

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

10 CLIFFORD STREET BOSTON, MASSACHUSETTS

JUNE 11, 2019

Prepared For

United States Environmental Protection Agency
Office Of Ecosystem Protection
5 Post Office Square, Suite 100
Mail Code Oep06-01
Boston, Ma 02109-3912

On Behalf Of:

John B. Cruz Construction Company, Inc. 1 John Eliot Square Roxbury, MA 02119

PROJECT NO. 6690

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

June 11, 2019

United States Environmental Protection Agency Office Of Ecosystem Protection 5 Post Office Square, Suite 100 Mail Code Oep06-01 Boston, Ma 02109-3912

Attention: EPA RGP Applications Coordinator

Reference: 10 Clifford Street Roxbury, Massachusetts;

Notice of Intent for Temporary Construction Dewatering Discharge;

Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

In accordance with the provisions of the Remediation General Permit (RGP) MAG910000 that has been prepared for the Commonwealth of Massachusetts, the following is a summary of the site and groundwater quality information in support of a Notice of Intent for the temporary discharge of groundwater into the Charles River via the City of Boston storm drain system. The temporary discharge is located at 10 Clifford Street in Roxbury, Massachusetts (subject site). Refer to **Figure 1** entitled: "Project Location Plan" for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated May 9, 2019, and the subsequent authorization of the Cruz Development Corporation. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent (NOI) Form contained in the RGP permit is included in **Appendix B**, and supporting information is included in **Appendix C**. The dewatering discharge permit for the Boston Water and Sewer Commission (BWSC) is also included in **Appendix B**.

Applicant/Operator

The applicant for the Notice of Intent-Remediation General Permit is:

John B. Cruz Construction Company, Inc. 1 John Eliot Square Roxbury, MA 02119

Attention: Mr. Edgar J. Carrere

Phone: 617-445-6901

Email: ecarrere@cruzcompanies.com

Existing Conditions

Fronting onto Warren Street to the west, the subject site is bounded by Clifford Street to the south, Waverly Street to the northeast, a church to the northwest and residential properties to the east and southeast. The boundaries of the subject site are shown on the enclosed **Figure 2**.

The approximate 32,000 square-foot is an irregularly shaped parcel that is comprised of six (6) contiguous parcels of land. Currently, the subject site is occupied by the 276-290 Warren Street buildings and the 10 Clifford Street building, occupying the western and eastern/southeastern portions of the subject site, respectively. The 276-290 Warren Street buildings consist of five (5) vacant, adjoining single-story brick buildings which front onto Warren Street and the 10 Clifford Street building consists of a single-story brick and concrete warehouse fronting onto Clifford Street. The remaining portions of the subject site are covered by asphalt paved driveways, concrete walkways, and landscaped margins.

Existing ground surface across the site generally varies from about Elevation +78 along the Warren Street to Elevation +87 along Waverly Street, generally sloping toward the southeast.

Proposed Scope of Site Development

It is understood that upon demolition of the existing 1-story buildings, the proposed development will include construction of a 4-story building which will include a full below-grade garage and occupy an approximate 20,000 square-foot plan area. Based on our review of the drawings provided to us, the proposed building footprint will almost occupy the entire site, and it will be about 10 feet away from the adjacent 16 Clifford Street and 29 Waverly Street private residential properties. It is understood that the proposed garage floor slab is planned to be constructed at Elevation +68.9.

Based upon existing site grades and the planned lowest-level slab elevation of the below-grade garage of the new building, excavation of soil for construction of the proposed building foundation is estimated to range from 10.5 to 21 feet below the existing ground surface. A temporary excavation support system will be necessary to construct the proposed building foundation which is likely to consist of a drilled-in cantilevered and/or internally braced steel soldier pile and timber lagging wall.

Site Environmental Setting and Surrounding Historical Places

Based on an on-line edition of the Massachusetts Geographic Information Systems DEP Priority Resources Map (GIS Map) viewed on June 3, 2019, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of

Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site identified that there are no endangered species at or in the vicinity of the discharge location and/or discharge outfall. Based upon the above, the site is considered a Criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and correspondence are included in **Appendix C**.

The GIS Map indicates that there are no water bodies or wetland areas on the subject site. The nearest body of water is Dorchester Bay which is located approximately 9,000 feet from the subject site. The map indicates that there are no known Protected Open Space within 0.5 miles of the subject site. A copy of the Massachusetts GIS Priority Resources Map is included in **Appendix C**.

A review of the online Massachusetts Cultural Resource Information System (MACRIS) and the National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location. A copy of the MACRIS Report is included in **Appendix C**.

As further discussed below, treated construction dewatering effluent will be discharged into the City of Boston dedicated storm drain system that flows into the Charles River. The dewatering of groundwater at the site will be temporary and intermittent. Groundwater discharged as part of the proposed project will be controlled and monitored. Treatment systems will consist of temporary structures. Therefore, based on the anticipated duration of construction dewatering and the location of its discharge into the Charles River, construction dewatering activities are not considered to affect historical listings. Hence, the site meets Permit Eligibility Criterion A in accordance with Appendix III of the RGP.

Site & Release History

From its construction in 1927 through 1964, the 10 Clifford Street property was utilized as a public garage for the adjacent Warren Theater, located northwest of the subject site. Since the 1960s the 10 Clifford Street Building has been occupied by several commercial businesses and used as storage. The buildings located at 276-290 Warren Street have been utilized for commercial purposes since their construction in 1930. Specifically, the 280-290 Warren Street buildings have been occupied by a printing shop, "Chinese Laundry," and several upholstery companies between 1935 and 1950.

Based upon our review of the MA DEP online site database, Release Tracking Numbers (RTNs) are not associated with the subject site.

According to a report titled "Cleanup Evaluation, 2 and 10 Clifford Street, Roxbury District, Boston (Roxbury), Massachusetts" prepared by Storch Engineering, Inc and dated December 1987 documents the removal of five (5) underground storage tanks (USTs) from the 10 Clifford Street property. According to Storch, composite soil samples collected from the unspecified UST graves contained up to 513 parts per million (ppm) total petroleum hydrocarbons (TPH). The Massachusetts Department of Environmental Quality Engineering subsequently "closed" this release in 1988. Subsequently, in 2015, a limited Phase II Environmental Site Assessment was completed at the 10 Clifford Street site by GEI Consultants, Inc. (GEI) in the asphalt paved parking lot. The results of the assessment activities did not identify a release.

Temporary Construction Dewatering

Based upon subsurface assessment activities completed at the subject site, groundwater was observed at approximately 10-12 feet below ground surface corresponding to Elevation +69.5 and +67.5. Based upon the depth of the excavation, it is likely that only temporary and periodic sumping for dewatering will be required in connection with the construction of the proposed building. Given that the area of excavation will occupy a majority of the subject site, temporary on-site collection and recharge of groundwater may not be feasible during construction. As a result, construction dewatering will discharge collected groundwater into the storm drain system under the Remediation General Permit.

It is anticipated that the rate of construction dewatering to facilitate excavation of the fill material will be on the order of 50 gallons per minute (gpm). However, as the excavation extends into the underlying relatively impermeable glacial till deposit and bedrock, construction dewatering will decrease to approximately 25 gallons per minute. These estimates do not include surface run-off which will be removed from the excavation during periods of precipitation.

A review of available subgrade sanitary and storm sewer system plans accessed from the Boston Water and Sewer Commission (BWSC) indicate the presence of a dedicated stormwater drain system located on Warren street. Records provided by BWSC indicates that stormwater flows west from 10 Clifford Street, across Warren Street, along Dale Street. The storm drain then flows north on Regent Street, northwest on Crispus Attucks Place, and north on Washington Street where it then flows west on Ruggles street and discharges into the Stony Brook canal at approximately outfall 138. The Stony Brook flows north to the primary discharge location on the Charles River outfall CSO023 according to the BWSC shown on **Figure 3A, 3B, 3C, 3D, 3E.**

Summary of Groundwater Analysis

On April 30, 2019 McPhail Associates, LLC obtained a sample of groundwater at the subject site from monitoring well B-303. The groundwater sample was submitted to a certified laboratory for analysis for the presence of compounds required under the EPA's RGP

application, including total suspended solids (TSS), pH, total residual chlorine, volatile organic compounds (VOCs) including total benzene, toluene, ethylbenzene and xylenes (BTEX), and total recoverable metals. Analytical results of the testing of groundwater samples obtained in 2019 are summarized in **Table 1** and the laboratory data are enclosed in **Appendix D**. In addition, a surface water sample was obtained from an upstream location of the discharge into the Charles River receiving water in May 2019. The receiving water sample was analyzed for the presence of total metals, hardness and ammonia nitrogen are summarized in **Table 2**. Additionally, at the time of sample collection, the temperature and pH of the surface water sample were analyzed. The approximate location of sample collection is indicated on the enclosed **Figure 3**, and analytical test results are included in the enclosed **Appendix E**.

In summary, groundwater testing performed at the subject site has detected concentrations of suspended solids, ammonia, chloride, copper, chromium, iron, lead, and nickel. Water Quality-Based Effluent Limits (WQBELs) were calculated for each of the detected compounds. With the exception of lead, Type A, B, and C compounds do not exceed the applicable Technology Based Effluent Limits (TBELs). For detected compounds, based on calculations performed in accordance with Appendix V of the RGP, WQBEL only applies to lead.

Groundwater Treatment

Based upon the anticipated rates of construction dewatering in conjunction with the results of the above referenced groundwater analyses, it is our opinion that one 10,000-gallon capacity settling tank and bag filters, in series will be used to settle out and remove particulate matter as well as likely reduce lead concentrations in the effluent to meet limits established by the US EPA prior to discharge. A schematic of the treatment system is shown on **Figure 4**.

A Best Management Practices Plan (BMPP) has been prepared as **Appendix F** for the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring.

Summary and Conclusions

The purpose of this report is to summarize site environmental conditions and groundwater data to support a Notice of Intent to discharge under the Remediation General Permit, for off-site discharge of dewatered groundwater which will be encountered during the redevelopment at 10 Clifford Street located in Roxbury, Massachusetts. The groundwater testing results reported in this application have been provided to the site owner.

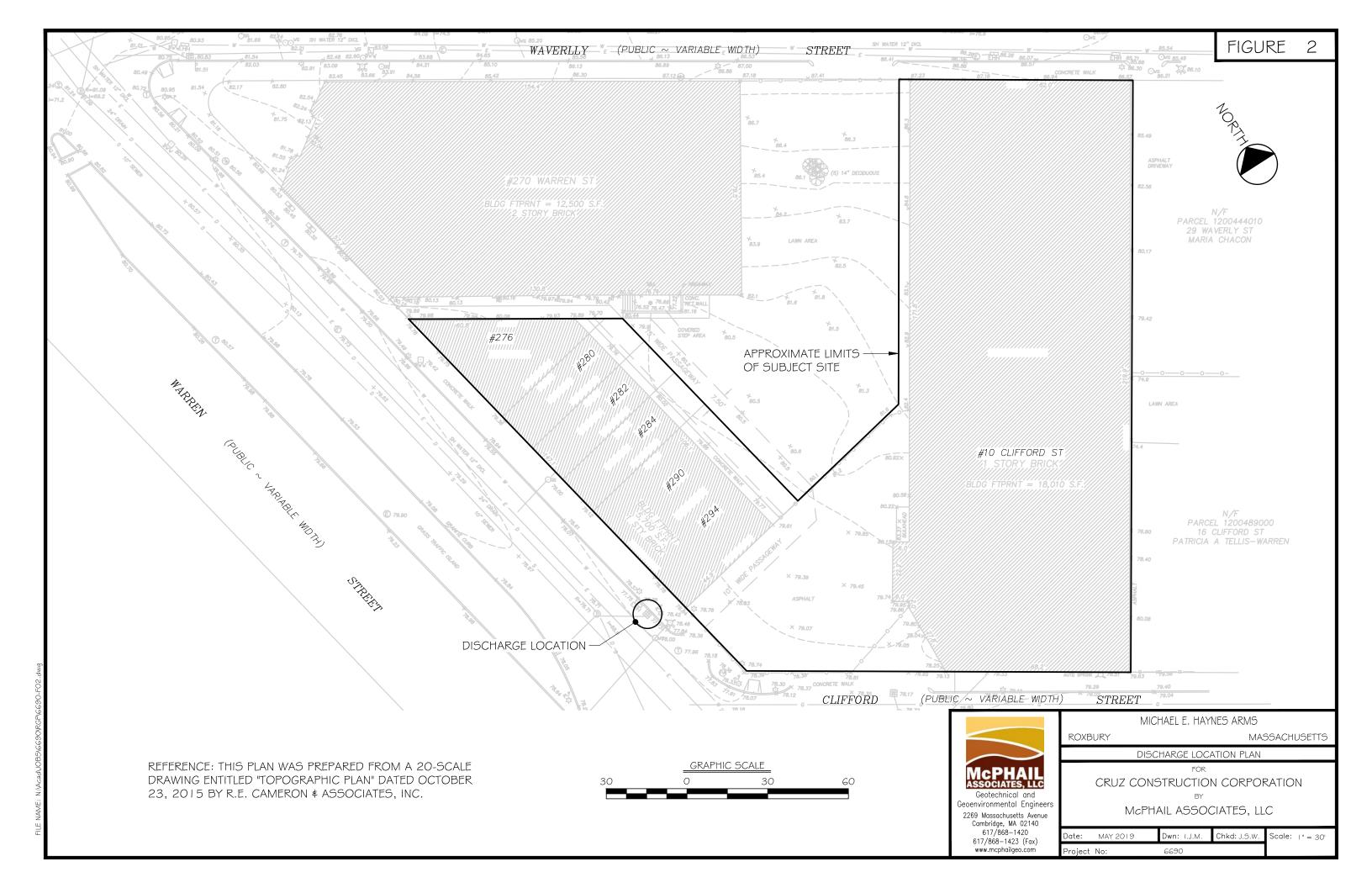
Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet the effluent limits established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment

