

August 22, 2018

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, Massachusetts 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Salem Power Plant 25 Derby Street Salem, Massachusetts

Dear Sir/Madam:

On behalf of United Civil, Inc. (United Civil), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**. The discharge will not exceed 1 million gallons per day (MGD) at any of the three proposed outfall locations (001, 002, 003).

Site Information

This NOI has been prepared for the management of water that will be generated during dewatering activities associated with installation of subsurface utilities at the Salem Power Plant located at 25 Derby Street in Salem, Massachusetts (the Site). This work will take place across several acres of the parcel and is anticipated to be completed within twelve months, thereby precluding the need for Whole Effluent Toxicity (WET) testing unless specifically requested by EPA. The Site is listed as a disposal site with the Massachusetts Department of Environmental Protection (MassDEP) under Release Tracking Number (RTN) RTN# 3-31327. A Site Locus is provided as **Figure 1** and a Site Plan satisfying the requirements of RGP Appendix IV Part I.B and I.D is provided as **Figure 2**.

Work Summary

The project includes the installation of approximately 1,600 feet of drain line and associated drainage structures. To complete portions of the excavations in the dry, dewatering is required to lower the groundwater table as the work is being performed. To do this, a series of wellpoints surrounding the perimeter of the work area will be utilized, and the water generated during dewatering (Source water) will be pumped to a treatment system prior to discharge to the Salem Harbor. To characterize groundwater

from the proposed excavation area, LRT collected representative groundwater samples from three onsite monitoring wells (TW-1, TW-2 and TW-3) on August 1, 2018. A sample of the receiving water (Salem Harbor) was collected at the same time. The samples were analyzed for various parameters in accordance with the NPDES RGP Activity Category III-G. The location of receiving water and monitoring wells is depicted on Figures 1 and 2, respectively.

Discharge and Receiving Surface Water Information

A summary of the analytical results is provided in **Tables 1 and 2** included within **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. The "Report Only" compounds ammonia and chloride were detected in each of the samples. Concentrations of volatile organic compounds (VOCs), semi-VOCs, total petroleum hydrocarbons (TPH), total residual chlorine (TRC), total suspended solids (TSS), and various metals were detected in groundwater at concentrations above the respective NPDES RGP Effluent Limitations. To meet these standards, Source Water will undergo treatment that includes pH adjustment, chemical-aided settling, bag filtration, zeolite filtration, carbon filtration and ion exchange prior to discharge. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 3**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**.

Source water will be pumped to two similar treatment systems (Water Treatment System #1 and #2), each comprised of two parallel treatment trains with a design flow of up to 1,000 gallons per minute (gpm); the average effluent flow of each system is estimated to be 500 gpm, and the maximum flow will not exceed 690 gpm. Source water will enter two 18,000-gallon weir tanks at head of the system and each of these tanks will have pH adjustment and chemical-aided settling systems to maintain optimal pH and enhance settling of TSS and metals. Either sulfuric acid or sodium hydroxide will be used to lower or raise the pH as necessary, and dosing within the tanks will be automatically controlled using meter pumps and pH probes. The pH adjustment chemicals will be stored in 55-gallon drums within secondary containment. The anticipated pH of discharge water is within the RGP Effluent limitation for saltwater discharges in Massachusetts; 6.5 to 8.3 SU.

The chemical-aided settling system will utilize LRT-E-50 coagulant and LRT-823 series flocculant. The coagulant will be injected into the influent stream prior to entering the weir tanks for rapid mixing while the flocculant will be injected directly into the tanks. The system includes two chemical feed metering pumps, an in-line mixer, and two 55-gallon drums and/or totes within secondary containment.

From each weir tank, the water will be pumped to a multi-bag filter skid (with two multi bag filters) followed by two zeolite vessels, two carbon vessels and one ion exchange vessel plumbed in series. The zeolite vessels will be each bedded with 20,000 pounds of zeolite, each carbon vessel will contain 10,000 pounds of reactivated liquid-phase carbon and the ion exchange vessel will contain 200 cubic feet of anion resin. Discharge from the anion exchange vessels will pass through a flow/totalizer meter prior to direct discharge into Salem Harbor. The discharge will be at three locations (Outfalls 001, 002, 003) as

depicted on **Figure 2**. Effluent sampling will correspond with the appropriate discharge location (the one being utilized at the time of sampling). With the two parallel treatment trains, each water treatment system will include two multi-bag filter skids, four zeolite vessels, four carbon vessels, two anion exchange vessels and one flow/totalizer meter.

Part F of the RGP NOI requires that chemical additives be identified if applied to the effluent prior to discharge. To satisfy the confirmation requirements of RGP Part 2.5.3.d.ii:

- 1. The addition of pH conditioners, flocculant and coagulant will not add any pollutants in concentrations which exceed permit effluent limitations;
- 2. The use of these chemicals will not result in the exceedance of any applicable water quality standard; and
- 3. These chemicals will not add any pollutants that would justify the application of permit conditions that are different from or absent in this permit.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site and the point where the proposed discharge reaches the receiving surface water body are not located within an Area of Critical Environmental Concern (ACEC). The Site and the proposed discharge point are not located within Habitats of Rare Wetland Wildlife, Habitats of Rare Species, Estimated Habitats of Rare Wildlife, or listed as a National Historic Place. Documentation is included in **Appendix D**.

No formal or informal consultation with National Marine Fisheries Service (NMFS) has been conducted. However, the Operator (United Civil) certifies eligibility according to the NMFS Criterion as the remediation activity discharges are not likely to adversely affect listed species and will result in either no effect or no adverse modification of critical habitat and also result in no take of a listed species. In support of this certification, the remaining Documentation for Eligibility Determination is provided:

- 1. The discharge is not in the Connecticut, Merrimack, Taunton or Piscataqua Rivers/watersheds;
- 2. The discharge is into marine waters of Massachusetts;
- 3. The species listed under the jurisdiction of NMFS are identical to EPA's species distribution explained in the consultation completed for the RGP.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of United Civil, we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to Salem Harbor in support of construction dewatering activities that are to take place at the Salem Power Plant.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services. For this project, United Civil is considered the Operator and has operational control over the construction plans and specifications, including the ability to make modifications to those plans and specifications.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

John Henry

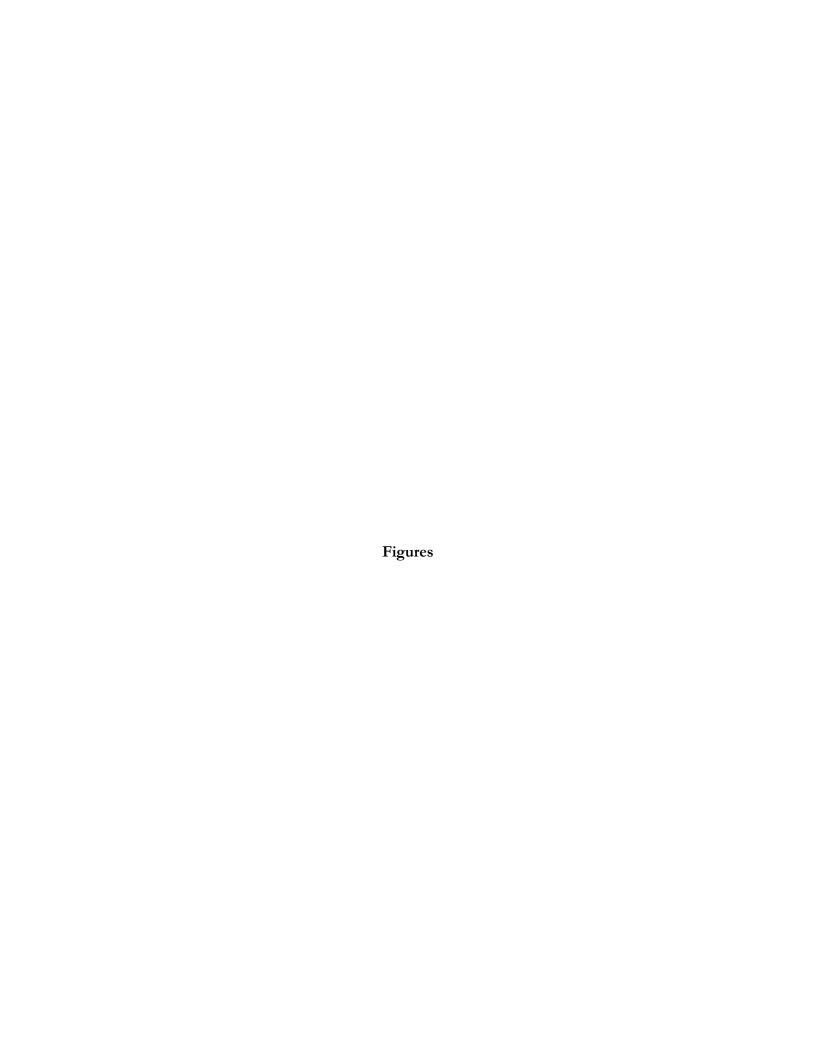
John J. Henry, PE Senior Project Manager

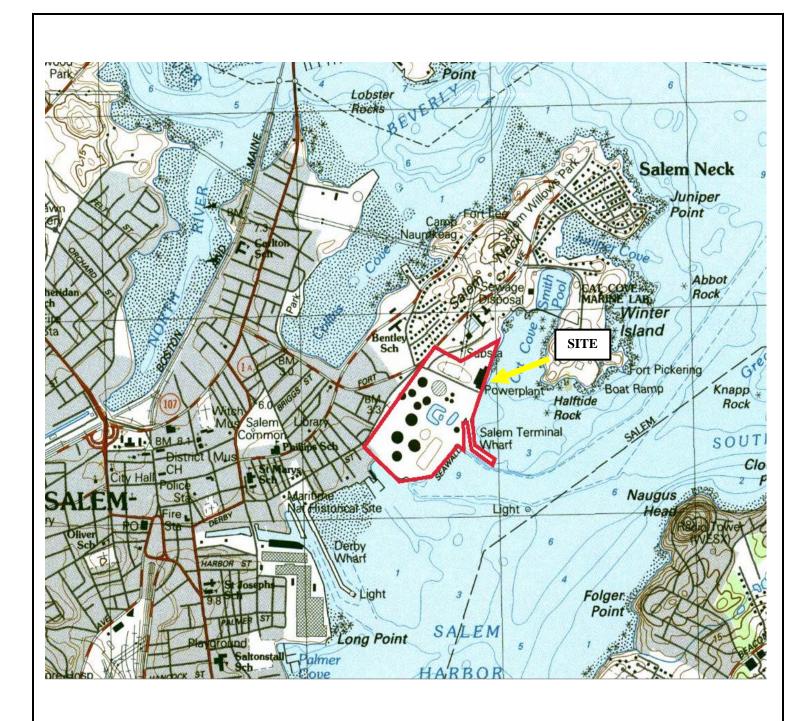
Encl: Figure 1 - Locus Plan

Figure 2 - Site Plan

Figure 3 - Water Treatment System Schematic

Appendix A - NOI Form Appendix B - Laboratory Data


Appendix C - Water Treatment System Appendix D - Supplemental Information Appendix E - Public Notification


cc: Jeff Schena and Fred Carriglio – United Civil

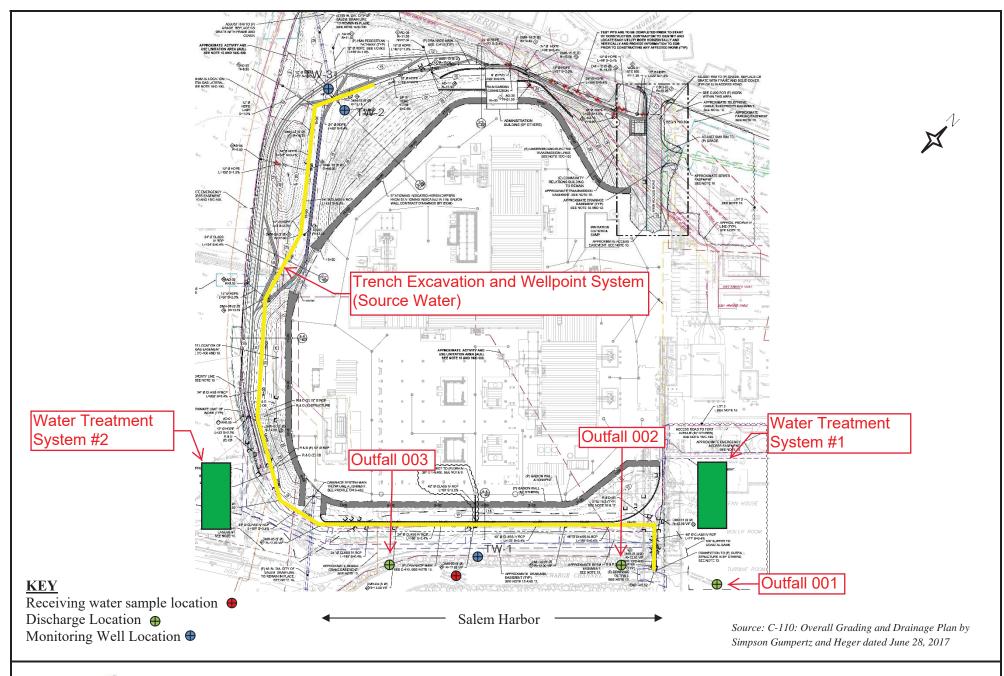
Scott Silverstein – Footprint Power

Paul Lockwood

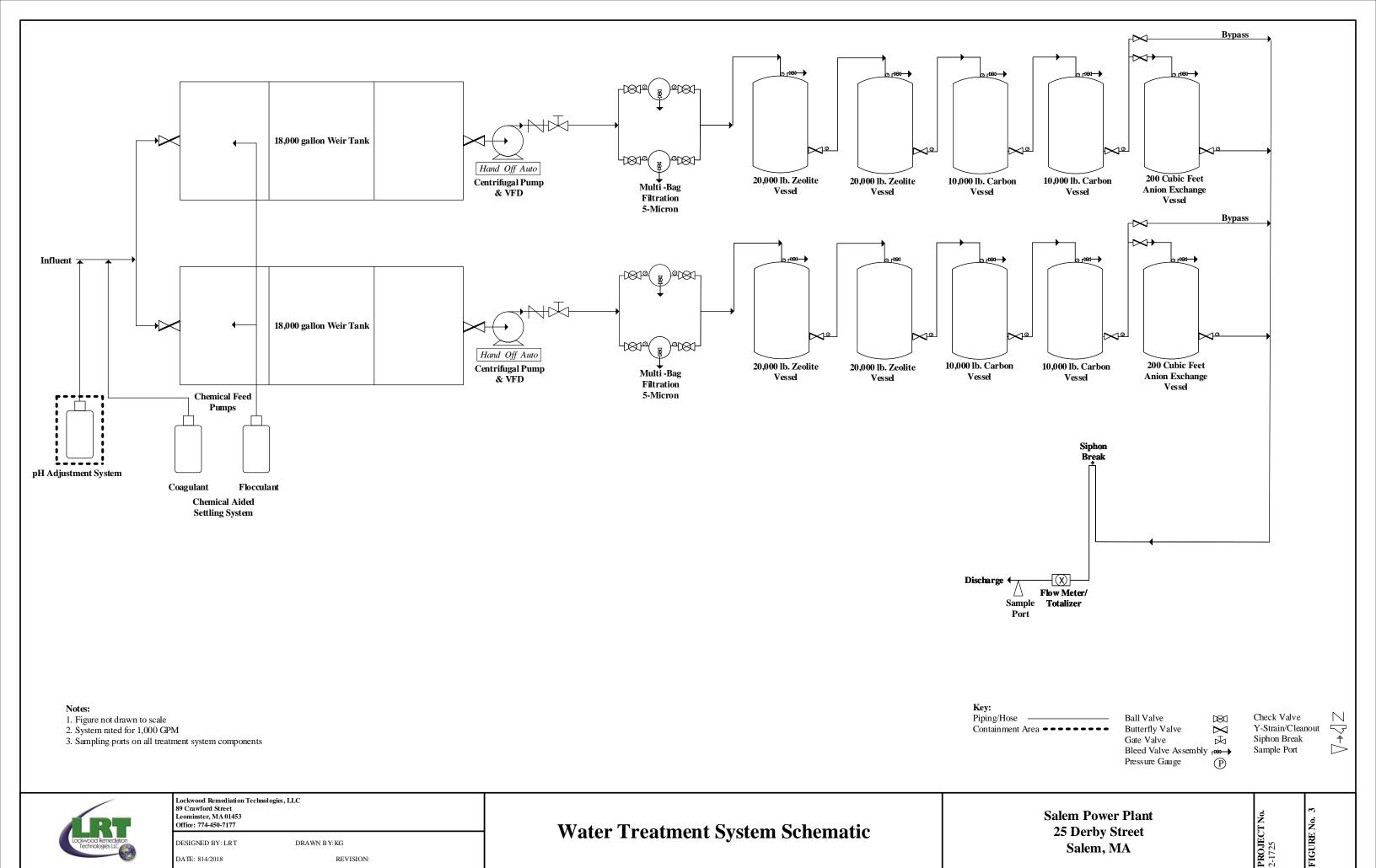
Paul Lockwood President

Source: Base Map Salem, Massachusetts Source, MassGIS.

Notes


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177


Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net **Figure 1 – Locus Plan** 25 Derby Street Salem, Massachusetts

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774 450 7177

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2 – Site Plan 25 Derby Street Salem, Massachusetts

Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address: 25 Derby Street						
Salem Harbor Power Station	Street:						
	City: Salem		State: MA	^{Zip:} 01970			
2. Site owner Factorint Dower Salam Harbor Book Fatato LD (Factorint)	Contact Person: Scott G. Silverstein						
Footprint Power Salem Harbor Real Estate LP (Footprint)	Telephone: (908) 864-4905	verstein@f	ootprintpower.com				
	Mailing address: 1140 Route 22 East, Suite 303						
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ■ Private ☐ Other; if so, specify:	City: Bridgewater		State: NJ	Zip: 08807			
3. Site operator, if different than owner	Contact Person: Fred Carriglio						
United Civil, Inc.	Telephone: 978-304-1597 Email: fcarriglio@ur			nited-civil.com			
	Mailing address:						
	Street: 30 Log Bridge Road, Building 100						
	City: Middleton		State: MA	Zip: 01949			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	■ MA Chapter 21e; list RTN(s):	□ CERCL					
NPDES permit is (check all that apply: ■ RGP □ DGP □ CGP	3-31327 □ NH Groundwater Management Permit or	☐ UIC Program					
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	□ POTW Pretreatment					
			☐ CWA Section 404				

B. Receiving water information:			
1. Name of receiving water(s):	Waterbody identification of receiving water(s): Classi	fication of receiving water(s):
Salem Harbor	MA93-54	SB	
Receiving water is (check any that apply): □ Outsta	nding Resource Water □ Ocean Sanctuary □ territori	al sea □ Wild and Scenic	River
2. Has the operator attached a location map in accord	dance with the instructions in B, above? (check one):	■ Yes □ No	
Are sensitive receptors present near the site? (check If yes, specify:	one): □ Yes ■ No		
pollutants indicated. Also, indicate if a final TMDL	rate's Integrated List of Waters (i.e., CWA Section 303 is available for any of the indicated pollutants. For montegrated List of Waters. Enterococcus and Fecal Col	ore information, contact th	e appropriate State as noted in Part
4. Indicate the seven day-ten-year low flow (7Q10) of Appendix V for sites located in Massachusetts and A	of the receiving water determined in accordance with the Appendix VI for sites located in New Hampshire.	the instructions in	NA (saltwater)
	lation of water quality-based effluent limitations (WQ sites in Massachusetts and Appendix VI for sites in No		1
If yes, indicate date confirmation received: Discharge	appropriate State for the 7Q10and dilution factor indicate to Saltwater, No Dilution Requested water sampling results as required in Part 4.2 of the R		
(check one): ■ Yes □ No	water sampling results as required in rate 112 or the r	tor in accordance with the	o mondon in rippondin viiri
C. Source water information:			
1. Source water(s) is (check any that apply):	1		
Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water: if so indicate

1. Source water(s) is (check any that apply):			
■ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other	
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:
■ Yes □ No	□ Yes □ No		

2. Source water contaminants: Enterococcus, Fecal Coliform and Estuarine Bioassessments						
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in or other, indicate any contaminants present at the maximum concentration in						
the RGP? (check one): \square Yes \blacksquare No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.						
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): ■ Yes □ No					
D. Discharge information						
1. The discharge(s) is a(n) (check any that apply): □ Existing discharge ■ New	v discharge □ New source					
Outfall(s):	Outfall location(s): (Latitude, Longitude)					
Outfall 001	42.525755, -70.875312					
Outfall 002	42.525272, -70.876079					
Outfall 003	42.524137, -70.876689					
Discharges enter the receiving water(s) via (check any that apply): ■ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:					
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:					
Has notification been provided to the owner of this system? (check one): \Box Ye	es -No Not Applicable					
Has the operator has received permission from the owner to use such system for discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for obtaining permission:						
Has the operator attached a summary of any additional requirements the owner of this system has specified? (check one): ☐ Yes ■ No						
Provide the expected start and end dates of discharge(s) (month/year): September 2018 - August 2019						
Indicate if the discharge is expected to occur over a duration of: ■ less than 12 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, above? (check one): ■ Yes □ No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)						
	a. If Activity Category I or II: (check all that apply)						
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 						
□ I – Petroleum-Related Site Remediation□ II – Non-Petroleum-Related Site Remediation	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)						
■ III – Contaminated Site Dewatering□ IV – Dewatering of Pipelines and Tanks	■ G. Sites with Known Contamination	☐ H. Sites with Unknown Contamination					
 □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation 	c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply)						
□ VIII – Dredge-Related Dewatering	 ■ A. Inorganics ■ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds ■ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds ■ F. Fuels Parameters 	d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply					

4. Influent and Effluent Characteristics

Parameter	Known	Known or or believed absent present	# of samples	70. 4		In	fluent	Effluent L	imitations
	believed			method (#)		Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia		✓	3	SM19-22	0.075	22,500	1,633	Report mg/L	
Chloride		✓	3	SM21-22 +	100,000	22,300,000	8,877,000	Report µg/l	
Total Residual Chlorine		✓	3	SM21-22-	20	49	16.3	0.2 mg/L	7.5 ug/L
Total Suspended Solids		✓	3	SM21-22	1,200	210,000	116,333	30 mg/L	
Antimony		✓	3	EPA 200.8	1.0	1.4	0.47	206 μg/L	
Arsenic		✓	3	EPA 200.8	1.0	46	19.7	104 μg/L	36 ug/L
Cadmium	✓		3	EPA 200.8	0.2	< 1.0	< 0.46	10.2 μg/L	
Chromium III	✓		3	Tri +		0.0	0.0	323 μg/L	
Chromium VI	✓		3	SM21-22	4.0	< 4.0	< 4.0	323 μg/L	
Copper		✓	3	EPA 200.8	1.0	260	106	242 μg/L	3.7 ug/L
Iron		✓	3	EPA 200.7	250	86,000	32,133	5,000 μg/L	
Lead		✓	3	EPA 200.8	0.5	17	9.3	160 μg/L	8.5 ug/L
Mercury	✓		3	EPA 245.1	0.10	< 0.1	< 0.1	0.739 μg/L	
Nickel		✓	3	EPA 200.8	5.0	190	74.3	1,450 μg/L	
Selenium		✓	3	EPA 200.8	5.0	130	50.3	235.8 μg/L	71 ug/L
Silver	✓		3	EPA 200.8	0.2	< 1.0	< 0.47	35.1 μg/L	
Zinc		✓	3	EPA 200.8		30	10	420 μg/L	
Cyanide		✓	3	SM21-22 +	5	2	0.67	178 mg/L	1.0 ug/L
B. Non-Halogenated VOC	's								
Total BTEX		✓	3	EPA 624.1	8.0	5.2	1.97	100 μg/L	
Benzene		✓	3	EPA 624.1	1.0	< 1.0	< 1.0	5.0 μg/L	
1,4 Dioxane	✓		3	EPA 624.1	50	< 100	< 83	200 μg/L	
Acetone		✓	3	EPA 624.1	50	13	7.43	7.97 mg/L	
Phenol	✓		3	EPA 625.1	9.7	< 10	9.83	1,080 µg/L	

	Known	Known				Int	fluent	Effluent Li	mitations
Parameter	or # of Test		Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (μg/l)	TBEL	WQBEL		
C. Halogenated VOCs									
Carbon Tetrachloride	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	4.4 μg/L	
1,2 Dichlorobenzene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	600 μg/L	
1,3 Dichlorobenzene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	320 μg/L	
1,4 Dichlorobenzene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	5.0 μg/L	
Total dichlorobenzene	✓		3	EPA 624.1	6.0	< 6.0	< 6.0	763 μg/L in NH	
1,1 Dichloroethane	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	70 μg/L	
1,2 Dichloroethane	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	5.0 μg/L	
1,1 Dichloroethylene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	3.2 μg/L	
Ethylene Dibromide	✓		3	NA	NA	NA	NA	0.05 μg/L	
Methylene Chloride	✓		3	EPA 624.1	0.42	< 5.0	< 5.0	4.6 μg/L	
1,1,1 Trichloroethane	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	200 μg/L	
1,1,2 Trichloroethane	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	5.0 μg/L	
Trichloroethylene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	5.0 μg/L	
Tetrachloroethylene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	5.0 μg/L	
cis-1,2 Dichloroethylene	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	70 μg/L	
Vinyl Chloride	✓		3	EPA 624.1	2.0	< 2.0	< 2.0	2.0 μg/L	
D. Non-Halogenated SVOC	Cs								
Total Phthalates	✓		3	EPA 625.1	59.8	< 61	< 59.8	190 μg/L	
Diethylhexyl phthalate	✓		3	EPA 625.1	0.98	< 10	<6.89	101 μg/L	
Total Group I PAHs		✓	3	EPA 625	0.996	0.128	0.042	1.0 μg/L	
Benzo(a)anthracene	✓		3	EPA 625	0.048	< 0.05	< 0.049		
Benzo(a)pyrene	✓		3	EPA 625	0.097	< 0.10	< 0.098		
Benzo(b)fluoranthene		✓	3	EPA 625	0.048	0.038	0.024		0.0038 ug/L
Benzo(k)fluoranthene	✓		3	EPA 625	0.19	< 0.20	< 0.20	As Total PAHs	
Chrysene		✓	3	EPA 625	0.03	0.09	0.03		0.0038 ug/L
Dibenzo(a,h)anthracene	✓		3	EPA 625	0.19	< 0.20	< 0.20		
Indeno(1,2,3-cd)pyrene	✓		3	EPA 625	0.19	< 0.20	< 0.20		

	Known	Known				In	fluent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs		✓	3	EPA 625.1	< 100	40.1	13.4	100 μg/L	
Naphthalene		✓	3	EPA 625.1	4.8	25	8.3	20 μg/L	
E. Halogenated SVOCs									
Total PCBs	✓		3	EPA 608.3	0.097	< 0.1	< 0.097	0.000064 μg/L	
Pentachlorophenol	✓		3	EPA 625	0.097	< 1.0	< 0.097	1.0 μg/L	
F. Fuels Parameters	·		•	•			•		
Total Petroleum Hydrocarbons		✓	3	EPA +	1.4	13,000	5,867	5.0 mg/L	
Ethanol	✓		3	EPA 624.1	50	< 50	< 50	Report mg/L	
Methyl-tert-Butyl Ether	✓		3	EPA 624.1	2	< 2.0	< 2.0	70 μg/L	
tert-Butyl Alcohol	✓		3	EPA 624.1	20	< 20	< 20	120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether	✓		3	EPA 624.1	0.5	< 0.5	< 0.5	90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	C ₅₀ , addition	nal pollutan	ts present);	if so, specify:	6.7		
Hardness	· ·		3	EPA 200.7		5,400	2,533		
	<u> </u>								

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)					
□ Adsorption/Absorption □ Advanced Oxidation Processes □ Air Stripping ■ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption					
■ Ion Exchange ■ Precipitation/Coagulation/Flocculation ■ Separation/Filtration ■ Other; if so, specify:					
pH Adjustment system, zeolite					
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.					
Collected water will be pumped into two similar water treatment systems. Each system includes two (2) weir tanks with a pH adjustment and chemical aided setting system then be pumped through two (2) multi-bag filter skids and then through four (4) vessels each containing 20,000 pounds of zeolite, four (4) vessels each containing 10,000 preactivated liquid phase carbon and two (2) ion exchange vessels each containing 200 cubic feet of ion exchange media. The multi bag filters and media vessels will be plu and in parallel. Water will then flow through one (1) flow meter/totalizer prior to discharge. The design flow capacity of each system is 1,000 gallons per minute (gpm).	pounds of				
Identify each major treatment component (check any that apply):					
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter ■ Media filter					
■ Chemical feed tank ■ Air stripping unit ■ Bag filter ■ Other; if so, specify: Weir Tanks, pH Adjustment System, Chemical Aided Settling System, Zeolite Treatment and Ion Exchange	atment, Carbon				
Indicate if either of the following will occur (check any that apply):					
☐ Chlorination ☐ De-chlorination					
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	2 000				
Indicate the most limiting component: Carbon Vessels Is use of a flow meter feasible? (check one): ■ Yes □ No, if so, provide justification:	2,000				
Provide the proposed maximum effluent flow in gpm.	1,380				
Provide the average effluent flow in gpm.	1,000				
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:					
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ■ Yes □ No					

F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
1. Indicate the type(b) of elicinear of additive that will be applied to elifacin prior to discharge of that may otherwise be present in the discharge (b). (elicent an that approximation of the proof
□ Algaecides/biocides □ Antifoams ■ Coagulants □ Corrosion/scale inhibitors □ Disinfectants ■ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers ■ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
See attached cover letter a. Product name, chemical formula, and manufacturer of the chemical/additive;
b. Purpose or use of the chemical/additive or remedial agent;
c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive;
d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive;
e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and
f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): Yes 🗆 No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section
307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
■ FWS Criterion C: Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) ■ the operator □ EPA □ Other; if so, specify:

- 1	
	■ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
	listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ■ No
	2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): Yes No
	Please also note the following: 1) Not discharging to any of the restricted Four Rivers. 2) The discharge is to a marine environment. 3) The species listed under the jurisdiction of NMFS are identical to EPA's species distribution explained in the consultation completed for the RGP. 4) Have not had any direct consultation with NMFS.
	Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): 🗏 Yes 🗆 No; if yes, attach.
	H. National Historic Preservation Act eligibility determination
	1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
	■ Criterion A: No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
	☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
	☐ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
	2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): Yes No
	Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
	other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): Yes No
	I. Supplemental information
	Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
	Refer to attached cover letter detailing current site conditions and sampling considerations.
	Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ■ Yes □ No
	Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ■ Yes □ No

J. Certification requirement

o. Confidential requirement	
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in ac that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or p persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and be no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are information, including the possibility of fine and imprisonment for knowing violations.	ersons who manage the system, or those lief, true, accurate, and complete. I have
A BMPP Meeting the general requirements of this permit will be imples BMPP certification statement:	mented at the site.
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes ■ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested.	Check one: Yes □ No □ NA ■
Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA ■
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
permit(s). Additional discharge permit is (check one): ☐ RGP ☐ DGP ☐ CGP ☐ MSGP ☐ Individual NPDES permit	Check one: Yes □ No □ NA ■
☐ Other; if so, specify:	
Signature: Field Common Date	: 8/17/18
Print Name and Title: FRED CARRIGLIO PROJECT Manager	

TABLE I SUMMARY OF GROUNDWATER QUALITY DATA SALEM POWER PLANT SALEM, MA

SAMPLE ID	2017	TW-1	TW-2	TW-3
	NPDES RGP			
SAMPLING DATE	Criteria	8/1/2018	8/1/2018	8/1/2018
\\\-\tabel{\text{1}}				
Volatile Organic Compounds (ug/L)	100	. 0. 0	5 2	0.74
Total BTEX	100	< 8.0	5.2	0.71
Benzene	5.0	< 1.0	< 1.0	< 1.0
1,4-Dioxane	200	< 100	< 50	< 100
Acetone	7,970	< 50	13	9.3
Phenol	1,080	< 9.7	< 10	< 9.8
Carbon Tetrachloride	4.4	< 2.0	< 2.0	< 2.0
1,2 Dichlorobenzene	600	< 2.0	< 2.0	< 2.0
1,3 Dichlorobenzene	320	< 2.0	< 2.0	< 2.0
1,4 Dichlorobenzene	5.0	< 2.0	< 2.0	< 2.0
Total dichlorobenzene		< 6.0	< 6.0	< 6.0
1,1 Dichloroethane	70	< 2.0	< 2.0	< 2.0
1,2 Dichloroethane	5.0	< 2.0	< 2.0	< 2.0
1,1 Dichloroethylene	3.2	< 2.0	< 2.0	< 2.0
Ethylene Dibromide	0.05	NA	NA	NA
Methylene Chloride	4.6	< 5.0	< 5.0	< 5.0
1,1,1 Trichloroethane	200	< 2.0	< 2.0	< 2.0
1,1,2 Trichloroethane	5.0	< 2.0	< 2.0	< 2.0
Trichloroethylene	5.0	< 2.0	< 2.0	< 2.0
Tetrachloroethylene	5.0	< 2.0	< 2.0	< 2.0
cis-1,2 Dichloroethylene	70	< 2.0	< 2.0	< 2.0
Vinyl Chloride	2.0	< 2.0	< 2.0	< 2.0
Semi-Volatile Organic Compounds (ug/L)				
Total Phthalates	190	< 59.2	< 61	< 59.8
Diethylhexyl phthalate	101	< 9.7	< 10	< 0.98
Total Group I PAHs	1.0	< 0.939	0.128	< 0.996
Benzo(a)anthracene	1.0	< 0.048	< 0.050	< 0.049
Benzo(a)pyrene	1.0	< 0.097	< 0.10	< 0.098
Benzo(b)fluoranthene	0.0038	0.034	0.038	< 0.049
Benzo(k)fluoranthene	1.0	< 0.19	< 0.20	< 0.20
Chrysene	0.0038	< 0.19	0.09	< 0.20
Dibenzo(a,h)anthracene	1.0	< 0.19	< 0.20	< 0.20
Indeno(1,2,3-cd)pyrene	1.0	< 0.19	< 0.20	< 0.20
Total Group II PAHs	100	< 38.4	40.1	< 39.2
Naphthalene	20	< 4.8	25	< 4.9
Pentachlorophenol	1.0	< 0.97	< 1.0	< 0.98
PCBs (ug/L)				
Total PCBs	0.000064			
Aroclor 1016		< 0.10	< 0.097	< 0.11
Aroclor 1221		< 0.10	< 0.097	< 0.11
Aroclor 1232		< 0.10	< 0.097	< 0.11
Aroclor 1242		< 0.10	< 0.097	< 0.11
Aroclor 1248		< 0.10	< 0.097	< 0.11
Aroclor 1254		< 0.10	< 0.097	< 0.11
Aroclor 1260		< 0.10	< 0.097	< 0.11

SAMPLE ID	2017	TW-1	TW-2	TW-3
	NPDES RGP			
SAMPLING DATE	Criteria	8/1/2018	8/1/2018	8/1/2018
Fuels Parameters (ug/L)				
TPH	5,000	4,600	13,000	<1,800
Ethanol	Report mg/L	< 50	< 50	< 50
Methy-tert butyl ether (MTBE)	70	< 2.0	< 2.0	< 2.0
Tert-Butyl Alcohol (TBA)	120	< 20	< 20	< 20
tert-Amyl Methyl Ether (TAME)	90	< 0.50	< 0.50	< 0.50
Inorganics (ug/L)				
Ammonia	Report mg/L	< 50	2,500	2,350
Chloride (mg/L)	Report ug/L	22,300	2,630	1,700
Total Residual Chlorine (TRC)	7.5	49	< 20	< 20
Total Suspended Solids (TSS)	30,000	120,000	210,000	19,000
Antimony	206	< 5.0	1.4	< 1.0
Arsenic	36	46	13	< 1.0
Cadmium	10.2	< 1.0	< 0.20	< 0.20
Trivalent Chromium	323	0.0	0.0	0
Hexavalent Chromium	323	< 4.0	< 4.0	< 4.0
Copper	3.7	260	45	13
Iron	5,000	4,200	86,000	6,200
Lead	8.5	17	9.4	1.6
Mercury	0.739	0.1	0.1	< 0.1
Nickel	1,450	190	24	9
Selenium	71	130	21	< 5.0
Silver	35.1	< 1.0	< 0.20	< 0.20
Zinc	420	< 100	30	< 20
Cyanide	1.0	< 5	2	< 5
Other				
Salinity (ug/L)		NA	NA	NA
Hardness (mg/L)		5,400	1,300	900
pH (SU)		6.7	6.3	6.9

Notes:

- 1. ug/L is micrograms per liter or parts per billion.
- 2. mg/L is milligrams per liter or parts per million.
- 3. NA is not analyzed.

