Merriam, Oliver House     | 47 Lanes Rd      | Westminster | c 1800 |
| WST.55   | Mirick, George Alonzo House - Orchard, The | 79 Lanes Rd      | Westminster | 1900   |
| WST.53   | Whitney, John House                        | 98 Lanes Rd      | Westminster | 1793   |
| WST.207  |                                            | 98 Lanes Rd      | Westminster | c 2007 |
| WST.901  | Westminster World War I Memorial           | Leominster St    | Westminster | 1920   |
| WST.99   | Westminster Cracker Bakery                 | 1 Leominster St  | Westminster | c 1842 |
| WST.27   |                                            | 3 Leominster St  | Westminster | r 1770 |
| WST.195  |                                            | 4 Leominster St  | Westminster | r 1925 |
| WST.28   | Everett, Joshua House - Penniman Tavern    | 5 Leominster St  | Westminster | c 1765 |
| WST.35   | Corey, Nathan House                        | 6 Leominster St  | Westminster | 1818   |
| WST.84   | Miles, Isaac Inn                           | 8 Leominster St  | Westminster | 1801   |
| WST.181  | Baker, Adin Franklin House                 | 10 Leominster St | Westminster | c 1870 |
| WST.177  | Drury, Lyman M. House                      | 11 Leominster St | Westminster | 1892   |
| WST.179  | Miller, Frank. A House                     | 13 Leominster St | Westminster | c 1890 |
| WST.85   | Minott, Luke House                         | 14 Leominster St | Westminster | c 1827 |
| WST.180  | Merriam, Sarah House                       | 15 Leominster St | Westminster | c 1890 |
| WST.196  |                                            | 16 Leominster St | Westminster | c 1827 |
| WST.86   | Wetherbee, Joseph House                    | 24 Leominster St | Westminster | 1875   |
| WST.194  | Westminster Farmer's Cooperative Building  | 62 Leominster St | Westminster | c 1932 |
| WST.1    | Hoar, John House                           | 24 Main St       | Westminster | r 1755 |
| WST.162  | Kendall, S. Gerrish House                  | 29 Main St       | Westminster | r 1845 |
| WST.2    | Gardner Third Center School                | 30 Main St       | Westminster | 1789   |
| WST.112  | Mudge, Joseph House                        | 31 Main St       | Westminster | 1804   |
| WST.3    | Eaton, Thomas House                        | 32 Main St       | Westminster | c 1855 |
| WST.19   | Pierce, Jarvis House                       | 41 Main St       | Westminster | 1800   |
| WST.4    | Nichols, Marcus House                      | 42 Main St       | Westminster | r 1865 |
| WST.20   | Perry, Silas                               | 57 Main St       | Westminster | 1768   |
| WST.5    | Eaton, Stillman House                      | 58 Main St       | Westminster | 1850   |
| WST.113  | Kendall, Edward House                      | 65 Main St       | Westminster | r 1850 |
| WST.170  |                                            | 87 Main St       | Westminster | c 1847 |
| WST.6    | Everett, Dr. Jeremiah House                | 90 Main St       | Westminster | c 1763 |
| WST.7    | Bartlett, Dr. Daniel House                 | 94-96 Main St    | Westminster | 1780   |
| WST.164  | Westminster Hotel Bowling Alley            | 97A Main St      | Westminster | 1904   |
| WST.10   | Edgell House                               | 98 Main St       | Westminster | c 1820 |

