REVISED REMEDIATION GENERAL PERMIT NOTICE OF INTENT APRIL 2018

2018 Water Main Improvements Wayland, Massachusetts

TABLE OF CONTENTS

Letter of Transmittal

Section – Description	Page
SECTION 1 - Remediation General Permit Notice of Intent	1
SECTION 2 - Narrative	12
2.1 General	12
2.2 Area Description	12
2.3 Work Description	
2.4 Stormwater Management	13
2.5 Dewatering	14
2.6 Testing Parameters	14

LIST OF APPENDICES

Appendix	Description
A	Figure No. 1 - Locus Map Figure No. 2 - Dewatering Treatment System Schematic
В	Soil Borings Locations
С	Soil Boring Logs
D	Water Quality Results from Soil Borings and Existing Monitoring Wells and Laboratory Reports
Е	NHESP Determination and U.S. Fish and Wildlife Service Correspondence
F	MHC Determination
G	WQBEL Calculation Spreadsheet

Section 1

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone: Email:						
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site (check all that apply):						
	\square MA Chapter 21e; list RTN(s): \square CERC		CLA				
NPDES permit is (check all that apply: \square RGP \square DGP \square CGP	☐ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
		☐ CWA Section 404					

В.	Receiving water information:	:
1 N	lame of receiving water(s).	

1. Name of receiving water(s):	Waterbody identification of receiving water	(s): Classific	cation of receiving water(s):							
Receiving water is (check any that apply): \Box Outstar	nding Resource Water □ Ocean Sanctuary □ territor	rial sea □ Wild and Scenic R	iver							
2. Has the operator attached a location map in accord	lance with the instructions in B, above? (check one)	: □ Yes □ No								
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No									
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.										
	4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calculaccordance with the instructions in Appendix V for s										
6. Has the operator received confirmation from the a If yes, indicate date confirmation received:	ppropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	l No							
7. Has the operator attached a summary of receiving	water sampling results as required in Part 4.2 of the	RGP in accordance with the	instruction in Appendix VIII?							
(check one): ☐ Yes ☐ No										
C. Source water information:										
1. Source water(s) is (check any that apply):										
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:							
Has the operator attached a summary of influent										
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
□ Yes □ No	□ Yes □ No									

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): □ Yes □ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water \Box Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	•
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): Yes No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)					
	a. If Activity Category I or II: (check all that apply)					
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	mpounds Organic Compounds				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV	V, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply				

4. Influent and Effluent Characteristics

	Known	Known		75 5 4	D ()	Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	3		•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum		1	1	1		1 1		<u> </u>	
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Trovide the proposed maximum errident now in gpin.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): \square Yes \square No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. BMPP meeting the requirements of this Remediation General Permit will be developed and BMPP certification statement: implemented upon initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes ■ No □ Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Check one: Yes ■ No □ Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site Check one: Yes □ No □ NA ■ discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Check one: Yes □ No □ NA ■ Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ ☐ Other; if so, specify: Signature: 4-10-18

Print Name and Title: Thomas Holder, Director of Public Works

Section 2

Narrative

2.1 General

The proposed work consists of furnishing and installing approximately 2,400 linear feet of 12-inch ductile iron water main in Boston Post Road (Route 20) from Cochituate Road to #397 Boston Post Road (MassDOT Sta. 108+75 to Sta. 85+00) and approximately 340 linear feet of 12-inch water main on Pelham Island Road from Boston Post Road (Route 20) to Old Sudbury Road (Route 27), with associated service connections, valves, fittings, hydrants, and appurtenances. As part of the new water main construction, the work includes directional drilling below an existing 30-inch culvert with approximately 150 linear feet of new 14-inch diameter high density polyethylene (HDPE) water main, which has a similar inner diameter to that of a 12-inch ductile iron water main. The project is intended to improve hydraulics and asset management of this critical main. A locus map is attached in Figure No. 1 in Appendix A.

Soil borings were completed along the proposed project route on December 4, 2017, December 5, 2017, and December 14, 2017. The soil boring locations are attached in Appendix B. The boring logs are attached in Appendix C. Water quality samples were taken at temporary test wells (TWs) installed in Soil Boring Nos. 3, 4, 5, 6, and 7. The groundwater at Soil Boring Nos. 4, 5, 6, and 7 had exceedances of RCGW-1 Reportable Concentrations in some parameters. Soil Boring Nos. 4 and 7 exceeded the RCGW-1 Reportable Concentrations of petroleum hydrocarbons. Soil Boring Nos. 5 and 6 exceeded the RCGW-1 Reportable Concentrations and GW-2 Standards of volatile organic compounds (VOCs). Summaries of these water quality results and copies of the laboratory reports are included in Appendix D.

The requested activity category is III-G: Contaminated Site Dewatering with Known Contamination. The proposed discharge will originate from the water main trench dewatering between Soil Boring No. 3 and approximately 50 feet to the east of Soil Boring No. 7 (MassDOT Sta. 101+20 to MassDOT Sta. 90+60). The distance between these two limits is approximately 1,100 linear feet. The average depth to groundwater measured during soil borings within these limits was approximately 4.3 feet below grade. The new water main installation is required to have a minimum of 5 feet of cover over the top of the pipe, and dewatering is expected for the entire stretch of 1,100 linear feet. The groundwater from the trench will be pumped to an 18,000 gallon capacity weir style frac tank for sediment removal. The discharge from the frac tank will be pumped through bag filters operating in parallel for additional particulate removal followed by two granular activated carbon (GAC) pressure filters operating in series for known petroleum and VOC contaminant removal. Treated water will be discharged directly to Pine Brook through a discharge pipe and water diffusing device intended to prevent erosion and scour in Pine Brook. A dewatering treatment system schematic is attached in Figure No. 2 in Appendix A.

2.2 Area Description

The proposed discharge location on Boston Post Road (Route 20) is an intermittent stream that is part of Pine Brook. A Massachusetts Endangered Species Act (MESA) Information Request Form was filed to request site-specific information. A Natural Heritage and Endangered Species

Program (NHESP) determination was received on September 18, 2017. Based on NHESP's review, it was determined that the project does not occur within Estimated Habitat of Rare Wildlife or Priority Habitat. The NHESP Determination and U.S. Fish and Wildlife Service correspondence is attached in Appendix E.

A Massachusetts Historical Commission (MHC) Project Notification Form (PNF) was filed to determine if any historical or archeological significant features may be present and may potentially be affected by the proposed project. A determination was received on April 9, 2018 and is attached in Appendix F. Based on MHC's review, it was determined that the project is unlikely to affect significant historic or archaeological resources.

2.3 Work Description

The Contractor will excavate the trench for the new water main to a typical depth of approximately 6 feet to maintain 5 feet of cover above the proposed 12-inch diameter ductile iron water main. The elevation of the existing roadway will not change, and the impervious area will not increase following construction. The project location will be returned to an equal condition at the end of construction. Based on the depth to groundwater observed during soil boring, dewatering will be required so the contractor can excavate to the proper subgrade to install the new water main. Excavated material will either be reused on site as fill, if suitable, or removed from the site as excess material.

To minimize the dewatering effort, the water main construction will be scheduled in late summer and early fall when groundwater levels are typically at their lowest. For the groundwater dewatered from the trench between Soil Boring Nos. 3 and approximately 50 feet to the east of Soil Boring No. 7, a treatment system will be required for the removal of known petroleum and VOC contaminants. The frac tank and treatment trailer will be located on the shoulder of the road or staged on a lot adjacent to the discharge point. The proposed discharge pipe will be installed through the 100-foot buffer zone of Pine Brook and discharged directly through a water diffusing device to Pine Brook (see attached locus map in Figure No. 1 in Appendix A). Significant care will be taken to minimize the potential impacts to the wetlands and keep contaminated groundwater and sediment from reaching Pine Brook. Erosion control measures including erosion control socks and silt fence will be installed at the edge of the road when water main construction occurs within the buffer zone.

2.4 Stormwater Management

Mitigating measures will be used during water main construction and trench dewatering. These mitigating measures include the installation, inspection, and maintenance of silt socks and siltation fence to remove sediment from stormwater runoff at the edge of the existing roadway. The proposed construction will not alter the current roadway layout and will not create new, permanent discharges to Pine Brook or increase the flow of stormwater runoff from the existing site.

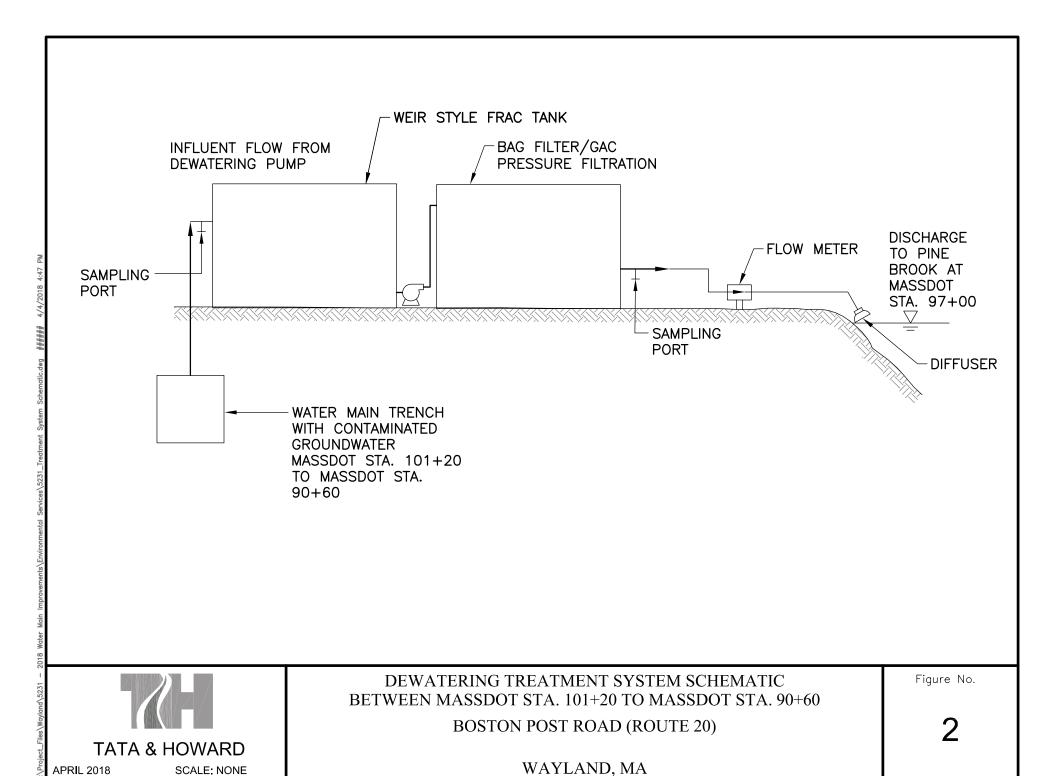
2.5 Dewatering

Work in the existing roadway will require dewatering for the Contractor to install the new water main. The average depth to groundwater in the project area is approximately 4.3 feet. Continuous dewatering will be required until the water main is installed and the trench is backfilled. On site treatment will be required for the stretch of work between Soil Boring Nos. 3 and approximately 50 feet to the east of Soil Boring No. 7 since the groundwater has known petroleum and VOC contaminants. The groundwater in the trench will be pumped to an 18,000 gallon capacity weir style frac tank for sediment removal. The discharge from frac tank will be pumped through bag filters operating in parallel for additional particulate removal followed by two granular activated carbon (GAC) pressure filters operating in series for known petroleum and VOC contaminant removal. Treated water will be discharged directly to Pine Brook through a discharge pipe and water diffusing device intended to prevent erosion and scour in Pine Brook.

2.6 Testing Parameters

The National Pollutant Discharge Elimination System (NPDES) Remediation General Permit (RGP) requires water quality testing prior to permit approval and during site dewatering activities. The water quality samples for the purpose of this permit application were taken from temporary test wells that were installed in December 2017 when soil borings were drilled and existing privately-owned monitoring wells on February 26, 2018, February 28, 2018, and March 21, 2018. Summaries of these water quality results and copies of the laboratory reports are included in Appendix D. Water quality based effluent limitations (WQBELs) were calculated using the EPA's suggested electronic format. The WQBEL calculation spreadsheet is included in Appendix G. The influent and effluent monitoring will occur monthly during the time of treatment and dewatering. In accordance with the NPDES RGP, the influent sample for Activity Category III-G requires testing of inorganics, non-halogenated volatile organic compounds, halogenated volatile organic compounds, semi-volatile organic compounds, and fuel parameters. The effluent water sample will test for the known contaminants and will meet the effluent limitations as described in the NPDES RGP.

The operator will also follow treatment system requirements as outlined in the NPDES RGP. During the first week of treatment system start up, the influent and effluent will be sampled two times. One sample of the influent and one sample of the effluent will be collected on the first day of discharge and again on one additional non-consecutive day within the first week of discharge. The samples will be analyzed in accordance with the required 5-day turnaround time and reviewed within 48 hours of receipt of the analysis results. If the treatment is achieving the effluent limitations, sample of the influent and effluent will be continued once a week for three additional weeks and one per month after these three weeks. During the final week of discharge the operator will sample the influent and effluent two times. One sample of the influent and one sample of the effluent will be collected on the last day of discharge and again on one additional non-consecutive day within the final week of discharge. These influent and effluent samples taken will meet the sampling requirements of a short-term discharge lasting more than 7 calendar days but not more


than 12 months. All required record keeping and reporting will be completed in accordance with the NPDES RGP.

Appendix A

Appendix B

TOWN OF WAYLAND

2018 WATER MAIN IMPROVEMENTS (ROUTE 20)

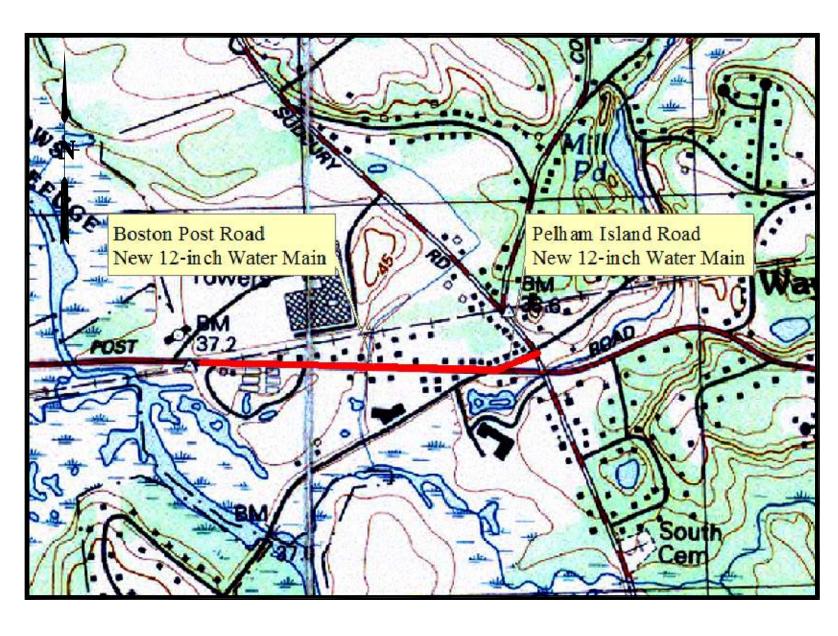
DWSRF ID NO. 4407

CONTRACT NO. 18-2009

DPW DIRECTOR

THOMAS HOLDER

DPW ADMINISTRATOR

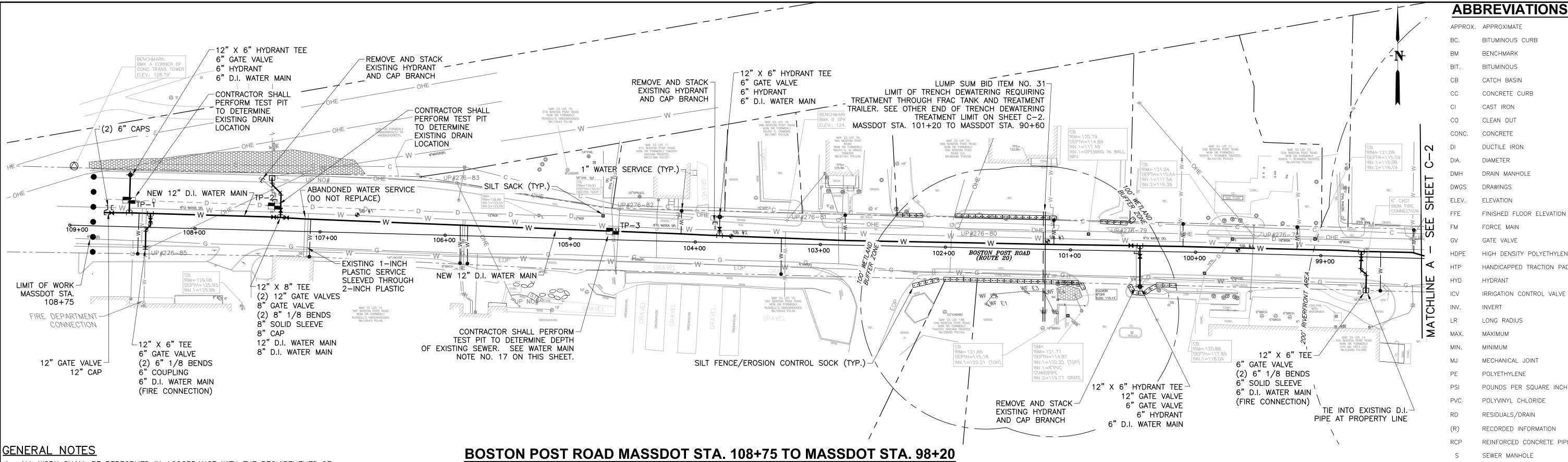

DANIEL CABRAL

WATER DIVISION SUPERINTENDENT

DON MILLETTE

TOWN ENGINEER

PAUL BRINKMAN, P.E.


LOCATION PLAN

SHEET INDEX

- C-1 GENERAL NOTES & BOSTON POST ROAD MASSDOT STA. 108+75 TO STA. 98+20
- C-2 BOSTON POST ROAD MASSDOT STA. 98+20 TO STA. 85+00 & PELHAM ISLAND ROAD STA. 0+00 TO STA. 3+35
- C-3 WATER MAIN DETAILS I
- C-4 WATER MAIN DETAILS II
- TR-1 TRAFFIC MANAGEMENT PLAN SHEET 1
- TR-2 TRAFFIC MANAGEMENT PLAN SHEET 2

RGP NOI SUBMITTAL NOT FOR CONSTRUCTION

- ALL WORK SHALL BE PERFORMED IN ACCORDANCE WITH THE REQUIREMENTS OF THE TOWN OF WAYLAND. ALL EXCAVATION AND RESTORATION SHALL MEET TOWN SPECIFICATIONS. A TOWN STREET OPENING PERMIT AND TRENCH OPENING PERMIT WILL BE REQUIRED FOR ALL STREETS WITHIN THE PROJECT AREA PRIOR TO ANY CONSTRUCTION.
- THE ENGINEER MAY DIRECT THE CONTRACTOR TO VARY THE PROPOSED WORK DURING CONSTRUCTION TO MEET EXISTING CONDITIONS.
- AREAS WITHIN THE 100-FOOT BUFFER ZONE OF A BORDERING VEGETATED WETLAND AND WITHIN THE 200-FOOT RIVERFRONT AREA ARE SUBJECT TO AN ORDER OF CONDITIONS ISSUED BY THE WAYLAND CONSERVATION COMMISSION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REVIEWING AND COMPLYING WITH ALL REQUIREMENTS OF THE ORDER OF CONDITIONS.
- 4. STATIONING ALONG THE LENGTH OF THE WATER MAIN IS INTENDED FOR GENERAL REFERENCE AND IS BASED UPON MASSACHUSETTS DEPARTMENT OF TRANSPORTATION - HIGHWAY DIVISION STATIONING FOR BOSTON POST ROAD (ROUTE 20). WHERE PRECISE GROUND LOCATION IS REQUIRED, REFER TO ACTUAL FIELD MEASUREMENTS FOR ACTUAL DISTANCES FROM EXISTING GROUND FEATURES.
- THE WORK ON BOSTON POST ROAD (ROUTE 20) OCCURS WITHIN THE MASSDOT STATE HIGHWAY LAYOUT (SHLO). ALL WORK WITHIN THE SHLO SHALL MEET THE REQUIREMENTS OF THE MASSDOT AND SHALL BE SUBJECT TO THE CONDITIONS OF THE MASSDOT PERMIT INCLUDED IN THE SPECIFICATIONS. THE CONTRACTOR IS 5. NO MATERIALS SHALL BE DISPOSED OF INTO ANY WETLANDS OR EXISTING RESPONSIBLE FOR COMPLYING WITH THE CONDITIONS IN THE MASSDOT PERMIT AND FOR OBTAINING ANY ADDITIONAL PERMITS REQUIRED BY THE MASSDOT FOR CONSTRUCTING THE WATER MAIN.
- THE CONTRACTOR SHALL FOLLOW THE MASSDOT APPROVED TRAFFIC MANAGEMENT PLAN AS REQUIRED IN THE CONTRACT DOCUMENTS.
- THE CONTRACTOR'S ATTENTION IS DIRECTED TO THE FACT THAT A NPDES REMEDIATION GENERAL PERMIT (RGP) HAS BEEN OBTAINED FOR THIS PROJECT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR REVIEWING AND COMPLYING WITH ALL REQUIREMENTS OF THE PERMIT INCLUSIVE OF ALL SAMPLING PRE- AND POST-TREATMENT.
- 8. THE CONTRACTOR SHALL ESTABLISH A STAGING AREA OUTSIDE OF A 100-FOOT BUFFER ZONE, FOR THE STORAGE OF EQUIPMENT AND STOCKPILING OF MATERIALS, UNLESS OTHERWISE NOTED. NO STORAGE OF GASOLINE, OIL OR OTHER FUEL OR HAZARDOUS MATERIALS IS PERMITTED WITHIN THE 100-FOOT BUFFER ZONE. STAGING AREA LOCATIONS SHALL BE COORDINATED WITH AND APPROVED BY THE OWNER.
- STOCKPILES SHALL BE LOCATED AS NEEDED, WITHIN THE LIMIT OF WORK, IN AREAS OF MINIMAL IMPACT. NO STOCKPILING SHALL OCCUR ON THE GRASSY AREA OF THE INTERSECTION OF BOSTON POST ROAD AND COCHITUATE ROAD.
- 10. THE CONTRACTOR AT HIS EXPENSE SHALL BRACE UTILITY POLES IF REQUIRED. AND REPAIR ANY DAMAGE TO EXISTING SIDEWALKS, CURBS, PAVING, SHRUBS, TREES, STONE WALLS, LAWNS, ETC. ALL EXCAVATED MATERIALS SHALL BE RETURNED TO EQUAL OR BETTER THAN PRIOR CONDITION BY THE CONTRACTOR.
- . ALL EXISTING ASPHALT PAVEMENT SHALL BE SAW—CUT PRIOR TO EXCAVATION IN ORDER TO PROVIDE UNIFORM ASPHALT REPLACEMENT. ALL WATER MAIN TRENCHES IN EXISTING PAVED ROADS SHALL BE RESURFACED WITH TRENCH PAVEMENT IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 12. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REPLACEMENT OF PAVEMENT MARKINGS, TRAFFIC SIGN LOOPS, STRIPING, ARROWS, CROSSWALKS, ETC.
- 13. TWO (2) PORTABLE CHANGEABLE MESSAGE SIGNS (PCMS) SHALL BE FURNISHED BY THE OWNER, TO BE PUT UP AND MAINTAINED AT ALL TIMES AS TO ADVISE LOCAL TRAFFIC OF DELAYS AND CONSTRUCTION SCHEDULES.
- 14. ALL WORK UNDER THIS CONTRACT SHALL OCCUR AT NIGHT BETWEEN THE HOURS OF 7:00 PM AND 5:00 AM SUNDAY NIGHT THRU FRIDAY MORNING. TRAFFIC CONTROL DEVICES, VEHICLES, AND EQUIPMENT SHALL BE REMOVED FROM THE CONSTRUCTION ZONE. NO WORK SHALL BE DONE UNDER THE TERMS OF THIS CONTRACT ON SATURDAYS OR HOLIDAYS.

EROSION & SEDIMENT CONTROL NOTES

- THE CONTRACTOR IS RESPONSIBLE FOR THE MAINTENANCE AND REPAIR OF ALL EROSION CONTROL DEVICES ON—SITE. ALL EROSION CONTROL DEVICES SHALL BE REGULARLY INSPECTED. ANY SEDIMENTS REMOVED FROM THE CONTROL DEVICES SHALL BE DISPOSED OF ON THE UPLAND SIDE OF THE EROSION CONTROL LINE. THE CONTRACTOR SHALL PLACE ADDITIONAL EROSION CONTROL, REGARDLESS OF IT BEING SHOWN ON THE CONTRACT DRAWINGS, AS NECESSARY TO PREVENT SOIL EROSION THROUGHOUT THE PROJECT DURATION. NO WORK SHALL OCCUR BEYOND THE EROSION CONTROL OR THE LIMIT OF WORK LINES.
- EROSION CONTROL SHALL BE INSTALLED AROUND EACH ACCESS PIT FOR DIRECTIONAL DRILLING.
- 3. IN THE STAGING AREA, THE CONTRACTOR SHALL HAVE A STOCKPILE OF MATERIALS REQUIRED TO CONTROL EROSION ON-SITE TO BE USED TO SUPPLEMENT OR REPAIR EROSION CONTROL DEVICES. THESE MATERIALS SHALL INCLUDE, BUT ARE NOT LIMITED TO, EROSION CONTROL SOCKS, HAY BALES, SILT 4. ALL PIPES, PIPE FITTINGS, PLUMBING FITTINGS AND FIXTURES, INCLUDING CORPORATIONS AND CURB FENCE, AND CRUSHED STONE.
- 4. AT NO TIME SHALL SILT-LADEN WATER BE ALLOWED TO ENTER SENSITIVE AREAS (WETLANDS, OFF-SITE AREA, AND DRAINAGE SYSTEMS). ANY RUNOFF FROM DISTURBED SURFACES SHALL BE DIRECTED THROUGH EROSION CONTROL BARRIERS PRIOR TO ENTERING ANY SENSITIVE AREAS.
- DRAINAGE SYSTEMS. SILT SACKS SHALL BE USED IN ALL CATCH BASINS WITHIN PROJECT LIMITS TO MINIMIZE SILT DEPOSITS INTO DRAINAGE SYSTEM. ALL WORK ASSOCIATED WITH FURNISHING AND INSTALLING, AND REMOVAL OF SILT SACKS SHALL BE PAID FOR IN THE COST PER LINEAR FOOT OF WATER MAIN.
- 6. REFUELING OF EQUIPMENT WILL BE REQUIRED TO BE COMPLETED OUTSIDE THE LIMITS OF THE RESOURCE AREAS AND THEIR ASSOCIATED BUFFER ZONES.
- 7. IF INTENSE RAINFALL IS ANTICIPATED, THE INSTALLATION OF SUPPLEMENTAL EROSION CONTROL DEVICES SHALL BE UTILIZED.

SURVEY NOTES

- 1. BASE PLANS AND PROPERTY LINE DETERMINATIONS WERE PREPARED BY WSP USA CORP., (155 MAIN DUNSTABLE ROAD, NASHUA, NH 03060) USING AN ON-GROUND SURVEY AND AERIAL PHOTOGRAPHY. GROUND SURVEY CONDUCTED BETWEEN 8/14/17 AND 8/28/2017).
- DELINEATION OF BORDERING VEGETATED WETLANDS, AND EDGE OF BANK MEAN ANNUAL HIGH WATER WERE DETERMINED BY ECOTEC, INC. (102 GROVE STREET, WORCESTER, MA 01605-2629. 8/16/17).
- 3. THE LOCATION OF THE EXISTING UTILITIES AS SHOWN ON THE PLANS ARE APPROXIMATE AND ARE INTENDED ONLY TO ADVISE THE CONTRACTOR OF THEIR PRESENCE. THE CONTRACTOR IS SOLELY RESPONSIBLE FOR DETERMINING THE ACTUAL LOCATIONS OF ALL EXISTING UTILITIES, INCLUDING SERVICES. CALL "DIG SAFE" (1-888-344-7233) FOR FIELD LOCATIONS OF ALL EXISTING UTILITIES. IN ADDITION, THE CONTRACTOR SHALL CONTACT THE TOWN OF WAYLAND FOR WATER AND SEWER LINE LOCATIONS.
- 4. AS APPROPRIATE, CONTRACTOR SHALL TAKE ALL NECESSARY MEASURES, INCLUDING HAND DIGGING, TO MAINTAIN THE INTEGRITY OF THE EXISTING UTILITIES.
- 5. LOCATION OF EXISTING DRAINAGE IS APPROXIMATE AND SHOULD BE VERIFIED BY THE CONTRACTOR IN THE FIELD. CONTRACTOR SHALL VERIFY INVERTS OF ALL DRAINAGE STRUCTURES PRIOR TO CONSTRUCTION. THE DRAINAGE SYSTEM ALONG THE PROJECT ROUTE (ROUTE 20) IS UNDER MASSDOT JURISDICTION.
- BENCH MARKS HAVE BEEN ESTABLISHED BY THE SURVEYOR PRIOR TO THE START OF CONSTRUCTION. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO MAINTAIN ALL BENCHMARKS THROUGHOUT CONSTRUCTION. ANY COST TO RE-ESTABLISH THESE ITEMS WILL BE AT NO COST TO THE OWNER.
- HORIZONTAL DATUM REFERENCED THE MASSACHUSETTS STATE PLANE COORDINATE SYSTEM NAD83 AND THE VERTICAL DATUM REFERENCED THE MASSACHUSETTS STATE PLANE COORDINATE SYSTEM NAVD88.

WATER MAIN NOTES

- THE CONTRACTOR SHALL MAKE EVERY EFFORT NOT TO DISTURB THE EXISTING WATER SYSTEM. NO ADDITIONAL PAYMENT SHALL BE MADE FOR DAMAGE CREATED FOR THE CONVENIENCE OF THE CONTRACTOR.
- 2. UNLESS OTHERWISE NOTED OR APPROVED BY THE ENGINEER. THE NEW WATER MAIN SHALL PASS UNDER EXISTING UTILITIES. THE CONTRACTOR SHALL MAINTAIN A MINIMUM CLEARANCE BETWEEN THE NEW WATER MAIN AND OTHER EXISTING UTILITIES OF AT LEAST 18-INCHES, WITH THE EXCEPTION OF THE TWO DIRECTIONALLY DRILLED CULVERT CROSSINGS WHICH SHALL MAINTAIN A MINIMUM OF 5
- 3. ALL WATER MAINS ARE TO BE LAID WITH A MINIMUM OF 5'-0" COVER, UNLESS OTHERWISE NOTED.
- STOPS MUST MEET THE REQUIREMENTS OF THE 2011 REDUCTION OF LEAD IN DRINKING WATER ACT AND AMENDMENTS TO SDWA SECTION 1417 FOR POTABLE WATER USE. 5. ALL BENDS, TEE, CAPS AND HYDRANTS SHALL BE BACKED WITH CONCRETE THRUST BLOCKS AS
- INDICATED ON THE CONTRACT DRAWINGS. ALL BENDS, TEE, CAPS, VALVES AND MISCELLANEOUS FITTINGS SHALL BE RESTRAINED AS SPECIFIED.
- 6. ALL VALVES ON ABANDONED WATER MAINS SHALL BE CLOSED. THE TOP SECTION OF THE GATE BOX REMOVED. AND THE REMAINING PORTION OF THE GATE BOX FILLED WITH SAND AND TOPPED AS SPECIFIED.
- 7. CONTRACTOR SHALL USE A WATER TIGHT PLUG DURING THE WATER MAIN INSTALLATION. PLUG SHALL REMAIN IN PLACE AT ALL TIMES.
- 8. UNLESS OTHERWISE NOTED, ALL WATER SERVICES ARE 1" AND SHALL EACH CONSIST OF A CORPORATION, COPPER TUBING, CURB STOP, AND BOX AS REQUIRED BY THE CONTRACT DOCUMENTS. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VERIFY THE SIZE OF EXISTING WATER SERVICES AND INSTALL ANY NECESSARY TRANSITION FITTINGS.
- 9. ALL EXISTING WATER SERVICES ARE TO BE ABANDONED UNLESS OTHERWISE NOTED BY THE ENGINEER. NEW SERVICES ARE TO BE INSTALLED AS SPECIFIED AND IN ACCORDANCE WITH THE CONTRACT DRAWINGS. UNLESS OTHERWISE APPROVED BY THE ENGINEER, ALL ABANDONED SERVICES ARE TO BE SHUT OFF AT THE CORPORATION AT THE TIME OF THE NEW TIE OVER.
- 10. THE HOUSE SERVICE CONNECTIONS SHALL BE COMPLETED AFTER THE NEW WATER MAIN HAS BEEN PRESSURE TESTED, CHLORINATED AND APPROVED.
- 11. CONTRACTOR TO COORDINATE SHUTDOWN AND TIE-IN PROCEDURES AT ALL INTERSECTIONS WITH THE TOWN OF WAYLAND WATER DEPARTMENT.
- 12. THE CONTRACTOR SHALL NOT CONNECT TO THE EXISTING WATER MAIN UNTIL THE NEW MAIN HAS BEEN PRESSURE TESTED AND CHLORINATED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS.
- 13. THE CONTRACTOR SHALL PROVIDE ADDITIONAL TAPS IF REQUIRED FOR CHLORINATING AND HYDROSTATIC TESTING AT HIS EXPENSE. TAPS SHALL BE REMOVED AND THE WATER MAIN PLUGGED AFTER TESTING IS COMPLETE.
- 14. EXISTING HYDRANTS SHALL BE BAGGED ONCE EXISTING MAINS AND HYDRANTS HAVE BEEN TAKEN OUT OF SERVICE.
- 15. REMOVE EXISTING HYDRANTS AND EXISTING BRANCHES WHEN NEW WATER MAINS ARE IN SERVICE. DELIVER REMOVED HYDRANTS TO TOWN OF WAYLAND STOCK YARD UNLESS SPECIFIED OTHERWISE ON THE CONTRACT DRAWINGS.
- 16. NO HYDRANT SHALL BE BACKFILLED UNTIL CONTRACTOR IS DIRECTED TO DO SO BY THE WATER DIVISION.
- 17. A TEST PIT SHALL BE EXCAVATED AT ALL SEWER CROSSINGS TO DETERMINE THE DEPTH OF THE SEWER MAIN. BASED ON LIMITED RECORDS OF SEWER FORCE MAIN PIPING ELEVATIONS. CONTRACTOR SHALL BID SEWER CROSSING ITEMS PLANNING TO INSTALL WATER MAIN BELOW SEWER PIPING IN ACCORDANCE WITH THE SEWER CROSSING DETAIL ON SHEET C-4.
- 18. POLYETHYLENE ENCASEMENT SHALL BE PROVIDED FOR ENTIRE LENGTH OF NEW DUCTILE IRON WATER MAINS, VALVES, FITTINGS, AND HYDRANT BARRELS UP TO 12-INCHES BELOW FINISHED GRADE. HYDRANT DRAINS SHALL NOT BE ENCASED.

GEOTECHNICAL NOTES

- BORINGS WERE DRILLED FOR PURPOSES OF DESIGN AND INDICATE SUBSURFACE CONDITIONS AT BORING LOCATION ONLY. SUBSURFACE CONDITIONS MAY VARY
- BORING LOCATIONS ARE SHOWN ON THE PLANS AND BORING LOGS ARE IN THE GEOTECHNICAL DATA BOUND IN APPENDIX A OF THESE SPECIFICATIONS.
- 3. FOR EARTH EXCAVATION, BACKFILL, FILL AND GRADING, SEE SPECIFICATION 02222, EARTHWORK FOR WATER
- CONTRACTOR IS REQUIRED TO SUBMIT COMPACTION REPORTS AS SPECIFIED IN SPECIFICATION SECTION 02222. THE CONTRACTOR SHALL BE STRICTLY HELD TO COMPACTION STANDARDS AS REFERENCED IN THE CONTRACT DOCUMENTS. THE CONTRACTOR IS RESPONSIBLE FOR BACKFILLING, COMPACTING, AND
- CONTRACTOR SHALL SUBMIT A DEWATERING PLAN WITH DETAILS AND DRAWINGS IN ACCORDANCE WITH
- FOR TEMPORARY EXCAVATION SUPPORT SYSTEM SEE

- FROM THOSE SHOWN IN THE LOGS.
- DISTRIBUTION SYSTEMS.
- STABILIZING ALL WORK DAILY.
- SPECIFICATION 02140.
- SPECIFICATION 02160.

