

November 29, 2018

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

U.S. Environmental Protection Agency Office of Ecosystem Protection EPA/OEP RGP Applications Coordinator 5 Post Office Square, Suite 100 (OEP06-4) Boston, MA 02109-3912

Reference: Notice of Intent (NOI) - Remediation General Permit (RGP)

Revere Beach Hotel

49-54 Revere Beach Boulevard

Revere, MA

LRT Reference # 2-1759

Dear Sir/Madam:

On behalf of JBX Developers, Inc. (JBX), Lockwood Remediation Technologies, LLC (LRT) has prepared this Notice of Intent (NOI) requesting a determination of coverage under the United States Environmental Protection Agency's (EPA's) Remediation General Permit (RGP), pursuant EPA's National Pollutant Discharge Elimination System (NPDES) program. This NOI was prepared in accordance with the general requirements of the NPDES and related guidance documentation provided by EPA. The completed NOI Form is provided in **Appendix A**.

Site Information

This NOI has been prepared for the management of water that will be generated during dewatering activities associated with the construction of the Revere Beach Hotel located at 49-54 Revere Beach Boulevard, Revere, Massachusetts (the Site). This work will take place within approximately one half of the site and is anticipated to be completed within twelve months, thereby precluding the need for Whole Effluent Toxicity (WET) testing unless specifically requested by EPA. The Site is not listed as a disposal site with the Massachusetts Department of Environmental Protection (MassDEP). A Site Locus is provided as **Figure 1**; a Discharge Location plan is provided as **Figure 2**; and a Receiving Water Location plan is provided as **Figure 3**.

Work Summary

The project includes the construction of a hotel. To complete portions of the footing excavations in the dry, dewatering is required to lower the groundwater table as the work is being performed. To do this, a series of wellpoints surrounding the perimeter of the work area will be utilized, and the water generated during dewatering (Source water) will be pumped to a treatment system prior to discharge to a catch basin located on Ocean Drive, with ultimate discharge to Sales Creek. To characterize groundwater from the

proposed excavation area, LRT collected representative groundwater samples from one onsite test pit (Influent) and the receiving water (Sales Creek) on November 8, 2018. The samples were analyzed for various parameters in accordance with the NPDES RGP. The location of the test pit and receiving water is depicted on **Figures 2** and **3**, respectively.

Discharge and Receiving Surface Water Information

A summary of analytical data is provided on the NOI Form included in **Appendix A**, and copies of the laboratory data reports are provided in **Appendix B**. The "Report Only" compounds ammonia and chloride were detected in each of the samples. Concentrations of total suspended solids (TSS), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), total residual chlorine (TRC), and various metals were detected in groundwater. To meet the applicable NPDES RGP Standards, source water will undergo treatment that includes bag filtration and potentially carbon and metals treatment, if necessary. Details of the water treatment system are provided below.

Water Treatment System

A water treatment system schematic is provided as **Figure 4**. Cutsheets of the system components, product information and Safety Data Sheets (SDS) are included in **Appendix C**. Source water will be pumped to a treatment system with a design flow of up to 500 gallons per minute (gpm); the average effluent flow of the system is estimated to be 300 gpm, and the maximum flow will <u>not</u> exceed 500 gpm. Source water will enter two 18,000-gallon weir tanks at head of the system. From the weir tanks, water is pumped to one (1) multi bag filter skid. Discharge from the bag filters will pass through a flow/totalizer meter prior to discharge to Sales Creek. Contingency water treatment components include a two (2) media vessels each containing 10,000 pounds of reactivated liquid phase carbon, followed by one (1) media vessel containing 160 cubic feet of cation exchange resin.

Consultation with Federal Services

LRT reviewed online electronic data viewers and databases from the Massachusetts Geographical Information System (MassGIS), the Massachusetts Division of Fisheries and Wildlife (MassWildlife; Natural Heritage and Endangered Species Program), and the U.S. National Parks Service Natural Historic Places (NPS). Based on this review, the Site is not located within an Area of Critical Environmental Concern (ACEC) and is not listed as a National Historic Place. Documentation is included in **Appendix D**.

A consultation with National Marine Fisheries Service (NMFS) was conducted., LRT certifies eligibility according to the NMFS Criterion as the remediation activity discharges are not likely to adversely affect listed species and will result in either no effect or no adverse modification of critical habitat and also result in no take of a listed species. In support of this certification, the remaining Documentation for Eligibility Determination is provided in **Appendix D**.

Coverage under NPDES RGP

It is our opinion that the proposed discharge is eligible for coverage under the NPDES RGP. On behalf of JBX, we are requesting coverage under the NPDES RGP for the discharge of treated wastewater to Sales Creek in support of construction dewatering activities that are to take place at 49-54 Revere Beach Boulevard, Revere, Massachusetts.

The enclosed NOI form provides required information on the general site conditions, discharge, treatment system, receiving water, and consultation with federal services.

Please feel free to contact us at 774-450-7177 if you have any questions or if you require additional information.

Sincerely,

Lockwood Remediation Technologies, LLC

Kim Gravelle

Kim Gravelle, P.G. Project Manager

Paul Lockwood

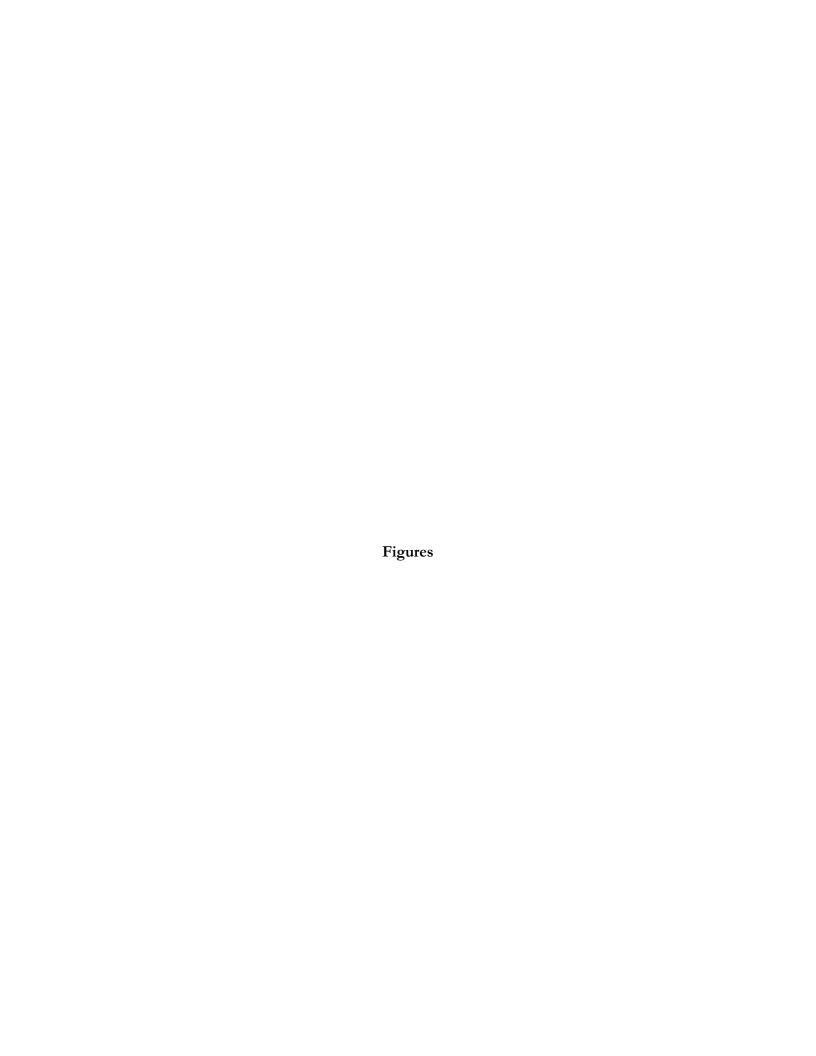
Paul Lockwood President

Encl: Figure 1 – Locus Plan

Figure 2 – Discharge Location

Figure 3 – Receiving Water Location

Figure 4 – Water Treatment System Schematic


Appendix A – NOI Form Appendix B – Laboratory Data

Appendix C – Water Treatment System Appendix D – Supplemental Information

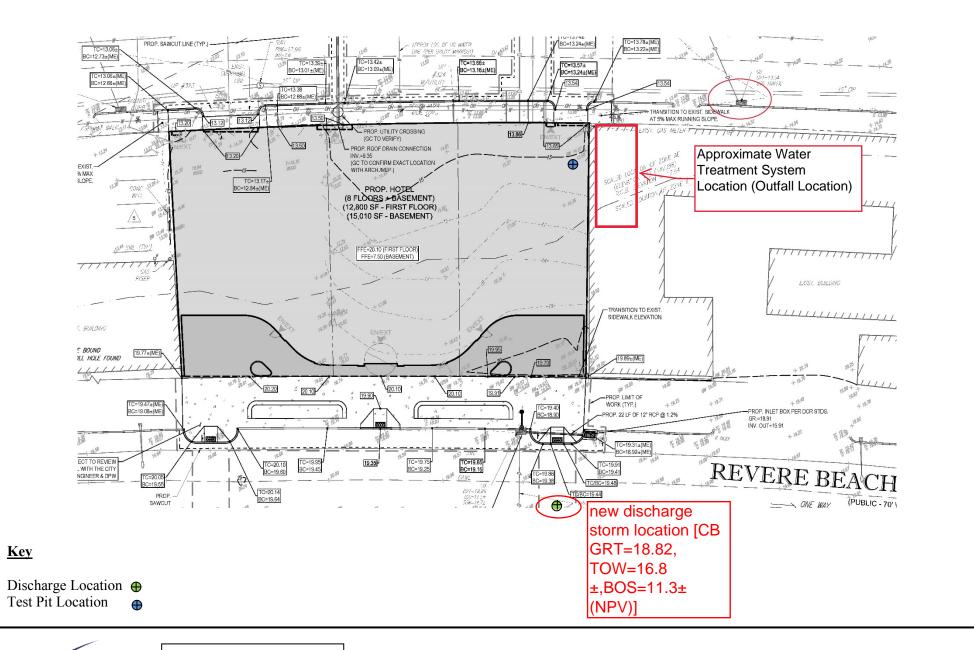
cc: Steve Johnson, JBX Developers, Inc.

Christopher Gobeille, Landmark Utilities and Site Excavation

Nicholas Rystrom, P.E., City of Revere

Source: MassGIS, Oliver topographic Map.

Notes


1. Figure is not to scale.

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

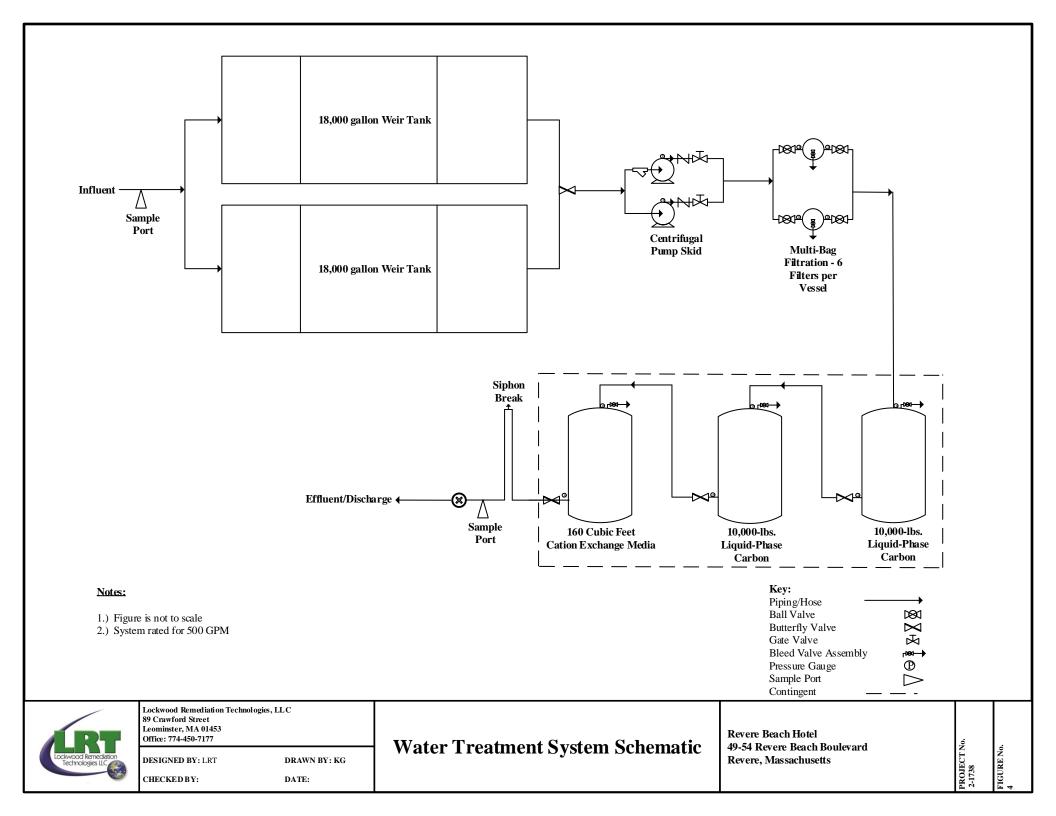
Fax: 888.835.0617 www.lrt-llc.net **Figure 1 – Locus Plan**Revere Beach Hotel
49-54 Revere Beach Boulevard
Revere, Massachusetts

89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net Figure 2 – Discharge Location Revere Beach Hotel

49-54 Revere Beach Boulevard Revere, Massachusetts

Key

Receiving Water Location



89 Crawford Street Leominster, Massachusetts 01453 Tel: 774.450.7177

Fax: 888.835.0617 www.lrt-llc.net

Figure 3 – Receiving Water Location Revere Beach Hotel

49-54 Revere Beach Boulevard Revere, Massachusetts

Appendix A

NOI Form

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:			
	Street:			
	City:		State:	Zip:
2. Site owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:	l		
	Street:			
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:
3. Site operator, if different than owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:			
	City:		State:	Zip:
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):	
	☐ MA Chapter 21e; list RTN(s):	□ CERCL	LΑ	
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	☐ NH Groundwater Management Permit or	□ UIC Pro	•	
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:		☐ POTW Pretreatment		
L MISSI L Marriada M DES permit L Suici, ii so. seccir.	Groundwater Release Detection Permit:	□ CWA S		