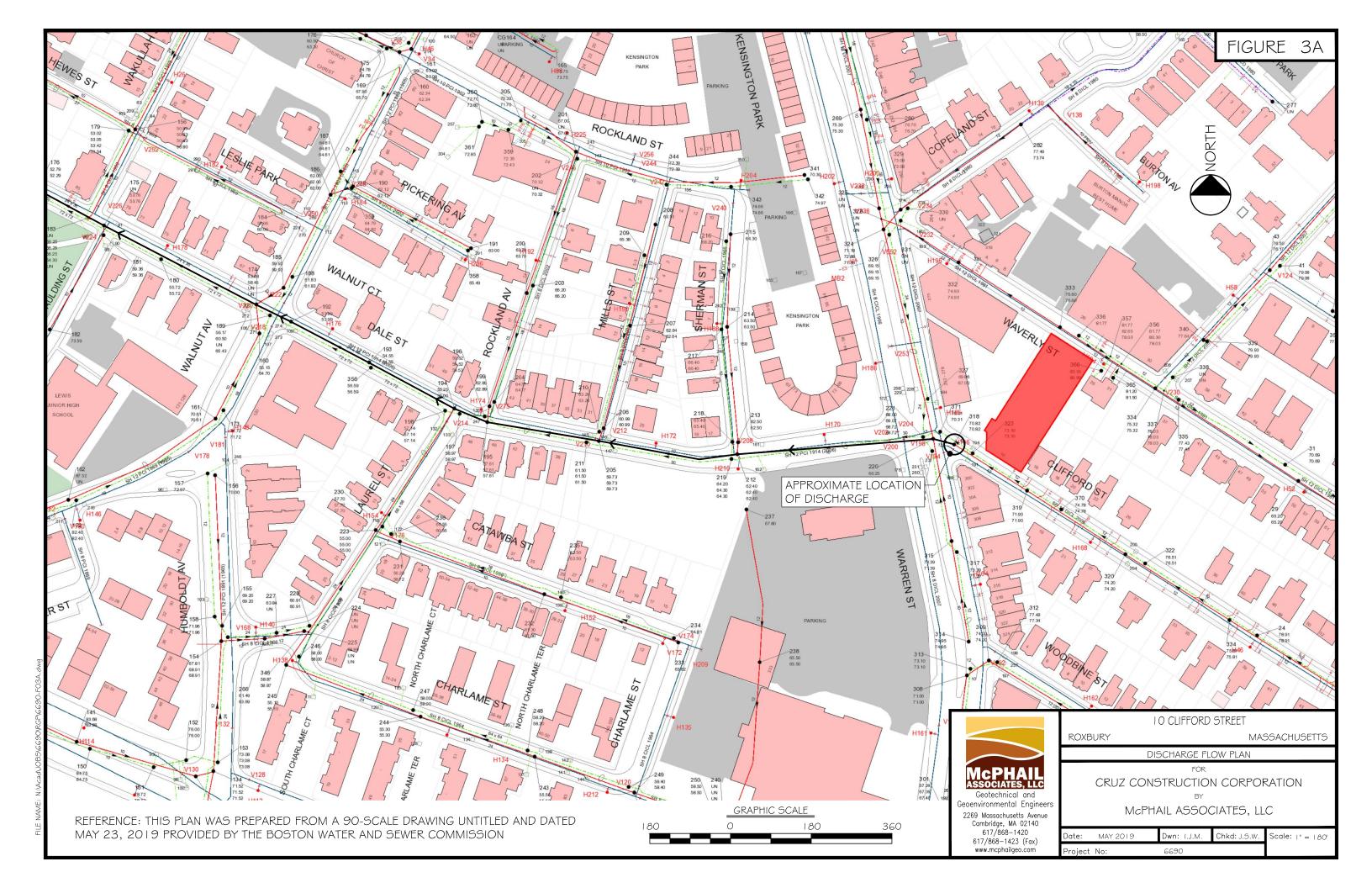
system will consist of a one 10,000-gallon capacity settling tank and bag filters in series. However, should the effluent monitoring results identify concentrations of contaminants that are in excess of the limits established by the RGP, additional mitigative measures will be implemented to meet the allowable discharge limits.

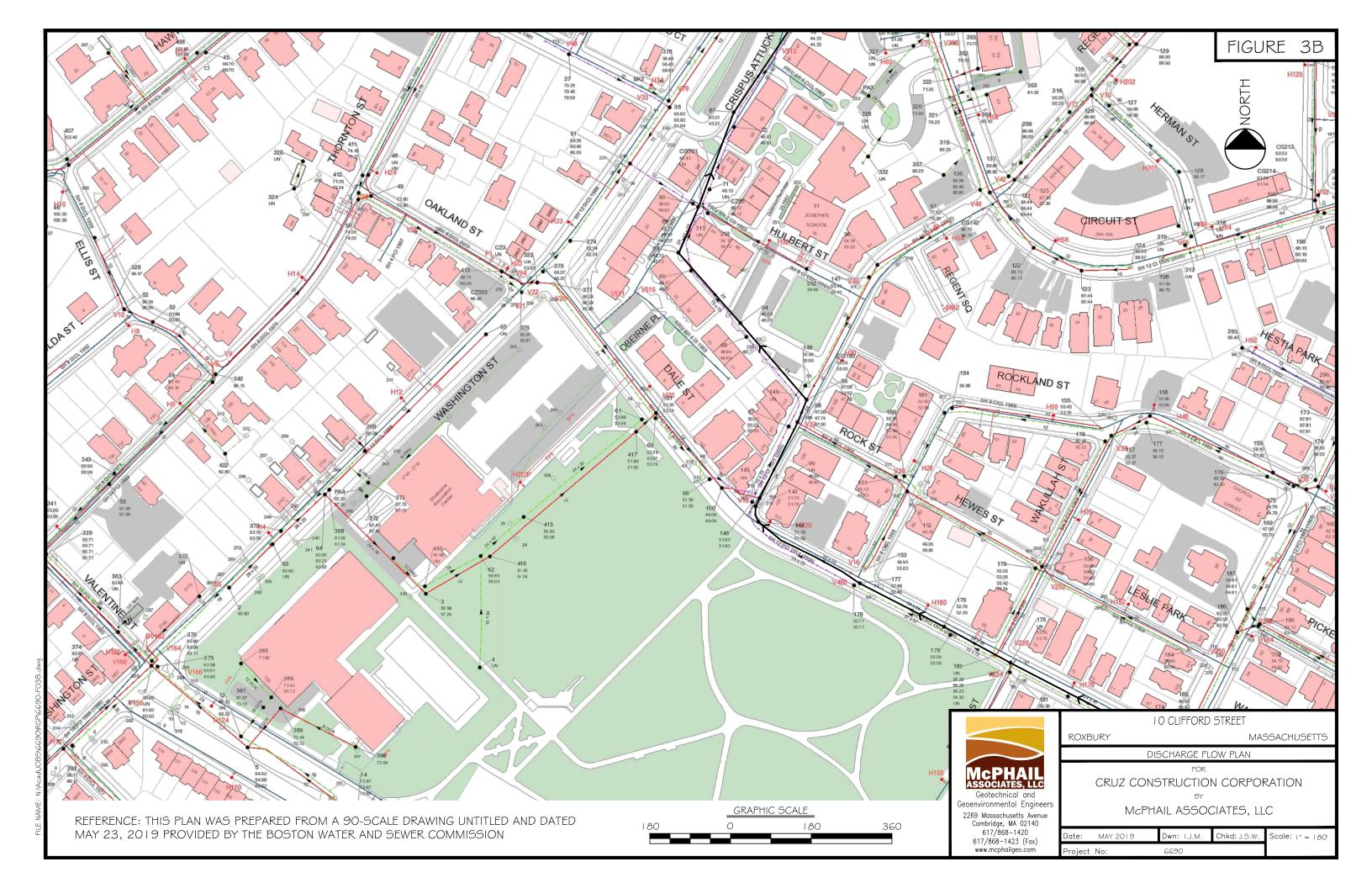
We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

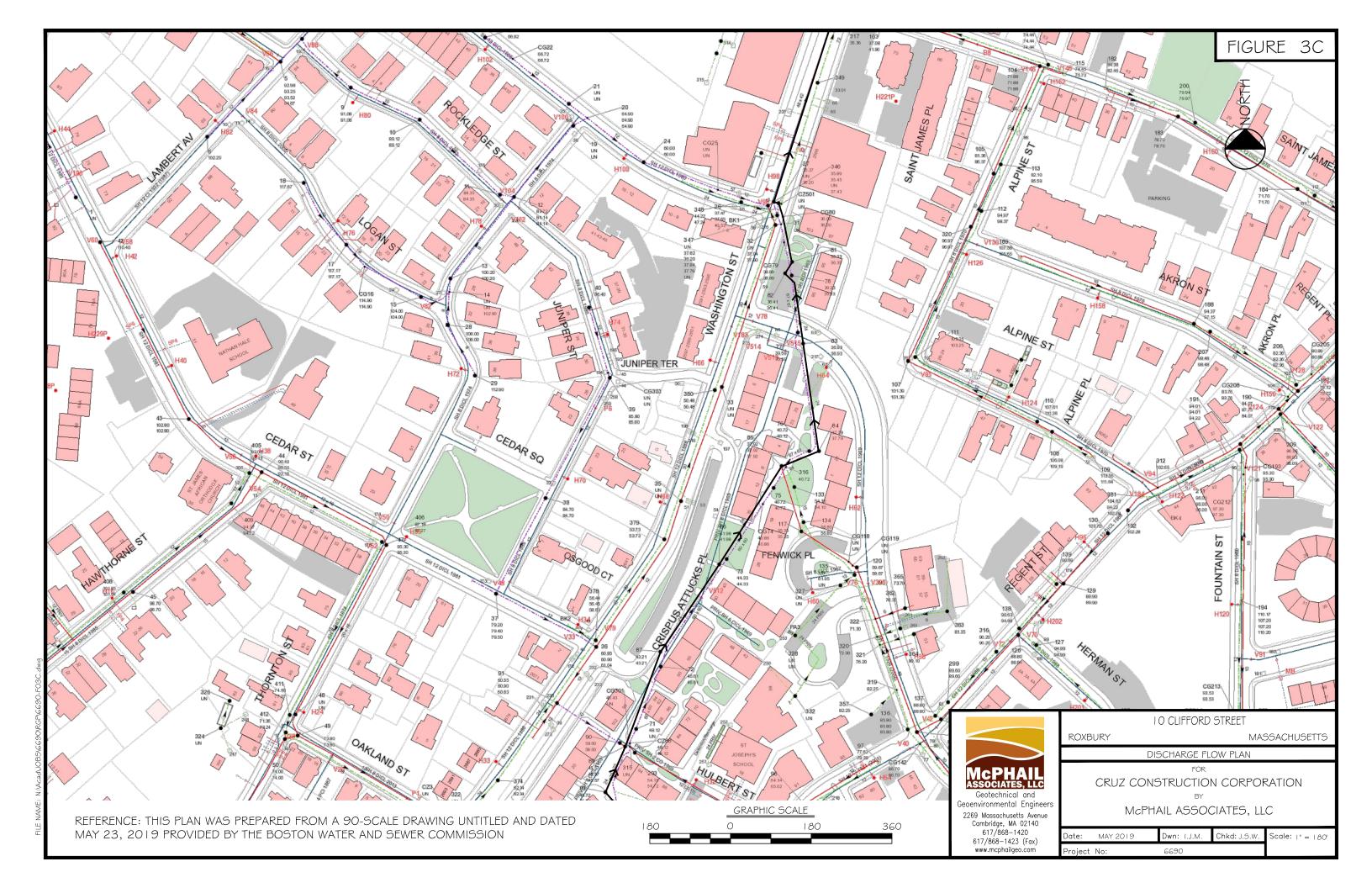
Sincerely,

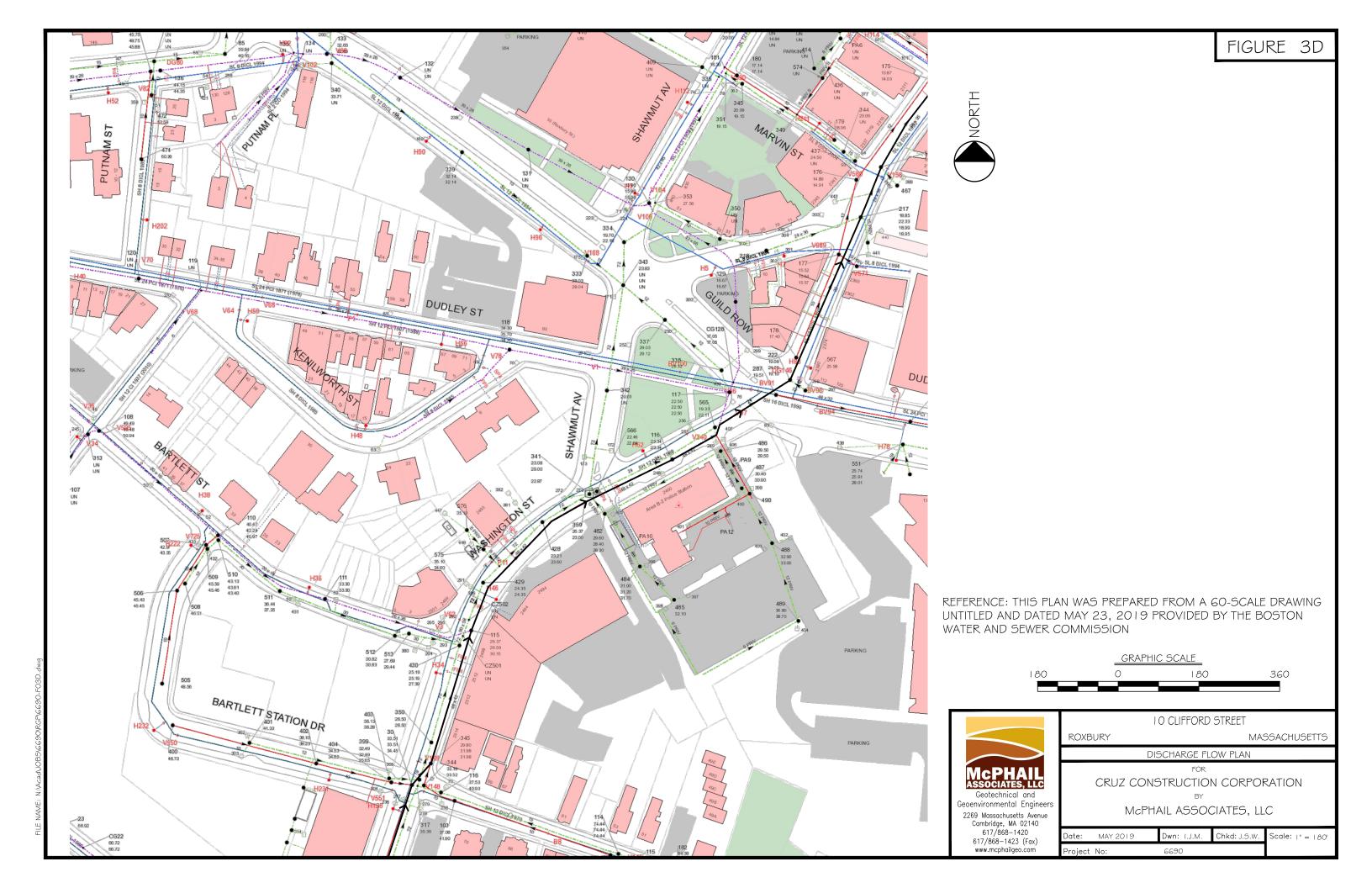

McPHAIL ASSOCIATES, LLC


Joseph S. Wold


William J. Burns, L.S.P.