### **MACRIS Search Results**

| Inv. No. | Property Name                              | Street             | Town        | Year   |
|----------|--------------------------------------------|--------------------|-------------|--------|
| WST.11   | Upham, Alvin House                         | 100 Main St        | Westminster | r 1820 |
| WST.8    | Lane, Mary W. House                        | 104 Main St        | Westminster | 1840   |
| WST.9    | Mayo, William House                        | 106 Main St        | Westminster | 1841   |
| WST.12   | Darby, Joseph Hossue                       | 110 Main St        | Westminster | c 1804 |
| WST.13   | Hill, David W. House                       | 112 Main St        | Westminster | 1870   |
| WST.163  | Minott, Joseph House                       | 113 Main St        | Westminster | r 1820 |
| WST.14   | First Baptist Parsonage                    | 116 Main St        | Westminster | r 1860 |
| WST.900  | Miles, Daniel C. Marker                    | 116 Main St        | Westminster |        |
| WST.21   | Second Baptist Church                      | 117 Main St        | Westminster | r 1865 |
| WST.15   | Forbush Memorial Library                   | 118 Main St        | Westminster | 1901   |
| WST.22   | Whitman, Joseph General Store              | 121 Main St        | Westminster | 1829   |
| WST.23   | Whitman, Joseph House                      | 123 Main St        | Westminster | 1830   |
| WST.24   | Universalist Church                        | 127 Main St        | Westminster | 1822   |
| WST.172  | Cutting, Jonas House                       | 128 Main St        | Westminster | c 1825 |
| WST.114  | Fire Station, Old                          | 129 Main St        | Westminster | c 1855 |
| WST.25   | Titus, Otis House                          | 133 Main St        | Westminster | c 1812 |
| WST.16   | Titus, Otis House                          | 134 Main St        | Westminster | 1823   |
| WST.199  |                                            | 135 Main St        | Westminster | 1973   |
| WST.26   | Cutler, Amos Marritt House                 | 137 Main St        | Westminster | c 1855 |
| WST.17   | First Congregational Church                | 138 Main St        | Westminster | 1942   |
| WST.904  | Westminster Soldiers - Civil War Monument  | 138 Main St        | Westminster | 1868   |
| WST.18   | Bigelow, Jabez House                       | 142 Main St        | Westminster | r 1755 |
| WST.200  |                                            | 144 Main St        | Westminster | 1909   |
| WST.121  | Baptist Parsonage                          | 2 Marshall Hill Rd | Westminster | 1836   |
| WST.171  | Fenno, Frank Carriage House                | 6 Marshall Hill Rd | Westminster | r 1850 |
| WST.88   | Bemis, Philip Jr. House                    | 25 Merriam Rd      | Westminster | r 1775 |
| WST.59   | Powers Place, Old                          | 59 Mile Hill Rd    | Westminster | 1766   |
| WST.41   | Knower, Thomas House                       | 67 Minnott Rd      | Westminster | 1780   |
| WST.42   | Sawin, Jonathan - Wheeler, Mary Dike House | 82 Minnott Rd      | Westminster | 1838   |
| WST.45   | Sawin, Jonathan House                      | 1 Minott Rd        | Westminster | r 1820 |
| WST.800  | Woodside Cemetery                          | 9 Narrows Rd       | Westminster | 1742   |
| WST.908  | Hadley - Urban Memorial Arch and Gateway   | 9 Narrows Rd       | Westminster | 1913   |
| WST.909  | Westminster Revolutionary War Monument     | 9 Narrows Rd       | Westminster | 1905   |
| WST.126  | Derby, Ezra House                          | 50 Narrows Rd      | Westminster | c 1810 |
| WST.168  | Leland, Hollis J. House                    | 90 Narrows Rd      | Westminster | r 1845 |
| WST.166  | Underwood, J. House                        | 95 Narrows Rd      | Westminster | r 1845 |
| WST.119  | Perkins, Harrison House                    | 98 Narrows Rd      | Westminster |        |
| WST.167  | Baker, Elmer House                         | 99 Narrows Rd      | Westminster | c 1830 |
| WST.103  | Wyman, Harrison House                      | 137 Narrows Rd     | Westminster | c 1845 |
| WST.120  | Lucas, Henry House                         | 139 Narrows Rd     | Westminster | r 1820 |
| WST.169  | Wyman, Benjamin House                      | 171 Narrows Rd     | Westminster | r 1825 |
| WST.89   | Wyman, David House                         | 177 Narrows Rd     | Westminster | c 1793 |
| WST.90   | Robbins, Ephraim House                     | 185 Narrows Rd     | Westminster | c 1783 |