ELEC. OH. WIRE

COMM. MANHOLE

COMMUNICATIONS BOX

COMMUNICATIONS LINE

WETLANDS ----- WETLAND BUFFER ------ RIVERFRONT BUFFER \rightarrow - \rightarrow - DITCH / SWALE LIMITS OF CONSTRUCTION \bullet \bullet \bullet \bullet LIMITS OF CONTAMINATED GROUNDWATER TO ____ BE DEWATERED LIMITS OF DIRECTIONAL DRILLING

APPROX. APPROXIMATE

BITUMINOUS CURE

BENCHMARK

CATCH BASIN

CLEAN OUT

CONCRETE

DUCTILE IRON

LONG RADIUS

MECHANICAL JOINT

POLYVINYL CHLORIDE

RECORDED INFORMATION

RESIDUALS/DRAIN

SEWER MANHOLE

WETLANDS FLAG

IRON PIPE FOUND

LEGEND

EXISTING DESCRIPTION

TREE

SHRUB

ROCK

TEST PIT

GUY WIRE

UTILITY POLE

LIGHT

WETLANDS FLAG

WOOD RETAINING WALL

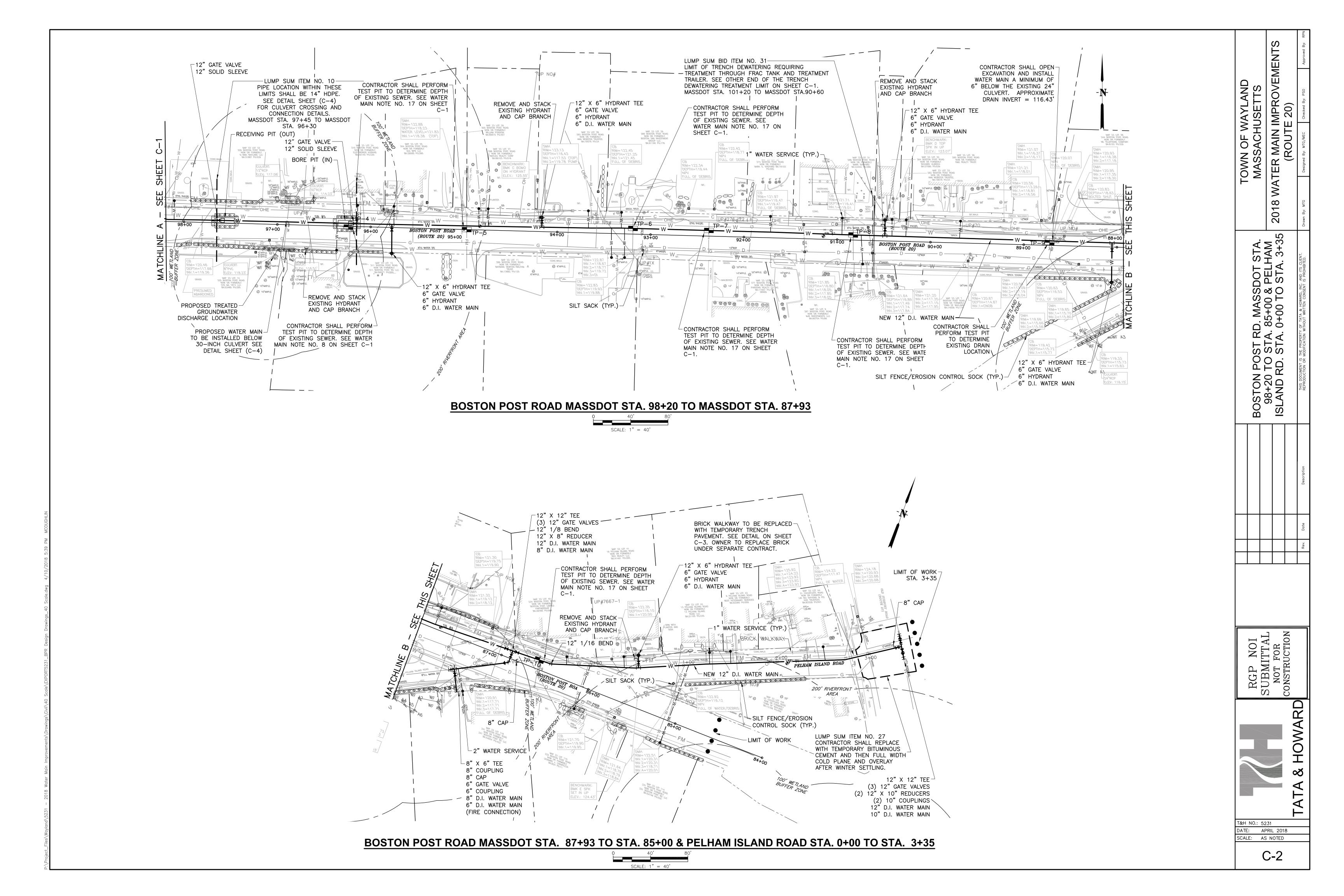
BRICK RETAINING WALL

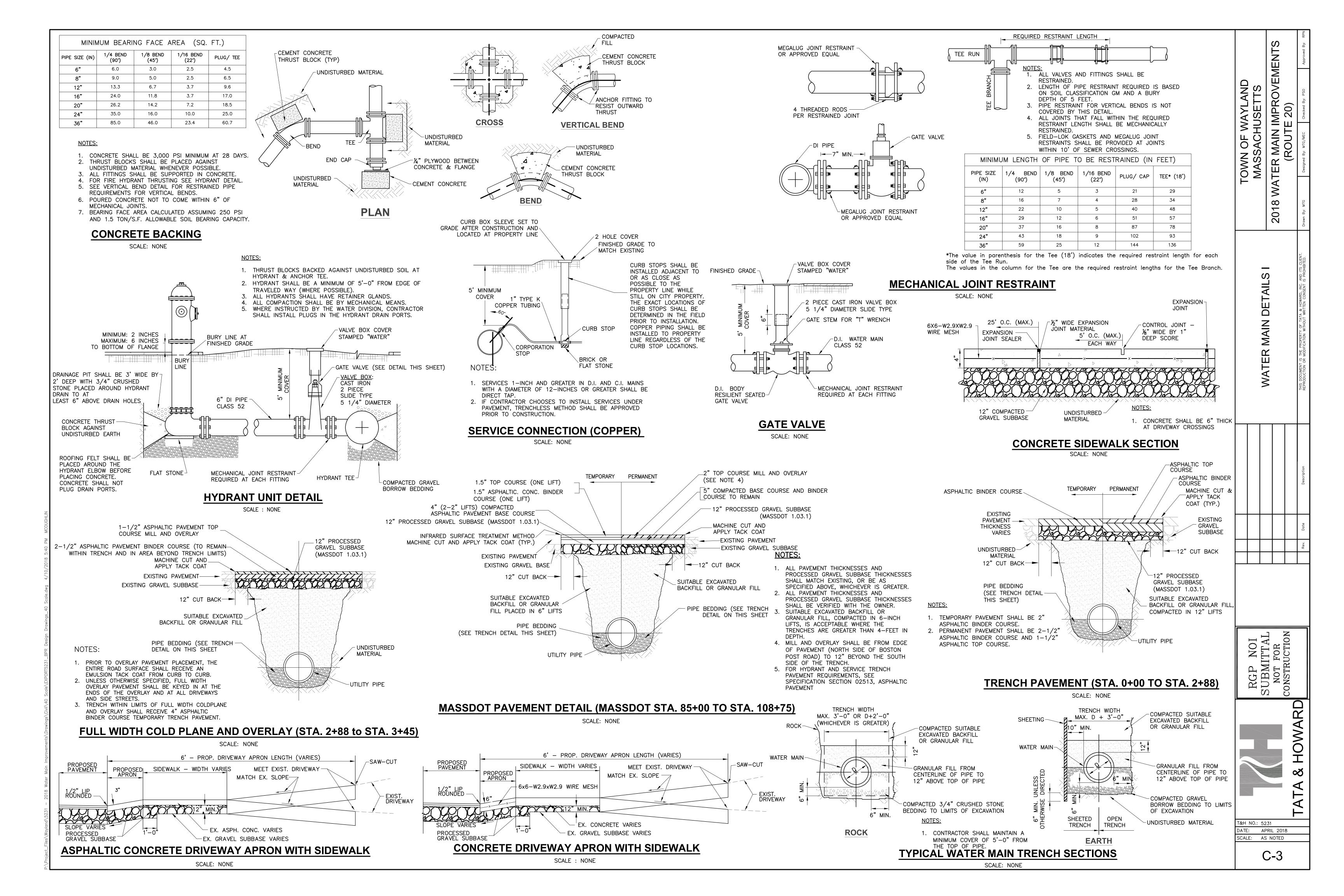
POLYETHYLENE

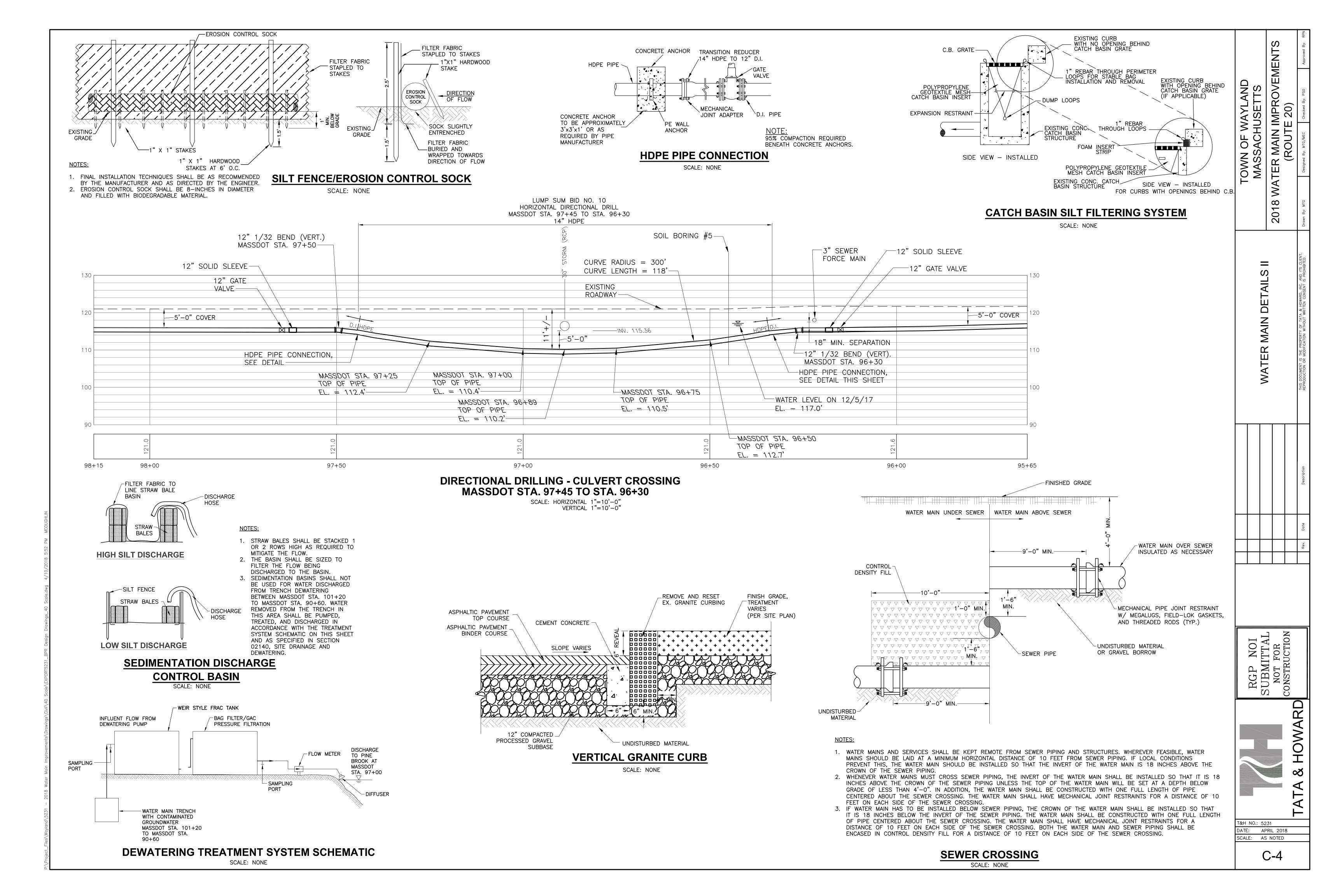
MINIMUM

CONCRETE CURE

				DINEOTIONAL DINELING	
				SILT FENCE/EROSION CONTROL SOCK	
			100	5' CONTOUR	 100
	LEGEND			1' CONTOUR	 102
			100 ×	SPOT ELEVATION	100×
EXISTING	DESCRIPTION	PROPOSED	⊕ _{SB} #1	BORING	
W	WATER MAIN	—— w ——	× 0+00	STATIONING	
	WATER SERVICE	— w— w—	────────────────────────────────────	MASSDOT STATIONING	
\bowtie	GATE VALVE	н	o	FENCE - CHAIN LINK	
\triangleright	REDUCER	•	X	FENCE - WIRE	
	SOLID SLEEVE			STONE WALL GUARD RAIL	
Н	TRANSITION COUPLING	Н	0	BOLLARD	
日子トトル	PIPE FITTINGS	ተ ፲ ኮ ዞ	°Eb	FLAG POLE	
Е	CAP	ΕН	0	SIGN POST	
_ DE	THRUST BLOCK	▶ C		PROPERTY LINE	
- \(-	FIRE HYDRANT	-		BITUMINOUS CONCRETE	
8	CURB STOP	•		GRAVEL AREA	
(V)	WATER MANHOLE			CONCRETE	
■	CATCH BASIN		G NG	GAS LINE	
	SILT SACK	•	G	GAS VALVE	
SD	STORM DRAIN		G	GAS METER	
D	DRAIN LINE			MONITORING WELL	
	DRAIN LINE (LOCATION NO	T CONFIRMED)	E	ELECTRIC METER	
> ⊚	CLEANOUT		AC	AIR CONDITIONER	
	RIP RAP		S	SEWER MANHOLE	
HHHF	DRAINAGE PIPE		—— FM ——	SEWER FORCE MAIN	
	W/ FLARED END			SEWER SERVICE	
——— UGE ———	ELEC. UNDERGROUND			BENCHMARK	
E	ELEC. MANHOLE		▶—	CULVERT PIPE	≡ TD_V


FINISHED FLOOR ELEVATION HIGH DENSITY POLYETHYLENE IRRIGATION CONTROL VALVE POUNDS PER SQUARE INCH шО+ REINFORCED CONCRETE PIPE VERTICAL GRANITE CURB CONCRETE RETAINING WAI FIRE DEPARTMENT CONNECTION PROPOSED


WA) HUS


NOI ITTA] FOR UCTIO RGJ UB NO NO Ω

 \geq

T&H NO.: 5231 APRIL 2018 SCALE: AS NOTED C-1

- 1. ALL TEMPORARY TRAFFIC CONTROL WORK SHALL CONFORM TO THE LATEST EDITION OF THE "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES" (MUTCD) AND ALL REVISIONS.
- 2. ALL SIGN LEGENDS, BORDERS AND MOUNTING SHALL BE IN ACCORDANCE WITH THE MUTCD.
- 3. TEMPORARY CONSTRUCTION SIGNING AND ALL OTHER TRAFFIC CONTROL DEVICES SHALL BE IN PLACE PRIOR TO THE
- 4. TEMPORARY CONSTRUCTION SIGNING, BARRICADES AND ALL OTHER NECESSARY WORK ZONE TRAFFIC CONTROL DEVICES SHALL BE REMOVED FROM THE HIGHWAY OR COVERED WHEN THEY ARE NOT REQUIRED FOR CONTROL OF TRAFFIC.
- 5. SIGNS AND SIGN SUPPORTS LOCATED ON OR NEAR THE TRAVELED WAY, AND REFLECTORIZED PLASTIC DRUMS WITH LIGHTING DEVICES MOUNTED ON THEM, MUST PASS THE CRITERIA SET FORTH IN NCHRP REPORT 350, "RECOMMENDED PROCEDURES FOR THE SAFETY PERFORMANCE EVALUATION OF HIGHWAY FEATURES."
- 6. CONTRACTORS SHALL NOTIFY EACH ABUTTER AT LEAST 24 HOURS IN ADVANCE OF THE START OF ANY WORK THAT WILL REQUIRE THE TEMPORARY CLOSURE OF ACCESS, SUCH AS CONDUIT INSTALLATION, EXISTING PAVEMENT EXCAVATION, TEMPORARY DRIVEWAY PAVEMENT PLACEMENT AND SIMILAR OPERATIONS.
- 7. THE FIRST THREE PLASTIC DRUMS OF A TAPER MAY BE MOUNTED WITH TYPE A LIGHTS.
- 8. THE ADVISORY SPEED LIMIT, IF REQUIRED, SHALL BE DETERMINED BY THE ENGINEER.
- 9. DISTANCES ARE A GUIDE AND MAY BE ADJUSTED IN THE FIELD BY THE ENGINEER.
- 10. MAXIMUM SPACING OF TRAFFIC DEVICES IN A TAPER (DRUMS OR CONES) IS EQUAL IN FEET TO THE SPEED LIMIT IN MPH.
- MINIMUM LANE WIDTH IS TO BE 11 FEET (3.3m) UNLESS OTHERWISE SHOWN. MINIMUM LANE WIDTH TO BE MEASURED
- FROM THE EDGE OF DRUMS OR MEDIAN BARRIER. 12. ALL SIGNS SHALL BE MOUNTED ON THEIR OWN STANDARD SIGN SUPPORTS.

LEGEND

P/F POLICE/FLAGGER DETAIL

TYPE III BARRICADE

- - WORK VEHICLE
 - → DIRECTION OF TRAFFIC MOVEABLE IMPACT ATTENUATOR MPACT ATTENUATOR
 - TRAFFIC OR PEDESTRIAN SIGNAL SIGN
- CHANGEABLE MESSAGE SIGN _____ MEDIAN BARRIER FLASHING ARROW PANEL MEDIAN BARRIER WITH WARNING LIGHTS
- THE IDEAL CAPACITY OF A MAJOR HIGHWAY IS GENERALLY CONSIDERED TO BE 1900 PASSENGER CARS PER HOUR PER LANE (PCPHPL). IN WORK ZONES ON A MULTI-LANE DIVIDED HIGHWAY, THE FOLLOWING VOLUME GUIDELINES

MEASURED AVERAGE WORK ZONE CAPACITIES

Number	of Lanes	Number				
NORMAL	OPEN	of	Average Capacity			
(existing)	(to traffic)	Studies	VPH	VPHPL		
3	1	7	1,170	1,170		
2	1	8	1,340	1,340		
5	2	8	2,740	1,370		
4	2	4	2,960	1,480		
3	2	9	2,980	1,490		
4	3	4	4,560	1,520		

Source: Dudek, C., <u>Notes on Work Zone Capacity and Level of Service</u>. Texas Transportation Institute, Texas A&M University, College Station, Texas (1984)

BY OBTAINING HOURLY TRAFFIC COUNTS FOR A PARTICULAR ROADWAY (WITH A MINIMUM OF A 48-HOUR AUTOMATIC TRAFFIC RECORDER (ATR) COUNT), THIS WILL HELP TO DETERMINE AT WHAT TIMES OF THE DAY OR NIGHT A CERTAIN NUMBER OF LANES MAY BE CLOSED.

Standard Details and Drawings for the Development of Traffic Management Plans

FIGURE Gen-1 GENERAL GUIDELINES

LEGEND DIRECTION OF TRAVEL G20-2 TERMINATION AREA: LETS TRAFFIC DOWNSTREAM TAPER: GUIDES RESUME NORMAL TRAFFIC BACK TO ITS **OPERATIONS** ORIGINAL TRAVEL PATH TRAFFIC SPACE: ALLOWS LONGITUDINAL TRAFFIC TO PASS THROUGH BUFFER SPACE THE ACTIVITY AREA WORK SPACE: SET ASIDE FOR WORKERS, EQUIPMENT, AND LATERAL BUFFER SPACE: PROVIDES PROTECTION FOR MATERIAL STORAGE ACTIVITY AREA: WHERE WORK TRAFFIC AND WORKERS TAKES PLACE LONGITUDINAL BUFFER SPACE: PROVIDES PROTECTION FOR TRAFFIC AND WORKERS = STOPPING SIGHT DISTANCE TRANSITION AREA: MOVES TRAFFIC NORMAL PATH SHOULDER TAPER: GUIDES TRAFFIC AWAY FROM THE "A" DISTANCE CAN BE MEASURED FROM SHOULDER/ BREAK-DOWN LANE THE START OF THE ADVANCE WARNING TRAVEL LANE AREA: TELLS TRAFFIC WHAT TO RESTRICTION OR THE EXPECT AHEAD SHOULDER/BREAKDOWN LANE RESTRICTION (IF SHOULDER/BREAKDOWN LANE IS ONLY LANE BEING CLOSED). R2-10a USE "XX MILES (KM)" IF WORK OCCURS OVER A DISTANCE OF MORE THAN 2 G20-1 MILES (3.2 KM) W20-SERIES FIGURE Gen-4

Standard Details

and Drawings

for the Development of

Traffic Management Plans

COMPONENT PARTS OF A

TEMPORARY TRAFFIC CONTROL

(TTC) ZONE

NOT TO SCALE

Road Type Distance Between Signs** 350 (100) 350 (100) 350 (100) MOST OTHER ROADWAYS* 500 (150) 500 (150) 500 (150)

1,500 (450)

2,640 (800)

SUGGESTED WORK ZONE WARNING SIGN SPACING

* SPEED CATEGORY TO BE DETERMINED BY HIGHWAY AGENCY

REEWAYS AND EXPRESSWAYS

** DISTANCES ARE SHOWN IN FEET (METERS). THE COLUMN HEADINGS A, B, AND C ARE THE DIMENSIONS SHOWN IN THE DETAIL/ TYPICAL SETUP FIGURES. THE A DIMENSION IS THE DISTANCE FROM THE TRANSITION OR POINT OF RESTRICTION TO THE FIRST SIGN. THE B DIMENSION IS THE DISTANCE BETWEEN THE FIRST AND SECOND SIGNS. THE C DIMENSION IS THE DISTANCE BETWEEN THE SECOND AND THIRD SIGNS. (THE "THIRD" SIGN IS THE FIRST ONE TYPICALLY ENCOUNTERED BY A DRIVER APPROACHING A TEMPORARY TRAFFIC CONTROL (TTC) ZONE.)

THE "THIRD" SIGN ABOVE IS TYPICALLY REFERRED TO AS AN "ADVANCE WARNING" SIGN ON THE TMP SETUPS. IT IS THE ONE WHICH MAY OFTEN HAVE THE "STANDARD RED OR RED-ORANGE FLAGS (16 in. X 16 in.)" MOUNTED ON IT. THESE ADVANCE WARNING SIGNS ARE LOCATED AT THE PROJECT LIMITS ON ALL APPROACHES (i.e. THE W20-1 SERIES (ROAD WORK XX FT) SIGNS), AND USUALLY REMAIN FOR THE DURATION OF THE PROJECT. ADDITIONAL SIGNS (i.e. "RIGHT LANE CLOSED 1 MILE" AND "LEFT LANE CLOSED 1 MILE") HAVE BEEN SHOWN IN SOME FIGURE'S AS EXAMPLES OF REINFORCEMENT SIGN PLACEMENT BUT ARE USED IN RARE

THE FIRST AND SECOND WARNING SIGNS ABOVE ARE REFERRED TO AS THE OPERATIONAL (DAY-TO-DAY) WORK ZONE SIGNS AND MAY BE MOVED DEPENDING ON WHERE THE SPECIFIC ROADWAY WORK FOR THAT DAY IS

R2-10a SIGNS SHALL BE PLACED BETWEEN THE SECOND AND THIRD SIGNS AS DESCRIBED ABOVE.

R2-10a AND W20-1 SERIES SIGNS ARE TO BE INCLUDED ON ALL DETAILS/TYPICAL SETUPS. Based on: Table 6C-1 2003 MUTCD

STOPPING SIGHT DISTANCE AS A FUNCTION OF SPEED

SPEED* (km/h)	DISTANCE (m)	SPEED* (mph)	DISTANCE (ft)
30	35	20	115
40	50	25	155
40 50	65	30	200
60	85	25 30 35	250
60 70	105	40	305
80	130	45	360
90	160	50	425
100	185	ll 55	495
110	220	60	570
120	250	60 65	645
		70	730
		75	820

*POSTED SPEED, OFF-PEAK 85TH-PERCENTILE SPEED PRIOR TO WORK STARTING, OR THE ANTICIPATED OPERATING SPEED

THESE VALUES MAY BE USED TO DETERMINE THE LENGTH OF LONGITUDINAL

THE DISTANCES IN THE ABOVE CHART REPRESENT THE MINIMAL VALUES FOR BUFFER SPACING.

Source: Table 6C-2 2003 MUTCD

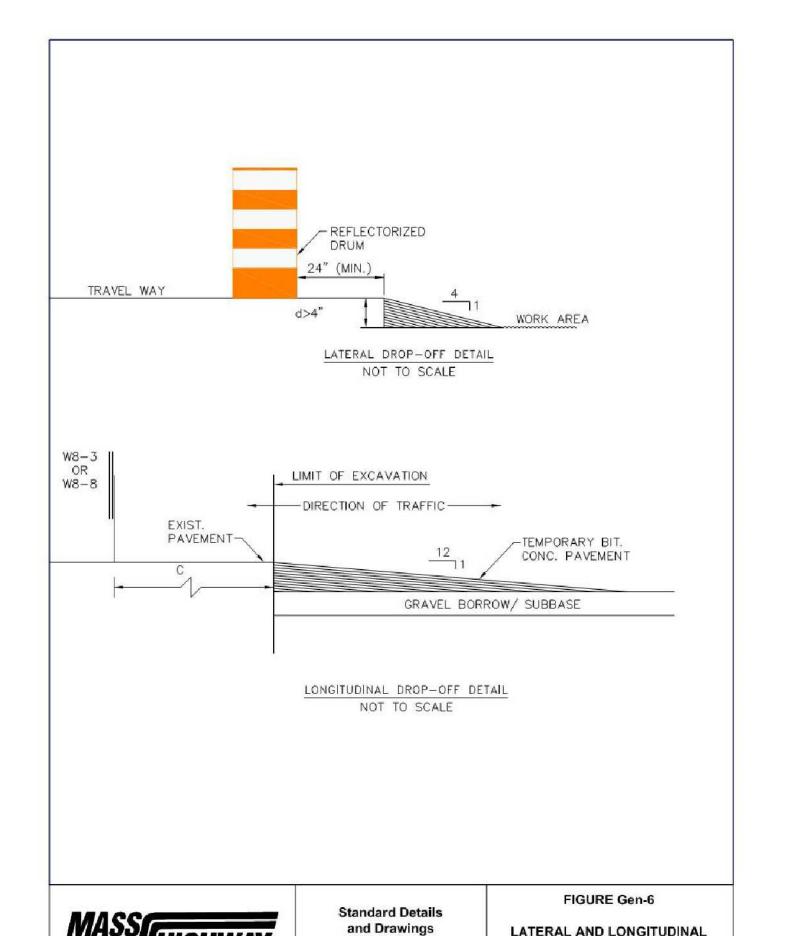

Traffic Management

FIGURE Gen-2 NOTES ON WORK ZONE DISTANCES

LATERAL AND LONGITUDINAL

DROP-OFF DETAILS

NOT TO SCALE

for the Development of

Traffic Management Plans

CONVENTIONAL ROADWAY- A STREET OR HIGHWAY OTHER THAN A LOW-VOLUME ROAD, EXPRESSWAY, OR FREEWAY.

EXPRESSWAY - A DIVIDED HIGHWAY WITH PARTIAL CONTROL OF ACCESS.

FREEWAY- A DIVIDED HIGHWAY WITH FULL CONTROL OF ACCESS.

LOW-VOLUME ROAD- A FACILITY LYING OUTSIDE OF BUILT-UP AREAS OF CITIES, TOWNS, AND COMMUNITIES, AND IT SHALL HAVE A TRAFFIC VOLUME OF LESS THAN 400 AADT. IT SHALL NOT BE A FREEWAY, EXPRESSWAY, INTERCHANGE RAMP, FREEWAY SERVICE ROAD, OR A ROAD ON A DESIGNATED STATE HIGHWAY SYSTEM.

Source: 2003 MUTCD

TAPER LENGTH CRITERIA FOR TEMPORARY TRAFFIC CONTROL ZONES

Type of Taper	Taper Length (L)*				
MERGING TAPER	AT LEAST L				
SHIFTING TAPER	AT LEAST 0.5L				
SHOULDER TAPER	AT LEAST 0.33L				
ONE-LANE, TWO-WAY TRAFFIC TAPER	100 FT (30 m) MAXIMUM				
DOWNSTREAM TAPER	100 FT (30 m) PER LANE				

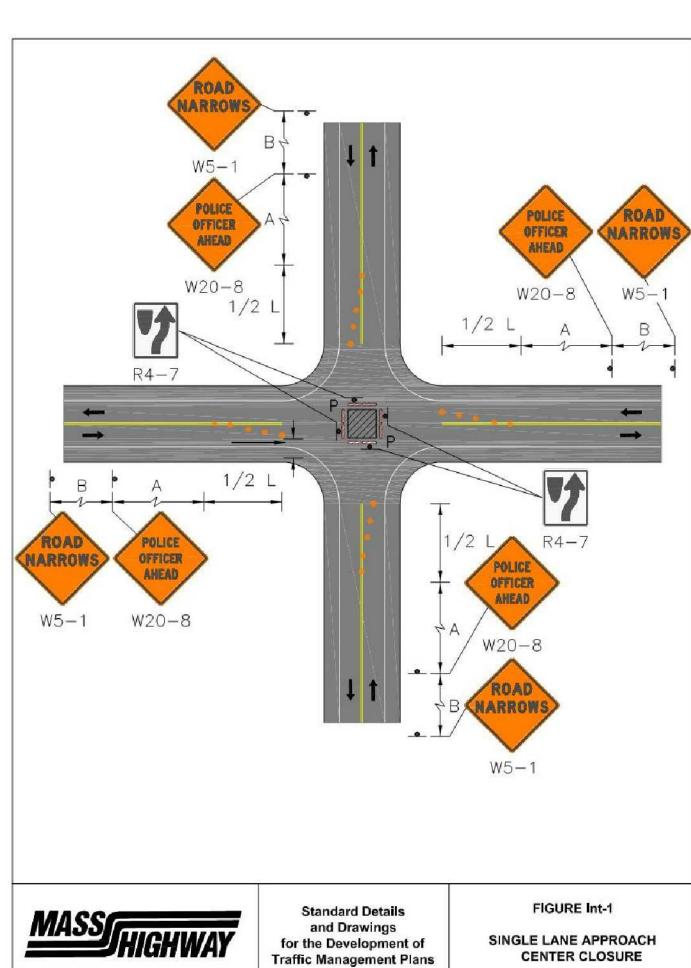
Source: Table 6C-3 2003 MUTCE

FORMULAS FOR DETERMINING TAPER LENGTHS

Speed Limit (S)	Taper Length (L) Feet	Speed Limit (S)	Taper Length (L) Meters	
40 MPH OR LESS	L= WS ² 60	60 KM/H OR LESS	$L=\frac{WS^2}{155}$	
45 MPH OR MORE	L= WS	70 KM/H OR MORE	L= WS 1.6	

WHERE: L = TAPER LENGTH IN FEET (METERS)

- W = WIDTH OF OFFSET IN FEET (METERS)
- S = POSTED SPEED LIMIT, OR OFF-PEAK 85TH-PERCENTILE SPEED PRIOR TO


WORK STARTING, OR THE ANTICAPATED OPERATING SPEED IN MPH (KM/H)

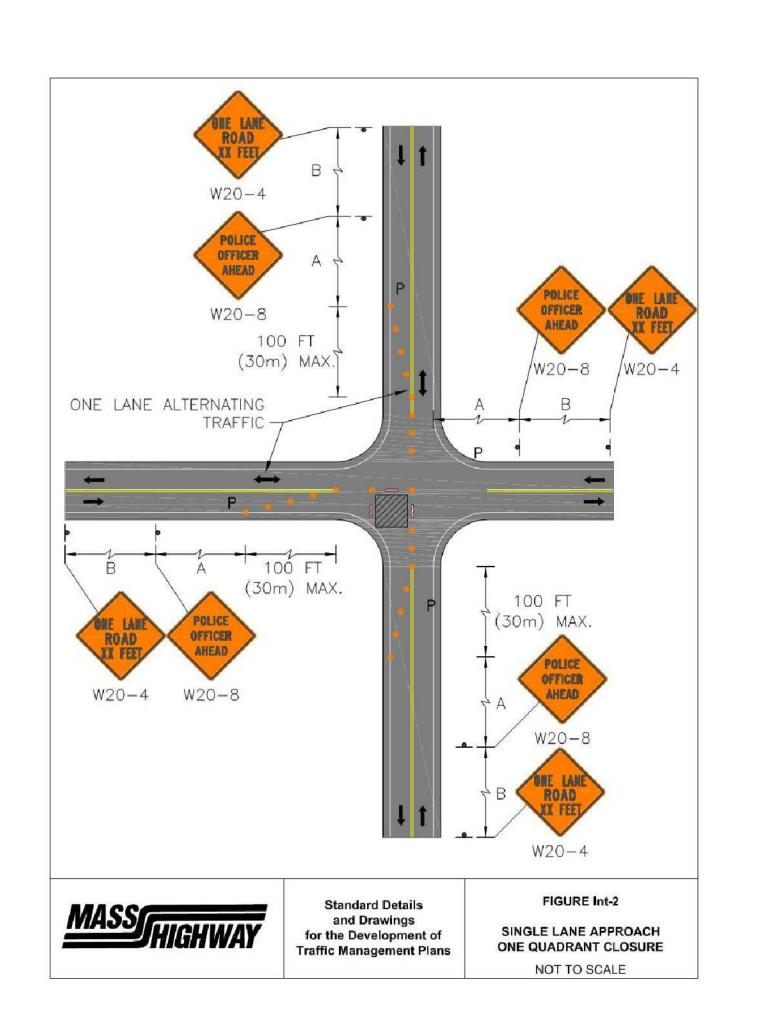
Source: Table 6C-4 2003 MUTCD

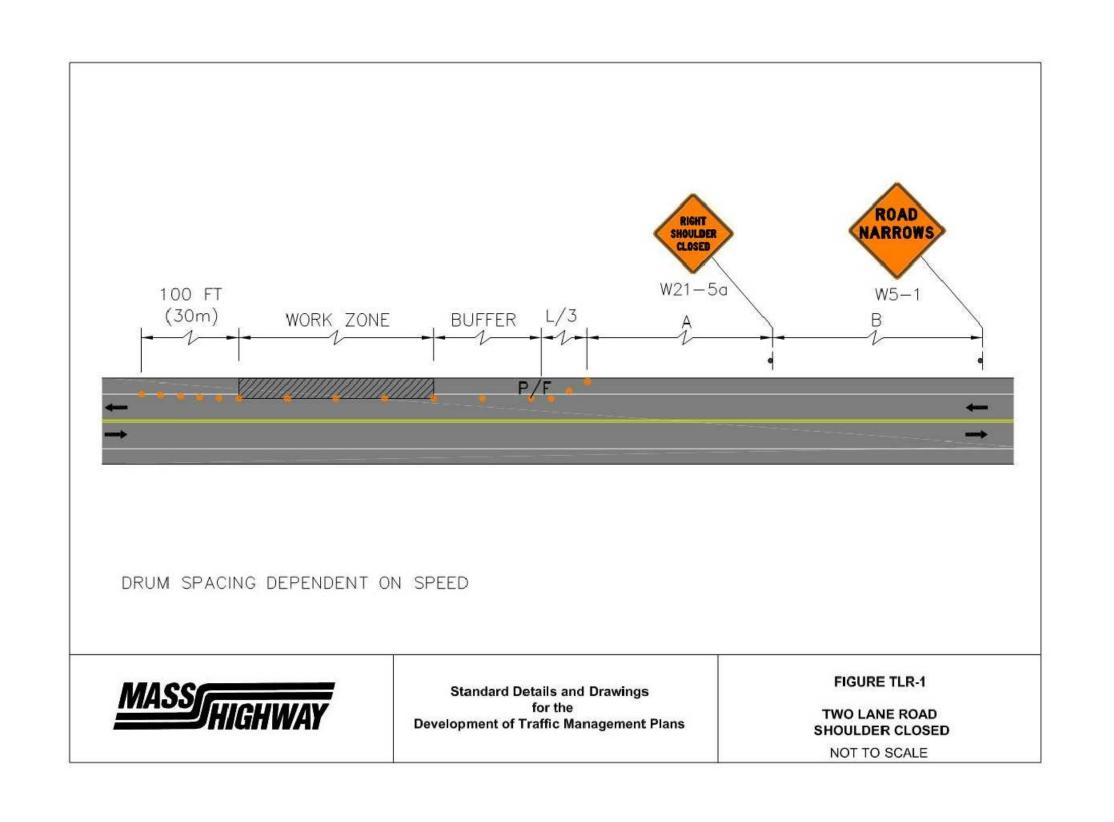
Notes

FIGURE Gen-3 NOTES ON WORK ZONE DISTANCES

NOT TO SCALE

RGP NOI SUBMITTAL NOT FOR CONSTRUCTION HOWAI


OF WAYLAND


IMPROVE 20)

MAIN

T&H NO.: 5231 DATE: APRIL 2018 SCALE: AS NOTED

TR-1

WORK ZONE

Standard Details and Drawings

Development of Traffic Management Plans

. BUFFER .

4S (0.8S)

W30-8R

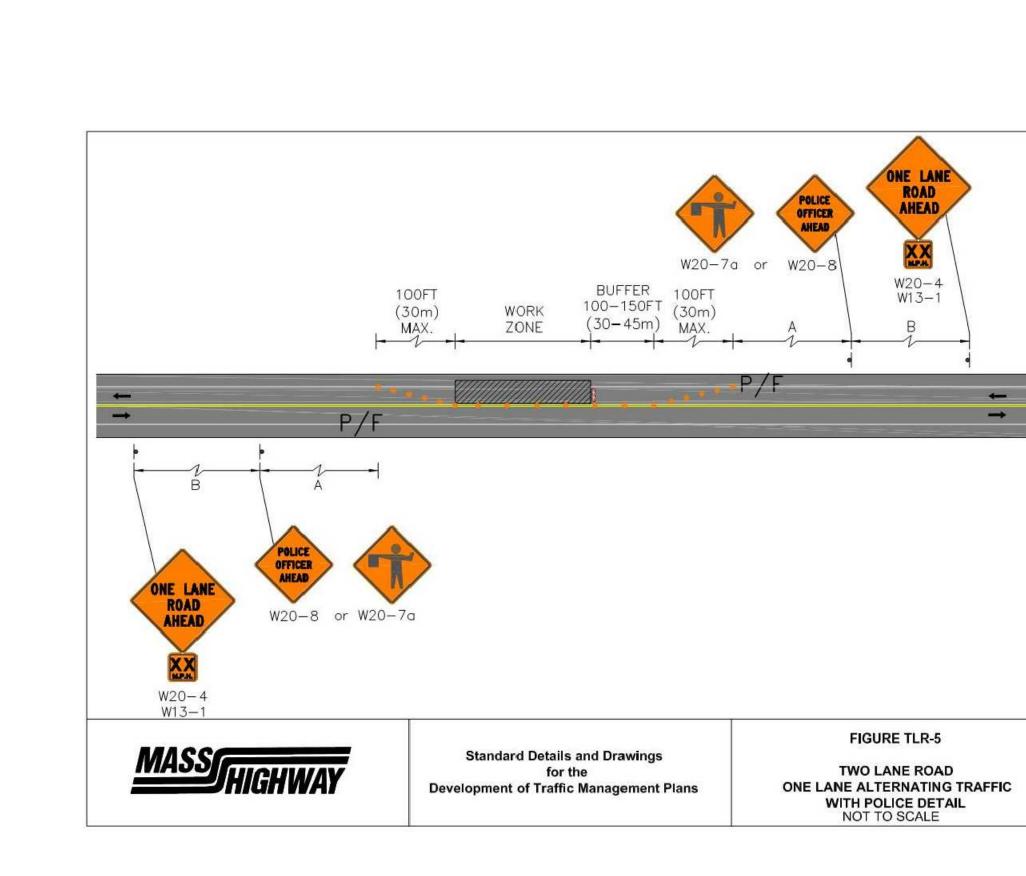
ROAD

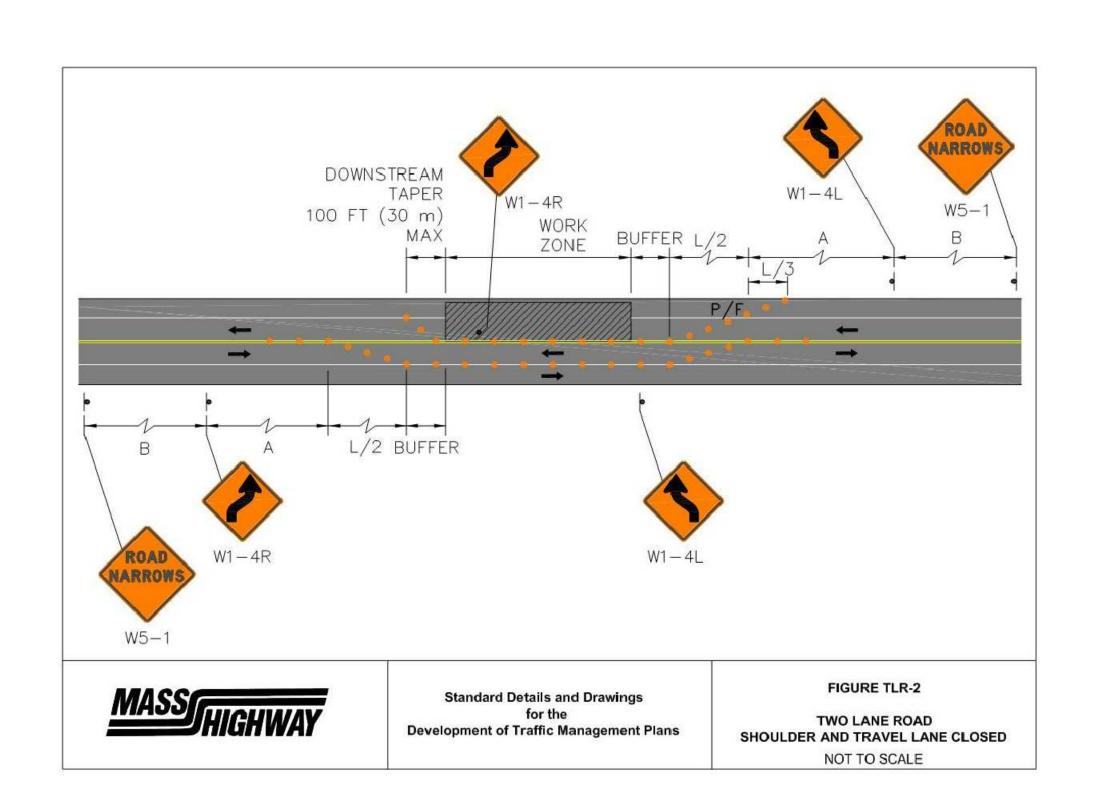
W5-1

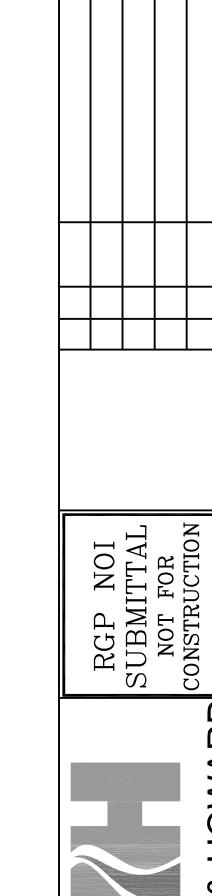
1 R4-7

W30-8R

FIGURE TLR-3


TWO LANE ROAD


CENTER OF ROAD CLOSURE NOT TO SCALE


(0.8S)

-1-

1/2 L

WATER MAIN IMPROVEMENTS (ROUTE 20)

TOWN OF WAYLAND MASSACHUSETTS

TRAFFIC MANAGEMENT SHEET 2

HOWARD

T&H NO.: 5231 DATE: APRIL 2018 SCALE: AS NOTED

TR-2

Appendix C

P.O. Box 165 Derry, NH 03038

Boring # B-1 Project: Tata & Howard, Inc. Project # 149591

Test Borings 5231

Project Address: City: Wayland State: MA Zip:

 Augers:
 HSA
 Sampler:
 140lbs
 Sampler:

 Size:
 2.25"
 S/S
 Fall:30"
 1-3/8 in. I.D.