В.	Receiving	water	information:	
----	-----------	-------	--------------	--

1. Name of receiving water(s):	waterbody identification of receiving water(s): Classification of receiving water(s)									
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River										
2. Has the operator attached a location map in accord	ance with the instructions in B, above? (check one)	: □ Yes □ No								
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No									
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL i 4.6 of the RGP.										
4. Indicate the seven day-ten-year low flow (7Q10) o Appendix V for sites located in Massachusetts and A		the instructions in								
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s										
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received:	opropriate State for the 7Q10and dilution factor indi	cated? (check one): ☐ Yes ☐	No							
7. Has the operator attached a summary of receiving (check one): ☐ Yes ☐ No	water sampling results as required in Part 4.2 of the	RGP in accordance with the i	nstruction in Appendix VIII?							
C. Source water information:										
1. Source water(s) is (check any that apply):										
☐ Contaminated groundwater ☐ Contaminated surface water ☐ The receiving water ☐ Potable water; if so, indic municipality or origin:										
Has the operator attached a summary of influent sampling results as required in Part 4.2 of the RGP	Has the operator attached a summary of influent sampling results as required in Part 4.2 of the	☐ A surface water other								
in accordance with the instruction in Appendix VIII? (check one):	RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:							
□ Yes □ No	□ Yes □ No									

2. Source water contaminants:	
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No
D. Discharge information	
1.The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	w discharge □ New source
Outfall(s):	Outfall location(s): (Latitude, Longitude)
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sew	ver system:
Has notification been provided to the owner of this system? (check one): ☐ Ye	es 🗆 No
Has the operator has received permission from the owner to use such system for obtaining permission:	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No
Provide the expected start and end dates of discharge(s) (month/year):	
Indicate if the discharge is expected to occur over a duration of: \square less than 1	2 months \square 12 months or more \square is an emergency discharge
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters 				
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

	Known	Known				Inf	luent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 µg/L	
Chromium VI								323 μg/L	
Copper								242 μg/L	
Iron								5,000 µg/L	
Lead								160 μg/L	
Mercury								0.739 µg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs			•						
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Infl	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 µg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs	_							
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								<u> </u>	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 μg/L	
Pentachlorophenol								1.0 μg/L	
F. Fuels Parameters									
Total Petroleum Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatu	re, hardness,	salinity, LC	50, addition	al pollutar	nts present);	if so, specify:		1	
Ammonia	1	<u>I</u>	1	4500	75	253	253	1	

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
□ Ion Exchange □ Precipitation/Coagulation/Flocculation □ Separation/Filtration □ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
□ Fractionation tanks□ Equalization tank □ Oil/water separator □ Mechanical filter □ Media filter	
□ Chemical feed tank □ Air stripping unit □ Bag filter □ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): □ Yes □ No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
Trovide the average erritaint now in gpin.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): ☐ Yes ☐ No	

F. Chemical and additive information

r. Chemical and additive information
1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): □ Yes □ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion : A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): ☐ Yes ☐ No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
☐ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \Box Yes \Box No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): ☐ Yes ☐ No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. A BMPP will be developed and maintained that meets the requirements of this permit. The BMPP will be BMPP certification statement: implemented on-site prior to initiation of discharge. Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes No Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit (s). Additional discharge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit Other; if so, specify: Date: 11-27-18				
Notification provided to the appropriate State, including a copy of this NOI, if required. Check one: Yes No Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit (s). Additional discharge permit is (check one): RGP DGP CGP MSGP Individual NPDES permit Check one: Yes No No NA Check one: Yes No Na Check one: Yes No No NA Check one: Yes No Na Check one: Yes No		that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and b no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there ar	persons who manage elief, true, accurate, a	the system, or those
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested. Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit (s). Additional discharge permit is (check one): RGP DGP RGP Individual NPDES permit Check one: Yes No No NA Check one		A BMPP will be developed and maintained that meets the requirements BMPP certification statement: implemented on-site prior to initiation of discharge.	s of this permit. T	he BMPP will be
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit (s). Additional discharge permit is (check one): RGP DGP RGP RGP Individual NPDES permit Check one: Yes No NA Check one: Yes No		Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes ■	No □
discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission. Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): RGP DGP RGP RGP RGP RGP RGP RGP RGP RGP RGP R			Check one: Yes ■	No □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ □ Other; if so, specify:		discharges, including a copy of this NOI, if requested. Notification will be provided upon EPA approval of NOI Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site		
permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit Check one: Yes □ No □ NA ■ □ Other; if so, specify:		Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	Check one: Yes	No □ NA □
Signature: Date: 11-27-18		permit(s). Additional discharge permit is (check one): □ RGP □ DGP □ CGP □ MSGP □ Individual NPDES permit	Check one: Yes □	No □ NA ■
	Signa	Date:	e: 11-27-11	3

Print Name and Title:

STEVEN JOHNSON PROJECT MANAGER

From:Nicholas RystromTo:Kim GravelleCc:Don Ciaramella

Subject: RE: 49-54 Revere Beach Parkway, Revere Date: Wednesday, October 24, 2018 12:24:31 PM

Hi Kim,

I am ok with the discharge location given the following:

- 1) the water is treated appropriately and consistently with the EPA's discharge general permit (DGP) prior to discharge
- 2) discharge does not occur during wet weather
- 3) the system is inspected and confirmed to be clear and able to receive flow
- 4) a DGP is executed or deemed by the EPA to not be applicable
- 5) details for dewatering, treatment and discharge are provided for review and approval

Please call or respond should you have any questions. Thank you

Regards,

Nick

Nicholas J. Rystrom, P.E.

City Engineer

City of Revere 281 Broadway Revere, MA 02151 781-286-8153 o 781-853-9600 c nrystrom@revere.org

From: Kim Gravelle [mailto:kgravelle@lrt-llc.net] **Sent:** Wednesday, October 24, 2018 9:28 AM

To: Nicholas Rystrom **Cc:** Don Ciaramella

Subject: FW: 49-54 Revere Beach Parkway, Revere

Importance: High

HI Nick,

I spoke to Donald yesterday regarding the referenced location. He stated that you were the person we should speak with regarding a discharge permit. Can you please review the information below and let me know how we should proceed?

Thank you,

Kim Gravelle, P.G. *Project Manager*

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774-450-7177 x109 F: 888-835-0617 C: 774.479.1048

kgravelle@lrt-llc.net

From: Kim Gravelle

Sent: Friday, October 19, 2018 10:06 AM

To: dciaramella@revere.org; nrystrom@revere.org **Subject:** 49-54 Revere Beach Parkway, Revere

Importance: High

Donald / Nick,

Lockwood Remediation Technologies, LLC (LRT) has been contracted by Landmark Construction to perform dewatering and water treatment services at the referenced project location. We are looking for information on who owns the drainage system for our proposed discharge location (catch basin) to ensure sure the appropriate permitting is in place. The attached figure depicts the proposed discharge location. Please review and let me know so that we can apply for the appropriate discharge permit(s).

Thank you,

Kim Gravelle, P.G. *Project Manager*

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453 O: 774-450-7177 x109 F: 888-835-0617

C: 774.479.1048 kgravelle@lrt-llc.net

Enter number values in green boxes below

Enter values in the units specified

\downarrow	
0	Q_R = Enter upstream flow in MGD
0.72	Q _P = Enter discharge flow in MGD
0	Downstream 7Q10

Enter a dilution factor, if other than zero

Enter values in the units specified

\downarrow	
0	C_d = Enter influent hardness in mg/L CaCO ₃
0	C = Enter receiving water hardness in mg/L CaCO

Enter receiving water concentrations in the units specified

\downarrow	_
7.4	pH in Standard Units
14	Temperature in °C
0.253	Ammonia in mg/L
0	Hardness in mg/L CaCO ₃
2.04	Salinity in ppt
1	Antimony in μg/L
3.2	Arsenic in µg/L
0	Cadmium in µg/L
0	Chromium III in µg/L
7.6	Chromium VI in µg/L
18	Copper in µg/L
2,900	Iron in μg/L
51	Lead in μg/L
0	Mercury in μg/L
5.3	Nickel in μg/L
8.6	Selenium in µg/L
0	Silver in μg/L
77	Zinc in µg/L

Enter influent concentrations in the units specified

V	
1,000	TRC in μg/L
0.808	Ammonia in mg/L
0	Antimony in μg/L
3.3	Arsenic in µg/L
0.21	Cadmium in µg/L
3.9	Chromium III in µg/L
0	Chromium VI in µg/L
14	Copper in µg/L
5,300	Iron in μg/L
53	Lead in μg/L
0	Mercury in μg/L
7.4	Nickel in μg/L
1.4	Selenium in μg/L
0	Silver in µg/L
65	Zinc in μg/L
0	Cyanide in µg/L
0	Phenol in μg/L
0	Carbon Tetrachloride in µg/L
0	Tetrachloroethylene in μg/L
0	Total Phthalates in μg/L
0	Diethylhexylphthalate in µg/L
0.18	Benzo(a)anthracene in μg/L
0.15	Benzo(a)pyrene in μg/L
0.2	Benzo(b)fluoranthene in μg/L
0	Benzo(k)fluoranthene in μg/L
0	Chrysene in µg/L
0	Dibenzo(a,h)anthracene in μg/L
0	Indeno(1,2,3-cd)pyrene in μg/L
0	Methyl-tert butyl ether in μg/L

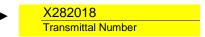
Notes:

Freshwater: Q_R equal to the 7Q10; enter alternate Q_R if approved by the State; enter 0 if no dilution factor approved Saltwater (estuarine and marine): enter Q_R if approved by the State; enter 0 if no entry Discharge flow is equal to the design flow or 1 MGD, whichever is less Only if approved by State as the entry for Q_R ; leave 0 if no entry

Saltwater (estuarine and marine): only if approved by the State Leave 0 if no entry

Freshwater only

pH, temperature, and ammonia required for all discharges Hardness required for freshwater $Salinity\ required\ for\ saltwater\ (estuarine\ and\ marine)$ Metals required for all discharges if present and if dilution factor is >1 Enter 0 if non-detect or testing not required


if>1 sample, enter maximum if>10 samples, may enter 95th percentile Enter 0 if non-detect or testing not required

Dilution Factor	0.0					
A. Inorganics	TBEL applies if	bolded	WQBEL applies	if bolded	Compliance Level applies if shown	
Ammonia	Report	mg/L				
Chloride	Report	μg/L				
Total Residual Chlorine	0.2	mg/L	7.5	μg/L	50	μg/L
Total Suspended Solids	30	mg/L				. 0
Antimony	206	μg/L	640	μg/L		
Arsenic	104	μg/L	36	μg/L		
Cadmium	10.2	μg/L μg/L	8.9	μg/L μg/L		
Chromium III	323	μg/L μg/L	100.0	μg/L μg/L		
Chromium VI	323		50			
		μg/L	3.7	μg/L		
Copper	242	μg/L		μg/L		
Iron	5000	μg/L		μg/L		
Lead	160	μg/L	8.5	μg/L		
Mercury	0.739	μg/L	1.11	μg/L		
Nickel	1450	$\mu g/L$	8.3	$\mu g/L$		
Selenium	235.8	$\mu g/L$	71	$\mu g/L$		
Silver	35.1	$\mu g/L$	2.2	μg/L		
Zinc	420	μg/L	86	μg/L		
Cyanide	178	mg/L	1.0	μg/L		μg/L
B. Non-Halogenated VOCs		Č				
Total BTEX	100	$\mu g/L$				
Benzene	5.0	$\mu g/L$				
1,4 Dioxane	200	μ g/L				
Acetone	7.97	mg/L				
Phenol	1,080	μg/L	300	μg/L		
C. Halogenated VOCs Carbon Tetrachloride	4.4		1.6	/I		
1,2 Dichlorobenzene	600	μg/L	1.0	μg/L		
1,3 Dichlorobenzene	320	μg/L μg/L				
1,4 Dichlorobenzene	5.0	μg/L				
Total dichlorobenzene		μg/L				
1,1 Dichloroethane	70	μg/L				
1,2 Dichloroethane	5.0	$\mu g/L$				
1,1 Dichloroethylene	3.2	$\mu g/L$				
Ethylene Dibromide	0.05	μg/L				
Methylene Chloride	4.6	μg/L				
1,1,1 Trichloroethane	200	μg/L				
1,1,2 Trichloroethane	5.0 5.0	μg/L				
Trichloroethylene Tetrachloroethylene	5.0 5.0	μg/L μg/L	3.3	ua/I		
cis-1,2 Dichloroethylene	70	μg/L μg/L	3.3 	μg/L		
Vinyl Chloride	2.0	μg/L μg/L				
y	_,,	1-0-				

D. Non-Halogenated SVOCs

Total Phthalates	190	μg/L		μg/L		
Diethylhexyl phthalate	101	μg/L	2.2	μg/L		
Total Group I Polycyclic						
Aromatic Hydrocarbons	1.0	μg/L				
Benzo(a)anthracene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(a)pyrene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(b)fluoranthene	1.0	μg/L	0.0038	μg/L	0.1	μg/L
Benzo(k)fluoranthene	1.0	μg/L	0.0038	μg/L		μg/L
Chrysene	1.0	μg/L	0.0038	μg/L		μg/L
Dibenzo(a,h)anthracene	1.0	μg/L	0.0038	μg/L		μg/L
Indeno(1,2,3-cd)pyrene	1.0	μg/L	0.0038	μg/L		μg/L
Total Group II Polycyclic						
Aromatic Hydrocarbons	100	μg/L				
Naphthalene	20	μg/L				
E. Halogenated SVOCs						
Total Polychlorinated Biphenyls	0.000064	μg/L			0.5	μg/L
Pentachlorophenol	1.0	μg/L				
F. Fuels Parameters						
Total Petroleum Hydrocarbons	5.0	mg/L				
Ethanol	Report	mg/L				
Methyl-tert-Butyl Ether	70	μg/L	20	μg/L		
tert-Butyl Alcohol	120	μg/L				
tert-Amyl Methyl Ether	90	μg/L				

Enter your transmittal number

Your unique Transmittal Number can be accessed online: http://www.mass.gov/eea/agencies/massdep/service/approvals/transmittal-form-for-payment.html

Massachusetts Department of Environmental Protection Transmittal Form for Permit Application and Payment