### **MACRIS Search Results**

| Inv. No. | Property Name                                      | Street                  | Town        | Year   |
|----------|----------------------------------------------------|-------------------------|-------------|--------|
| WST.150  | Newcomb House                                      | 22 Newcomb Rd           | Westminster | r 1770 |
| WST.110  |                                                    | 7 Nichols St            | Westminster | c 1830 |
| WST.36   | White, Marshall House                              | 9 Nichols St            | Westminster | c 1820 |
| WST.115  | Bigelow, John House                                | 15 Nichols St           | Westminster | c 1808 |
| WST.77   | Rand, John House                                   | 82 North Common Rd      | Westminster | 1751   |
| WST.75   | Graves, Levi Jr. House                             | 96 North Common Rd      | Westminster | c 1850 |
| WST.76   | Morse, Farwell House                               | 102 North Common Rd     | Westminster | c 1840 |
| WST.78   | Taylor, Ebenezer House                             | 110 North Common Rd     | Westminster | c 1757 |
| WST.66   | Moore, Fairbanks and Judith Bellows House          | 2 Old Worcester Rd      | Westminster | r 1750 |
| WST.137  | Seaver, Isaac House                                | 139 Overlook            | Westminster | c 1773 |
| WST.136  | Spaulding, Merari House                            | 99 Overlook Rd          | Westminster | c 1800 |
| WST.80   | Smith, Charles House - Smith Tavern                | 21 Pierce Rd            | Westminster | 1792   |
| WST.141  | Fessenden, Timothy House                           | 1 Pleasant St           | Westminster | 1837   |
| WST.161  | Wears, Abigail House                               | 3 Pleasant St           | Westminster | c 1839 |
| WST.154  |                                                    | 4 Pleasant St           | Westminster | c 1840 |
| WST.95   | Cutting, Dr. Flavel House                          | 5 Pleasant St           | Westminster | c 1850 |
| WST.197  |                                                    | 9 Pleasant St           | Westminster | c 1930 |
| WST.87   | Hager, Joseph House                                | 11 Pleasant St          | Westminster | c 1837 |
| WST.912  | Potato Hill Road Bridge over Phillips Brook        | Potato Hill Rd          | Westminster | c 1958 |
| WST.149  | Bacon, Edward House                                | 10 Roper Rd             | Westminster | 1772   |
| WST.151  | Murdock, William House                             | 16 Roper Rd             | Westminster | c 1774 |
| WST.201  | Leominster State Forest - CCC Headquarters         | Rt 31                   | Westminster | 1933   |
| WST.914  | Leominster State Forest - CCC Camp Foundations     | Rt 31                   | Westminster | 1933   |
| WST.915  | Leominster State Forest - Crow Hill Pond           | Rt 31                   | Westminster | 1936   |
| WST.916  | Leominster State Forest - Crow Hill Pond Steps     | Rt 31                   | Westminster | 1936   |
| WST.917  | Leominster State Forest - Crow Hill Pond Dam       | Rt 31                   | Westminster | 1936   |
| WST.173  | Darby, Nathan House                                | 83 Sargent Rd           | Westminster | c 1823 |
| WST.140  | White, James House                                 | 2 Seaver St             | Westminster | c 1830 |
| WST.155  | Beard, Joseph House                                | 73 Shady Ave            | Westminster | 1777   |
| WST.79   | Whitman, Zechariah House - Whitman Tavern          | 238 South Ashburnham Rd | Westminster | c 1780 |
| WST.214  | Gilson, Merrick L. and Emeline Elvira Tucker House | 119 South St            | Westminster |        |
| WST.215  | Baker, Nathan and Eliza Burnap House               | 135 South St            | Westminster | r 1875 |
| WST.216  | Dawley, Charles C. and Katie E. Merriam House      | 154 South St            | Westminster | r 1875 |
| WST.51   | Houghton, Lemuel House                             | 6 Spruce Rd             | Westminster | 1761   |
| WST.217  | Holden, Calvin and Sarah M. Underwood House        | 9 Spruce Rd             | Westminster | 1851   |
| WST.218  | Sawin, Reuben H Foster, Josiah House               | 37 Spruce Rd            | Westminster | r 1755 |
| WST.135  | Jackson, Edward House - Town Farm                  | State Colony            | Westminster | c 1766 |
| WST.913  | State Road East Bridge over Whitman River          | State Rd East           | Westminster | 1925   |
| WST.153  | Barnes, Plympton House                             | 56 State Rd East        | Westminster | c 1840 |
| WST.152  | Raymond Saw Mill, Old                              | 69 State Rd East        | Westminster | 1761   |
| WST.147  | Merriam, Caleb House                               | 149 State Rd East       | Westminster | 1848   |
| WST.93   | Wood, Ezra - Warner, Levi Place                    | 165 State Rd East       | Westminster | c 1759 |
| WST.116  | Doty, Timothy House                                | 131 State Rd West       | Westminster | r 1825 |