N:\Working Documents\Reports\6690 RGP 061019.docx


JSW/bed/wjb



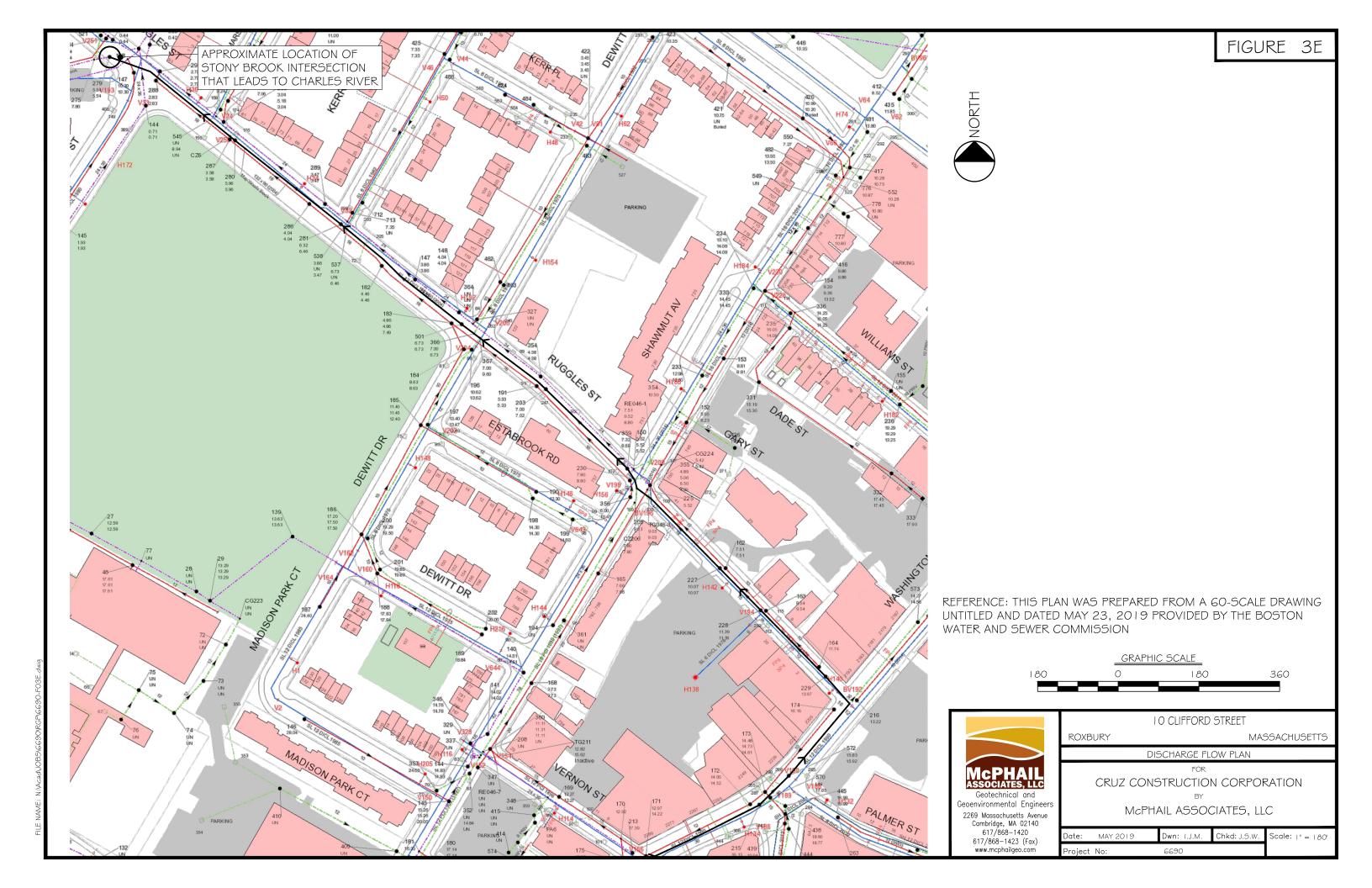


Table 1 Labratory Analytical Results - Groundwater B-303 (OW)

10 Clifford Street Roxbury, MA Project No. 6690

LOCATION	EPA - Freshwater	B-303 (OW)
SAMPLING DATE	Aquatic Life	4/30/2019
LAB SAMPLE ID	Chronic	L1917808-01
SAMPLE TYPE	Criteria	Groundwater
General Chemistry (ug/l)		
Chlorine, Total Residual		ND(20)
Chromium, Hexavalent	11	ND(10)
Chromium, Trivalent	74	ND(10)
Cyanide, Total	5.2	ND(5)
Nitrogen, Ammonia		83
pH (SU)		6.6
Phenolics, Total		ND(30)
Solids, Total Suspended		29000
TPH, SGT-HEM		ND(4000)
Chloride	230000	74400
Hardness		236000
Total Metals (ug/l)		
Antimony, Total		ND(4)
Arsenic, Total	150	ND(1)
Cadmium, Total	0.25	ND(0.2)
Chromium, Total		1.46
Copper, Total		3.13
Iron, Total	1000	912
Lead, Total	2.5	5.17
Mercury, Total	0.77	0.92
Nickel, Total	52	2.49
Selenium, Total	5	ND(5)
Silver, Total		ND(0.4)
Zinc, Total	120	ND(10)
Semivolatile Organics (ug/l)		
SUM		ND
Volatile Organics (ug/l)		
SUM		ND

ND - Not detected in excess of the detection limit (#) - Detection limit **Bold** - Exceeds EPA -

Table 2 Labratory Analytical Results - Surface Water Charles River

10 Clifford Street Roxbury, MA Project No.6690

LOCATION	EPA - Freshwater Aquatic Life	Charles River RGP Sample
SAMPLING DATE	Chronic	5/9/2019
LAB SAMPLE ID		L1919553-01
SAMPLE TYPE	Criteria	Surface Water
General Chemistry (ug/l)		
Nitrogen, Ammonia		114
pH (SU)		7.5
Hardness		59700
Total Metals (ug/l)		
Antimony, Total		ND(4)
Arsenic, Total	150	ND(1)
Cadmium, Total	0.25	ND(0.2)
Chromium, Total		1.40
Copper, Total		4.06
Iron, Total	1000	1270
Lead, Total	2.5	6.32
Mercury, Total	0.77	ND(0.2)
Nickel, Total	52	ND(2)
Selenium, Total	5	ND(5)
Silver, Total		ND(0.4)
Zinc, Total	120	13.96

ND - Not detected in excess of the detection limit (#) - Detection limit Bold - signifies exceedance levels Tested compounds not shown do not exceed labratory method detection limits

McPhail Associates, LLC

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present the results of testing of groundwater samples obtained from a monitoring well located at 10 Clifford Street in Roxbury, Massachusetts, in support of an application for approval of construction site dewatering discharge into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon laboratory test data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during this assessment, as described in the text.

This report and application have been prepared on behalf of and for the exclusive use of Cruz Development and Cruz Construction Corporation. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than submission to relevant governmental agencies, nor used in whole or in part by any other party without the prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT TRANSMITTAL FORM BOSTON WATER & SEWER DEWATERING DISCHARGE PERMIT

Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

NPDES permit is (check all that apply: □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit □ Other; if so, specify:	4. NPDES permit number assigned by EPA:				John B. Cruz Construction Company, Inc.	3. Site operator, if different than owner	Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	-		Michael E: Haylies Allis, LEC	2. Site owner		O Cililord Street	
☐ MA Chapter 21e; list RTN(s): ☐ ☐ NH Groundwater Management Permit or ☐ Groundwater Release Detection Permit: ☐	5. Other regulatory program(s) that apply to the site (check all that apply):	City: Roxbury	Street: 1 John Eliot Square	Mailing address:	Telephone: 617-445-6901	Contact Person: Edgar J. Carrere Jr.	City: Roxbury	Street: 1 John Eliot Square, Roxbury, MA		Telephone: 617-115-6001	Contact Person: Daniel Cruz, Jr.	City: Roxbury	Street:	Site address: 10 Clifford Street
☐ CERCLA☐ UIC Program☐ POTW Pretreatment☐ CWA Section 404☐	eck all that a	St			mail: ecarre		St		1110111. GOI GE	mail. doruza		St		
um treatment on 404	pply):	State: MA			re@cruzc		State: MA		00000000000000000000000000000000000000	30711700m		State: MA		
		Zip: 02119			Email: ecarrere@cruzcompanies.com		Zip: 02119		+	Email: deruz@eruzeempanies com		^{Zip:} 02210		

B. Receiving water information:

1. Name of receiving water(s):	Waterbody identification of receiving water(s):		Classification of receiving water(s):
Charles River	MA72-038		₿
Receiving water is (check any that apply): ☐ Outstanding Resource Water ☐ Ocean Sanctuary ☐ territorial sea	ling Resource Water □ Ocean Sanctuary □ territori	al sea □ Wild and Scenic River	?iver
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ■ Yes □ No Are sensitive receptors present near the site? (check one): □ Yes ■ No If yes, specify:	nnce with the instructions in B, above? (check one): ne): ☐ Yes ■ No	■ Yes □ No	
3. Indicate if the receiving water(s) is listed in the State's Integrated List of Waters (i.e., CWA Section 303(d)). Include which designated uses are impaired, and any pollutants indicated. Also, indicate if a final TMDL is available for any of the indicated pollutants. For more information, contact the appropriate State as noted in Part 4.6 of the RGP. (Charles River) TMDL 301.0 - See Appendix C for further information	the State's Integrated List of Waters (i.e., CWA Section 303(aMDL is available for any of the indicated pollutants. For more Charles River) TMDL 301.0 - See Appendix C for further information	3(d)). Include which designore information, contact the	Include which designated uses are impaired, and any ormation, contact the appropriate State as noted in Part
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.	the receiving water determined in accordance with pendix VI for sites located in New Hampshire.		29.2 cfs
5. Indicate the requested dilution factor for the calculation of water quality-based effluent limitations (WQBELs) determined in accordance with the instructions in Appendix V for sites in Massachusetts and Appendix VI for sites in New Hampshire.	tion of water quality-based effluent limitations (WC) tes in Massachusetts and Appendix VI for sites in N	()BELs) determined in ew Hampshire.	263
6. Has the operator received confirmation from the appropriate State for the 7Q10and dilution factor indicated? If yes, indicate date confirmation received: 7/2/19	propriate State for the 7Q10and dilution factor indic	ated? (check one): ■ Yes □ No	□ No
7. Has the operator attached a summary of receiving water sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one): Yes No	vater sampling results as required in Part 4.2 of the I	RGP in accordance with the	instruction in Appendix VIII?
C. Source water information:			
1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other than the receiving water; if	
in accordance with the instruction in Appendix VIII? (check one): ■ Yes □ No	RGP in accordance with the instruction in Appendix VIII? (check one):	so, indicate waterbody:	¹ ☐ Other; if so, specify:
■ Yes □ No	☐ Yes ☐ No		

? (check one): Yes \(\simeq \) No	Has the operator attached a site plan in accordance with the instructions in D, above? (check one): \blacksquare Yes \square No
1ths □ 12 months or more □ is an emergency discharge	Indicate if the discharge is expected to occur over a duration of: ■ less than 12 months □ 12 months or more
Treatment System 07/2019 - 06/2020	Provide the expected start and end dates of discharge(s) (month/year): Temporary Treatment System 07/2
ne owner of this system has specified? (check one): ■ Yes □ No See Appendix B for further information	Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ■ Yes □ No See Appendix B for further information
harges? (check one): \square Yes \blacksquare No, if so, explain, with an estimated timeframe for	Has the operator has received permission from the owner to use such system for discharges? (check one): ☐ Yes ■ No, if so, explain, with an estimated timeframe for obtaining permission: Upon approval of this NOI
No See Appendix B for further information	Has notification been provided to the owner of this system? (check one): ■ Yes □ No See Appendix B for further information
stem:	☐ A private storm sewer system ■ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:
	Discharge indirectly into Charles River through BWSC system
ge to the receiving water Indirect discharge, if so, specify:	Discharges enter the receiving water(s) via (check any that apply): Direct discharge to the receiving water I
+	±
	(Charles River) CSO023
Outfall location(s): (Latitude, Longitude) (41.351050, -71.094433)	Outfall(s):
harge □ New source	1.The discharge(s) is a(n) (check any that apply): ☐ Existing discharge ■ New discharge ☐ New source
	D. Discharge information
hlorine? (check one): □ Yes ■ No	3. Has the source water been previously chlorinated or otherwise contains residual chlorine? (check one):
with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No	the RGP? (check one): ☐ Yes ■ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.
b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance	a. For source waters that are contaminated groundwater or contaminated b. l surface water, indicate are any contaminants present that are not included in or
	2. Source water contaminants: ammonia, lead, and mercury

2. Activity Category: (check all that apply) 2. Activity Category: (check all that apply) 1. In Petroleum-Related Site Remediation 1. In In Non-Petroleum-Related Site Remediation 1. In In Contaminated Site Dewatering 1. In Petroleum-Related Site Remediation	3. Contamination Type Category: (check all that apply) a. If Activity Category I or II: (check all that apply) A. Inorganics B. Non-Halogenated Volatile Organic Compounds C. Halogenated Semi-Volatile Organic Compounds E. Halogenated Semi-Volatile Organic Compounds F. Fuels Parameters b. If Activity Category III, IV, V, VI, VII or VIII G. Sites with Known Contamination	(check all that apply) Category I or II: (check all that apply) Organic Compounds latile Organic Compounds Organic Compounds III, IV, V, VI, VII or VIII: (check either G or H) III, IV, W, WI, With Unknown Contamination
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 		, V, VI, VII or VIII: (check eit
■ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Co
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)	
□ VIII – Dredge-Related Dewatering	■ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply

Appendix IV – Part 1 – NOI Page 18 of 24

4. Influent and Effluent Characteristics

	Known	Known					Influent		Effluent Limitations	nitations
Parameter	or believed	or believed	# of samples	Test method	Detection limit	Daily maximum	Daily average	6	TBEL	WQBEL
	absent	present		(#)	(µg/1)	(μg/l)				
A. Inorganics										
Ammonia		\ 	1 +	121,4500 +	+ 27	.083	+ .083	+	Report mg/L	
Chloride		V	1 +		500 +	74400	+ 74400	+	Report µg/l	
Total Residual Chlorine	'		1 +	0 🛨	20 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>$0.2~\mathrm{mg/L}$</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>$0.2~\mathrm{mg/L}$</td><td></td></dl<>	+	$0.2~\mathrm{mg/L}$	
Total Suspended Solids		V	1 +		5000 +	29	+ 29	+	30 mg/L	
Antimony	'		1 +	1,6020A +	4 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>206 μg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>206 μg/L</td><td></td></dl<>	+	206 μg/L	
Arsenic	~		1 +		0.5 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>104 μg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>104 μg/L</td><td></td></dl<>	+	104 μg/L	
Cadmium	'		1 +		2 +	<dl< td=""><td></td><td>+</td><td>10.2 μg/L</td><td></td></dl<>		+	10.2 μg/L	
Chromium III		V	1 +	1,6020A 🛨	1 +	1.46	+ 1.46	+	323 μg/L	
Chromium VI		'	1 +	1,6020A 🛨	1 +	1.46	± 1.46	+	323 μg/L	
Copper		V	1 +	1,6020A 🛨	1 +	3.13	+ 3.13	+	242 μg/L	
Iron		~	1 +		500 +	912	+ 912	+	5,000 μg/L	
Lead		<	1 +	1,6020A 🛨	0.5 +	5.17	+ 5.17	+	160 μg/L	0.77
Mercury		~	1		0.2 +	.92	+ .92	+	0.739 μg/L	
Nickel	<		1 +	#	0.5 +	<di.< td=""><td>+ <dl< td=""><td>+</td><td>1,450 μg/L</td><td></td></dl<></td></di.<>	+ <dl< td=""><td>+</td><td>1,450 μg/L</td><td></td></dl<>	+	1,450 μg/L	
Selenium	<		1 +	1,6020A +	5 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>235.8 μg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>235.8 μg/L</td><td></td></dl<>	+	235.8 μg/L	
Silver	V		1 +	1,6020A 🛨	0.4	<dl< td=""><td>+ <dl< td=""><td>+</td><td>35.1 μg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>35.1 μg/L</td><td></td></dl<>	+	35.1 μg/L	
Zinc	<		-		10 +	<dl< td=""><td>+ <di.< td=""><td>+</td><td>420 μg/L</td><td></td></di.<></td></dl<>	+ <di.< td=""><td>+</td><td>420 μg/L</td><td></td></di.<>	+	420 μg/L	
Cyanide	<		1 +	121,4500 +	5 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>178 mg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>178 mg/L</td><td></td></dl<>	+	178 mg/L	
B. Non-Halogenated VOCs										
Total BTEX	V		1 +	128,624.1+	1.0 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>100 μg/L</td><td></td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>100 μg/L</td><td></td></dl<>	+	100 μg/L	
Benzene	<		1 +	128,624.1+	1.0 +	<di.< td=""><td>+ <dl< td=""><td>+</td><td>5.0 μg/L</td><td>1</td></dl<></td></di.<>	+ <dl< td=""><td>+</td><td>5.0 μg/L</td><td>1</td></dl<>	+	5.0 μg/L	1
1,4 Dioxane	<		1 +	=	50 +	<di.< td=""><td>+ <dl< td=""><td>+</td><td>200 μg/L</td><td>ļ</td></dl<></td></di.<>	+ <dl< td=""><td>+</td><td>200 μg/L</td><td>ļ</td></dl<>	+	200 μg/L	ļ
Acetone	<		+	128.624.1+	10 +	<dl< td=""><td>+ <dl< td=""><td>+</td><td>7.97 mg/L</td><td> </td></dl<></td></dl<>	+ <dl< td=""><td>+</td><td>7.97 mg/L</td><td> </td></dl<>	+	7.97 mg/L	
Phenol	<		1 +	128,624.1	2.0 +	<dl< td=""><td>+ <di.< td=""><td>+</td><td>1,080 μg/L</td><td></td></di.<></td></dl<>	+ <di.< td=""><td>+</td><td>1,080 μg/L</td><td></td></di.<>	+	1,080 μg/L	