	<u>A.</u>	Permit Information	1					
		WM15						
			er code from permit instruction	ons	2. Name of Permit (Category		
application.		3. Type of Project or Activity	5					
	_							
	В.	Applicant Information	tion – Firm or Ind	lividua	al .			
of Massachusetts		JBX Developers Inc.						
copy of this form to:			needing this approval is a	n individua	al enter name below:			
·		2. Last Name of Individual		3. First	Name of Individual		4. MI	
		440 William F. McClella 5. Street Address	an Highway, Suite 105	5C				
		East Boston		MA	02128	617-682-2107		
		6. City/Town		7. State	8. Zip Code	9. Telephone #	10. Ext. #	
		Steven Johnson				②jbxdevelopers.net		
original must		11. Contact Person			12. e-mail address			
permit application. Copy 2 must	C.	Facility, Site or Inc	lividual Requirin	g App	roval			
fee payment. Copy 3 should be		1. Name of Facility, Site Or I	ndividual					
retained for your records		2. Street Address						
Both fee-paying and exempt		3. City/Town			·	6. Telephone #	7. Ext. #	
		· ·	· 			own) 10. BWSC Trackin	ng # (if Known)	
transmitar form to.	D.	Application Prepar	red by (if differen	t from	Section B)*			
2. Make your cheek payable to the Commonwealth of Massachusetts and mall it with a copy of this form to: MassDEP, P.O. Box 4062 Boston, MA Copy 1 - the original must accompany your fee payment. Copy 3 should be retained for your records 4. Both fee-paying and exemption and exemption and exemptian pipicants must mail a copy of this transmittal form to: MassDEP, P.O. Box 4062 Boston, MA Copy 1 - the original must accompany your fee payment. The payment applicants must mail a copy of this transmittal form to: MassDEP P.O. Box 4062 Boston, MA Copy 1 - the original must accompany to the payment applicants must mail a copy of this transmittal form to: MassDEP P.O. Box 4062 Boston, MA Copy 1 - the original must accompany to the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the original must accompany to the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the original must are company to the payment and the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the original must are company to the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the original must are company to the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail a copy of this transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail and transmittal form to: MassDEP F.O. Box 4062 Boston, MA Copy 1 - the payment applicants must mail a copy of this transmitta								
•		89 Crawford Street						
		2. Address						
* Note:						774-450-7177		
	,	•		4. State	5. Zip Code	6. Telephone #	7. Ext. #	
enter the LSP.					9. LSP Number (BV	/SC Permits only)		
	_	Daniel Danie (O	P P					
	E.	Permit - Project Co	pordination					
	1.	If yes, enter the project's	EOEA file number - assi	igned wh				
	_	Amount Duo			EOEA	File Number		
DEP Use Only	Sp	_						
Permit No:								
print. A separate Transmittal Form must be completed for each permit application. 2. Make your check payable to the Commonwealth of Massachusetts and mail it with a copy of this form to: MassDEP, P.O. Box 4062, Boston, MA 02211. 3. Three copies of this form will be needed. Copy 1 - the original must accompany your permit application. Copy 2 must accompany your fee payment. Copy 3 should be retained for your records 4. Both fee-paying and exempt applicants must mail a copy of this transmittal form to: MassDEP P.O. Box 4062 Boston, MA 02211 * Note: For BWSC Permits, enter the LSP. E 1. DEP Use Only 1. Permit No: 2. Rec'd Date: 3. 4.	2.							
print. A separate Transmittal Form must be completed for each permit application. 2. Make your check payable to the Commonwealth of Massachusetts and mail it with a copy of this form to MassDEP, P.O. Box 4062, Boston, MA 02211. 3. Three copies of this form will be needed. Copy 1 - the original must accompany your permit application. Copy 2 must accompany your fee payment. Copy 3 should be retained for your records 4. Both fee-paying and exempt applicants must mail a copy of this transmittal form to: MassDEP P.O. Box 4062 Boston, MA 02211 * Note: For BWSC Permits enter the LSP. DEP Use Only Permit No: Rec'd Date:	3.	☐ Alternative Schedule Proj	ect (according to 310 CMR					
Reviewer:		1771	\$500.00			11/28/18		
				unt		Date		

tr-formw • rev. 12/17 Page 1 of 1

Appendix B

Laboratory Data

November 14, 2018

Tammie Hagie Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: 49-54 Revere Beach Boulevard, Revere, MA

Client Job Number: Project Number: 2-1759

Laboratory Work Order Number: 18K0452

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on November 9, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
18K0452-01	8
Sample Preparation Information	16
QC Data	18
Volatile Organic Compounds by GC/MS	18
B216933	18
Semivolatile Organic Compounds by GC/MS	20
B217087	20
Semivolatile Organic Compounds by - GC/MS	21
B216915	21
Polychlorinated Biphenyls By GC/ECD	25
B216911	25
Metals Analyses (Total)	26
B216964	26
B216991	26
B216993	26
B217136	27
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	28
B216895	28
B216896	28
B216941	28
B217044	28
B217172	29

Table of Contents (continued)

Dual Column RPD Report	30
Flag/Qualifier Summary	32
Certifications	33
Chain of Custody/Sample Receipt	37

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, MA 01453

ATTN: Tammie Hagie

REPORT DATE: 11/14/2018

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2-1759

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18K0452

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 49-54 Revere Beach Boulevard, Revere, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
INFLUENT	18K0452-01	Ground Water		EPA 1664B	
				EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				EPA 300.0	
				EPA 608.3	
				EPA 624.1	
				EPA 625	
				EPA 625.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT PH-0574/NY11148
				SM21-22 2540D	
				SM21-22 3500 Cr B	
				SM21-22 4500 CL G	
				SM21-22 4500 CN E	MA M-MA-086/CT PH-0574/NY11148
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.7

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

Iron

B216991-BS1

EPA 625.1

Qualifications:

L-04

Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side. Analyte & Samples(s) Qualified:

Benzidine

18K0452-01[INFLUENT], B216915-BLK1, B216915-BS1, B216915-BSD1

V-04

Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.

Analyte & Samples(s) Qualified:

Benzidine

18K0452-01[INFLUENT], B216915-BLK1, B216915-BS1, B216915-BSD1

V-05

Continuing calibration did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Benzidine

18K0452-01[INFLUENT], B216915-BLK1, B216915-BS1, B216915-BSD1

V-06

Continuing calibration did not meet method specifications and was biased on the high side for this compound.

Analyte & Samples(s) Qualified:

2-Methylphenol

B216915-BS1, B216915-BSD1

3/4-Methylphenol

B216915-BS1, B216915-BSD1

Bis(2-chloroethyl)ether

B216915-BS1, B216915-BSD1

Bis(2-chloroisopropyl)ether

B216915-BS1, B216915-BSD1

N-Nitrosodimethylamine

B216915-BS1, B216915-BSD1

N-Nitrosodi-n-propylamine

B216915-BS1, B216915-BSD1

V-20

Continuing calibration did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.

Analyte & Samples(s) Qualified:

2-Methylphenol

18K0452-01[INFLUENT], B216915-BLK1

3/4-Methylphenol

18K0452-01[INFLUENT], B216915-BLK1

Bis(2-chloroethyl)ether

18K0452-01[INFLUENT], B216915-BLK1

Bis(2-chloroisopropyl)ether

18K0452-01[INFLUENT], B216915-BLK1

N-Nitrosodimethylamine

18K0452-01[INFLUENT], B216915-BLK1

N-Nitrosodi-n-propylamine

18K0452-01[INFLUENT], B216915-BLK1

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

18K0452-01[INFLUENT], B216896-DUP1

SM21-22 4500 CL G

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Chlorine, Residual

18K0452-01[INFLUENT]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT

Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Valatila	Organic	Compounds by	CC/MS
voiatile	Organic	Compounds by	CTC/IVIS

Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	4.4	50	1.7	μg/L	1	J	EPA 624.1	11/12/18	11/12/18 12:35	LBD
tert-Amyl Methyl Ether (TAME)	ND	0.50	0.28	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Benzene	ND	1.0	0.34	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Bromodichloromethane	0.69	2.0	0.48	μg/L	1	J	EPA 624.1	11/12/18	11/12/18 12:35	LBD
Bromoform	ND	2.0	0.28	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Bromomethane	ND	2.0	0.44	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
tert-Butyl Alcohol (TBA)	ND	20	2.9	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Carbon Tetrachloride	ND	2.0	0.39	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Chlorobenzene	ND	2.0	0.30	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Chlorodibromomethane	ND	2.0	0.27	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Chloroethane	ND	2.0	0.38	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Chloroform	2.4	2.0	0.33	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Chloromethane	ND	2.0	0.30	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,2-Dichlorobenzene	ND	2.0	0.31	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,3-Dichlorobenzene	ND	2.0	0.33	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,4-Dichlorobenzene	ND	2.0	0.39	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,2-Dichloroethane	ND	2.0	0.28	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,1-Dichloroethane	ND	2.0	0.33	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,1-Dichloroethylene	ND	2.0	0.25	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
trans-1,2-Dichloroethylene	ND	2.0	0.40	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,2-Dichloropropane	ND	2.0	0.31	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
cis-1,3-Dichloropropene	ND	2.0	0.47	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,4-Dioxane	ND	50	26	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
trans-1,3-Dichloropropene	ND	2.0	0.37	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Ethanol	50	50	28	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Ethylbenzene	0.44	2.0	0.37	μg/L	1	J	EPA 624.1	11/12/18	11/12/18 12:35	LBD
Methyl tert-Butyl Ether (MTBE)	ND	2.0	0.24	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Methylene Chloride	ND	5.0	0.42	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,1,2,2-Tetrachloroethane	ND	2.0	0.27	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Tetrachloroethylene	ND	2.0	0.32	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Toluene	2.1	1.0	0.35	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,1,1-Trichloroethane	ND	2.0	0.25	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
1,1,2-Trichloroethane	ND	2.0	0.22	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Trichloroethylene	ND	2.0	0.41	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	0.27	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
Vinyl Chloride	ND	2.0	0.30	μg/L	1		EPA 624.1	11/12/18	11/12/18 12:35	LBD
m+p Xylene	1.6	2.0	0.65	μg/L	1	J	EPA 624.1	11/12/18	11/12/18 12:35	LBD
o-Xylene	0.84	2.0	0.35	μg/L	1	J	EPA 624.1	11/12/18	11/12/18 12:35	LBD
Surrogates		% Reco	very	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		102		70-130					11/12/18 12:35	

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

			_						
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Benzo(a)anthracene (SIM)	0.18	0.051	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Benzo(a)pyrene (SIM)	0.15	0.10	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Benzo(b)fluoranthene (SIM)	0.20	0.051	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Benzo(k)fluoranthene (SIM)	ND	0.20	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Chrysene (SIM)	ND	0.20	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Dibenz(a,h)anthracene (SIM)	ND	0.20	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Pentachlorophenol (SIM)	ND	1.0	μg/L	1		EPA 625	11/11/18	11/14/18 12:21	IMR
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
2-Fluorophenol (SIM)		33.5	15-110					11/14/18 12:21	
Phenol-d6 (SIM)		24.4	15-110					11/14/18 12:21	
Nitrobenzene-d5		74.8	30-130					11/14/18 12:21	
2-Fluorobiphenyl		53.1	30-130					11/14/18 12:21	
2,4,6-Tribromophenol (SIM)		85.9	15-110					11/14/18 12:21	
p-Terphenyl-d14		66.4	30-130					11/14/18 12:21	

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - GC/MS

		Se	mivolatile Organic C	ompounds by	y - GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acenaphthene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Acenaphthylene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Anthracene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Benzidine	ND	20	μg/L	1	V-04, V-05, L-04	EPA 625.1	11/11/18	11/13/18 19:36	CDT
Benzo(g,h,i)perylene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
4-Bromophenylphenylether	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Butylbenzylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
4-Chloro-3-methylphenol	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Bis(2-chloroethyl)ether	ND	10	μg/L	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
Bis(2-chloroisopropyl)ether	ND	10	$\mu g/L$	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
2-Chloronaphthalene	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2-Chlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
4-Chlorophenylphenylether	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Di-n-butylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
1,3-Dichlorobenzene	ND	5.1	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
1,4-Dichlorobenzene	ND	5.1	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
1,2-Dichlorobenzene	ND	5.1	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
3,3-Dichlorobenzidine	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,4-Dichlorophenol	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Diethylphthalate	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,4-Dimethylphenol	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Dimethylphthalate	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
4,6-Dinitro-2-methylphenol	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,4-Dinitrophenol	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,4-Dinitrotoluene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,6-Dinitrotoluene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Di-n-octylphthalate	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
1,2-Diphenylhydrazine/Azobenzene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Bis(2-Ethylhexyl)phthalate	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Fluoranthene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Fluorene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Hexachlorobenzene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Hexachlorobutadiene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Hexachlorocyclopentadiene	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Hexachloroethane	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Isophorone	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Naphthalene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Nitrobenzene	ND	10	μg/L μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2-Nitrophenol	ND ND	10	μg/L μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
4-Nitrophenol	ND ND	10		1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
N-Nitrosodimethylamine	ND ND	10	μg/L μg/I	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
N-Nitrosodiphenylamine/Diphenylamine			μg/L		v -2U				
N-Nitrosodi-n-propylamine	ND ND	10	μg/L	1	W 20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
	ND	10	μg/L	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
2-Methylnaphthalene	ND	5.1	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT

Page 10 of 38

11/13/18 19:36

11/13/18 19:36

11/13/18 19:36

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

2-Fluorobiphenyl

p-Terphenyl-d14

2,4,6-Tribromophenol

Semivolatile Organic Compounds by - GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Phenanthrene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2-Methylphenol	ND	10	μg/L	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
Phenol	ND	10	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
3/4-Methylphenol	ND	10	μg/L	1	V-20	EPA 625.1	11/11/18	11/13/18 19:36	CDT
Pyrene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
1,2,4-Trichlorobenzene	ND	5.1	μg/L	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
2,4,6-Trichlorophenol	ND	10	$\mu g/L$	1		EPA 625.1	11/11/18	11/13/18 19:36	CDT
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
2-Fluorophenol		39.7	15-110					11/13/18 19:36	
Phenol-d6		25.0	15-110					11/13/18 19:36	
Nitrobenzene-d5		84.5	30-130					11/13/18 19:36	

30-130

15-110

30-130

67.9

97.5

98.8

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Polychlorinated Biphenyls By GC/ECD

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	0.092	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1221 [1]	ND	0.10	0.080	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1232 [1]	ND	0.10	0.10	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1242 [1]	ND	0.10	0.086	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1248 [1]	ND	0.10	0.095	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1254 [1]	ND	0.10	0.052	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG
Aroclor-1260 [1]	ND	0.10	0.098	$\mu g/L$	1		EPA 608.3	11/10/18	11/13/18 11:20	TG

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
Decachlorobiphenyl [1]	72.5	30-150		11/13/18 11:20
Decachlorobiphenyl [2]	76.0	30-150		11/13/18 11:20
Tetrachloro-m-xylene [1]	77.6	30-150		11/13/18 11:20
Tetrachloro-m-xylene [2]	74.5	30-150		11/13/18 11:20

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Metals	Ana	lyses ((Total)	

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	ND	1.0		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Arsenic	3.3	1.0		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Cadmium	0.21	0.20		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Chromium, Trivalent	0.0039			mg/L	1		Tri Chrome Calc.	11/13/18	11/14/18 12:59	WSD
Copper	14	1.0		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Iron	5.3	0.050		mg/L	1		EPA 200.7	11/12/18	11/13/18 14:49	QNW
Lead	53	0.50		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Mercury	ND	0.00010		mg/L	1		EPA 245.1	11/12/18	11/12/18 15:09	EJB
Nickel	7.4	5.0		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Selenium	1.4	5.0	1.4	$\mu g/L$	1	J	EPA 200.8	11/13/18	11/14/18 12:11	WSD
Silver	ND	0.20		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Zinc	65	20		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:11	WSD
Hardness	260			mg/L	1		EPA 200.7	11/12/18	11/13/18 14:49	QNW