### **MACRIS Search Results**

| Inv. No. | Property Name                               | Street                | Town        | Year   |
|----------|---------------------------------------------|-----------------------|-------------|--------|
| WST.81   | Warren, Simeon House                        | 2 Syd Smith Rd        | Westminster | r 1800 |
| WST.82   | Whitney, Phinneas House                     | 9 Syd Smith Rd        | Westminster | c 1788 |
| WST.146  | Stearns, Thomas House                       | 46 Town Farm Rd       | Westminster | c 1792 |
| WST.96   | Hartwell, Leander House                     | 121 Town Farm Rd      | Westminster | r 1800 |
| WST.142  | Smith, Joseph House                         | 17 Turnpike Rd        | Westminster | 1779   |
| WST.192  | Dupee, Isaac Carriage House                 | 44 Turnpike Rd        | Westminster | c 1765 |
| WST.92   | Dupee, Isaac House                          | 45 Turnpike Rd        | Westminster | c 1764 |
| WST.193  | Dupee, Isaac Barn                           | 46 Turnpike Rd        | Westminster | c 1765 |
| WST.91   | Garfield, Solomon House                     | 57 Turnpike Rd        | Westminster | c 1766 |
| WST.143  | Miles, Daniel House                         | 103 Turnpike Rd       | Westminster | c 1845 |
| WST.104  | Nelson, Gen. Miles House                    | 104 Turnpike Rd       | Westminster | c 1824 |
| WST.83   | Jackson, Josiah House                       | 85 West Main St       | Westminster | 1757   |
| WST.122  | Raymond, George - Getchell, Warren E. House | 36 West Princeton Rd  | Westminster | 1842   |
| WST.206  | Miller, Jonas House                         | 93 West Princeton Rd  | Westminster | c 1855 |
| WST.58   | Miller, Ezra House                          | 109 West Princeton Rd | Westminster | 1792   |
| WST.102  | Bemis, William - Day, Michael House         | 201 West Princeton Rd | Westminster | r 1820 |
| WST.209  | Merriam, Robert House                       | 258 West Princeton Rd | Westminster | r 1835 |
| WST.134  | Lombard, Franklin House                     | 12 Whitmanville Rd    | Westminster | c 1839 |
| WST.191  |                                             | 16 Whitney Rd         | Westminster | c 1900 |
| WST.190  |                                             | 56 Whitney St         | Westminster | c 1900 |
| WST.189  | Crowell House                               | 924 Whitney St        | Westminster | c 1780 |
| WST.210  | Rice, Aaron Clark House                     | 36 Worcester Rd       | Westminster | c 1840 |
| WST.159  | Harrington, Seth House                      | 86 Worcester Rd       | Westminster | c 1750 |
| WST.63   | Wood, Nathan House                          | 164 Worcester Rd      | Westminster | c 1756 |
| WST.174  | Wood, N. House                              | 174 Worcester Rd      | Westminster | c 1756 |
| WST.61   | Wood, Ahijah House                          | 175 Worcester Rd      | Westminster | c 1795 |
| WST.158  |                                             | 196 Worcester Rd      | Westminster | c 1800 |
| WST.60   | Williams, Isaac House                       | 302 Worcester Rd      | Westminster | c 1775 |

ATTACHMENT E
IPaC Resource List

**IPaC** 

**U.S. Fish & Wildlife Service** 

# IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

## Location

Worcester County, Massachusetts



## Local office

New England Ecological Services Field Office

**(**603) 223-2541

**(603)** 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

# Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species<sup>1</sup> and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries<sup>2</sup>).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

## **Mammals**

NAME STATUS

Northern Long-eared Bat Myotis septentrionalis No critical habitat has been designated for this species. https://ecos.fws.gov/ecp/species/9045 **Threatened** 

## Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

THERE ARE NO CRITICAL HABITATS AT THIS LOCATION.