TABLE 2 SUMMARY OF RECEIVING WATER QUALITY DATA SALEM POWER PLANT SALEM, MA

LOCATION	SALEM HARBOR
SAMPLING DATE	8/1/2018
SAMPLE ID	Receiving Water
Total Metals (ug/L)	
Antimony	< 5.0
Arsenic	45
Cadmium	< 1.0
Total Chromium	< 50
Trivalent Chromium	0.0
Hexavalent Chromium	< 4.0
Copper	130
Iron	<250
Lead	< 5.0
Mercury	< 0.10
Nickel	< 25
Selenium	140
Silver	< 1.0
Zinc	< 100
Other	
Salinity (ppt)	31.4
Ammonia Nitrogen (ug/L)	73
pH (SU)	NM

Notes & Abbreviations:

- 1. ug/L is micrograms per liter or parts per billion.
- ppt is parts per trillion.
 NM is not measured

Enter number values in green boxes below

Enter values in the units specified

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L CaCO ₃
0	C _s = Enter receiving water hardness in mg/L CaCO:

Enter receiving water concentrations in the units specified

\downarrow	_
6.9	pH in Standard Units
23.2	Temperature in °C
0.073	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
31.4	Salinity in ppt
0	Antimony in µg/L
45	Arsenic in μg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
130	Copper in µg/L
0	Iron in μg/L
0	Lead in µg/L
0	Mercury in µg/L
0	Nickel in µg/L
140	Selenium in µg/L
0	Silver in μg/L
0	Zinc in µg/L

Enter influent concentrations in the units specified

49	TRC in µg/L
2.5	Ammonia in mg/L
1.4	Antimony in µg/L
46	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
0	Chromium VI in µg/L
	Copper in µg/L
260	11 .0
86000	Iron in µg/L
17	Lead in µg/L
0.1	Mercury in µg/L
0.9	Nickel in μg/L
130	Selenium in µg/L
0	Silver in µg/L
30	Zinc in µg/L
2	Cyanide in µg/L
0	Phenol in µg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in µg/L
0	Total Phthalates in µg/L
0	Diethylhexylphthalate in µg/L
0	Benzo(a)anthracene in µg/L
0	Benzo(a)pyrene in µg/L
0.038	Benzo(b)fluoranthene in µg/L
0	Benzo(k)fluoranthene in µg/L
0.09	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in µg/L
0	Indeno(1,2,3-cd)pyrene in µg/L
0	Methyl-tert butyl ether in μg/L
	-

Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

 $if > 1 \ sample, \ enter \ maximum$

if >10 samples, may enter 95th percentile

Enter 0 if non-detect or testing not required

Dilution Factor	0.0				~	
A. Inorganics	TBEL applies if	bolded	WQBEL applies if bolded		Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	μg/L		
Cadmium	10.2	μg/L	8.9	μg/L		
Chromium III	323	μg/L	100.0	μg/L		
Chromium VI	323	μg/L μg/L	50	μg/L μg/L		
Copper	242		3.7			
Iron	5000	μg/L		μg/L		
Lead		μg/L	 9 <i>E</i>	μg/L		
	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	$\mu g/L$	8.3	μg/L		
Selenium	235.8	μg/L	71	μg/L		
Silver	35.1	$\mu g/L$	2.2	$\mu g/L$		
Zinc	420	$\mu g/L$	86	$\mu g/L$		
Cyanide	178	mg/L	1.0	$\mu g/L$	5	μg/L
B. Non-Halogenated VOCs						
Total BTEX	100	$\mu g/L$				
Benzene	5.0	μg/L				
1,4 Dioxane	200	μg/L				
Acetone Phenol	7.97 1,080	mg/L	300			
C. Halogenated VOCs	1,000	μg/L	300	μg/L		
Carbon Tetrachloride	4.4		1.6	μg/L		
1,2 Dichlorobenzene	600	μg/L		P-6		
1,3 Dichlorobenzene	320	μg/L				
1,4 Dichlorobenzene	5.0	$\mu g/L$				
Total dichlorobenzene		$\mu g/L$				
1,1 Dichloroethane	70	$\mu g/L$				
1,2 Dichloroethane	5.0	μg/L				
1,1 Dichloroethylene	3.2	μg/L				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride 1,1,1 Trichloroethane	4.6 200	μg/L μg/L				
1,1,2 Trichloroethane	5.0	μg/L μg/L				
Trichloroethylene	5.0	μg/L μg/L				
Tetrachloroethylene	5.0	μg/L	3.3	μg/L		
cis-1,2 Dichloroethylene	70	μg/L				
Vinyl Chloride	2.0	μg/L				

D. Non-Halogenated SVOCs

Benzo(a)pyrene 1.0	Total Phthalates	190	μg/L		μg/L		
Aromatic Hydrocarbons 1.0 μg/L Benzo(a)anthracene 1.0 μg/L 0.0038 μg/L μg/L Benzo(a)pyrene 1.0 μg/L 0.0038 μg/L μg/L Benzo(b)fluoranthene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Benzo(k)fluoranthene 1.0 μg/L 0.0038 μg/L μg/L Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L μg/L Aromatic Hydrocarbons 100 μg/L μg/L μg/L Naphthalene 20 μg/L 0.5 μg/L Pentachlorophenol 1.0 μg/L 0.5 μg/L F. Fuels Parameters 1.0 μg/L	Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Benzo(a)anthracene 1.0	Total Group I Polycyclic						
Benzo(a)pyrene 1.0	Aromatic Hydrocarbons	1.0	μg/L				
Benzo(b)fluoranthene 1.0	Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Benzo(k)fluoranthene 1.0	Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Chrysene 1.0 μg/L 0.0038 μg/L 0.1 μg/L Dibenzo(a,h)anthracene 1.0 μg/L 0.0038 μg/L μg/L Indeno(1,2,3-cd)pyrene 1.0 μg/L 0.0038 μg/L μg/L Total Group II Polycyclic 4 μg/L μg/L κg/L κg/L κg/L κg/L κg/L <td>Benzo(b)fluoranthene</td> <td>1.0</td> <td>μg/L</td> <td>0.0038</td> <td>μg/L</td> <td>0.1</td> <td>$\mu g/L$</td>	Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
Dibenzo(a,h)anthracene 1.0 $\mu g/L$ 0.0038 $\mu g/L$ $\mu g/L$ Indeno(1,2,3-cd)pyrene 1.0 $\mu g/L$ 0.0038 $\mu g/L$ $\mu g/L$ Total Group II Polycyclic Aromatic Hydrocarbons 100 $\mu g/L$ Naphthalene 20 $\mu g/L$ E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 $\mu g/L$ 0.5 $\mu g/L$ Pentachlorophenol 1.0 $\mu g/L$ F. Fuels Parameters Total Petroleum Hydrocarbons 5.0 $\mu g/L$ Ethanol Report $\mu g/L$ Methyl-tert-Butyl Ether 70 $\mu g/L$ 20 $\mu g/L$ tert-Butyl Alcohol 120 $\mu g/L$	Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chrysene	1.0	μg/L	0.0038	μg/L	0.1	$\mu g/L$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Aromatic Hydrocarbons 100 $\mu g/L$ Naphthalene 20 $\mu g/L$ E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 $\mu g/L$ Pentachlorophenol 1.0 $\mu g/L$ F. Fuels Parameters Total Petroleum Hydrocarbons 5.0 $m g/L$ Ethanol Report $m g/L$ Methyl-tert-Butyl Ether 70 $\mu g/L$ 20 $\mu g/L$ tert-Butyl Alcohol 120 $\mu g/L$	Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		$\mu g/L$
Naphthalene 20 μ g/L E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 μ g/L Pentachlorophenol 1.0 μ g/L F. Fuels Parameters Total Petroleum Hydrocarbons 5.0 m g/L Ethanol Report m g/L Methyl-tert-Butyl Ether 70 μ g/L 20 μ g/L tert-Butyl Alcohol 120 μ g/L	Total Group II Polycyclic						
E. Halogenated SVOCs Total Polychlorinated Biphenyls 0.000064 μ g/L 0.5 μ g/L Pentachlorophenol 1.0 μ g/L F. Fuels Parameters Total Petroleum Hydrocarbons 5.0 μ g/L Ethanol Report μ g/L Methyl-tert-Butyl Ether 70 μ g/L 20 μ g/L tert-Butyl Alcohol 120 μ g/L	Aromatic Hydrocarbons	100	μg/L				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Naphthalene	20	μg/L				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E. Halogenated SVOCs						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	$\mu g/L$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pentachlorophenol	1.0	μg/L				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F. Fuels Parameters						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total Petroleum Hydrocarbons	5.0	mg/L				
tert-Butyl Alcohol 120 µg/L	Ethanol	Report	mg/L				
·	Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Amyl Methyl Ether 90 µg/L	tert-Butyl Alcohol	120	μg/L				
	tert-Amyl Methyl Ether	90	μg/L				

Appendix B

Laboratory Data

August 10, 2018

John Henry Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Salem, MA

Client Job Number: Project Number: 2-1725

Laboratory Work Order Number: 18H0124

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on August 2, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	6
Sample Results	10
18H0124-01	10
18H0124-02	20
18H0124-03	29
Sample Preparation Information	39
QC Data	41
Volatile Organic Compounds by GC/MS	41
B209464	41
B209816	42
Semivolatile Organic Compounds by GC/MS	45
B209588	45
Semivolatile Organic Compounds by - GC/MS	47
B209506	47
Polychlorinated Biphenyls By GC/ECD	51
B209571	51
B209675	51
Metals Analyses (Total)	53
B209522	53
B209523	53
B209698	54
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	55
B209424	55
B209525	55

Table of Contents (continued)

B209575	55
B209678	55
Dual Column RPD Report	57
Flag/Qualifier Summary	61
Certifications	62
Chain of Custody/Sample Receipt	66

REPORT DATE: 8/10/2018

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Lockwood Remediation Technologies, LLC

89 Crawford Street

PURCHASE ORDER NUMBER: 2-1725

Leominster, MA 01453 ATTN: John Henry

PROJECT NUMBER: 2-1725

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18H0124

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Salem, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TW-1	18H0124-01	Ground Water		EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	NY11393/MA-MAI138/M A1110
				EPA 608.3	
				EPA 624.1	
				EPA 625	
				EPA 625.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	
TW-2	18H0124-02	Ground Water		EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	NY11393/MA-MAI138/M A1110
				EPA 608.3	
				EPA 624.1	
				EPA 625	
				EPA 625.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	

REPORT DATE: 8/10/2018

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Lockwood Remediation Technologies, LLC

89 Crawford Street

PURCHASE ORDER NUMBER: 2-1725

Leominster, MA 01453 ATTN: John Henry

PROJECT NUMBER: 2-1725

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18H0124

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Salem, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TW-3	18H0124-03	Ground Water		EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	NY11393/MA-MAI138/M A1110
				EPA 608.3	
				EPA 624.1	
				EPA 625	
				EPA 625.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.7

Qualifications:

DL-03

Elevated reporting limit due to matrix.

Analyte & Samples(s) Qualified:

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3]

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

Antimony

18H0124-01[TW-1]

Arsenic

18H0124-01[TW-1]

Cadmium

18H0124-01[TW-1]

Chromium

18H0124-01[TW-1]

Copper

18H0124-01[TW-1]

18H0124-01[TW-1]

Nickel 18H0124-01[TW-1]

Selenium

18H0124-01[TW-1]

Silver

18H0124-01[TW-1]

18H0124-01[TW-1]

EPA 624.1

Qualifications:

L-01

Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side. Analyte & Samples(s) Qualified:

1.4-Dioxane

B209464-BS1

EPA 625

Qualifications:

S-07

One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are > 10%.

Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

18H0124-01[TW-1]

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method

specified criteria. Reported result is estimated. Analyte & Samples(s) Qualified:

2,4,6-Tribromophenol

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209588-BLK1, B209588-BS1, B209588-BSD1, B209588-MS1, B209588-MSD1, S025948-CCV1, B209588-BSD1, B209588-MSD1, B209588-MSD1, B209588-MSD1, B209588-BSD1, B209588-MSD1, B209588-MSD1, B209588-MSD1, B209588-BSD1, B209588-MSD1, B209588-MSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B209588-BSD1, B209588-BSD1, B209588-MSD1, B209588-BSD1, B20958-BSD1, B20

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Pentachlorophenol (SIM)

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209588-BLK1, B209588-BS1, B209588-BSD1, B209588-MS1, B209588-MSD1, S025948-CCV1, B209588-BSD1, B209588-MSD1, B20958-MSD1, B209

EPA 625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Benzidine

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209506-BLK1, B209506-BS1, B209506-BSD1

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

2-Chloronaphthalene

B209506-BS1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209506-BLK1, B209506-BS1, B209506-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209506-BLK1, B209506-BS1, B209506-BSD1

Benzo(g,h,i)perylene

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209506-BLK1, B209506-BS1, B209506-BSD1

Hexachlorocyclopentadiene

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209506-BLK1, B209506-BS1, B209506-BSD1

SM21-22 3500 Cr B

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209424-DUP1

SM21-22 4500 CL G

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Chlorine, Residual

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3], B209525-DUP1

wc-Chloride-300.0

Qualifications:

D

[Undefined]

Analyte & Samples(s) Qualified:

Chloride

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3]

GS1

Sample dilution required for high concentration of target analytes to be within the instrument calibration range.

Analyte & Samples(s) Qualified:

Chloride

18H0124-01[TW-1], 18H0124-02[TW-2], 18H0124-03[TW-3]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Volatile	Organic	Compounds	by	GC/MS

Acetone ND tert-Amyl Methyl Ether (TAME) ND Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND tert-Butyl Alcohol (TBA) Carbon Tetrachloride ND Chlorodibromomethane ND Chlorodromethane ND Chlorodibromomethane ND Chlorothane ND Chloroform ND Chloromethane ND Chloromethane ND	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND tert-Butyl Alcohol (TBA) ND Carbon Tetrachloride ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	50	1.7	μg/L	1	0 -	EPA 624.1	8/3/18	8/3/18 11:01	LBD
Benzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND tert-Butyl Alcohol (TBA) ND Carbon Tetrachloride ND Chlorodibromomethane ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	0.50	0.28	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Bromoform ND Bromomethane ND tert-Butyl Alcohol (TBA) ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	1.0	0.34	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Bromomethane ND tert-Butyl Alcohol (TBA) ND Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.48	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
tert-Butyl Alcohol (TBA) Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.28	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Carbon Tetrachloride ND Chlorobenzene ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.44	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chlorobenzene ND Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	20	2.9	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.39	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chlorodibromomethane ND Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chloroethane ND Chloroform ND Chloromethane ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chloroform ND Chloromethane ND	2.0	0.38	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Chloromethane ND	2.0	0.33	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
- 	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
-,- =	2.0	0.31	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,3-Dichlorobenzene ND	2.0	0.33	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,4-Dichlorobenzene ND	2.0	0.39	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,2-Dichloroethane ND	2.0	0.28	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,1-Dichloroethane ND	2.0	0.33	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,1-Dichloroethylene ND	2.0	0.25	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
trans-1,2-Dichloroethylene ND	2.0	0.40	μg/L μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,2-Dichloropropane ND	2.0	0.40		1			8/3/18		LBD
cis-1,3-Dichloropropene ND	2.0		μg/L	1		EPA 624.1 EPA 624.1	8/3/18	8/3/18 11:01	
		0.47	μg/L					8/3/18 11:01	LBD
	100	26	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
	2.0	0.37	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Ethanol ND	50	28	μg/L	1		EPA 624.1	8/8/18	8/9/18 1:48	BRF
Ethylbenzene ND	2.0	0.37	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Methyl tert-Butyl Ether (MTBE) ND	2.0	0.24	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Methylene Chloride ND	5.0	0.42	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,1,2,2-Tetrachloroethane ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Tetrachloroethylene ND	2.0	0.32	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Toluene ND	1.0	0.35	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,1,1-Trichloroethane ND	2.0	0.25	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
1,1,2-Trichloroethane ND	2.0	0.22	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Trichloroethylene ND	2.0	0.41	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Trichlorofluoromethane (Freon 11) ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Vinyl Chloride ND	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
m+p Xylene ND	2.0	0.65	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
o-Xylene ND	2.0	0.35	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:01	LBD
Surrogates	% Reco	very	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4	96.8		70-130					8/3/18 11:01	
1,2-Dichloroethane-d4 Toluene-d8	93.0 95.4		70-130 70-130					8/9/18 1:48 8/3/18 11:01	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	96.8	70-130		8/3/18 11:01
1,2-Dichloroethane-d4	93.0	70-130		8/9/18 1:48
Toluene-d8	95.4	70-130		8/3/18 11:01
Toluene-d8	97.7	70-130		8/9/18 1:48
4-Bromofluorobenzene	96.2	70-130		8/3/18 11:01
4-Bromofluorobenzene	98.0	70-130		8/9/18 1:48

Page 10 of 68

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
 Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Surrogates		% Doco	vorv	Pacayary I imit	6	Flag/Qual				

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Work Order: 18H0124 Sample Description:

Project Location: Salem, MA Date Received: 8/2/2018 Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Results

ND

ND

0.034

ND

ND

ND

ND

ND

ND

Sample ID: 18H0124-01 Sample Matrix: Ground Water

Benzo(a)anthracene (SIM)

Benzo(b)fluoranthene (SIM)

Benzo(k)fluoranthene (SIM)

Dibenz(a,h)anthracene (SIM)

Indeno(1,2,3-cd)pyrene (SIM)

Pentachlorophenol (SIM)

Bis(2-ethylhexyl)phthalate (SIM)

Benzo(a)pyrene (SIM)

Chrysene (SIM)

	Semivola	tile Organic C	ompounds by					
						Date	Date/Time	
RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
0.048	0.048	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.097	0.039	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.048	0.019	$\mu g/L$	1	J	EPA 625	8/3/18	8/7/18 2:38	IMR
0.19	0.097	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.97	0.97	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.19	0.029	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.19	0.039	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.19	0.077	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 2:38	IMR
0.97	0.97	μg/L	1	V-05	EPA 625	8/3/18	8/7/18 2:38	IMR

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
2-Fluorophenol	65.9	15-110		8/7/18 2:38
Phenol-d6	47.1	15-110		8/7/18 2:38
Nitrobenzene-d5	94.3	30-130		8/7/18 2:38
2-Fluorobiphenyl	87.3	30-130		8/7/18 2:38
2,4,6-Tribromophenol	113 *	15-110	S-07, V-04	8/7/18 2:38
p-Terphenyl-d14	92.4	30-130		8/7/18 2:38

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Acenaphthylene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Anthracene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Benzidine	ND	19	$\mu g/L$	1	V-04, V-05, L-04	EPA 625.1	8/3/18	8/8/18 3:11	CDT
Benzo(g,h,i)perylene	ND	4.8	$\mu g/L$	1	V-05	EPA 625.1	8/3/18	8/8/18 3:11	CDT
4-Bromophenylphenylether	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Butylbenzylphthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
4-Chloro-3-methylphenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Bis(2-chloroethyl)ether	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Bis(2-chloroisopropyl)ether	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2-Chloronaphthalene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2-Chlorophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
4-Chlorophenylphenylether	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Di-n-butylphthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
1,3-Dichlorobenzene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
1,4-Dichlorobenzene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
1,2-Dichlorobenzene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
3,3-Dichlorobenzidine	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,4-Dichlorophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Diethylphthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,4-Dimethylphenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Dimethylphthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
4,6-Dinitro-2-methylphenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,4-Dinitrophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,4-Dinitrotoluene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,6-Dinitrotoluene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Di-n-octylphthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
1,2-Diphenylhydrazine (as Azobenzene)	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Bis(2-Ethylhexyl)phthalate	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Fluoranthene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Fluorene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Hexachlorobenzene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Hexachlorobutadiene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Hexachlorocyclopentadiene	ND	9.7	$\mu g/L$	1	V-05	EPA 625.1	8/3/18	8/8/18 3:11	CDT
Hexachloroethane	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Isophorone	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Naphthalene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Nitrobenzene	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2-Nitrophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
4-Nitrophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
N-Nitrosodimethylamine	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
N-Nitrosodiphenylamine	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
N-Nitrosodi-n-propylamine	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2-Methylnaphthalene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT

Page 13 of 68

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	ND	4.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2-Methylphenol	ND	9.7	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Phenol	ND	9.7	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
3/4-Methylphenol	ND	9.7	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Pyrene	ND	4.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
1,2,4-Trichlorobenzene	ND	4.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
2,4,6-Trichlorophenol	ND	9.7	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:11	CDT
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
2-Fluorophenol		56.1	15-110					8/8/18 3:11	
Phenol-d6		43.5	15-110					8/8/18 3:11	
Nitrobenzene-d5		74.0	30-130					8/8/18 3:11	
2-Fluorobiphenyl		80.8	30-130					8/8/18 3:11	
2,4,6-Tribromophenol		78.2	15-110					8/8/18 3:11	
p-Terphenyl-d14		93.4	30-130					8/8/18 3:11	

Date

Date/Time

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	0.092	μg/L	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1221 [1]	ND	0.10	0.080	$\mu g/L$	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1232 [1]	ND	0.10	0.10	$\mu g/L$	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1242 [1]	ND	0.10	0.086	$\mu g/L$	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1248 [1]	ND	0.10	0.095	μg/L	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1254 [1]	ND	0.10	0.052	μg/L	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Aroclor-1260 [1]	ND	0.10	0.098	$\mu g/L$	1		EPA 608.3	8/7/18	8/8/18 15:19	KAL
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
Decachlorobiphenyl [1]		100		30-150					8/8/18 15:19	
Decachlorobiphenyl [2]		103		30-150					8/8/18 15:19	
Tetrachloro-m-xylene [1]		95.6		30-150					8/8/18 15:19	
Tetrachloro-m-xylene [2]		96.9		30-150					8/8/18 15:19	

QNW

MJH

 EDF

MJH

MJH

MJH

MJH

QNW

8/7/18 9:46

8/6/18 13:45

8/7/18 14:51

8/6/18 13:49

8/6/18 13:49

8/6/18 13:49

8/6/18 13:49

8/7/18 11:22

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Metals Analyses (Total)

5

10

1

5

5

5

5

100

mg/L

 $\mu g/L$

mg/L

 $\mu g/L$

 $\mu g/L$

 $\mu g/L$

μg/L

mg/L

Sample Description: Work Order: 18H0124

DL-03

DL-15

DL-15

DL-15

DL-15

DL-15

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-1

Sampled: 8/1/2018 11:00

RL

5.0

5.0

1.0

50

5.0

0.25

5.0

0.00010

25

25

1.0

100

11

Results

ND

46

ND

ND

0.0

260

4.2

17

ND

190

130

ND

ND

5400

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Antimony

Cadmium

Chromium

Copper

Iron

Lead

Mercury

Selenium

Nickel

Silver

Zinc

Hardness

Chromium, Trivalent

Arsenic

DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
	μg/L	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:49	MJH
	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:49	MJH
	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:49	MJH
	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:49	MJH
	mg/L	1		Tri Chrome Calc.	8/3/18	8/7/18 5:52	MJH
	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:49	MJH

EPA 200.7

EPA 200.8

EPA 245.1

EPA 200.8

EPA 200.8

EPA 200.8

EPA 200.8

EPA 200.7

8/3/18

8/3/18

8/7/18

8/3/18

8/3/18

8/3/18

8/3/18

8/3/18

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	0.049	0.020		mg/L	1	H-03	SM21-22 4500 CL G	8/3/18	8/3/18 17:30	LED
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	8/2/18	8/2/18 19:38	LED
Total Suspended Solids	120	1.2		mg/L	1		SM21-22 2540D	8/6/18	8/6/18 12:45	LL
Silica Gel Treated HEM (SGT-HEM)	4.6	1.8		mg/L	1		EPA 1664B	8/7/18	8/7/18 11:30	LL

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.05	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		8/7/18 20:51	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		8/8/18 11:12	AAL

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-1

Sampled: 8/1/2018 11:00

Sample ID: 18H0124-01
Sample Matrix: Ground Water

EPA 300.0

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride		22300	600	mg/l	600	GS1, D	wc-Chloride-300.0	8/7/18	8/8/18 11:43	ESA

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	13	50	1.7	$\mu g/L$	1	J	EPA 624.1	8/8/18	8/9/18 2:50	LBD
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.28	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Benzene	ND	1.0	0.34	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Bromodichloromethane	ND	2.0	0.48	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Bromoform	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Bromomethane	ND	2.0	0.44	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
tert-Butyl Alcohol (TBA)	ND	20	2.9	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Carbon Tetrachloride	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Chlorobenzene	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Chlorodibromomethane	ND	2.0	0.27	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Chloroethane	ND	2.0	0.38	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Chloroform	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Chloromethane	ND	2.0	0.30	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,2-Dichloroethane	ND	2.0	0.28	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,1-Dichloroethane	ND	2.0	0.33	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,1-Dichloroethylene	ND	2.0	0.25	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,2-Dichloropropane	ND	2.0	0.31	$\mu g/L$	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,4-Dioxane	ND	50	26	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Ethanol	ND	50	28	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Ethylbenzene	1.4	2.0	0.37	μg/L	1	J	EPA 624.1	8/8/18	8/9/18 2:50	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Toluene	ND	1.0	0.35	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:50	LBD
m+p Xylene	1.8	2.0	0.65	μg/L	1	J	EPA 624.1	8/8/18	8/9/18 2:50	LBD
o-Xylene	2.0	2.0	0.35	μg/L	1	J	EPA 624.1	8/8/18	8/9/18 2:50	LBD
Surrogates		% Reco		Recovery Limits		Flag/Qual				
1.2 Diablamathama d4		00.8	3	70 120		B. K			9/0/19 2:50	

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
1,2-Dichloroethane-d4	90.8	70-130		8/9/18 2:50
Toluene-d8	96.8	70-130		8/9/18 2:50
4-Bromofluorobenzene	98.1	70-130		8/9/18 2:50

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Benzo(a)anthracene (SIM) ND 0.050 0.050 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Benzo(a)pyrene (SIM) ND 0.10 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Benzo(b)fluoranthene (SIM) 0.038 0.050 0.020 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Benzo(k)fluoranthene (SIM) ND 0.20 0.10 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Bis(2-ethylhexyl)phthalate (SIM) ND 1.0 1.0 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Chrysene (SIM) 0.090 0.20 0.030 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Dibenz(a,h)anthracene (SIM) ND 0.20 0.040 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080						P					
Benzo(a)anthracene (SIM) ND 0.050 0.050 µg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM									Date	Date/Time	
Benzo(a)pyrene (SIM) ND 0.10 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Benzo(b)fluoranthene (SIM) 0.038 0.050 0.020 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Benzo(k)fluoranthene (SIM) ND 0.20 0.10 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Bis(2-ethylhexyl)phthalate (SIM) ND 1.0 1.0 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Chrysene (SIM) 0.090 0.20 0.030 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Dibenz(a,h)anthracene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(b)fluoranthene (SIM) 0.038 0.050 0.020 µg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM	Benzo(a)anthracene (SIM)	ND	0.050	0.050	μg/L	1		EPA 625	8/3/18	8/7/18 3:06	IMR
Benzo(k)fluoranthene (SIM) ND 0.20 0.10 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Bis(2-ethylhexyl)phthalate (SIM) ND 1.0 1.0 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Chrysene (SIM) 0.090 0.20 0.030 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM Dibenz(a,h)anthracene (SIM) ND 0.20 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Pentachlorophenol (SIM) ND 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM Surrogates **Recovery* Recovery* Recovery* Flag/Qual 2-Fluorophenol 31.6 15-110 8/7/18 3:06 8/7/18 3:0	Benzo(a)pyrene (SIM)	ND	0.10	0.040	μg/L	1		EPA 625	8/3/18	8/7/18 3:06	IMR
Bis(2-ethylhexyl)phthalate (SIM) ND 1.0 1.0 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM. Chrysene (SIM) 0.090 0.20 0.030 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM. Dibenz(a,h)anthracene (SIM) ND 0.20 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM. Indeno(1,2,3-ed)pyrene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM. Pentachlorophenol (SIM) ND 1.0 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM. Surrogates 8/202 15-110 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorophenol 35.2 30-130 8/7/18 3:06 2-Fluorophenol 42.4 15-110 V-04 8/7/18 3:06 2-Fluorophenol 42.4 15-110 V-04	Benzo(b)fluoranthene (SIM)	0.038	0.050	0.020	μg/L	1	J	EPA 625	8/3/18	8/7/18 3:06	IMR
Chrysene (SIM) 0.090 0.20 0.030 μg/L 1 J EPA 625 8/3/18 8/7/18 3:06 IM. Dibenz(a,h)anthracene (SIM) ND 0.20 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM. Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM. Pentachlorophenol (SIM) ND 1.0 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM. Surrogates	Benzo(k)fluoranthene (SIM)	ND	0.20	0.10	μg/L	1		EPA 625	8/3/18	8/7/18 3:06	IMR
Dibenz(a,h)anthracene (SIM) ND 0.20 0.040 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Pentachlorophenol (SIM) ND 1.0 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM Surrogates "Recovery Recovery Limits" Flag/Qual 8/7/18 3:06 IM 2-Fluorophenol 31.6 15-110 8/7/18 3:06 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	1.0	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:06	IMR
Indeno(1,2,3-cd)pyrene (SIM) ND 0.20 0.080 μg/L 1 EPA 625 8/3/18 8/7/18 3:06 IM Pentachlorophenol (SIM) ND 1.0 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM Surrogates % Recovery Recovery Limits Flag/Qual 2-Fluorophenol 31.6 15-110 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Chrysene (SIM)	0.090	0.20	0.030	$\mu g/L$	1	J	EPA 625	8/3/18	8/7/18 3:06	IMR
Pentachlorophenol (SIM) ND 1.0 1.0 μg/L 1 V-05 EPA 625 8/3/18 8/7/18 3:06 IM Surrogates % Recovery Recovery Limits Flag/Qual 2-Fluorophenol 31.6 15-110 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Dibenz(a,h)anthracene (SIM)	ND	0.20	0.040	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:06	IMR
Surrogates % Recovery Recovery Limits Flag/Qual 2-Fluorophenol 31.6 15-110 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	0.080	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:06	IMR
2-Fluorophenol 31.6 15-110 8/7/18 3:06 Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Pentachlorophenol (SIM)	ND	1.0	1.0	$\mu g/L$	1	V-05	EPA 625	8/3/18	8/7/18 3:06	IMR
Phenol-d6 20.2 15-110 8/7/18 3:06 Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
Nitrobenzene-d5 61.7 30-130 8/7/18 3:06 2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	2-Fluorophenol		31.6		15-110					8/7/18 3:06	
2-Fluorobiphenyl 35.2 30-130 8/7/18 3:06 2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Phenol-d6		20.2		15-110					8/7/18 3:06	
2,4,6-Tribromophenol 42.4 15-110 V-04 8/7/18 3:06	Nitrobenzene-d5		61.7		30-130					8/7/18 3:06	
	2-Fluorobiphenyl		35.2		30-130					8/7/18 3:06	
p-Terphenyl-d14 65.3 30-130 8/7/18 3:06	2,4,6-Tribromophenol		42.4		15-110		V-04			8/7/18 3:06	
	p-Terphenyl-d14		65.3		30-130					8/7/18 3:06	

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	6.1	5.0	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Acenaphthylene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Anthracene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Benzidine	ND	20	$\mu g/L$	1	V-04, V-05, L-04	EPA 625.1	8/3/18	8/8/18 3:34	CDT
Benzo(g,h,i)perylene	ND	5.0	$\mu g/L$	1	V-05	EPA 625.1	8/3/18	8/8/18 3:34	CDT
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Butylbenzylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
4-Chloro-3-methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Bis(2-chloroethyl)ether	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2-Chloronaphthalene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2-Chlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
4-Chlorophenylphenylether	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Di-n-butylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
1,3-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
1,4-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
1,2-Dichlorobenzene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
3,3-Dichlorobenzidine	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,4-Dichlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Diethylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,4-Dimethylphenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Dimethylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
4,6-Dinitro-2-methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,4-Dinitrophenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,4-Dinitrotoluene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,6-Dinitrotoluene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Di-n-octylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Fluoranthene	ND	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Fluorene	14	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Hexachlorobenzene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Hexachlorobutadiene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Hexachlorocyclopentadiene	ND	10	$\mu g/L$	1	V-05	EPA 625.1	8/3/18	8/8/18 3:34	CDT
Hexachloroethane	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Isophorone	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Naphthalene	25	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Nitrobenzene	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2-Nitrophenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
4-Nitrophenol	ND	10	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
N-Nitrosodimethylamine	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
N-Nitrosodiphenylamine	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
N-Nitrosodi-n-propylamine	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2-Methylnaphthalene	130	10	μg/L	2		EPA 625.1	8/3/18	8/8/18 3:56	CDT

Page 22 of 68

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

81.1

Sample ID: 18H0124-02
Sample Matrix: Ground Water

p-Terphenyl-d14

Semivolatile	Organic	Compounds	bv -	GC/MS
--------------	---------	-----------	------	-------

			_						
	D 1/	DI	T I */	D'1 4'	FL (O. 1	Mala	Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	20	5.0	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2-Methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Phenol	ND	10	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
3/4-Methylphenol	ND	10	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Pyrene	ND	5.0	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
2,4,6-Trichlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 3:34	CDT
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol		33.4	15-110					8/8/18 3:34	
2-Fluorophenol		29.8	15-110					8/8/18 3:56	
Phenol-d6		23.6	15-110					8/8/18 3:34	
Phenol-d6		21.1	15-110					8/8/18 3:56	
Nitrobenzene-d5		69.8	30-130					8/8/18 3:34	
Nitrobenzene-d5		67.4	30-130					8/8/18 3:56	
2-Fluorobiphenyl		75.0	30-130					8/8/18 3:34	
2-Fluorobiphenyl		73.6	30-130					8/8/18 3:56	
2,4,6-Tribromophenol		60.7	15-110					8/8/18 3:34	
2,4,6-Tribromophenol		55.4	15-110					8/8/18 3:56	
p-Terphenyl-d14		86.9	30-130					8/8/18 3:34	

30-130

8/8/18 3:56

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.097	0.089	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1221 [1]	ND	0.097	0.078	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1232 [1]	ND	0.097	0.097	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1242 [1]	ND	0.097	0.084	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1248 [1]	ND	0.097	0.092	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1254 [1]	ND	0.097	0.051	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Aroclor-1260 [1]	ND	0.097	0.095	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:36	KAL
Surrogates		% Reco	very	Recovery Limits	i	Flag/Qual				
Decachlorobiphenyl [1]		58.5		30-150					8/8/18 15:36	
Decachlorobiphenyl [2]		61.9		30-150					8/8/18 15:36	
Tetrachloro-m-xylene [1]		72.4		30-150					8/8/18 15:36	
Tetrachloro-m-xylene [2]		73.7		30-150					8/8/18 15:36	

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Metals Analyses (Total)

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	1.4	1.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	МЈН
Arsenic	13	1.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	8/3/18	8/4/18 13:07	MJH
Copper	45	1.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Iron	86	0.25		mg/L	5	DL-03	EPA 200.7	8/3/18	8/7/18 9:52	QNW
Lead	9.4	0.50		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/7/18	8/7/18 14:53	EDF
Nickel	24	5.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Selenium	21	5.0	2.1	μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Silver	ND	0.20		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Zinc	30	20		μg/L	1		EPA 200.8	8/3/18	8/4/18 12:57	MJH
Hardness	1300			mg/L	5		EPA 200.7	8/3/18	8/7/18 10:49	QNW

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	ND	0.020		mg/L	1	H-03	SM21-22 4500 CL G	8/3/18	8/3/18 17:30	LED
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	8/2/18	8/2/18 19:38	LED
Total Suspended Solids	210	2.5		mg/L	1		SM21-22 2540D	8/6/18	8/6/18 12:45	LL
Silica Gel Treated HEM (SGT-HEM)	13	1.4		mg/L	1		EPA 1664B	8/7/18	8/7/18 11:30	LL

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	2.5	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		8/7/18 20:52	AAL
Cyanide	0.002	0.005	0.001	mø/L	1		SM21-22 4500 CN E		8/8/18 11:13	AAI

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-2

Sampled: 8/1/2018 12:00

Sample ID: 18H0124-02
Sample Matrix: Ground Water

EPA 300.0

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride		2630	100	mg/l	100	GS1, D	wc-Chloride-300.0	8/7/18	8/8/18 11:59	ESA

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-3

Sampled: 8/1/2018 13:00

97.4

101

98.8

70-130

70-130

70-130

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Toluene-d8

4-Bromofluorobenzene

4-Bromofluorobenzene

Volatile	Organic	Compounds by	GC/MS

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	9.3	50	1.7	μg/L	1	J	EPA 624.1	8/3/18	8/3/18 11:31	LBD
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.28	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Bromodichloromethane	ND	2.0	0.48	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
tert-Butyl Alcohol (TBA)	ND	20	2.9	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Chloroform	ND	2.0	0.33	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,4-Dioxane	ND	100	26	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Ethanol	ND	50	28	μg/L	1		EPA 624.1	8/8/18	8/9/18 2:19	BRF
Ethylbenzene	ND	2.0	0.37	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Toluene	0.71	1.0	0.35	μg/L	1	J	EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
m+p Xylene	ND	2.0	0.65	μg/L	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
o-Xylene	ND	2.0	0.35	$\mu g/L$	1		EPA 624.1	8/3/18	8/3/18 11:31	LBD
Surrogates		% Recov	ery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		90.0		70-130					8/9/18 2:19	
1,2-Dichloroethane-d4		97.4		70-130					8/3/18 11:31	
Toluene-d8		97.5		70-130					8/9/18 2:19	

8/3/18 11:31 8/9/18 2:19 8/3/18 11:31 Page 29 of 68

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

								Date	Date/Time	
 Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
 Surrogates		% Reco	verv	Recovery Limi	ts	Flag/Qual				

8/7/18 3:35

8/7/18 3:35

8/7/18 3:35

8/7/18 3:35

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Work Order: 18H0124 Sample Description:

Project Location: Salem, MA Date Received: 8/2/2018 Field Sample #: TW-3

Sampled: 8/1/2018 13:00

81.2

62.4

82.6

68.2

30-130

30-130

15-110

30-130

Sample ID: 18H0124-03 Sample Matrix: Ground Water

Nitrobenzene-d5

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

			Semivo	olatile Organic Co	mpounds by	GC/MS				
								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	ND	0.049	0.049	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Benzo(a)pyrene (SIM)	ND	0.098	0.039	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Benzo(b)fluoranthene (SIM)	ND	0.049	0.020	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Benzo(k)fluoranthene (SIM)	ND	0.20	0.098	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Bis(2-ethylhexyl)phthalate (SIM)	ND	0.98	0.98	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Chrysene (SIM)	ND	0.20	0.029	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.20	0.039	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	0.078	$\mu g/L$	1		EPA 625	8/3/18	8/7/18 3:35	IMR
Pentachlorophenol (SIM)	ND	0.98	0.98	$\mu g/L$	1	V-05	EPA 625	8/3/18	8/7/18 3:35	IMR
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
2-Fluorophenol		47.9		15-110		-		-	8/7/18 3:35	
Phenol-d6		29.5		15-110					8/7/18 3:35	

V-04

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acenaphthene	ND	4.9	μg/L	1	9.0	EPA 625.1	8/3/18	8/8/18 4:18	CDT
Acenaphthylene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Anthracene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Benzidine	ND	20	μg/L	1	L-04, V-04, V-05	EPA 625.1	8/3/18	8/8/18 4:18	CDT
Benzo(g,h,i)perylene	ND	4.9	μg/L	1	V-05	EPA 625.1	8/3/18	8/8/18 4:18	CDT
4-Bromophenylphenylether	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Butylbenzylphthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
4-Chloro-3-methylphenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Bis(2-chloroethyl)ether	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Bis(2-chloroisopropyl)ether	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2-Chloronaphthalene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2-Chlorophenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
4-Chlorophenylphenylether	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Di-n-butylphthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
1,3-Dichlorobenzene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
1,4-Dichlorobenzene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
1,2-Dichlorobenzene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
3,3-Dichlorobenzidine	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,4-Dichlorophenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Diethylphthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,4-Dimethylphenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Dimethylphthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
4,6-Dinitro-2-methylphenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,4-Dinitrophenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,4-Dinitrotoluene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,6-Dinitrotoluene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Di-n-octylphthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
1,2-Diphenylhydrazine (as Azobenzene)	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Bis(2-Ethylhexyl)phthalate	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Fluoranthene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Fluorene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Hexachlorobenzene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Hexachlorobutadiene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Hexachlorocyclopentadiene	ND	9.8	μg/L	1	V-05	EPA 625.1	8/3/18	8/8/18 4:18	CDT
Hexachloroethane	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Isophorone	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Naphthalene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Nitrobenzene	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2-Nitrophenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
4-Nitrophenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
N-Nitrosodimethylamine	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
N-Nitrosodiphenylamine	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
N-Nitrosodi-n-propylamine	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2-Methylnaphthalene	21	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT

Page 32 of 68

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analysi
Phenanthrene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2-Methylphenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Phenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
3/4-Methylphenol	ND	9.8	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Pyrene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
1,2,4-Trichlorobenzene	ND	4.9	μg/L	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
2,4,6-Trichlorophenol	ND	9.8	$\mu g/L$	1		EPA 625.1	8/3/18	8/8/18 4:18	CDT
Surrogates		% Recovery	Recovery Limits	5	Flag/Qual				
2-Fluorophenol		44.0	15-110					8/8/18 4:18	
Phenol-d6		29.1	15-110					8/8/18 4:18	
Nitrobenzene-d5		71.4	30-130					8/8/18 4:18	
2-Fluorobiphenyl		68.7	30-130					8/8/18 4:18	
2,4,6-Tribromophenol		62.8	15-110					8/8/18 4:18	
p-Terphenyl-d14		90.0	30-130					8/8/18 4:18	

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Polychlorinated	Biphenyls	By	GC/ECD
-----------------	-----------	----	--------

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.11	0.097		1	rag Quar	EPA 608.3	8/6/18	8/8/18 15:54	
Alocioi-1010 [1]	ND	0.11	0.097	μg/L	1		EFA 008.3	0/0/10	0/0/10 13.34	KAL
Aroclor-1221 [1]	ND	0.11	0.085	μg/L	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Aroclor-1232 [1]	ND	0.11	0.10	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Aroclor-1242 [1]	ND	0.11	0.091	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Aroclor-1248 [1]	ND	0.11	0.10	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Aroclor-1254 [1]	ND	0.11	0.055	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Aroclor-1260 [1]	ND	0.11	0.10	$\mu g/L$	1		EPA 608.3	8/6/18	8/8/18 15:54	KAL
Surrogates		% Reco	very	Recovery Limits	S	Flag/Qual				
D 11 11 111		00.5		20.150			_		0/0/10 15 54	

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

			(COC) . 30	
Metals	Anal	VSES	(Total)	

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	МЈН
Arsenic	ND	1.0		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	8/3/18	8/4/18 13:07	MJH
Copper	13	1.0		$\mu g/L$	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Iron	6.2	0.25		mg/L	5	DL-03	EPA 200.7	8/3/18	8/7/18 9:58	QNW
Lead	1.6	0.50		μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Mercury	ND	0.00010		mg/L	1		EPA 245.1	8/7/18	8/7/18 14:55	EDF
Nickel	9.0	5.0		μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Selenium	ND	5.0	2.1	μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	МЈН
Silver	ND	0.20		μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Zinc	ND	20		μg/L	1		EPA 200.8	8/3/18	8/4/18 13:00	MJH
Hardness	900			mg/L	5		EPA 200.7	8/3/18	8/7/18 10:49	QNW

Project Location: Salem, MA Sample Description: Work Order: 18H0124

Date Received: 8/2/2018

Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chlorine, Residual	ND	0.020		mg/L	1	H-03	SM21-22 4500 CL G	8/3/18	8/3/18 17:30	LED
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	8/2/18	8/2/18 19:38	LED
Total Suspended Solids	19	1.2		mg/L	1		SM21-22 2540D	8/6/18	8/6/18 12:45	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.8		mg/L	1		EPA 1664B	8/7/18	8/7/18 11:30	LL

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		2.35	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		8/7/18 20:53	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		8/8/18 11:14	AAL

Sample Description: Work Order: 18H0124

Project Location: Salem, MA
Date Received: 8/2/2018
Field Sample #: TW-3

Sampled: 8/1/2018 13:00

Sample ID: 18H0124-03
Sample Matrix: Ground Water

EPA 300.0

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride		1700	100	mg/l	100	GS1, D	wc-Chloride-300.0	8/7/18	8/8/18 12:14	ESA

Sample Extraction Data

EPA 1664B

Lab Number [Field ID]	Batch	Initial [mL]	Date
18H0124-01 [TW-1]	B209678	800	08/07/18
18H0124-02 [TW-2]	B209678	1000	08/07/18
18H0124-03 [TW-3]	B209678	800	08/07/18

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209522	50.0	50.0	08/03/18
18H0124-01 [TW-1]	B209522	50.0		08/03/18
18H0124-02 [TW-2]	B209522	50.0	50.0	08/03/18
18H0124-02 [TW-2]	B209522	50.0		08/03/18
18H0124-03 [TW-3]	B209522	50.0	50.0	08/03/18
18H0124-03 [TW-3]	B209522	50.0		08/03/18

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209523	50.0	50.0	08/03/18
18H0124-02 [TW-2]	B209523	50.0	50.0	08/03/18
18H0124-03 [TW-3]	B209523	50.0	50.0	08/03/18

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18H0124-01 [TW-1]	B209698	6.00	6.00	08/07/18	
18H0124-02 [TW-2]	B209698	6.00	6.00	08/07/18	
18H0124-03 [TW-3]	B209698	6.00	6.00	08/07/18	

Prep Method: SW-846 3510C-EPA 608.3

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-02 [TW-2]	B209571	1030	5.00	08/06/18
18H0124-03 [TW-3]	B209571	950	5.00	08/06/18

Prep Method: SW-846 3510C-EPA 608.3

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209675	1000	5.00	08/07/18

Prep Method: SW-846 5030B-EPA 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209464	5	5.00	08/03/18
18H0124-03 [TW-3]	B209464	5	5.00	08/03/18

Sample Extraction Data

Prep Method: SW-846 5030B-EPA 624.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01RE1 [TW-1]	B209816	5	5.00	08/08/18
18H0124-02 [TW-2]	B209816	5	5.00	08/08/18
18H0124-03RE1 [TW-3]	B209816	5	5.00	08/08/18

Prep Method: SW-846 3510C-EPA 625

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209588	930	0.900	08/03/18
18H0124-02 [TW-2]	B209588	1000	1.00	08/03/18
18H0124-03 [TW-3]	B209588	920	0.900	08/03/18

Prep Method: SW-846 3510C-EPA 625.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209506	930	0.900	08/03/18
18H0124-02 [TW-2]	B209506	1000	1.00	08/03/18
18H0124-02RE1 [TW-2]	B209506	1000	1.00	08/03/18
18H0124-03 [TW-3]	B209506	920	0.900	08/03/18

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]	Date
18H0124-01 [TW-1]	B209575	400	08/06/18
18H0124-02 [TW-2]	B209575	200	08/06/18
18H0124-03 [TW-3]	B209575	430	08/06/18

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0124-01 [TW-1]	B209424	50.0	50.0	08/02/18
18H0124-02 [TW-2]	B209424	50.0	50.0	08/02/18
18H0124-03 [TW-3]	B209424	50.0	50.0	08/02/18

SM21-22 4500 CL G

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18H0124-01 [TW-1]	B209525	100	100	08/03/18	
18H0124-02 [TW-2]	B209525	100	100	08/03/18	
18H0124-03 [TW-3]	B209525	100	100	08/03/18	

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
18H0124-01 [TW-1]	B209523	50.0	08/03/18
18H0124-02 [TW-2]	B209523	50.0	08/03/18
18H0124-03 [TW-3]	B209523	50.0	08/03/18

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B209464 - SW-846 5030B										
Blank (B209464-BLK1)				Prepared & A	Analyzed: 08	/03/18				
Acetone	ND	50	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	2.0	$\mu g/L$							
Bromoform	ND	2.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
ert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
Carbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
hloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
,2-Dichlorobenzene	ND	2.0	μg/L							
3-Dichlorobenzene	ND	2.0	μg/L							
,4-Dichlorobenzene	ND	2.0	μg/L							
2-Dichloroethane	ND	2.0	μg/L							
1-Dichloroethane	ND	2.0	μg/L							
1-Dichloroethylene	ND	2.0	μg/L							
ans-1,2-Dichloroethylene	ND	2.0	μg/L							
2-Dichloropropane	ND	2.0	μg/L							
s-1,3-Dichloropropene	ND	2.0	μg/L							
4-Dioxane	ND	50	μg/L							
ans-1,3-Dichloropropene	ND	2.0	μg/L							
thanol	ND	50	μg/L							
thylbenzene	ND	2.0	μg/L							
lethyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
Methylene Chloride		5.0	μg/L							
1,2,2-Tetrachloroethane	ND ND	2.0	μg/L μg/L							
etrachloroethylene	ND ND	2.0	μg/L μg/L							
oluene	ND ND	1.0	μg/L μg/L							
,1,1-Trichloroethane	ND ND	2.0	μg/L μg/L							
1,2-Trichloroethane		2.0	μg/L μg/L							
richloroethylene	ND	2.0	μg/L μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L μg/L							
Tinyl Chloride	ND	2.0	μg/L μg/L							
n+p Xylene	ND ND	2.0	μg/L μg/L							
-Xylene	ND	2.0	μg/L μg/L							
<u> </u>	ND	2.0								
urrogate: 1,2-Dichloroethane-d4	23.9		μg/L	25.0		95.5	70-130			
urrogate: Toluene-d8	23.6		μg/L	25.0		94.2	70-130			
urrogate: 4-Bromofluorobenzene	23.9		μg/L	25.0		95.5	70-130			
CS (B209464-BS1)				Prepared & A	Analyzed: 08	/03/18				
cetone	165	50	$\mu g/L$	200		82.5	70-160			
rt-Amyl Methyl Ether (TAME)	20.7	0.50	$\mu g/L$	20.0		103	70-130			
enzene	22.9	1.0	$\mu g/L$	20.0		114	65-135			
romodichloromethane	21.1	2.0	$\mu g/L$	20.0		105	65-135			
romoform	24.3	2.0	μg/L	20.0		122	70-130			
romomethane	13.7	2.0	μg/L	20.0		68.4	15-185			
ert-Butyl Alcohol (TBA)	220	20	μg/L	200		110	40-160			
arbon Tetrachloride	22.3	2.0	μg/L	20.0		111	70-130			
Chlorobenzene	24.2	2.0	μg/L	20.0		121	65-135			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209464 - SW-846 5030B										
LCS (B209464-BS1)				Prepared &	Analyzed: 08	/03/18				
Chlorodibromomethane	21.2	2.0	μg/L	20.0		106	70-135			
Chloroethane	19.2	2.0	$\mu g/L$	20.0		96.2	40-160			
Chloroform	22.1	2.0	$\mu g/L$	20.0		111	70-135			
Chloromethane	18.8	2.0	$\mu g/L$	20.0		94.2	20-205			
,2-Dichlorobenzene	22.5	2.0	$\mu g/L$	20.0		112	65-135			
,3-Dichlorobenzene	23.2	2.0	$\mu g/L$	20.0		116	70-130			
,4-Dichlorobenzene	22.0	2.0	$\mu g/L$	20.0		110	65-135			
,2-Dichloroethane	20.8	2.0	$\mu g/L$	20.0		104	70-130			
,1-Dichloroethane	22.0	2.0	$\mu g/L$	20.0		110	70-130			
,1-Dichloroethylene	18.8	2.0	μg/L	20.0		93.8	50-150			
rans-1,2-Dichloroethylene	21.0	2.0	μg/L	20.0		105	70-130			
,2-Dichloropropane	22.7	2.0	μg/L	20.0		113	35-165			
is-1,3-Dichloropropene	21.5	2.0	μg/L	20.0		108	25-175			
,4-Dioxane	282	50	μg/L	200		141 *				L-01
rans-1,3-Dichloropropene	22.4	2.0	μg/L	20.0		112	50-150			
Ethanol	ND	50	μg/L	200		*				
thylbenzene	25.2	2.0	μg/L	20.0		126	60-140			
Methyl tert-Butyl Ether (MTBE)	21.9	2.0	μg/L	20.0		110	70-130			
Methylene Chloride	17.0	5.0	μg/L	20.0		84.9	60-140			
1,2,2-Tetrachloroethane	24.0	2.0	μg/L	20.0		120	60-140			
etrachloroethylene	24.9	2.0	μg/L	20.0		124	70-130			
oluene	23.4	1.0	μg/L	20.0		117	70-130			
,1,1-Trichloroethane	21.3	2.0	μg/L	20.0		106	70-130			
,1,2-Trichloroethane	23.0	2.0	μg/L	20.0		115	70-130			
richloroethylene	22.3	2.0	μg/L	20.0		111	65-135			
richlorofluoromethane (Freon 11)	17.2	2.0	μg/L	20.0		85.8	50-150			
Vinyl Chloride	21.1	2.0	μg/L	20.0		105	5-195			
n+p Xylene	49.8	2.0	μg/L	40.0		125	70-130			
-Xylene	23.9	2.0	μg/L	20.0		119	70-130			
urrogate: 1,2-Dichloroethane-d4	22.7		μg/L	25.0		90.6	70-130			
Surrogate: Toluene-d8	24.2		μg/L	25.0		97.0	70-130			
Surrogate: 4-Bromofluorobenzene	24.9		μg/L	25.0		99.8	70-130			
Batch B209816 - SW-846 5030B										
Blank (B209816-BLK1)				Prepared: 08	3/08/18 Anal	yzed: 08/09/	18			
Acetone	ND	50	μg/L							
ert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	2.0	$\mu g/L$							
Bromoform	ND	2.0	$\mu g/L$							
Bromomethane	ND	2.0	$\mu g/L$							
ert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$							
arbon Tetrachloride	ND	2.0	$\mu g/L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g/L$							
Chloroform	ND	2.0	$\mu g/L$							
Chloromethane	ND	2.0	$\mu g/L$							
,2-Dichlorobenzene	ND	2.0	$\mu g/L$							
		2.0	/T							
,3-Dichlorobenzene	ND	2.0	μg/L							
,3-Dichlorobenzene ,4-Dichlorobenzene	ND ND	2.0	μg/L μg/L							

QUALITY CONTROL

Spike

Source

%REC

RPD

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B209816 - SW-846 5030B										
Blank (B209816-BLK1)				Prepared: 08	3/08/18 Anal	yzed: 08/09/1	8			
,1-Dichloroethane	ND	2.0	μg/L							
,1-Dichloroethylene	ND	2.0	$\mu g/L$							
rans-1,2-Dichloroethylene	ND	2.0	$\mu g/L$							
,2-Dichloropropane	ND	2.0	$\mu g/L$							
is-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
,4-Dioxane	ND	50	$\mu g/L$							
rans-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
thanol	ND	50	$\mu g/L$							
thylbenzene	ND	2.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
1ethylene Chloride	ND	5.0	μg/L							
1,2,2-Tetrachloroethane	ND	2.0	μg/L							
etrachloroethylene	ND	2.0	μg/L							
oluene	ND	1.0	μg/L							
,1,1-Trichloroethane	ND	2.0	μg/L							
,1,2-Trichloroethane	ND	2.0	μg/L							
richloroethylene	ND	2.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
n+p Xylene	ND	2.0	μg/L							
-Xylene	ND	2.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	22.8		μg/L	25.0		91.1	70-130			
urrogate: Toluene-d8	24.7		$\mu g/L$	25.0		98.8	70-130			
urrogate: 4-Bromofluorobenzene	24.6		$\mu g/L$	25.0		98.2	70-130			
.CS (B209816-BS1)				Prepared &	Analyzed: 08	/08/18				
acetone	157	50	μg/L	200		78.4	70-160			
ert-Amyl Methyl Ether (TAME)	20.3	0.50	$\mu g/L$	20.0		102	70-130			
enzene	23.7	1.0	$\mu g/L$	20.0		118	65-135			
romodichloromethane	20.4	2.0	$\mu g/L$	20.0		102	65-135			
romoform	21.9	2.0	$\mu g/L$	20.0		109	70-130			
romomethane	11.8	2.0	$\mu g/L$	20.0		58.9	15-185			
ert-Butyl Alcohol (TBA)	170	20	$\mu g/L$	200		85.1	40-160			
arbon Tetrachloride	21.6	2.0	$\mu g/L$	20.0		108	70-130			
Chlorobenzene	23.4	2.0	$\mu g/L$	20.0		117	65-135			
Chlorodibromomethane	20.0	2.0	$\mu g/L$	20.0		100	70-135			
Chloroethane	19.4	2.0	$\mu \text{g/L}$	20.0		97.2	40-160			
Chloroform	22.4	2.0	$\mu \text{g/L}$	20.0		112	70-135			
Chloromethane	18.3	2.0	$\mu \text{g/L}$	20.0		91.4	20-205			
2-Dichlorobenzene	21.6	2.0	$\mu g/L$	20.0		108	65-135			
,3-Dichlorobenzene	21.9	2.0	$\mu g/L$	20.0		109	70-130			
,4-Dichlorobenzene	21.5	2.0	μg/L	20.0		107	65-135			
2-Dichloroethane	19.8	2.0	μg/L	20.0		98.9	70-130			
,1-Dichloroethane	22.2	2.0	$\mu g/L$	20.0		111	70-130			
1-Dichloroethylene	20.2	2.0	μg/L	20.0		101	50-150			
ans-1,2-Dichloroethylene	21.1	2.0	μg/L	20.0		106	70-130			
2-Dichloropropane	22.9	2.0	$\mu g/L$	20.0		114	35-165			
s-1,3-Dichloropropene	19.9	2.0	$\mu g/L$	20.0		99.7	25-175			
4-Dioxane	150	50	μg/L	200		75.2	40-130			
rans-1,3-Dichloropropene	20.3	2.0	$\mu g/L$	20.0		101	50-150			
thanol	174	50	$\mu g/L$	200		86.9	40-160			
thylbenzene	24.4	2.0	μg/L	20.0		122	60-140			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209816 - SW-846 5030B	result	2.min			1100011	, ,,,,,	Ziiiii		2	1.000
LCS (B209816-BS1)				Prepared &	Analyzed: 08	/08/18				
Methyl tert-Butyl Ether (MTBE)	21.1	2.0	μg/L	20.0		106	70-130			
Methylene Chloride	17.1	5.0	$\mu \text{g/L}$	20.0		85.3	60-140			
1,1,2,2-Tetrachloroethane	22.0	2.0	$\mu \text{g}/L$	20.0		110	60-140			
Tetrachloroethylene	24.6	2.0	$\mu \text{g/L}$	20.0		123	70-130			
Toluene	23.3	1.0	$\mu \text{g/L}$	20.0		116	70-130			
1,1,1-Trichloroethane	21.2	2.0	$\mu \text{g/L}$	20.0		106	70-130			
1,1,2-Trichloroethane	22.5	2.0	$\mu g/L$	20.0		112	70-130			
Trichloroethylene	22.3	2.0	$\mu g/L$	20.0		112	65-135			
Trichlorofluoromethane (Freon 11)	18.4	2.0	$\mu g/L$	20.0		92.0	50-150			
Vinyl Chloride	21.8	2.0	$\mu \text{g/L}$	20.0		109	5-195			
m+p Xylene	48.0	2.0	$\mu \text{g}/L$	40.0		120	70-130			
o-Xylene	23.0	2.0	$\mu g/L$	20.0		115	70-130			
Surrogate: 1,2-Dichloroethane-d4	22.1		μg/L	25.0		88.2	70-130			
Surrogate: Toluene-d8	24.1		$\mu g/L$	25.0		96.5	70-130			
Surrogate: 4-Bromofluorobenzene	25.3		μg/L	25.0		101	70-130			

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209588 - SW-846 3510C										
Blank (B209588-BLK1)				Prepared: 08	/03/18 Anal	yzed: 08/06/	18			
Benzo(a)anthracene (SIM)	ND	0.050	μg/L							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.20	$\mu g/L$							
ndeno(1,2,3-cd)pyrene (SIM)	ND	0.20	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							V-05
urrogate: 2-Fluorophenol	141		μg/L	200		70.6	15-110			
Surrogate: Phenol-d6	113		μg/L	200		56.3	15-110			
Surrogate: Nitrobenzene-d5	86.1		μg/L	100		86.1	30-130			
Surrogate: 2-Fluorobiphenyl	84.7		μg/L	100		84.7	30-130			
Surrogate: 2,4,6-Tribromophenol	192		μg/L	200		95.9	15-110			V-04
urrogate: p-Terphenyl-d14	90.4		μg/L	100		90.4	30-130			
.CS (B209588-BS1)				Prepared: 08	/03/18 Anal	yzed: 08/06/	18			
Benzo(a)anthracene (SIM)	41.4	1.2	μg/L	50.0		82.8	40-140			
Benzo(a)pyrene (SIM)	43.3	2.5	μg/L	50.0		86.6	40-140			
Benzo(b)fluoranthene (SIM)	44.8	1.2	μg/L	50.0		89.6	40-140			
Benzo(k)fluoranthene (SIM)	42.3	5.0	μg/L	50.0		84.6	40-140			
Bis(2-ethylhexyl)phthalate (SIM)	45.0	25	μg/L	50.0		90.0	40-140			
Chrysene (SIM)	39.3	5.0	μg/L	50.0		78.6	40-140			
Dibenz(a,h)anthracene (SIM)	45.1	5.0	μg/L	50.0		90.2	40-140			
ndeno(1,2,3-cd)pyrene (SIM)	45.8	5.0	μg/L	50.0		91.6	40-140			
Pentachlorophenol (SIM)	30.6	25	μg/L	50.0		61.2	40-140			V-05
urrogate: 2-Fluorophenol	111		μg/L	200		55.5	15-110			
Surrogate: Phenol-d6	89.1		μg/L μg/L	200		44.6	15-110			
Surrogate: Nitrobenzene-d5	75.0		μg/L μg/L	100		75.0	30-130			
Surrogate: 2-Fluorobiphenyl	68.5		μg/L μg/L	100		68.5	30-130			
Surrogate: 2,4,6-Tribromophenol	112		μg/L μg/L	200		56.0	15-110			V-04
urrogate: 2,4,0-1110101110pnen01 urrogate: p-Terphenyl-d14	60.4		μg/L μg/L	100		60.4	30-130			v -U4
	00.7		MP/ L		/02/10 A 1					
CS Dup (B209588-BSD1)	42.0	1.2	по/І	Prepared: 08	105/16 Anal	*		5.62	20	
Benzo(a)anthracene (SIM)	43.8	1.2	μg/L	50.0		87.6	40-140	5.63	20	
Benzo(a)pyrene (SIM)	46.2	2.5	μg/L	50.0		92.4	40-140	6.53	20	
Benzo(b)fluoranthene (SIM)	47.7	1.2	μg/L ug/I	50.0		95.4	40-140	6.22	20	
Benzo(k)fluoranthene (SIM)	45.5	5.0	μg/L μg/I	50.0		91.0	40-140	7.23	20	
Bis(2-ethylhexyl)phthalate (SIM)	47.2	25	μg/L ug/I	50.0		94.5	40-140	4.88	20	
Chrysene (SIM)	41.8	5.0	μg/L	50.0		83.6	40-140	6.11	20	
Dibenz(a,h)anthracene (SIM)	48.2	5.0	μg/L	50.0		96.4	40-140	6.70	20	
ndeno(1,2,3-cd)pyrene (SIM)	48.9	5.0	μg/L	50.0		97.8	40-140	6.55	20	*** **
entachlorophenol (SIM)	31.2	25	μg/L	50.0		62.4	40-140	1.86	20	V-05
urrogate: 2-Fluorophenol	119		$\mu g/L$	200		59.5	15-110			
surrogate: Phenol-d6	98.5		μg/L	200		49.3	15-110			
urrogate: Nitrobenzene-d5	76.4		$\mu g/L$	100		76.4	30-130			
Surrogate: 2-Fluorobiphenyl	70.9		μg/L	100		70.9	30-130			
Surrogate: 2,4,6-Tribromophenol	111		μg/L	200		55.7	15-110			V-04
Surrogate: p-Terphenyl-d14	67.9		μg/L	100		67.9	30-130			

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Semivolatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209588 - SW-846 3510C										
Matrix Spike (B209588-MS1)	Sou	rce: 18H0124-	-01	Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
Benzo(a)anthracene (SIM)	49.9	1.2	μg/L	50.0	ND	99.8	40-140			
Benzo(a)pyrene (SIM)	52.2	2.5	$\mu g \! / \! L$	50.0	ND	104	40-140			
Benzo(b)fluoranthene (SIM)	54.6	1.2	$\mu g \! / \! L$	50.0	ND	109	40-140			
Benzo(k)fluoranthene (SIM)	52.0	5.0	$\mu g/L$	50.0	ND	104	40-140			
Bis(2-ethylhexyl)phthalate (SIM)	54.3	25	$\mu \text{g/L}$	50.0	ND	109	40-140			
Chrysene (SIM)	47.5	5.0	$\mu \text{g/L}$	50.0	ND	95.0	40-140			
Dibenz(a,h)anthracene (SIM)	55.2	5.0	$\mu g\!/\!L$	50.0	ND	110	40-140			
Indeno(1,2,3-cd)pyrene (SIM)	55.6	5.0	$\mu g\!/\!L$	50.0	ND	111	40-140			
Pentachlorophenol (SIM)	34.2	25	$\mu g/L$	50.0	ND	68.4	40-140			V-05
Surrogate: 2-Fluorophenol	112		μg/L	200		56.0	15-110			
Surrogate: Phenol-d6	98.4		$\mu g/L$	200		49.2	15-110			
Surrogate: Nitrobenzene-d5	78.1		$\mu g/L$	100		78.1	30-130			
Surrogate: 2-Fluorobiphenyl	82.6		$\mu g/L$	100		82.6	30-130			
Surrogate: 2,4,6-Tribromophenol	137		$\mu g/L$	200		68.6	15-110			V-04
Surrogate: p-Terphenyl-d14	76.8		$\mu g/L$	100		76.8	30-130			
Matrix Spike Dup (B209588-MSD1)	Sou	rce: 18H0124-	01	Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
Benzo(a)anthracene (SIM)	49.0	1.2	μg/L	50.0	ND	98.0	40-140	1.72	30	
Benzo(a)pyrene (SIM)	51.6	2.5	$\mu g \! / \! L$	50.0	ND	103	40-140	1.15	30	
Benzo(b)fluoranthene (SIM)	54.2	1.2	$\mu g \! / \! L$	50.0	ND	108	40-140	0.828	30	
Benzo(k)fluoranthene (SIM)	51.3	5.0	$\mu g\!/\!L$	50.0	ND	103	40-140	1.31	30	
Bis(2-ethylhexyl)phthalate (SIM)	53.0	25	$\mu g\!/\!L$	50.0	ND	106	40-140	2.52	30	
Chrysene (SIM)	46.9	5.0	$\mu g\!/\!L$	50.0	ND	93.8	40-140	1.38	30	
Dibenz(a,h)anthracene (SIM)	53.8	5.0	$\mu g\!/\!L$	50.0	ND	108	40-140	2.39	30	
Indeno(1,2,3-cd)pyrene (SIM)	54.5	5.0	$\mu g\!/\!L$	50.0	ND	109	40-140	2.13	30	
Pentachlorophenol (SIM)	33.8	25	$\mu \text{g/L}$	50.0	ND	67.5	40-140	1.40	30	V-05
Surrogate: 2-Fluorophenol	104		μg/L	200		52.2	15-110			
Surrogate: Phenol-d6	86.7		$\mu g/L$	200		43.4	15-110			
Surrogate: Nitrobenzene-d5	88.8		$\mu g/L$	100		88.8	30-130			
Surrogate: 2-Fluorobiphenyl	81.9		$\mu g/L$	100		81.9	30-130			
Surrogate: 2,4,6-Tribromophenol	134		$\mu g/L$	200		67.2	15-110			V-04
Surrogate: p-Terphenyl-d14	75.5		μg/L	100		75.5	30-130			

RPD

%REC

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Spike

Source

Semivolatile Organic Compounds by - GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch B209506 - SW-846 3510C										
Blank (B209506-BLK1)				Prepared: 08	8/03/18 Anal	yzed: 08/06/	18			
Acenaphthene	ND	5.0	μg/L							
Acenaphthylene	ND	5.0	μg/L							
Anthracene	ND	5.0	μg/L							
Benzidine	ND	20	μg/L							L-04, V-04, V-05
Benzo(g,h,i)perylene	ND	5.0	μg/L							V-05
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	$\mu g/L$							
4-Chloro-3-methylphenol	ND	10	μg/L							
Bis(2-chloroethyl)ether	ND	10	μg/L							
Bis(2-chloroisopropyl)ether	ND	10	μg/L							
2-Chloronaphthalene	ND	10	$\mu g/L$							
2-Chlorophenol	ND	10	μg/L							
4-Chlorophenylphenylether	ND	10	μg/L							
Di-n-butylphthalate	ND	10	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L							
1,4-Dichlorobenzene	ND	5.0	μg/L							
1,2-Dichlorobenzene	ND	5.0	μg/L							
3,3-Dichlorobenzidine	ND	10	$\mu g/L$							
2,4-Dichlorophenol	ND	10	μg/L							
Diethylphthalate	ND	10	μg/L							
2,4-Dimethylphenol	ND	10	μg/L							
Dimethylphthalate	ND	10	μg/L							
4,6-Dinitro-2-methylphenol	ND	10	μg/L							
2,4-Dinitrophenol	ND	10	μg/L							
2,4-Dinitrotoluene	ND	10	μg/L							
2,6-Dinitrotoluene	ND	10	μg/L							
Di-n-octylphthalate	ND	10	μg/L							
1,2-Diphenylhydrazine (as Azobenzene)	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L							
Fluoranthene	ND	5.0	μg/L							
Fluorene	ND	5.0	μg/L							
Hexachlorobenzene	ND	10	μg/L							
Hexachlorobutadiene	ND	10	μg/L							
Hexachlorocyclopentadiene	ND ND	10	μg/L							V-05
Hexachloroethane		10	μg/L							V-0 3
Isophorone	ND	10	μg/L μg/L							
Naphthalene	ND ND	5.0	μg/L μg/L							
Nitrobenzene	ND ND	10	μg/L							
2-Nitrophenol		10	μg/L							
4-Nitrophenol	ND ND	10	μg/L μg/L							
N-Nitrosodimethylamine	ND ND	10	μg/L μg/L							
N-Nitrosodimenylamine N-Nitrosodiphenylamine	ND	10	μg/L μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L μg/L							
2-Methylnaphthalene	ND	5.0	μg/L μg/L							
Phenanthrene	ND	5.0	μg/L μg/L							
2-Methylphenol	ND	5.0 10								
• •	ND		μg/L							
Phenol 2/4 Mathylphanol	ND	10	μg/L							
3/4-Methylphenol	ND	10	μg/L							
Pyrene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	5.0	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							
Surrogate: 2-Fluorophenol	124		$\mu g/L$	200		61.9	15-110			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209506 - SW-846 3510C										
Blank (B209506-BLK1)				Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
Surrogate: Phenol-d6	100		μg/L	200		50.2	15-110			
Surrogate: Nitrobenzene-d5	73.7		$\mu g/L$	100		73.7	30-130			
Surrogate: 2-Fluorobiphenyl	80.5		$\mu g/L$	100		80.5	30-130			
Surrogate: 2,4,6-Tribromophenol	152		$\mu g/L$	200		76.2	15-110			
Surrogate: p-Terphenyl-d14	96.8		$\mu g/L$	100		96.8	30-130			
LCS (B209506-BS1)				Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
Acenaphthene	32.3	5.0	μg/L	50.0		64.6	47-145			
Acenaphthylene	31.9	5.0	$\mu g/L$	50.0		63.8	33-145			
Anthracene	36.5	5.0	$\mu g/L$	50.0		72.9	27-133			
Benzidine	10.6	20	$\mu g/L$	50.0		21.2 *	40-140			V-04, V-05, L-04
Benzo(g,h,i)perylene	34.4	5.0	$\mu g \! / \! L$	50.0		68.8	10-219			V-05
4-Bromophenylphenylether	33.6	10	$\mu g\!/\!L$	50.0		67.1	53-127			
Butylbenzylphthalate	37.3	10	μg/L	50.0		74.5	10-152			
4-Chloro-3-methylphenol	35.0	10	$\mu g/L$	50.0		69.9	22-147			
Bis(2-chloroethyl)ether	33.2	10	$\mu g/L$	50.0		66.4	12-158			
Bis(2-chloroisopropyl)ether	38.4	10	μg/L	50.0		76.7	36-166			
2-Chloronaphthalene	28.1	10	$\mu g/L$	50.0		56.2 *	60-120			L-07
2-Chlorophenol	32.5	10	μg/L	50.0		64.9	23-134			
4-Chlorophenylphenylether	32.4	10	μg/L	50.0		64.7	25-158			
Di-n-butylphthalate	35.9	10	μg/L	50.0		71.9	10-120			
1,3-Dichlorobenzene	31.8	5.0	μg/L	50.0		63.6	10-172			
1,4-Dichlorobenzene	32.1	5.0	μg/L	50.0		64.1	20-124			
1,2-Dichlorobenzene	33.1	5.0	μg/L	50.0		66.1	32-129			
3,3-Dichlorobenzidine	38.2	10	μg/L	50.0		76.3	10-262			
2,4-Dichlorophenol	34.4	10	μg/L	50.0		68.7	39-135			
Diethylphthalate	31.2	10	μg/L	50.0		62.4	10-120			
2,4-Dimethylphenol	34.6	10	μg/L	50.0		69.2	32-120			
Dimethylphthalate	32.8	10	μg/L	50.0		65.5	10-120			
4,6-Dinitro-2-methylphenol	35.6	10	μg/L	50.0		71.2	10-181			
2,4-Dinitrophenol	32.2	10	μg/L	50.0		64.4	10-191			
2,4-Dinitrotoluene	34.6	10	μg/L	50.0		69.1	39-139			
2,6-Dinitrotoluene	35.8	10	μg/L	50.0		71.6	50-158			
Di-n-octylphthalate	37.6	10	μg/L	50.0		75.2	4-146			
1,2-Diphenylhydrazine (as Azobenzene)	33.5	10	μg/L	50.0		67.0	40-140			
Bis(2-Ethylhexyl)phthalate	33.3 37.8	10	μg/L	50.0		75.5	8-158			
Fluoranthene	37.4	5.0	μg/L	50.0		74.8	26-137			
Fluorene	32.6	5.0	μg/L	50.0		65.1	59-121			
Hexachlorobenzene	33.3	10	μg/L μg/L	50.0		66.6	10-152			
Hexachlorobutadiene	33.9	10	μg/L	50.0		67.8	24-120			
Hexachlorocyclopentadiene	21.8	10	μg/L	50.0		43.6	40-140			V-05
Hexachloroethane	31.0	10	μg/L μg/L	50.0		62.0	40-140			¥-03
Isophorone	35.3	10	μg/L μg/L	50.0		70.6	21-196			
Naphthalene	33.3 34.0	5.0	μg/L μg/L	50.0		68.0	21-133			
Nitrobenzene	34.0	10	μg/L μg/L	50.0		61.5	35-180			
2-Nitrophenol	36.6	10	μg/L μg/L	50.0		73.1	29-182			
4-Nitrophenol	23.7	10	μg/L μg/L	50.0		47.5	10-132			
N-Nitrosodimethylamine		10	μg/L μg/L	50.0		50.3	40-140			
N-Nitrosodiphenylamine	25.1	10	μg/L μg/L	50.0			40-140			
N-Nitrosodi-n-propylamine	42.0					84.1				
2-Methylnaphthalene	29.9	10 5.0	μg/L μg/I	50.0		59.9	10-230			
2-Metnymaphthaiene Phenanthrene	36.3 36.0	5.0	μg/L μg/L	50.0 50.0		72.7 72.0	40-140 54-120			