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Chloride	280	25		mg/L	25		EPA 300.0	11/10/18	11/10/18 16:38	IS
Chlorine, Residual	1.0	0.020		mg/L	1	H-03	SM21-22 4500 CL G	11/9/18	11/9/18 17:48	LED
Hexavalent Chromium	ND	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	11/9/18	11/9/18 20:37	LED
Total Suspended Solids	84	3.1		mg/L	1		SM21-22 2540D	11/12/18	11/12/18 12:00	LL
Silica Gel Treated HEM (SGT-HEM)	ND	1.4		mg/L	1		EPA 1664B	11/13/18	11/13/18 11:00	LL

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0452

Date Received: 11/9/2018

Field Sample #: INFLUENT Sampled: 11/8/2018 16:30

Sample ID: 18K0452-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.808	0.375	0.12	mg/L	5		SM19-22 4500 NH3 C		11/13/18 21:19	AAL
Cyanide		ND	0.005	0.001	mg/L	1		SM21-22 4500 CN E		11/13/18 14:47	AAL

Sample Extraction Data

EPA	1664E
-----	-------

EI A 1004D					
Lab Number [Field ID]	Batch	Initial [mL]		Date	
8K0452-01 [INFLUENT]	B217044	1000		11/13/18	
Prep Method: EPA 200.7-EPA 200.7					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B216991	50.0	50.0	11/12/18	
18K0452-01 [INFLUENT]	B216991	50.0		11/12/18	
Prep Method: EPA 200.8-EPA 200.8					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01RE1 [INFLUENT]	B217136	50.0	50.0	11/13/18	
Prep Method: EPA 245.1-EPA 245.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B216964	6.00	6.00	11/12/18	
Prep Method: EPA 300.0-EPA 300.0					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B217172	10.0	10.0	11/10/18	
Prep Method: SW-846 3510C-EPA 608.3					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B216911	1000	5.00	11/10/18	
Prep Method: SW-846 5030B-EPA 624.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B216933	5	5.00	11/12/18	
Prep Method: SW-846 3510C-EPA 625					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B217087	980	1.00	11/11/18	
Prep Method: SW-846 3510C-EPA 625.1					
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
18K0452-01 [INFLUENT]	B216915	980	1.00	11/11/18	

Sample Extraction Data

SM21-22 2540D

Lab Number [Field ID]	Batch	Initial [mL]		Date
18K0452-01 [INFLUENT]	B216941	160		11/12/18
SM21-22 3500 Cr B				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18K0452-01 [INFLUENT]	B216896	50.0	50.0	11/09/18
SM21-22 4500 CL G				
Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date

Prep Method: EPA 200.8-Tri Chrome Calc.

18K0452-01 [INFLUENT]

Lab Number [Field ID]	Batch	Initial [mL]	Date
18K0452-01RE1 [INFLUENT]	B217136	50.0	11/13/18

100

11/09/18

100

B216895

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane (Freon 11)

Trichloroethylene

Xylenes (total)

Vinyl Chloride

m+p Xylene

o-Xylene

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

	n -	Reporting		Spike	Source	WREE	%REC		RPD	27.
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B216933 - SW-846 5030B										
Blank (B216933-BLK1)				Prepared &	Analyzed: 11	/12/18				
Acetone	ND	50	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu \text{g/L}$							
Benzene	ND	1.0	$\mu \text{g/L}$							
Bromodichloromethane	ND	2.0	$\mu g \! / \! L$							
Bromoform	ND	2.0	$\mu g \! / \! L$							
Bromomethane	ND	2.0	$\mu g \! / \! L$							
tert-Butyl Alcohol (TBA)	ND	20	$\mu g\!/\!L$							
Carbon Tetrachloride	ND	2.0	$\mu g \! / \! L$							
Chlorobenzene	ND	2.0	$\mu g/L$							
Chlorodibromomethane	ND	2.0	$\mu g/L$							
Chloroethane	ND	2.0	$\mu g \! / \! L$							
Chloroform	ND	2.0	$\mu \text{g/L}$							
Chloromethane	ND	2.0	$\mu g/L$							
1,2-Dichlorobenzene	ND	2.0	$\mu \text{g/L}$							
1,3-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,4-Dichlorobenzene	ND	2.0	$\mu g/L$							
1,2-Dichloroethane	ND	2.0	$\mu g/L$							
1,1-Dichloroethane	ND	2.0	$\mu g/L$							
1,1-Dichloroethylene	ND	2.0	$\mu g/L$							
trans-1,2-Dichloroethylene	ND	2.0	$\mu g/L$							
1,2-Dichloropropane	ND	2.0	$\mu g/L$							
cis-1,3-Dichloropropene	ND	2.0	μg/L							
1,4-Dioxane	ND	50	$\mu g/L$							
rans-1,3-Dichloropropene	ND	2.0	$\mu g/L$							
Ethanol	ND	50	$\mu g/L$							
Ethylbenzene	ND	2.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	2.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L							
Tetrachloroethylene	ND	2.0	μg/L							
Toluene	ND	1.0	μg/L							