# Migratory birds

Certain birds are protected under the Migratory Bird Treaty  $Act^{1}$  and the Bald and Golden Eagle Protection  $Act^{2}$ .

Any person or organization who plans or conducts activities that may result in impacts to migratory birds, eagles, and their habitats should follow appropriate regulations and consider implementing appropriate conservation measures, as described <u>below</u>.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Birds of Conservation Concern <a href="http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php">http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php</a>
- Measures for avoiding and minimizing impacts to birds
   <a href="http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php">http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php</a>
- Nationwide conservation measures for birds <a href="http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf">http://www.fws.gov/migratorybirds/pdf/management/nationwidestandardconservationmeasures.pdf</a>

The birds listed below are birds of particular concern either because they occur on the <u>USFWS Birds of Conservation Concern</u> (BCC) list or warrant special attention in your project location. To learn more about the levels of concern for birds on your list and how this list is generated, see the FAQ <u>below</u>. This is not a list of every bird you may find in this location, nor a guarantee that every bird on this list will be found in your project area. To see exact locations of where birders and the general public have sighted birds in and around your project area, visit the <u>E-bird data mapping tool</u> (Tip: enter your location, desired date range and a species on your list). For projects that occur off the Atlantic Coast, additional maps and models detailing the relative occurrence and abundance of bird species on your list are available. Links to additional information about Atlantic Coast birds, and other important information about your migratory bird list, including how to properly interpret and use your migratory bird report, can be found <u>below</u>.

9/20/2019 IPaC: Explore Location

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, click on the PROBABILITY OF PRESENCE SUMMARY at the top of your list to see when these birds are most likely to be present and breeding in your project area.

NAME

BREEDING SEASON (IF A
BREEDING SEASON IS INDICATED
FOR A BIRD ON YOUR LIST, THE
BIRD MAY BREED IN YOUR
PROJECT AREA SOMETIME WITHIN
THE TIMEFRAME SPECIFIED,
WHICH IS A VERY LIBERAL
ESTIMATE OF THE DATES INSIDE
WHICH THE BIRD BREEDS
ACROSS ITS ENTIRE RANGE.
"BREEDS ELSEWHERE" INDICATES
THAT THE BIRD DOES NOT LIKELY
BREED IN YOUR PROJECT AREA.)

### Bald Eagle Haliaeetus leucocephalus

This is not a Bird of Conservation Concern (BCC) in this area, but warrants attention because of the Eagle Act or for potential susceptibilities in offshore areas from certain types of development or activities.

https://ecos.fws.gov/ecp/species/1626

### Black-billed Cuckoo Coccyzus erythropthalmus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

https://ecos.fws.gov/ecp/species/9399

### **Bobolink** Dolichonyx oryzivorus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

### Canada Warbler Cardellina canadensis

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

### Cape May Warbler Setophaga tigrina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

### Prairie Warbler Dendroica discolor

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds Dec 1 to Aug 31

Breeds May 15 to Oct 10

Breeds May 20 to Jul 31

Breeds May 20 to Aug 10

Breeds Jun 1 to Jul 31

Breeds May 1 to Jul 31

Rusty Blackbird Euphagus carolinus

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Jul 20

Wood Thrush Hylocichla mustelina

This is a Bird of Conservation Concern (BCC) throughout its range in the continental USA and Alaska.

Breeds May 10 to Aug 31

# **Probability of Presence Summary**

The graphs below provide our best understanding of when birds of concern are most likely to be present in your project area. This information can be used to tailor and schedule your project activities to avoid or minimize impacts to birds. Please make sure you read and understand the FAQ "Proper Interpretation and Use of Your Migratory Bird Report" before using or attempting to interpret this report.

### Probability of Presence (■)

Each green bar represents the bird's relative probability of presence in the 10km grid cell(s) your project overlaps during a particular week of the year. (A year is represented as 12 4-week months.) A taller bar indicates a higher probability of species presence. The survey effort (see below) can be used to establish a level of confidence in the presence score. One can have higher confidence in the presence score if the corresponding survey effort is also high.