Size. Z.	30 in.									
G R O U N D W A T E R O B S E R V A T I O N										
Date: 12/5/17		Depth:			Casing	g:		Stabilization P	eriod	
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		SAMPLE DESCRIPT	ION	
-						12"	ASPHALT			
-	S-1	1' -2'	12"	8"	10-10		Dry, medium de	ense, brown FINE TO ME	EDIUM SAND.	
-										
-	S-2	2' – 4'	24"	18"	8-7-13-13		Dry, medium de medium sand.	ense, brown FINE SAND	AND SILT, some	
2'6"							medium sand.			
_										
_										
_	S-3	4' - 6'	24"	10"	5-5-7-7		Dry, medium de	ense, light brown FINE T	O MEDIUM SAND.	
-							-			
5'0"										
-										
-	S-4	6' – 8'	24"	12"	7-7-9-11		Dry, medium de	ense, light brown FINE T	O MEDIUM SAND.	
-										
-										
7'6"						8'				
-							Bottom of Explo	oration = 8'		
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
- D=:!! a===		• • •	I I a I a a				la ana atawa B	I. M. Ol. II.		
		Matarrozzo	Helper	T. Mattl	new Soucy		Inspector: D	erek iviccielien		
Remarks: Truck mounted Steel rig										

REC: Recovery

S/C: Strata Change

PEN: Penetration

P.O. Box 165 Derry, NH 03038

Boring # B-2 Project: Tata & Howard, Inc. Project # 149591

Test Borings 5231

Project Address: City: Wayland State: MA Zip:

 Augers:
 HSA
 Sampler:
 140lbs
 Sampler:

 Size:
 2.25"
 S/S
 Fall:30"
 1-3/8 in, I.D.

Size: 2.	25"			S/S	•		Fall	30"	1-3/8 in. I.D. 30 in.		
			GROUNDWATER OBSERVATION								
Date: 12/4/17		Depth: Casing: Stabilization Period							tion Period		
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		SAMPLE DES	CRIPTION		
-						24"	ASPHA	ALT			
-											
-											
-	S-1	2' – 4'	24"	16"	13-7-4-3		Dry, m	edium dense, FINE TO M	EDIUM SAND, little gravel.		
2'6"											
-											
-											
-	S-2	4' - 6'	24"	16"	1-1-2-3			ry loose, brown FINE TO	MEDIUM SAND, trace		
							gravel.				
-											
5'0"											
-											
-	S-3	6' – 8'	24"	16"	4-8-10-7		Moist, trace g		n FINE TO MEDIUM SAND,		
_							liace y	iavei.			
_											
7'6"						8'					
-							Bottom	of Exploration = 8'			
_								r			
_											
_											
_											
_											
_											
_											
_											
_											
-											
-											
-											
-											
-											
-											
-							.				
		Matarrozzo	Helper	: Mattl	new Soucy		Inspe	ctor: Derek McClellen			
Remarks	Remarks: Truck mounted Steel rig										

REC: Recovery

S/C: Strata Change

PEN: Penetration

P.O. Box 165 Derry, NH 03038

Boring # B-3 Project: Tata & Howard, Inc. Project # 149591

Test Borings 5231

Project Address: City: Wayland State: MA Zip:

Date Start: 12/14/2017 **Date End:** 12/14/2017 **Location:** See Plan

 Augers:
 HSA
 Sampler:
 140lbs
 Sampler:

 Size:
 2.25"
 S/S
 Fall:30"
 1-3/8 in LD

Size: 2.	25"			S/S		Fall:30" 1-3/8 in. I.D.			
			C P O	II N D	WATER	2 0	BSERVAT	30 in.	
Date:		Depth:	GRU	J N D	Casing		BSERVAI	Stabilization Period	
12/14/17								Gtabilization i eriod	
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C	SAM	PLE DESCRIPTION	
-						12"	ASPHALT		
-	S-1	1' – 2'	12"	6"	41-32		Dry, very dense, brow gravel, no odor. PID/	vn FINE TO MEDIUM SAND, some 0.	
-									
-	S-2	2' – 4'	24"	6"	17-18-6-3		Dry, medium dense, bgravel, no odor PID/0	prown FINE TO MEDIUM SAND, some	
2'6"									
-									
-									
-	S-3	4' – 6'	24"	18"	2-8-18-20		Wet, medium dens, b odor PID/0.	rown FINE TO MEDIUM SAND, no	
-							Oddi Fib/o.		
5'0"									
_									
-	S-4	6' – 8'	24"	16"	15-13-16-15		Wet medium dense	brown MEDIUM TO COARSE SAND,	
-	3-4	0 - 0	24	10	10 10 10 10		no odor PID/0.	BIOWIT MEDICINI TO COARSE SAIND,	
-									
-									
7'6"						8'			
-							Bottom of Exploration	1 = 8'	
-									
-									
-									
-									
_									
_									
_									
_									
_									
_									
-									
-									
-									
-									
Daille		• • •	11				Inches to the Desire	A. Olulla	
		Matarrozzo	Helper		new Soucy		Inspector: Derek M	lcClellen	
Remarks	Remarks: Truck mounted Steel rig Set temporary well at 8' 3' Screen, 2' Riser 2 sand.								

REC: Recovery

S/C: Strata Change

PEN: Penetration

P.O. Box 165 Derry, NH 03038

Boring # B-4 Project: Tata & Howard, Inc. Project # 149591

Test Borings 5231

Project Address: City: Wayland State: MA Zip:

Date Start: 12/5/2017 **Date End:** 12/05/2017 **Location:** See Plan

Augers: HSASampler:140lbsSampler:Size: 2.35"5/55201:30"1.3/8 in LD

Size: 2.2	25"			S/S				Fall:30" 1-3/8 in. I.D. 30 in.									
	GROUNDWATER OBSERVATION																
Date:		Depth:	<u> </u>	<u> </u>	Casing				ion Period								
12/5/17	ļ		1			-											
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C	4.0011	SAMPLE DESC	RIPTION								
- I	S-1	1'- 2'	12"	8"	29-26	12"	ASPHA	AL I ery dense, gray, FINE TO M	EDILIM SAND, some								
-	3-1	1- 2	12	0	29-20			gravel, no odor. PID/0	EDIOW SAND, Some								
-																	
-	S-2	2' – 4'	24"	14"	24-11-7-6			edium dense, brown FINE									
2'6"							coarse	sand, trace gravel, trace cl	ay. PID/0								
_																	
_																	
- -	S-3	4' – 6'	24"	20"	1-1-4-12		Moist	loose, dark brown FINE SA	ND AND SILT little								
		. 0		20				n sand.	TAB TARB CIET, III.								
-																	
5'0"																	
-																	
-	S-4	6' – 8'	24"	18"	16-22-18-21		Dry, de	ense, brown FINE TO MEDI	UM SAND, little coarse								
_							sand, i	ittle silt. (petro odor) PID/5.	U								
_																	
7'6"						8'											
-							Bottom	of Exploration = 8'									
_																	
_																	
-																	
-																	
-																	
-																	
-																	
-																	
-																	
-																	
-																	
-																	
-																	
Drillers.	Michael	Matarrozzo	Helper	: Matth	new Soucy	<u>I</u>	Inspe	ctor: Derek McClellen									
Remarks:	: Truck	mounted Ste	el rig Se	et tempor	ary well at 8.5.	3.5 Sc	_		Drillers. Michael Matarrozzo Helper: Matthew Soucy Inspector: Derek McClellen Remarks: Truck mounted Steel rig Set temporary well at 8.5. 3.5 Screen, 2.5 Riser 2.5 sand.								

REC: Recovery

S/C: Strata Change

PEN: Penetration

(603) 437-1610

New England Boring Contractors P.O. Box 165

Derry, NH 03038

Boring # B-5 Project: T

roject: Tata & Howard, Inc.

Project # 149591

Test Borings 5231

City: Wayland

State: MA Zip:

Fax: (603) 437-0034

Date Start: 12/5/2017 **Date End:** 12/05/2017 **Location:** See Plan

S/S

PEN: Penetration

Augers: HSA Size: 2.25"

S/#: Sample

Project Address:

Sampler:

140lbs

Sampler: 1-3/8 in. I.D.

S/C: Strata Change

Fall:30"

30 in

	30 in.									
GROUNDWATER OBSERVATION										
Date: 12/5/17		Depth:			Casing:			Stabilization Period		
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		SAMPLE DESCRIPTION		
-						12"	ASPHA			
-	S-1	1'- 2'	12"	5"	18-20		Dry, de odor. I	ense, gray FINE TO MEDIUM SAND, some gravel, no PID/0		
-	0.0	0' 4'	0.4"	40"	40.000		D In			
- 2'6"	S-2	2' – 4'	24"	16"	13-6-3-3		no odo	ose, brown FINE TO MEDIUM SAND, trace gravel, rr. PID/0		
20										
-										
-	0.0	41 01	0.4"	00"	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		10/11	EINE TO MEDIUMO CAND		
-	S-3	4' – 6'	24"	22"	WOH/12"- 3-5			nedium dense, brown FINE TO MEDIUMS SAND, no PID/2.9		
- - -										
5'0" -										
-	S-4	6' - 8'	24"	24"	6-12-12-12		Wet, m	nedium dense, brown FINE TO MEDIM SAND, no		
							odor. I	PID/0.8		
-										
7'6"										
-	S-5	8' – 10'	24"	20"	13-12-13-12		Wet m	nedium dense, brown FINE TO MEDIUM SAND, no		
		0 10						PID/0.6		
-						401				
-						10'				
-							Bottom	n of Exploration = 10'		
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
Drillers.	Michael	Matarrozzo	Helper	I ': Mattl	l new Soucy		Inspe	ctor: Derek McClellen		
Remarks		mounted Stee	_		ary well at 9'8"	5'4" So		Riser 3' sand.		

REC: Recovery

(603) 437-1610

New England Boring Contractors P.O. Box 165

Derry, NH 03038

Boring # B-6 Project: Tata &

ect: Tata & Howard, Inc.

Project # 149591

Project Address:

Test Borings 5231

City: Wayland

State: MA Zip:

Fax: (603) 437-0034

Date Start: 12/5/2017

Date End: 12/05/2017

Location: See Plan

Augers: HSA Size: 2.25"

S/#: Sample

Sampler:

Remarks: Truck mounted Steel rig Set temporary well at 8' 3' Screen, 2' Riser 2 sand.

PEN: Penetration

140lbs Fall:30" Sampler:

S/C: Strata Change

S/S Fall:30" 1-3/8 in. I.D. 30 in.

GROUNDWATER OBSERVATION

Date:		Depth:	<u> </u>		Casing			Stabilization Period			
12/5/17	0 "	DEDTIL		550	DI OMO(CII	0/0		OAMBLE BECODIFIEN			
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C 12"	ASPHAL	SAMPLE DESCRIPTION			
_	S-1	1'- 2'	12"	6"	23-23	12		se, gray FINE TO MEDIUM SAND, some gravel.			
_		. –					2.17, donos, glay 1 miz 10 mizblem charb, como glavo.				
-	S-2	2' – 4'	24"	18"	11-9-9-12		Dry, medium dense, brown FINE TO MEDIUM SAND, trac gravel,				
2'6"							g ,				
-											
-											
-	S-3	4' – 5'	24"	16"	8-14-15-16		Wet, megravel.	dium dense brown FINE TO MEDIUM SAND, trace			
-	S-3A	5' – 5'4"					Wet, me	dium dense, brown-rust MEDIUM TO COARSE ome gravel.			
5'0"							O/ ((1 D, 3	one graver.			
-											
-	S-4	6' – 8'	24"	24"	3-14-14-14		Wet, me	dium dense, brown MEDIUM TO COARSE SAND, vel.			
-							(Had sor	me blow in at 8')			
-											
7'6"						8'					
-							Bottom c	of Exploration = 8'			
-											
-											
-											
-											
-											
-											
_											
_											
_											
_											
Drillers.	Michael	Matarrozzo	Helper	: Matth	new Soucy		Inspect	or: Derek McClellen			

REC: Recovery

(603) 437-1610

New England Boring Contractors P.O. Box 165

Derry, NH 03038

Boring # B-7 Project: Tata & Howard, Inc.

Project # 149591

Project Address:

Test Borings 5231 City: Wayland

State: MA Zip:

Fax: (603) 437-0034

S/C: Strata Change

Date Start: 12/14/2017

Date End: 12/14/2017

Location: See Plan

S/#: Sample

Remarks: Truck mounted Steel rig Set temporary well at 8' 3' Screen, 2' Riser 2 sand.

PEN: Penetration

140lbs Augers: HSA Sampler: Sampler: S/S Size: 2.25" Fall:30" 1-3/8 in. I.D. 30 in.

			GRO	UND	WATER	R 0	BSE	ERVATION			
Date: 12/14/17		Depth:			Casin	g:		Stabilization Period			
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		SAMPLE DESCRIPTION			
-				_		12"	ASPHA				
-	S-1	1' – 2'	12"	7"	35-15		Dry, dense, brown FINE TO MEDIUM SAND, trace grave no odor PID/0				
-	S-2	2' – 4'	24"	6"	11-2-2-9		Dry, loose, brown FINE TO MEDIUM SAND, some gravel little coarse sand, no odor PID/0,				
2'6"								,			
_											
-	S-3	4' – 6'	24"	18"	3-7-12-11		Wet, m	edium dense, brown FINE TO MEDIUM SAND, no D/0			
-											
5'0"											
-	S-4	6' – 8'	24"	24"	6-11-14-16		Wet m	edium dense, brown FINE TO MEDIUM SAND, little			
_		0 0	24	27	0 11 11 10			sand, no odor PID/0			
_											
7'6"						8'					
-							Bottom	of Exploration = 8'			
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
-											
Drillers.	Michael	Matarrozzo	Helper	: Matth	new Soucy		Insped	ctor: Derek McClellen			

REC: Recovery

(603) 437-1610 New England Boring Contractors Fax: (603) 437-0034

P.O. Box 165 Derry, NH 03038

Boring # B-8 Project: Tata & Howard, Inc. Project # 149591

Test Borings 5231

Project Address: City: Wayland State: MA Zip:

 Augers:
 HSA
 Sampler:
 140lbs
 Sampler:

 Size:
 2.25"
 S/S
 Fall:30"
 1-3/8 in. I.D.

30 in.

S/C: Strata Change

			GRO	ט א ט	WATER		рос	ERVATION		
Date: 12/5/17		Depth:			Casino	g:	Stabilization Period			
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		SAMPLE DESCRIPTION		
-						13"	ASPHA			
-	S-1	1'- 2'	12"	4"	7-7			edium dense, brown to dark brown FINE TO IM SAND, some gravel.		
_	S-2	2' – 4'	24"	15"	5-3-2-6		Dry, ve gravel.	ry loose, brown FINE TO MEDIUM SAND, little		
2'6" - -										
- -	S-3	4' – 6'	24"	18"	7-11-12-10			nedium dense, brown FINE TO MEDIUM SAND, coarse sand, little gravel.		
5'0" -										
-	S-4	6' – 8'	24"	14"	7-9-9-9		Wet, m	nedium dense brown SILT AND FINE SAND.		
- 7'6"						8'				
-							Bottom	of Exploration = 8'		
-										
-										
-										
-										
-										
-										
-										
Drillers.	Michael	Matarrozzo	Helper	: Matth	new Soucy		Inspe	ctor: Derek McClellen		

REC: Recovery

PEN: Penetration

S/#: Sample

(603) 437-1610

Remarks: Truck mounted Steel rig

PEN: Penetration

S/#: Sample

New England Boring Contractors P.O. Box 165

Derry, NH 03038

Fax: (603) 437-0034

Zip:

S/C: Strata Change

Project # 149591

State: MA

Boring # B-9 **Project**: Tata & Howard, Inc.

Test Borings 5231

Project Address: City: Wayland

 Augers:
 HSA
 Sampler:
 140lbs
 Sampler:

 Size:
 2.25"
 S/S
 Fall:30"
 1-3/8 in, I.D.

Size: 2.	25"			S/S			Fall:30"	1-3/8 in. I.D. 30 in.
			GRO	UND	WATER	₹ 0	BSERVATIO	
Date: 12/4/17		Depth:			Casin	g:	S	tabilization Period
DP	S./#	DEPTH	PEN	REC	BLOWS/6"	S/C		E DESCRIPTION
-						6"	ASPHALT	
-	S-1	6" – 2'	18'	10"	11-11-7		Dry, medium dense, brov gravel.	wn FINE TO MEDIUM SAND, little
-	S-2	2' – 4'	24"	16"	6-8-11-11		Dry, medium dense, light sand.	t brown FINE SAND, some medium
2'6"								
-								
-								
-	S-3	4' - 6'	24"	14"	5-5-5-5		Dry, loose, light brown F	INE SAND, some medium sand.
-								
5'0"								
_								
_	S-4	6' – 8'	24"	12"	5-7-6-5		Wet, loose, light brown S	SILT AND FINE SAND.
-							, , ,	
-								
7'6"						8'		
-							Bottom of Exploration = 8	8'
-								
-								
-								
-								
-								
-								
-								
-								
-								
_								
_								
_								
-								
Drillers.	Michael	Matarrozzo	Helper	r: Mattl	l hew Soucy		Inspector: Derek McC	lellen
			7-12-01		- j			

REC: Recovery

Appendix D

Table 2
Summary of Groundwater Analytical Results
2018 Water Main Improvements
Wayland, Massachusetts

Sample Location Sample Date Depth to Water (feet)	TW-3 12/14/17 6.20	TW-4 12/5/17 4.75	TW-5 12/5/17 5.3	TW-6 12/5/17 4.65	TW-7 12/14/17 5.10	RCGW-1 Reportable Concentrations	Method 1 GW-2 Standards	Effluent Limitation TBEL Concentrations
PARAMETER - Method (units)								
EPHs - MassDEP 04-1.1 (μg/L)			NT	NT				
C ₉ -C ₁₈ Aliphatics	<93	<93			<93	700	5,000	NA
C ₁₉ -C ₃₆ Aliphatics	<93	<93			<93	14,000	NA	NA
C ₁₁ -C ₂₂ Aromatics	<93.5	228			108	200	50,000	NA
Target PAH Analytes			NT	NT				
Diesel Analytes (μg/L)								
2-Methylnaphthalene	<4.7	<4.7			20.8	10	2,000	NA
Acenaphthene	<4.7	<4.7			<4.7	20	NA	NS
Naphthalene	<9.3	<9.3			67.5	140	700	20
Phenanthrene	<4.7	<4.7			<4.7	40	NA	NS
VPHs - MassDEP 04-1.1 (μg/L)			NT	NT				
C ₅ -C ₈ Aliphatics	<150	358			<150	300	3,000	NA
C ₉ -C ₁₂ Aliphatics	<150	274			<150	700	5,000	NA
C ₉ -C ₁₀ Aromatics	<100	579			167	200	4,000	NA
Target VOC Analytes (µg/L)			NT	NT				
Benzene	<1.5	28.3			2.4	5	1,000	5
Toluene	< 5.0	<5.0			6.5	1,000	50,000	NS
Ethylbenzene	< 5.0	<5.0			9.5	700	20,000	NS
Naphthalene	< 5.0	13.3			93.6	140	700	20
m- & p- Xylenes	<10.0	<10.0			<10.0	3,000	3,000	NS
o-Xylene	< 5.0	<5.0			9.0	3,000	3,000	NS
MTBE	<1.5	<1.5			1.9	70	50,000	70
VOCs - EPA 8260B (μg/L)	NT	NT	Others ND	Others ND	NT			
cis-1,2-Dichloroethene			142	2.4		20	20	70
trans-1,2-Dichloroethene			4	<1.0		80	80	NS
Naphthalene			<1.0	16.6		140	700	20
Tetrachloroethylene			<u>276</u>	<u>53.7</u>		5	50	5
Trichloroethylene			41.8	1.9		5	5	5
Vinyl Chloride			<u>39.5</u>	<1.0		2	2	2
Total VOCs			503.30	74.60		NA	NA	NA

Notes:

- 1. $\mu g/L = Micrograms per liter$.
- 2. ND = Not detected above method reporting limit; NT = Not tested; NA = Not Applicable; NS = Not Specified.
- 3. EPHs = Extractable petroleum hydrocarbons; PAH = Polycyclic aromatic hydrocarbons; VPHs = Volatile petroleum hydrocarbons; VOCs = Volatile organic compounds.
- 4. Values preceded by "<" indicate that the result is non detect and the method reporting limit is shown.
- 5. Results in bold indicate that the applicable RCGW-1 Reportable Concentration is exceeded. Underlined data also indicate that the Method 1 GW-2 Standards are exceeded.
- 6. TW refers to the groundwater sample collected from the temporary well installed when the soil borings at the corresponding identification number were conducted.

Table 3 Summary of Additional Groundwater Analytical Results for NPDES Permit Application Boston Post Road Wayland, Massachusetts

Sample Location	298 BPR (AMB-117)	268 BPR (SB4)	338 BPR (MW-3)	Pine Brook	RCGW-1	Effluent Limitation
Sample Date	2/26/2018	2/28/2018	3/21/2018	2/26/2018	Reportable	TBEL
Depth to Water (feet)	3.79	2.08	1.85	NA	Concentrations	Concentrations
PARAMETER - Method (units)) I'm	ATT AND	O.I. NID	N.T.		
Semi-Voliatile Organic Compouns EPA-625 (SIM) (µg/L)	NT	ALL ND	Others ND	NT	NG	NG
Di-n-butylphthalate		<2.34	5.80		NS 20	NS NG
Fluorene		<0.19 ND	0.48		30 NS	NS 1
Total Group I PAHs Naphthalene			6.28 120		140	20
Total Group II PAHs		<0.19 ND	120		NS	100
Total Group II PAris		ND	120		IND	100
Semi-Voliatile Organic Compouns EPA-8270D (SIM) (µg/L)						
1,4-Dioxane	NT	< 0.250	<0.250	NT	0.30	200
-,·			1			
Total Petroleum Hydrocarbons EPA 1664A (mg/L)	NT	<5	<5	NT	0.2	5
VOCs - EPA 524.2 (µg/L)						
Halogenated VOCs	All ND	NT	NT	NT		
Acetone	NT	<5.0	<5.0	NT	6,300	7,970
Benzene	NT	<0.5	14.0	NT	5	5
Ethylbenzene		2.0	365	NT	700	NS
Methyl tert-Butyl Ether (MTBE)	NT	4.4	0.5	NT	70	70
Tertiary-amyl methyl ether (TAME)		NT	<1.0	NT	NS	90
Tertiary-butyl Alcohol		<25.0	<25.0	NT	NS	120
Toluene	NT	<0.5	22.8	NT	1,000	NS
Xylene Total		5.2	1,776	NT	3,000	NS
Phenols - EPA 420.1	NT	<100	<100	NT	NS	1,080
Total BTEX	NT	11.60	2,177.80	NT	NS	100
1,2-Dibromoethane (EDB) - EPA 504.1 (µg/L)	<0.015	NT	NT	NT	0.02	0.05
Ethanol - ASTM D3695 (mg/L)	NT	NT	<10	NT	1	Report (mg/L)
Total Metals - EPA 3005A/200.7 (µg/L)						
Antimony	<5.0	<10.0	<1.5	< 5.0	6	206
Arsenic	0.6	7.7	13.4	0.7	10	104
Cadmium	< 0.05	0.15	<0.08	0.07	4	10.2
Chromium (total)	<2.0	<4.0	<2.0	< 2.0	100	NS
Chromium III	<10.0	<10.0	<10.0	NT	100	323
Chromium VI EPA 3500CR B-2009	<10.0	<10.0	<10.0	<10.0	100	323
Copper	7.6	<4.0	<2.0	2.4	10,000	242
Iron	662	4,320	39,100	693	NS	5,000
Lead	0.8	<1.0	<1.5	1.0	10	160
Mercury	< 0.200	< 0.200	< 0.200	< 0.200	2	0.739
Nickel	<5.0	<10.0	<5.0	< 5.0	100	1,450
Selenium	<1.0	< 2.0	<3.0	<1.0	50	235.8
Silver	< 0.5	<1.0	1.9	< 0.5	7	35.1
Zinc	14.3	401	23.4	33.4	900	420
Hardness	237,000	246,000	156,000	43,100	NS	NS
Classic Chemistry						
Ammonia as N - EPA 350.1 (mg/L)	0.11	0.36	2.18	< 0.10	NS	Report (mg/L)
Chloride - EPA 300.0 (mg/L)		338	237	NT	NS	Report (µg/L)
Total Cyanide (LL) - EPA 4500CN CE (µg/L)	<5.0	<5.0	<5.0	NT	30	178,000
Total Residual Chlorine - EPA 4500CI D (µg/L)		<20	<20	NT	NS	200
Total Suspemded Solids - EPA 2540D (mg/L)		<5	23	NT	NS	30
Total Suspended Solids El 11 2540B (Ilig E)				.,.	1,5	

- Notes:

 1. RCGW-1 = Massachusetts Department of Environmental Protection Reportable Concentration category for groundwater. The Reportable Concentration standards were revised effective April 25, 2014.

 2. µg/L = Micrograms per liter; mg/L = Milligrams per liter

 3. TBEL = Technology based effluent limit; ND = Not detected above method reporting limit; NS = Not specified; NT = Not tested

 4. VOCs = Volatile organic compounds

 5. Results in bold indicate that the TBEL is exceeded.

 6. Values preceded by "<" indicate that the TBEL is exceeded.

 7. Pine Brook was sampled and testing as the receiving water for the dewatering treatment system discharge point.

 8. Per the Remediation General Permit Notice of Intent Application Form, Ammonia should be reported in mg/L., Chloride should be reported in µg/L, and Ethanol should be reported in mg/L.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Derek McClellan Tata and Howard 67 Forest Street Marlborough, MA 01752

This lab report includes the analytical results for TW-3 and TW-7, as indicated in Table 2.

RE: Wayland Water Main Improvements (5231) ESS Laboratory Work Order Number: 1712360

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director REVIEWED

By ESS Laboratory at 3:18 pm, Dec 26, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

SAMPLE RECEIPT

The following samples were received on December 15, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

Each method has been set-up in the laboratory to reach required MCP standards. The methods for aqueous VOA and Soil Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these limitations. In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits above regulatory standards. ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
1712360-01	TW-3	Ground Water	EPH8270, MADEP-EPH, MADEP-VPH
1712360-02	TW-7	Ground Water	EPH8270, MADEP-EPH, MADEP-VPH

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

. . . DED DED I

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

MassDEP Analytical Protocol Certification Form

/iaifi	ces: (X) Grou	ınd Wa	ater/Surface Water		() Soil/Sediment	() Drinking Water	() Air	() Other:_		
CAN	I Protocol (cl	neck a	ll that apply below	v):						
	3260 VOC CAM II A	() 7470/7471 Hg CAM III B	(X)	MassDEP VPH (GC/PID/FID) CAM IV A	() 8082 PCB CAM V A	()	9014 Total Cyanide/PAC CAM VI A	()) 6860 Perchlorate CAM VIII B
	8270 SVOC CAM II B	() 7010 Metals CAM III C	()	MassDEP VPH (GC/MS) CAM IV B	() 8081 Pesticides CAM V C	()	7196 Hex Cr CAM VI B	()) MassDEP APH CAM IX A
	6010 Metals CAM III A	() 6020 Metals CAM III D	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	()	Explosives CAM VIII A	()) TO-15 VOC CAM IX B
						gh F are required for ''P	-	•	atus	
	-					ibed on the Chain-of-Custo pared/analyzed within met		•		Yes (X) No ()
3		_				pecified in the selected CA		-		Yes (X) No ()
f	•		nemou(s) und un u	sociate	d QC requirements sp	beemed in the selected CA	ivi protoc	ol(s)		1es (24) No ()
. T	followed? Were all requir	ed cor	rective actions and	analyti	ical response actions	specified in the selected C.	•	,		Yes (X) No ()
i O I	followed? Were all requin mplemented for the second control of the	ed cor or all i	rective actions and dentified performa report comply with	analyti nce star	ical response actions and ard non-conforman reporting requiremen	specified in the selected C.	AM proto II A, "Qua	col(s)		
i O I	followed? Were all required from the labor Assurance and VPH, EPH, AI	red cor or all i atory r Quali PH and	rective actions and dentified performa report comply with ty Control Guidelin d TO-15 only: a. W	analytince stan all the nes for the	ical response actions and ard non-conforman reporting requiremen the Acquisition and R	specified in the selected C. ces? ts specified in the CAM V	AM proto II A, "Qua a"?	col(s)		Yes (X) No ()
i i i i i i i i i i i i i i i i i i i	Followed? Were all required from the properties of the labor Assurance and VPH, EPH, AI to the individu	red cor or all i atory r Quali PH and al met	rective actions and dentified performa report comply with ty Control Guidelin I TO-15 only: a. W hod(s) for a list of	analytince standall the nes for fas each	ical response actions and and non-conforman reporting requiremen the Acquisition and R method conducted want modifications).	specified in the selected C.ces? ts specified in the CAM V eporting of Analytical Dat	AM proto II A, "Qua a"?	col(s)		Yes (X) No () Yes (X) No ()
i i i i i i i i i i i i i i i i i i i	Followed? Were all require mplemented for the labor Assurance and VPH, EPH, Also the individuctory APH and TO Were all application.	red cor or all i atory r Quali PH and al meth D-15 M	rective actions and dentified performa report comply with ty Control Guidelin 1 TO-15 only: a. W hod(s) for a list of Methods only: Was CAM protocol QC a	analytince star all the nes for as each as each signific the com	ical response actions and ard non-conforman reporting requiremen the Acquisition and R method conducted want modifications).	specified in the selected C. ces? ts specified in the CAM V eporting of Analytical Dat ithout significant modificant modificant for each method? n-conformances identified	AM proto II A, "Qua a"? ation(s)? (col(s) ality Refer		Yes (X) No () Yes (X) No () Yes (X) No ()
C V i O I E V t	Followed? Were all require mplemented for the labor Assurance and VPH, EPH, Also the individuctory APH and TO Were all application.	red cor or all i atory r Quali PH and al meth D-15 M	rective actions and dentified performa report comply with ty Control Guidelin I TO-15 only: a. W hod(s) for a list of Methods only: Was CAM protocol QC a ive (including all "	analytince standall the mes for the signification and per No" res	ical response actions and and non-conforman reporting requiremen the Acquisition and R method conducted want modifications). Inplete analyte list reporting formance standard no sponses to Questions.	specified in the selected C. ces? ts specified in the CAM V eporting of Analytical Dat ithout significant modificant modificant for each method? n-conformances identified	AM proto II A, "Qua a"? attion(s)? (col(s) ality Refer		Yes (X) No () Yes (X) No () Yes (X) No () Yes () No ()
i i i i i i i i i i i i i i i i i i i	Followed? Were all requiremplemented for the labor Assurance and VPH, EPH, Also the individuous APH and TO Were all applicant a laboratory Were the reportant and User Note the Individual Control of t	red cor for all i atory r Qualic PH and al meth D-15 M cable C narrat	rective actions and dentified performa report comply with ty Control Guidelind TO-15 only: a. Whod(s) for a list of dethods only: Was CAM protocol QC aive (including all " **Responses to mits at or below all athat achieve 'Press'*	analytince stan all the nes for as each signific the common per No" res	ical response actions and ard non-conforman reporting requirement the Acquisition and R method conducted want modifications). Inplete analyte list reporting the Acquisitions of the Acquisition of t	specified in the selected C. ces? ts specified in the CAM V eporting of Analytical Dat ithout significant modificatorted for each method? n-conformances identified A through E)? we are required for "Presulted in the selected CAM pay not necessarily meet the experiences."	AM proto II A, "Quata"? attion(s)? (and evaluation evaluation evaluation)	col(s) Ality Refer Lated ertainty" status s)?		Yes (X) No () Yes (X) No () Yes (X) No () Yes () No ()
i i i i i i i i i i i i i i i i i i i	Followed? Were all requiremplemented for the labor Assurance and WPH, EPH, Also the individuous APH and TO Were all applicant a laboratory Were the report Data User Note representativents	red cor for all i atory r Quality PH and al methodal methodal cable C narrat	rective actions and dentified performa report comply with ty Control Guidelin TO-15 only: a. Whod(s) for a list of Methods only: Was CAM protocol QC a rective (including all " **Responses to the active that achieve "Presquirements described and described active described and described active that achieve "Presquirements described active that achieve "Presquirements" active that achieve "Presquirements described active that achieve "Presquirements" active that achieve "Presquirements described active that achieve "Presquirements" active that achieve "Presquirements described active that achieve "Presquirements" active that achieve the presquirements active	analytince standall the mes for the signification and per No" result CAM cumptived in 31	ical response actions and and non-conforman reporting requirementhe Acquisition and Remethod conducted want modifications). Inplete analyte list reporting to Questions and Responses to Questions are porting limits specific Certainty" status made of CMR 40. 1056 (2)(k)	specified in the selected C. ces? ts specified in the CAM V eporting of Analytical Dat ithout significant modificator or each method? n-conformances identified A through E)? we are required for "Presure of the selected CAM proportion of the sele	AM proto II A, "Quata"? attion(s)? (and evaluation evaluation evaluation)	col(s) Ality Refer Lated ertainty" status s)?		Yes (X) No () Yes (X) No () Yes (X) No () Yes () No () Yes (X) No ()
i i i i i i i i i i i i i i i i i i i	Followed? Were all requiremplemented for the labor Assurance and WPH, EPH, Also the individuous APH and TO Were all applicate all applicate User Notemplementativen were all QC por the position of the proper than the position of the proper than the position of the proper than the position of the property of the proper	red cor or all i atory r Quali PH and al methodological cable C narrat tring ling ress requerform	rective actions and dentified performa report comply with ty Control Guidelin TO-15 only: a. Whod(s) for a list of a fethods only: Was CAM protocol QC a live (including all " **Responses to that achieve "Presiquirements describe ance standards specifications and that achieve standards specifications and the standards specificance standards s	analytince standall the mes for the signification of the command per No" result CAM sumptive defin 31 ccified in 3	ical response actions and and non-conforman reporting requirementhe Acquisition and Remethod conducted want modifications). Inplete analyte list reporting to Questions and Responses to Questions are porting limits specified according to the CAM protocol (specifical forms).	specified in the selected C. ces? ts specified in the CAM V eporting of Analytical Dat ithout significant modificator or each method? n-conformances identified A through E)? we are required for "Presure of the selected CAM proportion of the sele	AM proto II A, "Quata"? attion(s)? (and evaluation evaluation evaluation)	col(s) Ality Refer Lated ertainty" status s)?		Yes (X) No (Yes (X) No (Yes (X) No (Yes () No (Yes (X) No (Yes (X) No (

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: December 26, 2017
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-3
Date Sampled: 12/14/17 12:00

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712360 ESS Laboratory Sample ID: 1712360-01

Sample Matrix: Ground Water

Units: ug/L

Prepared: 12/18/17 15:05

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	<u>Analyzed</u>	Sequence	Batch
C9-C18 Aliphatics1	ND (93)	MADEP-EPH		1	ZLC	12/20/17 10:38	C7L0348	CL71802
C19-C36 Aliphatics1	ND (93)	MADEP-EPH		1	ZLC	12/20/17 10:38	C7L0348	CL71802
C11-C22 Unadjusted Aromatics1	ND (93.5)	EPH8270		1	ZLC	12/22/17 19:12	C7L0356	CL71802
C11-C22 Aromatics1,2	ND (93.5)	EPH8270			ZLC	12/22/17 19:12		[CALC]
2-Methylnaphthalene	ND (4.7)	EPH8270		1	ZLC	12/22/17 19:12	C7L0356	CL71802
Acenaphthene	ND (4.7)	EPH8270		1	ZLC	12/22/17 19:12	C7L0356	CL71802
Naphthalene	ND (9.3)	EPH8270		1	ZLC	12/22/17 19:12	C7L0356	CL71802
Phenanthrene	ND (4.7)	EPH8270		1	ZLC	12/22/17 19:12	C7L0356	CL71802
Preservative:	pH <= 2	MADEP-EPH			ZLC			CL71802

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	44 %		40-140
Surrogate: 2-Bromonaphthalene	110 %		40-140
Surrogate: 2-Fluorobiphenyl	105 %		40-140
Surrogate: O-Terphenyl	96 %		40-140

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-3
Date Sampled: 12/14/17 12:00

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712360 ESS Laboratory Sample ID: 1712360-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	ND (100)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
C5-C8 Aliphatics1,2	ND (150)	MADEP-VPH		1	12/19/17 22:02		[CALC]
C9-C12 Aliphatics2,3	ND (150)	MADEP-VPH		1	12/19/17 22:02		[CALC]
Benzene	ND (1.5)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Ethylbenzene	ND (5.0)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Methyl tert-Butyl Ether	ND (1.5)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Naphthalene	ND (5.0)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Toluene	ND (5.0)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Xylene O	ND (5.0)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Xylene P,M	ND (10.0)	MADEP-VPH		1	12/19/17 22:02	C7L0306	CL72021
Preservative:	pH <= 2	MADEP-VPH					CL72021

 %Recovery
 Qualifier
 Limits

 Surrogate: 2,5-Dibromotoluene - FID
 110 %
 70-130

 Surrogate: 2,5-Dibromotoluene - PID
 107 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-7
Date Sampled: 12/14/17 10:25

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712360 ESS Laboratory Sample ID: 1712360-02

Sample Matrix: Ground Water

Units: ug/L

Prepared: 12/18/17 15:05

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	Sequence	Batch
C9-C18 Aliphatics1	ND (93)	MADEP-EPH		1	SMR	12/19/17 15:35	C7L0256	CL71802
C19-C36 Aliphatics1	ND (93)	MADEP-EPH		1	SMR	12/19/17 15:35	C7L0256	CL71802
C11-C22 Unadjusted Aromatics1	196 (93.5)	EPH8270		1	ZLC	12/22/17 19:48	C7L0356	CL71802
C11-C22 Aromatics1,2	108 (93.5)	EPH8270			ZLC	12/22/17 19:48		[CALC]
2-Methylnaphthalene	20.8 (4.7)	EPH8270		1	ZLC	12/22/17 19:48	C7L0356	CL71802
Acenaphthene	ND (4.7)	EPH8270		1	ZLC	12/22/17 19:48	C7L0356	CL71802
Naphthalene	67.5 (9.3)	EPH8270		1	ZLC	12/22/17 19:48	C7L0356	CL71802
Phenanthrene	ND (4.7)	EPH8270		1	ZLC	12/22/17 19:48	C7L0356	CL71802
Preservative:	pH <= 2	MADEP-EPH			ZLC			CL71802

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	53 %		40-140
Surrogate: 2-Bromonaphthalene	104 %		40-140
Surrogate: 2-Fluorobiphenyl	95 %		40-140
Surrogate: O-Terphenyl	95 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-7
Date Sampled: 12/14/17 10:25

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712360 ESS Laboratory Sample ID: 1712360-02

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

MADEP-VPH Volatile Petroleum Hydrocarbon

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	167 (100)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
C5-C8 Aliphatics1,2	ND (150)	MADEP-VPH		1	12/19/17 1:14		[CALC]
C9-C12 Aliphatics2,3	ND (150)	MADEP-VPH		1	12/19/17 1:14		[CALC]
Benzene	2.4 (1.5)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Ethylbenzene	9.5 (5.0)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Methyl tert-Butyl Ether	1.9 (1.5)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Naphthalene	93.6 (5.0)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Toluene	6.5 (5.0)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Xylene O	9.0 (5.0)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Xylene P,M	ND (10.0)	MADEP-VPH		1	12/19/17 1:14	C7L0271	CL71837
Preservative:	pH <= 2	MADEP-VPH					CL71837

 %Recovery
 Qualifier
 Limits

 Surrogate: 2,5-Dibromotoluene - FID
 115 %
 70-130

 Surrogate: 2,5-Dibromotoluene - PID
 107 %
 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL71802 - 3510C

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-EPH Extractable	Petroleum H	vdrocarbons
-----------------------	-------------	-------------

Blank							
C19-C36 Aliphatics1	ND	100	ug/L				
C9-C18 Aliphatics1	ND	100	ug/L				
Decane (C10)	ND	5	ug/L				
Docosane (C22)	ND	5	ug/L				
Dodecane (C12)	ND	5	ug/L				
Eicosane (C20)	ND	5	ug/L				
Hexacosane (C26)	ND	5	ug/L				
Hexadecane (C16)	ND	5	ug/L				
Hexatriacontane (C36)	ND	5	ug/L				
Nonadecane (C19)	ND	5	ug/L				
Nonane (C9)	ND	5	ug/L				
Octacosane (C28)	ND	5	ug/L				
Octadecane (C18)	ND	5	ug/L				
Tetracosane (C24)	ND	5	ug/L				
Fetradecane (C14)	ND	5	ug/L				
Triacontane (C30)	ND	5	ug/L				
			-				
Surrogate: 1-Chlorooctadecane	36.3		ug/L	50.00	<i>73</i>	40-140	
Blank							
2-Methylnaphthalene	ND	5.0	ug/L				
Acenaphthene	ND	5.0	ug/L				
Acenaphthylene	ND	5.0	ug/L				
Anthracene	ND	5.0	ug/L				
Benzo(a)anthracene	ND	5.0	ug/L				
Benzo(a)pyrene	ND	10.0	ug/L				
Benzo(b)fluoranthene	ND	5.0	ug/L				
Benzo(g,h,i)perylene	ND	10.0	ug/L				
Benzo(k)fluoranthene	ND	10.0	ug/L				
C11-C22 Aromatics1,2	ND	100	ug/L				
C11-C22 Unadjusted Aromatics1	ND	100	ug/L				
Chrysene	ND	10.0	ug/L				
Dibenzo(a,h)Anthracene	ND	5.0	ug/L				
Fluoranthene	ND	10.0	ug/L				
Fluorene	ND	5.0	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	5.0	ug/L				
Naphthalene	ND	10.0	ug/L				
Phenanthrene	ND	5.0	ug/L				
Pyrene	ND	5.0	ug/L				
Surrogate: 2-Bromonaphthalene	50.8		ug/L	50.00	102	40-140	
Surrogate: 2-Fluorobiphenyl	51.6		ug/L	50.00	103	40-140	
Surrogate: O-Terphenyl	48.5		ug/L	50.00	97	40-140	
LCS							
C19-C36 Aliphatics1	359	100	ug/L	400.0	90	40-140	

The Microbiology Division of Thielsch Engineering, Inc.