ND

ND

ND

ND

ND

ND

ND

ND

2.0

2.0

2.0

2.0

3.0

2.0

2.0

2.0

 $\mu g \! / \! L$

 $\mu g\!/\!L$

 $\mu \text{g/L}$

 $\mu g/L$

 $\mu g \! / \! L$

 $\mu g/L$

 $\mu g\!/\!L$

 $\mu g \! / \! L$

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216933 - SW-846 5030B										
LCS (B216933-BS1)				Prepared &	Analyzed: 11	/12/18				
Acetone	202	50	μg/L	200		101	70-160			
tert-Amyl Methyl Ether (TAME)	20.5	0.50	$\mu g/L$	20.0		103	70-130			
Benzene	20.2	1.0	$\mu g/L$	20.0		101	65-135			
Bromodichloromethane	20.4	2.0	$\mu g/L$	20.0		102	65-135			
Bromoform	21.1	2.0	$\mu g/L$	20.0		105	70-130			
Bromomethane	14.3	2.0	$\mu g/L$	20.0		71.4	15-185			
tert-Butyl Alcohol (TBA)	193	20	$\mu g/L$	200		96.5	40-160			
Carbon Tetrachloride	21.2	2.0	$\mu g/L$	20.0		106	70-130			
Chlorobenzene	20.6	2.0	$\mu g/L$	20.0		103	65-135			
Chlorodibromomethane	22.6	2.0	μg/L	20.0		113	70-135			
Chloroethane	18.0	2.0	μg/L	20.0		89.8	40-160			
Chloroform	20.2	2.0	μg/L	20.0		101	70-135			
Chloromethane	14.1	2.0	μg/L	20.0		70.3	20-205			
1,2-Dichlorobenzene	19.8	2.0	μg/L	20.0		99.0	65-135			
1,3-Dichlorobenzene	20.0	2.0	μg/L	20.0		99.8	70-130			
1,4-Dichlorobenzene	19.3	2.0	μg/L	20.0		96.5	65-135			
1,2-Dichloroethane	21.1	2.0	μg/L	20.0		106	70-130			
1,1-Dichloroethane	20.4	2.0	μg/L	20.0		102	70-130			
1,1-Dichloroethylene	19.2	2.0	μg/L	20.0		96.1	50-150			
trans-1,2-Dichloroethylene	20.6	2.0	μg/L	20.0		103	70-130			
1,2-Dichloropropane	19.8	2.0	μg/L	20.0		98.8	35-165			
cis-1,3-Dichloropropene	21.0	2.0	μg/L	20.0		105	25-175			
1,4-Dioxane	232	50	μg/L	200		116	40-130			
trans-1,3-Dichloropropene	21.6	2.0	μg/L	20.0		108	50-150			
Ethanol	183	50	μg/L	200		91.4	40-160			
Ethylbenzene	19.7	2.0	μg/L	20.0		98.6	60-140			
Methyl tert-Butyl Ether (MTBE)	20.6	2.0	μg/L	20.0		103	70-130			
Methylene Chloride	18.8	5.0	μg/L	20.0		93.8	60-140			
1,1,2,2-Tetrachloroethane	21.0	2.0	μg/L	20.0		105	60-140			
Tetrachloroethylene	21.5	2.0	μg/L	20.0		107	70-130			
Toluene	20.2	1.0	μg/L	20.0		101	70-130			
1,1,1-Trichloroethane	20.5	2.0	μg/L	20.0		103	70-130			
1,1,2-Trichloroethane	20.6	2.0	μg/L μg/L	20.0		103	70-130			
Trichloroethylene	20.8	2.0	μg/L	20.0		104	65-135			
Trichlorofluoromethane (Freon 11)	19.7	2.0	μg/L	20.0		98.6	50-150			
Vinyl Chloride	16.2	2.0	μg/L	20.0		80.8	5-195			
m+p Xylene	39.7	2.0	μg/L μg/L	40.0		99.3	70-130			
o-Xylene	20.0	2.0	μg/L	20.0		100	70-130			
Surrogate: 1,2-Dichloroethane-d4	25.0		μg/L	25.0		99.8	70-130			
Surrogate: Toluene-d8	25.4		μg/L	25.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	26.1		μg/L	25.0		104	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B217087 - SW-846 3510C										
Blank (B217087-BLK2)				Prepared: 11	/11/18 Anal	yzed: 11/14/	18			
Benzo(a)anthracene (SIM)	ND	0.050	$\mu g/L$							
Benzo(a)pyrene (SIM)	ND	0.10	$\mu g/L$							
Benzo(b)fluoranthene (SIM)	ND	0.050	$\mu g/L$							
Benzo(k)fluoranthene (SIM)	ND	0.20	$\mu g/L$							
Bis(2-ethylhexyl)phthalate (SIM)	ND	1.0	$\mu g/L$							
Chrysene (SIM)	ND	0.20	$\mu g/L$							
Dibenz(a,h)anthracene (SIM)	ND	0.20	$\mu g/L$							
Indeno(1,2,3-cd)pyrene (SIM)	ND	0.20	$\mu g/L$							
Pentachlorophenol (SIM)	ND	1.0	$\mu g/L$							
Surrogate: 2-Fluorophenol (SIM)	79.3		μg/L	200		39.7	15-110			
Surrogate: Phenol-d6 (SIM)	59.6		μg/L	200		29.8	15-110			
Surrogate: Nitrobenzene-d5	75.5		μg/L	100		75.5	30-130			
Surrogate: 2-Fluorobiphenyl	54.5		μg/L	100		54.5	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	163		μg/L	200		81.5	15-110			
Surrogate: p-Terphenyl-d14	72.9		μg/L	100		72.9	30-130			
LCS (B217087-BS2)				Prepared: 11	/11/18 Anal	vzed: 11/14/	18			
Benzo(a)anthracene (SIM)	38.6	1.2	μg/L	50.0	, 11, 10 111111	77.3	40-140			
Benzo(a)pyrene (SIM)	42.0	2.5	μg/L μg/L	50.0		84.0	40-140			
Benzo(b)fluoranthene (SIM)	42.0	1.2	μg/L μg/L	50.0		84.3	40-140			
Benzo(k)fluoranthene (SIM)		5.0	μg/L μg/L	50.0		82.6	40-140			
Bis(2-ethylhexyl)phthalate (SIM)	41.3	25	μg/L μg/L	50.0		97.5	40-140			
Chrysene (SIM)	48.8	5.0								
Dibenz(a,h)anthracene (SIM)	37.3		μg/L	50.0		74.6	40-140			
	44.9	5.0	μg/L	50.0		89.8	40-140			
indeno(1,2,3-cd)pyrene (SIM)	45.2	5.0	μg/L	50.0		90.3	40-140			
Pentachlorophenol (SIM)	29.8	25	μg/L	50.0		59.6	40-140			
Surrogate: 2-Fluorophenol (SIM)	66.6		μg/L	200		33.3	15-110			
Surrogate: Phenol-d6 (SIM)	64.3		μg/L	200		32.1	15-110			
Surrogate: Nitrobenzene-d5	78.9		μg/L	100		78.9	30-130			
Surrogate: 2-Fluorobiphenyl	57.8		μg/L	100		57.8	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	185		μg/L	200		92.3	15-110			
Surrogate: p-Terphenyl-d14	63.7		μg/L	100		63.7	30-130			
LCS Dup (B217087-BSD2)				Prepared: 11	/11/18 Anal	yzed: 11/14/	18			
Benzo(a)anthracene (SIM)	36.6	1.2	$\mu g/L$	50.0		73.2	40-140	5.38	20	
Benzo(a)pyrene (SIM)	39.7	2.5	$\mu g/L$	50.0		79.4	40-140	5.57	20	
Benzo(b)fluoranthene (SIM)	40.0	1.2	$\mu g/L$	50.0		80.0	40-140	5.30	20	
Benzo(k)fluoranthene (SIM)	39.2	5.0	$\mu g \! / \! L$	50.0		78.4	40-140	5.22	20	
Bis(2-ethylhexyl)phthalate (SIM)	46.1	25	$\mu g \! / \! L$	50.0		92.2	40-140	5.59	20	
Chrysene (SIM)	35.4	5.0	$\mu g \! / \! L$	50.0		70.8	40-140	5.23	20	
Dibenz(a,h)anthracene (SIM)	43.2	5.0	$\mu g \! / \! L$	50.0		86.4	40-140	3.80	20	
indeno(1,2,3-cd)pyrene (SIM)	43.6	5.0	$\mu g \! / \! L$	50.0		87.1	40-140	3.61	20	
Pentachlorophenol (SIM)	26.0	25	μg/L	50.0		52.0	40-140	13.6	20	
Surrogate: 2-Fluorophenol (SIM)	71.3		μg/L	200		35.6	15-110			
Surrogate: Phenol-d6 (SIM)	56.4		$\mu g/L$	200		28.2	15-110			
Surrogate: Nitrobenzene-d5	71.2		$\mu g/L$	100		71.2	30-130			
Surrogate: 2-Fluorobiphenyl	55.8		$\mu g/L$	100		55.8	30-130			
Surrogate: 2,4,6-Tribromophenol (SIM)	161		$\mu g/L$	200		80.3	15-110			
Surrogate: p-Terphenyl-d14	58.2		μg/L	100		58.2	30-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216915 - SW-846 3510C										
Blank (B216915-BLK1)				Prepared: 11	/11/18 Anal	yzed: 11/13/1	18			
Acenaphthene	ND	5.0	$\mu \text{g/L}$							
Acenaphthylene	ND	5.0	μg/L							
Anthracene	ND	5.0	μg/L							
Benzidine	ND	20	μg/L							L-04, V-04, V-05
Benzo(g,h,i)perylene	ND	5.0	μg/L							
4-Bromophenylphenylether	ND	10	μg/L							
Butylbenzylphthalate	ND	10	μg/L							
4-Chloro-3-methylphenol	ND	10	μg/L							***
Bis(2-chloroethyl)ether	ND	10	μg/L							V-20
Bis(2-chloroisopropyl)ether	ND	10	μg/L							V-20
2-Chlorophthalene	ND	10	μg/L							
2-Chlorophenol	ND	10	μg/L							
4-Chlorophenylphenylether Di-n-butylphthalate	ND	10 10	μg/L							
1,3-Dichlorobenzene	ND	5.0	μg/L μg/L							
1,4-Dichlorobenzene	ND	5.0	μg/L μg/L							
1,2-Dichlorobenzene	ND ND	5.0	μg/L μg/L							
3,3-Dichlorobenzidine	ND ND	10	μg/L μg/L							
2,4-Dichlorophenol	ND ND	10	μg/L μg/L							
Diethylphthalate	ND ND	10	μg/L							
2,4-Dimethylphenol	ND	10	μg/L							
Dimethylphthalate	ND	10	μg/L							
4,6-Dinitro-2-methylphenol	ND	10	μg/L							
2,4-Dinitrophenol	ND	10	μg/L							
2,4-Dinitrotoluene	ND	10	μg/L							
2,6-Dinitrotoluene	ND	10	μg/L							
Di-n-octylphthalate	ND	10	μg/L							
1,2-Diphenylhydrazine/Azobenzene	ND	10	μg/L							
Bis(2-Ethylhexyl)phthalate	ND	10	$\mu g/L$							
Fluoranthene	ND	5.0	$\mu g/L$							
Fluorene	ND	5.0	$\mu g/L$							
Hexachlorobenzene	ND	10	$\mu g/L$							
Hexachlorobutadiene	ND	10	$\mu g/L$							
Hexachlorocyclopentadiene	ND	10	$\mu g/L$							
Hexachloroethane	ND	10	μg/L							
Isophorone	ND	10	μg/L							
Naphthalene	ND	5.0	$\mu \text{g/L}$							
Nitrobenzene	ND	10	$\mu g\!/\!L$							
2-Nitrophenol	ND	10	μg/L							
4-Nitrophenol	ND	10	$\mu g \! / \! L$							
N-Nitrosodimethylamine	ND	10	μg/L							V-20
N-Nitrosodiphenylamine/Diphenylamine	ND	10	μg/L							
N-Nitrosodi-n-propylamine	ND	10	μg/L							V-20
2-Methylnaphthalene	ND	5.0	μg/L							
Phenanthrene 2 Methylphenel	ND	5.0	μg/L							** **
2-Methylphenol	ND	10	μg/L							V-20
Phenol 2/4 Mathydahanal	ND	10	μg/L							11.20
3/4-Methylphenol	ND	10	μg/L							V-20
Pyrene	ND	5.0	μg/L							
1,2,4-Trichlorobenzene	ND	5.0	μg/L							
2,4,6-Trichlorophenol	ND	10	μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216915 - SW-846 3510C										
Blank (B216915-BLK1)				Prepared: 11	1/11/18 Analy	zed: 11/13/	18			
Surrogate: Phenol-d6	64.3		μg/L	200		32.2	15-110			
Surrogate: Nitrobenzene-d5	86.4		$\mu g/L$	100		86.4	30-130			
Surrogate: 2-Fluorobiphenyl	70.5		$\mu g/L$	100		70.5	30-130			
Surrogate: 2,4,6-Tribromophenol	207		$\mu g/L$	200		103	15-110			
Surrogate: p-Terphenyl-d14	107		$\mu g/L$	100		107	30-130			
LCS (B216915-BS1)				Prepared: 11	1/11/18 Analy	zed: 11/13/	18			
Acenaphthene	39.0	5.0	$\mu g/L$	50.0		78.0	47-145			
Acenaphthylene	40.3	5.0	$\mu \text{g/L}$	50.0		80.7	33-145			
Anthracene	44.5	5.0	$\mu \text{g}/L$	50.0		89.1	27-133			
Benzidine	14.7	20	$\mu \text{g/L}$	50.0		29.5 *	40-140			V-04, V-05, L-04
Benzo(g,h,i)perylene	40.4	5.0	$\mu \text{g}/L$	50.0		80.7	10-219			
4-Bromophenylphenylether	46.8	10	$\mu \text{g/L}$	50.0		93.6	53-127			
Butylbenzylphthalate	46.3	10	$\mu g \! / \! L$	50.0		92.7	10-152			
4-Chloro-3-methylphenol	40.5	10	$\mu g/L$	50.0		81.0	22-147			
Bis(2-chloroethyl)ether	46.4	10	$\mu g/L$	50.0		92.9	12-158			V-06
Bis(2-chloroisopropyl)ether	50.3	10	$\mu g\!/\!L$	50.0		101	36-166			V-06
2-Chloronaphthalene	36.9	10	$\mu \text{g/L}$	50.0		73.9	60-120			
2-Chlorophenol	38.2	10	$\mu \text{g/L}$	50.0		76.3	23-134			
4-Chlorophenylphenylether	42.0	10	$\mu g \! / \! L$	50.0		83.9	25-158			
Di-n-butylphthalate	45.0	10	$\mu g \! / \! L$	50.0		89.9	10-120			
1,3-Dichlorobenzene	35.5	5.0	$\mu g\!/\!L$	50.0		71.1	10-172			
1,4-Dichlorobenzene	36.2	5.0	$\mu g\!/\!L$	50.0		72.4	20-124			
1,2-Dichlorobenzene	37.6	5.0	$\mu g\!/\!L$	50.0		75.3	32-129			
3,3-Dichlorobenzidine	48.4	10	$\mu g\!/\!L$	50.0		96.7	10-262			
2,4-Dichlorophenol	40.8	10	$\mu g\!/\!L$	50.0		81.5	39-135			
Diethylphthalate	41.3	10	$\mu g\!/\!L$	50.0		82.6	10-120			
2,4-Dimethylphenol	35.7	10	$\mu g\!/\!L$	50.0		71.3	32-120			
Dimethylphthalate	42.0	10	$\mu g\!/\!L$	50.0		84.1	10-120			
4,6-Dinitro-2-methylphenol	41.1	10	$\mu g\!/\!L$	50.0		82.3	10-181			
2,4-Dinitrophenol	34.9	10	$\mu g/L$	50.0		69.7	10-191			
2,4-Dinitrotoluene	39.6	10	$\mu g\!/\!L$	50.0		79.3	39-139			
2,6-Dinitrotoluene	41.9	10	$\mu g\!/\!L$	50.0		83.9	50-158			
Di-n-octylphthalate	44.6	10	$\mu g\!/\!L$	50.0		89.2	4-146			
1,2-Diphenylhydrazine/Azobenzene	51.1	10	$\mu g\!/\!L$	50.0		102	40-140			
Bis(2-Ethylhexyl)phthalate	45.5	10	$\mu g\!/\!L$	50.0		91.0	8-158			
Fluoranthene	44.0	5.0	$\mu g \! / \! L$	50.0		88.0	26-137			
Fluorene	40.6	5.0	$\mu g \! / \! L$	50.0		81.2	59-121			
Hexachlorobenzene	46.6	10	$\mu g\!/\!L$	50.0		93.1	10-152			
Hexachlorobutadiene	38.1	10	$\mu g\!/\!L$	50.0		76.2	24-120			
Hexachlorocyclopentadiene	33.4	10	$\mu g\!/\!L$	50.0		66.8	40-140			
Hexachloroethane	38.4	10	$\mu g\!/\!L$	50.0		76.9	40-120			
Isophorone	48.2	10	$\mu g\!/\!L$	50.0		96.3	21-196			
Naphthalene	42.2	5.0	$\mu g\!/\!L$	50.0		84.4	21-133			
Nitrobenzene	43.1	10	$\mu g\!/\!L$	50.0		86.2	35-180			
2-Nitrophenol	41.3	10	$\mu g\!/\!L$	50.0		82.6	29-182			
4-Nitrophenol	18.4	10	$\mu g \! / \! L$	50.0		36.8	10-132			
N-Nitrosodimethylamine	25.0	10	$\mu g\!/\!L$	50.0		49.9	40-140			V-06
N-Nitrosodiphenylamine/Diphenylamine	55.6	10	μg/L	50.0		111	40-140			
N-Nitrosodi-n-propylamine	43.4	10	$\mu g/L$	50.0		86.8	10-230			V-06
2-Methylnaphthalene	44.6	5.0	$\mu g/L$	50.0		89.3	40-140			
Phenanthrene	44.5	5.0	μg/L	50.0		89.1	54-120			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216915 - SW-846 3510C										
LCS (B216915-BS1)				Prepared: 11	/11/18 Anal	yzed: 11/13/	18			
2-Methylphenol	36.2	10	μg/L	50.0		72.3	40-140			V-06
Phenol	17.3	10	$\mu g/L$	50.0		34.6	5-120			
3/4-Methylphenol	32.1	10	$\mu g/L$	50.0		64.2	40-140			V-06
Pyrene	40.7	5.0	μg/L	50.0		81.4	52-120			
1,2,4-Trichlorobenzene	39.4	5.0	$\mu \text{g/L}$	50.0		78.9	44-142			
2,4,6-Trichlorophenol	41.8	10	$\mu \text{g/L}$	50.0		83.7	37-144			
Surrogate: 2-Fluorophenol	104		μg/L	200		52.1	15-110			
Surrogate: Phenol-d6	73.6		$\mu g/L$	200		36.8	15-110			
Surrogate: Nitrobenzene-d5	96.1		$\mu g/L$	100		96.1	30-130			
Surrogate: 2-Fluorobiphenyl	79.7		$\mu g/L$	100		79.7	30-130			
Surrogate: 2,4,6-Tribromophenol	215		$\mu g/L$	200		108	15-110			
Surrogate: p-Terphenyl-d14	95.1		$\mu g/L$	100		95.1	30-130			
LCS Dup (B216915-BSD1)				Prepared: 11	/11/18 Analy	yzed: 11/13/	18			
Acenaphthene	37.7	5.0	μg/L	50.0		75.4	47-145	3.36	48	
Acenaphthylene	38.9	5.0	μg/L	50.0		77.9	33-145	3.53	74	
Anthracene	42.9	5.0	μg/L	50.0		85.8	27-133	3.77	66	
Benzidine	17.6	20	μg/L	50.0		35.3 *	40-140	17.9		L-04, V-04, V-05
Benzo(g,h,i)perylene	41.5	5.0	μg/L	50.0		83.0	10-219	2.81	97	
4-Bromophenylphenylether	44.5	10	μg/L	50.0		89.1	53-127	4.93	43	
Butylbenzylphthalate	45.1	10	μg/L	50.0		90.3	10-152	2.62	60	
4-Chloro-3-methylphenol	39.4	10	μg/L	50.0		78.9	22-147	2.63	73	
Bis(2-chloroethyl)ether	43.0	10	μg/L	50.0		85.9	12-158	7.83	108	V-06
Bis(2-chloroisopropyl)ether	46.4	10	μg/L	50.0		92.9	36-166	8.00	76	V-06
2-Chloronaphthalene	35.6	10	μg/L	50.0		71.1	60-120	3.81	24	
2-Chlorophenol	36.1	10	μg/L	50.0		72.2	23-134	5.55	61	
4-Chlorophenylphenylether	40.2	10	μg/L	50.0		80.4	25-158	4.31	61	
Di-n-butylphthalate	43.9	10	μg/L	50.0		87.8	10-120	2.36	47	
1,3-Dichlorobenzene	34.4	5.0	μg/L	50.0		68.8	10-172	3.29		
1,4-Dichlorobenzene	34.8	5.0	μg/L	50.0		69.6	20-124	3.92		
1,2-Dichlorobenzene	35.8	5.0	μg/L	50.0		71.7	32-129	4.87		
3,3-Dichlorobenzidine	46.2	10	μg/L	50.0		92.3	10-262	4.65	108	
2,4-Dichlorophenol	39.2	10	μg/L	50.0		78.3	39-135	4.00	50	
Diethylphthalate	40.2	10	μg/L	50.0		80.5	10-120	2.67	100	
2,4-Dimethylphenol	38.5	10	μg/L	50.0		76.9	32-120	7.56	58	
Dimethylphthalate	40.2	10	μg/L	50.0		80.4	10-120	4.52	183	
4,6-Dinitro-2-methylphenol	40.6	10	μg/L	50.0		81.3	10-181	1.20	203	
2,4-Dinitrophenol	34.7	10	μg/L	50.0		69.4	10-191	0.460	132	
2,4-Dinitrotoluene	38.6	10	μg/L	50.0		77.3	39-139	2.53	42	
2,6-Dinitrotoluene	40.3	10	μg/L	50.0		80.5	50-158	4.09	48	
Di-n-octylphthalate	43.2	10	μg/L	50.0		86.3	4-146	3.33	69	
1,2-Diphenylhydrazine/Azobenzene	48.1	10	μg/L	50.0		96.2	40-140	6.01		
Bis(2-Ethylhexyl)phthalate	43.7	10	μg/L	50.0		87.4	8-158	3.99	82	
Fluoranthene	42.2	5.0	μg/L	50.0		84.5	26-137	4.08	66	
Fluorene	39.4	5.0	μg/L	50.0		78.7	59-121	3.05	38	
Hexachlorobenzene	45.1	10	μg/L	50.0		90.2	10-152	3.19	55	
Hexachlorobutadiene	36.5	10	μg/L	50.0		73.1	24-120	4.18	62	
Hexachlorocyclopentadiene	32.4	10	μg/L	50.0		64.9	40-140	2.98		
Hexachloroethane	36.4	10	μg/L	50.0		72.9	40-120	5.40	52	
Isophorone	46.6	10	μg/L	50.0		93.2	21-196	3.31	93	
Naphthalene	39.4	5.0	μg/L	50.0		78.9	21-133	6.76	65	
Nitrobenzene	40.7	10	μg/L	50.0		81.5	35-180	5.68	62	