						0 +		•	Indeno(1,2,3-cd)pyrene
						0 +		<	Dibenzo(a,h)anthracene
						0 +		<	Chrysene
	As Total PAHs					0 +		<	Benzo(k)fluoranthene
						0 +		<	Benzo(b)fluoranthene
						0 +		<	Benzo(a)pyrene
						0 +		<	Benzo(a)anthracene
!	1.0 μg/L					0 +		<	Total Group I PAHs
	101 μg/L					0 +		<	Diethylhexyl phthalate
	190 μg/L					0 +		•	Total Phthalates
								<i>S</i>	D. Non-Halogenated SVOCs
!	2.0 μg/L	<dl +<="" td=""><td><dl +<="" td=""><td>1</td><td>128,624.1+</td><td>1 +</td><td></td><td><</td><td>Vinyl Chloride</td></dl></td></dl>	<dl +<="" td=""><td>1</td><td>128,624.1+</td><td>1 +</td><td></td><td><</td><td>Vinyl Chloride</td></dl>	1	128,624.1+	1 +		<	Vinyl Chloride
!	70 μg/L	<dl +<="" td=""><td><di. +<="" td=""><td>1 +</td><td>128,624.1+</td><td>1 +</td><td></td><td>•</td><td>cis-1,2 Dichloroethylene</td></di.></td></dl>	<di. +<="" td=""><td>1 +</td><td>128,624.1+</td><td>1 +</td><td></td><td>•</td><td>cis-1,2 Dichloroethylene</td></di.>	1 +	128,624.1+	1 +		•	cis-1,2 Dichloroethylene
	5.0 μg/L	<di. +<="" td=""><td><dl +<="" td=""><td>+</td><td>128.624.1+</td><td>-+</td><td></td><td>•</td><td>Tetrachloroethylene</td></dl></td></di.>	<dl +<="" td=""><td>+</td><td>128.624.1+</td><td>-+</td><td></td><td>•</td><td>Tetrachloroethylene</td></dl>	+	128.624.1+	-+		•	Tetrachloroethylene
!	5.0 μg/L	L	+	+	128.624.1+	1 +		<	Trichloroethylene
	5.0 μg/L	<di. +<="" td=""><td>+</td><td>1.5 +</td><td>128,624.1+</td><td>1 +</td><td></td><td><</td><td>1,1,2 Trichloroethane</td></di.>	+	1.5 +	128,624.1+	1 +		<	1,1,2 Trichloroethane
-	200 μg/L	<dl +<="" td=""><td></td><td>2 +</td><td>128.624.1+</td><td>+</td><td></td><td><</td><td>1,1,1 Trichloroethane</td></dl>		2 +	128.624.1+	+		<	1,1,1 Trichloroethane
1	4.6 μg/L	<di. +<="" td=""><td><dl +<="" td=""><td>1</td><td>128.624.1+</td><td>1 +</td><td></td><td><</td><td>Methylene Chloride</td></dl></td></di.>	<dl +<="" td=""><td>1</td><td>128.624.1+</td><td>1 +</td><td></td><td><</td><td>Methylene Chloride</td></dl>	1	128.624.1+	1 +		<	Methylene Chloride
-	$0.05~\mu \mathrm{g/L}$	L	+	1 +	128,624.1 +	1 +		'	Ethylene Dibromide
	$3.2~\mu \mathrm{g/L}$	L	+	+	128,624.1 +	1 +		~	1,1 Dichloroethylene
	$5.0~\mu \mathrm{g/L}$	<dl +<="" td=""><td>+</td><td>1.5</td><td>128.624.1+</td><td>1 +</td><td></td><td>'</td><td>1,2 Dichloroethane</td></dl>	+	1.5	128.624.1 +	1 +		'	1,2 Dichloroethane
-	70 μg/L	<di. +<="" td=""><td>+</td><td>1.5 +</td><td>128,624.1+</td><td>1 +</td><td></td><td><</td><td>1,1 Dichloroethane</td></di.>	+	1.5 +	128,624.1+	1 +		<	1,1 Dichloroethane
-	763 μg/L in NH	∠DI. +	+	5 +	128.624.1+	1		<	Total dichlorobenzene
-	5.0 μg/L	<dl +<="" td=""><td>+</td><td>5 +</td><td>128.624.1+</td><td>+</td><td></td><td><</td><td>1,4 Dichlorobenzene</td></dl>	+	5 +	128.624.1+	+		<	1,4 Dichlorobenzene
-	320 μg/L	<dl +<="" td=""><td>+</td><td>5 +</td><td>128,624.1</td><td>1 +</td><td></td><td><</td><td>1,3 Dichlorobenzene</td></dl>	+	5 +	128,624.1	1 +		<	1,3 Dichlorobenzene
	$600~\mu \mathrm{g/L}$	<dl +<="" td=""><td><di. +<="" td=""><td>5 +</td><td>128.624.J+</td><td>1 +</td><td></td><td>1</td><td>1,2 Dichlorobenzene</td></di.></td></dl>	<di. +<="" td=""><td>5 +</td><td>128.624.J+</td><td>1 +</td><td></td><td>1</td><td>1,2 Dichlorobenzene</td></di.>	5 +	128.624.J +	1 +		1	1,2 Dichlorobenzene
	4.4 μg/L	<di. +<="" td=""><td><di. +<="" td=""><td>1 +</td><td>128,624.1+</td><td>1 +</td><td></td><td>~</td><td>Carbon Tetrachloride</td></di.></td></di.>	<di. +<="" td=""><td>1 +</td><td>128,624.1+</td><td>1 +</td><td></td><td>~</td><td>Carbon Tetrachloride</td></di.>	1 +	128,624.1 +	1 +		~	Carbon Tetrachloride
									C. Halogenated VOCs
,		(µg/l)	(μg/l)	(µg/1)	(#)	ı	present	absent	
WOBEL	TBEL	Daily average	Daily maximum	Detection limit	Test method	# of samples	or believed	or believed	Parameter
nitations	Effluent Limitations	uent	Influe	:	3		Known	Known	

	Known	Known			:	In	Influent		Effluent Limitations	itations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)		TBEL	WQBEL
Total Group II PAHs	<		1 +	18270D- ₹ +	0.10 +	<dl +<="" td=""><td><di.< td=""><td>+</td><td>100 μg/L</td><td>!</td></di.<></td></dl>	<di.< td=""><td>+</td><td>100 μg/L</td><td>!</td></di.<>	+	100 μg/L	!
Naphthalene	<		1 +		2.5 +	<di.< td=""><td><dl< td=""><td>+</td><td>20 μg/L</td><td></td></dl<></td></di.<>	<dl< td=""><td>+</td><td>20 μg/L</td><td></td></dl<>	+	20 μg/L	
E. Halogenated SVOCs										
Total PCBs	<		+ 1	127,608.1	+ 052.0	<dl +<="" td=""><td>'JU'></td><td>+</td><td>0.000064 μg/L</td><td>-</td></dl>	'JU'>	+	0.000064 μg/L	-
Pentachlorophenol	<		1 +	18270D-{+	0.80 +	<dl< td=""><td><dl< td=""><td>+</td><td>$1.0~\mu \mathrm{g/L}$</td><td></td></dl<></td></dl<>	<dl< td=""><td>+</td><td>$1.0~\mu \mathrm{g/L}$</td><td></td></dl<>	+	$1.0~\mu \mathrm{g/L}$	
F. Fuels Parameters										
Total Petroleum			+	Ŧ	· •	+		+	5.0 mg/L	
Hydrocarbons	`	•								
Mathyl test Butyl Ether	` <		0 +			=		4	70a/I	
ivienty i-ter t-Daty i Eurei	•			E				E	100 /T . 3.1.1	
tert-Butyl Alcohol	<		0 +	+	+	+		+	120 μg/L in MA 40 μg/L in NH	I
tert-Amyl Methyl Ether	٩	_	0 #	+	+		į	+	90 μg/L in MA 140 μg/L in NH	!
Other (i.e., pH, temperature, hardness, salinity, LC50, additional pollutants present); if so, specify:	, hardness, s	alinity, LC	50, addition	al pollutant	s present);	if so, specify:				
pH - Influent +		'	1 +	121,4500 +		6.6	6.6			
luent										
Temp - Influent +		<	1 +			12.84 C +				
pH - Receiving Water +		<	1 +	121,4500+		7.5 +	7.5			
Salinity - Receiving Water +										
Temn - Receiving Water +		<	1 +			11.68 C +				

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping □ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption □ Ion Exchange □ Precipitation/Coagulation/Flocculation ■ Separation/Filtration □ Other; if so, specify:
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge. Settling tank and bag filters
Identify each major treatment component (check any that apply): ■ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter □ Chemical feed tank □ Air stripping unit ■ Bag filter □ Other; if so, specify:
Indicate if either of the following will occur (check any that apply): □ Chlorination □ De-chlorination
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component. Indicate the most limiting component: Frac Tank Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:
Provide the proposed maximum effluent flow in gpm.
Provide the average effluent flow in gpm.
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No

F. Chemical and additive information

G. Endangered Species Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".	3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance with the instructions in F, above? (check one): ☐ Yes ☐ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): ☐ Yes ☐ No	 a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 	2. Provide the following information for each chemical/additive, using attachments, if necessary:	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary: a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)). 3. Has the operator attached an explanation which demonstrates that the addition of such chemical/additives may be authorized under this general permit in accordance with the instructions in F. above? (check one): □ Yes □ No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive? (check one): □ Yes □ No	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary: a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify: 2. Provide the following information for each chemical/additive, using attachments, if necessary:	□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □ scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:	

FWS. This determination was made by: (check one) □ the operator □ EPA □ Other; if so, specify:	□ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the	Yes □ No	(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐	□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat	■ FWS Criterion A: No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".	. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
--	--	----------	---	---	--	---

I. Supplemental information Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary. Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.	2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ■ Yes □ No Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): □ Yes ■ No	H. National Historic Preservation Act eligibility determination 1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit: ■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties. □ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties. □ Criterion C: Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.	□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of listed species. Has the operator previously completed consultation with NMFS? (check one): □ Yes ■ No 2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): ■ Yes □ No Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ■ Yes □ No; if yes, attach.
---	--	--	--

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP Statement has been implemented in accordance with good engineering practices following BMPP certification statement: Part 2.5 of the RGP. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes ■ No □ NA □ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No ■ NA □ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No ■ NA □

Signature:

Print Name and Title:

☐ Other; if so, specify:

Edgar J. Carrere Jr.

Senior Project Manager

Date: 6/4/2019

From: Vakalopoulos, Catherine (DEP) <catherine.vakalopoulos@state.ma.us>

Sent: Tuesday, July 2, 2019 4:49 PM

To: Joseph Wold

Subject: RE: Dilution Factor Confirmation - 10 Clifford Street Roxbury, MA,

Here you go Joseph...

From: Vakalopoulos, Catherine (DEP) **Sent:** Thursday, May 30, 2019 1:56 PM

To: 'Kirk W. Seaman' **Cc:** Joseph Wold

Subject: RE: Dilution Factor Confirmation - 10 Clifford Street Roxbury, MA,

Hi Kirk,

No problem at all. The 7Q10 is correct and assuming the 50 gpm is the design flow, i.e. max flow through the treatment system, I get:

29.2 cfs = 18.87 MGD 50 gpm = 0.072 MGD and so

DF = (0.072 + 18.87)/0.072 = 263

I won't list the classification, etc. of this segment of the Charles since I know you've worked on several projects that discharge through the same CSO.

Thanks for working on the WM15 submittal.

Take care,

Cathy

Cathy Vakalopoulos, Massachusetts Department of Environmental Protection 1 Winter St., Boston, MA 02108, 617-348-4026

A Please consider the environment before printing this e-mail

From: Kirk W. Seaman [mailto:KSeaman@mcphailgeo.com]

Sent: Wednesday, May 29, 2019 9:00 AM

To: Vakalopoulos, Catherine (DEP)

Cc: Joseph Wold

Subject: Dilution Factor Confirmation - 10 Clifford Street Roxbury, MA,

Hi Cathy,

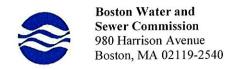
Another Dilution Factor confirmation for you. I feel like I am busier this year as opposed to last, sorry haha.

The site is 10 Clifford Street in Roxbury and they are proposing to dewater to the Charles at CSO 023 by way of the Stoney Brook Canal. They are proposing a GPM of 50 and the 7Q10 I got from StreamStats was 29.2 cfs.

The DF I calculated was 219.2.

I will start working on the WM-15 for submittal later next week for this project as well.