%REC

 RPD

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Extr	actable Peti	roleum Hy	/drocarbo	ns				
Batch CL71802 - 3510C										
Decane (C10)	29	5	ug/L	50.00		57	40-140			
Docosane (C22)	42	5	ug/L	50.00		84	40-140			
Dodecane (C12)	29	5	ug/L	50.00		59	40-140			
Eicosane (C20)	42	5	ug/L	50.00		84	40-140			
Hexacosane (C26)	42	5	ug/L	50.00		84	40-140			
Hexadecane (C16)	41	5	ug/L	50.00		82	40-140			
Hexatriacontane (C36)	44	5	ug/L	50.00		89	40-140			
Nonadecane (C19)	43	5	ug/L	50.00		85	40-140			
Nonane (C9)	23	5	ug/L	50.00		45	30-140			
Octacosane (C28)	42	5	ug/L	50.00		84	40-140			
Octadecane (C18)	40	5	ug/L	50.00		81	40-140			
Tetracosane (C24)	42	5	ug/L	50.00		84	40-140			
Tetradecane (C14)	38	5	ug/L	50.00		76	40-140			
Triacontane (C30)	42	5	ug/L	50.00		85	40-140			
Surrogate: 1-Chlorooctadecane	36.0		ug/L	50.00		<i>72</i>	40-140			
.cs										
2-Methylnaphthalene	34.4	5.0	ug/L	50.00		69	40-140			
Acenaphthene	39.0	5.0	ug/L	50.00		78	40-140			
Acenaphthylene	39.2	5.0	ug/L	50.00		78	40-140			
Anthracene	42.8	5.0	ug/L	50.00		86	40-140			
Benzo(a)anthracene	44.2	5.0	ug/L	50.00		88	40-140			
Benzo(a)pyrene	42.2	10.0	ug/L	50.00		84	40-140			
Benzo(b)fluoranthene	44.1	5.0	ug/L	50.00		88	40-140			
Benzo(g,h,i)perylene	42.0	10.0	ug/L	50.00		84	40-140			
Benzo(k)fluoranthene	42.7	10.0	ug/L	50.00		85	40-140			
C11-C22 Aromatics1,2	561	100	ug/L							
C11-C22 Unadjusted Aromatics1	713	100	ug/L	850.0		84	40-140			
Chrysene	43.0	10.0	ug/L	50.00		86	40-140			
Dibenzo(a,h)Anthracene	43.0	5.0	ug/L	50.00		86	40-140			
Fluoranthene	42.4	10.0	ug/L	50.00		85	40-140			
Fluorene	40.7	5.0	ug/L	50.00		81	40-140			
Indeno(1,2,3-cd)Pyrene	43.5	5.0	ug/L	50.00		87	40-140			
Naphthalene	35.8	10.0	ug/L	50.00		72	40-140			
Phenanthrene	42.7	5.0	ug/L	50.00		85	40-140			
Pyrene	43.7	5.0	ug/L	50.00		87	40-140			
Surrogate: 2-Bromonaphthalene	46.2	2.2	ug/L	50.00		92	40-140			
Surrogate: 2-Fluorobiphenyl	48.4		ug/L	50.00		97	40-140			
Surrogate: O-Terphenyl	45.0		ug/L	50.00		90	40-140			
LCS			<u> </u>			-				
2-Methylnaphthalene Breakthrough	0.0		%				0-5			
Naphthalene Breakthrough	0.0		%				0-5			
LCS Dup										
C19-C36 Aliphatics1	349	100	ug/L	400.0		87	40-140	3	25	
C9-C18 Aliphatics1	207	100	ug/L	300.0		69	40-140	4	25	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

A	Doroth	MDI	l la la	Spike	Source	0/ DEC	%REC	DDD	RPD	01:0
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
	MAD	EP-EPH Extr	actable Petr	oleum Hy	/drocarbo	ns				
Batch CL71802 - 3510C										
Decane (C10)	27	5	ug/L	50.00		53	40-140	7	25	
Docosane (C22)	41	5	ug/L	50.00		82	40-140	2	25	
Podecane (C12)	27	5	ug/L	50.00		55	40-140	7	25	
cicosane (C20)	41	5	ug/L	50.00		82	40-140	2	25	
lexacosane (C26)	41	5	ug/L	50.00		82	40-140	2	25	
lexadecane (C16)	40	5	ug/L	50.00		80	40-140	2	25	
lexatriacontane (C36)	43	5	ug/L	50.00		86	40-140	4	25	
onadecane (C19)	41	5	ug/L	50.00		83	40-140	2	25	
onane (C9)	21	5	ug/L	50.00		43	30-140	6	25	
Octacosane (C28)	41	5	ug/L	50.00		82	40-140	3	25	
Octadecane (C18)	39	5	ug/L	50.00		79	40-140	2	25	
etracosane (C24)	41	5	ug/L	50.00		82	40-140	2	25	
etradecane (C14)	37	5	ug/L	50.00		74	40-140	3	25	
riacontane (C30)	41	5	ug/L	50.00		82	40-140	3	25	
urrogate: 1-Chlorooctadecane	<i>34.7</i>		ug/L	50.00		69	40-140			
CS Dup										
Methylnaphthalene	35.1	5.0	ug/L	50.00		70	40-140	2	20	
Methylnaphthalene Breakthrough	0.0		%				0-5		200	
cenaphthene	39.6	5.0	ug/L	50.00		79	40-140	2	20	
cenaphthylene	40.0	5.0	ug/L	50.00		80	40-140	2	20	
nthracene	42.6	5.0	ug/L	50.00		85	40-140	0.3	20	
enzo(a)anthracene	44.5	5.0	ug/L	50.00		89	40-140	0.6	20	
enzo(a)pyrene	41.8	10.0	ug/L	50.00		84	40-140	0.9	20	
enzo(b)fluoranthene	43.7	5.0	ug/L	50.00		87	40-140	0.8	20	
enzo(g,h,i)perylene	42.2	10.0	ug/L	50.00		84	40-140	0.4	20	
enzo(k)fluoranthene	43.5	10.0	ug/L	50.00		87	40-140	2	20	
11-C22 Aromatics1,2	538	100	ug/L							
11-C22 Unadjusted Aromatics1	692	100	ug/L	850.0		81	40-140	3	25	
hrysene	42.7	10.0	ug/L	50.00		85	40-140	0.7	20	
ibenzo(a,h)Anthracene	42.6	5.0	ug/L	50.00		85	40-140	0.8	20	
luoranthene	43.1	10.0	ug/L	50.00		86	40-140	2	20	
luorene	41.8	5.0	ug/L	50.00		84	40-140	3	20	
ndeno(1,2,3-cd)Pyrene	45.2	5.0	ug/L	50.00		90	40-140	4	20	
aphthalene	36.2	10.0	ug/L	50.00		72	40-140	1	20	
aphthalene Breakthrough	0.0		%				0-5		200	
nenanthrene	43.1	5.0	ug/L	50.00		86	40-140	1	20	
yrene	44.0	5.0	ug/L	50.00		88	40-140	0.8	20	
urrogate: 2-Bromonaphthalene	46.8		ug/L	50.00		94	40-140			
urrogate: 2-Fluorobiphenyl	50.6		ug/L	50.00		101	40-140			
urrogate: O-Terphenyl	44.6		ug/L	50.00		89	40-140			
CS Dup										
Methylnaphthalene Breakthrough	0.0		%				0-5		200	
aphthalene Breakthrough	0.0		%				0-5		200	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL71837 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-VPH Volatile Petroleum Hydrocarbon

Blank						
,2,4-Trimethylbenzene	ND	5.0	ug/L			
,2,4-Trimethylpentane	ND	5.0	ug/L			
-Methylpentane	ND	5.0	ug/L			
Senzene	ND	1.5	ug/L			
5-C8 Aliphatics1,2	ND	150	ug/L			
5-C8 Unadjusted Aliphatics	ND	150	ug/L			
9-C10 Aromatics	ND	100	ug/L			
9-C12 Aliphatics2,3	ND	150	ug/L			
29-C12 Unadjusted Aliphatics	ND	150	ug/L			
thylbenzene	ND	5.0	ug/L			
lethyl tert-Butyl Ether	ND	1.5	ug/L			
aphthalene	ND	5.0	ug/L			
-Butylcyclohexane	ND	5.0	ug/L			
-Decane	ND	5.0	ug/L			
Ionane (C9)	ND	5.0	ug/L			
entane	ND	5.0	ug/L			
oluene	ND	5.0	ug/L			
ylene O	ND	5.0	ug/L			
ylene P,M	ND	10.0	ug/L			
urrogate: 2,5-Dibromotoluene - FID	55.4		ug/L	50.00	111	70-130
urrogate: 2,5-Dibromotoluene - PID	55.7		ug/L	50.00	111	<i>70-130</i>
cs						
2,4-Trimethylbenzene	94.7		ug/L	100.0	95	70-130
2,4-Trimethylpentane	146		ug/L	150.0	97	70-130
Methylpentane	154		ug/L	150.0	103	70-130
enzene	48.5		ug/L	50.00	97	70-130
5-C8 Aliphatics1,2	77.4		ug/L			
S-C8 Unadjusted Aliphatics	412		ug/L	400.0	103	70-130
9-C10 Aromatics	92.0		ug/L	100.0	92	70-130
9-C12 Aliphatics2,3	ND		ug/L			
C9-C12 Unadjusted Aliphatics	249		ug/L	300.0	83	70-130
thylbenzene	49.4		ug/L	50.00	99	70-130
lethyl tert-Butyl Ether	145		ug/L	150.0	97	70-130
laphthalene	103		ug/L	100.0	103	70-130
-Butylcyclohexane	82.2		ug/L	100.0	82	70-130
-Decane	94.3		ug/L	100.0	94	70-130
lonane (C9)	81.2			100.0	81	30-130
• /			ug/L			
entane	111		ug/L	100.0	111	70-130
oluene	141		ug/L	150.0	94	70-130
ylene O	95.3		ug/L	100.0	95	70-130
(ylene P,M	190		ug/L	200.0	95	70-130
Surrogate: 2,5-Dibromotoluene - FID	57.9		ug/L	50.00	116	70-130
virrogare: / 5-i libromotoli lene - EII l	31.3		ug/L	30.00	110	70 130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL71837 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-VPH Volatile Petroleum Hydrocarbon

LCS Dup									
1,2,4-Trimethylbenzene	95.4		ug/L	100.0	95	70-130	0.7	25	
2,2,4-Trimethylpentane	145		ug/L	150.0	97	70-130	0.5	25	
2-Methylpentane	150		ug/L	150.0	100	70-130	3	25	
Benzene	49.0		ug/L	50.00	98	70-130	1	25	
C5-C8 Aliphatics1,2	66.1		ug/L						
C5-C8 Unadjusted Aliphatics	403		ug/L	400.0	101	70-130	2	25	
C9-C10 Aromatics	92.7		ug/L	100.0	93	70-130	0.7	25	
C9-C12 Aliphatics2,3	ND		ug/L						
C9-C12 Unadjusted Aliphatics	246		ug/L	300.0	82	70-130	0.9	25	
Ethylbenzene	50.5		ug/L	50.00	101	70-130	2	25	
Methyl tert-Butyl Ether	145		ug/L	150.0	97	70-130	0.1	25	
Naphthalene	102		ug/L	100.0	102	70-130	0.7	25	
n-Butylcyclohexane	80.4		ug/L	100.0	80	70-130	2	25	
n-Decane	95.1		ug/L	100.0	95	70-130	0.9	25	
Nonane (C9)	79.1		ug/L	100.0	79	30-130	3	25	
Pentane	108		ug/L	100.0	108	70-130	3	25	
Toluene	143		ug/L	150.0	95	70-130	1	25	
Xylene O	97.2		ug/L	100.0	97	70-130	2	25	
Xylene P,M	194		ug/L	200.0	97	70-130	2	25	
Surrogate: 2,5-Dibromotoluene - FID	<i>54.7</i>		ug/L	50.00	109	70-130			
Surrogate: 2,5-Dibromotoluene - PID	<i>54.2</i>		ug/L	50.00	108	70-130			
			- 3/						
Batch CL72021 - 5030B									
Blank									
1,2,4-Trimethylbenzene	ND	5.0	ug/L						
2,2,4-Trimethylpentane	ND	5.0	ug/L						
2-Methylpentane	ND	5.0	ug/L						
Benzene	ND	1.5	ug/L						
C5-C8 Aliphatics1,2	ND	150	ug/L						
C5-C8 Unadjusted Aliphatics	ND	150	ug/L						
C9-C10 Aromatics	ND	100	ug/L						
C9-C12 Aliphatics2,3	ND	150	ug/L						
C9-C12 Unadjusted Aliphatics	ND	150	ug/L						
Ethylbenzene	ND	5.0	ug/L						
Methyl tert-Butyl Ether	ND	1.5	ug/L						
Naphthalene	ND	5.0	ug/L						
n-Butylcyclohexane	ND	5.0	ug/L						
n-Decane	ND	5.0	ug/L						
Nonane (C9)	ND	5.0	ug/L						
Pentane	ND	5.0	ug/L						
Toluene	ND	5.0	ug/L						
Xylene O	ND	5.0	ug/L						
Xylene P,M	ND	10.0	ug/L						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL72021 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

MADEP-VPH Volatile Petroleum Hydrocarbon

Surrogate: 2,5-Dibromotoluene -	FID 46.9	ug/L	50.00	94	70-130			
Surrogate: 2,5-Dibromotoluene -	45.0	ug/L	50.00	92	70-130			
LCS	710							
1,2,4-Trimethylbenzene	88.9	ug/L	100.0	89	70-130			
2,2,4-Trimethylpentane	173	ug/L	150.0	115	70-130			
2-Methylpentane	179	ug/L	150.0	119	70-130			
Benzene	46.3	ug/L	50.00	93	70-130			
C5-C8 Aliphatics1,2	160	ug/L						
C5-C8 Unadjusted Aliphatics	479	ug/L	400.0	120	70-130			
C9-C10 Aromatics	86.4	ug/L	100.0	86	70-130			
C9-C12 Aliphatics2,3	ND	ug/L						
C9-C12 Unadjusted Aliphatics	243	ug/L	300.0	81	70-130			
Ethylbenzene	46.9	ug/L	50.00	94	70-130			
Methyl tert-Butyl Ether	138	ug/L	150.0	92	70-130			
Naphthalene	89.8	ug/L	100.0	90	70-130			
n-Butylcyclohexane	83.0	ug/L	100.0	83	70-130			
n-Decane	88.9	ug/L	100.0	89	70-130			
Nonane (C9)	83.2	ug/L	100.0	83	30-130			
Pentane	126	ug/L	100.0	126	70-130			
Toluene	134	ug/L	150.0	89	70-130			
Kylene O	89.1	ug/L	100.0	89	70-130			
Xylene P,M	180	ug/L	200.0	90	70-130			
Surrogate: 2,5-Dibromotoluene -	FID 51.4	ug/L	50.00	103	70-130			
Surrogate: 2,5-Dibromotoluene -	PID 50.3	ug/L	50.00	101	70-130			
LCS Dup								
1,2,4-Trimethylbenzene	88.3	ug/L	100.0	88	70-130	0.6	25	
2,2,4-Trimethylpentane	168	ug/L	150.0	112	70-130	3	25	
2-Methylpentane	177	ug/L	150.0	118	70-130	1	25	
Benzene	46.8	ug/L	50.00	94	70-130	1	25	
C5-C8 Aliphatics1,2	155	ug/L						
C5-C8 Unadjusted Aliphatics	472	ug/L	400.0	118	70-130	1	25	
C9-C10 Aromatics	85.9	ug/L	100.0	86	70-130	0.6	25	
C9-C12 Aliphatics2,3	ND	ug/L						
C9-C12 Unadjusted Aliphatics	255	ug/L	300.0	85	70-130	5	25	
Ethylbenzene	47.2	ug/L	50.00	94	70-130	0.6	25	
Methyl tert-Butyl Ether	136	ug/L	150.0	91	70-130	1	25	
Naphthalene	97.1	ug/L	100.0	97	70-130	8	25	
n-Butylcyclohexane	85.7	ug/L	100.0	86	70-130	3	25	
n-Decane	94.3	ug/L	100.0	94	70-130	6	25	
Nonane (C9)	85.0	ug/L	100.0	85	30-130	2	25	
Pentane	126	ug/L	100.0	126	70-130	0.3	25	
Toluene	134	ug/L	150.0	89	70-130	0.1	25	
Xylene O	89.7	ug/L	100.0	90	70-130	0.6	25	
Xylene P,M	181	ug/L	200.0	90	70-130	0.3	25	
185	Frances Avenue, Cranston, RI 02910-2211	Tel: 401-461-7181	Fa	x: 401-461-4486	http://www	.ESSLabor	ratory.com	

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MA	DEP-VPH Vo	latile Petro	leum Hyd	rocarbon					
Batch CL72021 - 5030B										
Surrogate: 2,5-Dibromotoluene - FID Surrogate: 2,5-Dibromotoluene - PID	46.9 45.8		ug/L ug/L	50.00 50.00		94 92	70-130 70-130			

Analyte included in the analysis, but not detected

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

 $pH \le 2$

Z-06

U

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

Notes and Definitions

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes dry Sample results reported on a dry weight basis
RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection

LOQ Limit of Quantitation
DL Detection Limit
I/V Initial Volume
F/V Final Volume

§ Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712360

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tata and Howard - ML/ML	ESS Project ID: 1712360	<u>.</u>
Shipped/Delivered Via: ESS Courier	Date Received: 12/15/2017 Project Due Date: 12/22/2017	
	Days for Project: 5 Day	
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
2. Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 0.2 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes / No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No - NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time: By: Time: By:	=
Sample Receiving Notes:		
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Yes (No) Yes (No) Time: By:	
Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume	Container Type Preservative Record pH (Cy.	anide and 608 iides)
01 191122 Yes NA Yes	1L Amber - HCI HCI	
01 191123 Yes NA Yes	1L Amber - HCl HCl VOA Vial - HCl HCl	
01 191127 Yes No Yes 01 191128 Yes No Yes	VOA Vial - HCl HCl VOA Vial - HCl HCl	
01 191129 Yes No Yes	VOA Vial - HCI HCI	
02 191120 Yes NA Yes	1L Amber - HCl HCl	
02 191121 Yes NA Yes	1L Amber - HCI HCI	
02 191124 Yes No Yes 02 191125 Yes No Yes	VOA Vial - HCI HCI VOA Vial - HCI HCI	
02 191125 Yes No Yes 02 191126 Yes No Yes	VOA Vial - HCI HCI	
2nd Review Are barcode labels or containers?	(Yes)No	
Completed By:	Date & Time: 19/17/14/18/15/17 2030	<u></u>
Reviewed		
By:	Date & Time: 12/5/17 _2050	

ESS L	aboratory	,		С	CHAIN OF CUSTODY					ESS Lab# 712360						
	Thielsch Engi			Turn Time	5-Day Rush		Reportir	ng R (-6	W -	ī					
	es Avenue, Cra			Regulatory State	MA	20-							70			
	461-7181 Fax	c (401) 461-448	86	ls thi	s project for any of the follow		Electonic ☐Limit Checker Deliverables ☐Other (Please Specify →)				L	Standard E	xcei			
	iboratory.com , , , , Con	npany Name		Project #	Project Nam	ne		#			Τ̈́T		TT			
Te	sta+ Ho	vu d		Project# らみ3/	Way and Water Math	Improvements	,	(<u>e</u>	32 t							
0	eren m	icact rerson CClell an	-	47 Fore	Woodquid Water Main Address -51 Sty Marlboraud	Analysis	les	م ج								
City State		ate	Zip Code	/ PO#	Ana	4dlese 1941	7									
50	Felephone Nur をつるのまっ	mber ~7 400	FAX	lumber	dmadellan Etatgan	ess ndhowad, com		 	rHs +							
ESS Lab	1	Collection Time	Sample Type	Sample Matrix		ple ID		43	>_				-	_		
	12/14/17	12:00	Greb	GW	TW-3			-	×				1			
	12/14/17	10:25	Grab	6W	TW-7			X	Κ							
					:											
	-	-			-					- -	 			_		
								\vdash	+		 -		1	+	+	
								$\vdash \vdash$		 	++	+				-
									_		-		+	- 	+	
ļ											1-1-				_	
			•				· · · · · · · · · · · · · · · · · · ·						_	_		
															_	
Co	ontainer Type:	AC-Air Casse	tte AG-Amber Gla	ss B-BOD Bottle	C-Cubitainer G - Glass O-O											<u> </u>
			2-2.5 gal 3-250 m						7		1-1	- -		\dashv		- -
Prese	ervation Code:	1-Non Preserve	2-HCI 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce, NaO			_	골		+		- · -	++		
						r of Containers per	Sample:	2	3						_1	
		Laboratoi	ry Use Only		Sampled by: DSM	Di			nom rati	ivo and		are tuno	e in this s	nace		
ı	er Present:		- 11		Comments:	Please sp	ecny "Othe	er pre	servat	ive and (JUNEAU	ers rype:	3 III UII3 3	have		
	ils Intact:		ca D	_						<i>N</i>						
	Temperature: telinguished by		ate & Time	Received Bv	(Signature, Date & Time)	Relinquished By	: (Signature	e, Date	& Time	<u>, </u>	Re	eceived E	By: (Signa	ture, Date	& Time	e) .
	elm ca	71 /		 	d Storage 12/14/17	Decel M			15/17		Q_{i}	2/1/20	510		ان ح	\Diamond
	kelinquished by				(Signature, Date & Time)	Relinquished By			& Time	e) \	Ř	eceived l	By/(Signa	ture, Dat	e & Time	e)
	2 12/	15/17	18:45	0 1/44	Pacritile 1	i							. 	<u> </u>		

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Derek McClellan Tata and Howard 67 Forest Street Marlborough, MA 01752

This lab report includes the analytical results for TW-4, TW-5 and TW-6, as indicated in Table 2.

RE: Wayland Water Main Improvements (5231) ESS Laboratory Work Order Number: 1712118

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard

Laboratory Director

REVIEWED

By ESS Laboratory at 3:20 pm, Dec 13, 2017

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

SAMPLE RECEIPT

The following samples were received on December 06, 2017 for the analyses specified on the enclosed Chain of Custody Record.

To achieve CAM compliance for MCP data, ESS Laboratory has reviewed all QA/QC Requirements and Performance Standards listed in each method. Holding times and preservation have also been reviewed. All CAM requirements have been performed and achieved unless noted in the project narrative.

The methods for aqueous VOA and Soil Each method has been set-up in the laboratory to reach required MCP standards. Methanol VOA have known limitations for certain analytes. The regulatory standards may not be achieved due to these In addition, for all methods, matrix interferences, dilutions, and %Solids may elevate method reporting limits ESS Laboratory can provide, upon request, a Limit Checker (regulatory standard comparison above regulatory standards. spreadsheet) electronic deliverable which will highlight these exceedances.

Question I: All samples for EPH were analyzed for a subset of the required MCP list per the client's request.

Lab Number	Sample Name	Matrix	Analysis
1712118-01	TW-4	Ground Water	EPH8270, MADEP-EPH, MADEP-VPH
1712118-02	TW-5	Ground Water	8260B
1712118-03	TW-6	Ground Water	8260B

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

PROJECT NARRATIVE

No unusual observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

MassDEP Analytical Protocol Certification Form

	trices: (X) Grou	nd Wat	ter/Surface Water		() Soil/Sediment	() Drinking Water	() Air () Other:	
CA	M Protocol (ch	eck all	that apply below):				
(X)	8260 VOC CAM II A	()	7470/7471 Hg CAM III B	(X)	MassDEP VPH (GC/PID/FID) CAM IV A	() 8082 PCB CAM V A	() 9014 Total Cyanide/PAC CAM VI A	() 6860 Perchlorate CAM VIII B
()	8270 SVOC CAM II B	()) 7010 Metals CAM III C	()	MassDEP VPH (GC/MS) CAM IV B	() 8081 Pesticides CAM V C	() 7196 Hex Cr CAM VI B	() MassDEP APH CAM IX A
()	6010 Metals CAM III A	()) 6020 Metals CAM III D	(X)	MassDEP EPH CAM IV B	() 8151 Herbicides CAM V C	() Explosives CAM VIII A	() TO-15 VOC CAM IX B
		4	Affirmative respo	nses to	questions A throug	h F are required for ''P	resumptive Certainty'' s	tatus
A	-					bed on the Chain-of-Custo pared/analyzed within met		Yes (X) No ()
В	•	-	- '			ecified in the selected CA	~	Yes (X) No ()
C	-	d corr	ective actions and	-	•	specified in the selected C.	AM protocol(s)	Yes (X) No ()
	implemented fo	r all id	lentified performan	ice stai	ndard non-contorman	ces?		
D	Does the labora	tory re		all the	reporting requiremen	ces? s specified in the CAM V eporting of Analytical Dat		Yes (X) No ()
	Does the labora Assurance and VPH, EPH, AP	tory re Quality H and	eport comply with y Control Guidelin TO-15 only: a. Wa	all the es for a	reporting requiremen he Acquisition and R	s specified in the CAM V	ea"?	Yes (X) No () Yes (X) No ()
	Does the labora Assurance and OVPH, EPH, AP to the individua	tory re Quality H and l meth	eport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of s	all the es for as each ignific	reporting requiremen he Acquisition and R method conducted w ant modifications).	s specified in the CAM V eporting of Analytical Dat	ea"?	, , , , ,
D E	Does the labora Assurance and OVPH, EPH, AP to the individua b. APH and TO Were all applica	tory re Quality H and I meth -15 Mo	pport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of s ethods only: Was t AM protocol QC a	all the es for as each ignific he con nd per	reporting requirementhe Acquisition and Remethod conducted want modifications). Applete analyte list reports or an accordance standard no	es specified in the CAM V eporting of Analytical Data ithout significant modificat orted for each method? n-conformances identified	a"? ation(s)? (Refer	Yes (X) No ()
	Does the labora Assurance and OVPH, EPH, AP to the individua b. APH and TO Were all applica	tory re Quality H and I meth -15 Mo	pport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of s ethods only: Was t AM protocol QC a	all the es for as each ignific he con nd per	reporting requirementhe Acquisition and Remethod conducted want modifications).	es specified in the CAM V eporting of Analytical Data ithout significant modificat orted for each method? n-conformances identified	a"? ation(s)? (Refer	Yes (X) No () Yes () No ()
(T)	Does the labora Assurance and OVPH, EPH, AP to the individua b. APH and TO Were all applica in a laboratory in	tory re Quality H and I meth -15 Mo able Ca	eport comply with y Control Guideling TO-15 only: a. Wa od(s) for a list of sethods only: Was to the AM protocol QC and the control of the co	all the es for as each ignific he com nd per No" res	reporting requirementhe Acquisition and Remethod conducted want modifications). The plete analyte list report formance standard not ponses to Questions and the constant of the constant is and I below.	es specified in the CAM V reporting of Analytical Dat ithout significant modification of the for each method? In-conformances identified A through E)?	a"? ation(s)? (Refer and evaluated amptive Certainty" status	Yes (X) No () Yes () No () Yes (X) No ()
	Does the labora Assurance and OVPH, EPH, APH to the individual b. APH and TO Were all application a laboratory of	tory re Quality H and I meth -15 M able C narrativ	eport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of sethods only: Was to AM protocol QC a we (including all "Increase to nits at or below all	all the es for as each ignific the common personal person	reporting requirementhe Acquisition and R method conducted want modifications). Uplete analyte list reporting the acquisition of the community	es specified in the CAM V eporting of Analytical Dat ithout significant modificat orted for each method? n-conformances identified A through E)?	a"? ation(s)? (Refer and evaluated amptive Certainty" status protocols(s)?	Yes (X) No () Yes () No ()
	Does the labora Assurance and OVPH, EPH, APH to the individua b. APH and TO Were all application a laboratory of Were the report Data User Note: representative new	Quality H and I meth -15 Mo able Ca narrativ ing lim Data	eport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of s ethods only: Was t AM protocol QC a we (including all "! Responses to nits at or below all that achieve "Presu uirements describe	all the es for as each ignific the common per No" resumptive CAM cumptive din 31d	reporting requirement the Acquisition and R method conducted want modifications). Inplete analyte list reporting the formance standard not ponses to Questions a reporting limits specific Certainty" status made of CMR 40. 1056 (2)(k)	es specified in the CAM V seporting of Analytical Data ithout significant modification of the conformances identified A through E)? If we are required for "Presured in the selected CAM proportion of the conformation of the co	a"? ation(s)? (Refer and evaluated amptive Certainty" status protocols(s)?	Yes (X) No () Yes () No () Yes (X) No () Yes (X) No ()
(T)	Does the labora Assurance and of VPH, EPH, AP to the individua b. APH and TO Were all applica in a laboratory of Were the report Data User Note: representative ne Were all QC pe	tory re Quality H and I meth -15 Me able Ca narrativ ing lim g Data a	eport comply with y Control Guidelin TO-15 only: a. Wa od(s) for a list of s ethods only: Was t AM protocol QC a ve (including all "] Responses to nits at or below all that achieve "Presi uirements describe unce standards spec-	all the es for as each ignificate common per establishment of the common	reporting requirement the Acquisition and R method conducted want modifications). In plete analyte list reporting the analyte list reporting the standard not ponses to Questions and Tolerons G, H and I below reporting limits specific Certainty'' status mand CMR 40. 1056 (2)(k), in the CAM protocol(standard).	es specified in the CAM V seporting of Analytical Data ithout significant modification of the conformances identified A through E)? If we are required for "Presured in the selected CAM proportion of the conformation of the co	a"? ation(s)? (Refer and evaluated amptive Certainty" status protocols(s)?	Yes (X) No () Yes () No () Yes (X) No ()

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.