How is the probability of presence score calculated? The calculation is done in three steps:

- 1. The probability of presence for each week is calculated as the number of survey events in the week where the species was detected divided by the total number of survey events for that week. For example, if in week 12 there were 20 survey events and the Spotted Towhee was found in 5 of them, the probability of presence of the Spotted Towhee in week 12 is 0.25.
- 2. To properly present the pattern of presence across the year, the relative probability of presence is calculated. This is the probability of presence divided by the maximum probability of presence across all weeks. For example, imagine the probability of presence in week 20 for the Spotted Towhee is 0.05, and that the probability of presence at week 12 (0.25) is the maximum of any week of the year. The relative probability of presence on week 12 is 0.25/0.25 = 1; at week 20 it is 0.05/0.25 = 0.2.
- 3. The relative probability of presence calculated in the previous step undergoes a statistical conversion so that all possible values fall between 0 and 10, inclusive. This is the probability of presence score.

To see a bar's probability of presence score, simply hover your mouse cursor over the bar.

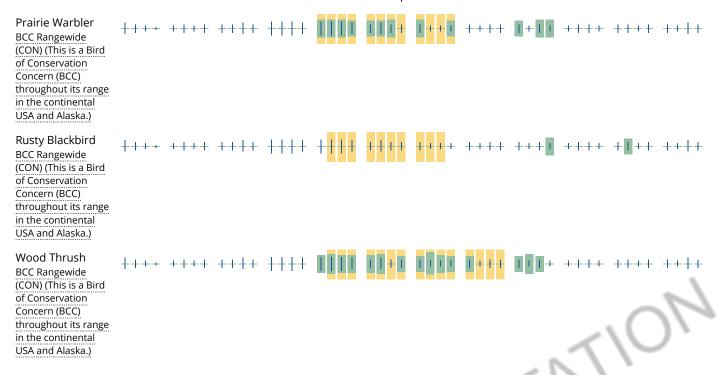
### Breeding Season (=)

Yellow bars denote a very liberal estimate of the time-frame inside which the bird breeds across its entire range. If there are no yellow bars shown for a bird, it does not breed in your project area.

### Survey Effort (I)

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps. The number of surveys is expressed as a range, for example, 33 to 64 surveys.


To see a bar's survey effort range, simply hover your mouse cursor over the bar.


### No Data (-)

A week is marked as having no data if there were no survey events for that week.

### **Survey Timeframe**

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.





### Tell me more about conservation measures I can implement to avoid or minimize impacts to migratory birds.

Nationwide Conservation Measures describes measures that can help avoid and minimize impacts to all birds at any location year round. Implementation of these measures is particularly important when birds are most likely to occur in the project area. When birds may be breeding in the area, identifying the locations of any active nests and avoiding their destruction is a very helpful impact minimization measure. To see when birds are most likely to occur and be breeding in your project area, view the Probability of Presence Summary. Additional measures and/or permits may be advisable depending on the type of activity you are conducting and the type of infrastructure or bird species present on your project site.

### What does IPaC use to generate the migratory birds potentially occurring in my specified location?

The Migratory Bird Resource List is comprised of USFWS <u>Birds of Conservation Concern (BCC)</u> and other species that may warrant special attention in your project location.

The migratory bird list generated for your project is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are a BCC species in that area, an eagle (<u>Eagle Act</u> requirements may apply), or a species that has a particular vulnerability to offshore activities or development.

Again, the Migratory Bird Resource list includes only a subset of birds that may occur in your project area. It is not representative of all birds that may occur in your project area. To get a list of all birds potentially present in your project area, please visit the AKN Phenology Tool.

# What does IPaC use to generate the probability of presence graphs for the migratory birds potentially occurring in my specified location?

The probability of presence graphs associated with your migratory bird list are based on data provided by the <u>Avian Knowledge Network (AKN)</u>. This data is derived from a growing collection of <u>survey, banding, and citizen</u> science datasets.