Thanks for your help


Kirk W. Seaman

McPHAIL ASSOCIATES, LLC

2269 Massachusetts Avenue Cambridge, MA 02140

Tel: 617-349-7352 Cell: 626-590-8418

www.mcphailgeo.com

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVID	DE INFORMATION HERE:
Company Name: John B. Cruz Construction	on, Inc _{Address:} 1 John Eliot Square, Roxbury, MA
Phone Number: 617 445 6901	Fax number:
Contact person name: Edgar Carrere J	r _{Title: _} Senior Project Manager
Cell number: 617 828 4812	Email address: _ecarrere@cruzcompanies.com
Permit Request (check one): ☑ New Application	on Permit Extension Other (Specify):
Owner's Information (if different from above):	:
Owner of property being dewatered: Michael	el E. Haynes Arms, LLC
	uare, Roxbury, MA Phone number: 617 445 6901
Location of Discharge & Proposed Treatment	t System(s):
Street number and name: 10 Clifford St	treet Neighborhood Roxbury
Discharge is to a: ☐ Sanitary Sewer ☐ Combi	oined Sewer Storm Drain □ Other (specify):
Describe Proposed Pre-Treatment System(s): Fr	rac Tank and Bag Filters
BWSC Outfall No. CSO 023 Rec	ceiving Waters Charles River by way of the Stoney Brook Canal
Towns and Picker was (Possilla Authorizated Date	es of Discharge): From 07/2019 To 05/2020 Tank Removal/Installation Foundation Excavation
☐ Groundwater Remediation	□ Tank Removal/Installation
□ Utility/Manhole Pumping	☐ Test Pipe ☐ Trench Excavation ☐ Hydrogeologic Testing ☐ Other
★ Accumulated Surface Water	Hydrogeologic resting
Permanent Discharges □ Foundation Drainage	□ Crawl Space/Footing Drain
□ Accumulated Surface Water	□ Non-contact/Uncontaminated Cooling
Non-contact/Uncontaminated Process	□ Other;
1. Attach a Site Plan showing the source of the discharge a	and the location of the point of discharge (i.e. the sewer pipe or catch basin). Include meter type, meter
number, size, make and start reading. Note. All discharge to a sanitary or combined sewer, attach a	arges to the Commission's sewer system will be assessed current sewer charges. copy of MWRA's Sewer Use Discharge permit or application.
3. If discharging to a separate storm drain, attach a copy of	f EPA's NPDES Permit or NOI application, or NPDES Permit exclusion letter for the discharge, as wel
as other relevant information.4. Dewatering Drainage Permit will be denied or revoked in	if applicant fails to obtain the necessary permits from MWRA or EPA.
	nd Sewer Commission
Engineering Cus	stomer Services
	venue, Boston, MA 02119 Futtle, Engineering Customer Service
E-mail: tuttlemp Phone: 617-989	p@bwsc.org
Thom: 017-707	
Signature of Authorized Representative for Property Own	ner: 5 Cas Date: 6/4/2019

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION

MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible Site Information: 10 CLIFFORD STREET BOSTON, MA for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can 4687524mN , 328499mE (Zone: 19) May 13, 2019 Department of Environmental Protection http://www.mass.gov/mgis/. ROXBURY DING STREET a Hill Charter Public School II City CROSSING John D O'Bryant Scho matics and Science ALTHER STREET STREET Malik Academy ROXBURY STREET James P Timity Middle School Orchard Gardens School KEMBLE STREET Seaman STREET GLER STREET Roxbury Community College OUS, ASTIST STATE Paige Academy DOD STREET MILMONT STREET DUBOIS STREET OORR STREET Gordon-Conwell Theol I Seminar WARREN STREET Boston Day and Evening emy Charter School OHOROL STREET CEDRIC STREET Samuel W Mason School Nathan F Sal OCHVILLE PAR oo co St. Patrick El entary School HAWTHORNE STREET RY City on a Hill Cha blic School BLER PARK HIGHLAND STREET Dudley Street Neighborhood Cha DUNREATH STREET DALE STREET LONGMEADON STREET STAF STREET ORD STREET MARCELLA STREET WOODVILLE TERRACE WEST COTTAGE STREE EAST-COTTAGE STR Higginson/L WEST COTTAGE STREET CLIFTON STREET CATAWBA STREET WALNUT AVENUE BOWER STREET GOULDVILLE TERRACE July Smell HARLAME STREET DEAN STREET HAROLD STREET RAND PLACE HUMBOLDT COURT COBDEN PARK OOD STREET John Winthrop thool ETT PLACE ELBERT STREET COBOEN STREET WESTMUSTER CO d A Ellis Bostor atin/Academy DACIA William Monroe Trotte WYOMING STREET HOWLAND STREET Haynes Earl ucation Center ABBOTSFORD STREET Burgoyne Rest Hor munity High Sci WAYLAND STREET MAGNOLIA GLENDALE STREET ELM HILL PARK RESTON STREET NTERVALE STREE N. STERO King K-8 School SWICK STREET 500 m GROVE HALI RIAND 1000 ft RNALD TERR Roads: Limited Access, Divided, Other Hwy, Major Road, Minor Road, Track, Trail PWS Protection Areas: Zone II, IWPA, Zone A Hydrography: Open Water, PWS Reservoir, Tidal Flat Boundaries: Town, County, DEP Region; Train; Powerline; Pipeline; Aqueduct Wetlands: Freshwater, Saltwater, Cranberry Bog Basins: Major, PWS; Streams: Perennial, Intermittent, Man Made Shore, Dam FEMA 100yr Floodplain; Protected Open Space; ACEC Est. Rare Wetland Wildlife Hab; Vernal Pool: Cert., Potential Aquifers: Medium Yield, High Yield, EPA Sole Source.... Solid Waste Landfill; PWS: Com.GW,SW, Emerg., Non-Com. 💢 🤤 🤤 Non Potential Drinking Water Source Area: Medium, High (Yield)..

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

May 16, 2019

In Reply Refer To:

Consultation Code: 05E1NE00-2019-SLI-1717

Event Code: 05E1NE00-2019-E-04183

Project Name: 10 Clifford Street

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-1717

Event Code: 05E1NE00-2019-E-04183

Project Name: 10 Clifford Street

Project Type: DEVELOPMENT

Project Description: <1 Acre

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.32092322723784N71.08102275381792W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 0 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

Massachusetts Cultural Resource Informatic MACRIS

MHC Home | MACRIS Home

Results

Get Results in Report Format OPDF Spreadsheet

Below are the results of your search, using the following search criteria:

Town(s): Boston Place: Roxbury Street No: 10

Street Name: Clifford

Resource Type(s): Area, Building, Burial Ground, Object, Structure For more information about this page and how to use it, click here

No Results Found.

New Search — Same Town(s)

Previous

MHC Home | MACRIS Home

Charles River

2014 Assessment Unit ID: MA72-38

Water Name: Charles River

Watershed: Charles Water Type: RIVER Water Code: 7239050

Size: 3.092 MILES Class: B Qualifier: WWF, CSO Category: 5 TMDL Count: 1

Description: Boston University Bridge, Boston/Cambridge to the New Charles River Dam, Boston (formerly part of segment MA72-08).

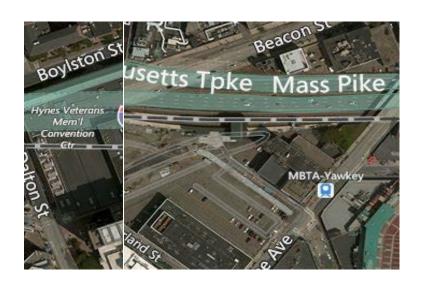
			<		
Use	Attainment	Cause	Poltnt_Flg	Source	TMDL DWM Id
Aesthetic	Not Supporting	Secchi disk transparency	Υ	Unspecified Urban Stormwater	CN 301.0
Aesthetic	Not Supporting	Secchi disk transparency	Υ	Upstream Source	CN 301.0
Aesthetic	Not Supporting	Secchi disk transparency	Υ	Urban Runoff/Storm Sewers	CN 301.0
Aesthetic	Not Supporting	Excess Algal Growth	Υ	Urban Runoff/Storm Sewers	CN 301.0
Aesthetic	Not Supporting	Taste and Odor	Υ	Source Unknown	CN 301.0
Aesthetic	Not Supporting	Oil and Grease	Υ	Source Unknown	
Aesthetic	Not Supporting	Excess Algal Growth	Υ	Unspecified Urban Stormwater	CN 301.0
Aesthetic	Not Supporting	Secchi disk transparency	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Aesthetic	Not Supporting	Excess Algal Growth	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Aesthetic	Not Supporting	Excess Algal Growth	Υ	Upstream Source	CN 301.0
Fish Consumption	Not Supporting	PCB in Fish Tissue	Υ	Source Unknown	
Fish Consumption	Not Supporting	PCB in Fish Tissue	\$	Contaminated Sediments	
Fish Consumption	Not Supporting	DDT	Y	Contaminated Sediments	
Fish Consumption	Not Supporting	DDT	Υ	Source Unknown	
Fish, other Aquatic Life and Wildlife	Not Supporting	Other flow regime alterations	N	Urban Runoff/Storm Sewers	
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Υ	Upstream Source	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Υ	Unspecified Urban Stormwater	

Fish, other Aquatic Life and Wildlife	Not Supporting	Chlorophyll-a	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Unspecified Urban Stormwater	
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Y	Cooling Water Intake Structures (Impingement or Entrainment)	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Phosphorus (Total)	Υ	Urban Runoff/Storm Sewers	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Phosphorus (Total)	Y	Unspecified Urban Stormwater	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Y	Unspecified Urban Stormwater	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Υ	Urban Runoff/Storm Sewers	
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Y	Industrial Thermal Discharges	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Y	Upstream Source	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Υ	Changes in Ordinary Stratification and Bottom Water Hypoxia/Anoxia	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Salinity	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Changes in Ordinary Stratification and Bottom Water Hypoxia/Anoxia	
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Y	Urban Runoff/Storm Sewers	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Phosphorus (Total)	Υ	Upstream Source	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Salinity	Υ	Unspecified Urban Stormwater	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Urban Runoff/Storm Sewers	
Fish, other Aquatic Life and Wildlife	Not Supporting	Salinity	Y	Urban Runoff/Storm Sewers	
Fish, other Aquatic Life and Wildlife	Not Supporting	Temperature, water	Y	Dam or Impoundment	
Fish, other Aquatic Life and Wildlife	Not Supporting	Temperature, water	Y	Habitat Modification - other than Hydromodification	
Fish, other Aquatic Life and Wildlife	Not Supporting	Phosphorus (Total)	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0

	N				
Fish, other Aquatic Life and Wildlife	Not Supporting	Temperature, water	Υ	Industrial Thermal Discharges	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Upstream Source	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Urban Runoff/Storm Sewers	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Industrial Thermal Discharges	
Fish, other Aquatic Life and Wildlife	Not Supporting	Sediment Screening Value (Exceedence)	Υ	Contaminated Sediments	
Fish, other Aquatic Life and Wildlife	Not Supporting	Sediment Screening Value (Exceedence)	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Sediment Screening Value (Exceedence)	Υ	Upstream Source	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Dam or Impoundment	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Oxygen, Dissolved	Υ	Changes in Ordinary Stratification and Bottom Water Hypoxia/Anoxia	
Fish, other Aquatic Life and Wildlife	Not Supporting	Salinity	Υ	Changes in Ordinary Stratification and Bottom Water Hypoxia/Anoxia	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Υ	Upstream Source	
Fish, other Aquatic Life and Wildlife	Not Supporting	Other flow regime alterations	N	Dam or Impoundment	
Fish, other Aquatic Life and Wildlife	Not Supporting	Chlorophyll-a	Υ	Unspecified Urban Stormwater	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Chlorophyll-a	Υ	Urban Runoff/Storm Sewers	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Other flow regime alterations	N	Unspecified Urban Stormwater	
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Υ	Unspecified Urban Stormwater	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Y	Urban Runoff/Storm Sewers	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Chlorophyll-a	Υ	Upstream Source	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Other flow regime alterations	N	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Other flow regime alterations	N	Habitat Modification - other than Hydromodification	
Fish, other Aquatic Life and Wildlife	Not Supporting	Phosphorus (Total)	Υ	Contaminated Sediments	CN 301.0
risn, other Aquatic Life	NOT Supporting	Other flow regime	N	Cooling Water Intake Structures (Impiggement	

FISN, OTNER AQUATIC LITE	NOT Supporting	Seconi disk	Υ	Unspecified Urban Stormwater	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Secchi disk transparency	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Temperature, water	Y	Changes in Ordinary Stratification and Bottom Water Hypoxia/Anoxia	
Fish, other Aquatic Life and Wildlife	Not Supporting	Secchi disk transparency	Υ	Upstream Source	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Y	Cooling Water Intake Structures (Impingement or Entrainment)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Υ	Industrial Thermal Discharges	
Fish, other Aquatic Life and Wildlife	Not Supporting	Excess Algal Growth	Υ	Industrial Thermal Discharges	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Contaminated Sediments	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Dam or Impoundment	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Cooling Water Intake Structures (Impingement or Entrainment)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Secchi disk transparency	Υ	Urban Runoff/Storm Sewers	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Y	Contaminated Sediments	
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Y	Industrial Thermal Discharges	
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Unspecified Urban Stormwater	
Fish, other Aquatic Life and Wildlife	Not Supporting	Dissolved oxygen saturation	Υ	Upstream Source	
Fish, other Aquatic Life and Wildlife	Not Supporting	Nutrient/Eutrophication Biological Indicators	Υ	Contaminated Sediments	CN 301.0
Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Y	Habitat Modification - other than Hydromodification	

Fish, other Aquatic Life and Wildlife	Not Supporting	Combined Biota/Habitat Bioassessments	Υ	Discharges from Municipal Separate Storm Sewer Systems (MS4)	
Primary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Upstream Source	CN 301.0
Primary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Unspecified Urban Stormwater	CN 301.0
Primary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Urban Runoff/Storm Sewers	CN 301.0
Primary Contact Recreation	Not Supporting	Excess Algal Growth	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Primary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Urban Runoff/Storm Sewers	CN 301.0
Primary Contact Recreation	Not Supporting	Escherichia coli	Υ	Source Unknown	
Primary Contact Recreation	imary Contact Not S		Discharges from Muni Y Separate Storm Sewe Systems (MS4)		CN 301.0
Primary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Upstream Source	CN 301.0
Primary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Unspecified Urban Stormwater	CN 301.0
Secondary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Unspecified Urban Stormwater	CN 301.0
Secondary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Urban Runoff/Storm Sewers	CN 301.0
Secondary Contact Recreation	Not Supporting	Excess Algal Growth	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Secondary Contact Recreation	Not Supporting	Secchi disk transparency	Y	Discharges from Municipal Separate Storm Sewer Systems (MS4)	CN 301.0
Secondary Contact Recreation	Not Supporting	Excess Algal Growth	Υ	Upstream Source	CN 301.0
Secondary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Upstream Source	CN 301.0
Secondary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Urban Runoff/Storm Sewers	CN 301.0
Secondary Contact Recreation	Not Supporting	Secchi disk transparency	Υ	Unspecified Urban Stormwater	CN 301.0



APPENDIX D: LABORATORY ANALYTICAL DATA – GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1917808

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP Report Date: 05/07/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Report Date: Lab Number:

05/07/19 L1917808

Project Number: Project Name: 10 CLIFFORD STREET

6690.9.DP

Alpha Sample ID L1917808-01 B-303 (OW) Client ID WATER Matrix Sample Location ROXBURY, MA Collection Date/Time 04/30/19 10:45 04/30/19 Receive Date

L1917808

Lab Number:

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP Report Date: 05/07/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

,	3	, i

Please contact Project Management at 800-624-9220 with any questions.