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209506 - SW-846 3510C										
LCS (B209506-BS1)				Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
2-Methylphenol	32.3	10	μg/L	50.0		64.7	40-140			
Phenol	21.7	10	$\mu g/L$	50.0		43.4	5-120			
3/4-Methylphenol	33.9	10	$\mu g/L$	50.0		67.7	40-140			
Pyrene	36.7	5.0	$\mu \text{g/L}$	50.0		73.3	52-120			
1,2,4-Trichlorobenzene	33.2	5.0	$\mu \text{g/L}$	50.0		66.3	44-142			
2,4,6-Trichlorophenol	32.7	10	$\mu g/L$	50.0		65.4	37-144			
Surrogate: 2-Fluorophenol	113		μg/L	200		56.3	15-110			
Surrogate: Phenol-d6	91.6		μg/L	200		45.8	15-110			
Surrogate: Nitrobenzene-d5	65.5		μg/L	100		65.5	30-130			
Surrogate: 2-Fluorobiphenyl	74.5		μg/L	100		74.5	30-130			
Surrogate: 2,4,6-Tribromophenol	135		$\mu g/L$	200		67.7	15-110			
Surrogate: p-Terphenyl-d14	87.5		$\mu g/L$	100		87.5	30-130			
LCS Dup (B209506-BSD1)				Prepared: 08	3/03/18 Analy	zed: 08/06/	18			
Acenaphthene	34.1	5.0	μg/L	50.0		68.1	47-145	5.27	48	
Acenaphthylene	33.8	5.0	$\mu \text{g/L}$	50.0		67.5	33-145	5.57	74	
Anthracene	38.8	5.0	$\mu g/L$	50.0		77.5	27-133	6.11	66	
Benzidine	ND	20	$\mu g/L$	50.0		*	40-140			L-04, V-04, V-03
Benzo(g,h,i)perylene	36.2	5.0	$\mu g/L$	50.0		72.5	10-219	5.21	97	V-05
1-Bromophenylphenylether	35.7	10	$\mu g/L$	50.0		71.3	53-127	6.13	43	
Butylbenzylphthalate	40.3	10	$\mu g/L$	50.0		80.5	10-152	7.74	60	
-Chloro-3-methylphenol	37.1	10	$\mu g/L$	50.0		74.2	22-147	5.91	73	
Bis(2-chloroethyl)ether	35.4	10	$\mu g/L$	50.0		70.9	12-158	6.56	108	
Bis(2-chloroisopropyl)ether	43.8	10	$\mu g/L$	50.0		87.7	36-166	13.3	76	
2-Chloronaphthalene	30.8	10	$\mu g/L$	50.0		61.6	60-120	9.27	24	
2-Chlorophenol	35.2	10	$\mu g/L$	50.0		70.5	23-134	8.24	61	
4-Chlorophenylphenylether	34.0	10	$\mu g/L$	50.0		68.0	25-158	4.91	61	
Di-n-butylphthalate	38.6	10	$\mu g/L$	50.0		77.3	10-120	7.24	47	
1,3-Dichlorobenzene	34.3	5.0	$\mu g/L$	50.0		68.6	10-172	7.44		
,4-Dichlorobenzene	34.4	5.0	$\mu g/L$	50.0		68.7	20-124	6.92		
1,2-Dichlorobenzene	36.2	5.0	$\mu g/L$	50.0		72.5	32-129	9.15		
3,3-Dichlorobenzidine	40.3	10	$\mu g/L$	50.0		80.6	10-262	5.48	108	
2,4-Dichlorophenol	36.0	10	$\mu g/L$	50.0		72.1	39-135	4.80	50	
Diethylphthalate	33.6	10	$\mu g/L$	50.0		67.1	10-120	7.22	100	
2,4-Dimethylphenol	37.0	10	$\mu g/L$	50.0		74.0	32-120	6.82	58	
Dimethylphthalate	34.3	10	$\mu g/L$	50.0		68.6	10-120	4.59	183	
4,6-Dinitro-2-methylphenol	38.3	10	$\mu g/L$	50.0		76.6	10-181	7.34	203	
2,4-Dinitrophenol	33.4	10	$\mu g/L$	50.0		66.8	10-191	3.60	132	
2,4-Dinitrotoluene	36.3	10	$\mu g/L$	50.0		72.5	39-139	4.80	42	
2,6-Dinitrotoluene	37.6	10	$\mu g/L$	50.0		75.2	50-158	4.82	48	
Di-n-octylphthalate	40.3	10	$\mu g/L$	50.0		80.6	4-146	6.91	69	
,2-Diphenylhydrazine (as Azobenzene)	37.0	10	$\mu g \! / \! L$	50.0		74.1	40-140	10.0		
Bis(2-Ethylhexyl)phthalate	40.4	10	$\mu g \! / \! L$	50.0		80.7	8-158	6.66	82	
Fluoranthene	39.8	5.0	$\mu g \! / \! L$	50.0		79.7	26-137	6.35	66	
Fluorene	34.2	5.0	$\mu g/L$	50.0		68.3	59-121	4.74	38	
Hexachlorobenzene	34.6	10	$\mu g \! / \! L$	50.0		69.2	10-152	3.74	55	
Hexachlorobutadiene	34.9	10	$\mu g \! / \! L$	50.0		69.7	24-120	2.88	62	
Hexachlorocyclopentadiene	22.2	10	$\mu g/L$	50.0		44.3	40-140	1.64		V-05
Hexachloroethane	33.8	10	$\mu g/L$	50.0		67.6	40-120	8.58	52	
Isophorone	38.0	10	$\mu g/L$	50.0		75.9	21-196	7.29	93	
Naphthalene	36.0	5.0	$\mu \text{g/L}$	50.0		71.9	21-133	5.63	65	
Nitrobenzene	33.5	10	μg/L	50.0		67.0	35-180	8.44	62	

QUALITY CONTROL

Semivolatile Organic Compounds by - GC/MS - Quality Control

A	D14	Reporting	I I:4-	Spike	Source	0/DEC	%REC	DDD	RPD	N-4
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B209506 - SW-846 3510C										
LCS Dup (B209506-BSD1)				Prepared: 08	/03/18 Anal	yzed: 08/06/	18			
2-Nitrophenol	38.2	10	μg/L	50.0		76.3	29-182	4.28	55	
4-Nitrophenol	25.2	10	$\mu g/L$	50.0		50.3	10-132	5.85	131	
N-Nitrosodimethylamine	28.1	10	$\mu g/L$	50.0		56.1	40-140	11.0		
N-Nitrosodiphenylamine	44.9	10	$\mu g/L$	50.0		89.8	40-140	6.58		
N-Nitrosodi-n-propylamine	33.3	10	$\mu g/L$	50.0		66.5	10-230	10.5	87	
2-Methylnaphthalene	38.8	5.0	$\mu g/L$	50.0		77.7	40-140	6.62	30	
Phenanthrene	38.4	5.0	$\mu g/L$	50.0		76.8	54-120	6.37	39	
2-Methylphenol	35.4	10	$\mu g/L$	50.0		70.9	40-140	9.12	30	
Phenol	23.7	10	$\mu g/L$	50.0		47.4	5-120	8.86	64	
3/4-Methylphenol	36.9	10	$\mu g/L$	50.0		73.9	40-140	8.67	30	
Pyrene	38.6	5.0	$\mu g/L$	50.0		77.2	52-120	5.16	49	
1,2,4-Trichlorobenzene	35.0	5.0	$\mu g/L$	50.0		69.9	44-142	5.31	50	
2,4,6-Trichlorophenol	34.2	10	$\mu g/L$	50.0		68.4	37-144	4.55	58	
Surrogate: 2-Fluorophenol	122		μg/L	200		61.2	15-110			
Surrogate: Phenol-d6	101		μg/L	200		50.3	15-110			
Surrogate: Nitrobenzene-d5	71.4		μg/L	100		71.4	30-130			
Surrogate: 2-Fluorobiphenyl	77.6		μg/L	100		77.6	30-130			
Surrogate: 2,4,6-Tribromophenol	140		μg/L	200		70.1	15-110			
Surrogate: p-Terphenyl-d14	91.0		$\mu g/L$	100		91.0	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209571 - SW-846 3510C										
Blank (B209571-BLK1)				Prepared: 08	3/06/18 Anal	yzed: 08/08/	18			
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1221	ND	0.10	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1232	ND	0.10	μg/L							
Aroclor-1232 [2C]	ND	0.10	μg/L							
Aroclor-1242	ND	0.10	μg/L							
Aroclor-1242 [2C]	ND	0.10	μg/L							
Aroclor-1248	ND	0.10	μg/L							
Aroclor-1248 [2C] Aroclor-1254	ND	0.10 0.10	μg/L							
	ND	0.10	μg/L							
Aroclor-1254 [2C] Aroclor-1260	ND ND	0.10	μg/L μg/L							
Aroclor-1260 [2C]	ND ND	0.10	μg/L μg/L							
		0.10				0.6.7				
Surrogate: Decachlorobiphenyl	1.93		μg/L	2.00		96.5	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.95		μg/L	2.00		97.5	30-150			
urrogate: Tetrachloro-m-xylene	1.73		μg/L	2.00		86.3	30-150			
surrogate: Tetrachloro-m-xylene [2C]	1.71		μg/L	2.00		85.3	30-150			
CS (B209571-BS1)				Prepared: 08	3/06/18 Anal	yzed: 08/08/	18			
Aroclor-1016	0.50	0.20	μg/L	0.500		100	50-140			
Aroclor-1016 [2C]	0.52	0.20	μg/L	0.500		103	50-140			
aroclor-1260	0.46	0.20	μg/L	0.500		92.6	8-140			
aroclor-1260 [2C]	0.47	0.20	μg/L	0.500		93.3	8-140			
urrogate: Decachlorobiphenyl	1.87		$\mu g/L$	2.00		93.6	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.84		μg/L	2.00		92.0	30-150			
Surrogate: Tetrachloro-m-xylene	1.62		μg/L	2.00		81.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.60		μg/L	2.00		80.0	30-150			
.CS Dup (B209571-BSD1)				Prepared: 08	3/06/18 Anal	yzed: 08/08/	18			
Aroclor-1016	0.48	0.20	$\mu g/L$	0.500		95.3	50-140	5.00		
Aroclor-1016 [2C]	0.50	0.20	$\mu g/L$	0.500		100	50-140	2.63		
Aroclor-1260	0.46	0.20	$\mu g/L$	0.500		92.7	8-140	0.117		
Aroclor-1260 [2C]	0.46	0.20	μg/L	0.500		92.3	8-140	1.14		
urrogate: Decachlorobiphenyl	1.89		$\mu g/L$	2.00		94.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.85		$\mu g/L$	2.00		92.6	30-150			
Surrogate: Tetrachloro-m-xylene	1.49		μg/L	2.00		74.5	30-150			
urrogate: Tetrachloro-m-xylene [2C]	1.46		$\mu g/L$	2.00		73.2	30-150			
Batch B209675 - SW-846 3510C										
Blank (B209675-BLK1)	<u> </u>			Prepared: 08	3/07/18 Anal	yzed: 08/08/	18		<u> </u>	
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1221	ND	0.10	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1232	ND	0.10	$\mu g/L$							
	ND	0.10	$\mu g/L$							
			/T							
Aroclor-1232 [2C]	ND	0.10	μg/L							
Aroclor-1232 [2C] Aroclor-1242	ND ND	0.10 0.10	μg/L μg/L							
Aroclor-1232 [2C] Aroclor-1242 Aroclor-1242 [2C] Aroclor-1248		0.10 0.10	μg/L μg/L							
Aroclor-1232 [2C] Aroclor-1242 Aroclor-1242 [2C]	ND	0.10	$\mu g/L$							

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209675 - SW-846 3510C	result	Zmit		20.01	1100011	,,,,,,	2		2	110100
Blank (B209675-BLK1)				Prepared: 08	3/07/18 Anal	vzed: 08/08/	18			
Aroclor-1254 [2C]	ND	0.10	μg/L			,				
Aroclor-1260	ND	0.10	μg/L							
Aroclor-1260 [2C]	ND	0.10	μg/L							
Surrogate: Decachlorobiphenyl	0.981		μg/L	1.00		98.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.982		μg/L	1.00		98.2	30-150			
Surrogate: Tetrachloro-m-xylene	0.918		μg/L	1.00		91.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.901		$\mu g/L$	1.00		90.1	30-150			
LCS (B209675-BS1)				Prepared: 08	3/07/18 Anal	yzed: 08/08/	18			
Aroclor-1016	0.58	0.20	μg/L	0.500		115	50-140			
Aroclor-1016 [2C]	0.56	0.20	$\mu g/L$	0.500		111	50-140			
Aroclor-1260	0.53	0.20	$\mu g/L$	0.500		105	8-140			
Aroclor-1260 [2C]	0.55	0.20	$\mu g/L$	0.500		110	8-140			
Surrogate: Decachlorobiphenyl	2.07		μg/L	2.00		104	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.09		μg/L	2.00		105	30-150			
Surrogate: Tetrachloro-m-xylene	2.06		μg/L	2.00		103	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	2.05		$\mu g/L$	2.00		103	30-150			
LCS Dup (B209675-BSD1)				Prepared: 08	3/07/18 Anal	yzed: 08/08/	18			
Aroclor-1016	0.60	0.20	μg/L	0.500		120	50-140	3.72		
Aroclor-1016 [2C]	0.57	0.20	$\mu g/L$	0.500		115	50-140	3.41		
Aroclor-1260	0.56	0.20	$\mu g/L$	0.500		112	8-140	6.23		
Aroclor-1260 [2C]	0.58	0.20	$\mu \text{g/L}$	0.500		116	8-140	5.75		
Surrogate: Decachlorobiphenyl	1.90		μg/L	2.00		94.8	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.93		μg/L	2.00		96.6	30-150			
Surrogate: Tetrachloro-m-xylene	2.15		$\mu g/L$	2.00		108	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	2.15		$\mu g/L$	2.00		107	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209522 - EPA 200.7										
Blank (B209522-BLK1)				Prepared: 08	/03/18 Anal	yzed: 08/06/	18			
ron	ND	0.25	mg/L							
LCS (B209522-BS1)				Prepared: 08	/03/18 Anal	vzed: 08/06/	18			
ron	3.87	0.050	mg/L	4.00		96.7	85-115			
				D 1.00	/02/10 4 1	1 00/06/	10			
LCS Dup (B209522-BSD1)		0.050	/T	Prepared: 08	/03/18 Anal	-		0.420	20	
ron	3.88	0.050	mg/L	4.00		97.1	85-115	0.430	20	
Batch B209523 - EPA 200.8										
Blank (B209523-BLK1)				Prepared: 08	/03/18 Anal	yzed: 08/04/	18			
Antimony	ND	1.0	μg/L							
Arsenic	ND	1.0	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g/L$							
Copper	ND	1.0	$\mu g/L$							
Lead	ND	0.50	$\mu g/L$							
Nickel	ND	5.0	$\mu g/L$							
Selenium	ND	5.0	$\mu g/L$							
Silver	ND	0.20	$\mu g/L$							
Zinc	ND	20	$\mu g/L$							
LCS (B209523-BS1)				Prepared: 08	/03/18 Anal	yzed: 08/04/	18			
Antimony	501	10	μg/L	500		100	85-115			
Arsenic	507	10	$\mu g/L$	500		101	85-115			
Cadmium	511	2.0	$\mu g/L$	500		102	85-115			
Chromium	514	100	$\mu g/L$	500		103	85-115			
Copper	993	10	$\mu g/L$	1000		99.3	85-115			
Lead	503	5.0	$\mu g/L$	500		101	85-115			
Nickel	510	50	μg/L	500		102	85-115			
Selenium	518	50	μg/L	500		104	85-115			
Silver	495	2.0	μg/L	500		99.1	85-115			
Zinc	1060	200	μg/L	1000		106	85-115			
LCS Dup (B209523-BSD1)				Prepared: 08	/03/18 Anal	yzed: 08/04/	18			
Antimony	532	10	μg/L	500		106	85-115	6.10	20	
Arsenic	533	10	μg/L	500		107	85-115	5.02	20	
Cadmium	536	2.0	μg/L	500		107	85-115	4.65	20	
Chromium	537	100	μg/L	500		107	85-115	4.43	20	
Copper	1050	10	μg/L	1000		105	85-115	5.26	20	
Lead	533	5.0	μg/L	500		107	85-115	5.80	20	
Nickel	531	50	μg/L	500		106	85-115	4.05	20	
	546	50	μg/L	500		109	85-115	5.29	20	
Selenium									_ ~	
Selenium Silver	519	2.0	μg/L	500		104	85-115	4.71	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209698 - EPA 245.1										
Blank (B209698-BLK1)				Prepared & A	Analyzed: 08	/07/18				
Mercury	ND	0.00010	mg/L							
LCS (B209698-BS1)				Prepared & A	Analyzed: 08	/07/18				
Mercury	0.00184	0.00010	mg/L	0.00200		91.8	85-115			
LCS Dup (B209698-BSD1)				Prepared & A	Analyzed: 08	/07/18				
Mercury	0.00195	0.00010	mg/L	0.00200		97.3	85-115	5.87	20	

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
	Resuit	Limit	Oillts	Level	Kesuit	/OKEC	LIIIIIIS	KrD	Lillit	notes
Batch B209424 - SM21-22 3500 Cr B										
Blank (B209424-BLK1)				Prepared &	Analyzed: 08	/02/18				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B209424-BS1)				Prepared &	Analyzed: 08	/02/18				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		100	83.2-114			
LCS Dup (B209424-BSD1)				Prepared &	Analyzed: 08	/02/18				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	83.2-114	5.06	7.51	
Duplicate (B209424-DUP1)	Sou	rce: 18H0124-	-03	Prepared &	Analyzed: 08	/02/18				
Hexavalent Chromium	ND	0.0040	mg/L		ND	1		NC	56.3	H-03
Matrix Spike (B209424-MS1)	Sou	rce: 18H0124-	-03	Prepared &	Analyzed: 08					
Hexavalent Chromium	0.10	0.0040	mg/L	0.100	ND		10.8-151			
Batch B209525 - SM21-22 4500 CL G										
Blank (B209525-BLK1)		0.020	ssa − /T	Prepared &	Analyzed: 08	/03/18				
Chlorine, Residual	ND	0.020	mg/L							
LCS (B209525-BS1)					Analyzed: 08					
Chlorine, Residual	1.2	0.020	mg/L	1.34		86.1	76-135			
LCS Dup (B209525-BSD1)				Prepared &	Analyzed: 08	/03/18				
Chlorine, Residual	1.2	0.020	mg/L	1.34		88.2	76-135	2.36	7.41	
Duplicate (B209525-DUP1)	Sou	rce: 18H0124-	-01	Prepared &	Analyzed: 08	/03/18				
Chlorine, Residual	0.045	0.020	mg/L		0.049	ı		8.34	35.9	H-03
Matrix Spike (B209525-MS1)	Sou	rce: 18H0124-	-01	Prepared &	Analyzed: 08	/03/18				
Chlorine, Residual	1.2	0.020	mg/L	1.00	0.049	112	10-185			
Batch B209575 - SM21-22 2540D										
Blank (B209575-BLK1)				Prepared &	Analyzed: 08	/06/18				
Total Suspended Solids	ND	2.5	mg/L	-	-					
LCS (B209575-BS1)				Prepared &	Analyzed: 08	/06/18				
Total Suspended Solids	174	10	mg/L	200	,	87.0	64.3-117			
Batch B209678 - EPA 1664B										
Blank (B209678-BLK1)				Prepared &	Analyzed: 08	/07/18				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L	•						

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)-Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209678 - EPA 1664B										
LCS (B209678-BS1)				Prepared & A	Analyzed: 08/	07/18				
Silica Gel Treated HEM (SGT-HEM)	11		mg/L	10.0		106	64-132			
Matrix Spike (B209678-MS1)	Sourc	e: 18H0124-03	3	Prepared & A	Analyzed: 08/	07/18				
Silica Gel Treated HEM (SGT-HEM)	100	14	mg/L	100	ND	104	64-132			

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Lab Sample ID:	B209571-BS1		Date(s) Analyzed:	08/08/2018	08/08	/2018
Instrument ID (1):	ECD10	_	Instrument ID (2):	ECD10		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12172	OOL	111	FROM	TO	OONOLIVITUUTION	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.50	
	2	0.000	0.000	0.000	0.52	3.9
Aroclor-1260	1	0.000	0.000	0.000	0.46	
	2	0.000	0.000	0.000	0.47	2.2

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

ab Sample ID: B209571-BSD1			Date(s) Analyzed:	08/08/2018 08/08/201		/2018
Instrument ID (1):	ECD10	_	Instrument ID (2):	ECD10		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.10.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.48	
	2	0.000	0.000	0.000	0.50	4.1
Aroclor-1260	1	0.000	0.000	0.000	0.46	
	2	0.000	0.000	0.000	0.46	0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

1.00	
LCS	

ab Sample ID: B209675-BS1			Date(s) Analyzed:	08/08/2018	08/08	/2018
Instrument ID (1):	ECD10	_	Instrument ID (2):	ECD10		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.1.0.12112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.58	
	2	0.000	0.000	0.000	0.56	3.5
Aroclor-1260	1	0.000	0.000	0.000	0.53	
	2	0.000	0.000	0.000	0.55	3.7

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

	_	
LCS	Dup	

Lab Sample ID:	B209675-BSD1		Date(s) Analyzed:	08/08/2018	08/08/2	2018
Instrument ID (1):	ECD10	_	Instrument ID (2):	ECD10		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.1.0.12.1.2	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.60	
	2	0.000	0.000	0.000	0.57	5.1
Aroclor-1260	1	0.000	0.000	0.000	0.56	
	2	0.000	0.000	0.000	0.58	3.5

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
D	[Undefined]
DL-03	Elevated reporting limit due to matrix.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
GS1	Sample dilution required for high concentration of target analytes to be within the instrument calibration range.
H-03	Sample received after recommended holding time was exceeded.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-01	Laboratory fortified blank /laboratory control sample recovery outside of control limits. Data validation is not affected since all results are "not detected" for all samples in this batch for this compound and bias is on the high side.
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
S-07	One associated surrogate standard recovery is outside of control limits but the other(s) is/are within limits. All recoveries are $> 10\%$.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Chloroethane

Chloroform

Analyte	Certifications	
EPA 200.7 in Water		
Iron	CT,MA,NH,NY,RI,NC,ME,VA	
Hardness	CT,MA,NH,NY,RI,VA	
EPA 200.8 in Water		
Antimony	CT,MA,NH,NY,RI,NC,ME,VA	
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA	
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA	
Chromium	CT,MA,NH,NY,RI,NC,ME,VA	
Copper	CT,MA,NH,NY,RI,NC,ME,VA	
Lead	CT,MA,NH,NY,RI,NC,ME,VA	
Nickel	CT,MA,NH,NY,RI,NC,ME,VA	
Selenium	CT,MA,NH,NY,RI,NC,ME,VA	
Silver	CT,MA,NH,NY,RI,NC,ME,VA	
Zinc	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 245.1 in Water		
Mercury	CT,MA,NH,RI,NY,NC,ME,VA	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
EPA 608.3 in Water		
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA	
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA	
EPA 624.1 in Water		
Acetone	CT,NY,MA,NH	
tert-Amyl Methyl Ether (TAME)	MA	
Benzene	CT,NY,RI,NC,MA,NH	
Bromodichloromethane	CT,NY,RI,NC,MA,NH	
Bromoform	CT,NY,RI,NC,MA,NH	
Bromomethane	CT,NY,RI,NC,MA,NH	
tert-Butyl Alcohol (TBA)	MA	
Carbon Tetrachloride	CT,NY,RI,NC,MA,NH	
Chlorobenzene	CT,NY,RI,NC,MA,NH	
Chlorodibromomethane	CT,NY,RI,NC,MA,NH	

CT,NY,RI,NC,MA,NH

CT,NY,RI,NC,MA,NH

CERTIFICATIONS

Certified Analyses included in this Report

2-Chloronaphthalene

4-Chlorophenylphenylether

2-Chlorophenol

Analyte	Certifications	
EPA 624.1 in Water		
Chloromethane	CT,NY,RI,NC,MA,NH	
1,2-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,3-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,4-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,2-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethylene	CT,NY,RI,NC,MA,NH	
trans-1,2-Dichloroethylene	CT,NY,RI,NC,MA,NH	
1,2-Dichloropropane	CT,NY,RI,NC,MA,NH	
cis-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
1,4-Dioxane	MA	
trans-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
Ethanol	MA	
Ethylbenzene	CT,NY,RI,NC,MA,NH	
Methyl tert-Butyl Ether (MTBE)	NY,NC,MA,NH	
Methylene Chloride	CT,NY,RI,NC,MA,NH	
Naphthalene	NC,MA	
1,1,2,2-Tetrachloroethane	CT,NY,RI,NC,MA,NH	
Tetrachloroethylene	CT,NY,RI,NC,MA,NH	
Toluene	CT,NY,RI,NC,MA,NH	
1,2,4-Trichlorobenzene	NC,MA	
1,1,1-Trichloroethane	CT,NY,RI,NC,MA,NH	
1,1,2-Trichloroethane	CT,NY,RI,NC,MA,NH	
Trichloroethylene	CT,NY,RI,NC,MA,NH	
Trichlorofluoromethane (Freon 11)	CT,NY,RI,NC,MA,NH	
Vinyl Chloride	CT,NY,RI,NC,MA,NH	
m+p Xylene	CT,NY,RI,NC,MA,NH	
o-Xylene	CT,NY,RI,NC,MA,NH	
EPA 625 in Water		
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	
EPA 625.1 in Water		
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA	
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA	
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA	
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA	
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA	
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA	
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA	
Bis(2-chloroethyl)ether	CT,MA,NH,NY,NC,RI,ME,VA	
Bis(2-chloroisopropyl)ether	CT,MA,NH,NY,NC,RI,ME,VA	

CT,MA,NH,NY,NC,RI,ME,VA

CT,MA,NH,NY,NC,RI,ME,VA

CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 625.1 in Water	
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine (as Azobenzene)	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodiphenylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Phone: 413-525-2332 COD-KSK ANALTICAL LABORATORY

http://www.contestlabs.com

CHAIN OF CUSTODY RECORD

39 Spruce Street Doc # 381 Rev 0 5 8 2015

East Longmeadow, MA 01028

Saldinos stotaly pastiossito ² Preservation Codes: X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate GW = Ground Water WW = Waste Water S = Soil/Solid SL = Sludge O = Other (please 0 = Other (please O Field Filtered
O Lab to Filter S = Sulfuric Acid I/N 2 Preservation Code 1 Matrix Codes N = Nitric Acid O Field Filtered Lab to Filter Page Page of (of M = Methanol 3 Container Code 2 # of Containers = Sodium Thiosulfate 모=エ # Iced define) define) A = Air Δ. Please use the following codes to indicate possible sample concentration within the Conc Hardness × × × I MTBE, TBA and TAME by 8260 × × × ന I Ethanol by 1671 × × ⋖ 4991 Vd HqT × × ⋖ PCBs by 608 × ⋖ **2AOC2 PX 622** × × × ANALYSIS REQUESTED > I VOCs by 624 × × Code column above: ۵ × Cyanide by 335.4 Pb, Hg, Ni, Se, Ag, Zn by 200.8 z Δ × Cd, Cr III, Cr VI, Cu, Fe, 'sy 'qs ۵. × × RC by SM4500-CI D ۵ × × Chloride by 300.0 ۵. × Ammonia by SM4500B σ. × × SSJ 9 9 9 **M**/L ₩/L **₩**/F ihenry@irt-llc.net Matrix Code Requested Turnaround Time. કે <u>કે</u> ₹ Rush Approval Required 5 DAY Enhanced Data Package Required: 10 Day 3-Day 4-Day ₹ EXCEL Dates Delivery Grab × × Composite 뚪 Ending Date/Time 00:11 13:00 0,00 Email To: ax To #: ormat: Other: 7-Day Other: -Day 2-Day Beginning Date/Time 9 Lockwood Remediation Technologies, LLC $\frac{1}{2}$ 8 89 Crawford Street, Leominster, MA Email: info@contestlabs.com Salem Power Plant 774-450-7177 Client Sample ID / Description Salem, MA John Henry 2-1725 Fax: 413-525-6405 4 181 トろっ 一名一 Temp: Campaisy Nome Invoice Recipient: Con-Test Work Order# Project Location: Project Manager: Project Number: Project Name, Con-Test Bid: Sampled By: Comments: Address: Phone: 품

MCP Analytical Certification Form Required Program Information 000

H - High; M - Medium; L - Low; C - Clean; U - Unknown

Detection Limit Requirements

RCP Analysis Certification Form Required MA State DW Form Required # GISMd

S = Summa Canister

ST = Sterile

V = Vial

P = Plastic

0 = Other (please

define)

T = Tedlar Bag

³Container Codes:

A = Amber Glass G = Glass

NELAC and AIHA-LAP, LLC Accredited TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE

2017 NPDES RGP Standards

b

Date/Time: 9-2-1

elinguished by: (signature

by: (signature)

24.0/

B

ived by: (signature)

Date/Time:

Date/Time:

quished by: (signature)

Page 66 of 68

Date/Time:

ved by: (signature)

Date/Time: 7:30

Date/Time:

ignature)

Table of Contents

QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED.

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Receive	ed By	ESO		Date	8-2-18		Time	15:30	
How were th	•	In Cooler	<u> </u>	No Cooler		On Ice		No Ice	<u></u>
receiv	ed?	Direct from Samp	ling			Ambient		Melted Ice	
14/	منطفانين مما	·	By Gun#	77	•	Actual Tem	p - 29.0,	725.2	
Were samp		P	By Blank #		•	Actual Tem	n -		
•			NP	\\/c		Tampered		NA	
	Custody Se					ee With Sa		70/-	
	COC Relin	•	00.000.000	•	_	ee wiiii oa	Tipics:	L	•
		eaking/loose caps	On any Sam		nnlos recei	ved within he	aldina tima?	1	
Is COC in in	-	Client	-	Analysis	T		er Name	<u> </u>	
Did COC in		Project		ID's			Dates/Time	s T	
pertinent Inf		· ·		י וניסו		Conection	Datesi iiiic	<u> </u>	ı
•		d out and legible?		•	Mhawa	notified?			
Are there La		•				s notified?			
Are there Ru			<u> </u>	•		s notified? s notified?			
Are there Sh		0	<u> </u>	•	wno was	s nouneu?	Live		
Is there enou	-				140/440D0	10			
	•	ere applicable?			MS/MSD?			_	
Proper Media				•		samples red	juirea?		-
Were trip bla			<u> </u>	,	On COC?	F		00.0	
Do all sample	es have the	proper pH?	T	Acid (PHCZ		Base	PH712	•
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.	12		Plastic		1	oz Amb.	
HCL-	27	500 mL Amb.			. Plastic	2		mb/Clear	
Meoh-	· · · · · · · · · · · · · · · · · · ·	250 mL Amb.			. Plastic	12		mb/Clear	
Bisulfate-		Col./Bacteria			npoint		<u> </u>	mb/Clear	
DI-		Other Plastic			Glass			ncore	
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate		Zip	lock				
				Unused	Media				
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.			Plastic		<u> </u>	oz Amb.	
HCL-		500 mL Amb.			. Plastic			mb/Clear	
Meoh-		250 mL Amb.			- Plastic			mb/Clear	
Bisulfate-		Col./Bacteria			npoint			mb/Clear	
DI-		Other Plastic			Glass		<u> </u>	ncore	L
Thiosulfate-		SOC Kit			ic Bag		Frozen:		
Sulfuric-		Perchlorate		Zip	lock				
Comments:									

LOCKWOOS

Client

- Mot all ahaysis in Holding time.
- coolens Looked Like they once had like in them but have since mented.

Dissolved Matak Samples Orthophosphote Samples 2 <u>Preservation Codes:</u>
1 = Iced
H = HCL X = Sodium Hydroxide DW = Drinking Water B = Sodium Bisulfate GW = Ground Water WW = Waste Water S = Summa Canister ³Container Codes: 0 = Other (please 0 = Other (please 0 = Other (please S = Sulfuric Acid A = Amber Glass Matrix Codes: ² Preservation Code O Field Filtered = Tedlar Bag O Field Filtered N = Nitric Acid Lab to Filter Lab to Filter S = Soil/Solid M = Methanol Page_1_ of _1_ Container Code ST = Sterile Thiosulfate SL = Sludge G = Glass P = Plastic T = Sodium # of Containers V = Vial define) define) A = Air define) 0 0 Please use the following codes to indicate possible sample concentration QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME MCP Analytical Certification Form Required NELAC and AIHA-LAP, LLC Accredited 39 Spruce Street East Longmeadow, MA 01028 RCP Analysis Certification Form Required TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE Program Information H - High; M - Medium; L - Low; C - Clean; U - Unknown ANALYSIS REQUESTED MA State DW Form Required PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT within the Conc Code column above: # QISMA 000 ⋖ PCBs by 608 CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED, ğ g W/L 2017 NPDES RGP Standards jhenry@lrt-llc.net Detection Limit Requirements CHAIN OF CUSTODY RECORD Matrix ednested Turnaround Time Sode Š Rush Approval Required 5 day Enhanced Data Package Required: 10-Day 4-Day EXCEL 3-Day Data Delivery Grab × Composite P Ending Date/Time Email To: 11:00 ax To #: Format: Other: 7-Day -Day 2-Day Other Phone: 413-525-2332 (XHO) 24 Beginning Date/Time 8/1/2018 Other: Lockwood Remediation Technologies, LLC ž 5 89 Crawford Street, Leominster, MA Email: info@contestlabs.com 55.5 Salem Power Plant 774-450-7177 Client Sample ID / Description John Henry Salem, MA Fax: 413-525-6405 2-1725 Date/Time: Date/Time: Date/Time: Date Time add'ithmad Submit ate/Time TW-1 COPINE ANALTHEN LABORATORY elinquished by: (signature) ignature) eceived by: (signature) eceived by: (signature) Comments: Invoice Recipient: Company Name: Project Location: Project Manager: Con-Test Work Order# Project Number: Presjeat Abrile Con-Test Bid: Sampled By: Sample pH: Relipquish Address: Phone: 68 of 68 Page

http://www.contestlabs.com

August 9, 2018

John Henry Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: Salem, MA

Client Job Number: Project Number: 2-1725

Laboratory Work Order Number: 18H0125

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on August 2, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	6
18H0125-01	6
Sample Preparation Information	10
QC Data	11
Metals Analyses (Total)	11
B209522	11
B209523	11
B209698	12
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	13
B209424	13
Flag/Qualifier Summary	14
Certifications	15
Chain of Custody/Sample Receipt	16

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453

PURCHASE ORDER NUMBER: 2-1725

REPORT DATE: 8/9/2018

ATTN: John Henry

PROJECT NUMBER: 2-1725

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18H0125

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Salem, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Receiving water	18H0125-01	Surface Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 3500 Cr B	
				SM2520B	NY11393/MA-MAI138/M A1110
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.7

Qualifications:

DL-03

Elevated reporting limit due to matrix.

Analyte & Samples(s) Qualified:

18H0125-01[Receiving water], B209522-DUP1, B209522-MS1

EPA 200.8

Qualifications:

DL-15

Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.

Analyte & Samples(s) Qualified:

Antimony

18H0125-01[Receiving water]

Arsenic

18H0125-01[Receiving water]

Cadmium

18H0125-01[Receiving water]

Chromium

18H0125-01[Receiving water]

Copper

18H0125-01[Receiving water]

18H0125-01[Receiving water]

18H0125-01[Receiving water]

Selenium

18H0125-01[Receiving water] Silver

18H0125-01[Receiving water]

Zinc

18H0125-01[Receiving water]

SM21-22 3500 Cr B

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

18H0125-01[Receiving water]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: Salem, MA Sample Description: Work Order: 18H0125

Date Received: 8/2/2018

Antimony Arsenic Cadmium Chromium

Copper Iron Lead Mercury Nickel Selenium

Silver

Zinc

Chromium, Trivalent

Field Sample #: Receiving water

Sampled: 8/1/2018 14:00

140

ND

ND

25

1.0

100

11

Sample ID: 18H0125-01
Sample Matrix: Surface Water

			Metals Ana	alyses (Total)					
Analyte	Results	RL	DL Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
	ND	5.0	μg/L	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:42	МЈН
	45	5.0	μg/L	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:42	MJH
	ND	1.0	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:42	MJH
	ND	50	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:42	MJH
ent	0.0		mg/L	1		Tri Chrome Calc.	8/3/18	8/7/18 5:52	MJH
	130	10	$\mu g/L$	10	DL-15	EPA 200.8	8/3/18	8/6/18 13:35	MJH
	ND	0.25	mg/L	5	DL-03	EPA 200.7	8/3/18	8/7/18 9:39	QNW
	ND	5.0	$\mu g/L$	10	DL-15	EPA 200.8	8/3/18	8/6/18 13:35	MJH
	ND	0.00010	mg/L	1		EPA 245.1	8/7/18	8/7/18 14:50	EDF
	ND	25	$\mu g/L$	5	DL-15	EPA 200.8	8/3/18	8/6/18 13:42	MJH

DL-15

DL-15

DL-15

EPA 200.8

EPA 200.8

EPA 200.8

8/3/18

8/3/18

8/3/18

8/6/18 13:42

8/6/18 13:42

8/6/18 13:42

MJH

MJH

MJH

5

5

5

 $\mu g/L$

 $\mu g/L$

μg/L

Project Location: Salem, MA Sample Description: Work Order: 18H0125

Date Received: 8/2/2018

Field Sample #: Receiving water

Sample ID: 18H0125-01
Sample Matrix: Surface Water

Sampled: 8/1/2018 14:00

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	8/2/18	8/2/18 19:38	LED

Project Location: Salem, MA Sample Description: Work Order: 18H0125

Date Received: 8/2/2018

Field Sample #: Receiving water

Sampled: 8/1/2018 14:00

Sample ID: 18H0125-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N	0.073	0.075	0.024	ma/I	1		SM19-22 4500 NH3 C		8/7/18 20:44	A A I

Sample Description: Work Order: 18H0125

Project Location: Salem, MA

Date Received: 8/2/2018

Field Sample #: Receiving water

. 18H0125 01

Sample ID: 18H0125-01
Sample Matrix: Surface Water

Sampled: 8/1/2018 14:00

SM 2520

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		31.4	1.00	ppt (1000)	1		wc-Salinity-SM2520	8/7/18	8/7/18 17:29	ESA

Sample Extraction Data

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0125-01 [Receiving water]	B209522	50.0	50.0	08/03/18
' -				

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0125-01 [Receiving water]	B209523	50.0	50.0	08/03/18

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0125-01 [Receiving water]	B209698	6.00	6.00	08/07/18

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18H0125-01 [Receiving water]	B209424	50.0	50.0	08/02/18

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
18H0125-01 [Receiving water]	B209523	50.0	08/03/18

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B209522 - EPA 200.7										
Blank (B209522-BLK1)				Prepared: 08	3/03/18 Anal	yzed: 08/06/	18			
Iron	ND	0.25	mg/L							
LCS (B209522-BS1)				Prepared: 08	3/03/18 Anal	yzed: 08/06/	18			
Iron	3.87	0.050	mg/L	4.00		96.7	85-115			
LCS Dup (B209522-BSD1)				Prepared: 08	3/03/18 Anal	vzed: 08/06/	18			
Iron	3.88	0.050	mg/L	4.00		97.1	85-115	0.430	20	
Duplicate (B209522-DUP1)	Sou	rce: 18H0125-	Λ1	Prepared: 08	3/03/18 Anal	vzed: 08/07/	18			
Iron	ND	0.25	mg/L	Trepured. 00	NE	-	10	NC	20	DL-03
M-4-i C-il (D200522 MC1)		10110125		D 1. 00			10			
Matrix Spike (B209522-MS1) Iron	4.22	rce: 18H0125- 0.25	mg/L	4.00	8/03/18 Anal	-	70-130			DL-03
	4.22	0.23	6, 1	4.00	INL	, 100	70-130			DL-03
Batch B209523 - EPA 200.8										
Blank (B209523-BLK1)				Prepared: 08	3/03/18 Anal	yzed: 08/04/	18			
Antimony	ND	1.0	μg/L							
Arsenic	ND	1.0	μg/L							
Cadmium	ND	0.20	μg/L							
Chromium	ND	10	μg/L							
Copper	ND	1.0	μg/L							
Lead	ND	0.50	μg/L							
Nickel	ND	5.0	μg/L							
Selenium	ND	5.0	μg/L							
Silver	ND	0.20	μg/L							
Zinc	ND	20	μg/L							
LCS (B209523-BS1)				Prepared: 08	3/03/18 Anal	yzed: 08/04/	18			
Antimony	501	10	μg/L	500		100	85-115			
Arsenic	507	10	μg/L	500		101	85-115			
Cadmium	511	2.0	μg/L	500		102	85-115			
Chromium	514	100	μg/L	500		103	85-115			
Copper	993	10	μg/L	1000		99.3	85-115			
Lead	503	5.0	μg/L	500		101	85-115			
Nickel	510	50	μg/L	500		102	85-115			
Selenium	518	50	μg/L	500		104	85-115			
Silver	495	2.0	μg/L	500		99.1	85-115			
Zinc	1060	200	μg/L	1000		106	85-115			
LCS Dup (B209523-BSD1)				Prepared: 08	3/03/18 Anal	yzed: 08/04/	18			
Antimony	532	10	$\mu \text{g/L}$	500		106	85-115	6.10	20	
Arsenic	533	10	$\mu g \! / \! L$	500		107	85-115	5.02	20	
Cadmium	536	2.0	$\mu \text{g/L}$	500		107	85-115	4.65	20	
Chromium	537	100	$\mu \text{g/L}$	500		107	85-115	4.43	20	
Copper	1050	10	$\mu \text{g/L}$	1000		105	85-115	5.26	20	
Lead	533	5.0	$\mu \text{g/L}$	500		107	85-115	5.80	20	
Nickel	531	50	$\mu \text{g/L}$	500		106	85-115	4.05	20	
Selenium	546	50	$\mu \text{g/L}$	500		109	85-115	5.29	20	
Silver	519	2.0	$\mu \text{g/L}$	500		104	85-115	4.71	20	
Zinc	1100	200	$\mu g/L$	1000		110	85-115	4.05	20	