Signature: _____ Date: December 13, 2017
Printed Name: Laurel Stoddard Position: Laboratory Director

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-4 Date Sampled: 12/05/17 13:50

Percent Solids: N/A Initial Volume: 1070 Final Volume: 1

Extraction Method: 3510C

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-01

Sample Matrix: Ground Water

Units: ug/L

Prepared: 12/11/17 14:58

MADEP-EPH Extractable Petroleum Hydrocarbons

Analyte	Results (MRL)	MDL Method	<u>Limit</u> <u>Dl</u>	Analys	<u>Analyzed</u>	Sequence	Batch
C9-C18 Aliphatics1	ND (93)	MADEP-EPH	1	ZLC	12/11/17 14:58	C7L0146	CL71110
C19-C36 Aliphatics1	ND (93)	MADEP-EPH	1	ZLC	12/11/17 14:58	C7L0146	CL71110
C11-C22 Unadjusted Aromatics1	228 (93.5)	EPH8270	1	ZLC	12/11/17 20:49	C7L0144	CL71110
C11-C22 Aromatics1,2	228 (93.5)	EPH8270		ZLC	12/11/17 20:49		[CALC]
2-Methylnaphthalene	ND (4.7)	EPH8270	1	ZLC	12/11/17 20:49	C7L0144	CL71110
Acenaphthene	ND (4.7)	EPH8270	1	ZLC	12/11/17 20:49	C7L0144	CL71110
Naphthalene	ND (9.3)	EPH8270	1	ZLC	12/11/17 20:49	C7L0144	CL71110
Phenanthrene	ND (4.7)	EPH8270	1	ZLC	12/11/17 20:49	C7L0144	CL71110
Preservative:	pH <= 2	MADEP-EPH		ZLC			CL71110

	%Recovery	Qualifier	Limits
Surrogate: 1-Chlorooctadecane	59 %		40-140
Surrogate: 2-Bromonaphthalene	113 %		40-140
Surrogate: 2-Fluorobiphenyl	108 %		40-140
Surrogate: O-Terphenyl	74 %		40-140

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-4 Date Sampled: 12/05/17 13:50

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

MADEP-VPH Volatile Petroleum Hydrocarbon

<u>Analyte</u>	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
C9-C10 Aromatics	579 (100)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
C5-C8 Aliphatics1,2	358 (150)	MADEP-VPH		1	12/07/17 19:11		[CALC]
C9-C12 Aliphatics2,3	274 (150)	MADEP-VPH		1	12/07/17 19:11		[CALC]
Benzene	28.3 (1.5)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Ethylbenzene	ND (5.0)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Methyl tert-Butyl Ether	ND (1.5)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Naphthalene	13.3 (5.0)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Toluene	ND (5.0)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Xylene O	ND (5.0)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Xylene P,M	ND (10.0)	MADEP-VPH		1	12/07/17 19:11	C7L0108	CL70735
Preservative:	pH <= 2	MADEP-VPH					CL70735

%Recovery Qualifier Limits Surrogate: 2,5-Dibromotoluene - FID 99 % 70-130 Surrogate: 2,5-Dibromotoluene - PID 101 % 70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-5 Date Sampled: 12/05/17 12:25

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (1.0)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 12/07/17 16:18	Sequence C7L0100	Batch CL70725
1,1,1-Trichloroethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,1,2,2-Tetrachloroethane	ND (0.5)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,1,2-Trichloroethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,1-Dichloroethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,1-Dichloroethene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,1-Dichloropropene	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2,3-Trichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2,3-Trichloropropane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2,4-Trichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2,4-Trimethylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2-Dibromo-3-Chloropropane	ND (5.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2-Dibromoethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2-Dichloroethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,2-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,3,5-Trimethylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,3-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,3-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,4-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
1,4-Dioxane - Screen	ND (500)		8260B		1	12/07/17 16:18	C7L0100	CL70725
2,2-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
2-Butanone	ND (10.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
2-Chlorotoluene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
2-Hexanone	ND (10.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
4-Chlorotoluene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
4-Isopropyltoluene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
4-Methyl-2-Pentanone	ND (10.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Acetone	ND (10.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Benzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Bromobenzene	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Bromochloromethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-5 Date Sampled: 12/05/17 12:25

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromodichloromethane	Results (MRL) ND (0.6)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 12/07/17 16:18	Sequence C7L0100	Batch CL70725
Bromoform	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Bromomethane	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Carbon Disulfide	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Carbon Tetrachloride	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Chlorobenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Chloroethane	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Chloroform	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Chloromethane	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
cis-1,2-Dichloroethene	142 (10.0)		8260B		10	12/08/17 14:09	C7L0100	CL70725
cis-1,3-Dichloropropene	ND (0.4)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Dibromochloromethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Dibromomethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Dichlorodifluoromethane	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Diethyl Ether	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Di-isopropyl ether	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Ethyl tertiary-butyl ether	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Ethylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Hexachlorobutadiene	ND (0.6)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Hexachloroethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Isopropylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Methylene Chloride	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Naphthalene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
n-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
n-Propylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
sec-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Styrene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
tert-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Tetrachloroethene	276 (10.0)		8260B		10	12/08/17 14:09	C7L0100	CL70725
Tetrahydrofuran	ND (5.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-5 Date Sampled: 12/05/17 12:25

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-02

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
trans-1,2-Dichloroethene	4.0 (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
trans-1,3-Dichloropropene	ND (0.4)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Trichloroethene	41.8 (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Trichlorofluoromethane	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Vinyl Chloride	39.5 (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Xylene O	ND (1.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Xylene P,M	ND (2.0)		8260B		1	12/07/17 16:18	C7L0100	CL70725
Xylenes (Total)	ND (2.0)		8260B		1	12/07/17 16:18		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		94 %		70-130				
Surrogate: 4-Bromofluorobenzene		101 %		70-130				
Surrogate: Dibromofluoromethane		99 %		70-130				

104 %

Fax: 401-461-4486

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-6 Date Sampled: 12/05/17 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (1.0)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 12/07/17 16:44	Sequence C7L0100	Batch CL70725
1,1,1-Trichloroethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,1,2,2-Tetrachloroethane	ND (0.5)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,1,2-Trichloroethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,1-Dichloroethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,1-Dichloroethene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,1-Dichloropropene	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2,3-Trichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2,3-Trichloropropane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2,4-Trichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2,4-Trimethylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2-Dibromo-3-Chloropropane	ND (5.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2-Dibromoethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2-Dichloroethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,2-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,3,5-Trimethylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,3-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,3-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,4-Dichlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
1,4-Dioxane - Screen	ND (500)		8260B		1	12/07/17 16:44	C7L0100	CL70725
2,2-Dichloropropane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
2-Butanone	ND (10.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
2-Chlorotoluene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
2-Hexanone	ND (10.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
4-Chlorotoluene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
4-Isopropyltoluene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
4-Methyl-2-Pentanone	ND (10.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Acetone	ND (10.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Benzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Bromobenzene	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Bromochloromethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-6 Date Sampled: 12/05/17 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

Analyte Bromodichloromethane	Results (MRL) ND (0.6)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 12/07/17 16:44	Sequence C7L0100	Batch CL70725
Bromoform	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Bromomethane	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Carbon Disulfide	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Carbon Tetrachloride	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Chlorobenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Chloroethane	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Chloroform	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Chloromethane	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
cis-1,2-Dichloroethene	2.4 (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
cis-1,3-Dichloropropene	ND (0.4)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Dibromochloromethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Dibromomethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Dichlorodifluoromethane	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Diethyl Ether	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Di-isopropyl ether	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Ethyl tertiary-butyl ether	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Ethylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Hexachlorobutadiene	ND (0.6)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Hexachloroethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Isopropylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Methyl tert-Butyl Ether	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Methylene Chloride	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Naphthalene	16.6 (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
n-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
n-Propylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
sec-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Styrene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
tert-Butylbenzene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Tertiary-amyl methyl ether	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Tetrachloroethene	53.7 (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Tetrahydrofuran	ND (5.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements

Client Sample ID: TW-6 Date Sampled: 12/05/17 11:10

Percent Solids: N/A Initial Volume: 5 Final Volume: 5

Surrogate: Toluene-d8

Extraction Method: 5030B

ESS Laboratory Work Order: 1712118 ESS Laboratory Sample ID: 1712118-03

Sample Matrix: Ground Water

Units: ug/L Analyst: MD

8260B Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Toluene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
trans-1,2-Dichloroethene	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
trans-1,3-Dichloropropene	ND (0.4)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Trichloroethene	1.9 (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Trichlorofluoromethane	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Vinyl Chloride	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Xylene O	ND (1.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Xylene P,M	ND (2.0)		8260B		1	12/07/17 16:44	C7L0100	CL70725
Xylenes (Total)	ND (2.0)		8260B		1	12/07/17 16:44		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		92 %		70-130				
Surrogate: 4-Bromofluorobenzene		100 %		70-130				
Surrogate: Dibromofluoromethane		100 %		70-130				

70-130

106 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL70725 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compounds

Batch CL/0/25 - 5030B				_
Blank				
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	
1,1,1-Trichloroethane	ND	1.0	ug/L	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	
1,1,2-Trichloroethane	ND	1.0	ug/L	
1,1-Dichloroethane	ND	1.0	ug/L	
1,1-Dichloroethene	ND	1.0	ug/L	
1,1-Dichloropropene	ND	2.0	ug/L	
1,2,3-Trichlorobenzene	ND	1.0	ug/L	
1,2,3-Trichloropropane	ND	1.0	ug/L	
1,2,4-Trichlorobenzene	ND	1.0	ug/L	
1,2,4-Trimethylbenzene	ND	1.0	ug/L	
1,2-Dibromo-3-Chloropropane	ND	5.0	ug/L	
1,2-Dibromoethane	ND	1.0	ug/L	
1,2-Dichlorobenzene	ND	1.0	ug/L	
1,2-Dichloroethane	ND	1.0	ug/L	
1,2-Dichloropropane	ND	1.0	ug/L	
1,3,5-Trimethylbenzene	ND	1.0	ug/L	
1,3-Dichlorobenzene	ND	1.0	ug/L	
1,3-Dichloropropane	ND	1.0	ug/L	
1,4-Dichlorobenzene	ND	1.0	ug/L	
1,4-Dioxane - Screen	ND	500	ug/L	
2,2-Dichloropropane	ND	1.0	ug/L	
2-Butanone	ND	10.0	ug/L	
2-Chlorotoluene	ND	1.0	ug/L	
2-Hexanone	ND	10.0	ug/L	
4-Chlorotoluene	ND	1.0	ug/L	
4-Isopropyltoluene	ND	1.0	ug/L	
4-Methyl-2-Pentanone	ND	10.0	ug/L	
Acetone	ND	10.0	ug/L	
Benzene	ND	1.0	ug/L	
Bromobenzene	ND	2.0	ug/L	
Bromochloromethane	ND	1.0	ug/L	
Bromodichloromethane	ND	0.6	ug/L	
Bromoform	ND	1.0	ug/L	
Bromomethane	ND	2.0	ug/L	
Carbon Disulfide	ND	1.0	ug/L	
Carbon Tetrachloride	ND	1.0	ug/L	
Chlorobenzene	ND	1.0	ug/L	
Chloroethane	ND	2.0	ug/L ug/L	
Chloroform	ND	1.0	ug/L ug/L	
Chloromethane	ND ND	2.0		
cis-1,2-Dichloroethene	ND ND	1.0	ug/L	
			ug/L	
cis-1,3-Dichloropropene Dibromochloromethane	ND ND	0.4	ug/L	
DIDIOMOCHIOIOHEUIANE	ND	1.0	ug/L	

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile Organic Compo	ounds
------------------------------	-------

Batch CL70725 - 5030B							
Dibromomethane	ND	1.0	ug/L				
Dichlorodifluoromethane	ND	2.0	ug/L				
Diethyl Ether	ND	1.0	ug/L				
Di-isopropyl ether	ND	1.0	ug/L				
Ethyl tertiary-butyl ether	ND	1.0	ug/L				
Ethylbenzene	ND	1.0	ug/L				
Hexachlorobutadiene	ND	0.6	ug/L				
Hexachloroethane	ND	1.0	ug/L				
Isopropylbenzene	ND	1.0	ug/L				
Methyl tert-Butyl Ether	ND	1.0	ug/L				
Methylene Chloride	ND	2.0	ug/L				
Naphthalene	ND	1.0	ug/L				
n-Butylbenzene	ND	1.0	ug/L				
n-Propylbenzene	ND	1.0	ug/L				
sec-Butylbenzene	ND	1.0	ug/L				
Styrene	ND	1.0	ug/L				
tert-Butylbenzene	ND	1.0	ug/L				
Tertiary-amyl methyl ether	ND	1.0	ug/L				
Tetrachloroethene	ND	1.0	ug/L				
Tetrahydrofuran	ND	5.0	ug/L				
Toluene	ND	1.0	ug/L				
trans-1,2-Dichloroethene	ND	1.0	ug/L				
trans-1,3-Dichloropropene	ND	0.4	ug/L				
Trichloroethene	ND	1.0	ug/L				
Trichlorofluoromethane	ND	1.0	ug/L				
Vinyl Chloride	ND	1.0	ug/L				
Xylene O	ND	1.0	ug/L				
Xylene P,M	ND	2.0	ug/L				
Xylenes (Total)	ND	2.0	ug/L				
Surrogate: 1,2-Dichloroethane-d4	22.4		ug/L	25.00	89	70-130	
Surrogate: 4-Bromofluorobenzene	25.3		ug/L	25.00	101	70-130	
Surrogate: Dibromofluoromethane	24.3		ug/L	25.00	97	70-130	
Surrogate: Toluene-d8	26.8		ug/L	25.00	107	70-130	
LCS							
1,1,1,2-Tetrachloroethane	10.0		ug/L	10.00	100	70-130	
1,1,1-Trichloroethane	9.9		ug/L	10.00	99	70-130	
1,1,2,2-Tetrachloroethane	10.0		ug/L	10.00	100	70-130	
1,1,2-Trichloroethane	9.5		ug/L	10.00	95	70-130	
1,1-Dichloroethane	9.6		ug/L	10.00	96	70-130	
1,1-Dichloroethene	10.4		ug/L	10.00	104	70-130	
1,1-Dichloropropene	10.6		ug/L	10.00	106	70-130	
1,2,3-Trichlorobenzene	10.4		ug/L	10.00	104	70-130	
1,2,3-Trichloropropane	9.5		ug/L	10.00	95	70-130	
1,2,4-Trichlorobenzene	10.9		ug/L	10.00	109	70-130	
1,2,4-Trimethylbenzene	10.1		ug/L	10.00	101	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Volatile	Organic	Compounds
----------------	---------	-----------

Batch CL70725 - 5030B				
1,2-Dibromo-3-Chloropropane	10.5	ug/L 10.00	105 70-130	
1,2-Dibromoethane	10.0	ug/L 10.00	100 70-130	
1,2-Dichlorobenzene	10.5	ug/L 10.00	105 70-130	
1,2-Dichloroethane	10.2	ug/L 10.00	102 70-130	
1,2-Dichloropropane	9.8	ug/L 10.00	98 70-130	
1,3,5-Trimethylbenzene	9.9	ug/L 10.00	99 70-130	
1,3-Dichlorobenzene	9.8	ug/L 10.00	98 70-130	
1,3-Dichloropropane	11.3	ug/L 10.00	113 70-130	
1,4-Dichlorobenzene	10.5	ug/L 10.00	105 70-130	
1,4-Dioxane - Screen	216	ug/L 200.0	108 0-332	
2,2-Dichloropropane	9.4	ug/L 10.00	94 70-130	
2-Butanone	49.8	ug/L 50.00	100 70-130	
2-Chlorotoluene	10.0	ug/L 10.00	100 70-130	
2-Hexanone	49.2	ug/L 50.00	98 70-130	
4-Chlorotoluene	10.1	ug/L 10.00	101 70-130	
4-Isopropyltoluene	10.2	ug/L 10.00	102 70-130	
4-Methyl-2-Pentanone	49.6	ug/L 50.00	99 70-130	
Acetone	54.4	ug/L 50.00	109 70-130	
Benzene	10.1	ug/L 10.00	101 70-130	
Bromobenzene	10.0	ug/L 10.00	100 70-130	
Bromochloromethane	10.2	ug/L 10.00	102 70-130	
Bromodichloromethane	10.0	ug/L 10.00	100 70-130	
Bromoform	9.1	ug/L 10.00	91 70-130	
Bromomethane	11.2	ug/L 10.00	112 70-130	
Carbon Disulfide	10.5	ug/L 10.00	105 70-130	
Carbon Tetrachloride	10.3	ug/L 10.00	103 70-130	
Chlorobenzene	10.4	ug/L 10.00	104 70-130	
Chloroethane	10.1	ug/L 10.00	101 70-130	
Chloroform	9.7	ug/L 10.00	97 70-130	
Chloromethane	10.2	ug/L 10.00	102 70-130	
cis-1,2-Dichloroethene	9.7	ug/L 10.00	97 70-130	
cis-1,3-Dichloropropene	10.4	ug/L 10.00	104 70-130	
Dibromochloromethane	10.6	ug/L 10.00	106 70-130	
Dibromomethane	9.4	ug/L 10.00	94 70-130	
Dichlorodifluoromethane	10.4	ug/L 10.00	104 70-130	
Diethyl Ether	9.9	ug/L 10.00	99 70-130	
Di-isopropyl ether	9.9	ug/L 10.00	99 70-130	
Ethyl tertiary-butyl ether	10.0	ug/L 10.00	100 70-130	
Ethylbenzene	10.2	ug/L 10.00	102 70-130	
Hexachlorobutadiene	11.4	ug/L 10.00	114 70-130	
Hexachloroethane	9.6	ug/L 10.00	96 70-130	
Isopropylbenzene	9.7	ug/L 10.00	97 70-130	
Methyl tert-Butyl Ether	10.1	ug/L 10.00	101 70-130	
Methylene Chloride	9.7	ug/L 10.00	97 70-130	
Naphthalene	10.3	ug/L 10.00	103 70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL70725 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B Vol	latile Org	ganic Co	mpounds
-----------	------------	----------	---------

Batch CL70725 - 5030B								
n-Butylbenzene	10.3	ug/L	10.00	103	70-130			
n-Propylbenzene	10.3	ug/L	10.00	103	70-130			
sec-Butylbenzene	10.4	ug/L	10.00	104	70-130			
Styrene	10.2	ug/L	10.00	102	70-130			
tert-Butylbenzene	10.0	ug/L	10.00	100	70-130			
Tertiary-amyl methyl ether	9.2	ug/L	10.00	92	70-130			
Tetrachloroethene	8.6	ug/L	10.00	86	70-130			
Tetrahydrofuran	10.6	ug/L	10.00	106	70-130			
Toluene	10.4	ug/L	10.00	104	70-130			
trans-1,2-Dichloroethene	10.0	ug/L	10.00	100	70-130			
trans-1,3-Dichloropropene	10.1	ug/L	10.00	101	70-130			
Trichloroethene	10.2	ug/L	10.00	102	70-130			
Trichlorofluoromethane	10.2	ug/L	10.00	102	70-130			
Vinyl Chloride	10.7	ug/L	10.00	107	70-130			
Xylene O	10.4	ug/L	10.00	104	70-130			
Xylene P,M	20.4	ug/L	20.00	102	70-130			
Xylenes (Total)	30.7	ug/L						
Surrogate: 1,2-Dichloroethane-d4	25.0	ug/L	25.00	100	70-130			
Surrogate: 4-Bromofluorobenzene	25.8	ug/L	25.00	103	70-130			
Surrogate: Dibromofluoromethane	27.4	ug/L	25.00	110	70-130			
Surrogate: Toluene-d8	27.6	ug/L	25.00	110	70-130			
LCS Dup								
1,1,1,2-Tetrachloroethane	9.5	ug/L	10.00	95	70-130	5	20	
1,1,1-Trichloroethane	9.6	ug/L	10.00	96	70-130	2	20	
1,1,2,2-Tetrachloroethane	9.5	ug/L	10.00	95	70-130	5	20	
1,1,2-Trichloroethane	9.4	ug/L	10.00	94	70-130	1	20	
1,1-Dichloroethane	9.6	ug/L	10.00	96	70-130	0.7	20	
1,1-Dichloroethene	10.2	ug/L	10.00	102	70-130	2	20	
1,1-Dichloropropene	10.1	ug/L	10.00	101	70-130	6	20	
1,2,3-Trichlorobenzene	9.9	ug/L	10.00	99	70-130	4	20	
1,2,3-Trichloropropane	9.5	ug/L	10.00	95	70-130	0.2	20	
1,2,4-Trichlorobenzene	10.3	ug/L	10.00	103	70-130	6	20	
1,2,4-Trimethylbenzene	9.7	ug/L	10.00	97	70-130	5	20	
1,2-Dibromo-3-Chloropropane	9.5	ug/L	10.00	95	70-130	10	20	
1,2-Dibromoethane	9.6	ug/L	10.00	96	70-130	4	20	
1,2-Dichlorobenzene	9.9	ug/L	10.00	99	70-130	6	20	
1,2-Dichloroethane	9.8	ug/L	10.00	98	70-130	3	20	
1,2-Dichloropropane	9.3	ug/L	10.00	93	70-130	5	20	
1,3,5-Trimethylbenzene	9.3	ug/L	10.00	93	70-130	7	20	
1,3-Dichlorobenzene	9.8	ug/L	10.00	98	70-130	0.2	20	
1,3-Dichloropropane	10.3	ug/L	10.00	103	70-130	9	20	
1,4-Dichlorobenzene	10.1	ug/L	10.00	101	70-130	4	20	
1,4-Dioxane - Screen	209	ug/L	200.0	105	0-332	3	200	
2,2-Dichloropropane	9.1	ug/L	10.00	91	70-130	3	20	
		- 5/						

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CL70725 - 5030B

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8260B	Volatile	Organic	Compound	S
-------	----------	---------	----------	---

Batch CL/0/25 - 5030B								
2-Chlorotoluene	9.7	ug/L	10.00	97	70-130	3	20	
2-Hexanone	47.4	ug/L	50.00	95	70-130	4	20	
1-Chlorotoluene	9.8	ug/L	10.00	98	70-130	3	20	
l-Isopropyltoluene	10.0	ug/L	10.00	100	70-130	2	20	
I-Methyl-2-Pentanone	47.3	ug/L	50.00	95	70-130	5	20	
Acetone	49.1	ug/L	50.00	98	70-130	10	20	
Benzene	9.9	ug/L	10.00	99	70-130	2	20	
Bromobenzene	9.9	ug/L	10.00	99	70-130	1	20	
Bromochloromethane	9.5	ug/L	10.00	95	70-130	6	20	
romodichloromethane	9.7	ug/L	10.00	97	70-130	2	20	
romoform	8.5	ug/L	10.00	85	70-130	6	20	
romomethane	11.7	ug/L	10.00	117	70-130	4	20	
arbon Disulfide	10.1	ug/L	10.00	101	70-130	4	20	
arbon Tetrachloride	9.8	ug/L	10.00	98	70-130	5	20	
hlorobenzene	9.8	ug/L	10.00	98	70-130	5	20	
hloroethane	10.7	ug/L	10.00	107	70-130	5	20	
hloroform	9.3	ug/L	10.00	93	70-130	4	20	
hloromethane	9.9	ug/L	10.00	99	70-130	4	20	
s-1,2-Dichloroethene	9.2	ug/L	10.00	92	70-130	5	20	
s-1,3-Dichloropropene	10.0	ug/L	10.00	100	70-130	3	20	
bromochloromethane	9.9	ug/L	10.00	99	70-130	7	20	
bromomethane	9.2	ug/L	10.00	92	70-130	1	20	
chlorodifluoromethane	10.4	ug/L	10.00	104	70-130	0.2	20	
ethyl Ether	9.8	ug/L	10.00	98	70-130	1	20	
i-isopropyl ether	9.7	ug/L	10.00	97	70-130	2	20	
thyl tertiary-butyl ether	9.3	ug/L	10.00	93	70-130	7	20	
thylbenzene	9.8	ug/L	10.00	98	70-130	4	20	
exachlorobutadiene	10.9	ug/L	10.00	109	70-130	4	20	
exachloroethane	9.0	ug/L	10.00	90	70-130	6	20	
sopropylbenzene	9.6	ug/L	10.00	96	70-130	1	20	
ethyl tert-Butyl Ether	9.7	ug/L	10.00	97	70-130	4	20	
iethylene Chloride	9.3	ug/L	10.00	93	70-130	4	20	
aphthalene	9.5	ug/L	10.00	95	70-130	8	20	
-Butylbenzene	9.3	ug/L	10.00	93	70-130	10	20	
Propylbenzene	9.8	ug/L	10.00	98	70-130	5	20	
ec-Butylbenzene	10.0	ug/L	10.00	100	70-130	5	20	
cyrene	9.8	ug/L	10.00	98	70-130	4	20	
ert-Butylbenzene	9.8	ug/L	10.00	98	70-130	2	20	
ertiary-amyl methyl ether	9.5	ug/L	10.00	95	70-130	3	20	
etrachloroethene	8.1	ug/L	10.00	81	70-130	6	20	
etrahydrofuran	10.2	ug/L	10.00	102	70-130	4	20	
oluene	9.9	ug/L	10.00	99	70-130	5	20	
rans-1,2-Dichloroethene	9.7	ug/L	10.00	97	70-130	3	20	
rans-1,3-Dichloropropene	9.9	ug/L	10.00	99	70-130	2	20	
richloroethene	9.7	ug/L	10.00	97	70-130	5	20	

29.4

25.1

25.2

26.9

27.5

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

100

101

108

110

70-130

70-130

70-130

70-130

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Xylenes (Total)

Surrogate: 1,2-Dichloroethane-d4

Surrogate: 4-Bromofluorobenzene

Surrogate: Dibromofluoromethane

Surrogate: Toluene-d8

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Quality Control Data

Analyte	Result	MRL Units		Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		8260B Volatile Org	anic Compo	ounds					
Batch CL70725 - 5030B									
Trichlorofluoromethane	9.7	ug/L	10.00		97	70-130	5	20	
Vinyl Chloride	10.2	ug/L	10.00		102	70-130	4	20	
Xylene O	9.8	ug/L	10.00		98	70-130	5	20	
Xylene P,M	19.6	ug/L	20.00		98	70-130	4	20	

MADEP-EPH Extractable Petroleum Hydrocarbons

ug/L

ug/L

ug/L

ug/L

25.00

25.00

25.00

25.00

Batch CL71110 - 3510C							
Blank							
C19-C36 Aliphatics1	ND	100	ug/L				
C9-C18 Aliphatics1	ND	100	ug/L				
Decane (C10)	ND	5	ug/L				
Docosane (C22)	ND	5	ug/L				
Dodecane (C12)	ND	5	ug/L				
Eicosane (C20)	ND	5	ug/L				
Hexacosane (C26)	ND	5	ug/L				
Hexadecane (C16)	ND	5	ug/L				
Hexatriacontane (C36)	ND	5	ug/L				
Nonadecane (C19)	ND	5	ug/L				
Nonane (C9)	ND	5	ug/L				
Octacosane (C28)	ND	5	ug/L				
Octadecane (C18)	ND	5	ug/L				
Tetracosane (C24)	ND	5	ug/L				
Tetradecane (C14)	ND	5	ug/L				
Triacontane (C30)	ND	5	ug/L				
Surrogate: 1-Chlorooctadecane	41.4		ug/L	50.00	83	40-140	
Blank							
2-Methylnaphthalene	ND	5.0	ug/L				
Acenaphthene	ND	5.0	ug/L				
Acenaphthylene	ND	5.0	ug/L				
Anthracene	ND	5.0	ug/L				
Benzo(a)anthracene	ND	5.0	ug/L				
Benzo(a)pyrene	ND	10.0	ug/L				
Benzo(b)fluoranthene	ND	5.0	ug/L				
Benzo(g,h,i)perylene	ND	10.0	ug/L				
Benzo(k)fluoranthene	ND	10.0	ug/L				
C11-C22 Aromatics1,2	ND	100	ug/L				
C11-C22 Unadjusted Aromatics1	ND	100	ug/L				
Chrysene	ND	10.0	ug/L				
Dibenzo(a,h)Anthracene	ND	5.0	ug/L				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Batch CL71110 - 3510C						
Fluoranthene	ND	10.0	ug/L			
Fluorene	ND	5.0	ug/L			
Indeno(1,2,3-cd)Pyrene	ND	5.0	ug/L			
Naphthalene	ND	10.0	ug/L			
Phenanthrene	ND	5.0	ug/L			
Pyrene	ND	5.0	ug/L			
Surrogate: 2-Bromonaphthalene	53.6		ug/L	50.00	107	40-140
Surrogate: 2-Fluorobiphenyl	51.7		ug/L	50.00	103	40-140
Surrogate: O-Terphenyl	39.8		ug/L	50.00	80	40-140
.cs						
19-C36 Aliphatics1	364	100	ug/L	400.0	91	40-140
C9-C18 Aliphatics1	214	100	ug/L	300.0	71	40-140
Decane (C10)	29	5	ug/L	50.00	59	40-140
Docosane (C22)	45	5	ug/L	50.00	90	40-140
Podecane (C12)	34	5	ug/L	50.00	69	40-140
Eicosane (C20)	45	5	ug/L	50.00	89	40-140
Hexacosane (C26)	46	5	ug/L	50.00	91	40-140
lexadecane (C16)	41	5	ug/L	50.00	82	40-140
lexatriacontane (C36)	45	5	ug/L	50.00	90	40-140
lonadecane (C19)	45	5	ug/L	50.00	90	40-140
Ionane (C9)	23	5	ug/L	50.00	47	30-140
Octacosane (C28)	46	5	ug/L	50.00	93	40-140
Octadecane (C18)	42	5	ug/L	50.00	84	40-140
etracosane (C24)	46	5	ug/L	50.00	91	40-140
etradecane (C14)	38	5	ug/L	50.00	76	40-140
riacontane (C30)	48	5	ug/L	50.00	95	40-140
				50.00	22	10.1.10
Surrogate: 1-Chlorooctadecane	41.1		ug/L	50.00	82	40-140
CS						
-Methylnaphthalene	34.6	5.0	ug/L	50.00	69	40-140
cenaphthene	37.2	5.0	ug/L	50.00	74	40-140
cenaphthylene	38.6	5.0	ug/L	50.00	77	40-140
Anthracene	41.0	5.0	ug/L	50.00	82	40-140
enzo(a)anthracene	40.2	5.0	ug/L	50.00	80	40-140
denzo(a)pyrene	40.0	10.0	ug/L	50.00	80	40-140
Benzo(b)fluoranthene	41.4	5.0	ug/L	50.00	83	40-140
Benzo(g,h,i)perylene	40.3	10.0	ug/L	50.00	81	40-140
lenzo(k)fluoranthene	39.8	10.0	ug/L	50.00	80	40-140
11-C22 Aromatics1,2	604	100	ug/L			
11-C22 Unadjusted Aromatics1	753	100	ug/L	850.0	89	40-140
Chrysene	39.6	10.0	ug/L	50.00	79	40-140
Dibenzo(a,h)Anthracene	41.0	5.0	ug/L	50.00	82	40-140
Fluoranthene	41.1	10.0	ug/L	50.00	82	40-140
Fluorene	38.9	5.0	ug/L	50.00	78	40-140
Indeno(1,2,3-cd)Pyrene	42.5	5.0	ug/L	50.00	85	40-140

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	MAD	EP-EPH Extr	actable Petr	oleum Hy	/drocarbo	ns				
atch CL71110 - 3510C										
aphthalene	38.0	10.0	ug/L	50.00		76	40-140			
nenanthrene	39.6	5.0	ug/L	50.00		79	40-140			
rene	39.7	5.0	ug/L	50.00		79	40-140			
urrogate: 2-Bromonaphthalene	54.6		ug/L	50.00		109	40-140			
urrogate: 2-Fluorobiphenyl	55.9		ug/L	50.00		112	40-140			
ırrogate: O-Terphenyl	43.0		ug/L	50.00		86	40-140			
cs .										
Methylnaphthalene Breakthrough	0.0		%				0-5			
aphthalene Breakthrough	0.0		%				0-5			
CS Dup										
9-C36 Aliphatics1	368	100	ug/L	400.0		92	40-140	0.9	25	
-C18 Aliphatics1	222	100	ug/L	300.0		74	40-140	4	25	
ecane (C10)	30	5	ug/L	50.00		60	40-140	2	25	
ocosane (C22)	46	5	ug/L	50.00		92	40-140	2	25	
odecane (C12)	35	5	ug/L	50.00		70	40-140	2	25	
cosane (C20)	46	5	ug/L	50.00		91	40-140	2	25	
exacosane (C26)	47	5	ug/L	50.00		93	40-140	2	25	
xadecane (C16)	44	5	ug/L	50.00		88	40-140	6	25	
exatriacontane (C36)	46	5	ug/L	50.00		91	40-140	1	25	
nadecane (C19)	46	5	ug/L	50.00		92	40-140	3	25	
nane (C9)	24	5	ug/L	50.00		48	30-140	3	25	
tacosane (C28)	47	5	ug/L	50.00		95	40-140	2	25	
tadecane (C18)	44	5	ug/L	50.00		88	40-140	4	25	
tracosane (C24)	46	5	ug/L	50.00		93	40-140	2	25	
tradecane (C14)	40	5	ug/L	50.00		80	40-140	5	25	
facontane (C30)	49	5	ug/L	50.00		97	40-140	2	25	
urrogate: 1-Chlorooctadecane	39.2		ug/L	50.00		78	40-140			
CS Dup										
Methylnaphthalene	35.0	5.0	ug/L	50.00		70	40-140	1	20	
enaphthene	38.8	5.0	ug/L	50.00		78	40-140	4	20	
enaphthylene	39.9	5.0	ug/L	50.00		80	40-140	3	20	
thracene	42.0	5.0	ug/L	50.00		84	40-140	2	20	
nzo(a)anthracene	40.8	5.0	ug/L	50.00		82	40-140	1	20	
enzo(a)pyrene	40.3	10.0	ug/L	50.00		81	40-140	0.8	20	
nzo(b)fluoranthene	41.3	5.0	ug/L	50.00		83	40-140	0.2	20	
nzo(g,h,i)perylene	39.9	10.0	ug/L	50.00		80	40-140	1	20	
nzo(k)fluoranthene	40.1	10.0	ug/L	50.00		80	40-140	0.8	20	
1-C22 Aromatics1,2	598	100	ug/L							
1-C22 Unadjusted Aromatics1	752	100	ug/L	850.0		88	40-140	0.1	25	
irysene	39.4	10.0	ug/L	50.00		79	40-140	0.6	20	
benzo(a,h)Anthracene	40.5	5.0	ug/L	50.00		81	40-140	1	20	
uoranthene	41.7	10.0	ug/L	50.00		83	40-140	1	20	
uorene	40.0	5.0	ug/L	50.00		80	40-140	3	20	
deno(1,2,3-cd)Pyrene	41.3	5.0	ug/L	50.00		83	40-140	3	20	

0.0

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

200

0-5

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Naphthalene Breakthrough

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
	MADE	P-EPH Extra	actable Petr	oleum Hy	drocarbo	ns				
Batch CL71110 - 3510C										

39.0 10.0 50.00 40-140 20 Nanhthalene 78 2 ug/L Phenanthrene 40.9 5.0 ug/L 50.00 82 40-140 3 20 20 Pyrene 39.6 5.0 ug/L 50.00 79 40-140 0.4 54.5 ug/L 50.00 109 40-140 Surrogate: 2-Bromonaphthalene 52.8 ug/L 50.00 106 40-140 Surrogate: 2-Fluorobiphenyl 42.3 ug/L 50.00 40-140 Surrogate: O-Terphenyl LCS Dup % 200 2-Methylnaphthalene Breakthrough 0.0 0-5

% MADEP-VPH Volatile Petroleum Hydrocarbon

Batch CL70735 - 5030B						
Blank						
1,2,4-Trimethylbenzene	ND	5.0	ug/L			
2,2,4-Trimethylpentane	ND	5.0	ug/L			
2-Methylpentane	ND	5.0	ug/L			
Benzene	ND	1.5	ug/L			
C5-C8 Aliphatics1,2	ND	150	ug/L			
C5-C8 Unadjusted Aliphatics	ND	150	ug/L			
C9-C10 Aromatics	ND	100	ug/L			
C9-C12 Aliphatics2,3	ND	150	ug/L			
C9-C12 Unadjusted Aliphatics	ND	150	ug/L			
Ethylbenzene	ND	5.0	ug/L			
Methyl tert-Butyl Ether	ND	1.5	ug/L			
Naphthalene	ND	5.0	ug/L			
n-Butylcyclohexane	ND	5.0	ug/L			
n-Decane	ND	5.0	ug/L			
Nonane (C9)	ND	5.0	ug/L			
Pentane	ND	5.0	ug/L			
Toluene	ND	5.0	ug/L			
Xylene O	ND	5.0	ug/L			
Xylene P,M	ND	10.0	ug/L			
Surrogate: 2,5-Dibromotoluene - FID	46.3		ug/L	50.00	93	70-130
Surrogate: 2,5-Dibromotoluene - PID	45.4		ug/L	50.00	91	70-130
LCS						
1,2,4-Trimethylbenzene	91.4		ug/L	100.0	91	70-130
2,2,4-Trimethylpentane	167		ug/L	150.0	112	70-130
2-Methylpentane	173		ug/L	150.0	116	70-130
Benzene	46.9		ug/L	50.00	94	70-130
C5-C8 Aliphatics1,2	143		ug/L			
C5-C8 Unadjusted Aliphatics	466		ug/L	400.0	116	70-130
C9-C10 Aromatics	88.8		ug/L	100.0	89	70-130
C9-C12 Aliphatics2,3	ND		ug/L			
C9-C12 Unadjusted Aliphatics	270		ug/L	300.0	90	70-130
185 Frances	s Avenue, Cranston, RI 02910	D-2211 T	el: 401-461-71	81 Fax	: 401-461-4486	http://www.ESSLaboratory.com

Quality Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Surrogate: 2,5-Dibromotoluene - PID

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

Quality Control Data

Analyte	Result	MRL Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
						Lillio	1010	Liiiic	Quantici
	M	ADEP-VPH Volatile Petr	oleum Hyd	irocarbon					
Satch CL70735 - 5030B									
Ethylbenzene	47.7	ug/L	50.00		95	70-130			
Methyl tert-Butyl Ether	139	ug/L	150.0		93	70-130			
Naphthalene	99.6	ug/L	100.0		100	70-130			
n-Butylcyclohexane	89.0	ug/L	100.0		89	70-130			
n-Decane	98.8	ug/L	100.0		99	70-130			
Ionane (C9)	89.9	ug/L	100.0		90	30-130			
entane	124	ug/L	100.0		124	70-130			
oluene	137	ug/L	150.0		91	70-130			
(ylene O	91.2	ug/L	100.0		91	70-130			
ylene P,M	184	ug/L	200.0		92	70-130			
Surrogate: 2,5-Dibromotoluene - FID	43.0	ug/L	50.00		86	70-130			
urrogate: 2,5-Dibromotoluene - PID	42.4	ug/L	50.00		85	70-130			
CS Dup									
,2,4-Trimethylbenzene	89.6	ug/L	100.0		90	70-130	2	25	
,2,4-Trimethylpentane	168	ug/L	150.0		112	70-130	0.4	25	
-Methylpentane	178	ug/L	150.0		119	70-130	2	25	
enzene	47.6	ug/L	50.00		95	70-130	1	25	
5-C8 Aliphatics1,2	156	ug/L							
5-C8 Unadjusted Aliphatics	475	ug/L	400.0		119	70-130	2	25	
9-C10 Aromatics	87.1	ug/L	100.0		87	70-130	2	25	
9-C12 Aliphatics2,3	ND	ug/L							
9-C12 Unadjusted Aliphatics	263	ug/L	300.0		88	70-130	3	25	
thylbenzene	47.6	ug/L	50.00		95	70-130	0.07	25	
lethyl tert-Butyl Ether	136	ug/L	150.0		91	70-130	2	25	
aphthalene	98.4	ug/L	100.0		98	70-130	1	25	
-Butylcyclohexane	87.9	ug/L	100.0		88	70-130	1	25	
-Decane	96.7	ug/L	100.0		97	70-130	2	25	
onane (C9)	87.0	ug/L	100.0		87	30-130	3	25	
entane	128	ug/L	100.0		128	70-130	3	25	
oluene	136	ug/L	150.0		90	70-130	0.7	25	
ylene O	90.6	ug/L	100.0		91	70-130	0.6	25	
ylene P,M	183	ug/L	200.0		92	70-130	0.3	25	
	40.0		50.00			70 120			
urrogate: 2,5-Dibromotoluene - FID	40.0	ug/L	50.00		80	70-130			

39.3

ug/L

50.00

70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

	Notes and Definitions
Z-06	pH <= 2
U	Analyte included in the analysis, but not detected
D	Diluted.
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
8	Subcontracted analysis: see attached report

Subcontracted analysis; see attached report Ş

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements ESS Laboratory Work Order: 1712118

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

ESS Laboratory Sample and Cooler Receipt Checklist

Client: Tata and Howard - ML/ML	ESS Project ID: 1712113	
Shipped/Delivered Via: ESS Courier	Date Received: 12/6/2017 Project Due Date: 12/13/2017	
	Days for Project: 5 Day	
Air bill manifest present? No NA	6. Does COC match bottles?	Yes
Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 1.8 Iced with: Ice	9. Were labs informed about short holds & rushes?	Yes / No (NA)
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes (No)
11. Any Subcontracting needed? ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes No NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Yes No Date: Date:	Time: By: By:	
Sample Receiving Notes:		
Was there a need to contact Project Manager? Was there a need to contact the client? Who was contacted? Date:	Yes (No Yes (N	_ _
Sample Container Proper Air Bubbles Sufficient Number ID Container Present Volume		vanide and 608 cides)
01 188253 Yes NA Yes	1L Amber - HCl HCl	<u>. "</u>
01 188254 Yes NA Yes 01 188261 Yes No Yes	1L Amber - HCl HCl VOA Vial - HCl HCl ,	
01 188262 Yes No Yes	VOA Vial - HCI HCI	
01 188263 Yes No Yes 02 188258 Yes No Yes	VOA Vial - HCI HCI VOA Vial - HCI HCI	
02 188258 Yes No Yes 02 188259 Yes No Yes	VOA Vial - HCI HCI	
02 188260 Yes No Yes	VOA Vial - HCI HCI	
03 188255 Yes No Yes 03 188256 Yes No Yes	VOA Vial - HCI HCI VOA Vial - HCI HCI	
03 188257 Yes No Yes	VOA Vial - HCI HCI	
1		
2nd Review Are barcode labels of Object containers?	Yes No	
Are barcode labels or correct containers?	Yes No	
Are barcode labels on correct containers? Completed By:	(Yes)No Date & Time: 10 (61) 1654	<u>.</u>
Are barcode labels on correct containers? Completed	2/12 1654	<u>.</u>

ESS L	aboratory	,			HAIN OF CUST	ODY	ESS Lab	#	1718	1118	-					
Division of	Thielsch Engi	neering, Inc.		Turn Time	5-Day R. s	h	Reportir	ng	RCGL		0/	اب ۲ -				
185 Franc	es Avenue, Cra	anston RI 0291	0	Regulatory State	M/A		Limits	_	KCGU	1~1 4	- 100	-5-1				
Tel. (401)	461-7181 Fax	c (401) 461-440	B6 ·		is project for any of the fo		Electon		Limit Checke			Standard	Excel			
www.essla	boratory.com	·		OCT RCP		ORGP			Other (Please	Specify →)						
Tat	a + Hoc	npany Name		Project#	Project Way land Wa	ter Maih Improv	ements	孟	۲				.			
_ D (erek 1	ntact Person			rest St.		Analysis	4 dissel	260							
Man	boroug	6	MA	tate	Zip Code	PO#	Ana	<u> </u>	F 8							
) 7	Telephone Nur	nber	FAX N	lumber	, , Email A	<u>.dd</u> :⊊as			ا ام	•		.			1	
50	8-303-	9400	_	<u>, </u>	directellan (2)	ddiss Taand howad.co	***	+ 2								
ESS Lab	Collection Date	Collection Time	Sample Type	Sample Matrix		Sami, le ID		다 다	202							
	12/5/17	150	Grab	GW	TW-4		<u>.</u>	XX								
2	12/5/17	1225	Gnab	GW	TW-5	· · · · · · · · · · · · · · · · · · ·			X							
3	12/5/17	1110	Grab	GUR	TW-6				X							
	12/5/17	120	Grab	50:1	B-4 (6-8).		人x					,			
							•		1 1						1 1	
-														1		
						•										
			·		7 77 77							:				
						-										
Co	ntainer Type:	AC-Air Casset	te AG-Amber Glas	ss B-BOD Bottle	C-Cubitainer G - Glass	O-Other P-Poly S-Ster	rile V-Vial	ASI V	カマト			1.				
Conta	ainer Volume:	1-100 mL 2	-2.5 gal 3-250 ml	4-300 mL 5-500	mL 6-1L 7-VOA 8-	2 oz. 9-4 oz 10-8 oz	11-Other*	6/7	7 7						\Box	
Prese	rvation Code:	1-Non Preserver	1 2-HCl 3-H2SO4	4-HNO3 5-NaOH 6-M	lethanol 7-Na2S2O3 8-ZnAce	, NaOH 9-NH4CI 10-DI H2O	11-Other*	2/6/2/	62			1 7			11	
					Nu	mber of Containers per			3 3							
		Laborator	y Use Only		Sampled by: 05	\sim										
Coole	r Present:	Vac			Comments:	Please spe	ecify "Othe	r" pres	ervative a	nd contai	ners tvp	es in this	space			
Į.	ls Intact:	NA.			; ·	r	,	•			,		•			
Cooler T	emperature:		°C lee fem	1:1.6	b	;										
R	elinguished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date & Time)	Relinquished By:	: (Signature	Date	& Time)	F	Received	By: (Sign	ature, D	ate & T	ime)	_
De	en Me	Cleben 1	2/5/17 4/15	T+H Col	d Storage 12/5/17	415 Decer 1	Mall	2 16	16/17	3000	¥11	My	121	6/17	10:4	IJ.
R	elinquished by:	(Signature, Da	ate & Time)	Received By:	(Signature, Date & Time)	Relinquished By:	: (Signature	, Date	& Time)	F	Received	By: (Sign	ature, C	ate & T		
Zu	my RV	22 10	16.18	Mun	1 126/17	5										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Derek McClellan Tata and Howard 67 Forest Street Marlborough, MA 01752

This lab report includes the analytical results for 298 BPR (AMB-117) and Pine Brook, as indicated in Table 3.