QUALITY CONTROL

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B216915 - SW-846 3510C										
LCS Dup (B216915-BSD1)				Prepared: 11	1/11/18 Anal	yzed: 11/13/	18			
2-Nitrophenol	39.7	10	μg/L	50.0		79.4	29-182	4.00	55	
4-Nitrophenol	17.6	10	$\mu g/L$	50.0		35.2	10-132	4.50	131	
N-Nitrosodimethylamine	23.8	10	$\mu g/L$	50.0		47.6	40-140	4.71		V-06
N-Nitrosodiphenylamine/Diphenylamine	53.8	10	$\mu g/L$	50.0		108	40-140	3.38		
N-Nitrosodi-n-propylamine	40.6	10	$\mu g/L$	50.0		81.3	10-230	6.55	87	V-06
2-Methylnaphthalene	42.8	5.0	$\mu g/L$	50.0		85.5	40-140	4.28	30	
Phenanthrene	43.3	5.0	$\mu g/L$	50.0		86.6	54-120	2.80	39	
2-Methylphenol	33.6	10	$\mu g/L$	50.0		67.2	40-140	7.28	30	V-06
Phenol	16.3	10	$\mu g/L$	50.0		32.6	5-120	5.83	64	
3/4-Methylphenol	30.2	10	$\mu g/L$	50.0		60.4	40-140	6.20	30	V-06
Pyrene	40.1	5.0	μg/L	50.0		80.2	52-120	1.39	49	
1,2,4-Trichlorobenzene	37.3	5.0	μg/L	50.0		74.5	44-142	5.71	50	
2,4,6-Trichlorophenol	40.0	10	$\mu g/L$	50.0		79.9	37-144	4.55	58	
Surrogate: 2-Fluorophenol	98.4		μg/L	200		49.2	15-110			
Surrogate: Phenol-d6	69.7		μg/L	200		34.8	15-110			
Surrogate: Nitrobenzene-d5	91.1		μg/L	100		91.1	30-130			
Surrogate: 2-Fluorobiphenyl	76.2		μg/L	100		76.2	30-130			
Surrogate: 2,4,6-Tribromophenol	211		μg/L	200		105	15-110			
Surrogate: p-Terphenyl-d14	95.1		$\mu g/L$	100		95.1	30-130			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216911 - SW-846 3510C		-		-						
Blank (B216911-BLK1)				Prepared: 11	/10/18 Anal	yzed: 11/13/	18			
Aroclor-1016	ND	0.10	μg/L							
Aroclor-1016 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1221	ND	0.10	$\mu g/L$							
Aroclor-1221 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1232	ND	0.10	$\mu g/L$							
Aroclor-1232 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1242	ND	0.10	$\mu g/L$							
Aroclor-1242 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1248	ND	0.10	$\mu g/L$							
Aroclor-1248 [2C]	ND	0.10	$\mu \text{g/L}$							
Aroclor-1254	ND	0.10	$\mu g \! / \! L$							
Aroclor-1254 [2C]	ND	0.10	$\mu g/L$							
Aroclor-1260	ND	0.10	$\mu g/L$							
Aroclor-1260 [2C]	ND	0.10	μg/L							
Surrogate: Decachlorobiphenyl	1.86		μg/L	2.00		93.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.95		$\mu g/L$	2.00		97.5	30-150			
Surrogate: Tetrachloro-m-xylene	1.56		$\mu g/L$	2.00		78.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.59		μg/L	2.00		79.7	30-150			
LCS (B216911-BS1)				Prepared: 11	/10/18 Anal	yzed: 11/13/	18			
Aroclor-1016	0.47	0.20	μg/L	0.500		93.3	50-140			
Aroclor-1016 [2C]	0.49	0.20	$\mu g/L$	0.500		97.8	50-140			
Aroclor-1260	0.48	0.20	$\mu g/L$	0.500		96.3	8-140			
Aroclor-1260 [2C]	0.50	0.20	$\mu g/L$	0.500		101	8-140			
Surrogate: Decachlorobiphenyl	1.87		μg/L	2.00		93.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.97		$\mu g/L$	2.00		98.3	30-150			
Surrogate: Tetrachloro-m-xylene	1.68		$\mu g/L$	2.00		84.0	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.75		$\mu g/L$	2.00		87.6	30-150			
LCS Dup (B216911-BSD1)				Prepared: 11	/10/18 Anal	yzed: 11/13/	18			
Aroclor-1016	0.44	0.20	μg/L	0.500		87.6	50-140	6.30		
Aroclor-1016 [2C]	0.48	0.20	μg/L	0.500		95.9	50-140	1.97		
Aroclor-1260	0.47	0.20	μg/L	0.500		94.6	8-140	1.78		
Aroclor-1260 [2C]	0.50	0.20	μg/L	0.500		100	8-140	0.102		
Surrogate: Decachlorobiphenyl	1.90		μg/L	2.00		95.2	30-150			
Surrogate: Decachlorobiphenyl [2C]	2.01		μg/L	2.00		100	30-150			
Surrogate: Tetrachloro-m-xylene	1.64		μg/L	2.00		82.2	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.71		μg/L	2.00		85.6	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
·	- count									
Batch B216964 - EPA 245.1				D	A1	/12/12				
Blank (B216964-BLK1)		0.00010	. /*	Prepared &	Analyzed: 11	12/18				
Mercury	ND	0.00010	mg/L							
LCS (B216964-BS1)				Prepared &	Analyzed: 11	/12/18				
Mercury	0.00207	0.00010	mg/L	0.00200		103	85-115			
LCS Dup (B216964-BSD1)				Prepared &	Analyzed: 11	/12/18				
Mercury	0.00205	0.00010	mg/L	0.00200		103	85-115	0.799	20	
Batch B216991 - EPA 200.7										
Blank (B216991-BLK1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Iron	ND	0.050	mg/L			,				
LCS (B216991-BS1)				Prepared: 11	/12/18 Analy	vzed: 11/13/	18			
Iron	4.79	0.050	mg/L	4.00	2-10 / mary	<u> </u>	85-115			L-07
LCS Dup (B216991-BSD1)			-	Prepared: 11	/12/18 Anal-					
Iron	4.51	0.050	mg/L	4.00	/12/10 Analy	113	85-115	6.02	20	
	4.51	*****	- 0	1.00			00 110	0.02	20	
Batch B216993 - EPA 200.8										
Blank (B216993-BLK1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Antimony	ND	1.0	$\mu g\!/\!L$							
Arsenic	ND	1.0	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g\!/\!L$							
Chromium, Trivalent	0.0		mg/L							
Copper	ND	1.0	$\mu g/L$							
Lead	ND	0.50	$\mu g\!/\!L$							
Nickel	ND	5.0	$\mu g\!/\!L$							
Selenium	ND	5.0	$\mu \text{g/L}$							
Silver	ND	0.20	$\mu g/L$							
Zinc	ND	20	$\mu g/L$							
LCS (B216993-BS1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Antimony	578	10	μg/L	500		116 *	85-115			
Arsenic	572	10	$\mu g\!/\!L$	500		114	85-115			
Cadmium	576	2.0	μg/L	500		115	85-115			
Chromium	611	100	$\mu g/L$	500		122 *	85-115			
Copper	1180	10	μg/L	1000		118 *				
				500		109	85-115			
Lead		5.0	μg/L	300		109	03-113			
	545	5.0 50	μg/L μg/L							
Nickel	545 599	50	$\mu g/L$	500		120 *	85-115			
Lead Nickel Selenium Silver	545									

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216993 - EPA 200.8										
LCS Dup (B216993-BSD1)				Prepared: 11	1/12/18 Analy	yzed: 11/13/1	18			
Antimony	580	10	μg/L	500		116 *	85-115	0.337	20	
Arsenic	572	10	$\mu g/L$	500		114	85-115	0.132	20	
Cadmium	575	2.0	$\mu g/L$	500		115	85-115	0.174	20	
Chromium	602	100	$\mu g/L$	500		120 *	85-115	1.49	20	
Copper	1160	10	$\mu g/L$	1000		116 *	85-115	1.62	20	
ead	549	5.0	$\mu g/L$	500		110	85-115	0.742	20	
lickel	598	50	$\mu g/L$	500		120 *	85-115	0.324	20	
elenium	567	50	$\mu g/L$	500		113	85-115	0.0553	20	
ilver	549	2.0	$\mu g/L$	500		110	85-115	1.02	20	
inc	1170	200	$\mu g/L$	1000		117 *	85-115	1.44	20	
satch B217136 - EPA 200.8										
Blank (B217136-BLK1)				Prepared: 11	1/13/18 Anal	yzed: 11/14/1	18			
Antimony	ND	1.0	μg/L							
arsenic	ND	1.0	$\mu \text{g/L}$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g/L$							
Copper	ND	1.0	$\mu g/L$							
ead	ND	0.50	$\mu g/L$							
lickel	ND	5.0	$\mu g/L$							
elenium	ND	5.0	$\mu g/L$							
ilver	ND	0.20	$\mu g/L$							
inc	ND	20	$\mu g/L$							
.CS (B217136-BS1)				Prepared: 11	1/13/18 Analy	yzed: 11/14/1	18			
Antimony	502	10	μg/L	500		100	85-115			
Arsenic	516	10	$\mu g/L$	500		103	85-115			
admium	515	2.0	$\mu g/L$	500		103	85-115			
hromium	528	100	$\mu g/L$	500		106	85-115			
Copper	966	10	$\mu g/L$	1000		96.6	85-115			
ead	490	5.0	$\mu g/L$	500		97.9	85-115			
Vickel	523	50	$\mu g/L$	500		105	85-115			
elenium	504	50	$\mu g/L$	500		101	85-115			
ilver	510	2.0	$\mu g/L$	500		102	85-115			
linc	1070	200	$\mu g/L$	1000		107	85-115			
.CS Dup (B217136-BSD1)				Prepared: 11	1/13/18 Analy	yzed: 11/14/1	18			
Antimony	508	10	$\mu \text{g/L}$	500		102	85-115	1.20	20	
arsenic	511	10	$\mu \text{g/L}$	500		102	85-115	0.890	20	
admium	516	2.0	$\mu \text{g/L}$	500		103	85-115	0.263	20	
Chromium	523	100	$\mu g \! / \! L$	500		105	85-115	0.928	20	
opper	958	10	μg/L	1000		95.8	85-115	0.842	20	
ead	493	5.0	$\mu g \! / \! L$	500		98.6	85-115	0.721	20	
lickel	520	50	μg/L	500		104	85-115	0.490	20	
elenium	501	50	$\mu g/L$	500		100	85-115	0.434	20	
ilver	513	2.0	$\mu g/L$	500		103	85-115	0.475	20	
		200	μg/L					4.22		

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216895 - SM21-22 4500 CL G	T. Court	Ziiiit		20.01	recount	,,,,,	2		2	1.0003
Blank (B216895-BLK1)				Prepared & A	Analyzed: 11	/09/18				
Chlorine, Residual	ND	0.020	mg/L	-						
LCS (B216895-BS1)				Prepared & A	Analyzed: 11	/09/18				
Chlorine, Residual	1.5	0.020	mg/L	1.32		110	76-135			
LCS Dup (B216895-BSD1)				Prepared & A	Analyzed: 11	/09/18				
Chlorine, Residual	1.6	0.020	mg/L	1.32		119	76-135	7.35	7.41	
Batch B216896 - SM21-22 3500 Cr B										
Blank (B216896-BLK1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B216896-BS1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	0.094	0.0040	mg/L	0.100		93.9	83.2-114			
LCS Dup (B216896-BSD1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	0.097	0.0040	mg/L	0.100		96.7	83.2-114	2.88	7.51	
Duplicate (B216896-DUP1)	Sour	ce: 18K0452-	01	Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	ND	0.0040	mg/L		ND)		NC	56.3	H-03
Matrix Spike (B216896-MS1)	Sour	ce: 18K0452-	01	Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	0.12	0.0040	mg/L	0.100	0.0021	114	10.8-151			
Batch B216941 - SM21-22 2540D										
Blank (B216941-BLK1)				Prepared & A	Analyzed: 11	/12/18				
Total Suspended Solids	ND	2.5	mg/L							
LCS (B216941-BS1)				Prepared & A	Analyzed: 11	/12/18				
Total Suspended Solids	204	10	mg/L	200		102	64.3-117			
Batch B217044 - EPA 1664B										
Blank (B217044-BLK1)				Prepared & A	Analyzed: 11	/13/18				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L							
LCS (B217044-BS1)				Prepared & A	Analyzed: 11	/13/18				

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)-Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B217044 - EPA 1664B										
Duplicate (B217044-DUP1)	Source	ce: 18K0452-	01	Prepared &	Analyzed: 11	/13/18				
Silica Gel Treated HEM (SGT-HEM)	ND	1.4	mg/L		ND	1		NC	18	
Batch B217172 - EPA 300.0										
Blank (B217172-BLK1)				Prepared &	Analyzed: 11	/10/18				
Chloride	ND	1.0	mg/L							
LCS (B217172-BS1)				Prepared &	Analyzed: 11	/10/18				
Chloride	10	1.0	mg/L	10.0		101	90-110			
LCS Dup (B217172-BSD1)				Prepared &	Analyzed: 11	/10/18				
Chloride	10	1.0	mg/L	10.0		101	90-110	0.214	20	

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		

EPA 608.3

Lab Sample ID:	B216911-BS1		Date(s) Analyzed:	11/13/2018	11/13/	2018
Instrument ID (1):	ECD1	_	Instrument ID (2):	ECD1		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	RT WINDOW CONCENTRATION		%RPD
7110/12112	002	111	FROM	TO	OONOLIVITUUTION	,,,,,,
Aroclor-1016	1	0.000	0.000	0.000	0.47	
	2	0.000	0.000	0.000	0.49	4.2
Aroclor-1260	1	0.000	0.000	0.000	0.48	
	2	0.000	0.000	0.000	0.50	4.1

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS	Dup	

EPA 608.3

Lab Sample ID:	B216911-BSD1		Date(s) Analyzed:	11/13/2018	11/13/201	8
Instrument ID (1):	ECD1	-	Instrument ID (2):	ECD1		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WI	RT WINDOW CONCENTRATION		%RPD
7.1.7.12	002	FROM TO CONCENTS 0.000 0.000 0.000 0.44 0.000 0.000 0.000 0.48		00110211111111111111	70111 2	
Aroclor-1016	1	0.000	0.000	0.000	0.44	
	2	0.000	0.000	0.000	0.48	8.7
Aroclor-1260	1	0.000	0.000	0.000	0.47	
	2	0.000	0.000	0.000	0.50	6.2

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
J	Detected but below the Reporting Limit (lowest calibration standard); therefore, result is an estimated concentration (CLP J-Flag).
L-04	Laboratory fortified blank/laboratory control sample recovery and duplicate recovery are outside of control limits. Reported value for this compound is likely to be biased on the low side.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
V-04	Initial calibration did not meet method specifications. Compound was calibrated using a response factor where %RSD is outside of method specified criteria. Reported result is estimated.
V-05	
V-03	Continuing calibration did not meet method specifications and was biased on the low side for this compound.
V-05 V-06	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Continuing calibration did not meet method specifications and was biased on the high side for this compound.