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Source State Sta	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Nationary ND 5.0 µg T. ND	Batch B209523 - EPA 200.8										
Arsenic 469 5.0 µg/L 45.1 3.85 20 Cadmium ND 1.0 µg/L ND NC 20 Cadmium ND 50 µg/L ND NC 20 Cadmium ND 25 µg/L ND NC 20 Cadmium 149 25 µg/L ND NC 20 Cadmium 149 25 µg/L ND NC 20 Cadmium ND 100 µg/L ND NC 20 Cadmium ND NC 20 Cadm	Duplicate (B209523-DUP1)	Sou	Source: 18H0125-01			3/03/18 Analy	zed: 08/06/	18			
Endminum ND 1.0 µgL ND NC 20 Chronium ND 50 µgL ND ND 7.0 20 Chronium ND 50 µgL ND ND 7.0 20 Chronium ND 50 µgL ND ND ND 20 Selenium 149 25 µgL ND ND ND 20 Selenium 149 25 µgL ND ND NC 20 Selenium 149 25 µgL ND ND NC 20 Mariti Spike (8209523-MSI) Source: 1810125-01 Prepared: 0803/18 And 3perce: 0803	Antimony	ND	5.0	μg/L		ND			NC	20	
Chromium	Arsenic	46.9	5.0	$\mu g\!/\!L$		45.1			3.85	20	
The column	Cadmium	ND	1.0	$\mu g \! / \! L$		ND			NC	20	
ND	Chromium	ND	50	$\mu g/L$		ND			NC	20	
Nickele ND 25	Copper	107	10	$\mu g\!/\!L$		128			17.7	20	
Selenium	Lead	ND	5.0	$\mu g\!/\!L$		ND			NC	20	
ND	Nickel	ND	25	$\mu g\!/\!L$		ND			NC	20	
Matrix Spike (B209523-MS1) Source: 18H0125-01 Prepared: 08/03/18 Analyzed: 08/04/18	Selenium	149	25	$\mu g \! / \! L$		136			8.97	20	
Matrix Spike (B209523-MS1) Source: 18H0125-01 Prepared: 08/03/18 Analyzed: 08/04/18 Source: 18H0125-01 Prepared: 08/03/18 Analyzed: 08/04/18 Source: 18H0125-01 Prepared: 08/03/18 Analyzed: 08/04/18 Source: 18H0125-01 Prepared: 08/03/18 Analyzed: 08/03/18	Silver	ND	1.0	$\mu g\!/\!L$		ND			NC	20	
Same	Zinc	ND	100	$\mu g/L$		ND			NC	20	
Street	Matrix Spike (B209523-MS1)	Sou	Source: 18H0125-01			3/03/18 Analy	zed: 08/04/				
Cadmium	Antimony	530	10	$\mu g/L$	500	ND	106	70-130			
Chromium 544 100 µg/L 500 ND 109 70-130 Copper 1050 10 µg/L 1000 128 92.0 70-130 Copper 1050 5.0 µg/L 500 ND 114 70-130 Nickel 503 50 µg/L 500 ND 12.4 98.0 70-130 Nickel 684 50 µg/L 500 113 109 70-130 Silver 441 2.0 µg/L 500 ND 88.2 70-130 Zinc 930 200 µg/L 1000 ND 93.0 70-130 Batch B209698 - EPA 245.1 Prepared & Analyzed: 08/07/18 NC	Arsenic	574	10	$\mu g\!/\!L$	500	45.1	106	70-130			
Copper 1050	Cadmium	472	2.0	$\mu g\!/\!L$	500	ND	94.3	70-130			
Solution Solution	Chromium	544	100	$\mu g/L$	500	ND	109	70-130			
Solitical Soli	Copper	1050	10	$\mu g \! / \! L$	1000	128	92.0	70-130			
Selenium Selenium	Lead	570	5.0	$\mu g \! / \! L$	500	ND	114	70-130			
Silver 441 2.0 µg/L 500 ND 88.2 70-130	Nickel	503	50	$\mu g\!/\!L$	500	12.4	98.0	70-130			
Satch B209698 - EPA 245.1 Prepared & Analyzed: 08/07/18	Selenium	684	50	$\mu g \! / \! L$	500	136	109	70-130			
Prepared & Analyzed: 08/07/18	Silver	441	2.0	$\mu g/L$	500	ND	88.2	70-130			
Prepared & Analyzed: 08/07/18 Prepared & Analyzed: 08/07/1	Zinc	930	200	$\mu g/L$	1000	ND	93.0	70-130			
ND 0.0010 mg/L	Batch B209698 - EPA 245.1										
Prepared & Analyzed: 08/07/18	Blank (B209698-BLK1)				Prepared &	Analyzed: 08/	07/18				
Mercury 0.00184 0.00010 mg/L 0.00200 91.8 85-115 LCS Dup (B209698-BSD1) Prepared & Analyzed: 08/07/18 Mercury 0.00195 0.00010 mg/L 0.00200 97.3 85-115 5.87 20 Ouplicate (B209698-DUP1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18 Mercury ND NC 30 Matrix Spike (B209698-MS1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18	Mercury	ND	0.00010	mg/L							
Prepared & Analyzed: 08/07/18 Prepared & Analyzed: 08/07/18 Prepared & Analyzed: 08/07/18 Prepared & Analyzed: 08/	LCS (B209698-BS1)				Prepared &	Analyzed: 08/	07/18				
Mercury 0.00195 0.00100 mg/L 0.00200 97.3 85-115 5.87 20 Ouplicate (B209698-DUP1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18 NC 30 Mercury ND ND NC 30 Matrix Spike (B209698-MS1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18	Mercury	0.00184	0.00010	mg/L	0.00200		91.8	85-115			
Duplicate (B209698-DUP1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18 Mercury ND 0.00010 mg/L ND NC 30 Matrix Spike (B209698-MS1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18 Prepared & Analyzed: 08/07/18	LCS Dup (B209698-BSD1)				Prepared &	Analyzed: 08/	07/18				
Mercury ND 0.00010 mg/L ND NC 30 Matrix Spike (B209698-MS1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18	Mercury	0.00195	0.00010	mg/L	0.00200		97.3	85-115	5.87	20	
Matrix Spike (B209698-MS1) Source: 18H0125-01 Prepared & Analyzed: 08/07/18	Duplicate (B209698-DUP1)	Sou	rce: 18H0125-	01	Prepared &	Analyzed: 08/	07/18				
	Mercury	ND	0.00010	mg/L		ND			NC	30	
Mercury 0.00173 0.00010 mg/L 0.00200 ND 86.7 75-125	Matrix Spike (B209698-MS1)	Sou	rce: 18H0125-	01	Prepared & Analyzed: 08/07/18						
	Mercury	0.00173	0.00010	mg/L	0.00200	ND	86.7	75-125			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B209424 - SM21-22 3500 Cr B										
Blank (B209424-BLK1)				Prepared & A	Analyzed: 08	/02/18				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B209424-BS1)				Prepared & A	Analyzed: 08	/02/18				
Hexavalent Chromium	0.10	0.0040	mg/L	0.100		100	83.2-114			
LCS Dup (B209424-BSD1)				Prepared & A	Analyzed: 08	/02/18				
Hexavalent Chromium	0.11	0.0040	mg/L	0.100		106	83.2-114	5.06	7.51	

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

FLAG/QUALIFIER SUMMARY

†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
DL-03	Elevated reporting limit due to matrix.
DL-15	Sample required a dilution due to low internal standard recovery of the lesser diluted digestion, reporting limit is elevated.
H-03	Sample received after recommended holding time was exceeded.

QC result is outside of established limits.

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Water	
Mercury	CT,MA,NH,RI,NY,NC,ME,VA
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 3500 Cr B in Water	

NY,CT,NH,RI,ME,VA,NC Hexavalent Chromium

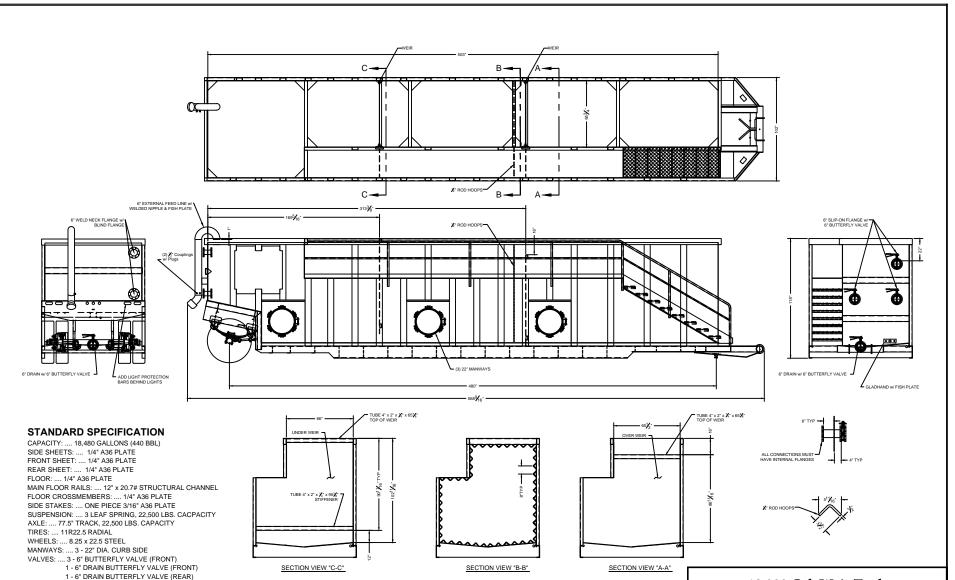
 $The \ CON-TEST \ Environmental \ Laboratory \ operates \ under \ the \ following \ certifications \ and \ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2018
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

http://www.contestlabs.com

	-		١	nttp://www.contestlabs.com	estlabs.c	El I	# DOC	Doc # 381 Rev 0 5 8 2015	8 2015			
ORATORY	Phone: 413-525-2332	(248/2)		CHAIN OF CU	OF CUSTODY RECORD	CORD				39 Spruce Street East Longmeadow, MA 01028	Page	Page Page of Lof
· Xo - シスリ	Fmail: info@contestlabs com		Redi		Turneroung fine	me 	,	,	-		-	
kroene	Ockwood Remediation Tachnologies 110		7-bay Other:	- \ -	10-0ay	رِ		- -	- ,		*	# of Containers
	89 Crawford Street Leaminster MA				2000		0	2 0	Λ ⁽			* Preservation Code
	774-450-7177		1.Day		3 0 20		<u>.</u>	۲	- -	ALEGICA SIGNAY		* Container Code
Profess Names	Salem Power Plant		2-Day	י י	4-Day		-,		₹	ANALISIS KEQUESIED		Vissolved Metals Samples
Project Location:	Salem, MA		î	Pare Delivery	(Self)		- 4.5			804 Table 1994		O rield rittered
Project Number:	2-1725	Ĭ.	Format:	\sum	EXCEL				***************************************			ר דמה גם בווגגן
Project Manager:	John Henry	0					. 10,1		806			Trifficulties with cites Summited
Con-Test Bid:		ū	nhanced Dat	Enhanced Data Package Required:	quired:		7191		0S+V			O Field Filtered
Invoice Recipient:		Li	Email To:	henr	henry@lrt-llc.net	net		رد ۸	vs A			O Lab to Filter
Sampled By:		Ξ.	Fax To #:				····) 'III	d Bir			
Con-Test Client San	Client Sample ID / Description	ming Time	Ending Date/Time	Composite	Grab Matrix Code	rix Conc te Code	(Jinils2	Total R Cd, Cr Se, Ag	тоттА		<u>.</u>	1 Watrix Codes
RECEIVING	Wakr	19/1/8	2.00		° ×	M/L	×		×			GW = Ground Water
		•										DW = Drinking Water
												A = Air S = Soil/Solid
												SL = Sludge O = Other (please
											-	define) 0 = Surface Water
									+			2 Preservation Codes
					+				+			l = Iced
	***************************************											H = HCL M = Mothanol
						- į						N = Nitric Acid
									<u> </u>			S = Sulfuric Acid B = Sodium Bisulfate
												X = Sodium Hydroxide T = Sodium
Comments:	With the state of											Thiosulfate O = Other (please
pH: Temp:					<u>o</u>	ase use the	followir	ig codes to Conc	indicate Code o	Please use the following codes to indicate possible sample concentration within the Conc Code column above:	thin the	define)
							- High;	M - Mediun); t - Lo	H - High; M - Medium; L - Low; C - Clean; U - Unknown		³ Container Codes:
Relyfiquished by (signature)	Date//Fime:	7.1	De	Detection limit Requirements	t Require	ments			rogr	rogram Information		G = Glass
Recorded by: (signature)	Date/Time:								Ç	P Analytical Certification Form Require		5T = Sterile
	7:30								Ö	O RCP Analysis Certification Form Required	······································	v = viat S = Summa Canister
1 2 2 29.0 J	15.30 8-2-8	5							§ £ ()	MA State DW Form Required PWSID #	***************************************	lar Bag er (please
ည် Pived by: (signature) ထ ဂ	Date/Time:	45.146 6		IOdN	NPDFS RGP Standards	andards			Ž	NEI AC AND A DATE A DATE OF THE PARTY OF THE	······································	
9 nquished by: (signature)	Date/Time: T	URNAROUNE	TIME (BUSI	NESS DAYS)	STARTS A	T 9:00 AM	THE DA	Y AFTER SA	MPLER	TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE		of Co
U sived by: (signature)	Date/Time: C.	CANNOT START UNTIL ALL QUE	RT UNTIL AL	L QUESTION	S HAVE BI	STIONS HAVE BEEN ANSWERED. PLEASE BE CAREFUL NO	SRED.	TO CONTA	MNATE	HAVE BEEN ANSWERED. PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT		ntents

Doc# 277 Rev 5 2017


Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client LOCK 1006								
Received By	E50	D	ate	8-5-K		Time	15:30	
How were the samples	In Cooler	T No	Cooler		On Ice	X GU	No Ice	<u>T</u>
received?	Direct from Sampling				Ambient		Melted Ice	
Were samples within	Ву	Gun#	>		Actual Tem	p-29.0		
Temperature? 2-6°C	F By	Blank #			Actual Tem	p -		
Was Custody S		A	We		Tampered	~~~~	MA	,
Was COC Relin		<u>' </u>			ee With Sar			•
	eaking/loose caps on a	any samples		F		•		•
Is COC in ink/ Legible?	***			nples receiv	ed within he	olding time?	F	_
Did COC include all	Client	T Ar	nalysis		Sample	er Name	<u> </u>	, -
pertinent Information?	Project	T	ID's	T	Collection	Dates/Times	<u> </u>	<u>-</u>
Are Sample labels filled	d out and legible?	ή						
Are there Lab to Filters'		F		Who was	notified?			-
Are there Rushes?		F		Who was	notified?			
Are there Short Holds?		T		Who was	notified?	wae		-
Is there enough Volume	?	Ī			B			
Is there Headspace who	ere applicable?	F		MS/MSD?	P			
Proper Media/Container	rs Used?	Т		Is splitting	samples rec	quired?	<u></u> £	-
Were trip blanks receive	ed?	<u> </u>		On COC?	F	•		
Do all samples have the	e proper pH?	T	Acid	PHCZ		Base		•
Vials #	Containers:	#			#			#
Unp-	1 Liter Amb.			Plastic			z Amb.	
HCL-	500 mL Amb.			- Plastic			nb/Clear	ļ
Meoh-	250 mL Amb.		~~~	_ Plastic	3		nb/Clear	
Bisulfate-	Col./Bacteria			npoint			nb/Clear	
DI-	Other Plastic			Glass			core	<u> </u>
Thiosulfate-	SOC Kit		~~~	ic Bag		Frozen:		
Sulfuric-	Perchlorate		Zip	lock				
			nused	Media				
Vials #	Containers:	#			#	- 10	A 1	#
Unp-	1 Liter Amb.			Plastic			z Amb.	
HCL-	500 mL Amb.			Plastic		1	nb/Clear	
Meoh-	250 mL Amb.			_ Plastic		1	nb/Clear nb/Clear	
Bisulfate-	Col./Bacteria			hpoint		 	core	
DI-	Other Plastic			· Glass	*****	Frozen:	COLE	<u> </u>
Thiosulfate-	SOC Kit Perchlorate			ic Bag lock		1 102611.		
Sulfuric-	Felchiolate		Zip	IOUN				
Comments:								

- No+ All Anglysis received within Hold +: me.
- Looler Looks Like Horse has he in but melter Afer a while.

Appendix C

Water Treatment System

2 - 6" BLIND FLANGE CONNECTION (REAR)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)
PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.
(EXTERIOR) FINISH COAT POLURETHANE 4.0 TO 5.0 D.F.T.

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

The Pulsatron Series HV designed for high viscosity applications for precise and accurate metering control. The Series HV offers manual control over stroke length and stroke rate as standard with the option to choose between 4-20mA and external pace inputs for automatic control.

Five distinct models are available, having pressure capabilities to 150 PSIG (10 BAR) @ 12 GPD (1.9 lph), and flow capacities to 240 GPD (37.9 lph) @ 80 PSIG (5.6 BAR), with a turndown ratio of 100:1. Metering performance is reproducible to within ± 2% of maximum capacity.

Features

- Automatic Control, available with 4-20mADC direct or external pacing, with stop function.
- Manual Control by on-line adjustable stroke rate and stroke length.
- Auto-Off-Manual switch.
- · Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Panel Mounted Fuse.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Indicator Lights, panel mounted.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Viscosities to 20,000 CPS.

Controls

Manual Stroke Rate

Turn-Down Ratio 10:1

Manual Stroke Length

Turn-Down Ratio 10:1

4-20mA or 20-4mA Input

Automatic Control

Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- KOPkits
- Gauges
- Dampeners
- Pressure Relief Valves
- Tanks
- Pre-Engineered Systems
 - Process Controllers
 (PULSAblue, MicroVision)

Series HV

Specifications and Model Selection

MODEL		LVB3	LVF4	LVG4	LVG5	LVH7
Capacity	GPH	0.50	1.00	2.00	4.00	10.00
nominal	GPD	12	24	48	96	240
(max.)	LPH	1.9	3.8	7.6	15.1	37.9
Pressure	PSIG	150	150	110	110	80
(max.)	BAR	10	10	7	7	5.6
Connections:	Tubing	Charles and Street St.		38" I.D. X .5 (.75" O.D. (L)		

Engineering Data

Pump Head Materials Available: GFPPL

PVC PVDF 316 SS

Diaphragm: PTFE-faced CSPE-backed

Check Valves Materials Available:

Seats/O-Rings: PTFE

CSPE Viton

Balls: Ceramic

PTFE 316 SS Alloy C GFPPL

Fittings Materials Available: GFF

PVC PVDF

Bleed Valve: Same as fitting and check valve

selected, except 316SS

Injection Valve & Foot Valve Assy: Same as fitting and check valve

selected

Tubing: Clear PVC White PE

AALIITE EE

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polywinyl Chloride, PE=Polyethylene, PVDF=Polywinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 2% at maximum capacity

Viscosity Max CPS: 20,000 CPS

Stroke Frequency Max SPM: 125
Stroke Frequency Turn-Down Ratio: 10:1
Stroke Length Turn-Down Ratio: 10:1

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

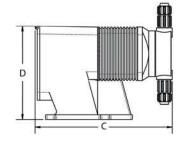
Average Current Draw:

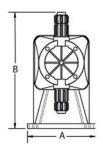
@ 115 VAC; Amps: 1.0 Amps

@ 230 VAC; Amps: 0.5 Amps @ 230 VAC

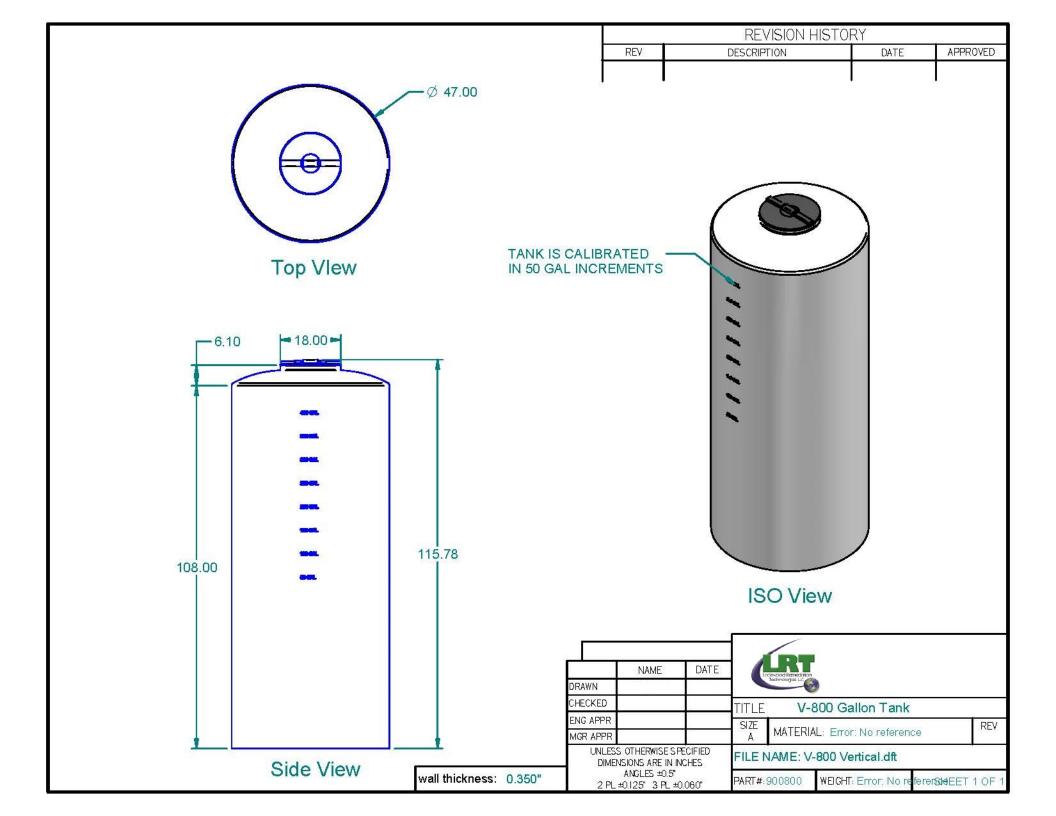
Peak Input Power: 300 Watts Average Input Power @ Max SPM: 130 Watts

Custom Engineered Designs – Pre-Engineered Systems

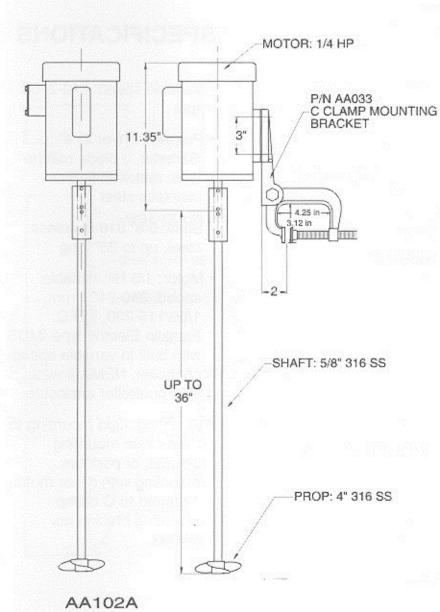

Pre-Engineered Systems


Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turn-key simplicity and industrial-grade durability. The UV-stabilized, high-grade HDPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions


	Series	HV Dim	ensions	(inches	s)
Model No.	Α	В	С	D	Shipping Weight
LVB3	5.4	9.3	9.5	7.5	13
LVF4	5.4	10.8	10.8	7.5	18
LVG4	5.4	9.5	10.6	7.5	18
LVG5	5.4	10.8	10.8	7.5	18
LVH7	6.1	11.5	11	8.2	25

NOTE: Inches X 2.54 = cm



MIXER MODEL NO. AA102A

SPECIFICATIONS

- Speed: 1,725 rpm
- Propeller: (1 or 2)
 4" diameter, 3 blade marine type, material: 316 stainless steel
- Shaft: 5/8" 316 stainless steel, up to 36" long
- Motor: 1/4 HP, 1,725 rpm, 1/60/115-230, capacitor start, or 3/60/230-460, TEFC
- Mounting: rigid mounting to fixed mixer mounting bracket, or portable mounting with mixer motor mounted to C clamp mounting bracket no. AA033.

PRODUCT DATA

LRT 823

ANIONIC FLOCCULANT

APPLICATION:

LRT 810 is a high molecular weight, polyacrylamide-based flocculant that exhibits a medium degree of anionic charge. LRT 810, once hydrated in water, reacts readily to provide superior floc formation and performance in a variety of solids/liquid separation processes. The product is supplied in a free-flowing granular form. LRT 810 has been designed as a flocculant for a variety of municipal and industrial waste substrates. It has been proven especially effective for conditioning these substrates for solids sedimentation, thickening, and dewatering processes. LRT 810 offers greatly improved solids/liquid separation efficiencies over a wide range of pH.

PRODUCT DESCRIPTION:

Appearance: Off-white, free-flowing granules

Bulk density: 45 lbs./ft^3 Solution pH: 6-8

Particle Size: $10\% > 780\mu m$, $50\% > 570\mu m$, and $90\% > 240 \mu m$

PRODUCT DOSAGE:

As product feed rates are highly dependent upon makeup water characteristics and system operating conditions, your sales representative should be consulted for specific dosage recommendations. Typically, however, LRT 810 is diluted to the following stock and feed solutions:

Stock Solution: 0.25% - 0.5% 2-5 days storage Feed Solution: 0.01% - 0.2% 1-3 days storage

Storage of the product and solutions for longer periods may be acceptable under correct conditions, but may result in some loss of product efficiency. Product and solutions should be stored in a cool and dry place, and conditions of high temperature and humidity should be avoided.

PRODUCT SAFETY:

As with any industrial chemical, LRT 810 should be handled with appropriate care. Therefore, please have all supervisory personnel and operating employees review the Material Safety Data Sheet (MSDS) to obtain recommended application, storage and disposal procedures before using the product in your facility.

PRODUCT PACKAGING:

LRT 810 is packaged in 55 pound bags or 36 bags to a crate (1,980 lbs total).

SAFETY DATA SHEET

Revision date 2015-03-12 Revision number 1

1. IDENTIFICATION OF THE SUBSTANCE/PREPARATION AND OF THE COMPANY/UNDERTAKING

Product identifier

Product name Redux E50

Other means of identification

Product code

Synonyms Water And Wastewater Treatment Coagulant/Flocculant

Recommended use of the chemical and restrictions on use

Recommended use [RU] No information available Uses advised against No information available

Details of the supplier of the safety data sheet

Supplier Lockwood Remediation Technologies, LLC

89 Crawford Street

Leominster, Massachusetts 01453

Tel: (774) 450-7177

Hours: Monday-Friday 9:00-5:00 EST

Emergency telephone number

24 Hour Emergency Phone Number CHEMTREC: (800) 424-9300

Outside USA - +1 (703) 527-3887 collect calls accepted

Contact Point info@reduxtech.com

2. HAZARDS IDENTIFICATION

Classification

OSHA Regulatory Status

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200).

Skin corrosion/irritation	Category 2
Serious eye damage/eye irritation	Category 2
Corrosive to metals	Category 1

GHS Label elements, including precautionary statements

EMERGENCY OVERVIEW

Physical state	Color	Appearance	Odor
liquid	colorless to yellow	clear	no appreciable odor

WARNING

Hazard statements

Causes skin irritation Causes serious eye irritation May be corrosive to metals

Precautionary Statements - Prevention

Wash face, hands and any exposed skin thoroughly after handling Wear protective gloves/protective clothing/eye protection/face protection Keep only in original container

Precautionary Statements - Response

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse Absorb spillage to prevent material damage

Precautionary Statements - Storage

Store in corrosive resistant container with a resistant inner liner

Other information

· May be harmful in contact with skin

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS-No	weight-%	TRADE SECRET
Trade Secret Ingredient	PROPRIETARY	45 - 55%	*

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret

4. FIRST AID MEASURES

First Aid Measures

Eye contact

Immediately flush with plenty of water for at least 20 minutes, holding eyelids apart to ensure flushing of the entire surface. Washing within one minute is essential to achieve maximum effectiveness. Seek immediate medical attention.

Skin contact

Immediately wash thoroughly with soap and water, remove contaminated clothing and footwear. Wash clothing before reuse. Get medical attention if irritation should develop.

Ingestion

Seek medical attention immediately. Give large amounts of water to drink. If vomiting should occur spontaneously, keep airway clear. Never give anything by mouth to an unconscious person.

Inhalation

Remove to fresh air.

Most important symptoms and effects, both acute and delayed

Acute effects

Possible eye, skin and respiratory tract irritation.

Chronic effects

May aggravate existing skin, eye, and lung conditions. Persons with kidney disorders have an increased risk from exposure based on general information found on aluminum salts.

Indication of any immediate medical attention and special treatment needed

Note to physicians

Aluminum soluble salts may cause gastroenteritis if ingested. Treatment includes the use of demulcents. Note: Consideration should be given to the possibility that overexposure to materials other than this product may have occurred.

5. FIRE-FIGHTING MEASURES

Extinguishing media

Suitable extinguishing media

Water Spray, Carbon Dioxide, Foam, Dry Chemical.

Extinguishing media which must not be used for safety reasons

No information available

Special hazards arising from the substance or mixture

Special Hazard

May produce hazardous fumes or hazardous decomposition products.

Advice for firefighters

Firefighting measures

Product is a water solution and nonflammable. In a fire, this product may build up pressure and rupture a sealed container; cool exposed containers with water spray. Use self-contained breathing apparatus in confined areas; avoid breathing mist or spray.

Special protective equipment for firefighters

Not determined

Explosion data

Sensitivity to Mechanical Impact

None.

Sensitivity to Static Discharge

None.

6. ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Personal precautions

Wear suitable protective clothing and gloves.

Environmental precautions

Environmental precautions

Do not permit run-off to get into sewers or surface waterways.

Methods and material for containment and cleaning up

Methods for containment

Prevent further leakage or spillage if safe to do so. Dike to collect large liquid spills.

Methods for cleaning up

Clear spills immediately. Contain large spill and remove using a vacuum truck. Soak up small spills with inert absorbent material and place in a labeled waste container for disposal. Ventilate area of leak or spill. Spills of solution are extremely slippery so all residue must be removed promptly.

7. HANDLING AND STORAGE

Precautions for safe handling

Advice on safe handling

Keep container closed when not in use

Keep away from heat and open flame.

Avoid contact with eyes, skin and clothing

Wash thoroughly after handling

Wear chemical splash goggles, gloves, and protective clothing when handling.

Avoid breathing vapor or mist

Use with adequate ventilation and employ respiratory protection where mist or spray may be generated.

FOR INDUSTRIAL USE ONLY.

Conditions for safe storage, including any incompatibilities

Technical measures and storage conditions

Do not store in unlined metal containers.

Product may slowly corrode iron, brass, copper, aluminum, mild steel, and stainless steel.

Store in a cool, dry place away from direct heat.

Keep in tightly closed container.

Incompatible products

Oxidizing agents.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters

Exposure Guidelines

This product, as supplied, does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies

Appropriate engineering controls

Engineering controls

Local exhaust ventilation as necessary to maintain exposures to within applicable limits. Please refer to the ACGIH document, "Industrial Ventilation, A Manual of Recommended Practices", most recent edition, for details. If there are no applicable or established exposure limit requirements or guidelines, general ventilation should be sufficient.

Individual protection measures, such as personal protective equipment

Eye/face Protection

Wear chemical splash goggles and face shield (when eye and face contact is possible due to splashing or spraying of material).

Hand Protection

Appropriate chemical resistant gloves should be worn.

Skin and body protection

Standard work clothing and work shoes.

Respiratory protection

If exposures exceed the PEL or TLV, use NIOSH/MSHA approved respirator in accordance with OSHA Respiratory Protection Requirements under 29 CFR 1910.134.

Other personal protection data

Eyewash fountains and safety showers must be easily accessible.

Hygiene measures

Handle in accordance with good industrial hygiene and safety practice.

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state liquid

Color colorless to yellow

Appearance clear

Odorno appreciable odorOdor thresholdNo information available

Property	<u>Values</u>	Remarks / Method
рН	3.5	as is
Melting / freezing point	-7 °C / 19 °F	No information available
Boiling point / boiling range	No information available	No information available
Flash point	Not applicable	No information available
Evaporation rate	No information available	No information available

Flammability (solid, gas) Not applicable No information available

Flammability Limit in Air

Upper flammability limitNot applicableNo information availableLower flammability limitNot applicableNo information available

Vapor pressure No information available No information available

Vapor density No information available No information available

Specific gravity 1.33 - 1.35 No information available

Solubility (water) Soluble No information available

Solubility in other solvents No information available No information available

Partition coefficient: n-octanol/water No information available No information available

Autoignition temperature Not applicable No information available

Decomposition temperatureNo information available
No information available

Kinematic viscosity

No information available

No information available

Dynamic viscosity < 100 cps @ 20 °C No information available

Other information

Density	11.0 - 11.3 lb/gal
Bulk Density	No information available
Explosive properties	No information available.
Oxidizing properties	No information available
Softening point	No information available
Molecular weight	No information available
Volatile organic compounds (VOCs) content	No information available
Percent Volatile, wt.%	40 - 50%

10. STABILITY AND REACTIVITY

Reactivity

Reactivity

No data available.

Chemical stability

Chemical stability

Stable.

Possibility of hazardous reactions

Possibility of hazardous reactions

None under normal processing.

Hazardous polymerization

No.

Conditions to avoid

Conditions to avoid

None

Incompatible materials

Materials to avoid

Oxidizing agents.

Hazardous decomposition products

Hazardous decomposition products

Thermal decomposition may release toxic and/or hazardous gases such as Cl₂ and HCl.

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Eye contact

May cause moderate eye irritation that can become severe with prolonged contact. Prolonged exposure to Aluminum salts may cause conjunctivitis.

Skin contact

May be harmful in contact with skin. Prolonged and/or repeated contact may cause skin irritation.

Ingestion

May cause irritation of the mouth, throat and stomach. Ingestion may cause gastrointestinal irritation, nausea, vomiting and diarrhea.

Inhalation

Inhalation of mist or vapor may cause respiratory tract irritation.

Acute toxicity - Product Information

Oral LD50 No information available

Dermal LD50 No information available

Inhalation LC50 No information available

Acute toxicity - Component Information

Component	weight-%	Oral LD50	Dermal LD50	Inhalation LC50
Trade Secret Ingredient	45 - 55%	= 9187 mg/kg (Rat)	> 2000 mg/kg (Rat)	

Information on toxicological effects

Symptoms

No information available.

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Skin corrosion/irritation

Irritating to skin

Serious eye damage/eye irritation

Causes serious eye irritation

Sensitization

No information available

Germ cell mutagenicity

No information available

Carcinogenicity

This product does not contain any components in concentrations greater than or equal to 0.1% that are listed as known or suspected carcinogens by NTP, IARC, ACGIH, or OSHA.

Reproductive toxicity

No information available

Specific target organ toxicity - Single exposure

No information available.

Specific target organ toxicity - Repeated exposure

No information available

Aspiration hazard

No information available.

Numerical measures of toxicity - Product Information

The following values are calculated based on chapter 3.1 of the GHS document

ATEmix (oral) 18374 mg/kg ATEmix (dermal) 4004 mg/kg

Other information

Conclusions are drawn from sources other than direct testing.

12. ECOLOGICAL INFORMATION

Ecotoxicity

Acute aquatic toxicity - Product Information

Fish LC 50 (96 hour, static) 776.4 mg/L Pimephales promelas (Fathead Minnow) 1

EC 50 (96 hour, static) 265.5 mg/L Pimephales promelas (Fathead Minnow) 1

Crustacea LC 50 (48 hour, static) 803.8 mg/L Ceriodaphnia dubia (Water Flea) 1

EC 50 (48 hour, static) 33.2 mg/L Ceriodaphnia dubia (Water Flea) 1

Algae/aquatic plants No information available

Acute aquatic toxicity - Component Information

Component	weight-%	Algae/aquatic plants	Fish	Toxicity to daphnia and other aquatic invertebrates
Trade Secret Ingredient	45 - 55%		LC50 (96 h static) 100 - 500 mg/L (Brachydanio rerio)	

Persistence and degradability

Persistence and degradability

No information available

Bioaccumulative potential

Bioaccumulative potential

No information available.

Mobility

Mobility

No information available

Results of PBT and vPvB assessment

PBT and vPvB assessment

No information available

Other adverse effects

Other information

¹ Generated from tests conducted by ECT-Superior Laboratories May 2010

13. DISPOSAL CONSIDERATIONS

Waste treatment methods

Disposal of wastes

Do NOT mix with other chemical wastes. Do not put solutions containing this product into sewer systems. Dispose of product in an approved chemical waste landfill or incinerate in accordance with applicable Federal, state and local regulations. Do not re-use empty containers.

Contaminated packaging

Since empty containers retain product residue, follow label warnings even after container is emptied.

14. TRANSPORT INFORMATION

DOT NOT REGULATED FOR TRANSPORTATION

This product is excepted from DOT regulations under 49 CFR 173.154(d) when shipped by road or railway. The product exception is referenced in 49 CFR 172.101 Table. Packaging

material must not be aluminum, steel or be degraded by this product

ICAO/IATA Regulated

UN number UN3264

Proper shipping name Corrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class8Packing groupIIIERG Code8L

<u>IMDG</u> Regulated

UN number UN3264

Proper shipping nameCorrosive Liquid, Acidic, Inorganic, N.O.S. (Polyaluminum Chloride Solution)

Hazard class 8
Packing group III
EmS F-A, S-B

Harmonized Tariff Number 2827.32

15. REGULATORY INFORMATION

International Inventories

TSCA (United States)

All ingredients are on the inventory or exempt from listing

Australia (AICS)

All ingredients are on the inventory or exempt from listing

Canada (DSL)

All ingredients are on the inventory or exempt from listing

Canada (NDSL)

None of the ingredients are on the inventory.