Project Name: 10 CLIFFORD STREET Lab Number: L1917808

Project Number: 6690.9.DP Report Date: 05/07/19

Case Narrative (continued)

Volatile Organics by SIM

The WG1234019-3 LCS recovery, associated with L1917808-01, is above the acceptance criteria for 1,4-dioxane (160%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/07/19

600, Sharow Kelly Stenstrom

ORGANICS

VOLATILES

04/30/19 10:45

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

SAMPLE RESULTS

Lab Number: L1917808

Report Date: 05/07/19

Lab ID: L1917808-01

Client ID: B-303 (OW) Sample Location: ROXBURY, MA Date Received: 04/30/19 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 128,624.1 Analytical Date: 05/06/19 12:01

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
Methylene chloride	ND		ug/l	1.0		1
1,1-Dichloroethane	ND		ug/l	1.5		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.5		1
Tetrachloroethene	ND		ug/l	1.0		1
1,2-Dichloroethane	ND		ug/l	1.5		1
1,1,1-Trichloroethane	ND		ug/l	2.0		1
Benzene	ND		ug/l	1.0		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	5.0		1
1,3-Dichlorobenzene	ND		ug/l	5.0		1
1,4-Dichlorobenzene	ND		ug/l	5.0		1
p/m-Xylene	ND		ug/l	2.0		1
o-xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
Acetone	ND		ug/l	10		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Pentafluorobenzene	90		60-140	
Fluorobenzene	82		60-140	
4-Bromofluorobenzene	95		60-140	

Project Name: 10 CLIFFORD STREET

L1917808-01

B-303 (OW)

ROXBURY, MA

Project Number: 6690.9.DP

SAMPLE RESULTS

Lab Number: L1917808

Report Date: 05/07/19

·c

Date Collected: 04/30/19 10:45

Date Received: 04/30/19
Field Prep: Not Specified

Sample Depth:

Sample Location:

Lab ID:

Client ID:

Matrix: Water

Analytical Method: 128,624.1-SIM Analytical Date: 05/06/19 12:01

Analyst: GT

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-SIM	- Westborough Lab					
1,4-Dioxane	ND		ug/l	50		1
Surrogate			% Recovery	Qualifier		eptance riteria
Fluorobenzene			95			60-140
4-Bromofluorobenzene			101			60-140

Project Name: 10 CLIFFORD STREET **Lab Number:** L1917808

Project Number: 6690.9.DP Report Date: 05/07/19

SAMPLE RESULTS

Lab ID: Date Collected: 04/30/19 10:45

Client ID: B-303 (OW) Date Received: 04/30/19
Sample Location: ROXBURY, MA Field Prep: Not Specified

Sample Depth:

AWS

Analyst:

Matrix: Water Extraction Method: EPA 504.1
Analytical Method: 14,504.1 Extraction Date: 05/07/19 10:13

Analytical Date: 05/07/19 15:24

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Microextractables by GC - Westborough Lab							
1,2-Dibromoethane	ND		ug/l	0.010		1	Α

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1917808

Report Date: 05/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1 Analytical Date: 05/06/19 10:53

Analyst: GT

Parameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough La	o for sample(s): 01	Batch:	WG1233969-12
Methylene chloride	ND	ug/l	1.0	
1,1-Dichloroethane	ND	ug/l	1.5	
Carbon tetrachloride	ND	ug/l	1.0	
1,1,2-Trichloroethane	ND	ug/l	1.5	
Tetrachloroethene	ND	ug/l	1.0	
1,2-Dichloroethane	ND	ug/l	1.5	
1,1,1-Trichloroethane	ND	ug/l	2.0	
Benzene	ND	ug/l	1.0	
Toluene	ND	ug/l	1.0	
Ethylbenzene	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	1.0	
Trichloroethene	ND	ug/l	1.0	
1,2-Dichlorobenzene	ND	ug/l	5.0	
1,3-Dichlorobenzene	ND	ug/l	5.0	
1,4-Dichlorobenzene	ND	ug/l	5.0	
p/m-Xylene	ND	ug/l	2.0	
o-xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
Acetone	ND	ug/l	10	

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
Pentafluorobenzene	91	60-140
Fluorobenzene	82	60-140
4-Bromofluorobenzene	90	60-140

Project Name: 10 CLIFFORD STREET **Lab Number:** L1917808

Project Number: 6690.9.DP Report Date: 05/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 128,624.1-SIM Analytical Date: 05/06/19 10:53

Analyst: GT

Parameter	Result	Qualifier	Units		RL	MDL	
Volatile Organics by GC/MS-SIM -	Westborough	Lab for sa	ample(s):	01	Batch:	WG1234019-4	
1,4-Dioxane	ND		ug/l		50		

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
	-	22.442
Fluorobenzene	95	60-140
4-Bromofluorobenzene	101	60-140

Project Name: 10 CLIFFORD STREET **Lab Number:** L1917808

Project Number: 6690.9.DP Report Date: 05/07/19

Method Blank Analysis Batch Quality Control

Analytical Method: 14,504.1 Extraction Method: EPA 504.1

Analytical Date: 05/07/19 14:22 Extraction Date: 05/07/19 10:13

Analyst: AWS

Parameter	Result	Qualifier	Units	RL	MDL	
Microextractables by GC - Westb	orough Lab fo	r sample(s)	: 01	Batch: WG123	4353-1	
1,2-Dibromoethane	ND		ug/l	0.010		Α

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number: L1917808

Report Date: 05/07/19

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01	_ab Associated	sample(s): 01	Batch: WG1233969-11	233969-11				
Methylene chloride	75		ı		60-140	ı		28
1,1-Dichloroethane	80		ı		50-150	ı		49
Carbon tetrachloride	95		•		70-130	ı		41
1,1,2-Trichloroethane	110		ı		70-130	1		45
Tetrachloroethene	115		•		70-130	ı		39
1,2-Dichloroethane	90		•		70-130	ı		49
1,1,1-Trichloroethane	90		•		70-130	ı		36
Benzene	80		ı		65-135	•		61
Toluene	105		ı		70-130	•		41
Ethylbenzene	85		ı		60-140	•		63
Vinyl chloride	80		ī		5-195	ı		66
1,1-Dichloroethene	80		ı		50-150	•		32
cis-1,2-Dichloroethene	75				60-140	ı		30
Trichloroethene	95		ı		65-135	ı		48
1,2-Dichlorobenzene	95		ı		65-135	ı		57
1,3-Dichlorobenzene	90		ı		70-130	ı		43
1,4-Dichlorobenzene	90		ī		65-135	ı		57
p/m-Xylene	92		ī		60-140	ı		30
o-xylene	85		ı		60-140	1		30
Acetone	90		ı		40-160			30

Lab Number: L1917808

05/07/19

Project Number: 6690.9.DP Project Name: 10 CLIFFORD STREET Report Date:

Parameter	
%Recovery	LCS
Qual	
%Recovery	LCSD
Qual	
Limits	%Recovery
RPD	
Qual	
Limits	RPD
	r %Recovery Qual %Recovery Qual Limits RPD Qual:

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1233969-11

Pentafluorobenzene Fluorobenzene 4-Bromofluorobenzene	Surrogate
98 87 92	LCS %Recovery Qual
	LCSD %Recovery Qual
60-140 60-140 60-140	Acceptance Criteria

Lab Number:

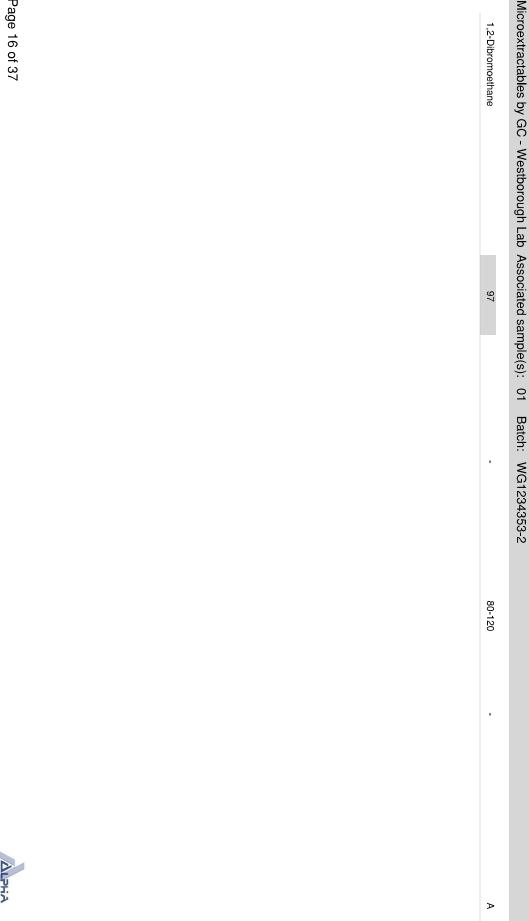
05/07/19 L1917808

Project Number: 6690.9.DP Project Name: 10 CLIFFORD STREET Report Date:

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery Qual	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
	-	-)				

Surrogate LCS LCSD %Recovery Qual %Recovery Qual

Project Name: 10 CLIFFORD STREET


Project Number: 6690.9.DP

Lab Number: L1917808

Report Date: 05/07/19

; LCSD %Recovery very Qual %Recovery Qual Limits RPD Qual	_
	%Recovery Qual Limits

1,2-Dibromoethane

Matrix Spike Analysis Batch Quality Control

Project Number: Project Name: 6690.9.DP 10 CLIFFORD STREET

Report Date: Lab Number: 05/07/19 L1917808

Parameter	Native Sample	MS Added	MS Found	MS MSD %Recovery Qual Found	Qual	MSD Found	MSD Recovery RPD %Recovery Qual Limits RPD Qual Limits Column	Qual R	Recovery Limits	RPD	Qual 1	RPD Limits	<u>Column</u>
Microextractables by GC - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1234353-3	Westborough Lab	Associated	d sample(s): 0:	1 QC Batch	ID: WG12	34353-3	QC Sample: L1917791-04 Client ID: MS Sample	L1917791	-04 Clie	nt ID: M	S Sampl	Ф	
1,2-Dibromoethane	ND	0.251	0.253	101		1	•		80-120	1		20	≻
1,2-Dibromo-3-chloropropane	ND	0.251	0.262	104		1			80-120	1		20	A

METALS

Project Name: 10 CLIFFORD STREET

Water

6690.9.DP

Report Date:

L1917808

Project Number:

Lab Number:

05/07/19

SAMPLE RESULTS

Lab ID: L1917808-01

B-303 (OW) Client ID: Sample Location: ROXBURY, MA Date Collected: Date Received: 04/30/19 10:45

Field Prep:

04/30/19 Not Specified

Sample Depth:

Matrix:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Chromium, Total	0.00146		mg/l	0.00100		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Copper, Total	0.00313		mg/l	0.00100		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Iron, Total	0.912		mg/l	0.050		1	05/02/19 17:38	3 05/03/19 14:30	EPA 3005A	19,200.7	AB
Lead, Total	0.00517		mg/l	0.00100		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Mercury, Total	0.00092		mg/l	0.00020		1	05/01/19 14:43	3 05/03/19 14:10	EPA 245.1	3,245.1	GD
Nickel, Total	0.00249		mg/l	0.00200		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	05/02/19 17:38	3 05/03/19 11:26	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	236		mg/l	0.660	NA	1	05/02/19 17:38	3 05/03/19 14:30	EPA 3005A	19,200.7	AB
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		05/03/19 11:26	NA	107,-	

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1917808

Report Date:

05/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01 Batch	n: WG12	232430-	1				
Mercury, Total	ND	mg/l	0.00020		1	05/01/19 14:43	05/03/19 13:54	3,245.1	GD

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Ma	nsfield Lab for sample(s)): 01 Batcl	h: WG12	32826-	1				
Antimony, Total	ND	mg/l	0.00400		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/02/19 17:38	05/03/19 09:13	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	sfield Lab for sample(s):	01 Batch	n: WG12	232842-	1				
Iron, Total	ND	mg/l	0.050		1	05/02/19 17:38	05/03/19 10:07	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1917808

Report Date:

05/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 23	340B - Mansfield Lab	for sam	ple(s): 0	1 Bato	h: WG123	2842-1			
Hardness	ND	mg/l	0.660	NA	1	05/02/19 17:38	05/03/19 10:07	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number: L1917808

Report Date: 05/07/19

Parameter	LCS %Recovery Qual	LCSD yal %Recovery	%Recovery Qual Limits	RPD Qual RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01 Batch: WG1232430-2	le(s): 01 Batch: WG1	232430-2		
Mercury, Total	104	ı	85-115	,
Total Metals - Mansfield Lab Associated sample(s): 01	le(s): 01 Batch: WG1232826-2	232826-2		
Antimony, Total	115	í	85-115	
Arsenic, Total	101	1	85-115	•
Cadmium, Total	100	1	85-115	•
Chromium, Total	100	1	85-115	•
Copper, Total	95	1	85-115	•
Lead, Total	102		85-115	
Nickel, Total	99		85-115	•
Selenium, Total	103	•	85-115	•
Silver, Total	97		85-115	•
Zinc, Total	103	•	85-115	
Total Metals - Mansfield Lab Associated sample(s): 01	ile(s): 01 Batch: WG1232842-2	232842-2		
Iron, Total	94	ı	85-115	
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01	Associated sample(s):	01 Batch: WG1232842-2	5-5	
Hardness	96		85-115	,

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

> Matrix Spike Analysis
> Batch Quality Control Lab Number:

Report Date:

05/07/19 L1917808

Parameter	Native Sample	MS Added	MS Found	MS %Recovery Q	MSD Qual Found	MSD %Recovery Qual	Recovery Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	ociated sam	ıple(s): 01	QC Batch I	QC Batch ID: WG1232430-3	QC Samp	_1917708-01	ble: L1917708-01 Client ID: MS Sample	ıple	
Mercury, Total	ND	0.005	0.00501	100	i	•	70-130	•	20
Total Metals - Mansfield Lab Associated sample(s): 01	ociated sam	ıple(s): 01	QC Batch I	QC Batch ID: WG1232826-3	QC Samp	le: L1917791-04	Client ID: MS Sample	ıple	
Antimony, Total	ND	0.5	0.4994	100	i		70-130	1	20
Arsenic, Total	ND	0.12	0.1260	105	r	•	70-130	1	20
Cadmium, Total	ND	0.051	0.05185	102	ı	•	70-130	ı	20
Chromium, Total	ND	0.2	0.2018	101	1	•	70-130	ı	20
Copper, Total	ND	0.25	0.2445	98	1	•	70-130	ı	20
Lead, Total	ND	0.51	0.5335	105	1		70-130	1	20
Nickel, Total	0.00532	0.5	0.5150	102	r	•	70-130	1	20
Selenium, Total	ND	0.12	0.1193	99	1	•	70-130	ı	20
Silver, Total	ND	0.05	0.04739	95	r	•	70-130	1	20
Zinc, Total	ND	0.5	0.5293	106	1	ı	70-130	1	20

Matrix Spike Analysis

Project Name:

Project Number: 6690.9.DP

0 CLIFFORD STREET	
,	Batch Quality Control
Lab Number:	
L1917808	

Report Date:

05/07/19

Parameter	Native Sample	MS Added	Found	%Recovery	Found	MSD %Recovery	Recovery Limits	RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01	ssociated san	nple(s): 01	QC Batch I	QC Batch ID: WG1232826-5	QC Sample: L1917731-01	_1917731-01	Client ID: MS Sample	ample	
Antimony, Total	ND	0.5	0.5547	111		,	70-130	ı	20
Arsenic, Total	0.0024	0.12	0.1322	108		1	70-130		20
Cadmium, Total	ND	0.051	0.05565	109		ı	70-130		20
Chromium, Total	ND	0.2	0.2054	103		ı	70-130		20
Copper, Total	0.0163	0.25	0.2734	103		ı	70-130	ı	20
Lead, Total	ND	0.51	0.5453	107		ı	70-130		20
Nickel, Total	ND	0.5	0.5219	104	•	•	70-130	•	20
Selenium, Total	ND	0.12	0.1191	99	•	•	70-130	•	20
Silver, Total	ND	0.05	0.05106	102		ī	70-130	•	20
Zinc, Total	0.0262	0.5	0.5761	110	•	ı	70-130	ı	20
Total Metals - Mansfield Lab Associated sample(s): 01	ssociated san	nple(s): 01	QC Batch I	QC Batch ID: WG1232842-3	QC Sample: L1917791-04	1917791-04	Client ID: MS Sample	ample	
Iron, Total	ND	1	0.929	93	•	ı	75-125	ı	20
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01	- Mansfield La	າb Associat	ed sample(s)		QC Batch ID: WG1232842-3		QC Sample: L1917791-04	Client ID:	Client ID: MS Sample
Hardness	125	66.2	182	86	ı	,	75-125	ı	20
Total Metals - Mansfield Lab Associated sample(s): 01	ssociated san	nple(s): 01	QC Batch I	QC Batch ID: WG1232842-7	QC Sample: L1917731-01	1917731-01	Client ID: MS Sample	ample	
Iron, Total	0.056	_	1.10	104	ı	į	75-125	•	20
Total Hardness by SM 2340B - Mansfield Lab Associated sample(s): 01	- Mansfield I a						la: 1017731_01		
-		tb Associate	ed sample(s)		QC Batch ID: WG1232842-7	OC Sample: L1917731-01	id. [131/701-01	Client ID:	Client ID: MS Sample