CERTIFICATIONS

Certified Analyses included in this Report

Chlorodibromomethane

Analyte	Certifications
EPA 200.7 in Water	
Iron	CT,MA,NH,NY,RI,NC,ME,VA
Hardness	CT,MA,NH,NY,RI,VA
EPA 200.8 in Water	
Antimony	CT,MA,NH,NY,RI,NC,ME,VA
Arsenic	CT,MA,NH,NY,RI,NC,ME,VA
Cadmium	CT,MA,NH,NY,RI,NC,ME,VA
Chromium	CT,MA,NH,NY,RI,NC,ME,VA
Copper	CT,MA,NH,NY,RI,NC,ME,VA
Lead	CT,MA,NH,NY,RI,NC,ME,VA
Nickel	CT,MA,NH,NY,RI,NC,ME,VA
Selenium	CT,MA,NH,NY,RI,NC,ME,VA
Silver	CT,MA,NH,NY,RI,NC,ME,VA
Zinc	CT,MA,NH,NY,RI,NC,ME,VA
EPA 245.1 in Drinking Water	
Mercury	CT,MA,NH,NY,RI,ME,VA
EPA 245.1 in Water	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	CT,MA,NH,RI,NY,NC,ME,VA
Mercury EPA 300.0 in Water	C1, WIA, N11, R1, N C, WIE, V A
	NC NV MA VA ME NIL CT DI
Chloride	NC,NY,MA,VA,ME,NH,CT,RI
EPA 608.3 in Water	
Aroclor-1016	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1016 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1221 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1232 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1242 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1248 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1254 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260	CT,MA,NH,NY,RI,NC,ME,VA
Aroclor-1260 [2C]	CT,MA,NH,NY,RI,NC,ME,VA
EPA 624.1 in Water	
Acetone	CT,NY,MA,NH
tert-Amyl Methyl Ether (TAME)	MA
Benzene	CT,NY,RI,NC,MA,NH
Bromodichloromethane	CT,NY,RI,NC,MA,NH
Bromoform	CT,NY,RI,NC,MA,NH
Bromomethane	CT,NY,RI,NC,MA,NH
tert-Butyl Alcohol (TBA)	MA
Carbon Tetrachloride	CT,NY,RI,NC,MA,NH
Chlorobenzene	CT,NY,RI,NC,MA,NH

CT,NY,RI,NC,MA,NH

CERTIFICATIONS

Certified Analyses included in this Report

Bis(2-chloroethyl)ether

2-Chloronaphthalene

Bis(2-chloroisopropyl)ether

Analyte	Certifications	
EPA 624.1 in Water		
Chloroethane	CT,NY,RI,NC,MA,NH	
Chloroform	CT,NY,RI,NC,MA,NH	
Chloromethane	CT,NY,RI,NC,MA,NH	
1,2-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,3-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,4-Dichlorobenzene	CT,NY,RI,NC,MA,NH	
1,2-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethane	CT,NY,RI,NC,MA,NH	
1,1-Dichloroethylene	CT,NY,RI,NC,MA,NH	
trans-1,2-Dichloroethylene	CT,NY,RI,NC,MA,NH	
1,2-Dichloropropane	CT,NY,RI,NC,MA,NH	
cis-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
1,4-Dioxane	MA	
trans-1,3-Dichloropropene	CT,NY,RI,NC,MA,NH	
Ethanol	MA	
Ethylbenzene	CT,NY,RI,NC,MA,NH	
Methyl tert-Butyl Ether (MTBE)	NY,NC,MA,NH	
Methylene Chloride	CT,NY,RI,NC,MA,NH	
Naphthalene	NC,MA	
1,1,2,2-Tetrachloroethane	CT,NY,RI,NC,MA,NH	
Tetrachloroethylene	CT,NY,RI,NC,MA,NH	
Toluene	CT,NY,RI,NC,MA,NH	
1,2,4-Trichlorobenzene	NC,MA	
1,1,1-Trichloroethane	CT,NY,RI,NC,MA,NH	
1,1,2-Trichloroethane	CT,NY,RI,NC,MA,NH	
Trichloroethylene	CT,NY,RI,NC,MA,NH	
Trichlorofluoromethane (Freon 11)	CT,NY,RI,NC,MA,NH	
Vinyl Chloride	CT,NY,RI,NC,MA,NH	
m+p Xylene	CT,NY,RI,NC,MA,NH	
o-Xylene	CT,NY,RI,NC,MA,NH	
EPA 625 in Water		
2-Fluorophenol	NC,VA	
Phenol-d6	VA	
Nitrobenzene-d5	VA	
EPA 625.1 in Water		
Acenaphthene	CT,MA,NH,NY,NC,RI,ME,VA	
Acenaphthylene	CT,MA,NH,NY,NC,RI,ME,VA	
Anthracene	CT,MA,NH,NY,NC,RI,ME,VA	
Benzidine	CT,MA,NH,NY,NC,RI,ME,VA	
Benzo(g,h,i)perylene	CT,MA,NH,NY,NC,RI,ME,VA	
4-Bromophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA	
Butylbenzylphthalate	CT,MA,NH,NY,NC,RI,ME,VA	
4-Chloro-3-methylphenol	CT,MA,NH,NY,NC,RI,VA	

CT,MA,NH,NY,NC,RI,ME,VA

CT,MA,NH,NY,NC,RI,ME,VA

CT,MA,NH,NY,NC,RI,ME,VA

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA 625.1 in Water	
2-Chlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Chlorophenylphenylether	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-butylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,3-Dichlorobenzene	MA,NC
1,4-Dichlorobenzene	MA,NC
1,2-Dichlorobenzene	MA,NC
3,3-Dichlorobenzidine	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
Diethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dimethylphenol	CT,MA,NH,NY,NC,RI,ME,VA
Dimethylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
4,6-Dinitro-2-methylphenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
2,4-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
2,6-Dinitrotoluene	CT,MA,NH,NY,NC,RI,ME,VA
Di-n-octylphthalate	CT,MA,NH,NY,NC,RI,ME,VA
1,2-Diphenylhydrazine/Azobenzene	NC
Bis(2-Ethylhexyl)phthalate	CT,MA,NH,NY,NC,RI,ME,VA
Fluoranthene	CT,MA,NH,NY,NC,RI,ME,VA
Fluorene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorobutadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachlorocyclopentadiene	CT,MA,NH,NY,NC,RI,ME,VA
Hexachloroethane	CT,MA,NH,NY,NC,RI,ME,VA
Isophorone	CT,MA,NH,NY,NC,RI,ME,VA
Naphthalene	CT,MA,NH,NY,NC,RI,ME,VA
Nitrobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
4-Nitrophenol	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodimethylamine	CT,MA,NH,NY,NC,RI,ME,VA
N-Nitrosodi-n-propylamine	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylnaphthalene	NC
Phenanthrene	CT,MA,NH,NY,NC,RI,ME,VA
2-Methylphenol	NY,NC
Phenol	CT,MA,NH,NY,NC,RI,ME,VA
3/4-Methylphenol	NY,NC
Pyrene	CT,MA,NH,NY,NC,RI,ME,VA
1,2,4-Trichlorobenzene	CT,MA,NH,NY,NC,RI,ME,VA
2,4,6-Trichlorophenol	CT,MA,NH,NY,NC,RI,ME,VA
2-Fluorophenol	NC
SM19-22 4500 NH3 C in Water	
Ammonia as N	NY,MA,CT,RI,VA,NC,ME
SM21-22 2540D in Water	
Total Suspended Solids	CT,MA,NH,NY,RI,NC,ME,VA
SM21-22 3500 Cr B in Water	
Hexavalent Chromium	NY,CT,NH,RI,ME,VA,NC

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

SM21-22 4500 CL G in Water

Chlorine, Residual CT,MA,RI,ME

SM21-22 4500 CN E in Water

Cyanide CT,MA,NH,NY,RI,NC,ME,VA

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Preservation Codes: (= Sodium Hydroxide B = Sodium Bisulfate DW = Drinking Water S = Summa Canister GW = Ground Water WW = Waste Water ³ Container Codes: 0 = Other (please 0 = Other (please 0 = Other (please A = Amber Glass S = Sulfuric Acid M = Methanol N = Nitric Acid T = Tedlar Bag Matrix Codes: 2 Preservation Code O Field Filtered O Field Filtered S = Soil/Solid SL = Sludge Lab to Filter Lab to Filter ST = Sterile 3 Container Code **Thiosulfate** F = Sodium P = Plastic ₹ # of Containers G = Glass V = Vial define) define) 子 子 子 子 define) = Iced A = Air 0 0 Please use the following codes to indicate possible sample concentration within Ethanol by 624 × NELAC and AlHA-LAP, LLC Accredited ⋖ × QUESTIONS ON THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME 15H by 1664 MCP Analytical Certification Form Required TURNAROUND TIME (BUSINESS DAYS) STARTS AT 9:00 AM THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE RCP Analysis Certification Form Required × H - High; M - Medium; L - Low; C - Clean; U - Unknown ⋖ 39 Spruce Street East Longmeadow, MA 01028 PCBs by 608 Program Information Z Hardness × ANALYSIS REQUESTED MA State DW Form Required ⋖ × ZAOC2 Py 625/625 Low PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT the Conc Code column above; > AOCs pλ 624 ۵. × cyanide # GISMd Ni, Se, Ag and Zn by Pb, Hg, z ٥. Sb, As, Cd, Cr III, Cr VI, Cu, Fe, 000 ۵. Chloride and TRC ۵. CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED. م × SSJ ğ 8 M/L 2017 NPDES RGP Standards thagie@Irt-Ilc.net 3 Matrix CHAIN OF CUSTODY RECORD 8 Enhanced Data Package Required: 10-Day 3-Day 4-Day EXCEL Grab × する。のす Composite POF Ending Date/Time = 818 = 818 Email To: ax To# -ormat: Other: 7-Day Other: 2-Day -Day Sample Temp: Beginning Date/Time Other 49-54 Revere Beach Boulevard, Revere, MA Lockwood Remediation Technologies, LLC 89 Crawford Street, Leominster, MA Email: info@contestlabs.com 10. ot. Revere Beach Hotel Jason Overgaard Tammie Hagie Tammie Hagie 774-450-7177 Client Sample ID / Description Phone: 413-525-2332 Date/Time: Date/Time: Fax: 413-525-6405 Date/Time: INFLUENT MI CON-TEST" quished by: (segnature) Relinquished by: (signature) ceived by: (signature) Invoice Recipient: Project Location: Project Manager: Company Name Project Number: Work Order# project stames Con-Test Con-Test Bid: Sampled By: Sample pH: Comments: Address: Phone: Page 37 of 38

18 Kel Woodestats com

大 下 了 I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

Client		Lock waa	•	emedia			, , , , , , , , , , , , , , , , , , , ,		
Receive	ed By	73		Date	11/00	7/2018	Time		6
How were the	•	In Cooler	T	No Cooler		On Ice		No ice	
receive	ed?	Direct from Samp	olina	-		- Ambient		Melted Ice	**************************************
	سا≉ات		By Gun #		•	Actual Tem	p- 3.	 \	
Were sample Temperatur		7	By Blank #		•	Actual Tem		<u> </u>	-
•		red Intoat?	by Didlik 7			Actual Tem s Tampered		11/1	-
	•	ieal Intact? nquished ?	N/		-	es Tampered gree With Sar		10/7	
		iquisried r leaking/loos <u>e</u> caps	on any sam		5 Chan re	(CC VVIIII OG.	ilipics:		***
Is COC in ink			On any Juni		mnles recei	_ ived within ho	aldina time?	7	
Did COC in	_	Client	· 1	Analysis	7		er Name	' -	•
pertinent Info			7	_ /\laiyeie .	7		Dates/Time:	s 7	w
•		d out and legible?	7			<u></u>			-
Are there Lab		• .	\mathcal{L}	•	Who wa	s notified?			
Are there Rus		•	7	_		s notified?			•
Are there Sho		•	Frot			s notified?	LUKE	*************************************	•
Is there enough		∂?	7						w
	-	ere applicable?	NA	•	MS/MSD?	F			
Proper Media	•	* *	7_	•		samples req	uired?	F _	
Were trip blar			F	•	On COC?				•
Do all sample			1	Acid	T		Base		
Vials	#	Containers:	#			#			#
Unp-		1 Liter Amb.		1 Liter	Plastic		16 0	z Amb.	
HCL-		500 mL Amb.			_ Plastic			mb/Clear	
Meoh-		250 mL Amb.			_ Plastic			mb/Clear	
Bisulfate-	************	Flashpoint	Ĺ		acteria			mb/Clear	
DI-		Other Glass			Plastic		1	ncore	
Thiosulfate-		SOC Kit		···	ic Bag		Frozen:		
Sulfuric-		Perchlorate		ZIDI ^o	lock				
				Unused N	Media				
Vials	#	Containers:	#	4 1 14 - 11		#	40-		#
Unp-		1 Liter Amb.			Plastic			z Amb.	ļ
HCL- Meoh-		500 mL Amb. 250 mL Amb.	<u> </u>		Plastic Plastic	 		mb/Clear mb/Clear	
Bisulfate-		Col./Bacteria			- Plastic npoint	 	+	mb/Clear mb/Clear	
DIsulfate-		Other Plastic			Glass			ncore	
Thiosulfate-	was -	SOC Kit		-	ic Bag		Frozen:	ICOIC	
Sulfuric-		Perchlorate		+	lock				
Comments:			·	<u> </u>		<u> </u>	<u>E</u>		
									,

November 14, 2018

Tammie Hagie Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: 49-54 Revere Beach Boulevard, Revere, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 18K0451

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on November 9, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18K0451-01	5
Sample Preparation Information	8
QC Data	9
Metals Analyses (Total)	9
B216964	9
B216991	9
B216993	9
B217136	10
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	11
B216896	11
Flag/Qualifier Summary	12
Certifications	13
Chain of Custody/Sample Receipt	14

Lockwood Remediation Technologies, LLC

89 Crawford Street

REPORT DATE: 11/14/2018

Leominster, MA 01453 ATTN: Tammie Hagie PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18K0451

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 49-54 Revere Beach Boulevard, Revere, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
Sales Creek	18K0451-01	Surface Water		EPA 200.7	
				EPA 200.8	
				EPA 245.1	
				SM19-22 4500 NH3 C	MA M-MA-086/CT
					PH-0574/NY11148
				SM21-22 3500 Cr B	
				Tri Chrome Calc.	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

EPA 200.7

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria. Analyte & Samples(s) Qualified:

B216991-BS1

SM21-22 3500 Cr B

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Hexavalent Chromium

18K0451-01[Sales Creek]

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Tod E. Kopyscinski Laboratory Director

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0451

Date Received: 11/9/2018

Field Sample #: Sales Creek Sampled: 11/8/2018 16:45

Sample ID: 18K0451-01
Sample Matrix: Surface Water

Metals Analyses (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Antimony	1.0	1.0		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Arsenic	3.2	1.0		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Cadmium	ND	0.20		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Chromium	ND	10		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Chromium, Trivalent	0.0			mg/L	1		Tri Chrome Calc.	11/13/18	11/14/18 12:08	WSD
Copper	18	1.0		$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Iron	2.9	0.050		mg/L	1		EPA 200.7	11/12/18	11/13/18 14:42	QNW
Lead	51	0.50		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Mercury	ND	0.00010		mg/L	1		EPA 245.1	11/12/18	11/12/18 15:07	EJB
Nickel	5.3	5.0		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Selenium	8.6	5.0	1.4	$\mu g/L$	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Silver	ND	0.20		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Zinc	77	20		μg/L	1		EPA 200.8	11/13/18	11/14/18 12:08	WSD
Hardness	430			mg/L	1		EPA 200.7	11/12/18	11/13/18 14:42	ONW

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0451

Date Received: 11/9/2018

Field Sample #: Sales Creek Sampled: 11/8/2018 16:45

Sample ID: 18K0451-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Hexavalent Chromium	0.0076	0.0040		mg/L	1	H-03	SM21-22 3500 Cr B	11/9/18	11/9/18 20:37	LED

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0451

Date Received: 11/9/2018

Field Sample #: Sales Creek Sampled: 11/8/2018 16:45

Sample ID: 18K0451-01
Sample Matrix: Surface Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

									Date	Date/Time	
	Analyte	Results	RL	DL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ammonia as N		0.253	0.075	0.024	mg/L	1		SM19-22 4500 NH3 C		11/13/18 21:23	AAL

Sample Extraction Data

Prep Method: EPA 200.7-EPA 200.7

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18K0451-01 [Sales Creek]	B216991	50.0	50.0	11/12/18
18K0451-01 [Sales Creek]	B216991	50.0		11/12/18

Prep Method: EPA 200.8-EPA 200.8

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18K0451-01RE1 [Sales Creek]	B217136	50.0	50.0	11/13/18

Prep Method: EPA 245.1-EPA 245.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date				
18K0451-01 [Sales Creek]	B216964	6.00	6.00	11/12/18				

SM21-22 3500 Cr B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
18K0451-01 [Sales Creek]	B216896	50.0	50.0	11/09/18

Prep Method: EPA 200.8-Tri Chrome Calc.