China (IECSC)

All ingredients are on the inventory or exempt from listing

EINECS (European Inventory of Existing Chemical Substances)

All ingredients are on the inventory or exempt from listing

ELINCS (European List of Notified Chemical Substances)

None of the ingredients are on the inventory.

ENCS (Japan)

All ingredients are on the inventory or exempt from listing

South Korea (KECL)

All ingredients are on the inventory or exempt from listing

Philippines (PICCS)

All ingredients are on the inventory or exempt from listing

Legend

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

AICS - Australian Inventory of Chemical Substances

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

IECSC - China Inventory of Existing Chemical Substances

EINECS/ELINCS - European Inventory of Existing Commercial Chemical Substances/EU List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

U.S. Federal Regulations

CERCLA

This material, as supplied, does not contain any substances regulated as hazardous substances under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302) or the Superfund Amendments and Reauthorization Act (SARA) (40 CFR 355). There may be specific reporting requirements at the local, regional, or state level pertaining to releases of this material.

CWA (Clean Water Act)

This product does not contain any substances regulated as pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42).

SARA 311/312 Hazard Categories

Acute health hazard Yes
Chronic health hazard No
Fire hazard No
Sudden release of pressure hazard No
Reactive hazard No

SARA 313

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 (SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372.

U.S. State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals.

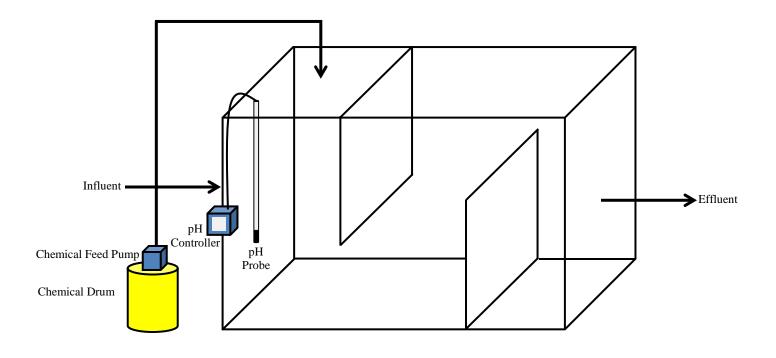
U.S. State Right-to-Know Regulations

This product does not contain any substances regulated under applicable state right-to-know regulations

16. OTHER INFORMATION

NFPA Rating Health - 1 Flammability - 0 Instability - 0 Special Hazard - HMIS Rating Health - 1 Flammability - 0 Physical hazard - 0 Personal protection - B

Product code


Revision date 2015-03-12

Revision number 1

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text.

End of Safety Data Sheet

Notes:

- 1.) Figure is not to scale.
- 2.) System layout can vary with site conditions.

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

One Controller for the Broadest Range of Sensors.

Choose from 30 digital and analog sensor families for up to 17 di:erent parameters.

Maximum Versatility

The sc200 controller allows the use of digital and analog sensors, either alone or in combination, to provide compatibility with Hach's broad range of sensors, eliminating the need for dedicated, parameter-specific controllers.

Ease of Use and Confidence in Results

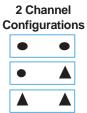
Large, high-resolution, transreflective display provides optimal viewing resolution in any lighting condition. Guided calibration procedures in 19 languages minimize complexity and reduce operator error. Password-protected SD card reader o:ers a simple solution for data download and transfer. Visual warning system provides critical alerts.

Wide Variety of Communication Options

Utilize two to five analog outputs to transmit primary and secondary values for each sensor, or integrate Hach sensors and analyzers into MODBUS RS232/RS485, Profibus® DP, and HART networks.

Password protected SD card reader offers a simple solution for data download and transfer, and sc200 and digital sensor configuration file duplication and backup.

Controller Comparison


	Previous I	Vlodels		
Features	sc100™ Controller	GLI53 Controller	sc200™ Controller	Benefits
Display	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	64 x 128 pixels 33 x 66 mm (1.3 x 2.6 in.)	160 x 240 pixels 48 x 68 mm (1.89 x 2.67 in.) Transreflective	 Improved user interface— 50% bigger Easier to read in daylight and sunlight
Data Management	irDA Port/PDA Service Cable	N/A	SD Card Service Cable	 Simplifies data transfer Standardized accessories/ max compatibility
Sensor Inputs	2 Max Direct Digital Analog via External Gateway	2 Max Analog Depending on Parameter	2 Max Digital and/or Analog with Sensor Card	Simplifies analog sensor connectionsWorks with analog and digital sensors
Analog Inputs	N/A	N/A	1 Analog Input Signal Analog 4-20mA Card	 Enables non-sc analyzer monitoring Accepts mA signals from other analyzers for local display Consolidates analog mA signals to a digital output
4-20 mA Outputs	2 Standard	2 Standard	2 Standard Optional 3 Additional	Total of five (5) 4-20 mA outputs allows multiple mA outputs per sensor input
Digital Communication	MODBUS RS232/RS485 Profibus DP V1.0	HART	MODBUS RS232/RS485 Profibus DP V1.0 HART7.2	Unprecedented combination of sensor breadth and digital communication options

sc200™ Universal Controller

Choose from Hach's I	Broad Range of Digital and Analog Sensors	
Parameter	Sensor	Digital or Analog
Ammonia	AMTAX™ sc, NH4D sc, AISE sc, AN-ISE sc	•
Chlorine	CLF10 sc, CLT10 sc, 9184 sc	•
Chlorine Dioxide	9185 sc	•
Conductivity	GLI 3400 Contacting, GLI 3700 Inductive	A
Dissolved Oxygen	LDO® Model 2, 5740 sc	•
Dissolved Oxygen	5500	A
Flow	U53, F53 Sensors	A
Nitrate	NITRATAX™ sc, NO3D sc, NISE sc, AN-ISE sc	•
Oil in Water	FP360 sc	•
Organics	UVAS sc	•
Ozone	9187 sc	•
pH/ORP	pHD	•
pH/ORP	pHD, pH Combination, LCP	
Phosphate	PHOSPHAX™ sc	•
Sludge Level	SONATAX™sc	•
Suspended Solids	SOLITAX™ sc, TSS sc	•
Turbidity	1720E, FT660 sc, SS7 sc, ULTRATURB sc, SOLITAX sc, TSS sc	•
Ultra Pure Conductivity	8310, 8311, 8312, 8315, 8316, 8317 Contacting	A
Ultra Pure pH/ORP	8362	A

 \bullet = Digital \triangle = Analog

Connect up to two of any of the sensors listed above, in any combination, to meet your application needs. The diagrams below demonstrate the potential configurations. Operation of analog sensors requires the controller to be equipped with the appropriate sensor module. Contact Hach Technical Support for help with selecting the appropriate module.

1 Channel
Configurations

Specifications*

Dimensions (H x W x

D)

5.7 in x 5.7 in x 7.1 in (144 mm x 144 mm x 181 mm) **Display** Graphic dot matrix LCD with LED

Display Resolution 240 x 160 pixels Weight 3.75 lbs. (1.70 kg)

Power Requirements

(Voltage)

Display Size

Power Requirements 50/60 Hz

(Hz)

Operating **Temperature Range**

Analog Outputs

Analog Output Functional Mode

Security Levels Mounting Configurations

Enclosure Rating Conduit Openings Relay: Operational

Mode

backlighting, transreflective 1.9 x 2.7 in. (48 mm x 68 mm)

non-condensing

100 - 240 V AC, 24 V DC

-20 to 60 °C, 0 to 95% RH

Two (Five with optional expansion module) to isolated current outputs, max 550 Ω , Accuracy:

± 0.1% of FS (20mA) at 25 °C, ± 0.5% of FS over -20 °C to 60 °C range

Operational Mode: measurement or calculated value

Linear, Logarithmic, Bi-linear, PID

2 password-protected levels Wall, pole, and panel mounting

NEMA 4X/IP66 1/2 in NPT Conduit

Primaryorsecondary measurement, calculated value (dual channel only) or timer

Relay Functions

Relays

Scheduler (Timer), Alarm, Feeder Control, Event Control, Pulse Width Modulation, Frequency Control,

and Warning

Four electromechanical SPDT (Form C) contacts, 1200 W, 5 A

Communication MODBUS RS232/RS485, PROFIBUS DPV1, or HART7.2

optional

Memory Backup

Electrical Certifications Flash memory

EMC

CE compliant for conducted and radiated emissions:

- CISPR 11 (Class A limits)

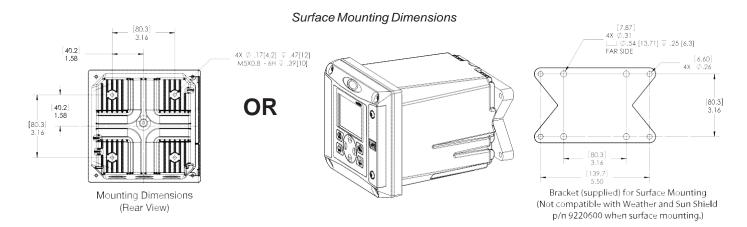
- EMC Immunity EN 61326-1 (Industrial limits)

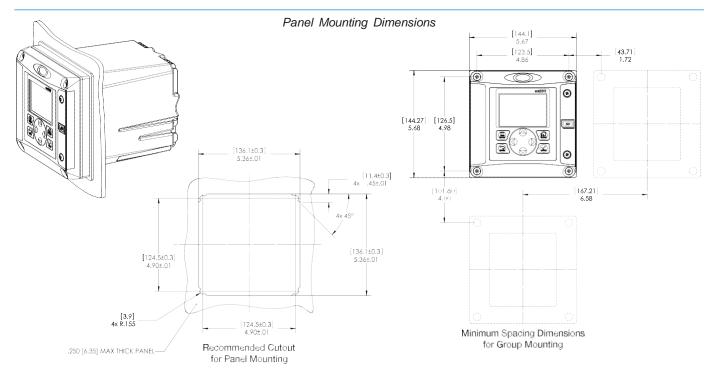
Safety

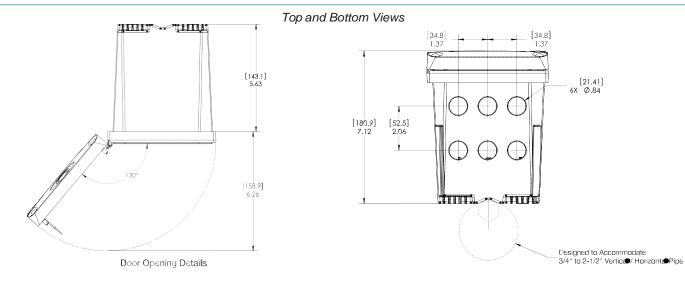
cETLus safety mark for:

- General Locations per ANSI/UL 61010-1 & CAN/CSA C22.2. No. 61010-1

- Hazardous Location Class I, Division 2, Groups A,B,C & D (Zone 2, Group IIC) per FM 3600 / FM 3611 & CSA C22.2 No. 213 M1987 with approved options and appropriately rated Class I, Division 2 or Zone 2 sensors


cULus safety mark


- General Locations per UL 61010-1 & CAN/CSA C22.2. No. 61010-1


*Subject to change without notice.

sc200™ Universal Controller

Dimensions

3/4-inch Combination pH and ORP Sensor Kits

Use the Digital Gateway to make any Hach analog combination pH or ORP sensor compatible with the Hach sc1000 Controller.

Digital combination pH and ORP sensors are available in convertible, insertion, and sanitary mounting styles. Choose from rugged dome electrodes or "easy-to-clean" flat glass electrodes.

Features and Benefits

Low Price—High Performance

These combination sensors are designed for specialty applications for immersion or in-line mounting. The reference cell features a double-junction design for extended service life, and a built-in solution ground. The body is molded from chemically-resistant Ryton® or PVDF, and the reference junction is coaxial porous Teflon®. All sensors are rated 0 to 105°C up to 100 psig, and have integral 4.5 m (15 ft.) cables with tinned leads. The PC-series (for pH) and RC-series (for ORP) combination sensors are ideal for measuring mild and aggressive media.

Special Electrode Configurations

Sensors with rugged dome electrodes, "easy-to-clean" flat glass electrodes, and even HF (hydrofluoric acid) resistant glass electrodes are available for a wide variety of process solutions.

Temperature Compensation Element Option

The PC-series combination pH sensors are available with or without a Pt 1000 ohm RTD temperature element. The RC-series combination ORP sensors are supplied without a temperature element.

Versatile Mounting Styles

Sensors are available in three mounting styles—convertible, insertion, and sanitary. Please turn to page 3 for more information.

Full-Featured "Plug and Play" Hach sc Digital Controllers

There are no complicated wiring or set up procedures with any Hach sc controller. Just plug in any combination of Hach digital sensors and it's ready to use—it's "plug and play."

One or multiple sensors—The sc controller family allows you to receive data from up to eight Hach digital sensors in any combination using a single controller.

Communications—Multiple alarm/control schemes are available using the relays and PID control outputs. Available communications include analog 4-20 mA, digital MODBUS® (RS485 and RS232) or Profibus DP protocols. (Other digital protocols are available. Contact your Hach representative for details.)

Data logger—A built-in data logger collects measurement data, calibration, verification points, and alarm history.

 $DW = drinking \ water \ WW = wastewater \ municipal \ PW = pure \ water / power$ $IW = industrial \ water \ E = environmental \ C = collections \ FB = food \ and \ beverage$

Specifications*

Most pH applications fall in the 2.5-12.5 pH range. General purpose pH glass electrodes perform well in this range. Some industrial applications require accurate measurements and control at pH values below 2 or above 12. Consult Hach Technical Support for details on these applications.

Combination pH Sensors

Measuring Range

0 to 14 pH

Accuracy

Less than 0.1 pH under reference conditions

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable (plus two conductors for temperature compensator option); 4.5 m (15 ft.) long

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Sanitary style: 316 stainless steel sleeved PVDF body

Common materials for all sensor styles include PTFE Teflon double junction, glass process electrode, and Viton® O-rings

Warranty

90 days

Combination ORP Sensors

Measuring Range

-2000 to +2000 millivolts

Accuracy

Limited to calibration solution accuracy (± 20 mV)

Temperature Range

0 to 105°C (32 to 221°F)

Flow Rate

0 to 2 m/s (0 to 6.6 ft./s); non-abrasive

Pressure Range

0 to 6.9 bar at 100°C (0 to 100 psig at 212°F)

Signal Transmission Distance

100 m (328 ft.) when used with the Hach Digital Gateway and a Hach sc Digital Controller.

1000 m (3280 ft.) when used with the Hach Digital Gateway, Termination Box, and a Hach sc Digital Controller.

Sensor Cable

Integral coaxial cable; 4.5 m (15 ft.) long; terminated with stripped and tinned wires

Wetted Materials

Convertible style: Ryton® body (glass filled)

Insertion style: PVDF body (Kynar®)

Common materials for all sensor styles include PTFE Teflon double junction, glass with platinum process electrode, and Viton® O-rings

Warranty

90 days

*Specifications subject to change without notice.

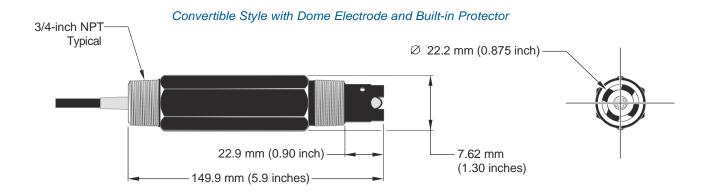
Ryton® is a registered trademark of Phillips 66 Co.; Viton® is a registered trademark of E.I. DuPont de Nemours + Co.; Kynar® is a registered trademark of Pennwalt Corp.

Engineering Specifications

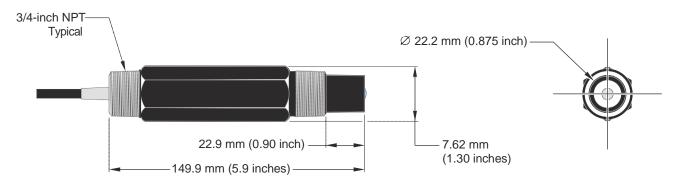
- The pH sensor shall be available in convertible, insertion or sanitary styles. The ORP sensor shall be available in only convertible or insertion styles.
- 2. The convertible style sensor shall have a Ryton[®] body. The insertion style sensor shall have a PVDF body. The sanitary style sensor shall have a 316 stainless steel sleeved PVDF body. Common materials for all sensor styles shall include a PTFE Teflon[®] double junction, and Viton[®] O-rings. The pH sensor shall have a glass pH electrode. The ORP sensor shall have a platinum ORP electrode.
- 3. The convertible style pH sensor shall be available with or without a built-in Pt 1000 ohm RTD temperature element. Insertion and sanitary style pH sensors shall have a built-in Pt 1000 ohm RTD temperature element. Convertible and insertion style ORP sensors shall not have a built-in temperature element.
- The sensor shall communicate via MODBUS[®] RS-485 to a Hach sc Digital Controller.
- The sensor shall be Hach Company Model PC sc or PC-series for pH measurement or Model PC sc or RC-series for ORP measurement.

Dimensions

Convertible Style Sensor


The convertible style sensor has a Ryton[®] body that features 3/4-inch NPT threads on both ends. The sensor can be directly mounted into a standard 3/4-inch pipe tee for flow-through mounting or fastened onto the end of a pipe for immersion mounting. The convertible style sensor enables inventory consolidation, thereby reducing associated costs. Mounting tees and immersion mounting hardware are offered in a variety of materials to suit application requirements.

Insertion Style Sensor


Insertion style sensors feature a longer, non-threaded PVDF body with two Viton® O-rings, providing a seal when used with the optional Hach insertion mount hardware assembly. This ball valve hardware enables sensor insertion and retraction from a pipe or vessel without having to stop the process flow.

Sanitary Style Sensor

The sanitary style sensor, offered for pH measurement, has a 316 stainless steel-sleeved PVDF body with a 2-inch flange. The sensor mates to a standard 2-inch Tri-Clover fitting. The optional Hach sanitary mounting hardware includes a standard 2-inch sanitary tee, sanitary clamp, and Viton[®] sanitary gasket.

Convertible Style with Flat Electrode

The Pulsatron Series A Plus offers manual function controls over stroke length and stroke rate as standard with the option to select external pace for automatic control.

Ten distinct models are available, having pressure capabilities to 250 PSIG (17 BAR) @ 12 GPO (1.9 lph), and flow capacities to 58 GPO (9.1 lph) @ 100 PSIG (7.0 BAR), with a standard turndown ratio of 100:1, and optional ratio of 1000:1. Metering performance is reproducible to within ± 3% of maximum capacity.

Features

- Manual Control by on-line adjustable stroke rate and stroke length.
- Highly Reliable timing circuit.
- Circuit Protection against voltage and current upsets.
- Solenoid Protection by thermal overload with autoreset.
- Water Resistant, for outdoor and indoor applications.
- Internally Dampened To Reduce Noise.
- Guided Ball Check Valve Systems, to reduce back flow and enhance outstanding priming characteristics.
- Few Moving Parts and Wall Mountable.
- Safe & Easy Priming with durable leak-free bleed valve assembly (standard).
- Optional Control: External pace with auto/manual selection.

Controls

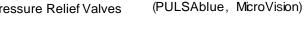
Manual Stroke Rate Manual Stroke Length External Pacing-Optional External Pace With Stop-

Optional (125 SPM only)

Controls Options						
F	Standard	Optional				
Feature	Configuration	Configuration ¹				
External Pacing		Auto / Manual Selection /				
External Pace w/ Stop		Auto / Manual Selection 2				
(125SPMonly)						
Manual Stroke Rate	10:1 Ratio	100:1 Raio				
Manual Stroke Length	10:1 Ratio	10:1 Ratio				
Total Turndown Ratio	1001 Ratio	1000:1 Ratio				

Note 1:On S2,S3 & S4 sizes only.

Note 2: Not available on 1000:1turndown pumps.


Operating Benefits

- Reliable metering performance.
- Rated "hot" for continuous duty.
- High viscosity capability.
- Leak-free, sealless, liquid end.

Aftermarket

- **KOPkits**
- Gauges
- **Dampeners**
- Pressure Relief Valves
- Tanks
- **Pre-Engineered Systems**
 - **Process Controllers**

Series A Plus Electronic Metering Pumps

Series A Plus

Specifications and Model Selection

	MODEL		LBC2	LB02	LBC3	LB03	LB04	LB64	LBC4	LBS2	LBS3	LBS4
Capacity		GPH	0.25	025	0.42	0.50	1.00	125	2.00	0.50	1.38	2.42
nominal		GPO	6	6	10	12	24	30	48	12	33	58
(max.)		LPH	0.9	0.9	1.6	1.9	3.8	4.7	7.6	1.9	5.2	9.14
Pressure ³ (max.)	GFPP,PVDF,316SS or PVC <;Ncode) wITFE Seats) PVC (V code) Vton or CSPE Seats IDegas Liquid End	PSIG	250 (17) 150 (10)	150 (10)	250 (17)	150 (10)	100 (7)	100 (7)	50 (33)	250 (17) 150 (10)	150 (10)	100(7)
Connections:		Tubina	1 '14' IDX 3'8' OD 318' DX 112' OD					114	I'D X 318' O[)		
		Pioina	114'FNPT									
Strokes/Minute		SPM	125 250									

Note 3: Pumps with rated pressure above 150 PSI will be de-rated to 150 PSI Max. when selecting certain valve options, see Price Book for details.

Engineering Data

Pump Head Materials Available: **GFPPL**

PVC **PVDF** 316 SS

PTFE-faced CSPE-backed Diaphragm:

Check Valves Materials Available:

Seats/0-Rings: **PTFE**

> **CSPE** Viton

Balls: Ceramic

PTFE 316 SS

Alloy C

GFPPL Fittings Materials Available:

PVC **PVDF**

Bleed Valve: Same as fitting and check valve

selected, except 316SS

hjection Valve & Foot Valve Assy: Same as fitting and check valve

selected

ClearPVC Tubing:

White PF

Important: Material Code - GFPPL=Glass-filled Polypropylene, PVC=Polyvinyl Chloride, PE=Polyethylene, PVDF=Polyvinylidene Fluoride, CSPE=Generic formulation of Hypalon, a registered trademark of E.I. DuPont Company. Viton is a registered trademark of E.I. DuPont Company. PVC wetted end recommended for sodium hypochlorite.

Engineering Data

Reproducibility: +/- 3% at maximum capady

Viscosity Max CPS: 1000CPS Stroke Frequency Max SPM: 125 / 250 by Model Stroke Frequency Turn-Down Ratio: 10:1/100:1 by Model

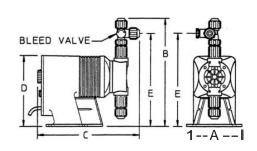
Stroke Length Turn-Down Ratio:

Power Input: 115 VAC/50-60 HZ/1 ph 230 VAC/50-60 HZ/1 ph

Average Current Draw:

@ 115 VAC; Amps: 0.6 Amps @ 230 VAC; Amps: 0.3 Amps 130 Watts Peak hout Power: 50 Watts Average Input Power @ Max SPM:

Custom Engineered Designs-Pre-Engineered Systems



Pre-Engineered Systems Pulsafeeder's Pre-Engineered Systems are designed to provide complete chemical feed solutions for all electronic metering applications. From stand alone simplex pH control applications to full-featured, redundant sodium hypochlorite disinfection metering, these rugged fabricated assemblies offer turnkey simplicity and industrial-grade durability. The UV-stabilized, high-grade HOPE frame offers maximum chemical compatibility and structural rigidity. Each system is factory assembled and hydrostatically tested prior to shipment.

Dimensions

Series A PLUS Dimensions (inches)						
						Shipping
Model No.	Α	В	С	D	Ε	Weight
LB02 IS2	5.0	9.6	9.5	6.5	8.2	10
LBC2	5.0	9.9	9.5	6.5	8.5	10
LBC3	5.0	9.9	9.5	6.5	8.5	10
LB03 IS3	5.0	9.9	9.5	6.5	8.5	10
LB0 \$ 4	5.0	9.9	9.5	6.5	8.5	10
LB64	5.0	9.9	9.5	6.5	8.5	10
LBC4	5.0	9.9	9.5	6.5	8.5	10

NOTE: hches X2.54 cm

95-Gallon OverPack - 32" dia x 41.5", 1 each/package

Stock a SpillTech® OverPack with sorbents for emergency spill response, or use it as a salvage drum to ship damaged containers or hazardous waste.

- DOT-Approved for Salvage: All SpillTech® OverPacks are DOT-approved and X-rated for use as salvage drums. Helps companies conform to federal regulations when shipping damaged or leaking containers of hazardous materials, or absorbents contaminated with hazardous substances.
- Perfect for Spill Kits: Stores sorbent products (not included) for easy access as needed for spill control. Saves time when quick response is necessary.
- Sturdy Construction: 100% polyethylene OverPack resists chemicals, rust and corrosion for years of use. Integrated handles make them easy to lift, move or carry with standard material handling equipment. Twist-on, double-wall lid with closed-cell gasket provides sealed, secure closure to prevent leaks and protect contents from moisture, dirt and damage. Durable to withstand rough handling.
- Customized for You: We can customize a Spill Kit to your exact specifications, including the container, its contents and accessories, with no upcharge! Contact your local Distributor for details.

A950VER Specifications

Dimensions: ext. dia. 32" x 41.5" H

Shipping 31.75" W x 41.5" L x 31.75" H

Dimensions:

Sold as: 1 per package

Color: Yellow

Composition: Polyethylene

per Pallet: 3
Incinerable: No
Ship Class: 250

Metric Equivalent Specifications

Dimensions: ext. dia. 81.3cm x 105.4cm H

Shipping 80.6cm W x 105.4cm L x 80.6cm H

Dimensions:

A950VER Technical Information

Warnings & Restrictions:

There are no known warnings and restrictions for this product.

Regulations and Compliance:

49 CFR 173.3(c)(1) - If a container of hazardous waste is damaged or leaking, it can be placed in a compatible salvage drum that meets UN criteria for shipping

49 CFR 173.12(b)(2)(iv) - When labpacking, "Inner packagings...must be surrounded by a chemically compatible absorbent material in sufficient quantity to absorb the total liquid contents."

49 CFR 173.12(b) - A container used for labpacking must be "a UN 1A2 or UN 1B2 metal drum, a UN 1D plywood drum, a UN 1G fiber drum or a UN 1H2 plastic drum tested and marked at least for the Packing Group III performance level for liquids or solids."

Office: 774-450-7177 • Fax: 888-835-0617

Safety Data Sheet

Item # 10927 Safety Data Sheet 1683

1. PRODUCT AND COMPANY IDENTIFICATION

Product Name UN/ID No.

Sodium Hydroxide (Caustic) 50%

UN1824

Caustic soda Caustic Lye [Sodium hydroxide] **Synonyms**

Recommended Use pH adjustment, Manufacture of pulp, paper and paper products, Detergent, Soap Uses advised against

Consumer uses: Private households (= general public = consumers).

Company Name

PVS-Nolwood Chemicals, Inc. 10900 Harper Ave. Detroit, MI 48213 (800) 284-9735

24 Hour Emergency Phone Number CHEMTREC 1-800-424-9300

2. HAZARDS IDENTIFICATION

Classification

Acute toxicity - Oral	Category 4
Skin corrosion/irritation	Category 1 Sub-category A
Serious eye damage/eye irritation	Category 1
May be corrosive to metals	Category 1

Emergency Overview

DANGER

Hazard statements Causes severe skin burns and eye damage

Causes serious eye damage May be corrosive to metals Harmful if swallowed

Physical hazards Corrosive

Corrosive to metals

Precautionary statements Prevention

- Wear eye/face protection
- Wear protective gloves/protective clothing/eve protection/face protection
- Do not breathe dust/fume/gas/mist/vapors/spray
- · Wash face, hands and any exposed skin thoroughly after handling
- · Do not eat, drink or smoke when using this product

Response
 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if

present and easy to do. Continue rinsing

Immediately call a POISON CENTER or doctor/physicianIF SWALLOWED: Rinse mouth. DO NOT induce vomiting

• IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin

with water/shower

· Wash contaminated clothing before reuse

• IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for

breathing

Store locked up

• Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified

(HNOC)

None known.

Other Information

Storage

Other hazards • May be harmful in contact with skin

· Harmful to aquatic life with long lasting effects

· Harmful to aquatic life

Unknown Acute Toxicity 0% of the mixture consists of ingredient(s) of unknown toxicity

3. COMPOSITION/INFORMATION ON INGREDIENTS

Chemical Name	CAS No.	EC No.	Weight-% *
Water	7732-18-5	231-791-2	50
Sodium hydroxide	1310-73-2	215-185-5	50

^{*}The exact percentage (concentration) of composition has been withheld as a trade secret.

4. FIRST AID MEASURES

General advice • Immediate medical attention is required

Eye contact • Immediate medical attention is required

Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes

· Keep eye wide open while rinsing

• Do not rub affected area

Skin Contact • Immediate medical attention is required

Take off contaminated clothing

Wash off immediately with plenty of water for at least 15 minutes

· Wash contaminated clothing before reuse

Inhalation • Remove to fresh air

· Call a physician or poison control center immediately

• If not breathing, give artificial respiration

• If breathing is difficult, give oxygen

Ingestion • Immediate medical attention is required

• Do NOT induce vomiting

· Rinse mouth

· Drink plenty of water

• Never give anything by mouth to an unconscious person

Note to physician Product is a corrosive material. Use of gastric lavage or emesis is contraindicated.

Possible perforation of stomach or esophagus should be investigated. Do not give chemical antidotes. Asphyxia from glottal edema may occur. Marked decrease in blood pressure may occur with moist rales, frothy sputum, and high pulse pressure. Treat

symptomatically.

Self-protection of the first aider

Use personal protective equipment as required. Avoid contact with skin, eyes or clothing.

5. FIRE-FIGHTING MEASURES

Suitable extinguishing media

- · Water spray (fog)
- Water
- Foam
- Drv chemical
- Carbon dioxide (CO2)
- Use extinguishing measures that are appropriate to local circumstances and the

surrounding environment

Unsuitable extinguishing media

• Do not use halogenated extinguishing agents or foam

Specific hazards arising from the chemical

- The product causes burns of eyes, skin and mucous membranes
- Thermal decomposition can lead to release of irritating and toxic gases and vapors
- In the event of fire and/or explosion do not breathe fumes

Protective equipment and precautions for firefighters

· Wear a self-contained breathing apparatus and chemical protective clothing

Flammable properties Explosive properties No information availableNo information available

6. ACCIDENTAL RELEASE MEASURES

Personal precautions

- Evacuate personnel to safe areas
- · Use personal protective equipment as required
- · Avoid contact with skin, eyes or clothing
- Keep people away from and upwind of spill/leak

Environmental precautions

- Collect contaminated fire extinguishing water separately. Do not allow to enter drains or
- surface water

Methods for cleaning up

- Dike far ahead of liquid spill for later disposal
- Soak up with inert absorbent material
- Take up mechanically, placing in appropriate containers for disposal
- Clean contaminated surface thoroughlyPrevent product from entering drains
- Dam up

Other Information

· No information available

7. HANDLING AND STORAGE

Advice on safe handling

- Use personal protective equipment as required
- · Avoid contact with skin, eyes or clothing
- Ensure adequate ventilation, especially in confined areas
- In case of insufficient ventilation, wear suitable respiratory equipment
- · Use only with adequate ventilation and in closed systems

Storage Conditions

- Keep container tightly closed in a dry and well-ventilated place
- Keep out of the reach of children
- Keep containers tightly closed in a dry, cool and well-ventilated place
- Keep in properly labeled containers

Incompatible materials

Aluminum, Zinc, Tin, Oxidizers, Acetaldehyde, Acrolein, Acrylonitrile

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Chemical Name	ACGIH TLV	OSHA PEL	NIOSH IDLH
Sodium hydroxide	Ceiling: 2 mg/m ³	TWA: 2 mg/m ³	IDLH: 10 mg/m ³
1310-73-2		(vacated) Ceiling: 2 mg/m ³	Ceiling: 2 mg/m ³

Exposure Guidelines

Engineering Controls Ensure adequate ventilation, especially in confined areas.

Individual protection measures, such as personal protective equipment

Respiratory protection • A respiratory protection program that meets OSHA 1910.134 and ANSI Z88.2

requirements must be followed whenever workplace conditions warrant the use of a

respriator.

Eye/face protection • Tight sealing safety goggles

· Face protection shield

Skin and body protection • Wear suitable protective clothing

• Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls,

@ 25 °C

as appropriate, to prevent skin contact

General Hygiene Considerations • When using do not eat, drink or smoke

· Wash contaminated clothing before reuse

Keep away from food, drink and animal feeding stuffs

Contaminated work clothing should not be allowed out of the workplace
Regular cleaning of equipment, work area and clothing is recommended

· Avoid contact with skin, eyes or clothing

· Take off all contaminated clothing and wash it before reuse

Wear suitable gloves and eye/face protection

9. PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Physical state Liquid

Appearance Clear to slightly hazy

ColorcolorlessOdorOdorless

Odor threshold No information available

<u>Property</u> <u>Values</u> <u>Remarks • Method</u>

pH 14
Melting point/Freezing Point 10-11.7
Boiling point / boiling range 130-140

Flash point No information available Evaporation rate No information available Flammability (solid, gas) No information available

Flammability Limit in Air

Upper flammability limit (%)
Lower flammability limit (%):
No information available
No information available

Vapor pressure 23.76 mm Hg

Vapor density No information available

Specific Gravity 1.529

Water solubility Miscible in water

Solubility in other solvents No information available **Partition coefficient** No information available **Autoignition temperature** No information available **Decomposition temperature** No information available Kinematic viscosity No information available **Dynamic viscosity** No information available **Explosive properties** No information available **Oxidizing properties** No information available

Other Information

Softening point °C No information available

Molecular weight 40.1

VOC Content (%) No information available

Item # 10927 Sodium Hydroxide (Caustic) 50%

Density No information available

Bulk density 12.75186 Pounds per gallon (lb/gal)

10. STABILITY AND REACTIVITY

Stability • Stable under recommended storage conditions

Conditions to avoid • Strong acids

· Strong oxidizing agents

Incompatible materials Aluminum, Zinc, Tin, Oxidizers, Acetaldehyde, Acrolein, Acrylonitrile

Hazardous Decomposition Products • Thermal decomposition can lead to release of irritating and toxic gases and vapors

Contact with metals may evolve flammable hydrogen gas

Possibility of Hazardous Reactions • None under normal processing and storage

11. TOXICOLOGICAL INFORMATION

Information on likely routes of exposure

Principle Routes of Exposure Inhalation Skin Contact Eye contact

Inhalation May cause irritation of respiratory tract. Avoid breathing vapors or mists.

IngestionNo data available.Skin ContactNo data available.

Eye contact Contact with eyes may cause irritation.

Chemical Name	Oral LD50	Dermal LD50	Inhalation LC50
Sodium hydroxide	300-500 mg/kg (rat)	= 1350 mg/kg (Rabbit)	-
1310-73-2	40 mg/kg (mouse)(Intraperitoneal)		

Information on toxicological effects

Symptoms No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

SensitizationNo information available.Germ cell mutagenicityNo information available.CarcinogenicityNo information available.Reproductive toxicityNo information available.STOT - single exposureNo information available.STOT - repeated exposureNo information available.

Chronic toxicity Chronic exposure to corrosive fumes/gases may cause erosion of the teeth followed by jaw

necrosis. Bronchial irritation with chronic cough and frequent attacks of pneumonia are common. Gastrointestinal disturbances may also be seen. Avoid repeated exposure.

Possible risk of irreversible effects.

Target Organ Effects Eyes, Respiratory system, Skin.

Aspiration hazard No information available.

Numerical measures of toxicity - Product Information

Unknown Acute Toxicity 0% of the mixture consists of ingredient(s) of unknown toxicity The following values are calculated based on chapter 3.1 of the GHS document . mg/kg

12. ECOLOGICAL INFORMATION

Ecotoxicity

Ecotoxicity Harmful to aquatic life with long lasting effects 0% of the mixture consists of components(s) of unknown hazards to the aquatic environment

Chemical Name Algae/aquatic plants Fish Crustacea

Item # 10927 Sodium Hydroxide (Caustic) 50%

Sodium hydroxide 45.4: 96 h Oncorhynchus mykiss 1310-73-2 mg/L LC50 static

Persistence and degradability

No information available.

Bioaccumulation The product is not expected to bioaccumulate.

No information available Other adverse effects

13. DISPOSAL CONSIDERATIONS

Disposal of wastes This material, as supplied, is a hazardous waste according to federal regulations (40 CFR)

Contaminated packaging · Do not reuse container

US EPA Waste Number • D002

This product contains one or more substances that are listed with the State of California as a hazardous waste.

Chemical Name	California Hazardous Waste Status
Sodium hydroxide	Toxic
1310-73-2	Corrosive

14. TRANSPORT INFORMATION

DOT

Proper shipping name SODIUM HYDROXIDE SOLUTION

Hazard Class UN/ID No. UN1824 **Packing Group** Ш Reportable Quantity (RQ) (lbs) 1000 RQ as is (lbs) 2000

Description UN1824, Sodium hydroxide solution, 8, II

Special Provisions B2, IB2, N34, T7, TP2

Emergency Response Guide 154

Number

IATA

UN/ID No. UN1824

SODIUM HYDROXIDE SOLUTION Proper shipping name

Hazard Class Packing Group Ш **ERG Code** 8L **Special Provisions** A3

IMDG

UN/ID No.