RE: Wayland Water Main Improvements - RGP (5517) ESS Laboratory Work Order Number: 1802550

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 11:16 am, Mar 08, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

SAMPLE RECEIPT

The following samples were received on February 27, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lad Number	<u>Sample Name</u>	<u> Matrix</u>	Aliaiysis
1802550-01	AMB-117	Ground Water	200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr
			B-2009, 4500 CN CE, 4500Cl D, 504.1, 524.2
1802550-02	Pine Brook	Surface Water	200.7, 245.1, 3113B, 350.1, 3500Cr B-2009

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

PROJECT NARRATIVE

Classical Chemistry

1802550-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

<u>Definitions of Quality Control Parameters</u>

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: AMB-117 Date Sampled: 02/26/18 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Method	<u>Limit</u> <u>DF</u>	Analys	<u>Analyzed</u>	<u>I/V</u>	F/V	Batch
Antimony	ND (5.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Arsenic	0.6 (0.5)	3113B	1	KJK	03/02/18 7:06	100	10	CB82731
Cadmium	ND (0.05)	3113B	2	KJK	03/01/18 21:35	100	10	CB82731
Chromium	ND (2.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Chromium III	ND (10.0)	200.7	1	EEM	02/28/18 18:44	1	1	[CALC]
Copper	7.6 (2.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Hardness	237000 (499)	200.7	10	KJK	02/28/18 19:19	1	1	[CALC]
Iron	662 (10.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Lead	0.8 (0.5)	3113B	1	KJK	02/28/18 23:38	100	10	CB82731
Mercury	ND (0.200)	245.1	1	MJV	02/28/18 14:19	20	40	CB82738
Nickel	ND (5.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Selenium	ND (1.0)	3113B	1	KJK	03/01/18 4:57	100	10	CB82731
Silver	ND (0.5)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731
Zinc	14.3 (5.0)	200.7	1	KJK	02/28/18 18:44	100	10	CB82731

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: AMB-117 Date Sampled: 02/26/18 11:15

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,1,1-Trichloroethane	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,1,2-Trichloroethane	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,1-Dichloroethane	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,1-Dichloroethene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,2-Dichlorobenzene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,2-Dichloroethane	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,3-Dichlorobenzene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
1,4-Dichlorobenzene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
Carbon Tetrachloride	ND (0.3)		524.2		1	02/27/18 15:36	C8B0359	CB82719
cis-1,2-Dichloroethene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
Methylene Chloride	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
Tetrachloroethene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
Trichloroethene	ND (0.5)		524.2		1	02/27/18 15:36	C8B0359	CB82719
Vinyl Chloride	ND (0.2)		524.2		1	02/27/18 15:36	C8B0359	CB82719
	Ģ	%Recovery	Qualifier	Limits				

 Surrogate: 1,2-Dichlorobenzene-d4
 109 %
 80-120

 Surrogate: 4-Bromofluorobenzene
 109 %
 80-120

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: AMB-117 Date Sampled: 02/26/18 11:15

Percent Solids: N/A

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>Units</u>	Batch
Ammonia as N	0.11 (0.10)	350.1		1	JLK	02/28/18 18:42	mg/L	CB82803
Chloride	138 (50.0)	300.0		100	EEM	02/28/18 13:21	mg/L	CB82814
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	EEM	02/27/18 10:40	ug/L	CB82713
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	02/27/18 11:35	ug/L	CB82715
Total Residual Chlorine	ND (20.0)	4500Cl D		1	EEM	02/27/18 10:50	ug/L	CB82712
Total Suspended Solids	801 (5)	2540D		1	EEM	03/01/18 14:15	mg/L	CC80113

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: AMB-117 Date Sampled: 02/26/18 11:15

Percent Solids: N/A Initial Volume: 35 Final Volume: 2

Extraction Method: 504/8011

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-01

Sample Matrix: Ground Water

Units: ug/L Analyst: SMR

Prepared: 3/6/18 15:05

504.1 1,2-Dibromoethane / 1,2-Dibromo-3-chloropropane

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	\mathbf{DF}	Analyzed	Sequence	Batch
1,2-Dibromoethane	ND (0.015)		504.1		1	03/06/18 18:37		CC80613
		%Recovery	Qualifier	Limits				
Surrogate: Pentachloroethane		96 %		30-150				
Surrogate: Pentachloroethane [2C]		129 %		30-150				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: Pine Brook Date Sampled: 02/26/18 12:15

Percent Solids: N/A

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-02

Sample Matrix: Surface Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (5.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Arsenic	0.7 (0.5)		3113B		1	KJK	03/02/18 7:18	100	10	CB82731
Cadmium	0.07 (0.05)		3113B		2	KJK	03/01/18 21:41	100	10	CB82731
Chromium	ND (2.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Copper	2.4 (2.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Hardness	43100 (82.4)		200.7		1	KJK	02/28/18 18:50	1	1	[CALC]
Iron	693 (10.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Lead	1.0 (0.5)		3113B		1	KJK	02/28/18 23:43	100	10	CB82731
Mercury	ND (0.200)		245.1		1	MJV	02/28/18 14:21	20	40	CB82738
Nickel	ND (5.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Selenium	ND (1.0)		3113B		1	KJK	03/01/18 5:25	100	10	CB82731
Silver	ND (0.5)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731
Zinc	33.4 (5.0)		200.7		1	KJK	02/28/18 18:50	100	10	CB82731

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: Pine Brook Date Sampled: 02/26/18 12:15

Percent Solids: N/A

ESS Laboratory Work Order: 1802550 ESS Laboratory Sample ID: 1802550-02

Sample Matrix: Surface Water

Classical Chemistry

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analys	t Analyzed	<u>Units</u>	Batch
Ammonia as N	ND (0.10)	350.1		1	JLK	02/28/18 18:43	mg/L	CB82803
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	EEM	02/27/18 10:40	ug/L	CB82713

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
			Total Meta	als						
Batch CB82713 - [CALC]										
Blank										
Chromium III	ND	10.0	ug/L							
LCS										
Chromium III	ND		ug/L							
LCS Dup										
Chromium III	ND		ug/L							
			49/2							
Batch CB82731 - 3005A/200.7										
Blank										
Antimony	ND	5.0	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.02	ug/L							
Chromium	ND	2.0	ug/L							
Chromium III	ND	2.00	ug/L							
Copper	ND	2.0	ug/L							
Hardness	ND	82.4	ug/L							
Iron	ND	10.0	ug/L							
Lead	ND	0.5	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	43.7	5.0	ug/L	50.00		87	85-115			
Arsenic	46.5	12.5	ug/L	50.00		93	85-115			
Cadmium	24.7	12.5	ug/L	25.00		99	85-115			
Chromium	45.8	2.0	ug/L	50.00		92	85-115			
Chromium III	45.8	2.00	ug/L							
Copper	48.3	2.0	ug/L	50.00		97	85-115			
Hardness	2980	82.4	ug/L							
Iron	230	10.0	ug/L	250.0		92	85-115			
Lead	51.2	12.5	ug/L	50.00		102	85-115			
Nickel	47.3	5.0	ug/L	50.00		95	85-115			
Selenium	114	25.0	ug/L	100.0		114	85-115			
Silver	23.7	0.5	ug/L	25.00		95	85-115			
Zinc	45.7	5.0	ug/L	50.00		91	85-115			
LCS Dup										
Arsenic	48.4	12.5	ug/L	50.00		97	85-115	4	20	
Cadmium	26.1	12.5	ug/L	25.00		104	85-115	5	20	
Chromium III	50.7	2.00	ug/L							
Hardness	3160	82.4	ug/L							
Lead	52.0	12.5	ug/L	50.00		104	85-115	2	20	
Selenium	112	25.0	ug/L	100.0		112	85-115	1	20	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total Metals

Batch CB82738 - 245.1/7470A									
Blank									
Mercury	ND	0.200	ug/L						
LCS									
Mercury	5.71	0.200	ug/L	6.000	95	85-115			
LCS Dup									
Mercury	5.69	0.200	ug/L	6.000	95	85-115	0.3	20	

524.2 Volatile Organic Compounds

Batch CB82719 - 524.2							
Blank							
1,1,1-Trichloroethane	ND	0.5	ug/L				
1,1,2-Trichloroethane	ND	0.5	ug/L				
1,1-Dichloroethane	ND	0.5	ug/L				
1,1-Dichloroethene	ND	0.5	ug/L				
1,2-Dichlorobenzene	ND	0.5	ug/L				
1,2-Dichloroethane	ND	0.5	ug/L				
1,3-Dichlorobenzene	ND	0.5	ug/L				
1,4-Dichlorobenzene	ND	0.5	ug/L				
Carbon Tetrachloride	ND	0.3	ug/L				
cis-1,2-Dichloroethene	ND	0.5	ug/L				
Methylene Chloride	ND	0.5	ug/L				
Tetrachloroethene	ND	0.5	ug/L				
Trichloroethene	ND	0.5	ug/L				
Vinyl Chloride	ND	0.2	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	5.48		ug/L	5.000	110	80-120	
Surrogate: 4-Bromofluorobenzene	5.35		ug/L	5.000	107	80-120	
ıcs							
1,1,1-Trichloroethane	10.4		ug/L	10.00	104	70-130	
1,1,2-Trichloroethane	10.2		ug/L	10.00	102	70-130	
1,1-Dichloroethane	10.1		ug/L	10.00	101	70-130	
1,1-Dichloroethene	10.3		ug/L	10.00	103	70-130	
1,2-Dichlorobenzene	10.8		ug/L	10.00	108	70-130	
1,2-Dichloroethane	10.1		ug/L	10.00	101	70-130	
1,3-Dichlorobenzene	10.3		ug/L	10.00	103	70-130	
1,4-Dichlorobenzene	10.9		ug/L	10.00	109	70-130	
Carbon Tetrachloride	10.2		ug/L	10.00	102	70-130	
cis-1,2-Dichloroethene	9.9		ug/L	10.00	99	70-130	
Methylene Chloride	11.8		ug/L	10.00	118	70-130	
Tetrachloroethene	10.0		ug/L	10.00	100	70-130	
Trichloroethene	10.0		ug/L	10.00	100	70-130	
Vinyl Chloride	10.1		ug/L	10.00	101	70-130	
Surrogate: 1,2-Dichlorobenzene-d4	5.37		ug/L	5.000	107	80-120	
Surrogate: 4-Bromofluorobenzene	5.15		ug/L	5.000	103	80-120	

LCS Dup

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

Ouality Control Data

		Qualit	ty Cont	i Oi Da	ıla					
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		524.2 Vol	atile Organi	ic Compou	unds					
Batch CB82719 - 524.2										
1,1,1-Trichloroethane	10.9		ug/L	10.00		109	70-130	5	20	
1,1,2-Trichloroethane	10.2		ug/L	10.00		102	70-130	0.5	20	
,1-Dichloroethane	10.3		ug/L	10.00		103	70-130	2	20	
,1-Dichloroethene	10.7		ug/L	10.00		107	70-130	4	20	
,2-Dichlorobenzene	10.8		ug/L	10.00		108	70-130	0	20	
.,2-Dichloroethane	10.0		ug/L	10.00		100	70-130	0.9	20	
,3-Dichlorobenzene	10.4		ug/L	10.00		104	70-130	0.8	20	
,4-Dichlorobenzene	10.6		ug/L	10.00		106	70-130	3	20	
Carbon Tetrachloride	10.4		ug/L	10.00		104	70-130	2	20	
is-1,2-Dichloroethene	10.1		ug/L	10.00		101	70-130	2	20	
1ethylene Chloride	12.0		ug/L	10.00		120	70-130	2	20	
Tetrachloroethene	10.3		ug/L	10.00		103	70-130	2	20	
Trichloroethene	10.3		ug/L	10.00		103	70-130	3	20	
/inyl Chloride	10.4		ug/L	10.00		104	70-130	4	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.31		ug/L	5.000		106	80-120			
Surrogate: 4-Bromofluorobenzene	4.99		ug/L	5.000		100	80-120			
		Cl	assical Che	mistry						
Batch CB82712 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
.cs										
otal Residual Chlorine	1.78		mg/L	1.800		99	85-115			
Batch CB82713 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
cs										
Hexavalent Chromium	0.499		mg/L	0.4998		100	90-110			
CS Dup										
lexavalent Chromium	0.498		mg/L	0.4998		100	90-110	0.3	20	
Batch CB82715 - TCN Prep										
Blank										
otal Cyanide (LL)	ND	5.00	ug/L							
.cs										
otal Cyanide (LL)	20.4	5.00	ug/L	20.06		102	90-110			
cs										
otal Cyanide (LL)	150	5.00	ug/L	150.4		99	90-110			
.CS Dup										
otal Cyanide (LL)	150	5.00	ug/L	150.4		100	90-110	0.5	20	
Batch CB82803 - NH4 Prep			<u>. </u>							
Mank	ND	0.10	ma/l							
Ammonia as N	ND	0.10	mg/L							

Page 13 of 19

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cla	assical Che	mistry						
Batch CB82803 - NH4 Prep										
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		111	80-120			
LCS										
Ammonia as N	1.03	0.10	mg/L	0.9994		103	80-120			
Batch CB82814 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.5		mg/L	2.500		98	90-110			
Batch CC80113 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
LCS Total Suspended Solids	34		mg/L	34.10		100	80-120			
		2-Dibromoeth			3-chloropr		80-120			
		2-Dibromoeth			-chloropr		80-120			
Total Suspended Solids		2-Dibromoeth			-chloropr		80-120			
Total Suspended Solids Batch CC80613 - 504/8011		2-Dibromoeth			-chloropr		80-120			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane	504.1 1,2		nane / 1,2-		-chloropr		80-120			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]	504.1 1,2	0.015	ug/L		3-chloropr		80-120 30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND ND	0.015	ug/L ug/L	Dibromo-3	-chloropr	opane				
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND 0.157	0.015	ug/L ug/L ug/L	0.2000	-chloropr	opane 78	30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND 0.157	0.015	ug/L ug/L ug/L	0.2000	-chloropr	opane 78	30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND ND 0.157 0.162	0.015 0.015	ug/L ug/L ug/L ug/L	0.2000 0.2000	-chloropr	78 81	30-150 30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C]	ND ND ND 0.157 0.162 0.074 0.076	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	78 81 93 95	30-150 30-150 70-130 70-130			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane	ND ND ND 0.157 0.162 0.074 0.076	0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	78 81 93 95	30-150 30-150 70-130 70-130			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C]	ND ND ND 0.157 0.162 0.074 0.076	0.015 0.015	ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000	3-chloropr	78 81 93 95	30-150 30-150 70-130 70-130			
Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane 5urrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND ND 0.157 0.162 0.074 0.076 0.0846 0.0847	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	78 81 93 95 106 106	30-150 30-150 70-130 70-130 30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND ND 0.157 0.162 0.074 0.076 0.0846 0.0847	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	78 81 93 95 106 106	30-150 30-150 70-130 70-130 30-150 70-130			
Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane 5urrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS	ND ND 0.157 0.162 0.074 0.076 0.0846 0.0847	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	78 81 93 95 106 106	30-150 30-150 70-130 70-130 30-150			
Total Suspended Solids Batch CC80613 - 504/8011 Blank 1,2-Dibromoethane 1,2-Dibromoethane [2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane 1,2-Dibromoethane 2C] Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane Surrogate: Pentachloroethane [2C] LCS 1,2-Dibromoethane	ND ND ND 0.157 0.162 0.074 0.076 0.0846 0.0847	0.015 0.015 0.015 0.015	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.2000 0.2000 0.08000 0.08000 0.08000	3-chloropr	78 81 93 95 106 106	30-150 30-150 70-130 70-130 30-150 70-130			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

Notes and Definitions

U	Analyte included in the analysis, but not detected

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference
MDL Method Detection Limit
MRL Method Reporting Limit
LOD Limit of Detection
LOQ Limit of Quantitation
DL Detection Limit

DL Detection Lim I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of target analytes eluting in that range.
 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802550

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	T	ata and How	ard - ML/ML		ESS Project ID			
					Date Received		- American	
Shipped/D	elivered Via:	E	SS Courier		Project Due Date Days for Project	3/6/2	2018 Day	
					Days for Project		Jay	_
. Air bill m Air No.:	nanifest prese	ent? NA	[No	6. Does COC match bo	ottles?		Yes
. Were cu	ustody seals p	present?	[No	7. Is COC complete an	d correct?		Yes
. Is radiati	ion count <10	00 CPM?	[Yes	8. Were samples recei	ved intact?		Yes
	oler Present? 3.2	Iced with:	lce [Yes	9. Were labs informe	d about short holds	& rushes?	Yes/ No / NA
	OC signed and		en conservation of the	Yes	10. Were any analyse	s received outside of	hold time?	Yes (No
	bcontracting Sample IDs: Analysis: TAT:			(N))	12. Were VOAs receiv a. Air bubbles in aque b. Does methanol cov	ous VOAs?		Yes / No Yes / Vo Yes / No / NA
a. If metals	e samples pro s preserved u vel VOA vials	operly presen		Yes / No	Time:	By:		_
Sample Ne	eceiving Notes							
14 Was th	here a need t	o contact Pro	iect Manage	er?	Yes No			
a. Was the	here a need to ere a need to contacted?		client?		Yes (No Yes / No) Time:	By:		_
a. Was the	ere a need to	contact the c	Air Bubbles		Yes / No Time:	By:	Record pH (Cya Pestici	anide and 608
a. Was the Who was c Sample Number	container	Proper Container	Air Bubbles Present	Date:	Yes / No Time:	eservative	Record pH (Cya	anide and 608
Sample Number	Container ID 204762	Proper Container	Air Bubbles Present NA	Sufficient Volume Yes	Container Type Pre	eservative HNO3	Record pH (Cya	anide and 608
Sample Number	container	Proper Container	Air Bubbles Present	Date:	Container Type Pre 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres	eservative HNO3	Record pH (Cya	anide and 608
Sample Number	Container ID 204762 204763 204764 204765	Proper Container Yes Yes Yes Yes	Air Bubbles Present NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type Pre 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4	eservative HNO3 NaOH P 4 12 NP H2SO4	Record pH (Cya	anide and 608
Sample Number	Container ID 204762 204763 204764 204765 204766	Proper Container Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type Pre 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI	eservative HNO3 NaOH P 4 12 NP H2SO4 HCI	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204767	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NO NO	Sufficient Volume Yes Yes Yes Yes Yes Yes	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI	eservative HNO3 NaOH P 4 12 NP H2SO4 HCI HCI	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204767 204768	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes	Container Type Pre 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI VOA Vial - HCI	eservative HNO3 NaOH P 4 12 NP H2SO4 HCI HCI HCI	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204767 204768 204776	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI VOA Vial - HCI 1L Poly - Unpres	eservative HNO3 NaOH P 4 12 NP H2SO4 HCI HCI	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204767 204768 204776 204777	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI VOA Vial - HCI 1L Poly - Unpres 250 mL Poly - HNO3	eservative HNO3 NaOH P 4 12 NP H2SO4 HCI HCI HCI NP	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204767 204768 204776	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI VOA Vial - HCI 1L Poly - Unpres 250 mL Poly - HNO3 500 mL Poly - HNO3 500 mL Poly - H2SO4	eservative HNO3 NaOH 1	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 01 02 02 02	Container ID 204762 204763 204764 204766 204776 204777 204769 204778	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Time:	eservative HNO3 NaOH P H 12 NP H2SO4 HCI HCI HCI NP HNO3 HNO3 HNO3 H2SO4 HNO3	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 01	Container ID 204762 204763 204764 204765 204766 204776 204777 204769 204770	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI 1L Poly - Unpres 250 mL Poly - HNO3 500 mL Poly - HNO3 500 mL Poly - H2SO4	eservative HNO3 NaOH 1	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02 202 2nd Review	Container ID 204762 204763 204766 204766 204767 204768 204776 204777 204769 204779	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Time:	eservative HNO3 NaOH P H 12 NP H2SO4 HCI HCI HCI NP HNO3 HNO3 HNO3 H2SO4 HNO3	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02 02 2nd Review Are barcoo	Container ID 204762 204763 204764 204765 204766 204767 204768 204777 204769 204779 We de labels on o	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type Free Time: Container Type Free Fre	eservative HNO3 NaOH P H 12 NP H2SO4 HCI HCI HCI NP HNO3 HNO3 HNO3 H2SO4 HNO3	Record pH (Cya	anide and 608
Sample Number 01 01 01 01 01 01 01 02 02 02 02 2nd Review	Container ID 204762 204763 204764 204765 204766 204767 204768 204777 204769 204770 204779 We de labels of out	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NO NO NO NO NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type Pres 500 mL Poly - HNO3 250 mL Poly - NaOH 250 mL Poly - Unpres 500 mL Poly - H2SO4 VOA Vial - HCI VOA Vial - HCI 1L Poly - Unpres 250 mL Poly - HNO3 500 mL Poly - HNO3 250 mL Poly - Unpres	eservative HNO3 NaOH P I I I I I I I I I I I I I I I I I I	Record pH (Cya	anide and 608

	Laborat			ges made 3	/6/18 - ML CH /	AIN OF CUST	ГОДУ						ES	SS L	AB	PRO	JEC	TIE)				
	of Thielsch es Avenue, Cra			Turn Tin	ie 🗶	Standard Rush	Approve	ed By:					Re							R	GP.	191	5
) 461-7181			State who	ere samples v	were collected: MA N	Н						-							₫ Sa			
	laboratory.			Is this pro	eject for:			Electonic	c De	elive	rabi	e		/es		No	_	Little Sales					_
			1. 1.			RGP		Format:	Exc	cel_	_ /	Acces			DF_		Othe	r					
Project Manager: Derek McClellan Company: Tata + Howard Address: 67 Forest St. Mar borough, MA 01752 ESS Lab Date Collection Grab-G Matrix Sample ID Froject #5517 Project Name: Way land 2018 Water Main Fun Provenent							and lan rements	Analysis	als Total	RGP Metals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695 Chloride 300.0*	Total Cyanide 4500 LL	4	TSS 2540D*	Ammonia 350.1	Tri Cr (Calc. MUST run T. Cr)	1500	Phenol 420.1 BGP VOC 423198 \$755746	1,4-Dioxane 8270-SIM	+	RGP SVOC Log List 625-SIM	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Sample tachinication				# of	RGP Met	3P Met	ardne	thano	ital Cy	TPH 1664	TRC 4500-C	nmonie	Cr (C	Hex Cr 3500	Pholograph 4	-Dioxe	B 504	SP SV	2000
1	2/26/18		G	GW	AMR	-(17		Containers	7	Ä	<u> </u>	ш S	F V	Ė,	<u> </u>	Ž V	F	¥ 6	2 8		EE	2 2	
2	2/26/18	4110	G	SW		Brook			1	H	X	1	^	-/	1	1	X	X	X		X	\perp	1,2
	110110	(20)	6	540	rine	131001		4	X	H	X	+		_	+	X		X	_			\perp	\perp
										Ц													
																							T
																		\top	\top	\forall			+
											\top		Н	\top	†		\vdash	+	+	H	\forall	+	+
										\vdash	+	+		+	+		\dashv	+	+	\vdash	+	+	+
									Н	\dashv	+	+	H	+	+	-	\Box	+	+	\sqcup	_	\bot	_
											4	\perp		1	\perp								
																				П			
Container Tyr	Code: I-NP, 2-F pe: P-Poly G-Gl	ICI, 3-H2SO4	, 4-HNO3, 5-N	аОН, 6-МеО	H, 7-Asorbic A	cid, 8-ZnAct, 9			_			1			1	3	-	1 3	2	1	2	1 1	
					r CW Curfoca	Water DW-Drinking Water			Р	Р	P\	/ P	P	AG F	P	Р				AG			
Cooler Pre	sent	Yes	No	Sampled b	y: Osm	water Dw-Drinking Water	O-Oil W-Wipes	F-Filter			_		_	-	-								
Seals Intac	tYes _	_				etals include Sb, As, Co	Cu Fe Ph	Ni So A	a on	17.	. h	200	7/21	120		11	1 0					-	
	nperature:	- '	1	2) I al alliel	ers in BOLI	nave Short hold-time		PERM	AIT	AT	TA	CHE	1/31 D	138	and	Hg	by 2	45.1	- Citi	CO:NY	0	野	
Relinquished by:	(Signature)		Pate/Time			ken from the same co	d by Cinnet	12718	-		ate/Tir		Т			_	Receiv	ed by:	(Sign:	ature)			_
Relinquished by:	(Signature)		Pate/Time	Received by: (S	tegeived by: (Signature) Relinquished by: (Signature)						12 ate/Tir		4	m	- (n	Ld	, ,	2/2	7/1	8	09	12
mv	me		2/27/18			27/18 10:15				0.		114					receiv	ed by:	(Signa	mure)			
			1014/		riease E-ma	il all changes to Chai	n of Custody	in writir					741					Pag	e _	1	of_	1	_

	aborat		•		CH	IAIN O	F CUSTO	DDY						-	ESS			ROJ.							
	of Thielsch s Avenue, Cra			Turn Tin	ne X	Standard	Rush	Approve	d By:					7	Repo	THE OWNER OF TAXABLE PARTY.	SECTION SHOWS	-	_		ES	RO	SP /	191	<
) 461-7181			State who	ere samples	s were collec	cted: MA NH							_									t Wa		
	laboratory.o			Is this pro	oject for:				Electoni	c D	elive	erab	ole	_	Yes	_	_	No							_
						RGP	9		Format:				Acc	ess		PDF	-	100	her						
Company: Address:	Project Mana Tata 67 Found	+ Howan	erell M	Clella		Project # 5 Project Nat 2018 PO #	me: way lan Water Man Eusproven	nents	Analysis	tals Total	RGP Metals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695	Chloride 300.0*	TPH 1664	40D*	TRC 4500-CL D*	Ammonia 350.1	Tri Cr (Calc. MUST run T. Cr)	420.1	RGP VOC LANGUE 1524-COL	1,4-Dioxane 8270-SIM	EDB 504.1	UC LOG LIST 0.25-SIM	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample	Identification		# of Containers	RGP Me	GP Me	Hardn	Ethano	Chlorid	TPH 1664	TSS 2540D*	RC 45	mmon	Tri Cr (Calc.)	Phenol 420.1	GP VC	,4-Diox	DB 50	CB 600	
- 1	2/26/18	1115	G	GW	AME	3-117			9 22	X		X		X >		X	X	X	×)	(X	-	ша	10.	1,2
2	2/26/18	1215	G	SW		2 B 100			4	X	П	X		\dagger	+	T		X	V			H	+	+	H
									1	İ	H		+	\dagger	†			1	1		H	\forall	+	+	+
										T	H			\dagger	†	H		\forall	+	+	Н	\dashv	+	+	\vdash
													1	\dagger	\dagger	Н		+	+	+	H	+	+	+	-
			-									1	1	\dagger	\dagger	Н	1	+	+	+		+	+	+	
											Н	1	+	+	+	Н	+	+	+	+		+	+	+	H
											\forall	+	+	+	+	Н	+	+	+	+		+	+		
											H	+	+	+	+	Н	+	+	+	+	\vdash	+	+	\vdash	_
											\vdash	+	+	+	\vdash	Н	+	+	+	H	\dashv	+	+	H	
Preservation (Code: 1-NP, 2-1	HCI, 3-H2SO4	, 4-HNO3, 5-N	aOH, 6-MeO	H, 7-Asorbic	Acid. 8-ZnAc	1 9-				_	+		+	-		-	+	\perp			_	\perp	Ш	
Container Typ	e: P-Poly G-Gl	ass AG-Ambo	er Glass S-Ster	ile V-VOA						4 D	4 D	4 D	1 F	5	3	1	1	3 .		3	2	1	2 1	1	
Matrix: S-Soil	SD-Solid D-S	łudge WW-W	Vastewater GW	-Groundwate	er SW-Surfac	e Water DW-l	Drinking Water O-0	Oil W-Wines	F-Filter		-	Г	V	IP	AG	Р	Р	Ρ .	P	AG	V	AG	VAC	AG	
Cooler Pres	sent	Yes	No	Sampled b	y: 05/	h					-	_	_			-	_			_	-				_
Seals Intact	Yes _	No NA	A:	Comments	: 1) RGP N	Metals inclu	de Sb, As, Cd, C	n Fe Ph	Ni Se A	a ar	nd 7	n b	20	0.7/	2112	D a	. d T	I. I.	. 24	<i>5</i> 1	0	7		COP*	_
	perature:			-)	ters in DO	LD have Sh	ort nord-time		PERM	AIT	AT	TA	CH	ED	0113	D a	id i	ig b	y 24	3.1,4	117	जनस र ह	-	#	
Relinquished by:	(Signaturie)		Date/Time	Received by: (S	ignature)		the same conta	(Signature)	10-1		D	ate/T	ime		_		_	R	ceiva	d by: (S	Signati	uro)		_	_
Relinquished by:				Regeived by: (Si		1.7011 3	15 ess H	when I	12718	(29	13	1		n	1.	0	ri	2	2	12-	7/1	8 0	191	2
mv	his		2/27/18	W &	2	127/18 14	75				D	ate/T	ime					Re	ceived	d by: (S	Signati	ure)			
			1014		Please E-n	nail all chai	nges to Chain o	f Custody	in writir						_				Р	age			of _	Ĭ	_

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Derek McClellan Tata and Howard 67 Forest Street Marlborough, MA 01752 This lab report includes the analytical results for 268 BPR (SB-4), as indicated in Table 3.

RE: Wayland Water Main Improvements - RGP (5517) ESS Laboratory Work Order Number: 1802608

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 5:03 pm, Mar 23, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

SAMPLE RECEIPT

The following samples were received on February 28, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboatory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Revision 1 March 23, 2018: This report has been revised to include 2-methylnaphthalene results per client request.

Lab Number 1802608-01

Sample Name 268 BPR SB4

Matrix Ground Water **Analysis**

1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 524.2, 625 SIM, 8270D SIM

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

C8C0015-CCV1 Continuing Calibration %Diff/Drift is above control limit (CD+).

Tertiary-butyl Alcohol (38% @ 30%)

CC80125-BS1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (162% @ 70-130%)

CC80125-BSD1 Blank Spike recovery is above upper control limit (B+).

Tertiary-butyl Alcohol (162% @ 70-130%)

Classical Chemistry

1802608-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

Total Residual Chlorine

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyst	Analyzed	<u>I/V</u>	F/V	Batch
Antimony	ND (10.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Arsenic	7.7 (1.0)		3113B		1	KJK	03/02/18 21:15	50	10	CC80143
Cadmium	0.15 (0.05)		3113B		1	KJK	03/02/18 16:43	50	10	CC80143
Chromium	ND (4.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Chromium III	ND (10.0)		200.7		1	JLK	03/02/18 3:18	1	1	[CALC]
Copper	ND (4.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Hardness	246000 (165)		200.7		1	KJK	03/02/18 3:18	1	1	[CALC]
Iron	4320 (20.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Lead	ND (1.0)		3113B		1	KJK	03/02/18 18:59	50	10	CC80143
Mercury	ND (0.200)		245.1		1	MJV	03/02/18 10:42	20	40	CC80144
Nickel	ND (10.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Selenium	ND (2.0)		3113B		1	KJK	03/03/18 0:50	50	10	CC80143
Silver	ND (1.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143
Zinc	401 (10.0)		200.7		1	KJK	03/02/18 3:18	50	10	CC80143

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acetone	ND (5.0)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Benzene	ND (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Ethylbenzene	2.0 (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Methyl tert-Butyl Ether	4.4 (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Toluene	ND (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Xylene O	1.2 (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125
Xylene P,M	4.0 (0.5)		524.2		1	03/01/18 12:53	C8C0015	CC80125

Qualifier Limits %Recovery Surrogate: 1,2-Dichlorobenzene-d4 112 % 80-120 Surrogate: 4-Bromofluorobenzene 112 % 80-120

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 3/1/18 11:15

625(SIM) Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Acenaphthene	ND (0.19)		625 SIM	· <u> </u>	1	03/03/18 15:44	C8C0044	CB82808
Acenaphthylene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Anthracene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Benzo(a)anthracene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Benzo(a)pyrene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Benzo(b)fluoranthene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Benzo(g,h,i)perylene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Benzo(k)fluoranthene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
bis(2-Ethylhexyl)phthalate	ND (2.06)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Butylbenzylphthalate	ND (2.34)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Chrysene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Dibenzo(a,h)Anthracene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Diethylphthalate	ND (2.34)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Dimethylphthalate	ND (2.34)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Di-n-butylphthalate	ND (2.34)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Di-n-octylphthalate	ND (2.34)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Fluoranthene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Fluorene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Indeno(1,2,3-cd)Pyrene	ND (0.05)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Naphthalene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Phenanthrene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
Pyrene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		52 %		30-130				
Surrogate: 2,4,6-Tribromophenol		84 %		15-110				
Surrogate: 2-Fluorobiphenyl		59 %		30-130				

Surrogate: Nitrobenzene-d5 69 % 30-130 Surrogate: p-Terphenyl-d14 73 % 30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Units: ug/L

Analyst: ADMIN
Prepared: 3/6/18 19:00

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte 1,4-Dioxane	Results (MRL) ND (0.250)	<u>MDL</u>	Method 8270D SIM	<u>Limit</u>	<u>DF</u>	Analyzed 03/07/18 0:30	Sequence C8C0089	Batch CC80653
	%	6Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		50 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A Initial Volume: 1070 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 3/1/18 11:15

625(SIM) Polynuclear Aromatic Hydrocarbons

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
2-Methylnaphthalene	ND (0.19)		625 SIM		1	03/03/18 15:44	C8C0044	CB82808
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		52 %		30-130				
Surrogate: 2-Fluorobiphenyl		59 %		30-130				
Surrogate: Nitrobenzene-d5		69 %		30-130				
Surrogate: p-Terphenyl-d14		73 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: 268 BPR SB4 Date Sampled: 02/28/18 10:30

Percent Solids: N/A

ESS Laboratory Work Order: 1802608 ESS Laboratory Sample ID: 1802608-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 0.36 (0.10)	MDL <u>Method</u> 350.1	<u>Limit</u>	<u>DF</u>	Analys	<u>Analyzed</u> 03/05/18 17:21	Units mg/L	Batch CC80507
Chloride	338 (50.0)	300.0		100	EEM	03/05/18 17:30	mg/L	CC80524
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	JLK	02/28/18 22:24	ug/L	CB82832
Phenols	ND (100)	420.1		1	JLK	03/02/18 20:01	ug/L	CC80228
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	03/02/18 11:00	ug/L	CC80211
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	03/06/18 13:36	mg/L	CC80510
Total Residual Chlorine	HT ND (20.0)	4500Cl D		1	JLK	02/28/18 20:10	ug/L	CB82836
Total Suspended Solids	ND (5)	2540D		1	EEM	03/01/18 14:15	mg/L	CC80113

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data

Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
		Total Meta	als						
ND	10.0	ug/L							
ND		ug/L							
ND		ug/L							
ND	10.0								
ND	20.0								
ND	1.0	ug/L							
ND	10.0	ug/L							
ND	2.0	ug/L							
ND	1.0	ug/L							
ND	10.0	ug/L							
85.7	10.0	ug/L	100.0		86	85-115			
90.6	25.0	ug/L	100.0		91	85-115			
48.6	25.0	ug/L	50.00		97	85-115			
94.2	4.0	ug/L	100.0		94	85-115			
94.2	4.00	ug/L							
93.2	4.0	ug/L	100.0		93	85-115			
<i>5</i> 2.0	10.0	ug/L	100.0		33	00-113			
QN 2	25.0	ua/l	100.0		an	85-115	0.5	20	
			50.00),	05 115	J	20	
92.6	25.0	ug/L	100.0		93	85-115	0.1	20	
		٥,			-	-			
	ND ND 10.0 ND 10.0 ND 10.0 ND 1.0 ND 1.0 ND 4.0 ND 4.0 ND 4.0 ND 165 ND 20.0 ND 1.0 ND 10.0 ND 10.0 ND 10.0 ND 10.0 ND 2.0 ND 10.0 85.7 10.0 90.6 25.0 48.6 25.0 94.2 4.0 94.2 4.0 93.2 4.0 6170 165 464 20.0 92.8 25.0 94.9 10.0 192 50.0 47.1 1.0 92.8 10.0	ND 10.0 ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND 10.0 ug/L ND 1.0 ug/L ND 1.0 ug/L ND 4.0 ug/L ND 4.0 ug/L ND 4.0 ug/L ND 4.0 ug/L ND 165 ug/L ND 10.0 ug/L 90.6 25.0 ug/L 94.2 4.0 ug/L 94.1 1.0 ug/L 92.8 25.0 ug/L 94.9 10.0 ug/L	ND	ND	ND 10.0 ug/L	ND	ND 10.0 ug/L	ND	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total Metals

Batch CC80144 - 245.1/7470A									
Blank									
Mercury	ND	0.200	ug/L						
LCS									
Mercury	5.86	0.200	ug/L	6.000	98	85-115			
LCS Dup									
Mercury	5.91	0.200	ug/L	6.000	98	85-115	0.7	20	