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Duplicate Analysis Batch Quality Control

Report Date: Lab Number: 05/07/19 L1917808

Parameter	Native Sample Dup	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1232430-4	QC Sample: L1917708-01 Client ID: DUP Sample	7708-01 Cli	ent ID: D	UP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1232826-4	QC Sample: L191	L1917791-04 Client ID: DUP Sample	ent ID: D	UP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	ND	ND	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.00532	0.00475	mg/l	⇉		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1232826-6	QC Sample: L191	ple: L1917731-01 Client ID: DUP Sample	ent ID: D	UP Sample	
Lead, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1232842-4	QC Sample: L1917791-04 Client ID: DUP Sample	7791-04 Cli	ent ID: D	UP Sample	
Iron, Total	ND	ND	mg/l	NC		20
Total Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1232842-8	QC Sample: L1917731-01 Client ID: DUP Sample	7731-01 Cli	ent ID: D	UP Sample	
Iron, Total	0.056	0.064	mg/l	14		20

INORGANICS & MISCELLANEOUS

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1917808

Report Date:

05/07/19

SAMPLE RESULTS

Lab ID: L1917808-01

Client ID: B-303 (OW)
Sample Location: ROXBURY, MA

Date Collected:

04/30/19 10:45

Date Received: Field Prep:

04/30/19 Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result (Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab									
Solids, Total Suspended	29.		mg/l	5.0	NA	1	-	05/01/19 16:30	121,2540D	DR
Cyanide, Total	ND		mg/l	0.005		1	05/01/19 10:25	05/01/19 13:46	121,4500CN-CE	LH
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/01/19 05:15	121,4500CL-D	MA
pH (H)	6.6		SU	-	NA	1	-	05/01/19 06:14	121,4500H+-B	JW
Nitrogen, Ammonia	0.083		mg/l	0.075		1	05/01/19 17:06	05/01/19 22:05	121,4500NH3-BH	I AT
Chromium, Hexavalent	ND		mg/l	0.010		1	04/30/19 22:10	04/30/19 22:59	1,7196A	AS
Anions by Ion Chromato	graphy - Westb	orough l	_ab							
Chloride	74.4		mg/l	5.00		10	-	05/01/19 22:18	44,300.0	AU

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1917808

Report Date: 05/07/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ıalifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	32121-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	04/30/19 22:10	04/30/19 22:58	1,7196A	AS
General Chemistry	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	32240-1				
Chlorine, Total Residual	ND		mg/l	0.02		1	-	05/01/19 05:15	121,4500CL-D	MA
General Chemistry	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	32300-1				
Cyanide, Total	ND		mg/l	0.005		1	05/01/19 10:25	05/01/19 13:29	121,4500CN-CE	E LH
General Chemistry	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	32350-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/01/19 17:06	05/01/19 21:51	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	32360-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/01/19 16:30	121,2540D	DR
Anions by Ion Chror	natography - Westb	orough	Lab for sar	mple(s):	01 B	atch: WG1	232604-1			
Chloride	ND		mg/l	0.500		1	-	05/01/19 16:54	44,300.0	AU

Project Name: 10 CLIFFORD STREET
Project Number: 6690.9.DP

Lab Number: L1917808

Report Date: 05/07/19

|--|

Matrix Spike Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

Report Date:

05/07/19 L1917808

Parameter	Native Sample	MS Added F	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Qual	Recovery RPD Limits RPD Qual Limits
General Chemistry - Westborough Lab Associated sample(s): 01	ıgh Lab Asso	ciated sample(s		QC Batch ID: WG1232121-4	31232121-4	QC Sample: L1917808-0	QC Sample: L1917808-01 Client ID: B-303 (OW)
Chromium, Hexavalent	ND	0.1	0.098	98	ı	•	85-115 - 20
General Chemistry - Westborough Lab Associated sample(s): 01	ıgh Lab Assoo	ciated sample(s		QC Batch ID: WG1232240-4	31232240-4	QC Sample: L1917688-0	QC Sample: L1917688-04 Client ID: MS Sample
Chlorine, Total Residual	ND	0.25	0.30	120	ı	1	80-120 - 20
General Chemistry - Westborough Lab Associated sample(s): 01	ıgh Lab Asso	ciated sample(s	9): 01	QC Batch ID: WG1232300-4	31232300-4	QC Sample: L1917660-0	QC Sample: L1917660-02 Client ID: MS Sample
Cyanide, Total	ND	0.2	0.178	89	Ω .	1	90-110 - 30
General Chemistry - Westborough Lab Associated sample(s): 01	ıgh Lab Asso	ciated sample(s		QC Batch ID: WG1232350-4	31232350-4	QC Sample: L1917500-0	QC Sample: L1917500-02 Client ID: MS Sample
Nitrogen, Ammonia	0.234	4	3.50	82	ı	•	80-120 - 20
Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 QC Batch ID: WG1232604-3 QC Sample: L1917791-04 Client ID: MS Sample	- Westboroug	ıh Lab Associat	ed sam	ıple(s): 01 QC E	Batch ID: WG1	232604-3 QC Sample:	: L1917791-04 Client ID: M
Chloride	45,4	4	47.8	59	Ω .		90-110 - 18

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Duplicate Analysis Batch Quality Control

Report Date: Lab Number:

05/07/19 L1917808

	18	0		mg/l	45.6	45.4		Chloride	Chlo
JP	QC Sample: L1917791-04 Client ID: DUP	L1917791-	ΩC Sample:	1232604-4	1 QC Batch ID: WG	sample(s): 0	borough Lab Associatec	Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01	Anions Sample
	29	0		mg/l	72	72		Solids, Total Suspended	Soli
	QC Sample: L1917717-02 Client ID: DUP Sample	02 Client ID	L1917717-(QC Batch ID: WG1232360-2	01 QC Batch	Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s):	Gener
	20	10		mg/l	0.212	0.234		Nitrogen, Ammonia	Nitro
	QC Sample: L1917500-02 Client ID: DUP Sample	02 Client ID	L1917500-(QC Batch ID: WG1232350-3		Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s): 01	Gener
	30	NC		mg/l	N D	N D		Cyanide, Total	Суа
	QC Sample: L1917660-01 Client ID: DUP Sample	01 Client ID	L1917660-0		QC Batch ID: WG1232300-3		Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s): 01	Gener
	20	Cī		mg/l	0.58	0.55		Chlorine, Total Residual	Chlo
	QC Sample: L1917688-05 Client ID: DUP Sample	05 Client ID	L1917688-0		QC Batch ID: WG1232240-3		Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s): 01	Gener
	O	N		SU	6.1	6.2			PΗ
	QC Sample: L1917807-01 Client ID: DUP Sample	01 Client ID	L1917807-(QC Batch ID: WG1232214-2		Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s): 01	Gener
	20	NC		mg/l	N D	N D		Chromium, Hexavalent	Chr
	QC Sample: L1917808-01 Client ID: B-303 (OW)	01 Client ID	L1917808-(QC Batch ID: WG1232121-3		Associated sample(s):	General Chemistry - Westborough Lab Associated sample(s): 01	Gener
ts	al RPD Limits	RPD Qual		ample Units	Duplicate Sam	Native Sample	Nati	meter	Parameter

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Sample Receipt and Container Information

Report Date: 05/07/19

Serial_No:05071918:53 Lab Number: L1917808

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

Absent

TSS-2540(7)		Absent	~	3.6	7	7	Þ	Plastic 950ml unpreserved	L1917808-01M
CL-300(28),HEXCR-7196(1),TRC-4500(1),PH- 4500(.01)		Absent	~	3.6	7	7	A	Plastic 950ml unpreserved	L1917808-01L
CD-20081(180), NI-20081(180), AN- 2008T(180), CU-2008T(180), FE- UI(180), HARDU(180), AG-2008T(180), AS- 2008T(180), HG-U(28), SE-2008T(180), CR- 2008T(180), PB-2008T(180), SB-2008T(180)		Absent	~	ა. ი	٨	٨	Σ	Plastic 250ml HINO3 preserved	E191/808-01K
NU3-4300(28)		Absent	; →) <u>(</u>	. ^	· ^	• >	riastic southi nzso4 preserved	L1917808-017
			:))	o)	•		
TCN-4500(14)		Absent	~	3.6	>12	>12	Þ	Plastic 250ml NaOH preserved	L1917808-01I
504(14)		Absent	~	3.6		N A	A	Vial Na2S2O3 preserved	L1917808-01H
504(14)		Absent	~	3.6		Z >	➤	Vial Na2S2O3 preserved	L1917808-01G
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		N A	>	Vial Na2S2O3 preserved	L1917808-01F
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		N N	Þ	Vial Na2S2O3 preserved	L1917808-01E
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		Z >	Þ	Vial Na2S2O3 preserved	L1917808-01D
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		Z	>	Vial Na2S2O3 preserved	L1917808-01C
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		Z	>	Vial Na2S2O3 preserved	L1917808-01B
624.1-RGP(7),624.1-SIM-RGP(7)		Absent	~	3.6		N A	Þ	Vial Na2S2O3 preserved	L1917808-01A
Analysis(*)	Frozen Date/Time	Seal	Pres	Temp deg C	Final pH	Initial pH	Cooler	Container Type	Container ID Contai
	l			ı	!			Comption	Container Int

Project Name:10 CLIFFORD STREETLab Number:L1917808Project Number:6690.9.DPReport Date:05/07/19

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:10 CLIFFORD STREETLab Number:L1917808Project Number:6690.9.DPReport Date:05/07/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:10 CLIFFORD STREETLab Number:L1917808Project Number:6690.9.DPReport Date:05/07/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 107 Alpha Analytical In-house calculation method.
- Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 128 Method 624.1: Purgeables by GC/MS, EPA 821-R-16-008, December 2016.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05071918:53

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. **EPA 522.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

FORM NO: 01-01()-NJ) (rec. 5-349-12)						THE PARTY				18082	(Lab Use Only)	AI DUA I AN ID	Circle the following if required; SALINITY HARDNESS PH Sect. A inorganics: Ammonia, 0 B- Non-Hal- VOC- 8260, 8260- D: 8270/8270-SIM: E- PCB's, 1	Other Project Spe	Email: Kseaman@mcphailgeo.com	Fax	Phone: (617) 868-1420	Cambridge, MA 02140	Address: 2269 Massachusetts Avenue	Client: McPhail Associates, LLC	Client information		1003	Westborough MA N	ANALYTIOAL	VIPLA	
										B-303 (ow)	Sample ID	Sample ID	Circle the following if required; - SALINITY HARDNESS PH SALINITY HARDNESS PH Sect. A inorganics: Ammonia, Chloride, TRC,TSS,CrVI,CrIII, Tot-CN, RGP Metals B- Non-Hal- VOC- 8260, 8260-SIM, Tot Phenol Sect. C- VOC- 8260 & 504 D: 8270/8270-SIM: E- PCB's, PCP/8270/8270-SIM: F-TPH, 8260, Sub-Ethanol	Other Project Specific Requirements/Comments/Detection Limits:	cphailgeo.com		120	40	sachusetts Avenue	ociates, LLC			TEL: 508-822-9300 FAX: 508-822-3288	Mansfield MA			CHAIN OF CUSTODY
1			1							4/30	Date		VI.Crill, Tot-CN, F	te/Detection Lim))	Standard Standard	Turn-Around Time	ALPHA Quote #:	Project Manager: KWS	Project #: 6690.9.DP	Project Location: Roxbury, MA		Project Name: 10 Clifford Street		1 3000	Project Information	CUSTO
1	EKC	Relin								10:45	Time	To Landing	RGP Metals	ite:	5		Time	井	er: KWS).9.DP	in: Roxbury,	1	10 Clifford S		illudoi.	mation	ĎΥ
		Relinquished By:		co						GW	Matrix	2				Rush (ONLY IF PRE-APPROVED)	多大型				MA		treet	National Section 1			PAGE OF
(1		Preservative	Container Type						りがな	Initials	,				E-APPROVED;	STATE OF THE PARTY							In land on the			
4/30/19	4/30	D	С	ъ						Ø	RGF	м	letals (200.8) (A	()			AN	1			NPD	State	Rec	×		Rep	Date
9 1750	12:00	Date/Time	>	70						×	TSS	- (4	4)				ANALTOIS			B	NPDES RGP	State/Fed Program	Regulato	Ø ADEx		Report In	Date Rec'd in Labo
0	0	137.50	0	o						×	Amn	nor	nia (4500 (A))				0	1	+		Ĩ	ogram	ory Requirements/Report Limits			nformation Data Deliverables	Lab:
D	1		т	D						\boxtimes	TCN	(A)					١		N	ı		quire			ition	
A	n	ecus	>	ס						×	CrVI	,Cr	au,										ments	□ ≥	□ EMAIL	Data	_
1	(Received By:	8	<						\boxtimes	624.	1 F	RGP+ 624.1-SII	и-RG	P (1,	4-				The same			;/Rep	☐ Add'l Deliverables	MAIL	Deliv	2/18/14
A	7	By:	>	σ						\boxtimes	ph/ ł	lar	dness					ı			ı		ort Li	verable		erabl	S
V	(,		ľ	88						\boxtimes	504	ED	В					١			L		mits	ä		es	
11	1			9)														ı		5		Criteria	Î		O Sa	Billin	ALPI
Burg	7/30/19	D	Ŀ	**														١					i		Same as Client info	Billing Information	ALPHA Job #: (
-	1	Date/Time	Ľ	X0.														١		13	ı		1		Client	orma	#
17.20	1680	ě	,	00							54.										ı		Ĭ		info	tion	
Alpha's Payment Terms.	resolved. All samples	turnaround time clock will not	and completely. Samples can							13	Sample Specific Comments		(Please specify L below) S		□ Not Needed	Filtration C	SAMPLE HANDLING T	4		The second					PO#	THE REAL PROPERTY.	2021/6/
	d	2	3							w			∞mr -	-101	* **		-10										

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1919553

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP Report Date: 05/15/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1919553

Report Date:

05/15/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1919553-01	SURFACE WATER	WATER	ROXBURY, MA	05/09/19 11:00	05/09/19

Project Name: 10 CLIFFORD STREET Lab Number: L1919553

Project Number: 6690.9.DP Report Date: 05/15/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

i ioado domade i	rojout managomoni	at 000 02 1 0220 With	rany quoditorio.		