Proper shipping name SODIUM HYDROXIDE SOLUTION

Hazard Class Packing Group Ш EmS-No. F-A, S-B

15. REGULATORY INFORMATION

US Federal Regulations

SARA 311/312 Hazard Categories

Acute health hazard Yes **Chronic Health Hazard** Yes Fire hazard No Sudden release of pressure hazard No **Reactive Hazard** Yes

Section 313 of Title III of the Superfund Amendments and Reauthorization Act of 1986 **SARA 313**

(SARA). This product does not contain any chemicals which are subject to the reporting requirements of the Act and Title 40 of the Code of Federal Regulations, Part 372

CWA (Clean Water Act)

This product contains the following substances which are regulated pollutants pursuant to the Clean Water Act (40 CFR 122.21 and 40 CFR 122.42)

Chemical Name	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants	CWA - Hazardous Substances
Sodium hydroxide 1310-73-2	1000 lb	-	-	Х

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Chemical Name	Hazardous Substances RQs	CERCLA/SARA RQ	Reportable Quantity (RQ) (lbs)
Sodium hydroxide	1000 lb	-	RQ 1000 lb final RQ
1310-73-2			RQ 454 kg final RQ

US State Regulations

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

Chemical Name	New Jersey	Massachusetts	Pennsylvania
Sodium hydroxide	X	X	X
1310-73-2			

International Inventories

Complies **TSCA DSL/NDSL** Complies **EINECS/ELINCS** Complies **ENCS** Does not comply **IECSC** Complies Complies **KECL PICCS** Complies **AICS** Complies

Legend:

TSCA - United States Toxic Substances Control Act Section 8(b) Inventory

DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List

EINECS/ELINCS - European Inventory of Existing Chemical Substances/European List of Notified Chemical Substances

ENCS - Japan Existing and New Chemical Substances

IECSC - China Inventory of Existing Chemical Substances

KECL - Korean Existing and Evaluated Chemical Substances

PICCS - Philippines Inventory of Chemicals and Chemical Substances

AICS - Australian Inventory of Chemical Substances

16. OTHER INFORMATION

NFPA Health hazards 3 Flammability 0 Instability 1 Physical and Chemical

Properties -

HMIS Health hazards 3 Flammability 0 Physical hazards 1 Personal protection X

 Item #
 10927

 Safety Data Sheet
 1683

 Revision Date
 Feb-23-2015

 Issue Date
 Feb-23-2015

Version

Revision Note *** Updated value on SDS.

Disclaimer

All information, statements, data, advice, and/or recommendations, including, without limitation, those relating to storage, loading/unloading, piping, and transportation (collectively referred to herein as "information") are believed to be accurate, reliable, and based on reliable industry and regulatory references. However, no representation or warranty, express or implied, is made as to its completeness, accuracy, fitness for a particular purpose or any other matter, including, without limitation, that the practice or application of any such information is free of patent infringement or other intellectual property misappropriation. The Company providing this SDS is not engaged in the business of providing technical, operational, engineering, or safety information for a fee, and therefore, any such information provided herein has been furnished as an accommodation and without charge. All information provided herein is intended for use by persons having requisite knowledge, skill, and experience in the chemical industry. The Company providing this SDS shall not be responsible or liable for the use, application, or implementation of the information provided herein, and all such information is to be used at the risk, and in the sole judgment and discretion of such persons, their employees, advisors, and agents. This safety data sheet (SDS) is offered for your information, consideration, and investigation as required by federal hazardous products act and related legislation.

End of Safety Data Sheet

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and

Regulations Revision Date: 05/15/15

Version: 1.0

SECTION 1: IDENTIFICATION

Product Identifier

Product Name: Sulfuric Acid, 70-100%

Formula: H₂-O₄-S

Intended Use of the Product

Use of the Substance/Mixture: Industrial use.

Name, Address, and Telephone of the Responsible Party

Manufacturer

Emergency Telephone Number

Emergency number : CHEMTREC 1-800-424-9300

For Chemical Emergency, Spill, Leak, Fire, Exposure, or Accident, call CHEMTREC - Day or Night

SECTION 2: HAZARDS IDENTIFICATION

Classification of the Substance or Mixture

Classification (GHS-US)

Acute Tox. 2 (Inhalation:dust,mist) H330 Skin Corr. 1A H314 Eye Dam. 1 H318 Carc. 1A H350

Label Elements

GHS-US Labeling Hazard Pictograms (GHS-US)

GHS06

Signal Word (GHS-US) : Danger

Hazard Statements (GHS-US) : H314 - Causes severe skin burns and eye damage

H318 - Causes serious eye damage

H330 - Fatal if inhaled H350 - May cause cancer

Precautionary Statements (GHS-US) : P201 - Obtain special instructions before use

P202 - Do not handle until all safety precautions have been read and understood

P260 - Do not breathe fume, mist, vapors, spray

P264 - Wash hands and forearms thoroughly after handling

P271 - Use only outdoors or in a well-ventilated area

P280 - Wear eye protection, face protection, protective gloves, protective clothing

P284 - Wear respiratory protection

P301+P330+P331 - IF SWALLOWED: rinse mouth. Do NOT induce vomiting

P303+P361+P353 - IF ON SKIN (or hair): Remove/Take off immediately all contaminated

clothing. Rinse skin with water/shower

P304+P340 - IF INHALED: Remove person to fresh air and keep at rest in a position

comfortable for breathing

P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes. Remove

contact lenses, if present and easy to do. Continue rinsing

05/15/15 EN (English US) 1/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

P308+P313 - If exposed or concerned: Get medical advice/attention

P310 - Immediately call a POISON CENTER or doctor/physician

P320 - Specific treatment is urgent (see Section 4)

P363 - Wash contaminated clothing before reuse

P403+P233 - Store in a well-ventilated place. Keep container tightly closed

P405 - Store locked up

P501 - Dispose of contents/container according to local, regional, national, and international

regulations

Other Hazards

Other Hazards Not Contributing to the Classification: Not available

Unknown Acute Toxicity (GHS-US) Not available

SECTION 3: COMPOSITION/INFORMATION ON INGREDIENTS

Substances

Name	Product identifier	% (w/w)	Classification (GHS-US)
Sulfuric acid	(CAS No) 7664-93-9	70 - 100	Met. Corr. 1, H290
			Skin Corr. 1A, H314
			Eye Dam. 1, H318
			Carc. 1A, H350

Full text of H-phrases: see section 16

SECTION 4: FIRST AID MEASURES

Description of First Aid Measures

General: IF exposed or concerned: Get medical advice/attention. If you feel unwell, seek medical advice (show the label where possible).

Inhalation: Using proper respiratory protection, immediately move the exposed person to fresh air. Keep at rest and in a position comfortable for breathing. Give oxygen or artificial respiration if necessary. Seek immediate medical advice. Symptoms may be delayed.

Skin Contact: Remove/Take off immediately all contaminated clothing. Rinse immediately with plenty of water (for at least 15 minutes). Seek medical attention immediately if exposure is severe. Obtain medical attention if irritation develops or persists. Wash contaminated clothing before reuse.

Eye Contact: Immediately rinse with water for a prolonged period (at least 15 minutes) while holding the eyelids wide open. Seek medical attention immediately if exposure is severe. Obtain medical attention develops or persists.

Ingestion: If swallowed, do not induce vomiting: seek medical advice immediately and show this container or label.

Most Important Symptoms and Effects Both Acute and Delayed

General: Corrosive. Causes burns.

Inhalation: Causes severe respiratory irritation if inhaled. Symptoms may include burning of nose and throat, constriction of airway, difficulty breathing, shortness of breath, bronchial spasms, chest pain, and pink frothy sputum. Contact may cause immediate severe irritation progressing quickly to chemical burns. May cause pulmonary edema. Symptoms may be delayed.

Skin Contact: Contact may cause immediate severe irritation progressing quickly to chemical burns.

Eye Contact: Contact may cause immediate severe irritation progressing quickly to chemical burns. Can cause blindness.

Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract. Swallowing a small quantity of this material will result in serious health hazard.

Chronic Symptoms: Repeated or prolonged inhalation may damage lungs. Prolonged and repeated contact will eventually cause permanent tissue damage.

Indication of Any Immediate Medical Attention and Special Treatment Needed

If medical advice is needed, have product container or label at hand.

SECTION 5: FIRE-FIGHTING MEASURES

Extinguishing Media

Suitable Extinguishing Media: Use extinguishing media appropriate for surrounding fire.

Unsuitable Extinguishing Media: Do not get water inside containers. Do not apply water stream directly at source of leak. Do not use a heavy water stream. A direct water stream will cause violent splattering and generation of heat.

05/15/15 EN (English US) 2/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Special Hazards Arising From the Substance or Mixture

Fire Hazard: Not flammable. Under conditions of fire this material may produce: Sulphur oxides.

Explosion Hazard: Product is not explosive.

Reactivity: Reacts with water. **Advice for Firefighters**

Precautionary Measures Fire: Not available

Firefighting Instructions: Keep upwind. Use water spray or fog for cooling exposed containers.

Protection During Firefighting: Firefighters must use full bunker gear including NIOSH-approved positive-pressure self-contained

breathing apparatus to protect against potential hazardous combustion and decomposition products.

Hazardous Combustion Products: Sulphur oxides.

Other information: Do not allow run-off from fire fighting to enter drains or water courses.

Reference to Other Sections

Refer to section 9 for flammability properties.

SECTION 6: ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment and Emergency Procedures

General Measures: Do not breathe vapour or mist.

For Non-Emergency Personnel

Protective Equipment: Use recommended respiratory protection. Wear suitable protective clothing, gloves and eye/face protection. **Emergency Procedures:** Stop leak if safe to do so. Eliminate ignition sources. Evacuate unnecessary personnel. Ventilate area. Keep upwind.

For Emergency Personnel

Protective Equipment: Use recommended respiratory protection. Wear suitable protective clothing, gloves and eye/face protection. **Emergency Procedures:** Stop leak if safe to do so. Eliminate ignition sources. Evacuate unnecessary personnel. Ventilate area.

Environmental Precautions

If spill could potentially enter any waterway, including intermittent dry creeks, contact the U.S. COAST GUARD NATIONAL RESPONSE CENTER at 800-424-8802. In case of accident or road spill notify CHEMTREC at 800-424-9300

Methods and Material for Containment and Cleaning Up

For Containment: Contain any spills with dikes or absorbents to prevent migration and entry into sewers or streams.

Methods for Cleaning Up: Ventilate area. Small quantities of liquid spill: take up in non-combustible absorbent material and shovel into container for disposal. Collect absorbed material and place into a sealed, labeled container for proper disposal. Practice good housekeeping - spillage can be slippery on smooth surface either wet or dry. Liquid spill: neutralize with powdered limestone or sodium bicarbonate.

SECTION 7: HANDLING AND STORAGE

Precautions for Safe Handling

Hygiene Measures: Handle in accordance with good industrial hygiene and safety procedures. Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure. Wash contaminated clothing before reuse.

Conditions for Safe Storage, Including Any Incompatibilities

Storage Conditions: Detached outside storage is preferable.

Incompatible Materials: Reducing agents. Organic materials. Alkalis. Moisture.

Storage Area: Store in dry, cool area. Store in a well-ventilated place. Keep away from combustible materials.

Specific End Use(s) Not available

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control Parameters

Sulfuric acid (7664-9	3-9)	
Mexico	OEL TWA (mg/m³)	1 mg/m³
USA ACGIH	ACGIH TWA (mg/m³)	0.2 mg/m ³
USA OSHA	OSHA PEL (TWA) (mg/m³)	1 mg/m³
USA NIOSH	NIOSH REL (TWA) (mg/m³)	1 mg/m³
USA IDLH	US IDLH (mg/m³)	15 mg/m ³

05/15/15 EN (English US) 3/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Alberta	OEL STEL (mg/m³)	3 mg/m³
Alberta	OEL TWA (mg/m³)	1 mg/m³
British Columbia	OEL TWA (mg/m³)	0.2 mg/m³ (Thoracic, contained in strong inorganic acid
		mists)
Manitoba	OEL TWA (mg/m³)	0.2 mg/m³
New Brunswick	OEL STEL (mg/m³)	3 mg/m³
New Brunswick	OEL TWA (mg/m³)	1 mg/m³
Newfoundland & Labrador	OEL TWA (mg/m³)	0.2 mg/m ³
Nova Scotia	OEL TWA (mg/m³)	0.2 mg/m ³
Nunavut	OEL STEL (mg/m³)	3 mg/m³
Nunavut	OEL TWA (mg/m³)	1 mg/m³
Northwest Territories	OEL STEL (mg/m³)	3 mg/m³
Northwest Territories	OEL TWA (mg/m³)	1 mg/m³
Ontario	OEL TWA (mg/m³)	0.2 mg/m ³
Prince Edward Island	OEL TWA (mg/m³)	0.2 mg/m ³
Québec	VECD (mg/m³)	3 mg/m³
Québec	VEMP (mg/m³)	1 mg/m³
Saskatchewan	OEL STEL (mg/m³)	0.6 mg/m ³
Saskatchewan	OEL TWA (mg/m³)	0.2 mg/m ³
Yukon	OEL STEL (mg/m³)	1 mg/m³
Yukon	OEL TWA (mg/m³)	1 mg/m³

Exposure Controls

Appropriate Engineering Controls: Ensure adequate ventilation, especially in confined areas.

Personal Protective Equipment: Face shield. Gas mask at concentration in the air > > TLV. Corrosionproof clothing.

Materials for Protective Clothing: Acid-resistant clothing.

Hand Protection: Impermeable protective gloves.

Eye Protection: Face shield.

Skin and Body Protection: Wear suitable protective clothing. Chemical resistant suit. Rubber apron, boots.

Respiratory Protection: Use a NIOSH-approved respirator or self-contained breathing apparatus whenever exposure may exceed established Occupational Exposure Limits.

Environmental Exposure Controls: Emergency eye wash fountains and safety showers should be available in the immediate vicinity of any potential exposure.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

Information on Basic Physical and Chemical Properties

Physical State : Liquid

Appearance : Clear, Colorless to Amber, Oily

Odor Threshold : Pungent.

Control : Not available

pH : 0.3

Relative Evaporation Rate (butylacetate=1) Not available **Melting Point** 10.56 °C (51.08 °F) **Freezing Point** Not available **Boiling Point** 290 °C (554 °F) **Flash Point** Not available **Auto-ignition Temperature** Not available **Decomposition Temperature** Not available Flammability (solid, gas) Not available **Lower Flammable Limit** Not available **Upper Flammable Limit** Not available

Vapor Pressure : 0.00027 - 0.16 kPa at 25 °C (77 °F)

05/15/15 EN (English US) 4/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Relative Vapor Density at 20 °C : 3.4

Relative Density : Not available **Specific Gravity** : 1.84 g/l

Solubility: Water: MisciblePartition coefficient: n-octanol/water: Not availableViscosity: Not available

Explosion Data – Sensitivity to Mechanical Impact : Not expected to present an explosion hazard due to mechanical impact. Explosion Data – Sensitivity to Static Discharge : Not expected to present an explosion hazard due to static discharge.

SECTION 10: STABILITY AND REACTIVITY

Reactivity: Reacts with water.

Chemical Stability: Stable at standard temperature and pressure.

Possibility of Hazardous Reactions: Hazardous polymerization can occur in contact with certain incompatible materials.

Conditions to Avoid: Protect from moisture.

Incompatible Materials: Avoid contact with most metals, carbides, hydrogen sulfide, turpentine, organic acids, combustibles

(wood, paper, cotton) and other organic and readily oxidized materials.

Hazardous Decomposition Products: Under conditions of fire this material may produce: Sulphur oxides.

SECTION 11: TOXICOLOGICAL INFORMATION

Information on Toxicological Effects - Product

Acute Toxicity: Fatal if inhaled.

LD50 and LC50 Data:

Sulfuric Acid, 70-100%	
ATE US (dust, mist)	0.05000000 mg/l/4h

Skin Corrosion/Irritation: Causes severe skin burns and eye damage.

pH: 0.3

Serious Eye Damage/Irritation: Causes serious eye damage.

pH: 0.3

Respiratory or Skin Sensitization: Not classified

Germ Cell Mutagenicity: Not classified

Teratogenicity: Not available **Carcinogenicity:** May cause cancer.

Specific Target Organ Toxicity (Repeated Exposure): Not classified

Reproductive Toxicity: Not classified

Specific Target Organ Toxicity (Single Exposure): Not classified

Aspiration Hazard: Not classified

Symptoms/Injuries After Inhalation: Causes severe respiratory irritation if inhaled. Symptoms may include burning of nose and throat, constriction of airway, difficulty breathing, shortness of breath, bronchial spasms, chest pain, and pink frothy sputum. Contact may cause immediate severe irritation progressing quickly to chemical burns. May cause pulmonary edema. Symptoms may be delayed.

Symptoms/Injuries After Skin Contact: Contact may cause immediate severe irritation progressing quickly to chemical burns. Symptoms/Injuries After Eye Contact: Contact may cause immediate severe irritation progressing quickly to chemical burns. Can cause blindness.

Symptoms/Injuries After Ingestion: May cause burns or irritation of the linings of the mouth, throat, and gastrointestinal tract. Swallowing a small quantity of this material will result in serious health hazard.

Chronic Symptoms: Repeated or prolonged inhalation may damage lungs. Prolonged and repeated contact will eventually cause permanent tissue damage.

Information on Toxicological Effects - Ingredient(s)

LD50 and LC50 Data:

Sulfuric acid (7664-93-9)	
LD50 Oral Rat	2140 mg/kg
LC50 Inhalation Rat (mg/l)	510 mg/m³ (Exposure time: 2 h)

05/15/15 EN (English US) 5/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Sulfuric acid (7664-93-9)	
IARC Group	1

SECTION 12: ECOLOGICAL INFORMATION

Toxicity Not classified

Sulfuric acid (7664-93-9)	
LC50 Fish 1	500 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [static])

Persistence and Degradability

Sulfuric Acid, 70-100%	
Persistence and Degradability	Product is biodegradable.

Bioaccumulative Potential

Sulfuric Acid, 70-100%	
Bioaccumulative Potential	Not expected to bioaccumulate.
Sulfuric acid (7664-93-9)	
BCF fish 1	(no bioaccumulation)

Mobility in Soil Not available

Other Adverse Effects Not available

SECTION 13: DISPOSAL CONSIDERATIONS

Sewage Disposal Recommendations: This material is hazardous to the aquatic environment. Keep out of sewers and waterways. **Waste Disposal Recommendations:** Dispose of waste material in accordance with all local, regional, national, and international regulations.

SECTION 14: TRANSPORT INFORMATION

14.1 In Accordance with DOT

Proper Shipping Name : SULFURIC ACIDwith more than 51 percent acid

Hazard Class : 8

Identification Number : UN1830

Label Codes : 8
Packing Group : II
ERG Number : 157

14.2 In Accordance with IMDG

Proper Shipping Name : SULPHURIC ACID

Hazard Class : 8

Identification Number : UN1830

Packing Group : II
Label Codes : 8
EmS-No. (Fire) : F-A
EmS-No. (Spillage) : S-B

14.3 In Accordance with IATA

Proper Shipping Name : SULPHURIC ACID

Packing Group : ||

Identification Number : UN1830

Hazard Class : 8 Label Codes : 8 ERG Code (IATA) : 8L

14.4 In Accordance with TDG

Proper Shipping Name : SULPHURIC ACIDwith more than 51 per cent acid

Packing Group : II
Hazard Class : 8
Identification Number : UN1830

05/15/15 EN (English US) 6/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Label Codes

٠ ۵

SECTION 15: REGULATORY INFORMATION

US Federal Regulations

Sulfuric Acid, 70-100%		
SARA Section 311/312 Hazard Classes	Immediate (acute) health hazard	
	Delayed (chronic) health hazard	
	Reactive hazard	
Sulfuric acid (7664-93-9)		
Listed on the United States TSCA (Toxic Substances Control Act) inventory		
Listed on SARA Section 302 (Specific toxic chemical listings)		
Listed on SARA Section 313 (Specific toxic chemical listings)		
SARA Section 302 Threshold Planning Quantity (TPQ) 1000		
SARA Section 313 - Emission Reporting	1.0 % (acid aerosols including mists, vapors, gas, fog, and other	
	airborne forms of any particle size)	

US State Regulations

Sulfuric Acid, 70-100%()	

Sulfuric acid (7664-93-9)	
U.S California - Proposition 65 - Carcinogens List	WARNING: This product contains chemicals known to the State of
	California to cause cancer.

Sulfuric acid (7664-93-9)

- U.S. Massachusetts Right To Know List
- U.S. New Jersey Right to Know Hazardous Substance List
- U.S. Pennsylvania RTK (Right to Know) Environmental Hazard List
- U.S. Pennsylvania RTK (Right to Know) List

Canadian Regulations

Canadian (Cgalations	
Sulfuric Acid, 70-100%	
WHMIS Classification	Class D Division 1 Subdivision A - Very toxic material causing immediate and serious toxic effects Class E - Corrosive Material
Sulfurio acid (7664 02 0)	

Sulfuric acid (7664-93-9)

Listed on the Canadian DSL (Domestic Substances List) inventory.

Listed on the Canadian Ingredient Disclosure List

WHMIS Classification Class D Division 1 Subdivision B - Toxic material causing immediate and serious toxic effects

Class D Division 2 Subdivision A - Very toxic material causing other toxic effects

Class E - Corrosive Material

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the SDS contains all of the information required by CPR.

SECTION 16: OTHER INFORMATION, INCLUDING DATE OF PREPARATION OR LAST REVISION

Other Information : This document has been prepared in accordance with the SDS requirements of the OSHA Hazard Communication Standard 29 CFR 1910.1200.

GHS Full Text Phrases:

Acute Tox. 2 (Inhalation:dust,mist)	Acute toxicity (inhalation:dust,mist) Category 2
Carc. 1A	Carcinogenicity Category 1A
Eye Dam. 1	Serious eye damage/eye irritation Category 1

05/15/15 EN (English US) 7/8

Safety Data Sheet

according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations

Met. Corr. 1	Corrosive to metals Category 1
Skin Corr. 1A	Skin corrosion/irritation Category 1A
H290	May be corrosive to metals
H314	Causes severe skin burns and eye damage
H318	Causes serious eye damage
H330	Fatal if inhaled
H350	May cause cancer

Handle product with due care and avoid unnecessary contact. This information is supplied under U.S. OSHA'S "Right to Know" (29 CFR 1910.1200) and Canada's WHMIS regulations. Although certain hazards are described herein, we cannot guarantee these are the only hazards that exist. The information contained herein is based on data available to us and is believed to be true and accurate but it is not offered as a product specification. No warranty, expressed or implied, regarding the accuracy of this data, the hazards connected with the use of the product, or the results to be obtained from the use thereof, is made and Mann Distribution assume no responsibility.

05/01/15 EN (English US) SDS#: CHE-1010S 8/8

PAGE 976 JANUARY 2016

Basic Pedestal

Standard Centrifugal Pump Model VGH5B31-B

Size 6" x 5"

PUMP SPECIFICATIONS

Size: 6" x 5" (152 mm x 127 mm) Raised Face Flanges.

Casing: Ductile Iron.

Maximum Operating Pressure 110 psi (662 kPa).*

Enclosed Type, Six Vane Impeller: Gray Iron 40.

Handles 7/8" (23 mm) Diameter Spherical Solids.

Impeller Shaft: Steel 1045.

Two Replaceable Wear Rings: Gray Iron 25.

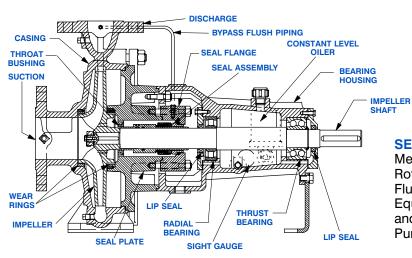
Seal Plate: Ductile Iron. Bypass Flush Piping.

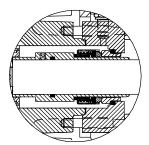
Bearing Housing: Gray Iron 25.

Radial Bearing: Open Cylindrical Roller.

Thrust Bearing: Open Double Row Ball.

Bearing Lubrication: SAE 30 Non-Detergent Oil.


Gaskets: Nitrile Rubber.


Hardware: Standard Plated Steel. **Bearing Housing Level Oiler.**

Optional Equipment: Strainer. NPT Suction and Discharge Flanges. Discharge Check Valve. Consult Factory for Optional Seals.

*Consult Factory for Applications Exceeding Maximum Pressure and/or Temperature Indicated.

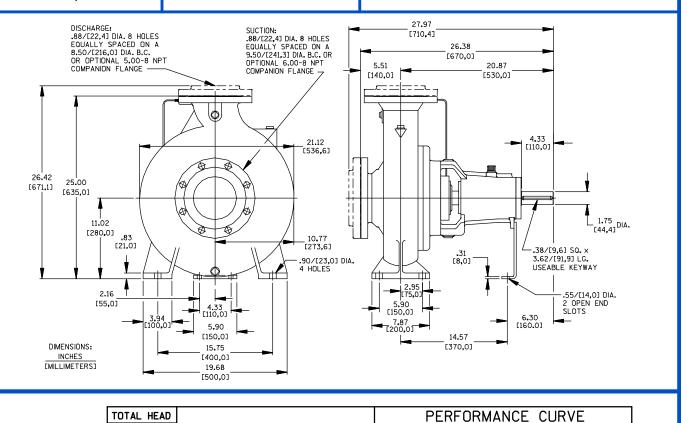
SEAL DETAIL

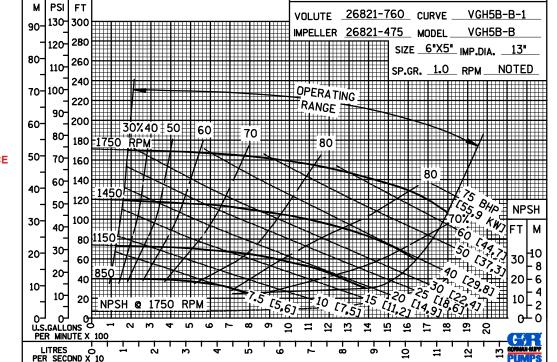
Mechanical, Self-Lubricated. Silicon Carbide Rotating and Stationary Faces. Fluorocarbon Elastomers (DuPont Viton® or Equivalent). Stainless Steel 316 Shaft Sleeve and Spring. Maximum Temperature of Liquid Pumped, 160°F (71°C).*

GORMAN-RUPP PUMPS

www.grpumps.com

Specifications Subject to Change Without Notice


Printed in U.S.A.


Specification Data

SECTION 70, PAGE 976

APPROXIMATE DIMENSIONS and WEIGHTS

NET WEIGHT: 366 LBS. (166 KG.) SHIPPING WEIGHT: 386 LBS. (175 KG.) EXPORT CRATE: 17 CU. FT. (0,5 CU. M.)

32 34

8 8 8 8 8 36

φ φ

4 6

胺

PERFORMANCE BASED ON WATER

CUBIC METRES O PER HOUR X 10 թ թ

GORMAN-RUPP PUMPS

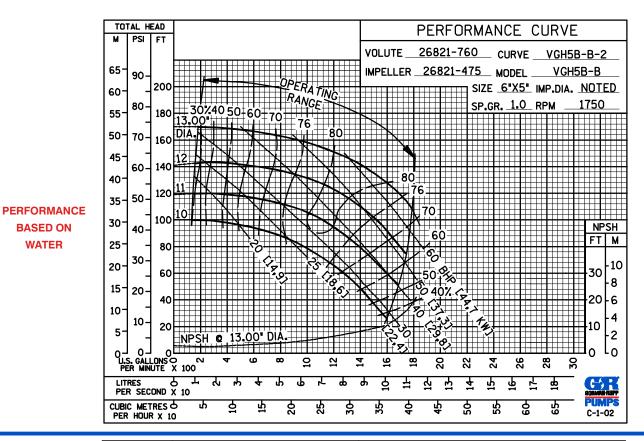
휴 후 성

www.grpumps.com

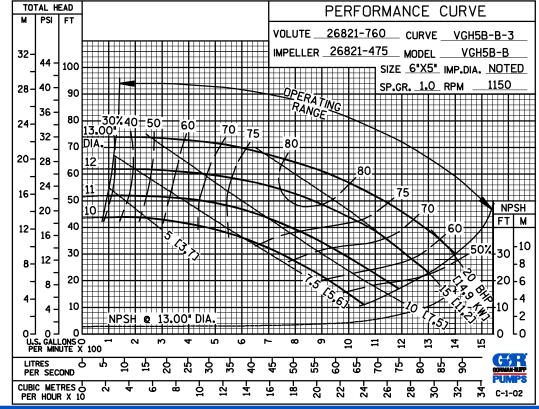
Specifications Subject to Change Without Notice

Printed in U.S.A.

C-8-00


Curve Data

BASED ON


WATER

Sec. 70

PAGE 976.1 JANUARY 2016

PERFORMANCE BASED ON WATER

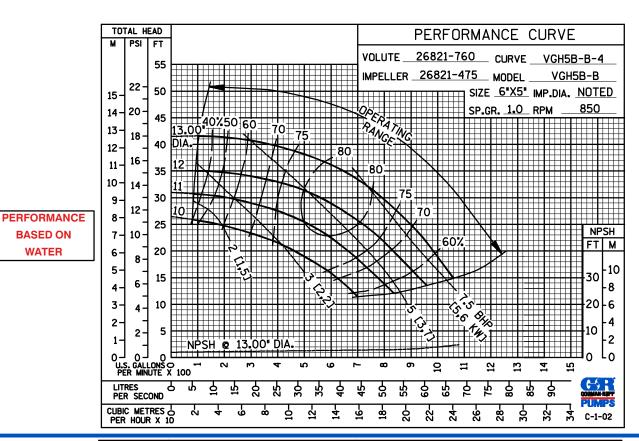
GORMAN-RUPP PUMPS

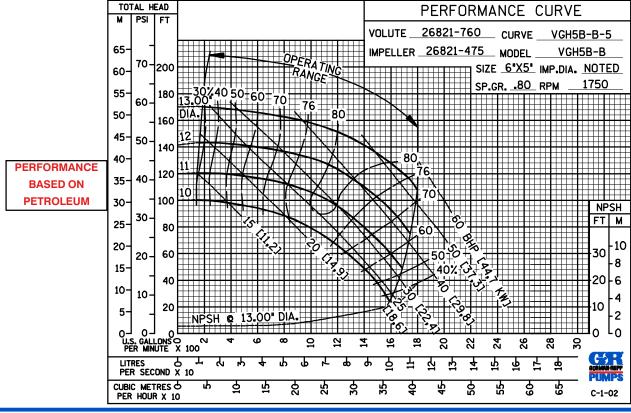
www.grpumps.com

Specifications Subject to Change Without Notice

Printed in U.S.A

Curve Data

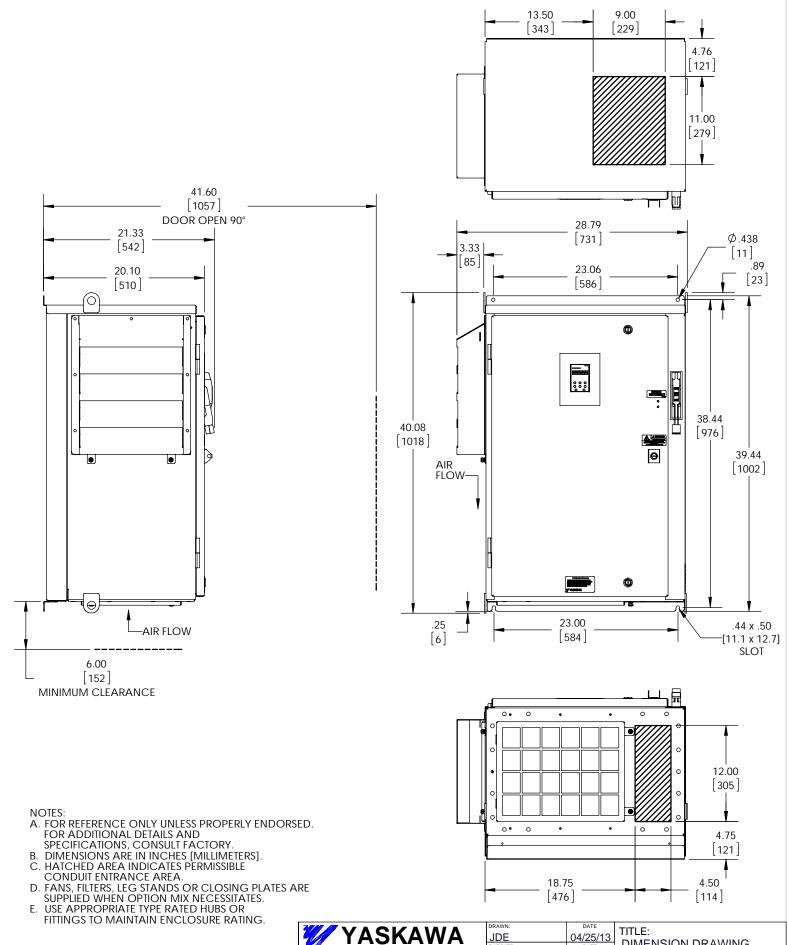

BASED ON


WATER

Sec. 70

PAGE 976.2

JANUARY 2016



GORMAN-RUPP PUMPS

www.grpumps.com

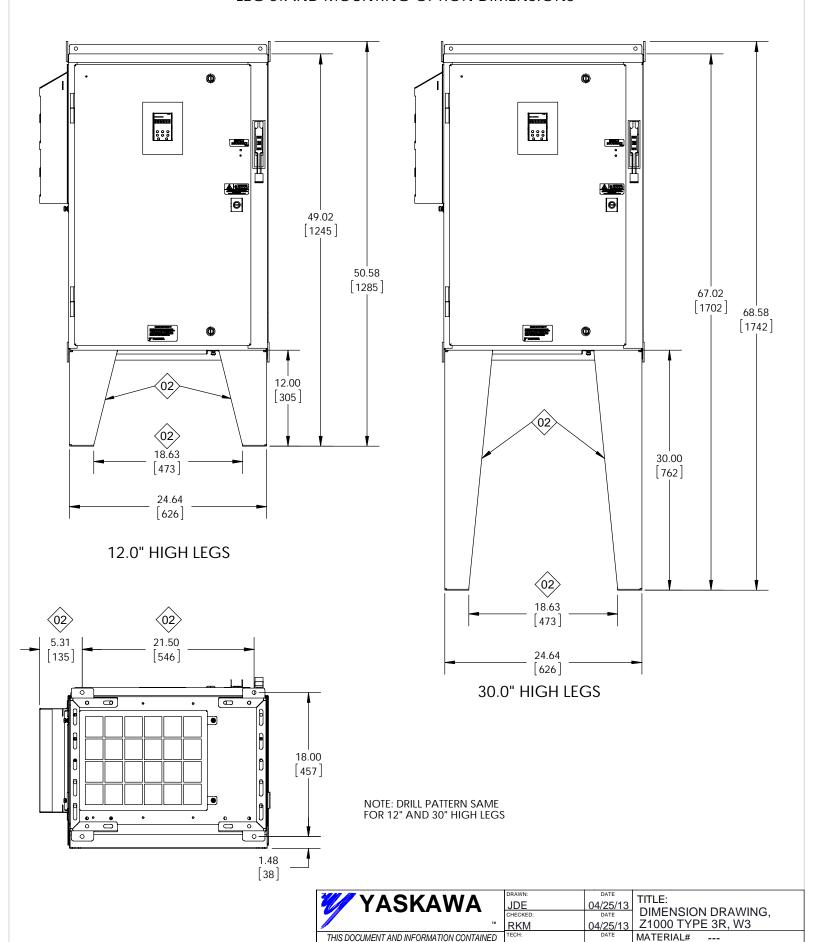
Specifications Subject to Change Without Notice

Printed in U.S.A

REVISIONS DRAWN BY REV. DESCRIPTION ECO DATE 9/11/13 02 ADDED NEW 12" AND 30" LEG STANDS JDE 4526 ADDED NEW 12" AND 30" LEG STANDS 01 JDE 4462 8/16/13 INITIAL RELEASE 4/25/13

THIS DOCUMENT AND INFORMATION CONTAINED
IN IT ARE CONFIDENTIAL, AND CANNOT BE
COPIED OR DISCLOSED IN WHOLE OR IN PART
WITHOUT THE EXPRESS WRITTEN CONSENT

OF YASKAWA AMERICA INC.