524.2 Volatile Organic Compounds

Batch CC80125 - 524.2									
Blank									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Methyl tert-Butyl Ether	ND	0.5	ug/L						
Tertiary-butyl Alcohol	ND	25.0	ug/L						
Toluene	ND	0.5	ug/L						
Xylene O	ND	0.5	ug/L						
Xylene P,M	ND	0.5	ug/L						
Surrogate: 1,2-Dichlorobenzene-d4	5.61		ug/L	5.000	112	80-120			
Surrogate: 4-Bromofluorobenzene	5.39		ug/L	5.000	108	80-120			
LCS									
Acetone	55.9		ug/L	50.00	112	70-130			
Benzene	10.3		ug/L	10.00	103	70-130			
Ethylbenzene	10.4		ug/L	10.00	104	70-130			
Methyl tert-Butyl Ether	11.0		ug/L	10.00	110	70-130			
Tertiary-butyl Alcohol	81.1		ug/L	50.00	162	70-130			Вн
Toluene	10.3		ug/L	10.00	103	70-130			
Xylene O	10.6		ug/L	10.00	106	70-130			
Xylene P,M	20.6		ug/L	20.00	103	70-130			
Surrogate: 1,2-Dichlorobenzene-d4	5.53		ug/L	5.000	111	80-120			
Surrogate: 4-Bromofluorobenzene	5.23		ug/L	5.000	105	80-120			
LCS Dup									
Acetone	56.0		ug/L	50.00	112	70-130	0.09	20	
Benzene	10.3		ug/L	10.00	103	70-130	0.6	20	
Ethylbenzene	10.3		ug/L	10.00	103	70-130	0.8	20	
Methyl tert-Butyl Ether	10.9		ug/L	10.00	109	70-130	0.8	20	
Tertiary-butyl Alcohol	81.0		ug/L	50.00	162	70-130	0.07	25	В-
Toluene	10.2		ug/L	10.00	102	70-130	0.5	20	
Xylene O	10.5		ug/L	10.00	105	70-130	0.9	20	
Xylene P,M	20.6		ug/L	20.00	103	70-130	0	20	
Surrogate: 1,2-Dichlorobenzene-d4	5.46		ug/L	5.000	109	80-120			
Surrogate: 4-Bromofluorobenzene	5.17		ug/L	5.000	103	80-120			

625(SIM) Semi-Volatile Organic Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CB82808 - 3510C

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	ND	2.20	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.76		ug/L	2.500	70	30-130	
Surrogate: 2,4,6-Tribromophenol	2.58		ug/L	3.750	69	15-110	
Surrogate: 2-Fluorobiphenyl	1.82		ug/L	2.500	<i>73</i>	30-130	
Surrogate: Nitrobenzene-d5	2.26		ug/L	2.500	90	30-130	
Surrogate: p-Terphenyl-d14	2.20		ug/L	2.500	88	30-130	
LCS							
Acenaphthene	2.46	0.20	ug/L	4.000	61	40-140	
Acenaphthylene	2.72	0.20	ug/L	4.000	68	40-140	
Anthracene	2.58	0.20	ug/L	4.000	64	40-140	
Benzo(a)anthracene	2.76	0.05	ug/L	4.000	69	40-140	
Benzo(a)pyrene	2.88	0.05	ug/L	4.000	72	40-140	
Benzo(b)fluoranthene	3.06	0.05	ug/L	4.000	76	40-140	
Benzo(g,h,i)perylene	3.51	0.20	ug/L	4.000	88	40-140	
Benzo(k)fluoranthene	2.55	0.05	ug/L	4.000	64	40-140	
bis(2-Ethylhexyl)phthalate	3.34	2.50	ug/L	4.000	84	40-140	
Butylbenzylphthalate	3.60	2.50	ug/L	4.000	90	40-140	
Chrysene	2.76	0.05	ug/L	4.000	69	40-140	
Dibenzo(a,h)Anthracene	3.14	0.05	ug/L	4.000	78	40-140	
Diethylphthalate	2.86	2.50	ug/L	4.000	72	40-140	
Dimethylphthalate	2.85	2.50	ug/L	4.000	71	40-140	
Di-n-butylphthalate	3.35	2.50	ug/L	4.000	84	40-140	
Di-n-octylphthalate	3.36	2.50	ug/L	4.000	84	40-140	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

3atch CB82808 - 3510C								
Fluoranthene	3.01	0.20	ug/L	4.000	75	40-140		
Fluorene	2.75	0.20	ug/L	4.000	69	40-140		
ndeno(1,2,3-cd)Pyrene	3.48	0.05	ug/L	4.000	87	40-140		
laphthalene	2.20	0.20	ug/L	4.000	55	40-140		
Phenanthrene	2.69	0.20	ug/L	4.000	67	40-140		
yrene	2.99	0.20	ug/L	4.000	75	40-140		
Surrogate: 1,2-Dichlorobenzene-d4	1.22		ug/L	2.500	49	30-130		
Surrogate: 2,4,6-Tribromophenol	2.81		ug/L	3.750	<i>75</i>	15-110		
urrogate: 2-Fluorobiphenyl	1.44		ug/L	2.500	57	30-130		
Gurrogate: Nitrobenzene-d5	1.80		ug/L	2.500	72	30-130		
Surrogate: p-Terphenyl-d14	1.98		ug/L	2.500	<i>79</i>	30-130		
CS Dup								
cenaphthene	2.61	0.20	ug/L	4.000	65	40-140	6	20
cenaphthylene	2.87	0.20	ug/L	4.000	72	40-140	5	20
nthracene	2.69	0.20	ug/L	4.000	67	40-140	4	20
enzo(a)anthracene	2.78	0.05	ug/L	4.000	70	40-140	0.7	20
enzo(a)pyrene	3.04	0.05	ug/L	4.000	76	40-140	5	20
enzo(b)fluoranthene	3.06	0.05	ug/L	4.000	76	40-140	0.06	20
enzo(g,h,i)perylene	3.68	0.20	ug/L	4.000	92	40-140	5	20
enzo(k)fluoranthene	2.87	0.05	ug/L	4.000	72	40-140	12	20
is(2-Ethylhexyl)phthalate	3.46	2.50	ug/L	4.000	87	40-140	4	20
utylbenzylphthalate	3.73	2.50	ug/L	4.000	93	40-140	4	20
hrysene	2.84	0.05	ug/L	4.000	71	40-140	3	20
ibenzo(a,h)Anthracene	3.26	0.05	ug/L	4.000	81	40-140	4	20
iethylphthalate	3.02	2.50	ug/L	4.000	75	40-140	5	20
imethylphthalate	2.96	2.50	ug/L	4.000	74	40-140	4	20
i-n-butylphthalate	3.55	2.50	ug/L	4.000	89	40-140	6	20
i-n-octylphthalate	3.60	2.50	ug/L	4.000	90	40-140	7	20
luoranthene	3.18	0.20	ug/L	4.000	79	40-140	5	20
luorene	2.86	0.20	ug/L	4.000	71	40-140	4	20
ndeno(1,2,3-cd)Pyrene	3.58	0.05	ug/L	4.000	90	40-140	3	20
aphthalene	2.37	0.20	ug/L	4.000	59	40-140	7	20
henanthrene	2.81	0.20	ug/L	4.000	70	40-140	4	20
yrene	3.09	0.20	ug/L	4.000	77	40-140	3	20
Currogate: 1,2-Dichlorobenzene-d4	1.45		ug/L	2.500	58	30-130		
urrogate: 2,4,6-Tribromophenol	3.55		ug/L	3.750	95	15-110		
urrogate: 2-Fluorobiphenyl	1.61		ug/L	2.500	65	30-130		
urrogate: Nitrobenzene-d5	1.98		ug/L	2.500	<i>79</i>	30-130		
urrogate: p-Terphenyl-d14	2.13		ug/L	2.500	<i>85</i>	30-130		

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

atch	CC80653	-	3535A

 Blank

 1,4-Dioxane
 ND
 0.250
 ug/L

 Surrogate: 1,4-Dioxane-d8
 ND
 ug/L
 5.000
 40
 15-115

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data												
Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier		
	8270D(SIM)	Semi-Volatile	Organic Co	ompounds	w/ Isoto	pe Diluti	on					
Batch CC80653 - 3535A												
LCS												
1,4-Dioxane	10.8	0.250	ug/L	10.00		108	40-140					
Surrogate: 1,4-Dioxane-d8	2.63		ug/L	5.000		53	<i>15-115</i>					
LCS Dup												
1,4-Dioxane	10.1	0.250	ug/L	10.00		101	40-140	7	20			
Surrogate: 1,4-Dioxane-d8	2.76		ug/L	5.000		55	15-115					
	62	5(SIM) Polyn	uclear Aror	natic Hyd	rocarbons	5						
Batch CB82808 - 3510C												
Blank	<u> </u>											
2-Methylnaphthalene	ND	0.20	ug/L									
Surrogate: 1,2-Dichlorobenzene-d4	1.76		ug/L	2.500		70	30-130					
Surrogate: 2-Fluorobiphenyl	1.82		ug/L	2.500		73	30-130					
Surrogate: Nitrobenzene-d5	2.26		ug/L	2.500		90	30-130					
Surrogate: p-Terphenyl-d14	2.20		ug/L	2.500		88	30-130					
LCS												
2-Methylnaphthalene	2.27	0.20	ug/L	4.000		57	40-140					
Surrogate: 1,2-Dichlorobenzene-d4	1.22		ug/L	2.500		49	30-130					
Surrogate: 2-Fluorobiphenyl	1.44		ug/L	2.500		<i>57</i>	30-130					
Surrogate: Nitrobenzene-d5	1.80		ug/L	2.500		<i>72</i>	30-130					
Surrogate: p-Terphenyl-d14	1.98		ug/L	2.500		79	30-130					
LCS Dup												
2-Methylnaphthalene	2.43	0.20	ug/L	4.000		61	40-140	7	20			
Surrogate: 1,2-Dichlorobenzene-d4	1.45		ug/L	2.500		58	30-130					
Surrogate: 2-Fluorobiphenyl	1.61		ug/L	2.500		65	30-130					
Surrogate: Nitrobenzene-d5	1.98		ug/L	2.500		<i>79</i>	30-130					
Surrogate: p-Terphenyl-d14	2.13		ug/L	2.500		85	30-130					
		Cl	assical Che	mistry								
Batch CB82832 - General Preparation												
Blank												
Hexavalent Chromium	ND	10.0	ug/L									
LCS												
Hexavalent Chromium	0.494		mg/L	0.4998		99	90-110					
LCS Dup												
Hexavalent Chromium	0.493		mg/L	0.4998		99	90-110	0.2	20			
Batch CB82836 - General Preparation												
Blank												
Total Residual Chlorine	ND	20.0	ug/L									
LCS												
Total Residual Chlorine	1.80		mg/L	1.800		100	85-115					

Batch CC80113 - General Preparation

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cl	assical Che	mistry		· · ·				
Batch CC80113 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	34		mg/L	34.10		100	80-120			
Batch CC80211 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.2	5.00	ug/L	20.06		101	90-110			
LCS										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110			
LCS Dup										
Total Cyanide (LL)	149	5.00	ug/L	150.4		99	90-110	0.4	20	
Batch CC80228 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	104	100	ug/L	100.0		104	80-120			
LCS										
Phenols	1040	100	ug/L	1000		104	80-120			
Batch CC80507 - NH4 Prep										
Blank										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.09	0.10	mg/L	0.09994		87	80-120			
LCS										
Ammonia as N	1.02	0.10	mg/L	0.9994		102	80-120			
Batch CC80510 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	14	5	mg/L	19.38		73	66-114			
Batch CC80524 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.4		mg/L	2.500		97	90-110			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

Notes and Definitions

IJ	Analyte	included	in the analy	vsis, but	not detected

HT The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

CD+ Continuing Calibration %Diff/Drift is above control limit (CD+).

B+ Blank Spike recovery is above upper control limit (B+).

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference Method Detection Limit MDL MRL Method Reporting Limit LOD Limit of Detection Limit of Quantitation LOQ **Detection Limit** DL I/V Initial Volume F/V Final Volume

Subcontracted analysis; see attached report

1 Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range.

Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average.

Avg Results reported NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RL Reporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1802608

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

> Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

> > Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486

Service

ESS Laboratory Sample and Cooler Receipt Checklist

Client	тт	oto and Have	and MI /MI			ESS Pro	ant ID:	1802608	
Ciletti.		ata and How	CICI - IVILLIVIE				ceived:	2/28/2018	
Shinned/De	elivered Via:	F	SS Courier				e Date:		
Omppearo	chivered via.	-	CO OCUMEN			Days for F	Project:	5 Day	
	anifest prese		[No		6. Does COC ma	atch bottles?		Yes
2. Were cu	stody seals p	resent?	[No		7. Is COC compl	ete and correct?		Yes
3. Is radiati	on count <10	0 CPM?	[Yes		8. Were samples	received intact?		Yes
	ler Present?	Iced with:	lce [NĀ		9. Were labs in	formed about <u>st</u>	ort holds & rushes?	Yes/No/NA
	2.6 C signed and			Yes		10. Were any a	nalyses received	outside of hold time?	Yes /(No)
	ocontracting r Sample IDs: Analysis: TAT:	needed?		/No			received? a aqueous VOAs? of cover soil com		Yes / No Yes (No / NA Yes / No / NA
a. If metals b. Low Lev	e samples pro preserved u rel VOA vials ceiving Notes	pon receipt: frozen:	ved?	/ No Date: _ Date: _		Time:		By:	<u>-</u>
	ere a need to	contact Procontact the c		er? Date: _	Yes (No) Yes / No	Time:		Ву:	
a. Was the	ere a need to				Yes / No	Time:		Ву:	
a. Was the	ere a need to				Yes / No		Preservative	Record pH (C	yanide and 608 icides)
a. Was the Who was c	cre a need to ontacted? Container	contact the c	Air Bubbles	Date: _	Yes / No	er Type		Record pH (C	yanide and 608
a. Was the Who was c	container ID 205480	Proper Container	Air Bubbles Present	Sufficient Volume Yes	Yes / No Contain	er Type	Preservative	Record pH (C	yanide and 608
Sample Number	Container ID 205480 205481	Proper Container Yes Yes	Air Bubbles Present No	Sufficient Volume Yes Yes	Contain VOA Via	er Type	Preservative HCI	Record pH (C	yanide and 608
Sample Number	Container ID 205480 205481 205482	Proper Container Yes Yes Yes	Air Bubbles Present No No No	Sufficient Volume Yes Yes Yes	Contain VOA Vie VOA Vie VOA Vie	er Type ai - HCI ai - HCI	Preservative HCI HCI HCI	Record pH (C	yanide and 608
Sample Number 01 01 01 01	Container ID 205480 205481 205482 205483	Proper Container Yes Yes Yes Yes Yes Yes	Air Bubbles Present No No No No	Sufficient Volume Yes Yes Yes Yes	Contain VOA Vii VOA Vii VOA Vii VOA Vii	er Type al - HCl al - HCl al - HCl al - HCl	Preservative HCI HCI HCI HCI	Record pH (C	yanide and 608
Sample Number 01 01 01 01 01	Container ID 205480 205481 205482 205483 205484	Proper Container Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present No No No No	Sufficient Volume Yes Yes Yes Yes Yes	Contain VOA Vii VOA Vii VOA Vii VOA Vii VOA Vii	er Type al - HCl	Preservative HCI HCI HCI HCI HCI	Record pH (C	yanide and 608
Sample Number 01 01 01 01 01 01	Container ID 205480 205481 205482 205483 205484 205485	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes	Contain VOA Vii VOA Vii VOA Vii VOA Vii VOA Vii VOA Vii	er Type al - HCl	Preservative HCI HCI HCI HCI HCI HCI	Record pH (C	yanide and 608
Sample Number 01 01 01 01 01 01 01	Container ID 205480 205481 205482 205483 205484 205485 205486	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present No No No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Contain VOA Via VOA Via VOA Via VOA Via VOA Via VOA Via L Amber	er Type al - HCl	Preservative HCI HCI HCI HCI HCI HCI HCI HCI HCI	Record pH (C	yanide and 608
a. Was the Who was common of the Number Sample Number 01	Container ID 205480 205481 205482 205483 205484 205485 205486 205487	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present No No No No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Contain VOA Via VOA Via VOA Vii VOA Vii VOA Vii L Amber 1L Amber	er Type al - HCl - HCl - HCl	Preservative HCI HCI HCI HCI HCI HCI HCI HCI HCI HC	Record pH (C	yanide and 608
Sample Number 01 01 01 01 01 01 01 01 01 01 01	Container ID 205480 205481 205482 205483 205484 205485 205486 205487 205490	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present No No No No No No No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Contain VOA Via VOA Via VOA Via VOA Via VOA Via L Amber 1L Amber 1L Amber	er Type al - HCl - HCl - HCl - H2SO4 - H2SO4 - Unpres	Preservative HCI HCI HCI HCI HCI HCI HCI HCI HCI NP	Record pH (C	yanide and 608
a. Was the Who was common of the Number O1	Container ID 205480 205481 205483 205484 205485 205486 205487 205490 205491	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present No No No No No No No No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Contain VOA Via VOA Via VOA Via VOA Via VOA Via L Amber 1L Amber	er Type al - HCl - H2SO4 - H2SO4 - Unpres	Preservative HCI HCI HCI HCI HCI HCI HCI NCI HCI HCI NP NP	Record pH (C	yanide and 608
Sample Number 01 01 01 01 01 01 01 01 01 01 01	Container ID 205480 205481 205482 205483 205484 205485 205486 205487 205490	Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present No No No No No No No No No No No	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Contain VOA Via VOA Via VOA Via VOA Via VOA Via L Amber 1L Amber	er Type al - HCl - H2SO4 - H2SO4 - Unpres - Unpres	Preservative HCI HCI HCI HCI HCI HCI HCI HCI HCI NP	Record pH (C	yanide and 608

2nd Review Are barcode labels on correct containers?

205494

205495

205496

205497

205498

205499

NA

NΑ

NA

NA

NΑ

NA

Yes

250 mL Poly - HNO3

500 mL Poly - HNO3

250 mL Poly - NaOH

500 mL Poly - H2SO4 250 mL Poly - Unpres 1L Poly - Unpres HNO3

HNO3

NaOH

H2SO4

NP

NP

01

01

01

01

01

01

pH>12 2/28/18 1900 QL

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tata and Howard - ML/ML		ESS Project ID: Date Received:	1802608 2/28/2018	_
Ву:		Date & Time:	2/28/18	1565	-
Reviewed By:		Date & Time:			_
Delivered					
Ву:					

changes ma	ade 3/6/18 - ML		ESS LAB PROJECT ID
ESS Laboratory	CHAIN OF CUSTO	DY	1802608
Division of Thielsch Engineering, Inc.	Turn Time Standard Rush	Approved By:	Reporting Limits - DPDES MGPMLS
185 Frances Avenue, Cranston, RI 02910-2211	State where samples were collected: MA NH		Discharge into: Fresh Water 🛛 Salt Water 🗆
Tel. (401) 461-7181 Fax (401) 461-4486	Is this project for:	Electonic Deliverable	Yes No 3
www.esslaboratory.com	RGP	Format: Excel Acce	ess PDF Other
Project Manager: Desek M Company: Taka & Hayard Address: 67 Forest St May brough, MA	Project # 55/7 Project Name: Lary land 2017 Later Main PO#	A A Disso	Total Cyanide 4500 LL Total Cyanide 4500 LL TPH 1664 TSS 2540D* TRC 4500-CL D* Ammonia 350.1 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Phenol 420.1 (LOX) - IL Lox Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Phenol 420.1 (LOX) - IL Lox Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Phenol 4500-1 (LOX) - IL Lox Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Tri Cr (Calc. MUST run T. Cr) Hex Cr 3500 Tri Cr (Calc. MUST run T. Cr) Tri Cr (Calc. MUST run T. C
ESS Lab Date Collection Grab -G Sample ID Time Composite-	Matrix Sample Identification	Container Bardness RGP Metals I Hardness CE Ethanol A	Chloride 30 Total Cyani TPH 1664 TSS 25400 TRC 4500- TRC 4500- TRC Calc Hex Cr 356 Phenol 420 RGP VOC 1,4-Dioxan EDB 504.1 RGP SVO PCB 608
	GW 268 BPR SB4	22 Y Y	X X X X X X X X X X X X X X X X X X X
2-25-15 10:30 5			
Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3,			1 5 3 1 1 3 - 1 3 2 1 2 1 1 P P AG P P P - P AG V AG AG
Container Type: P-Poly G-Glass AG-Amber Glass S-S	Sterile V-VOA		P P AG P P P - P AG V AG V AGAG
	GW-Groundwater SW-Surface Water DW-Drinking Water O-Sampled by :	Oil w-wipes r-ritter	
Cooler Present Yes No NA: Yes No NA: Yes Cooler Temperature: 100 +0 WP 2.6 Relinquished by: (Signature) Pate/Time 2/2//// 13	Comments: 1) RGP Metals include Sb, As, Cd, (2) Parameters in BOLD have Short hold-time * TSS, TRC and Cl taken from the same cont Received by. (Signature) Relinquished by	PERMIT ATTACK ainer 3 NON La gyenary (Signature) 2 1 × 100 Pare (Time	VOCST SUDC 1:55 + MT KF + 1ert-12/19/1 to 160
Retinquished by: (Signature) Date/Time		y (signature)	Receiled by (Signature) Page of

ESS L	aborato	ry	CHAIN OF CUSTODY ESS LAB PROJECT ID Solve Standard Rush Approved By: Reporting Limits - UP DE S M																								
	f Thielsch E			Turn Time	e _ O	Standard	d Rush	n App	roved By	/:					_				nits	- L	PI	OF.					
	Avenue, Cran 461-7181 F			State whe	re samples	s were colle	cted: M.	A) NH							D	ischa	rge i	nto:	Fre	esh V	Vater	M	Salt	Wate	er L		
	aboratory.co		101-4400	Is this pro		RGP			1000000	ctonic mat: I				e Acce		Yes	PDF		No_ Ot	her_	17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ì	nhal			
F Company: Address: _	Project Manage Take 8 67 Foot May 1680	est St	ek Me	Clello		Project #	551	Figland Main mprovence	nk>	Analysis	etals Total	etals Dissolved	ness (Calculation)	nol ASTM D3695	Chloride 300.0*	664	2540D*	4500-CL D*	350.1	(Calc. MUST run T. Cr)	Hex Cr 3500	VOC Languist 524	1,4-Dioxane 8270-SIM	EDB 504.1 1017-Ha Cop	808	Comment #	
ESS Lab	Date	Collection Time	Grab -G Composite-C	Matrix		Sampl	le Identific	ation	1000	# of ntainers	RGP M	RGP Me	Hardness	Ethanol	Chloride	TPH	TSS	TRC.	Ammonia	Tri Cr	Phen	RGP	1,4-D	EDB	PCB 608	Ц	
Sample ID	2-25-15	10:30	G	6W	268 B	PR SI	B4			22	X		χ		XO	1 1	' a	X	A		(X	3	X	X D	(1,2	34
							· · · · · · · · · · · · · · · · · · ·							-	+	+	-			-	+	+	H	+	+	Н	
											-			\dashv	+	+	+			-	+			+	+	Н	
														1	+	+	t				+			1		Н	
																1											
																I											
																-						-		_	-		
															+	+	-	-			+	+		-	+		
	Code: 1-NP, 2-	HCI 2 H260	4 A UNIO2 5	NaOH 6 Ma	OH 7-Asorb	hie Acid 8-7r	Act 9-				4	4	4	1	1	5 3	3 1	1	3	-	1 .	3 2	1	2	1 1		
	pe: P-Poly G-G					ore Acid, 6-23	(ACC,)				P	-	_	٧		PA	_	_	-			G V	_	V	GAG	•	
Matrix: S-So	oil SD-Solid D-	Sludge WW-	Wastewater G	W-Groundwa	ater SW-Sur	face Water D	W-Drinkin	ng Water O-Oil V	W-Wipes F	-Filter																	-
	esent 🗸	7.00	No	Sampled	by: 51	707						III.))								2.1.5			- 1		100	1,
Seals Inta	ctYes	No N	IA: 🔀	Commen	its: 1) RGF	P Metals in	clude Sb	, As, Cd, Cu, I	Fe, Pb, N	i, Se, A	Ag'a	ind T A	Zn l	by 2	.00.7 HET	/31	13B 4)	and	Hg -Bu	by	145.	hol	ML	Mush	be 5	=120	19/1
Cooler Te	mperayure:	Ice temp	2. 2.6	2 / 1 th this	icters in is	0 22 1101		same containe	- 1	NON	Ha	04	on	41	1/12	Ls	t's	UD	1	list	571	MID	ET	·ler	+-B	uty	Akid
Relinquished b			Date/Time	Received by:	(Signature)	1	8/K	Relinquished by (Sign	(nature)			126/	Date 8	/Time	8:0	7	2	S		-7	1/28	y (Sig		85	\$		-
Rel/hquished b	y: (Signature)		Date/Time	Received by:				Relinquished by: (Sig					Dail		ni -							0			-,]
					Please F	E-mail all c	hanges	to Chain of C	ustody in	n writi	ir										Pa	ge .	1	_ of	1	_	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Derek McClellan Tata and Howard 67 Forest Street Marlborough, MA 01752 This lab report includes the analytical results for 338 BPR (MW-3), as indicated in Table 3.

RE: Wayland Water Main Improvements - RGP (5517) ESS Laboratory Work Order Number: 1803430

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

Laurel Stoddard Laboratory Director

REVIEWED

By ESS Laboratory at 4:48 pm, Mar 28, 2018

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of integration because it produces more accurate results.

The test results present in this report are in compliance with TNI and relative state standards, and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

SAMPLE RECEIPT

The following samples were received on March 21, 2018 for the analyses specified on the enclosed Chain of Custody Record.

The samples and analyses listed below were analyzed in accordance with the 2017 Remediation General Permit under the National Pollutant Discharge Elimination System (NPDES).

ESS Laboratory is unable to achieve the required detection limit of 0.4 mg/L for Ethanol for the RGP permit. We have also been unable to procure a subcontract laboratory that is able to achieve this limit. The data for Ethanol has been reported using our current method reporting limit.

Lab Number 1803430-01 Sample Name MW-3 Matrix Ground Water **Analysis**

1664A, 200.7, 245.1, 2540D, 300.0, 3113B, 350.1, 3500Cr B-2009, 420.1, 4500 CN CE, 4500Cl D, 524.2, 625 SIM, 8270D SIM, ASTM D3695

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

PROJECT NARRATIVE

524.2 Volatile Organic Compounds

1803430-01 Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).

1,2-Dichlorobenzene-d4 (211% @ 80-120%)

625(SIM) Semi-Volatile Organic Compounds

C8C0364-CCV2 Calibration required quadratic regression (Q).

Pentachlorophenol (122% @ 80-120%)

C8C0364-CCV2 Continuing Calibration %Diff/Drift is above control limit (CD+).

Pentachlorophenol (22% @ 20%)

Classical Chemistry

1803430-01 The maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and

Residual Chlorine is fifteen minutes.

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

To ensure you are viewing the most current version of the documents below, please clear your internet cookies for www.ESSLaboratory.com. Consult your IT Support personnel for information on how to clear your internet cookies.

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

Dependability

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Units: ug/L

Extraction Method: 3005A/200.7

Total Metals

Analyte	Results (MRL)	MDL Me	thod Limit	<u>DF</u>	Analyst	Analyzed	I/V	F/V	Batch
Antimony	ND (1.5)	311	3B	3	KJK	03/22/18 22:4	2 100	10	CC82106
Arsenic	13.4 (1.5)	311	3B	3	KJK	03/22/18 17:1	5 100	10	CC82106
Cadmium	ND (0.08)	311	3B	3	KJK	03/23/18 14:2	7 100	10	CC82106
Chromium	ND (2.0)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106
Chromium III	ND (10.0)	200).7	1	EEM	03/22/18 11:5	3 1	1	[CALC]
Copper	ND (2.0)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106
Hardness	156000 (499)	200).7	10	KJK	03/22/18 14:4	2 1	1	[CALC]
Iron	39100 (10.0)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106
Lead	ND (1.5)	311	3B	3	KJK	03/22/18 19:0	5 100	10	CC82106
Mercury	ND (0.200)	24:	5.1	1	MJV	03/22/18 12:0	7 20	40	CC82108
Nickel	ND (5.0)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106
Selenium	ND (3.0)	311	3B	3	KJK	03/22/18 20:4	9 100	10	CC82106
Silver	1.9 (0.5)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106
Zinc	23.4 (5.0)	200).7	1	KJK	03/22/18 11:5	3 100	10	CC82106

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A Initial Volume: 25 Final Volume: 25

Extraction Method: 524.2

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Units: ug/L Analyst: DMC

524.2 Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acetone	ND (5.0)	· 	524.2	<u> </u>	1	03/22/18 14:17	C8C0327	CC82302
Benzene	14.0 (0.5)		524.2		1	03/22/18 14:17	C8C0327	CC82302
Ethylbenzene	365 (25.0)		524.2		50	03/22/18 16:35	C8C0327	CC82302
Methyl tert-Butyl Ether	0.5 (0.5)		524.2		1	03/22/18 14:17	C8C0327	CC82302
Tertiary-amyl methyl ether	ND (1.0)		524.2		1	03/22/18 14:17	C8C0327	CC82302
Tertiary-butyl Alcohol	ND (25.0)		524.2		1	03/22/18 14:17	C8C0327	CC82302
Toluene	22.8 (0.5)		524.2		1	03/22/18 14:17	C8C0327	CC82302
Xylene O	126 (25.0)		524.2		50	03/22/18 16:35	C8C0327	CC82302
Xylene P,M	1650 (25.0)		524.2		50	03/22/18 16:35	C8C0327	CC82302
	0/	Recovery	Qualifier	Limits				

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichlorobenzene-d4	211 %	SM	80-120
Surrogate: 4-Bromofluorobenzene	110 %		80-120

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A Initial Volume: 800 Final Volume: 0.25

Extraction Method: 3510C

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Units: ug/L Analyst: IBM

Prepared: 3/26/18 11:37

625(SIM) Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Acenaphthene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Acenaphthylene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Anthracene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Benzo(a)anthracene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Benzo(a)pyrene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Benzo(b)fluoranthene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Benzo(g,h,i)perylene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Benzo(k)fluoranthene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
bis(2-Ethylhexyl)phthalate	ND (1.88)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Butylbenzylphthalate	ND (3.12)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Chrysene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Dibenzo(a,h)Anthracene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Diethylphthalate	ND (3.12)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Dimethylphthalate	ND (3.12)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Di-n-butylphthalate	5.80 (3.12)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Di-n-octylphthalate	ND (3.12)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Fluoranthene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Fluorene	0.48 (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Indeno(1,2,3-cd)Pyrene	ND (0.06)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Naphthalene	120 (2.50)		625 SIM		10	03/27/18 12:09	C8C0364	CC82610
Pentachlorophenol	ND (0.62)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Phenanthrene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
Pyrene	ND (0.25)		625 SIM		1	03/27/18 0:33	C8C0364	CC82610
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		65 %		<i>30-130</i>				
Surrogate: 2,4,6-Tribromophenol		84 %		15-110				
Surrogate: 2-Fluorobiphenyl		59 %		30-130				

Surrogate: Nitrobenzene-d5 95 % 30-130 Surrogate: p-Terphenyl-d14 81 % 30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A Initial Volume: 500 Final Volume: 0.5

Extraction Method: 3535A

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Units: ug/L Analyst: VSC

Prepared: 3/22/18 15:40

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

Analyte	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
1,4-Dioxane	ND (0.250)		8270D SIM		1	03/22/18 20:48	C8C0321	CC82246
	%	Recovery	Qualifier	Limits				
Surrogate: 1,4-Dioxane-d8		30 %		15-115				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Classical Chemistry

Analyte Ammonia as N	Results (MRL) 2.18 (0.10)	MDL <u>Method</u> 350.1	Limit	DF	Analyst EEM	Analyzed 03/27/18 14:59	Units mg/L	Batch CC82612
Chloride	237 (50.0)	300.0		100	EEM	03/21/18 14:50	mg/L	CC82102
Hexavalent Chromium	ND (10.0)	3500Cr B-2009		1	EEM	03/21/18 14:10	ug/L	CC82138
Phenols	ND (100)	420.1		1	JLK	03/26/18 17:56	ug/L	CC82643
Total Cyanide (LL)	ND (5.00)	4500 CN CE		1	EEM	03/26/18 11:40	ug/L	CC82616
Total Petroleum Hydrocarbon	ND (5)	1664A		1	LAB	03/26/18 13:55	mg/L	CC82206
Total Residual Chlorine	ND (20.0)	4500Cl D		1	EEM	03/21/18 14:40	ug/L	CC82137
Total Suspended Solids	23 (5)	2540D		1	JLK	03/23/18 20:16	mg/L	CC82334

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP

Client Sample ID: MW-3 Date Sampled: 03/21/18 09:45

Percent Solids: N/A
Initial Volume: 1
Final Volume: 1

Extraction Method: No Prep

ESS Laboratory Work Order: 1803430 ESS Laboratory Sample ID: 1803430-01

Sample Matrix: Ground Water

Units: mg/L Analyst: ZLC

Prepared: 3/27/18 10:00

Alcohol Scan by GC/FID

AnalyteResults (MRL)MDLMethodLimitDFAnalystAnalyzedSequenceBatchEthanolND (10)ASTM D36951ZLC03/27/18 12:01CC82702

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Result

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

%REC

%REC

Limits

RPD

Qualifier

RPD

Limit

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Analyte

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

MRL

Quality Control Data

Units

Spike

Level

Source

Result

Analyte	Result	MKL	UTILS	Level	Result	70KEC	LIIIIUS	KPD	LIIIIIL	Qualifier
			Total Meta	als						
Batch CC82106 - 3005A/200.7										
Blank										
Antimony	ND	0.5	ug/L							
Arsenic	ND	0.5	ug/L							
Cadmium	ND	0.02	ug/L							
Chromium	ND	2.0	ug/L							
Chromium III	ND	2.00	ug/L							
Copper	ND	2.0	ug/L							
Hardness	ND	82.4	ug/L							
Iron	ND	10.0	ug/L							
Lead	ND	0.5	ug/L							
Nickel	ND	5.0	ug/L							
Selenium	ND	1.0	ug/L							
Silver	ND	0.5	ug/L							
Zinc	ND	5.0	ug/L							
LCS										
Antimony	49.1	12.5	ug/L	50.00		98	85-115			
Arsenic	50.0	12.5	ug/L	50.00		100	85-115			
Cadmium	23.9	12.5	ug/L	25.00		96	85-115			
Chromium	48.3	2.0	ug/L	50.00		97	85-115			
Chromium III	48.3	2.00	ug/L							
Copper	53.9	2.0	ug/L	50.00		108	85-115			
lardness	3070	82.4	ug/L							
ron	227	10.0	ug/L	250.0		91	85-115			
ead	48.5	12.5	ug/L	50.00		97	85-115			
Nickel	46.0	5.0	ug/L	50.00		92	85-115			
Selenium	99.0	25.0	ug/L	100.0		99	85-115			
Silver	22.5	0.5	ug/L	25.00		90	85-115			
Zinc	47.9	5.0	ug/L	50.00		96	85-115			
.CS Dup										
Chromium III	47.2	2.00	ug/L							
Hardness	3140	82.4	ug/L							
Selenium	100	25.0	ug/L	100.0		100	85-115	1	20	
Batch CC82108 - 245.1/7470A										
Blank										
Mercury	ND	0.200	ug/L							
LCS										
Mercury	5.90	0.200	ug/L	6.000		98	85-115			
LCS Dup										
Mercury	5.98	0.200	ug/L	6.000		100	85-115	1	20	
Batch CC82138 - [CALC]										
Blank			_	_						
Chromium III	ND	10.0	ug/L							
.cs										

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

Total Metals

Batch CC82138 - [CALC]		
Chromium III	ND	ug/L
LCS Dup		
Chromium III	ND	ug/L

524.2 Volatile Organic Compounds

Batch CC82302 - 524.2									
Blank									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Methyl tert-Butyl Ether	ND	0.5	ug/L						
Tertiary-amyl methyl ether	ND	1.0	ug/L						
Fertiary-butyl Alcohol	ND	25.0	ug/L						
Foluene	ND	0.5	ug/L						
Kylene O	ND	0.5	ug/L						
Kylene P,M	ND	0.5	ug/L						
Surrogate: 1,2-Dichlorobenzene-d4	4.76		ug/L	5.000	95	80-120			
Surrogate: 4-Bromofluorobenzene	4.83		ug/L	5.000	97	80-120			
.cs									
Acetone	51.7		ug/L	50.00	103	70-130			
Benzene	10.6		ug/L	10.00	106	70-130			
Ethylbenzene	10.3		ug/L	10.00	103	70-130			
1ethyl tert-Butyl Ether	10.9		ug/L	10.00	109	70-130			
ertiary-amyl methyl ether	10.5		ug/L	10.00	105	70-130			
ertiary-butyl Alcohol	58.1		ug/L	50.00	116	70-130			
oluene	10.4		ug/L	10.00	104	70-130			
(ylene O	10.3		ug/L	10.00	103	70-130			
ylene P,M	20.1		ug/L	20.00	101	70-130			
Gurrogate: 1,2-Dichlorobenzene-d4	4.67		ug/L	5.000	93	80-120			
Gurrogate: 4-Bromofluorobenzene	4.62		ug/L	5.000	92	80-120			
CS Dup									
cetone	51.8		ug/L	50.00	104	70-130	0.2	20	
enzene	10.6		ug/L	10.00	106	70-130	0	20	
thylbenzene	10.4		ug/L	10.00	104	70-130	0.7	20	
Nethyl tert-Butyl Ether	10.8		ug/L	10.00	108	70-130	0.8	20	
Fertiary-amyl methyl ether	10.7		ug/L	10.00	107	70-130	2	20	
ertiary-butyl Alcohol	61.9		ug/L	50.00	124	70-130	6	25	
oluene	10.4		ug/L	10.00	104	70-130	0.5	20	
(ylene O	10.6		ug/L	10.00	106	70-130	2	20	
(ylene P,M	20.3		ug/L	20.00	102	70-130	0.9	20	
Surrogate: 1,2-Dichlorobenzene-d4	4.67		ug/L	5.000	93	80-120			
Surrogate: 4-Bromofluorobenzene	4.67		ug/L	5.000	93	80-120			

625(SIM) Semi-Volatile Organic Compounds

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Batch CC82610 - 3510C

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

Blank							
Acenaphthene	ND	0.20	ug/L				
Acenaphthylene	ND	0.20	ug/L				
Anthracene	ND	0.20	ug/L				
Benzo(a)anthracene	ND	0.05	ug/L				
Benzo(a)pyrene	ND	0.05	ug/L				
Benzo(b)fluoranthene	ND	0.05	ug/L				
Benzo(g,h,i)perylene	ND	0.20	ug/L				
Benzo(k)fluoranthene	ND	0.05	ug/L				
bis(2-Ethylhexyl)phthalate	ND	1.50	ug/L				
Butylbenzylphthalate	ND	2.50	ug/L				
Chrysene	ND	0.05	ug/L				
Dibenzo(a,h)Anthracene	ND	0.05	ug/L				
Diethylphthalate	ND	2.50	ug/L				
Dimethylphthalate	ND	2.50	ug/L				
Di-n-butylphthalate	ND	2.50	ug/L				
Di-n-octylphthalate	ND	2.50	ug/L				
Fluoranthene	ND	0.20	ug/L				
Fluorene	ND	0.20	ug/L				
Indeno(1,2,3-cd)Pyrene	ND	0.05	ug/L				
Naphthalene	ND	0.20	ug/L				
Pentachlorophenol	ND	0.50	ug/L				
Phenanthrene	ND	0.20	ug/L				
Pyrene	ND	0.20	ug/L				
Surrogate: 1,2-Dichlorobenzene-d4	1.47		ug/L	2.500	59	30-130	
Surrogate: 2,4,6-Tribromophenol	2.74		ug/L	3.750	73	15-110	
Surrogate: 2-Fluorobiphenyl	1.56		ug/L	2.500	62	30-130	
Surrogate: Nitrobenzene-d5	1.90		ug/L	2.500	76	30-130	
Surrogate: p-Terphenyl-d14	1.94		ug/L	2.500	78	30-130	
LCS							
Acenaphthene	2.44	0.20	ug/L	4.000	61	40-140	
Acenaphthylene	2.67	0.20	ug/L	4.000	67	40-140	
Anthracene	2.60	0.20	ug/L	4.000	65	40-140	
Benzo(a)anthracene	2.58	0.05	ug/L	4.000	64	40-140	
Benzo(a)pyrene	2.82	0.05	ug/L	4.000	71	40-140	
Benzo(b)fluoranthene	2.88	0.05	ug/L	4.000	72	40-140	
Benzo(g,h,i)perylene	3.48	0.20	ug/L	4.000	87	40-140	
Benzo(k)fluoranthene	2.58	0.05	ug/L	4.000	65	40-140	
bis(2-Ethylhexyl)phthalate	2.96	1.50	ug/L	4.000	74	40-140	
Butylbenzylphthalate	3.25	2.50	ug/L	4.000	81	40-140	
Chrysene	2.62	0.05	ug/L	4.000	65	40-140	
Dibenzo(a,h)Anthracene	3.07	0.05	ug/L	4.000	77	40-140	
Diethylphthalate	2.82	2.50	ug/L	4.000	70	40-140	
Dimethylphthalate	2.75	2.50	ug/L	4.000	69	40-140	
Di-n-butylphthalate	3.21	2.50	ug/L	4.000	80	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability ◆ Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