Please contact Project Management at 800-624-9220 with any questions

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/15/19

600, Sharow Kelly Stenstrom

ALPHA

METALS

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP Lab Number:

L1919553

SAMPLE RESULTS

Report Date:

05/15/19

Lab ID: L1919553-01

Client ID:

Date Collected:

05/09/19 11:00

SURFACE WATER Sample Location: ROXBURY, MA

Date Received: Field Prep:

05/09/19 Not Specified

Sample Depth:

Matrix:

Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Chromium, Total	0.00140		mg/l	0.00100		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Copper, Total	0.00406		mg/l	0.00100		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Iron, Total	1.27		mg/l	0.050		1	05/13/19 19:1	1 05/14/19 02:11	EPA 3005A	19,200.7	LC
Lead, Total	0.00632		mg/l	0.00100		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	05/10/19 12:36	6 05/10/19 19:18	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Zinc, Total	0.01396		mg/l	0.01000		1	05/13/19 19:1	1 05/14/19 03:48	EPA 3005A	3,200.8	AM
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	59.7		mg/l	0.660	NA	1	05/13/19 19:1	1 05/14/19 02:11	EPA 3005A	19,200.7	LC
General Chemistry	- Mansfie	ld Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		05/14/19 03:48	NA	107,-	

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1919553

Report Date:

05/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	ld Lab for sample(s):	01 Batc	h: WG12	235839-	·1				
Mercury, Total	ND	mg/l	0.00020		1	05/10/19 12:36	05/10/19 19:02	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s): (01 Batch	: WG12	236657-	1				
Iron, Total	ND	mg/l	0.050		1	05/13/19 19:11	05/14/19 01:12	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by S	SM 2340B - Mansfield L	ab for sam	ple(s): C)1 Bato	h: WG123	6657-1			
Hardness	ND	mg/l	0.660	NA	1	05/13/19 19:11	05/14/19 01:12	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01 Batc	h: WG12	236658-	·1				
Antimony, Total	ND	mg/l	0.00400		1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM

Project Name: 10 CLIFFORD STREET **Lab Number:** L1919553

Project Number: 6690.9.DP Report Date: 05/15/19

Method Blank Analysis Batch Quality Control

Lead, Total	ND	mg/l	0.00100	 1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200	 1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500	 1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Silver, Total	ND	mg/l	0.00040	 1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000	 1	05/13/19 19:11	05/14/19 02:35	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1919553

Report Date:

05/15/19

arameter	LCS %Recovery	LCSD Qual %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	NG1235839-2					
Mercury, Total	106	-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1236657-2					
Iron, Total	110	-		85-115	-		
otal Hardness by SM 2340B - Mansfield Lab A	Associated sample	e(s): 01 Batch: WG12366	57-2				
Hardness	106	-		85-115			
otal Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	NG1236658-2					
otal Metals - Mansfield Lab Associated sample Antimony, Total	e(s): 01 Batch: \	NG1236658-2 -		85-115			
				85-115 85-115	-		
Antimony, Total	85						
Antimony, Total Arsenic, Total	85 99			85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total	85 99 102			85-115 85-115	-		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total	85 99 102 97			85-115 85-115 85-115			
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total	85 99 102 97 94			85-115 85-115 85-115 85-115	- - -		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total	85 99 102 97 94 105			85-115 85-115 85-115 85-115 85-115	- - -		
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Lead, Total Nickel, Total	85 99 102 97 94 105	- - - - - -		85-115 85-115 85-115 85-115 85-115	- - - -		

Matrix Spike Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number: L1919553

Report Date: 05/15/19

arameter	Native Sample	MS Added	MS Found %	MS %Recovery Q	MSD ual Found o	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch ID	: WG1235839-3	QC Sample: L	.1919055-01	Client ID: MS S	ample	
Mercury, Total	ND	0.005	0.00517	104	-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated sam	nple(s): 01	QC Batch ID	: WG1236657-3	QC Sample: L	.1919532-01	Client ID: MS S	ample	
Iron, Total	11.4	1	12.3	90	-	-	75-125	-	20
Total Hardness by SM 2	340B - Mansfield Lal	b Associate	ed sample(s):	01 QC Batch II	D: WG1236657-3	QC Sampl	le: L1919532-01	Client ID:	MS Sample
Hardness	396	66.2	455	89	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated sam	ple(s): 01	QC Batch ID	: WG1236658-3	QC Sample: L	.1919532-01	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.6041	121	-	-	70-130	-	20
Arsenic, Total	0.00175	0.12	0.1243	102	-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.05303	104	-	-	70-130	-	20
Chromium, Total	ND	0.2	0.1924	96	-	-	70-130	-	20
Copper, Total	0.00143	0.25	0.2360	94	-	-	70-130	-	20
Lead, Total	ND	0.51	0.5044	99	-	-	70-130	-	20
Nickel, Total	ND	0.5	0.4832	97	-	-	70-130	-	20
Selenium, Total	ND	0.12	0.1193	99	-	-	70-130	-	20
Silver, Total	ND	0.05	0.04988	100	-	-	70-130	-	20
Zinc, Total	ND	0.5	0.5051	101	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1919553

Report Date:

05/15/19

Parameter	Native Sample Du	plicate Sample	Units	RPD	Qual	RPD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1235839-4	QC Sample:	L1919055-01	Client ID:	DUP Sample	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1236657-4	QC Sample:	L1919532-01	Client ID:	DUP Sample	
Iron, Total	11.4	11.3	mg/l	1		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG1236658-4	QC Sample:	L1919532-01	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	0.00175	0.00193	mg/l	10		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00143	0.00123	mg/l	15		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	ND	ND	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP Lab Number:

L1919553

Report Date:

05/15/19

SAMPLE RESULTS

Lab ID: L1919553-01

Client ID: SURFACE WATER Sample Location: ROXBURY, MA

Date Collected: Date Received: 05/09/19

05/09/19 11:00

Not Specified Field Prep:

Sample Depth:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst	
General Chemistry - We	stborough Lat										
Solids, Total Suspended	13.		mg/l	5.0	NA	1	-	05/10/19 06:40	121,2540D	JT	
Cyanide, Total	0.005		mg/l	0.005		1	05/11/19 14:45	05/13/19 10:52	121,4500CN-CE	LH	
pH (H)	7.5		SU	-	NA	1	-	05/09/19 22:34	121,4500H+-B	AS	
Nitrogen, Ammonia	0.114		mg/l	0.075		1	05/10/19 02:00	05/10/19 23:04	121,4500NH3-BH	l AT	
Chromium, Hexavalent	ND		mg/l	0.010		1	05/10/19 00:01	05/10/19 00:53	1,7196A	JW	

L1919553

Lab Number:

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP **Report Date:** 05/15/19

Method Blank Analysis Batch Quality Control

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	35603-1				
Chromium, Hexavalent	ND		mg/l	0.010		1	05/10/19 00:01	05/10/19 00:50	1,7196A	JW
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	35616-1				
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/10/19 02:00	05/10/19 22:46	121,4500NH3-BI	H AT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	35644-1				
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/10/19 06:40	121,2540D	JT
General Chemistry -	Westborough Lab	for sam	ple(s): 01	Batch:	WG12	36156-1				
Cyanide, Total	ND		mg/l	0.005		1	05/11/19 14:45	05/13/19 10:37	121,4500CN-CE	LH

Lab Control Sample Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number:

L1919553

Report Date:

05/15/19

Parameter	LCS %Recovery Q	LCSD lual %Recovery		ecovery imits RPD	Qual	RPD Limits
General Chemistry - Westborough Lab As	sociated sample(s): 0	1 Batch: WG1235581-	1			
рН	100	-	9	9-101 -		5
General Chemistry - Westborough Lab As	sociated sample(s): 0	1 Batch: WG1235603-	2			
Chromium, Hexavalent	97	-	8	5-115 -		20
General Chemistry - Westborough Lab As	sociated sample(s): 0	1 Batch: WG1235616-	2			
Nitrogen, Ammonia	102	-	8	0-120 -		20
General Chemistry - Westborough Lab As	sociated sample(s): 0	1 Batch: WG1236156-	2			
Cyanide, Total	98	-	9	0-110 -		

Matrix Spike Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number: L1919553

Report Date: 05/15/19

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qual	RPD Limits
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1235603-4	QC Sample: L191	9553-01 Client IE	: SURFACE	WATER
Chromium, Hexavalent	ND	0.1	0.089	89	-	-	85-115	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1235616-4	QC Sample: L191	9378-01 Client IE): MS Sample	Э
Nitrogen, Ammonia	0.134	4	3.81	92	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Assoc	iated samp	ole(s): 01	QC Batch ID: \	WG1236156-4	QC Sample: L191	9532-02 Client ID): MS Sample	Э
Cyanide, Total	ND	0.2	0.181	90	-	-	90-110	-	30

Lab Duplicate Analysis Batch Quality Control

Project Name: 10 CLIFFORD STREET

Project Number: 6690.9.DP

Lab Number: L1919553

Report Date: 05/15/19

Parameter	Native	Sample	Duplicate Sam	ple Units	s RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1235581-2	QC Sample:	L1919373-01	Client ID:	DUP Sample
рН	8	3.0	7.8	SU	3		5
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1235603-3	QC Sample:	L1919553-01	Client ID:	SURFACE WATER
Chromium, Hexavalent	1	ND	ND	mg/l	NC		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1235616-3	QC Sample:	L1919378-01	Client ID:	DUP Sample
Nitrogen, Ammonia	0.	134	0.098	mg/l	31	Q	20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1235644-2	QC Sample:	L1919442-01	Client ID:	DUP Sample
Solids, Total Suspended	1	30	130	mg/l	0		29
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1236156-3	QC Sample:	L1919532-01	Client ID:	DUP Sample
Cyanide, Total	1	ND	ND	mg/l	NC		30

Lab Number: L1919553

Report Date: 05/15/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

10 CLIFFORD STREET

YES

Cooler Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 6690.9.DP

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1919553-01A	Plastic 250ml NaOH preserved	Α	>12	>12	3.0	Υ	Absent		TCN-4500(14)
L1919553-01B	Plastic 250ml HNO3 preserved	А	<2	<2	3.0	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1919553-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.0	Υ	Absent		NH3-4500(28)
L1919553-01D	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		HEXCR-7196(1),PH-4500(.01)
L1919553-01E	Plastic 950ml unpreserved	Α	7	7	3.0	Υ	Absent		TSS-2540(7)

Project Name: Lab Number: 10 CLIFFORD STREET L1919553 **Project Number:** 6690.9.DP **Report Date:** 05/15/19

GLOSSARY

Acronyms

EDL

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA** Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name:10 CLIFFORD STREETLab Number:L1919553Project Number:6690.9.DPReport Date:05/15/19

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- $\label{eq:main_equation} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name:10 CLIFFORD STREETLab Number:L1919553Project Number:6690.9.DPReport Date:05/15/19

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:05151913:37

ID No.:17873 Revision 12

Published Date: 10/9/2018 4:58:19 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAIN OF	CUSTO	DY	PAGE 1 O	F 1	Date	Rec'd	in Lab:	5	191	19		14	ALP	HA J	ob #:	LI	919553	
ALPHA		Project Inform	nation	N. Carlo	N. State	Report Information Data Deliverables								Billing Information					
A N A L V T Y T I C A		139,000	The state of the s					☐ FAX ☐ EMAIL						Same as Client info PO#:				PO #:	= -
Westborough, MA M	Mansfield, MA	Project Name: 1	O Clifford S	traat		⊠ /	ADEx				dd'l De	liverabl	es						
	FEL: 508-822-9300 FAX: 508-822-3288	Project Name.	o Cilliora S	neer		Regulatory Requirements/Report Limits													
Client Information Project Location: Roxbury, MA						-	/Fed P	rogram P	8				-	Criteri	а				
Client: McPhail Ass	ociates, LLC	Project #: 6690.9.DP					1	311			31	000		W.E.	Hi	Res		Tan Dekovi v	
Address: 2269 Mas	sachusetts Avenue	Project Manager: JSW																	- 1
Cambridge, MA 021	140	ALPHA Quote #							_	_		_	_		_	_	_		T
Phone: (617) 868-1	420	Turn-Around	Time	BY D		ANA	ALYS	IS										SAMPLE HANDLING	O T A
Fax:		Standard Standard	Ru	ish (ONLY IF F	PRE-APPROVED)													Filtration	A L
Email: jwold@mcph	ailgeo.com																	☐ Not Needed	
☐ These samples have	been Previously analyzed by Alpha	Due Date:	Time:	Ė.														☐ Lab to do Preservation	B
Other Project Specific Requirements/Comments/Detection Limits:						€												☐ Lab to do (Please specify	Ī
Circle the following Sect. A inorganics:	Ammonia, Chloride, TRC, TSS, C	VI,Crill, Tot-CN, RC	GP Metals			9.00	표	8										below)	E
	3260, 8260-SIM, Tot. Phenol Se E- PCB's, PCP(8270/8270-SIM)					als (2	ress	(450									1		
	0.10					Meta	hardi	onia	3										
ALPHA Lab ID (Lab Use Only)	Sample ID	Date	lection Sar Time Ma		nple Sampler's trix Initials	RGP Metals (200.8) (A)	TSS,hardness, pH	Ammonia (4500 (A))	TCN (A)	CrVI,CrIII,							-	Sample Specific Comments	
19553-01	Surface water	5/9/19	1100	sw	The	\boxtimes	\boxtimes	Ø											5
MEMPER DATE						<u> </u>	닏	닏	닏	ᆜ		ᆜ	닏	닏	ᆜ	부	님		
						님	님		님	님	무	님	H		片	님	님		\perp
							님	님	님	님	ᆜ	님	닏	님	님	님	무		
						H	무	H	님	분	무	님	H	무	뷰	片	片		-
		-				H	님	님	片	분	무	Η	님	님	片	님	片		-
						H-	님	H	Η	님	님	Η	H	H	片	H	남		-
							ш	Ш	ш	ш	П	Ш	ш	ш	ш	П	ш		
				- (Container Type	P	A	P	P	P	() ()			-		1		Please print clearly, legi	bly
			Relie	nguished By:	Preservative		ate/Tim	_	-		Penni	ed By:				Date/Tin		and completely. Sample not be logged in and turnaround time clock w	dienen.
		_	7	C C		5/9	/15	1700		MI	1/V	ey by.	AA	4	5/9		20	start until any ambiguitie resolved. All samples	
FORMING: 91-01(I-MJ)		av	Win	Apr		5/9	10	125	l	The state of the s	1	N	the	- by	P	ne	/	submitted are subject to Alpha's Payment Terms	
FORM NO: 01-01(LALZ) (rev: 5-JAN-12)			FF				11					1	7//						

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of 10 Clifford Street in Roxbury, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. A review of available subgrade sanitary and storm sewer system plans accessed from the BWSC, a single discharge flow path adjacent to the site flow to a primary discharge outfall location. The primary discharge location is an outfall pipe listed CSO023 according to the BWSC. Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates and, flocculant logs for off-site discharge. pH adjustment will be conducted, if necessary, through the addition of hydrochloric acid, caustic soda and carbon dioxide.

Discharge Monitoring and Compliance

Regular sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator must sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of treated effluent be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples must be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results must be reviewed no more than 48 hours from receipt of the results of each sampling event. After the first week, samples may be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as

designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator must perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent samples dictated by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

A number of methods will be used to minimize the potential for violations during the term of this permit discharge. Scheduled regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.11 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. The closest body of water is the Dorchester Old Harbor located approximately 9,000 feet to the east of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will be pumped through bag filters and, flocculant logs prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bag filters will be replaced/disposed of as necessary.