JDE	04/25/13	۱ :
CHECKED:	DATE	
RKM	04/25/13	
TECH:	DATE	Ν
APPROVED:	DATE	Г
AFFROVED.	DATE	
BJJ	05/02/13	
ORIGINAL DESIGN:	DATE	ᄓ
.IDF	04/19/13	ı

TITLE:
DIMENSION DRAWING,
Z1000 TYPE 3R, W3

MATERIAL# --SIZE REVISION PAGE
A 02 1 OF 2

DRAWING #:
DD.Z1.3R.W3.01

LEG STAND MOUNTING OPTION DIMENSIONS

IN IT ARE CONFIDENTIAL, AND CANNOT BE

OF YASKAWA AMERICA INC.
Prepared by jumeil edwards 9/18/2013

COPIED OR DISCLOSED IN WHOLE OR IN PART

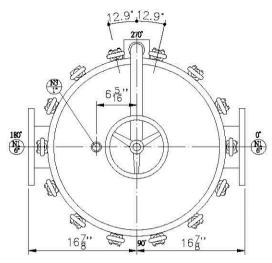
WITHOUT THE EXPRESS WRITTEN CONSENT

BJJ

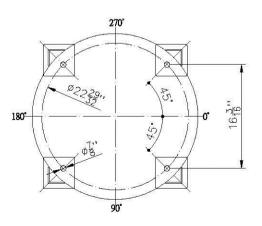
05/02/13

04/19/13

PAGE


2 OF 2

REVISION 02


DD.Z1.3R.W3.01

DRAWING #:

567 (1) 99112 13 (8) 0.D.ø26" 615° $36\frac{7}{32}$ " 2 INLET OUTLET 16 16 (N) (15) N4 18 DRAIN NPT. 67" SIDE VIEW

TOP VIEW

ANCHOR

BILL OF MATERIALS (QUANTITY PER UNIT)

CUSTOMER DESIGN 150 PSIG 90 'C DESTINATION MAX. A.W.P. 150 PSIG 90 'C CUST. P.O. HYDROSTATIC TESTED 225 PSIG CODE CODE CODE CODE CODE CODE CODE N.B. N.B. <th>PROD</th> <th>ORDERS.O W</th> <th>IFG. SERI</th> <th>AL NO.</th> <th></th> <th></th>	PROD	ORDERS.O W	IFG. SERI	AL NO.		
DESTINATION MAX. A.W.P. 150 PSIG 90 ℃ CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST.EQUIP CODE CODE CODE STAMP N.B. NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 6 14 BAG-LOCK DEVICE 304	CUSTO	OMERD	ESIGN	150	_ PSIG	90 .C
CUST.EQUIP CODE N.B						
CUST.EQUIP CODE N.B	CUST.	P.O. H	HYDROST/	ATIC TES	STED _2	225_ PSIG
CODE STAMP	1					
NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 1 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1	00011					
WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 6 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 <td< td=""><td>NO O</td><td></td><td></td><td></td><td></td><td>I.D</td></td<>	NO O					I.D
NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 14 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 14 1 13 BASKET 304 6 1 14 BAG-LOCK DEVICE 304 6 1 15 INLET 6" ANSI 150B RF 304 1						
1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	WEIGH	T EMPTY KG.	FULL		_ KG	
2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	NO.	DESCRIPTION	MATERIAL	UNIT	QUAN.	PART NO.
3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	1	FILTER COVER	304		1	A COLUMN TO THE
4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	2	FILTER SHELL	304		1	
5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	3	GASKET	EPDM		1	
6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	4	LEG WELDMENT	304		4	
7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	5	DAVIT HANDWHEEL	304		1	
8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	6	DAVIT SCREW	304		1	
9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	7	DAVIT ARM	304		1	
10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	8	SEPARATE PLATE	304		1	
11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	9	EYENUT	304		14	
12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	10	WASHER	304		14	
13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	11	EYEBOLT	304		14	
14 BAC-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	12	BOLT SUPPORT	304		14	
15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	13	BASKET	304		6	
16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	14	BAG-LOCK DEVICE	304		6	
17 VENT NPT 1" 304 1	15	INLET 6" ANSI 150B RF	304		1	
	16	OUTLET 6" ANSI 150B RF	304		1	
18 DRAIN NPT 1" 304 1	17	VENT NPT 1"	304		1	
	18	DRAIN NPT 1"	304		1	

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA

NAME	REV: A	
Multi-Bag Filter Ve	ssel	SCALE: NONE
PROJECT NO.	ORDER NO.	ITEM NO.
DATE:	LINIT	

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

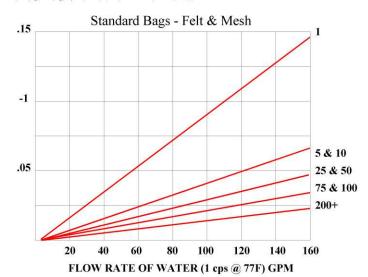
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

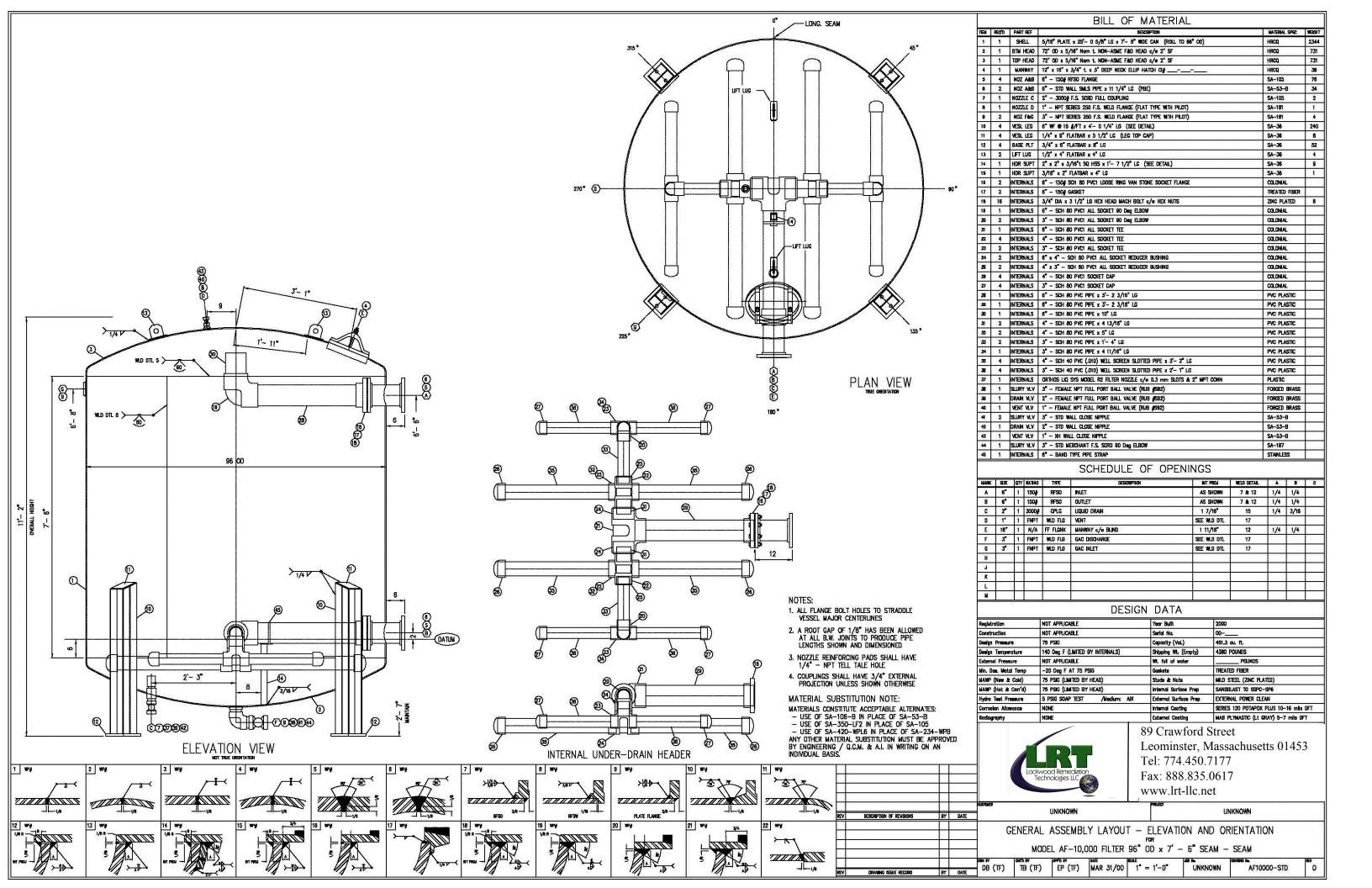
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

125 Prairie Lake Road - East Dundee, IL 60118

Phone: 847-844-0680

Emergency Phone: 847-844-0680

Fax: 847-844-0799

Back to HS-200 page

HS-200

Media to Remove Oil, Heavy Metals and Similar Organics from Water Safety Data Sheet

Revision date: 2017

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 - Product Identifier

Product Name: HS-200

1.2 - Relevant identified uses of the substance or mixture and uses advised against

Use of the substance/mixture: Filtration

1.3 - Details of the supplier of the safety data sheet

Hydrosil International Ltd. 125 Prairie Lake Rd East Dundee, IL 60118

T 847-844-0680 - F 847-844-0799 www.hydrosilintl.com

1.4 - Emergency telephone number

Emergency number: 1-847-844-0680

Section 2: Hazards Identification

2.1 - Classification of the substance or mixture

GHS-US classification Eye Dam. 1 H318 STOT SE 3 H335

2.2 - Label Elements

GHS-US labeling

Hazard pictograms (GHS-US) :

Signal word (GHS-US): Danger Hazard statements (GHS-US):

H318 - Causes serious eye damage H335 - May cause respiratory irritation

Precautionary statements (GHS-US):

P261 - Avoid breathing dust/fume/gas/mist/vapors/spray

P271 - Use only outdoors or in a well-ventilated area

P280 - Wear protective gloves/protective clothing/eye protection/face protection

P304+P340 - IF INHALED: Remove person to fresh air and keep comfortable for breathing

P305+P351+P338 - If in eyes: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing

P310 - Immediately call a POISON CENTER/doctor/...

P312 - Call a POISON CENTER/doctor/.../if you feel unwell

P403+P233 - Store in a well-ventilated place. Keep container tightly closed

P405 - Store locked up

P501 - Dispose of contents/container to ...

2.3 - Other Hazards

No additional information available

2.4 - Unknown acute toxicity (GHS US)

No data available

SECTION 3: Composition/information on ingredients

3.1 - Substances

Not applicable

3.2 - Mixture

Name	Product Identifier	%	GHS-US Classification
Zeolite	(CAS No.) 1318-02-1	85.2 - 86.2	STOT SE 3, H335
Water	(CAS No.) 7732-18-5	8.4 - 11.4	Not classified
N,N,N-Trimethyl-1-hexadecanaminium chloride	(CAS No.) 112-02-7	3.4 - 5.4	Skin Irrit. 2, H315 Eye Dam. 1, H318 Aquatic Acute 1, H400

SECTION 4: First aid measures

4.1 - Description of first aid measures

First-aid measures after inhalation: Remove person to fresh air. If not breathing, administer CPR or artificial respiration. Get immediate medical attention.

First-aid measures after skin contact: If skin reddening or irritation develops, seek medical attention.

First-aid measures after eye contact: Immediately flush eyes with plenty of water for at least 15 minutes. If irritation persists get medical attention.

First-aid measures after ingestion: If the material is swallowed, get immediate medical attention or advice. DO NOT induce vomiting unless directed to do so by medical personnel.

4.2 - Most important symptoms and effects, both acute and delayed

Symptoms/injuries after inhalation: May cause respiratory irritation.

Symptoms/injuries after skin contact: Causes skin irritation.

Symptoms/injuries after eye contact: Causes serious eye irritation.

Symptoms/injuries after ingestion: May be harmful if swallowed.

4.3 - Indication of any immediate medical attention and special treatment needed

No additional information available

SECTION 5: Firefighting measures

5.1 - Extinguishing media

Suitable extinguishing media: If involved with fire, flood with plenty of water.

Unsuitable extinguishing media: None.

5.2 - Special hazards arising from the substance or mixture

Fire hazard : None known. Explosion hazard : None known.

5.3 - Advice for firefighters

Protection during firefighting: Firefighters should wear full protective gear.

SECTION 6: Accidental release measures

6.1 - Personal precautions, protective equipment and emergency procedures

General measures: Avoid contact with the skin and the eyes. For non-emergency personnel: No additional information available For emergency responders: No additional information available

6.2 - Environmental precautions

None.

6.3 - Methods and material for containment and cleaning up

For containment : If possible, stop flow of product.

Methods for cleaning up: Shovel or sweep up and put in a closed container for disposal.

6.4 - Reference to other sections

No additional information available

SECTION 7: Handling and storage

7.1 - Precautions for safe handling

Precautions for safe handling: Wet carbon/coal removes oxygen from air causing a severe hazard to workers inside carbon vessels or confined spaces.

7.2 - Conditions for safe storage, including any incompatibilities

Storage conditions: Protect containers from physical damage. Store in dry, cool, well-ventilated area.

7.3 - Specific end use(s)

No additional information available

SECTION 8: Exposure controls/personal protection

8.1 - Control parameters

No additional information available

8.2 - Exposure controls

Appropriate engineering controls: Local exhaust and general ventilation must be adequate to meet exposure

Hand protection : Use impervious gloves. Eye protection : Safety glasses.

Skin and body protection: Wear suitable working clothes.

Respiratory protection: If airborne concentrations are above the applicable exposure limits, use NIOSH

approved respiratory protection.

SECTION 9: Physical and chemical properties

9.1 - Information on basic physical and chemical properties

Physical state: Solid

Appearance: Irregular shaped.

Color: White

Odor: No data available

Odor threshold: No data available

pH: No data available

Relative evaporation rate (butyl acetate=1): No data available

Melting point : No data available Freezing point: No data available Boiling point : No data available Flash point : No data available

Self ignition temperature : No data available Decomposition temperature : No data available Flammability (solid, gas): No data available

Vapor pressure : No data available

Relative vapor density at 20 °C : No data available

Relative density: 57-59 lb/ft3 Solubility: No data available Log Pow: No data available Log Kow: No data available

Viscosity, kinematics: No data available Viscosity, dynamic : No data available Explosive properties: No data available Oxidizing properties: No data available Explosive limits: No data available

9.1 - Other information

No additional information available

SECTION 10: Stability and Reactivity

10.1 - Reactivity

No additional information available

10.2 - Chemical stability

Stable under normal conditions.

10.3 - Possibility of hazardous reactions

Will not occur

10.4 - Conditions to avoid

None

10.5 - Incompatible materials

Strong oxidizing and reducing agents.

10.6 - Hazardous decomposition products

Organic chlorides, amines, hydrogen chloride may be produced.

SECTION 11: Toxicological information

11.1 - Information on toxicological effects

Acute toxicity: Not classified

Zeolite (1318-02-1)		
LD50 oral rat	5000 mg/kg	
LD50 dermal rabbit	> 2000 mg/kg	
LC50 inhalation rat (mg/l) 2.4 mg/l (Exposure time: 1 h)		
ATE (oral) 5000 mg/kg		

Skin corrosion/irritation: Not classified

Serious eye damage/irritation: Causes serious eye damage.

Respiratory or skin sensitization: Not classified

Germ cell mutagenicity: Not classified Carcinogenicity: Not classified

Zeolite (1318-02-1)	
IARC group	3

Reproductive toxicity: Not classified

Specific target organ toxicity (single exposure): May cause respiratory irritation.

Specific target organ toxicity (repeated exposure): Not classified

Aspiration hazard: Not classified

SECTION 12: Ecological information

12.1 - Toxicity

Zeolite (1318-02-1)		
LC50 fishes 1	1800 mg/l (Exposure time: 96 h - Species: Brachydanio rerio [semi-static])	
EC50 Daphnia 1	1000 - 1800 mg/l (Exposure time: 48 h - Species: Daphnia magna)	
EC50 other aquatic organisms 1	18 mg/l (Exposure time: 96 h - Species: Desmodesmus subspicatus)	
LC50 fish 2	3200 - 5600 mg/l (Exposure time: 96 h - Species: Oryzias latipes [semi-static])	

12.2 - Persistence and degradability

No additional information available

12.3 - Bioaccumulative potential

No additional information available

12.4 - Mobility in soil

No additional information available

12.5 - Other adverse effects

No additional information available

SECTION 13: Disposal considerations

13.1 - Waste treatment methods

Waste disposal recommendations: Dispose of contents/container in accordance with local/regional/national/international regulations.

SECTION 14: Transport information

In accordance with DOT / ADR / RID / ADNR / IMDG / ICAO / IATA

14.1 - UN number

Not applicable

14.2 - UN proper shipping name

Not applicable

SECTION 15: Regulatory information

15.1 - US Federal regulations

15.2 - US State regulations

No additional information available

SECTION 16: Other information

Full text of H-phrases:

Aquatic Acute 1	Hazardous to the aquatic environment - Acute Hazard Category 1
Eye Dam. 1	Serious eye damage/eye irritation Category 1
Skin Irrit. 2	skin corrosion/irritation Category 2
STOT SE 3	Specific target organ toxicity (single exposure) Category 3
H315	Causes skin irritation
H318	Causes serious eye damage
H335	May cause respiratory irritation
H400	Very toxic to aquatic life

NFPA health hazard : 2 - Intense or continued exposure could cause temporary incapacitation or possible residual injury unless prompt

medical attention is given.

NFPA fire hazard : 0 - Materials that will not burn.

NFPA reactivity: 0 - Normally stable, even under fire exposure conditions, and are not reactive with water

Copyright© 2017 Hydrosil International, LTD. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. This information is based on our current knowledge and is intended to describe the product for the purposes of health, safety and environmental requirements only. It should not therefore be construed as guaranteeing any specific property of the product. Hydrosil International LTD. makes no warranty, either expressed or implied, including any warranties of merchantability and fitness for a particular purpose.

Back to HS-200 page

RESINTECH SBG1 is a high capacity, shock resistant, gelular, Type 1, strongly basic anion exchange resin supplied in the chloride or hydroxide form as moist, tough, uniform, spherical beads. *RESINTECH SBG1* is intended for use in all types of deionization systems and chemical processing applications. It is similar to *RESINTECH SBG1P* but has a higher volumetric capacity and exhibits lower TOC leach rates. This makes it the better performer in single use applications such as in cartridge deionization and when high levels of regeneration are used such as in polishing mixed beds. On the other hand, *RESINTECH SBG1P* is more resistant to organic fouling and gives higher operating capacities at low regeneration levels such as those used in make up demineralizers.

FEATURES & BENEFITS

COMPLIES WITH FDA REGULATIONS FOR POTABLE WATER APPLICATIONS.

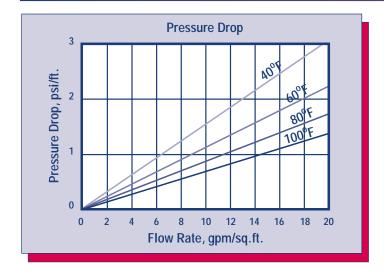
Conforms to paragraph 21CFR173.125 of the Food Additives Regulations of the F.D.A.*

HIGH TOTAL CAPACITY

Provides longer run lengths in single use applications or where high levels of regeneration are used such as in mixed bed polishers, cartridge demineralizers.

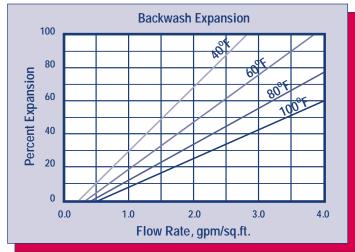
UNIFORM PARTICLE SIZE

16 to plus 50 mesh range; gives a LOWER PRESSURE DROP while maintaining SUPERIOR KINETICS.


SUPERIOR PHYSICAL STABILITY

LOWER TOC LEACH RATE

Makes it ideal for polishing mixed beds in wafer washing and other high purity water polishing applications.


*For potable water applications, the resin must be properly pre-treated, usually by multiple exhaustion and regeneration cycles, to ensure compliance with extractable levels.

HYDRAULIC PROPERTIES

The graph above shows the expected pressure loss per foot of bed depth as a function of flow rate, at various temperatures.

BACKWASH

After each cycle the resin bed should be backwashed at a rate that expands the bed 50 to 75 percent. This will remove any foreign matter and reclassify the bed. The graph above shows the expansion characteristics of *RESINTECH SBG1* in the sodium form.

RESINTECH® SBG1

PHYSICAL PROPERTIES

Polymer Structure

Functional Group

R-N-(CH₃)₃+Cl⁻

Ionic Form, as shipped

Physical Form

Styrene Crosslinked with DVB

R-N-(CH₃)₃+Cl⁻

Chloride or Hydroxide

Tough, Spherical Beads

Screen Size Distribution 16 to 50
+16 mesh (U.S. Std) < 5 percent
-50 mesh (U.S. Std) < 1 percent

PH Range 0 to 14

Sphericity > 93 percent

Uniformity Coefficient Approx. 1.6

Water Retention

Chloride Form 43 to 50 percent Hydroxide Form Approx. 53 to 60 percent

Solubility Insoluble

Approximate Shipping Weight

CI Form 44 lbs/cu.ft.
OH Form 41 lbs/cu.ft.
Swelling CI- to OH- 18 to 25 percent

Total Capacity

CI Form 1.45 meq/ml min
OH Form 1.15 meq/ml min

SUGGESTED OPERATING CONDITIONS

Maximum Continuous Temperature

Hydroxide Form 140°F alt Form 170°F Minimum Bed Depth 24 inches

Backwash Rate 50 to 75 percent Bed Expansion

Regenerant Concentration* 2 to 6 percent
Regenerant Flow Rate 0.25 to 1.0 gpm/cu.ft.
Regenerant Contact Time At least 40 Minutes
Regenerant Level 4 to 10 pounds/cu.ft.

Displacement Rinse Rate Same as Regenerant Flow Rate

Displacement Rinse Volume 10 to 15 gals/cu.ft.
Fast Rinse Rate Same as Service Flow Rate

Fast Rinse Volume 35 to 60 gals/cu.ft.

Service Flow Rates

Polishing Mixed Beds 3 to 15 gpm/cu.ft. Non-Polishing Apps. 2 to 4 gpm/cu.ft.

OPERATING CAPACITY

The operating capacity of $RESINTECH\ SBG1$ for a variety of acids at various regeneration levels when treating an influent with a concentration 500 ppm, expressed as $CaCO_3$ is shown in the following table:

Pounds	Capacity Kilograms per cubic foot			
NaOH/ft ³	HCI	H ₂ SO ₄	H_2SiO_3	H_2CO_3
4	11.3	14.0	14.7	18.6
6	12.8	16.3	17.3	19.8
8	14.3	13.3	19.5	21.6
10	15.5	20.0	22.2	22.2

APPLICATIONS

DEMINERALIZATION – RESINTECH SBG1 is highly recommended for use in mixed bed demineralizers, wherever complete ion removal; superior physical and osmotic stability and low TOC leachables are required such as in wafer fabrication and other ultrapure applications.

RESINTECH SBG1 has high total capacity and low swelling on regeneration and provides maximum operating capacity in cartridge deionization applications. It is ideal for single use applications such as precious metal recovery, radwaste disposal and purification of toxic waste streams.

Highly crosslinked Type 1, styrenic anion exchangers have greater thermal and oxidation resistance than other types of strong base resins. They can be operated and regenerated at higher temperatures. The combination of lower porosity, high total capacity and Type 1 functionality make *RESINTECH SBG1* the resin of choice when water temperatures exceed 85°F and where the combination of carbon dioxide, borate and silica exceed 40% of the total anions.

RESINTECH SBG1P and RESINTECH SBG1 are quite similar; the difference between them is the degree of porosity. RESINTECH SBG1P has greater porosity that gives it faster kinetics, and greater ability to reversibly sorb slow moving ions such as Naturally occurring Organic Matter (NOM). At lower regeneration levels and where chlorides make up a substantial portion of the anion load, or where the removal and elution of naturally occurring organics is of concern RESINTECH SBG1P, SBACR or SBG2 should be considered. At the higher regeneration levels used in mixed bed polishers RESINTECH SBG1 provides higher capacity, and the lowest possible TOC leach rates.

*CAUTION:DO NOT MIX ION EXCHANGE RESIN WITH STRONG OXIDIZING AGENTS. Nitric acid and other strong oxidizing agents can cause explosive reactions when mixed with organic materials, such as ion exchange resins.

Material Safety Data Sheets (MSDS) are available for all ResinTech Inc.products. To obtain a copy, contact your local ResinTech sales representative or our corporate headquarters. They contain important health and safety information. That information may be needed to protect your employees and customers from any known health and safety hazards associated with our products. We recommend that you secure and study the pertinent MSDS for our products and any other products being used These suggestions and data are based on information we believe to be reliable. They are offered in good faith. However we do not make any guarantee or warranty. We caution against using these products in an unsafe manner or in violation of any patents; further we assume no liability for the consequences of any such actions.

Safety Data Sheet

Product Names: SBG1, SBG1-HP, SBG1-UPS, SBG1-C, SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P, SBG1P-UPS

(Type I Strong Base Anion Exchange Resin Chloride Form)
Effective date 31 March 2015

Section 1: Identification

1a Product Names ResinTech SBG1, SBG1-HP, SBG1-UPS, SBG1-C,

SBG1-F, SBMP1, SBMP1-UPS, GP-SBA, SBG1P,

SBG1P-UPS

1b Common Name Type I Strong base anion resin in the chloride form.

1c Intended use All general purpose anion exchanges for general use

including salt form and demineralization.

1d Manufacturer ResinTech, Inc.

Address 160 Cooper Road,

West Berlin, NJ 08091 USA

Phone 856-768-9600

Email ixresin@resintech.com

Section 2: Hazard Identification

2a Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
_	4 = Extreme

2b Product description White, yellow, or orange colored solid beads

approximately 0.6 mm diameter with little or no odor.

2c Precautions for use Safety glasses and gloves recommended.

Slipping hazard if spilled.

2c Potential health effects Will cause eye irritation.

Will cause skin skin irritation.

Ingestion is not likely to pose a health risk.

2d Environmental effects This product may alter the pH of any water that

contacts it.

Section 2A: Hazard classification UN OSHA globally harmonized system

WARNING

(contains ion exchange resin)

H320: Causes eye irritation

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do – continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Section 3: Composition/Information on Ingredients

3a Chemical name Trimethylamine functionalized chloromethylated copolymer of polystyrene in the chloride form.

3b Ingredients

Trimethylamine functionalized Chloromethlyated copolymer of Styrene and divinylbenzene in the

Chloride form

CAS# 60177-39-1 (35 - 65%)

Water CAS# 7732-18-5 (35 – 65%)

Section 4: First Aid Measures

4a Inhalation No adverse effects expected- normal use of product

does not produce odors or vapors.

4b Skin Wash with soap and water- seek medical attention if a

rash develops.

4c Eye contact Wash immediately with water-seek attention if

discomfort continues.

4d Ingestion No adverse effects expected for small amounts, larger

amounts can cause stomach irritation. Seek medical

attention if discomfort occurs.

Section 5: Fire Fighting Measures

5a Flammability NFPA Fire rating = 1

5b Extinguishing media Water, CO2, foam, dry powder.

5c Fire fighting Procedures Follow general fire fighting procedures indicated in the

work place. Seek medical attention if discomfort

continues.

5d Protective Equipment MSHA/NIOSH approved self-contained breathing

gear, full protective clothing.

5e Combustion Products Carbon oxides and other toxic gasses and vapors.

5f Unusual Hazards Product is not combustible until moisture is removed.

Resin begins to burn at approximately 230° C. Auto

ignition can occur above 500° C.

Section 6: Accidental Release Measures

6a Personal Precautions Keep people away, spilled resin can be a slipping

hazard, wear gloves and safety glasses to minimize

skin or eye contact.

6b Incompatible Chemicals Strong oxidants can create risk of combustion

products similar to burning, exposure to strong bases

can cause a rapid temperature increase.

6c Environmental Precautions Keep out of public sewers and waterways.

6d Containment Materials Use plastic or paper containers, unlined metal

containers not recommended.

6e Methods of Clean-up Sweep up material and transfer to containers.

Section 7: Handling and Storage

7a Handling Avoid prolonged skin contact. Keep resin moist and

avoid allowing resin to completely dry.

7b Storage Store in a cool dry place (0° to 45° C) in the original

shipping container. This product is thermally sensitive

and will have reduced shelf life if subjected to

extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw

cycles.

7c TSCA considerations Ion exchange resins should be listed on the TSCA

Inventory in compliance with State and Federal

Regulations.

Section 8: Exposure Controls/Personal Protection

8a OSHA exposure limits None noted.

8b Engineering Controls Provide adequate ventilation.

8c Personal Protection Measures

Eye Protection Safety glasses or goggles.
Respiratory Protection Not required for normal use.

Protective Gloves Not required for limited exposure but recommended

for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, yellow, or red beads approx. 0.6 mm

diameter.

Flammability or explosive limits Flammable above 500° C

Odor Little or no odor

Physical State Solid

Vapor pressure Not available
Odor threshold Not available
Vapor density Not available

pH Near neutral (6 to 8 typical)

Relative density Approx 710 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Solubility Insoluble in water and most solvents

Boiling point Does not boil
Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water)

Auto-ignition temperature

Approx 500° C

Decomposition temperature

Above 230° C

Viscosity

Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

10c Hazardous by-products Trimethylamine, charred polystyrene, aromatic acids

and hydrocarbons, organic amines, nitrogen oxides,

carbon oxides, chlorinated hydrocarbons.

10d Incompatible materials Strong oxidizing agents, e.g. nitric acid

(such as HNO₃)

10e Hazardous Polymerization Does not occur

Section 11: Toxicological Information

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption
Unlikely, some transfer of acidity is possible.
Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild Rash.

Ingestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not acutely harmful to plant or animal life.

12b Mobility Insoluble, acidity or causticity may escape if wet.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 13: Disposal Considerations

13a General considerations Material is non-hazardous. However, unused material

can cause a pH change when wetted.

13b Disposal Containers Most plastic and paper containers are suitable. Avoid

use of unlined metal containers.

13c Disposal methods No specific method necessary.

13d Sewage Disposal Not recommended.

13e Precautions for incineration May release trimethylamine and toxic vapors when

burned.

13f Precautions for landfills Resins used to remove hazardous materials may then

become hazardous mixtures

Section 14: Transportation Information

14a Transportation Class Not classified as a dangerous good for transport by

land, sea, or air.

14b TDG Not regulated.

14c IATA Not regulated.

14d DOT (49 CFR 172.101) Not Regulated.

Section 15: Regulatory Information

15a CERCLA Not regulated

15b SARA Title III Not regulated

15c Clean Air act Not regulated

15d Clean Water Act Not regulated

15e TSCA Not regulated

15f Canadian Regulations

WHMIS Not a controlled product

TDG Not regulated

15g Mexican Regulations Not Dangerous

Section 16: Other Information

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

ZENNER PERFORMANCE Cast Iron Turbine Meters

Sizes 2" through 12"

INTRODUCTION: ZENNER PERFORMANCE Turbine Meters are designed for applications where flows are usually moderate to high and occasionally low. They are used in measurement of potable cold water in commercial and industrial services where flows are in one direction.

OPERATION: Water flows through the turbine section which causes the rotor to turn proportionately to the quantity of water flowing through the meter. A drive magnet transmits the motion of the rotor to a driven magnet located within the hermetically sealed register. The magnet is connected to a gear train which translates the rotations into volume totalization displayed on the register dial face. The only moving parts in the meter are the rotor assembly and vertical shaft .

CONSTRUCTION: ZENNER PERFORMANCE Turbine Meters consist of three basic components: Cast Iron Epoxy Coated main case, measuring element, and sealed register. The measuring element assembly includes the rotor assembly, vertical shaft and a calibration vane which eliminates the need for calibration change gears.

MAINTENANCE: ZENNER PERFORMANCE Turbine Meters are engineered and manufactured to provide long-term service and operate virtually maintenance free. If necessary the universal measuring element (UME) can be removed from the main case for maintenance. Interchangeability of certain parts between like sized meters minimizes spare parts inventory.

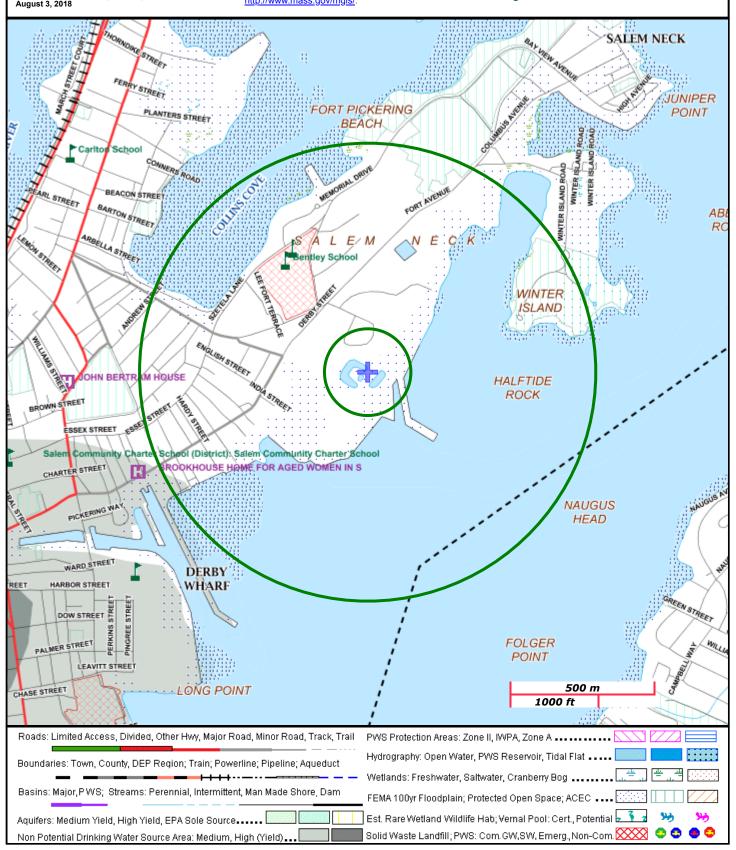
CONFORMANCE: ZENNER PERFORMANCE Turbine Meters are tested and comply with AWWA C701 Class II performance standards.

STRAINERS: ZENNER PERFORMANCE recommends the use of a separate strainer upstream from the turbine meter. Strainers reduce the chance of damage to the rotor as well as the frequency in which it must be removed for inspection. The lack of a strainer may void the warranty of the turbine meter.

CONNECTIONS: Companion flanges for installation of meters on various pipe types and sizes are available in bronze or cast iron.

MODEL SIZE		PMT02	PMT03	PMT04	PMT06	PMT08	PMT10	PMT12
		2"	3"	4"	6"	8"	10"	12"
Flow rate maximum intermittent	USGPM	400	550	1250	2500	4500	7000	8800
Maximum continuous	USGPM	200	450	1000	2000	3500	5500	6200
Optimum operating flow range	USGPM	3 - 200	5 - 550	10 - 1250	20 - 2500	30 - 4500	50 - 7000	90 - 8800
Low flow rate	USGPM	2	2-1/2	5	12	20	45	65
Start-up flow rate	USGPM	7/8	1-1/8	1-3/8	7-1/2	8	15	15
Maximum Working Pressure	P.S.I.	160	160	160	160	160	160	160
Maximum Temperature	Deg. F	140	140	140	140	140	140	140
Length	Inches	7-7/8	8-7/8	9-7/8	11-7/8	13-3/4	17-3/4	19-5/8
Height	Inches	9-1/2	10-1/4	11	12-7/8	14-1/4	19	20-1/4
Width	Inches	7	7-1/2	9	11	13-1/2	16	19
Weight	Pounds	24	32	38	84	126	225	255
Number of holes per flange		4	4	8	8	8	12	12

Appendix D


Supplemental Information

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: SALEM POWER PLANT 25 DERBY STREET SALEM, MA 3-000021283 NAD83 UTM Meters: 4709728mN , 345782mE (Zone: 19) August 3, 2018 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at: be found at: http://www.mass.gov/mgis/.

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix IV of the NPDES DGP, the project located at 25 Derby Street, Salem, MA is eligible for coverage under this general permit under FWS Criterion C. This project is located in Essex County. No designated critical habitats were listed in the project area.

An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

- The Northern long-eared bat was listed as "Threatened" wherever it is found;
- The Roseate Tern was listed as "Endangered" in the Northeast and may occur within the boundary of the project area;

Based upon a discussion with the U.S. Fish & Wildlife Service (USFWS), temporary dewatering activities at the site are not expected to impact the Northern Long-eared Bat or the Red-Knot.

Northern long-eared bats spend winter hibernating in caves and mines. They use areas in various sized caves or mines with constant temperatures, high humidity, and no air currents. During the summer, northern long-eared bats roost singly or in colonies underneath bark, in cavities or in crevices of both live trees and snags (dead trees). There are no caves and mines located at the site. There are trees in the immediate vicinity of the site; however, tree removal is not part of the scope of work related to this Notice of Intent. Therefore, temporary dewatering activities will have "no impact" to the Northern Long-eared Bat.

Roseate Terns are predominately tropical seabirds, breeding on small islands and protected beaches in tropical oceans across the world. Roseate Terns are exclusively marine, and they usually breed on small islands or on sand dunes at the end of barrier beaches. Roseate Terns arrive on their breeding grounds in late spring and are generally present in the northeastern United States through the early fall. There are no critical habitats within the project area.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: August 03, 2018

Consultation Code: 05E1NE00-2018-SLI-2606

Event Code: 05E1NE00-2018-E-06090 Project Name: Salem Power Plant

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2018-SLI-2606

Event Code: 05E1NE00-2018-E-06090

Project Name: Salem Power Plant

Project Type: ** OTHER **

Project Description: Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.5252797786971N70.87673225928044W

Counties: Essex, MA

Endangered Species Act Species

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Mammals

NAME STATUS

Northern Long-eared Bat *Myotis septentrionalis*

Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/9045

Birds

NAME STATUS

Roseate Tern Sterna dougallii dougallii

Endangered

Population: northeast U.S. nesting pop.

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/2083

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>

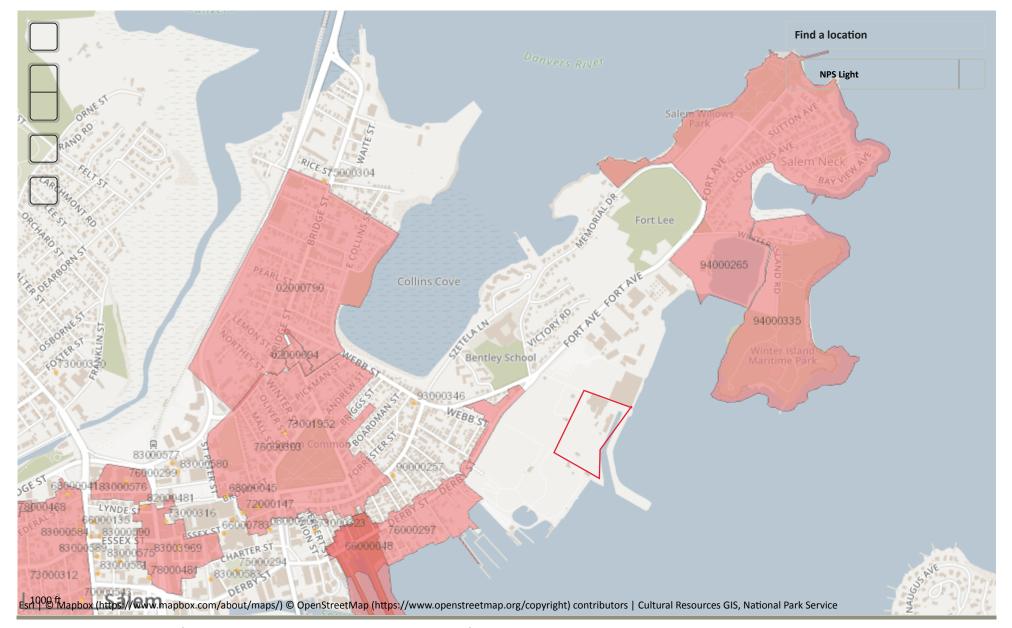
As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database did not list any potential properties on or near the project site in the database. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Salem; Street No: 25; Street Name: Derby St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year


Friday, August 3, 2018 Page 1 of 1

National Register of Historic Places

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...

National Park Service U.S. Department of the Interior

= Site Boundary

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

Contact Us (https://www.nps.gov/contacts.htm)

Appendix E

Public Notification

Mayor Kimberly Driscoll

Salem, Massachusetts 01970

August 22, 2018

Salem City Hall 93 Washington Street 89 Crawford Street Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

Reference: Notification of Filing of Notice of Intent - Remediation General Permit

Salem Power Plant 25 Derby Street Salem, Massachusetts

Dear Mayor Driscoll:

On behalf of United Civil, Inc. (United Civil), Lockwood Remediation Technologies, LLC (LRT) is providing notification that a Notice of Intent (NOI) has been filed with the United States Environmental Protection Agency (EPA) requesting coverage under the EPA's Remediation General Permit (RGP) for the above-reference project. The NOI is specific to the discharge of treated water that will be generated during construction dewatering activities related to the installation of subsurface utilities. The treated water will be discharged to Salem Harbor, and work is anticipated to begin in September 2018. A copy of the NOI can be provided upon request.

Please contact me at 774-450-7177 if you have any questions or require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

John Henry

John J. Henry, PE Senior Project Manager

cc: Shauna Little – EPA

Jeff Schena and Fred Carriglio – United Civil

Scott Silverstein – Footprint Power