625(SIM) Semi-Volatile Organic Compounds

3atch CC82610 - 3510C									
i-n-octylphthalate	3.10	2.50	ug/L	4.000	77	40-140			
luoranthene	2.98	0.20	ug/L	4.000	75	40-140			
uorene	2.75	0.20	ug/L	4.000	69	40-140			
ndeno(1,2,3-cd)Pyrene	3.47	0.05	ug/L	4.000	87	40-140			
aphthalene	2.34	0.20	ug/L	4.000	58	40-140			
entachlorophenol	3.14	0.50	ug/L	4.000	79	30-130			
henanthrene	2.68	0.20	ug/L	4.000	67	40-140			
yrene	2.80	0.20	ug/L	4.000	70	40-140			
urrogate: 1,2-Dichlorobenzene-d4	1.43		ug/L	2.500	57	30-130			
urrogate: 2,4,6-Tribromophenol	2.77		ug/L	3.750	74	15-110			
iurrogate: 2-Fluorobiphenyl	1.64		ug/L	2.500	65	30-130			
Surrogate: Nitrobenzene-d5	2.00		ug/L	2.500	80	30-130			
Surrogate: p-Terphenyl-d14	2.16		ug/L	2.500	86	30-130			
CS Dup									
cenaphthene	2.60	0.20	ug/L	4.000	65	40-140	6	20	
cenaphthylene	2.87	0.20	ug/L	4.000	72	40-140	7	20	
nthracene	2.88	0.20	ug/L	4.000	72	40-140	10	20	
enzo(a)anthracene	2.90	0.05	ug/L	4.000	72	40-140	12	20	
enzo(a)pyrene	3.21	0.05	ug/L	4.000	80	40-140	13	20	
enzo(b)fluoranthene	3.37	0.05	ug/L	4.000	84	40-140	16	20	
enzo(g,h,i)perylene	3.90	0.20	ug/L	4.000	98	40-140	11	20	
enzo(k)fluoranthene	2.79	0.05	ug/L	4.000	70	40-140	8	20	
s(2-Ethylhexyl)phthalate	3.48	1.50	ug/L	4.000	87	40-140	16	20	
utylbenzylphthalate	3.87	2.50	ug/L	4.000	97	40-140	17	20	
hrysene	2.97	0.05	ug/L	4.000	74	40-140	13	20	
ibenzo(a,h)Anthracene	3.49	0.05	ug/L	4.000	87	40-140	13	20	
iethylphthalate	3.12	2.50	ug/L	4.000	78	40-140	10	20	
imethylphthalate	3.09	2.50	ug/L	4.000	77	40-140	12	20	
i-n-butylphthalate	3.68	2.50	ug/L	4.000	92	40-140	13	20	
i-n-octylphthalate	3.60	2.50	ug/L	4.000	90	40-140	15	20	
luoranthene	3.31	0.20	ug/L	4.000	83	40-140	10	20	
luorene	2.98	0.20	ug/L	4.000	75	40-140	8	20	
ndeno(1,2,3-cd)Pyrene	3.89	0.05	ug/L	4.000	97	40-140	11	20	
aphthalene	2.27	0.20	ug/L	4.000	57	40-140	3	20	
entachlorophenol	3.47	0.50	ug/L	4.000	87	30-130	10	20	
nenanthrene	3.01	0.20	ug/L	4.000	75	40-140	11	20	
rene	3.18	0.20	ug/L	4.000	79	40-140	13	20	
urrogate: 1,2-Dichlorobenzene-d4	1.20		ug/L	2.500	48	30-130			
urrogate: 2,4,6-Tribromophenol	3.70		ug/L	3.750	99	15-110			
urrogate: 2-Fluorobiphenyl	1.62		ug/L	2.500	65	30-130			
urrogate: Nitrobenzene-d5	2.19		ug/L	2.500	87	30-130			
urrogate: p-Terphenyl-d14	2.33		ug/L	2.500	93	30-130			

8270D(SIM) Semi-Volatile Organic Compounds w/ Isotope Dilution

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Analyte								KPD	LIIIIIL	Qualifier
	8270D(SIM) S	semi-voiaule	Organic Co	mpounas	s w/ Isoto	be Dilutio	JN			
Batch CC82246 - 3535A										
Blank										
1,4-Dioxane	ND	0.250	ug/L							
Surrogate: 1,4-Dioxane-d8	ND		ug/L	5.000		34	15-115			
LCS										
1,4-Dioxane	10.3	0.250	ug/L	10.00		103	40-140			
Surrogate: 1,4-Dioxane-d8	2.82		ug/L	5.000		56	15-115			
LCS Dup										
1,4-Dioxane	10.5	0.250	ug/L	10.00		105	40-140	2	20	
Surrogate: 1,4-Dioxane-d8	2.98		ug/L	5.000		60	15-115			
		Cla	assical Che	mistry						
Batch CC82102 - General Preparation										
Blank										
Chloride	ND	0.5	mg/L							
LCS										
Chloride	2.4		mg/L	2.500		98	90-110			
Batch CC82137 - General Preparation										
Blank										
Total Residual Chlorine	ND	20.0	ug/L							
LCS										
Total Residual Chlorine	1.80		mg/L	1.800		100	85-115			
Batch CC82138 - General Preparation										
Blank										
Hexavalent Chromium	ND	10.0	ug/L							
LCS										
Hexavalent Chromium	0.499		mg/L	0.4998		100	90-110			
LCS Dup										
Hexavalent Chromium	0.502		mg/L	0.4998		100	90-110	0.5	20	
Batch CC82206 - General Preparation										
Blank										
Total Petroleum Hydrocarbon	ND	5	mg/L							
LCS										
Total Petroleum Hydrocarbon	16	5	mg/L	19.38		82	66-114			
Batch CC82334 - General Preparation										
Blank										
Total Suspended Solids	ND	5	mg/L							
LCS										
Total Suspended Solids	30		mg/L	34.10		88	80-120			
Batch CC82612 - NH4 Prep										

Blank

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Quality Control Data

l	5 "			Spike	Source	0/ 550	%REC		RPD	0 110
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
		Cla	assical Che	mistry						
Batch CC82612 - NH4 Prep										
Ammonia as N	ND	0.10	mg/L							
LCS										
Ammonia as N	0.11	0.10	mg/L	0.09994		110	80-120			
LCS										
Ammonia as N	1.04	0.10	mg/L	0.9994		104	80-120			
Batch CC82616 - TCN Prep										
Blank										
Total Cyanide (LL)	ND	5.00	ug/L							
LCS										
Total Cyanide (LL)	20.0	5.00	ug/L	20.06		100	90-110			
LCS										
Total Cyanide (LL)	146	5.00	ug/L	150.4		97	90-110			
LCS Dup										
Total Cyanide (LL)	147	5.00	ug/L	150.4		97	90-110	0.4	20	
Batch CC82643 - General Preparation										
Blank										
Phenols	ND	100	ug/L							
LCS										
Phenols	104	100	ug/L	100.0		104	80-120			
LCS										
Phenols	1050	100	ug/L	1000		105	80-120			
		Alcoh	nol Scan by	GC/FID						
Batch CC82702 - No Prep										
Blank										
Ethanol	ND	10	mg/L							
LCS										
Ethanol	1360	10	mg/L	1007		135	60-140			
LCS Dup										
Ethanol	1160	10	mg/L	1007		115	60-140	16	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

Notes and Definitions

U	Analyte included in the analysis, but not detected
SM	Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Q	Calibration required quadratic regression (Q).

HTThe maximum holding time listed in 40 CFR Part 136 Table II for pH, Dissolved Oxygen, Sulfite and Residual

Chlorine is fifteen minutes.

D Diluted.

Continuing Calibration %Diff/Drift is above control limit (CD+). CD+

ND Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference **MDL** Method Detection Limit **MRL** Method Reporting Limit LOD Limit of Detection LOQ Limit of Quantitation **Detection Limit** DL Initial Volume I/V F/V

Final Volume

Subcontracted analysis; see attached report

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Avg Results reported as a mathematical average.

No Recovery NR

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

RLReporting Limit

EDL Estimated Detection Limit

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Tata and Howard

Client Project ID: Wayland Water Main Improvements - RGP ESS Laboratory Work Order: 1803430

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental_health/environmental_laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/dwp/partners/labCert.shtml

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

Pennsylvania: 68-01752 http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory-Accreditation-Program.aspx

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

http://www.ESSLaboratory.com

ESS Laboratory Sample and Cooler Receipt Checklist

•		
Client: Tata and Howard - ML/ML	ESS Project ID: 1803430	
	Date Received: 3/21/2018	
Shipped/Delivered Via: ESS Courier	Project Due Date: 3/28/2018	
	Days for Project: 5 Day	
1. Air bill manifest present? No NA NA	6. Does COC match bottles?	Yes
2. Were custody seals present? No	7. Is COC complete and correct?	Yes
3. Is radiation count <100 CPM? Yes	8. Were samples received intact?	Yes
4. Is a Cooler Present? Yes Temp: 4.8 Iced with: Ice	9. Were labs informed about <u>short holds & rushes</u> ?	Yes / No / NA
5. Was COC signed and dated by client? Yes	10. Were any analyses received outside of hold time?	Yes /No
11. Any Subcontracting needed? Yes / No. ESS Sample IDs: Analysis: TAT:	12. Were VOAs received?a. Air bubbles in aqueous VOAs?b. Does methanol cover soil completely?	Yes / No Yes / No Yes / No / NA
13. Are the samples properly preserved? a. If metals preserved upon receipt: b. Low Level VOA vials frozen: Oate: Date:	Time: By:	_
Sample Receiving Notes: ReC'd Clear Vials Gor Ethanol a	analysis A 3/2+ 18	
14. Was there a need to contact Project Manager? a. Was there a need to contact the client? Who was contacted? Date:	Time: By:	

Sample Number	-		Air Bubbles Present	Sufficient Volume	Container Type	Preservative	Record pH (Cyanide an Pesticides)	id 608
01	209939	Yes	No	Yes	VOA Vial - HCI	HC1		
01	209940	Yes	No	Yes	VOA Vial - HCI	HCI		
01	209941	Yes	No	Yes	VOA Vial - HCI	HCI		
01	209942	Yes	No	Yes	VOA Vial - HCI	HCI		
01	209943	Yes	No	Yes	VOA Vial - HCI	HCI		
01	209944	Yes	No	Yes	VOA Vial - HCI	HCI		
01	209945	Yes	NA	Yes	VOA Vial - Unpres	NP		
01	209946	Yes	NA	Yes	VOA Vial - Unpres	NP		
01	209947	Yes	NA	Yes	VOA Vial - Unpres	NP		
01	209948	Yes	NA	Yes	1L Amber - H2SO4	H2SQ4		
01	209949	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
01	209950	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
01	209951	Yes	NA	Yes	1L Amber - H2SO4	H2SO4		
01	209952	Yes	NA	Yes	1L Amber - Unpres	NP		
01	209953	Yes	NA	Yes	1L Amber - Unpres	NP		
01	209954	Yes	NA	Yes	1L Poly - Unpres	NP		
01	209955	Yes	NA	Yes	Other Poly - Unpres	NP		
01	209956	Yes	NA	Yes	250 mL Poly - H2SO4	H2SO4		
01	209957	Yes	NA	Yes	250 mL Poly - H2SO4	H2\$O4		
01	209958	Yes	NA	Yes	500 mL Poly - HNO3	HNO3		
01	209959	Yes	NA	Yes	250 mL Poly - HNO3	HNO3		
01	209960	Yes	NA	Yes	250 mL Poly - NaOH	NaOH	pH > 12 3/21/18 1221	ec.

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Tata and Howard - ML/ML		ESS Project ID:	1803430	
2nd Review			Date Received:	3/21/2018	
	pels on correct containers?	(Va)(Na			
A C Darcode lar	ces on correct cornanters?	(Yes) No			
Completed	~ 1				
Ву:		Date & Time:	32118	131)	
Reviewed					_
Ву:		Date & Time:	1914118	<u>1339</u>	
Delivered	$\Gamma(M)$		26.1	120	
Ву:	1 47000		JHIR.	(557	
			, ,	,	

	ESS Laboratory CHAIN OF CUSTODY Division of Thielsch Engineering, Inc. Turn Time Standard Rush Approved By:														١	3CT &C	34	ł30)		_				
	of Thielsch Avenue, Cra	_	-	Turn Time		andard Ru	\sim	Approve	i By:					R	epoi	ting	Lir	nits S	m	6.5		125	> . xx/.	iter [7
	461-7181				e samples wer	e collected:	AA NH													vater	-	- Sai	t ws	ter 1	
	aboratory.c			Is this proj					Electonic						_	PDF	-	_oV. Otl			<u> </u>				
					- In	<u>RGP</u>			Format:	EXC	eı		ACCE	SS	- -	Ur.	_	Ou T	ner_		3	_		\top	au
Company:	Project Mana Tada 4 67 Fores	Horand	Parlborox	j, ma		oject #55/- oject Name: Just Imm. Lifer Jun D#		<i>emits</i>	Analysis	ıtals Total	RGP Metals Dissolved	Hardness (Calculation)	Ethanol ASTM D3695	Chrotide 300.0	364	540D*	4500-CL D*	Ammonia 350.1	Tri Cr (Calc. MUST run T. Cr)	of 420.1 11.2011 14.1	a	oxane 8270-SIM	OD 770	RGP SVOC Log List 625-SIM	Comment #
ESS Lab Sample ID	Date	Collection Time	Grab -G Composite-C	Matrix		Sample Identifi	ication		# of Containers	RGP M	RGP Me	Hardr	Ethan	Total	TPH 1	TSS 2540D*	THC				_	1,4-Di	auz Funz	HGP.	
ì	3/21/15	9:45	6	G-	MW-3				22	X		X	X	46	X X	λ	<u>γ</u>	<u> </u>		()	N	X	K	X	1,
																				↓_	_		_		丄
																									\perp
					-																				\perp
										Γ															
																									T
					_														1						
				-																					
																									T
Preservation	Code: I-NP, 2-	HCl, 3-H2SO4	, 4-HNO3, 5-N	iaOH, 6-MeO	H. 7-Asorbic Aci	d, 8-ZnAct, 9		_	<u> </u>			_	1		_					1 3				1	
	pe: P-Poly G-C									P	Р	Р	٧	Ρſ	AC	P	Р	Р	-]	PA	G V	AG	V	AG A	G
					er SW-Surface W	ater DW-Drinki	ing Water O-	Oil W-Wip	es F-Filter																
Cooler Pre	sent 🛨	Yes _	No	Sampled b	=																				
Seals Intac	act YesNo NA: Comments: 1) RGP Metals include Sb, As, Cd, Cu, Fe, Pb, Ni													3B a	and	Hg	by 2	245.	l						
Cooler Te	2) Parameters in BOLD have Short hold-time						FIRE!				ACI			ላ <i>ድ</i>	TO	3.A	tar	LP.							
Relinquished by	: (Signature)		Date/Time	Received by: (S	Signature) 3)11)1	8 1100	Relingajéhed b		14/18 121				Time		7	Z	<u> </u>		Recei	ved by	: (Sigi) ا <u>م</u> ا		
Relinquished by	: (Signature)		Date/Time		Received by: (Signature) Relinquished by: (Signature)						Ī	Date	Time												

Page ____ of ____

Appendix E

DIVISION OF FISHERIES & WILDLIFE

1 Rabbit Hill Road, Westborough, MA 01581 p: (508) 389-6300 | f: (508) 389-7890

MASS.GOV/MASSWILDLIFE

Jack Buckley, Director

September 18, 2017

Molly Coughlin Tata & Howard, Inc 67 Forest Street Marlborough MA 01752

RE: Project Location: Boston Post Road

Project Description: 2018 Water Main Improvement Project

NHESP Tracking No.: 17-37121

Dear Commissioners & Applicant:

Thank you for submitting information regarding your project to the Natural Heritage & Endangered Species Program of the Massachusetts Division of Fisheries & Wildlife (the "Division").

Based on a review of the information that was provided and the information that is currently contained in our database, the Division has determined that this project, as currently proposed, **does not occur** within Estimated Habitat of Rare Wildlife or Priority Habitat as indicated in the Massachusetts Natural Heritage Atlas (14th Edition). Therefore, the project is not required to be reviewed for compliance with the rare wildlife species section of the Massachusetts Wetlands Protection Act Regulations (310 CMR 10.37, 10.59 & 10.58(4)(b)) or the MA Endangered Species Act Regulations (321 CMR 10.18). Any additional work beyond that shown on the site plans may require a filing with the Division.

Please note that this determination addresses only the matter of **rare** wildlife habitat and does not pertain to other wildlife habitat issues that may be pertinent to the proposed project. If you have any questions regarding this letter please contact Rebecca Gendreau, Endangered Species Review Assistant, at (508) 389-6357.

Sincerely,

Thomas W. French, Ph.D.

Thomas W. French

Assistant Director

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

IPaC Record Locator: 996-11256180 February 20, 2018

Subject: Consistency letter for the 'Wayland Water Main Improvements' project (TAILS

05E1NE00-2018-R-0762) under the revised February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects within the Range of the

Indiana Bat and Northern Long-eared Bat.

To whom it may concern:

The U.S. Fish and Wildlife Service (Service) has received your request dated to verify that the **Wayland Water Main Improvements** (Proposed Action) may rely on the concurrence provided in the revised February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat (PBO) to satisfy requirements under Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat.884, as amended; 16 U.S.C. 1531 *et seq.*).

Based on the information you provided (Project Description shown below), you have determined that the Proposed Action is within the scope and adheres to the criteria of the PBO, including the adoption of applicable avoidance and minimization measures, and may affect, but is <u>not likely to adversely affect</u> the endangered Indiana bat (*Myotis sodalis*) and/or the threatened Northern long-eared bat (*Myotis septentrionalis*). Consultation with the Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat. 884, as amended; 16 U.S.C. 1531 *et seq.*) is required.

This "may affect - not likely to adversely affect" determination becomes effective when the lead Federal action agency or designated non-federal representative uses it to ask the Service to rely on the PBO to satisfy the agency's consultation requirements for this project.

Please provide this consistency letter to the lead Federal action agency or its designated non-federal representative with a request for its review, and as the agency deems appropriate, to submit for concurrence verification through the IPaC system. The lead Federal action agency or designated non-federal representative should log into IPaC using their agency email account and click "Search by record locator". They will need to enter the record locator **996-11256180**.

For Proposed Actions that include bridge/structure removal, replacement, and/or maintenance activities: If your initial bridge/structure assessments failed to detect Indiana bats, but you later detect bats during construction, please submit the Post Assessment Discovery of Bats at Bridge/Structure Form (User Guide Appendix E) to this Service Office. In these instances, potential incidental take of Indiana bats may be exempted provided that the take is reported to the Service.

If the Proposed Action may affect any other federally-listed or proposed species and/or designated critical habitat, additional consultation between the lead Federal action agency and this Service Office is required. If the proposed action has the potential to take bald or golden eagles, additional coordination with the Service under the Bald and Golden Eagle Protection Act may also be required. In either of these circumstances, please advise the lead Federal action agency for the Proposed Action accordingly.

Project Description

The following project name and description was collected in IPaC as part of the endangered species review process.

Name

Wayland Water Main Improvements

Description

Between 234 and 376 Boston Post Rd, Wayland, MA. Dewatering during water main replacement in areas of known contamination from approximately July to November 2018.

Determination Key Result

Based on your answers provided, this project(s) may affect, but is not likely to adversely affect the endangered Indiana bat and/or the threatened Northern long-eared bat. Therefore, consultation with the U.S. Fish and Wildlife Service pursuant to Section 7(a)(2) of the Endangered Species Act of 1973 (ESA) (87 Stat. 884, as amended 16 U.S.C. 1531 *et seq.*) is required. However, also based on your answers provided, this project may rely on the concurrence provided in the revised February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects within the Range of the Indiana Bat and Northern Long-eared Bat.

Qualification Interview

- 1. Is the project within the range of the Indiana bat^[1]?
 - [1] See Indiana bat species profile

Automatically answered

No

- 2. Is the project within the range of the Northern long-eared bat^[1]?
 - [1] See Northern long-eared bat species profile

Automatically answered

Yes

- 3. Which Federal Agency is the lead for the action?
 - A) Federal Highway Administration (FHWA)
- 4. Are *all* project activities limited to non-construction^[1] activities only? (examples of non-construction activities include: bridge/abandoned structure assessments, surveys, planning and technical studies, property inspections, and property sales)
 - [1] Construction refers to activities involving ground disturbance, percussive noise, and/or lighting. No
- 5. Does the project include *any* activities that are **greater than** 300 feet from existing road/rail surfaces^[1]?
 - [1] Road surface is defined as the actively used [e.g. motorized vehicles] driving surface and shoulders [may be pavement, gravel, etc.] and rail surface is defined as the edge of the actively used rail ballast.

No

- 6. Does the project include *any* activities **within** 0.5 miles of an Indiana bat and/or NLEB hibernaculum^[1]?
 - [1] For the purpose of this consultation, a hibernaculum is a site, most often a cave or mine, where bats hibernate during the winter (see suitable habitat), but could also include bridges and structures if bats are found to be hibernating there during the winter.

No

7. Is the project located within a karst area?

No

- 8. Is there *any* suitable^[1] summer habitat for Indiana Bat or NLEB **within** the project action area^[2]? (includes any trees suitable for maternity, roosting, foraging, or travelling habitat)
 - [1] See the Service's <u>summer survey guidance</u> for our current definitions of suitable habitat.
 - [2] The action area is defined as all areas to be affected directly or indirectly by the Federal action and not merely the immediate area involved in the action (50 CFR Section 402.02). Further clarification is provided by the national consultation FAQs.

No

9. Does the project include maintenance of the surrounding landscape at existing facilities (e.g., rest areas, stormwater detention basins)?
No

10. Does the project include wetland or stream protection activities associated with compensatory wetland mitigation?

Yes

11. Does the project include slash pile burning?

No

- 12. Does the project include *any* bridge removal, replacement, and/or maintenance activities (e.g., any bridge repair, retrofit, maintenance, and/or rehabilitation work)?

 No
- 13. Does the project include the removal, replacement, and/or maintenance of *any* structure other than a bridge? (e.g., rest areas, offices, sheds, outbuildings, barns, parking garages, etc.)

No

14. Will the project involve the use of **temporary** lighting *during* the active season? *Yes*

15. Is there *any* suitable habitat **within** 1,000 feet of the location(s) where **temporary** lighting will be used?

Yes

16. Will the project install new or replace existing **permanent** lighting? *No*

17. Are *all* project activities that are **not associated with** habitat removal, tree removal/ trimming, bridge or structure removal, replacement, and/or maintenance, lighting, or use of percussives, limited to actions that DO NOT cause any stressors to the bat species, including as described in the BA/BO (i.e. activities that do not involve ground disturbance, percussive noise, temporary or permanent lighting, tree removal/trimming, nor bridge/ structure activities)?

Examples: lining roadways, unlighted signage, rail road crossing signals, signal lighting, and minor road repair such as asphalt fill of potholes, etc.

No

18. Will the project raise the road profile above the tree canopy?

No

19. Is the location of this project consistent with a No Effect determination in this key?

Automatically answered

Yes, because the project action area is outside of suitable Indiana bat and/or NLEB summer habitat

20. General AMM 1

Will the project ensure *all* operators, employees, and contractors working in areas of known or presumed bat habitat are aware of *all* FHWA/FRA/FTA (Transportation Agencies) environmental commitments, including all applicable Avoidance and Minimization Measures?

Yes

21. Lighting AMM 1

Will *all* **temporary** lighting be directed away from suitable habitat during the active season?

Yes

Project Questionnaire

1. Have you made a No Effect determination for *all* other species indicated on the FWS IPaC generated species list?

Yes

2. Have you made a May Affect determination for *any* other species on the FWS IPaC generated species list?

No

Avoidance And Minimization Measures (AMMs)

These measures were accepted as part of this determination key result:

GENERAL AMM 1

Ensure all operators, employees, and contractors working in areas of known or presumed bat habitat are aware of all FHWA/FRA/FTA (Transportation Agencies) environmental commitments, including all applicable AMMs.

LIGHTING AMM 1

Direct temporary lighting away from suitable habitat during the active season.

Determination Key Description: FHWA, FRA, FTA Programmatic Consultation For Transportation Projects Affecting NLEB Or Indiana Bat

This key was last updated in IPaC on February 05, 2018. Keys are subject to periodic revision.

This decision key is intended for projects/activities funded or authorized by the Federal Highway Administration (FHWA), Federal Railroad Administration (FRA), and/or Federal Transit Administration (FTA), which require consultation with the U.S. Fish and Wildlife Service (Service) under Section 7 of the Endangered Species Act (ESA) for the endangered **Indiana bat** (*Myotis sodalis*) and the threatened **Northern long-eared bat** (NLEB) (*Myotis septentrionalis*).

This decision key should <u>only</u> be used to verify project applicability with the Service's <u>February 5, 2018, FHWA, FRA, FTA Programmatic Biological Opinion for Transportation Projects.</u> The programmatic biological opinion covers limited transportation activities that may affect either bat species, and addresses situations that are both likely and not likely to adversely affect either bat species. This decision key will assist in identifying the effect of a specific project/activity and applicability of the programmatic consultation. The programmatic biological opinion is <u>not</u> intended to cover all types of transportation actions. Activities outside the scope of the programmatic biological opinion, or that may affect ESA-listed species other than the Indiana bat or NLEB, or any designated critical habitat, may require additional ESA Section 7 consultation.

Molly Coughlin

Derek S. McClellan

From: Sent: To: Subject:	vonOettingen, Susi <susi_vonoettingen@fws.gov> Friday, February 02, 2018 1:10 PM Derek McClellan Re: Concurrence Verification</susi_vonoettingen@fws.gov>
Hi Derek,	
	w the instructions regarding the verification. If your project is a not likely to and it appears to be so, then you just complete the verification step and you're
representative should log into I	rence verification, the lead Federal action agency or designated non-federal PaC using their agency email account and click "Submit a project for enter the record locator 996-10957979."
We get notified automatically, a Everything looks fine.	and have the chance to review the information. In this case, I think we're done.
Susi	
********	*****
Susi von Oettingen	
Endangered Species Biologist	
New England Field Office	
70 Commercial Street, Suite 300	
Concord, NH 03301	
(W) 603-227-6418	
(Fax) 603-223-0104	
www.fws.gov/newengland	
On Tue, Jan 30, 2018 at 4:45 PM,	Derek McClellan < dmcclellan@tataandhoward.com > wrote:
dewatering during a water main	ation for a NPDES Remediation General Permit on behalf of the Town of Wayland for replacement project. Attached is the Consistency Letter generated from the IPaC ncurrence verification. If there are other steps we need to take for the concurrence Thank you.
Best Regards,	

Project Scientist

67 Forest Street Marlborough, MA 01752

Direct: (508) 214-4161

Cell: (508) 561-4959

Phone: (508) 303-9400 x115 Fax: (508) 449-9400

Email: dmcclellan@tataandhoward.com

Help save the environment: think before you print.

Confidentiality Notice: This message, including any attachments is intended only for the designated recipient(s). It may contain confidential or proprietary information and may be subject to legal privileges. If you are not the intended recipient, you may not use, distribute, or copy any portion of or attachment to this message. If you have received this message in error, please notify the sender, delete the message, and destroy any copies. Thank you.

Appendix F

MAR 0 6 2018

950 CMR: OFFICE OF THE SECRETARY OF THE COMMONWEALNIASS. HIST. COMM

RC.44028

APPENDIX A MASSACHUSETTS HISTORICAL COMMISSION 220 MORRISSEY BOULEVARD BOSTON, MASS. 02125

617-727-8470, FAX: 617-727-5128

PROJECT NOTIFICATION FORM

Project Name: Wayland 2018 Water Main Improvements Project	
Boston Post Road (Route 20) from Cochituate Ro	ad to approximately #397 Boston Post Road
Location / Address: and Pelham Island Road from Boston Post Road to	o Ottobrowie work MAICHTIRS AND SING MATERIALS
City / Town: Wayland	you submitted it bas been described that this period is unlikely to affect significant
Project Proponent	historic or archaeological resources.
Name: Wayland Department of Public Works	9/2/18
Address: 66 River Road	Jonathan Kahatton of Alayana San Date
City/Town/Zip/Telephone: Wayland, MA 01778 (508) 358-3678	Archaeologist / Preservation Planner Massachusetts Historical Commission
A . 31. C 11 C .1	xc: Sten McCudy DEP-SRF

Agency license or funding for the project (list all licenses, permits, approvals, grants or other entitlements being sought from state and federal agencies).

Agency Name MassDEP MassDEP MassDOT

MassDEP

Type of License or funding (specify)
Drinking Water State Revolving Fund
BRP WS 32 Distribution System Modifications
State Highway Access Permit
NPDES Remediation General Permit
Notice of Intent/Order of Conditions

Project Description (narrative):

See attached project narrative.

Does the project include demolition? If so, specify nature of demolition and describe the building(s) which are proposed for demolition.

No above grade demolition is proposed. The existing water main below grade will be abandoned in place.

Does the project include rehabilitation of any existing buildings? If so, specify nature of rehabilitation and describe the building(s) which are proposed for rehabilitation.

No.

Does the project include new construction? If so, describe (attach plans and elevations if necessary).

The project includes new construction of a water main. The construction includes approximately 2,400 linear feet of new 12-inch ductile iron and 14-inch HDPE water main. No new building construction is included in this project.

Refer to the attached project narrative and locus map for additional information.

5/31/96 (Effective 7/1/93) - corrected

950 CMR - 275

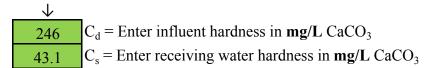
950 CMR: OFFICE OF THE SECRETARY OF THE COMMONWEALTH

APPENDIX A (continued)

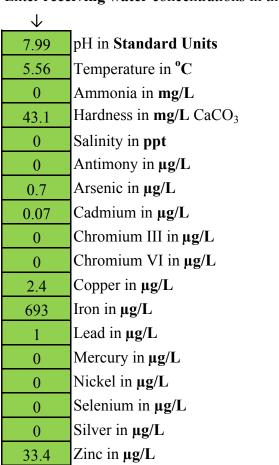
To the best of your knowledge one of	bistorio en casi		um en aviet within the
To the best of your knowledge, are a project's area of potential impact?		raeorogicar properties knov	wn to exist within the
No.			
What is the total acreage of the proje	ect area?		
Woodland	acres	Productive Resources:	
Wetland	acres	Agriculture	acres
Floodplain	acres	Forestry	acres
Open space	acres	Mining/Extraction	acres
Developed0.2	3 acres	Total Project Acreage	0,23 acres
What is the acreage of the proposed	new construction?	0.23 acres	
What is the present land use of the p	arninet area?		
Paved MassDOT State Highway (Bost	-	108+75 to Sto 87+50 and Da	albam Island Road which is
a Town owned roadway.	on rost Road) Sta.	100+13 to 318. 01+30, 810 Ft	cinain island Road witten is
a Town Owned Touthway.			
Please attach a copy of the section o	Cabo USCS anada	anda man subiah alambu m	lie the project Inertion
	t the 0303 quauri	ingle map which clearly m	arks the project location.
Refer to Figure No. 1 in Appendix A.			
This Project Notification Form has be	en submitted to the	MHC in compliance with 95	50 CMR 71.00.
Signature of Person submitting this for		m Holden Dal	te: 3 · Z · 18
Name: Thomas Holder, Director of Pu	iblic Works		
Address: 66 River Road			
City/Town/Zip: Wayland, MA 01778	3		
Telephone: (508) 358-3678			
REGULATORY AUTHORITY			
950 CMR 71.00:	M.G.L. c. 9, §§ 26	-27C as amended by St. 198	38, c. 254.
7/1/93			950 CMR - 276

Appendix G

Enter number values in green boxes below


Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.144	Q_P = Enter discharge flow in MGD
0	Downstream 7Q10


Enter a dilution factor, if other than zero

Enter values in the units specified

Enter receiving water concentrations in the units specified

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges
Hardness required for freshwater
Salinity required for saltwater (estuarine and marine)
Metals required for all discharges if present and if dilution factor is > 1
Enter 0 if non-detect or testing not required

Enter **influent** concentrations in the units specified

\downarrow	
0	TRC in μg /L
2.18	Ammonia in mg /L
0	Antimony in μg/L
13.4	Arsenic in μg/L
0.15	Cadmium in μg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
7.6	Copper in µg/L
39100	Iron in μg/L
0.8	Lead in μg/L
0	Mercury in μg /L
0	Nickel in μg /L
0	Selenium in μg/L
1.9	Silver in μg/L
401	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
276	Tetrachloroethylene in μg/L
5.8	Total Phthalates in μg/L
0	Diethylhexylphthalate in μg/L
0	Benzo(a)anthracene in μg/L
0	Benzo(a)pyrene in μg/L
0	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in μg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μ g/L
4.4	Methyl-tert butyl ether in μ g/L

if >1 sample, enter maximum if >10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_{P}

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 Q_{r}

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

O.

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

$$Q_r$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

I. Dilution Factor Calculation Method

A. 7Q10

Refer to Appendix V for determining critical low flow; must be approved by State before use in calculations.

B. Dilution Factor

Calculated as follows:

$$Df = \underline{Q_R + Q_P}$$

 Q_{P}

 $Q_R = 7Q10$ in MGD

 Q_P = Discharge flow, in MGD

II. Effluent Limitation Calculation Method

A. Calculate Water Quality Criterion:

Step 1. Downstream hardness, calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

 Q_{r}

 C_r = Downstream hardness in mg/L

 Q_d = Discharge flow in MGD

 C_d = Discharge hardness in mg/L

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) hardness in mg/L

 Q_r = Downstream receiving water flow in MGD

Step 2. Total recoverable water quality criteria for hardness-dependent metals, calculated as follows:

Total Recoverable Criteria = $\exp\{m_c [\ln(h)] + b_c\}$

m_c = Pollutant-specific coefficient (m_a for silver)

 b_c = Pollutant-specific coefficient (b_a for silver)

ln = Natural logarithm

h = Hardness calculated in Step 1

Step 3. Total recoverable water quality criteria for non-hardness-dependent metals, calculated as follows:

WQC in
$$\mu$$
g/L = dissolved WQC in μ g/L dissolved to total recoverable factor

B. Calculate WQBEL:

Step 1. WQBEL calculated as follows for parameter sampled in and detected in the receiving water:

$$C_{d} = \underline{Q_{r} C_{r} - Q_{s} C_{s}}$$

O.

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 $C_d = WQBEL \text{ in } \mu g/L$

 $Q_s = Upstream flow (7Q10) in MGD$

 C_s = Ustream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

Step 2. WQBEL calculated as follows for parameter not sampled in or not detected in receiving water:

$$C_d = (Q_r/Q_d) \times C_r$$

 C_r = Water quality criterion in μ g/L

 Q_d = Discharge flow in MGD

 Q_r = Downstream receiving water flow in MGD

C. Determine if a WQBEL applies:

Step 1. For parameter sampled in and detected in receiving water, downstream concentrations calculated as follows:

$$C_r = \underline{Q_d C_d + Q_s C_s}$$

$$Q_r$$

 C_r = Downstream concentration in μ g/L

 Q_d = Discharge flow in MGD

 C_d = Influent concentration in $\mu g/L$

 Q_s = Upstream flow (7Q10) in MGD

 C_s = Upstream (receiving water) concentration in μ g/L

 Q_r = Downstream receiving water flow in MGD

The WQBEL applies if:

1) the projected downstream concentration calculated in accordance with Step 1, above, and the discharge concentration of a parameter are greater than the WQC calculated for that parameter in accordance with II.A, above

AND

2) the WQBEL determined for that parameter in accordance with II.B, above, is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in Part 2.1.1

of the RGP for that parameter applies.

Step 2. For a parameter not sampled in or not detected in receiving water, the WQBEL applies if:

1) the discharge concentration of a parameter is greater than the WQBEL determined for that parameter in accordance with II.A or II.B, above;

AND

2) the WQBEL determined for that parameter in accordance with II.A or II.B, above is less than the TBEL in Part 2.1.1 of the RGP for that parameter. Otherwise, the TBEL in

Part 2.1.1 of the RGP for that parameter applies.

Dilution Factor

1.0

A. Inorganics	TBEL applies if bolded		WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	11	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	10	μg/L		
Cadmium	10.2	μg/L	0.5272	μg/L		
Chromium III	323	μg/L	180.1	μg/L		
Chromium VI	323	μg/L	11.4	μg/L		
Copper	242	μg/L	20.1	μg/L		
Iron	5000	μg/L	1000	μg/L		
Lead	160	μg/L	10.01	μg/L		
Mercury	0.739	μg/L	0.91	μg/L		
Nickel	1450	μg/L	111.7	μg/L		
Selenium	235.8	μg/L	5.0	μg/L		
Silver	35.1	μg/L	17.8	μg/L		
Zinc	420	μg/L	256.9	μg/L		
Cyanide	178	mg/L	5.2	μg/L		μg/L
B. Non-Halogenated VOCs						
Total BTEX	100	μ g/L				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μ g/L				
Acetone	7970	μ g/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs						
Carbon Tetrachloride	4.4	μg/L	1.6	μg/L		
1,2 Dichlorobenzene	600	μ g/L				
1,3 Dichlorobenzene	320	μ g/L				

1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μ g/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μ g/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0	μ g/L				
Trichloroethylene	5.0	μg/L				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μ g/L				
Vinyl Chloride	2.0	μ g/L				
D. Non-Halogenated SVOCs						
Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		μ g/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μ g/L
Chrysene	1.0	μg/L	0.0038	μg/L		μ g/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μ g/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μ g/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L			- 7-	r.0. 1
F. Fuels Parameters	_••	r-8, -				

Total Petroleum Hydrocarbons	5.0	mg/L		
Ethanol	Report	mg/L		
Methyl-tert-Butyl Ether	70	μg/L	20	μ g/L
tert-Butyl Alcohol	120	μg/L		
tert-Amyl Methyl Ether	90	μg/L		

OFFICE LOCATIONS: MA | NH | CT | ME | VT | AZ | TX

800-366-5760 www.tataandhoward.com