Probability of presence data is continuously being updated as new and better information becomes available. To learn more about how the probability of presence graphs are produced and how to interpret them, go the Probability of Presence Summary and then click on the "Tell me about these graphs" link.

### How do I know if a bird is breeding, wintering, migrating or present year-round in my project area?

To see what part of a particular bird's range your project area falls within (i.e. breeding, wintering, migrating or year-round), you may refer to the following resources: The Cornell Lab of Ornithology All About Birds Bird Guide, or (if you are unsuccessful in locating the bird of interest there), the Cornell Lab of Ornithology Neotropical Birds guide. If a bird on your migratory bird species list has a breeding season associated with it, if that bird does occur in your project area, there may be nests present at some point within the timeframe specified. If "Breeds elsewhere" is indicated, then the bird likely does not breed in your project area.

### What are the levels of concern for migratory birds?

Migratory birds delivered through IPaC fall into the following distinct categories of concern:

- 1. "BCC Rangewide" birds are <u>Birds of Conservation Concern</u> (BCC) that are of concern throughout their range anywhere within the USA (including Hawaii, the Pacific Islands, Puerto Rico, and the Virgin Islands);
- 2. "BCC BCR" birds are BCCs that are of concern only in particular Bird Conservation Regions (BCRs) in the continental USA; and
- 3. "Non-BCC Vulnerable" birds are not BCC species in your project area, but appear on your list either because of the <u>Eagle Act</u> requirements (for eagles) or (for non-eagles) potential susceptibilities in offshore areas from certain types of development or activities (e.g. offshore energy development or longline fishing).

Although it is important to try to avoid and minimize impacts to all birds, efforts should be made, in particular, to avoid and minimize impacts to the birds on this list, especially eagles and BCC species of rangewide concern. For more information on conservation measures you can implement to help avoid and minimize migratory bird impacts and requirements for eagles, please see the FAQs for these topics.

### Details about birds that are potentially affected by offshore projects

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAA NCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Bird tracking data can also provide additional details about occurrence and habitat use throughout the year, including migration. Models relying on survey data may not include this information. For additional information on marine bird tracking data, see the <u>Diving Bird Study</u> and the <u>nanotag studies</u> or contact <u>Caleb Spiegel</u> or <u>Pam Loring</u>.

### What if I have eagles on my list?

If your project has the potential to disturb or kill eagles, you may need to <u>obtain a permit</u> to avoid violating the Eagle Act should such impacts occur.

#### Proper Interpretation and Use of Your Migratory Bird Report

The migratory bird list generated is not a list of all birds in your project area, only a subset of birds of priority concern. To learn more about how your list is generated, and see options for identifying what other birds may be in your project area, please see the FAQ "What does IPaC use to generate the migratory birds potentially occurring in my specified location". Please be aware this report provides the "probability of presence" of birds within the 10 km grid cell(s) that overlap your project; not your exact project footprint. On the graphs provided, please also look

carefully at the survey effort (indicated by the black vertical bar) and for the existence of the "no data" indicator (a red horizontal bar). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort bar or no data bar means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds of concern have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests might be present). The list helps you know what to look for to confirm presence, and helps guide you in knowing when to implement conservation measures to avoid or minimize potential impacts from your project activities, should presence be confirmed. To learn more about conservation measures, visit the FAQ "Tell me about conservation measures I can implement to avoid or minimize impacts to migratory birds" at the bottom of your migratory bird trust resources page.

## **Facilities**

# National Wildlife Refuge lands

Any activity proposed on lands managed by the <u>National Wildlife Refuge</u> system must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGE LANDS AT THIS LOCATION.

## Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

# Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

Please note that the NWI data being shown may be out of date. We are currently working to update our NWI data set. We recommend you verify these results with a site visit to determine the actual extent of wetlands on site.

This location overlaps the following wetlands:

FRESHWATER EMERGENT WETLAND

PEM1F

FRESHWATER FORESTED/SHRUB WETLAND

PFO1E PFO1C

FRESHWATER POND

**PUBH** 

**RIVERINE** 

R5UBH

A full description for each wetland code can be found at the National Wetlands Inventory website

#### **Data limitations**

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

#### **Data exclusions**

Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

### **Data precautions**

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.