Lab Number [Field ID]	Batch	Initial [mL]	Date
18K0451-01RE1 [Sales Creek]	B217136	50.0	11/13/18

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
·	- count									
Batch B216964 - EPA 245.1				D	A1	/12/12				
Blank (B216964-BLK1)		0.00010	. /*	Prepared &	Analyzed: 11	12/18				
Mercury	ND	0.00010	mg/L							
LCS (B216964-BS1)				Prepared &	Analyzed: 11	/12/18				
Mercury	0.00207	0.00010	mg/L	0.00200		103	85-115			
LCS Dup (B216964-BSD1)				Prepared &	Analyzed: 11	/12/18				
Mercury	0.00205	0.00010	mg/L	0.00200		103	85-115	0.799	20	
Batch B216991 - EPA 200.7										
Blank (B216991-BLK1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Iron	ND	0.050	mg/L			,				
LCS (B216991-BS1)				Prepared: 11	/12/18 Analy	vzed: 11/13/	18			
Iron	4.79	0.050	mg/L	4.00	2-10 / mary	<u> </u>	85-115			L-07
LCS Dup (B216991-BSD1)			-	Prepared: 11	/12/18 Anal-					
Iron	4.51	0.050	mg/L	4.00	/12/10 Allaly	113	85-115	6.02	20	
	4.51	*****	- 0	1.00			00 110	0.02	20	
Batch B216993 - EPA 200.8										
Blank (B216993-BLK1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Antimony	ND	1.0	$\mu g\!/\!L$							
Arsenic	ND	1.0	$\mu g/L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g\!/\!L$							
Chromium, Trivalent	0.0		mg/L							
Copper	ND	1.0	$\mu g/L$							
Lead	ND	0.50	$\mu g\!/\!L$							
Nickel	ND	5.0	$\mu g\!/\!L$							
Selenium	ND	5.0	$\mu \text{g/L}$							
Silver	ND	0.20	$\mu g/L$							
Zinc	ND	20	$\mu g/L$							
LCS (B216993-BS1)				Prepared: 11	/12/18 Analy	yzed: 11/13/	18			
Antimony	578	10	μg/L	500		116 *	85-115			
Arsenic	572	10	$\mu g\!/\!L$	500		114	85-115			
Cadmium	576	2.0	μg/L	500		115	85-115			
Chromium	611	100	$\mu g/L$	500		122 *	85-115			
Copper	1180	10	μg/L	1000		118 *				
				500		109	85-115			
Lead		5.0	μg/L	300		109	03-113			
	545	5.0 50	μg/L μg/L							
Nickel	545 599	50	$\mu g/L$	500		120 *	85-115			
Lead Nickel Selenium Silver	545									

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216993 - EPA 200.8										
LCS Dup (B216993-BSD1)				Prepared: 11	/12/18 Analy	yzed: 11/13/1	18			
Antimony	580	10	μg/L	500		116 *	85-115	0.337	20	
Arsenic	572	10	$\mu g/L$	500		114	85-115	0.132	20	
Cadmium	575	2.0	$\mu g/L$	500		115	85-115	0.174	20	
Chromium	602	100	$\mu g/L$	500		120 *	85-115	1.49	20	
Copper	1160	10	$\mu g/L$	1000		116 *	85-115	1.62	20	
ead	549	5.0	$\mu g/L$	500		110	85-115	0.742	20	
lickel	598	50	$\mu g/L$	500		120 *	85-115	0.324	20	
elenium	567	50	$\mu g/L$	500		113	85-115	0.0553	20	
ilver	549	2.0	$\mu g/L$	500		110	85-115	1.02	20	
inc	1170	200	$\mu g/L$	1000		117 *	85-115	1.44	20	
eatch B217136 - EPA 200.8										
Blank (B217136-BLK1)				Prepared: 11	/13/18 Analy	yzed: 11/14/1	18			
Antimony	ND	1.0	$\mu g/L$							
Arsenic	ND	1.0	$\mu g \! / \! L$							
Cadmium	ND	0.20	$\mu g/L$							
Chromium	ND	10	$\mu g/L$							
Copper	ND	1.0	$\mu g/L$							
ead	ND	0.50	$\mu g/L$							
fickel	ND	5.0	$\mu g/L$							
elenium	ND	5.0	$\mu g/L$							
ilver	ND	0.20	$\mu g/L$							
inc	ND	20	$\mu g/L$							
.CS (B217136-BS1)				Prepared: 11	/13/18 Analy	yzed: 11/14/1	18			
Antimony	502	10	$\mu g/L$	500		100	85-115			
arsenic	516	10	$\mu g/L$	500		103	85-115			
Cadmium	515	2.0	$\mu g/L$	500		103	85-115			
Chromium	528	100	$\mu g/L$	500		106	85-115			
Copper	966	10	$\mu \text{g/L}$	1000		96.6	85-115			
ead	490	5.0	$\mu \text{g/L}$	500		97.9	85-115			
Nickel	523	50	$\mu \text{g/L}$	500		105	85-115			
elenium	504	50	$\mu \text{g/L}$	500		101	85-115			
lilver	510	2.0	$\mu \text{g/L}$	500		102	85-115			
Cinc	1070	200	μg/L	1000		107	85-115			
LCS Dup (B217136-BSD1)				Prepared: 11	/13/18 Analy	yzed: 11/14/1	18			
Antimony	508	10	$\mu g \! / \! L$	500		102	85-115	1.20	20	
Arsenic	511	10	$\mu \text{g/L}$	500		102	85-115	0.890	20	
Cadmium	516	2.0	$\mu \text{g/L}$	500		103	85-115	0.263	20	
Chromium	523	100	$\mu \text{g/L}$	500		105	85-115	0.928	20	
Copper	958	10	$\mu \text{g/L}$	1000		95.8	85-115	0.842	20	
ead	493	5.0	$\mu \text{g/L}$	500		98.6	85-115	0.721	20	
Nickel	520	50	$\mu \text{g/L}$	500		104	85-115	0.490	20	
Selenium	501	50	$\mu g \! / \! L$	500		100	85-115	0.434	20	
ilver	513	2.0	$\mu g/L$	500		103	85-115	0.475	20	
Zinc	1030	200	$\mu g/L$	1000		103	85-115	4.22	20	

QUALITY CONTROL

$Conventional\ Chemistry\ Parameters\ by\ EPA/APHA/SW-846\ Methods\ (Total)\ -\ Quality\ Control$

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B216896 - SM21-22 3500 Cr B										
Blank (B216896-BLK1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	ND	0.0040	mg/L							
LCS (B216896-BS1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	0.094	0.0040	mg/L	0.100		93.9	83.2-114			
LCS Dup (B216896-BSD1)				Prepared & A	Analyzed: 11	/09/18				
Hexavalent Chromium	0.097	0.0040	mg/L	0.100		96.7	83.2-114	2.88	7.51	

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

CERTIFICATIONS

Certified Analyses included in this Report

Certifications Analyte EPA 200.7 in Water CT,MA,NH,NY,RI,NC,ME,VA Iron Hardness CT,MA,NH,NY,RI,VA EPA 200.8 in Water CT,MA,NH,NY,RI,NC,ME,VA Antimony CT,MA,NH,NY,RI,NC,ME,VA Arsenic Cadmium CT,MA,NH,NY,RI,NC,ME,VA Chromium CT,MA,NH,NY,RI,NC,ME,VA Copper CT,MA,NH,NY,RI,NC,ME,VA Lead CT,MA,NH,NY,RI,NC,ME,VA Nickel CT,MA,NH,NY,RI,NC,ME,VA CT,MA,NH,NY,RI,NC,ME,VA Selenium Silver CT,MA,NH,NY,RI,NC,ME,VA Zinc CT,MA,NH,NY,RI,NC,ME,VA EPA 245.1 in Drinking Water Mercury CT,MA,NH,NY,RI,ME,VA EPA 245.1 in Water Mercury CT,MA,NH,RI,NY,NC,ME,VA SM19-22 4500 NH3 C in Water Ammonia as N NY,MA,CT,RI,VA,NC,ME

SM21-22 3500 Cr B in Water

Hexavalent Chromium NY,CT,NH,RI,ME,VA,NC

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

																		ໍ່ຄໍາ				വ								Ta	able	of	Cor	tents
Page of	# of Containing	# Of Collegifiers	3 Container Code		\$65°	O Lab to Filter		Creation property of the	O Field Filtered	O Lab to Filter		1 Matrix Codes:	GW = Ground Water WW = Waste Water	DW = Drinking Water	S = Soil/Solid	O = Surface Water		2 Preservation Codes:	H = HCL	M = Methanol N = Nitric Acid	S = Sulfuric Acid B = Sodium Bisulfate	X = Sodium Hydroxide		define)	3 Container Codes:	G = Glass	P = Plastic ST = Sterile	y = Vial	T = Tedlar Bag	O = Other (please	Mentile)			
39 Spruce Street East Longmeadow, MA 01028				Olifsted																				Please use the following codes to indicate possible sample concentration within the Conc Code column above:	- Clean; U - Unknown	Program Information	1	MCP Analytical Certification Form Required	wer Alaysis Celtification Form Required MA State DW Form Required			TIBNADALINA TIME (BIKINESS BACK) STADES AT 8-00 AM THE DAY AFTED CAMPIE DECEMBEING THE STREET THE ADEL ADE	CONTRACTOR OF THIS CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS INCORRECT, TURNAROUND TIME	SCUMENT
	-		- d	ASI VSIG					pue		'əş '		×										,	es to indicate possible sam Conc Code column above:	H - High; M - Medium; L - Low; C - Clean;	Program	n n	MCP An	MA Stat	# QISMd	1	NELAC an	OR IS INCORRI	; HAVE BEEN ANSWERED. PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT
Doc # 381 Rev 0 5 8 2015	-		_		. '{		:als: 1, Fe					Total F As, Cd						<u> </u>		-				Conc	Mediun				00	T 1	Т	150 67	ETELY	ONTAM
# 381 F	,	+-	-	╁								Hardne Ammoi	×				-	-			-			owing c	igh; M -							> 40	COMP). NT TO C
Doc				-	·			***************************************				Conc				ļ	-	-		-	-	-		the foll	±							2 A 4 4 4 4	LED OU	SWEREL EFUL NO
IRD	g E]		930						.net							-	-				ļ		ase use		ents						CO DAYES KUP STANDATOS	40T FIL	BE CAR
ttlabs.co	40 Day	ξ	\$ \$ 342 B 77 \$ 3 1 1 1 4	\ \ !	a à		EL.		uired:	thagie@lrt-llc.net		¹ Matrix Code	0				-	-				ļ	i			aremeandooy ii					0000	V KGP S	JRM IS P	HAVE P
r.contes		10-Day			4-Day	A STORY	SXCEL		age Req	hagie(ite Grab	×				-	-						,)	IIIII R					70011	AVC) C	THIS FC	STIONS
ykp://www.contestlabs.com CHAIN OF CUSTODY RECORD			2000			Date 3	PDF		ta Pack	4 ,		Composite												Ú	ر ا ا	ma tomaster					100	LOZ	AIN. IF	LL QUE
$/\mathcal{SKOM}_{CHAIN}$ of custody record		7-Vay			g i		Format:	Other:	Enhanced Data Package Required:	Email To:	Fax To #:	Ending Date/Time	1945 1918													Det						T1445 / D144	THIS CH	CANNOT START UNTIL ALL QUESTIONS HAVE BEEN ANSWERED. PLEASE BE CAREFUL NO
	7 Day	÷ ÷	Š	1-Day	2-Day			₹	En	<u> </u>	Fay		N &						order		-			Sample Temp:								ON LOAD	NO SNO	T STAR
18/) 	ΔM			ere, MA						Beginning Date/Time	245 28/30 30/30	ļ	_				vork					Sample								TIIDNA	QUEST	CANNO
	Ş	haningi	ninster		otel	ırd, Rev		ds.		۵	ā	-							ate v							VE, 01	\$ 9	H		82	188	220	•	
K KM Phone: 413-525-2332	Fax: 413-525-6405	Critwood Remediation Technologies 110	89 Crawford Street Leominster MA	774-450-7177	Revere Beach Hotel	49-54 Revere Beach Boulevard, Revere, MA	2-1759	Tammie Hagie		Tammie Hagie	Jason Overgaard	Client Sample ID / Description	×						Salinity on separate work order	0	0						8	Time:			ihe:	, out	;	ime:
413-52	3-27G-6 p-67G-6	Pmedia	ord Stre	774-4	Revere E	e Beach	2-	Тати		Tamn	Jason	D / D alc	Sales Creek						uo /	7	7					Date/Time:	6/11/2		Date	5	Dath/fiii	Date/Time		Date/Time:
Phone:	rax: 413-525-6405 Fmail: info@contest	wood R	9 Crawf			4 Revere						ent Samp	Sal						alinity	VVM 44/44/40						1		10			N.	4		
ATORY				1		49-5						ថ							N N	<u> </u>					n	ture)	1				7		<u>}</u>	(6)
2 LABOR LABOR						1::	ļ,.	٠		ıŧ:		#1	-											· Γ	· 	(signa	1	Manacure)	多	7	ignation	No.	in in	ignature
COR-KEST®					\$1111E	Project Location:	Project Number:	Project Manager:	st Bid:	Invoice Recipient:	d By:	Con-Test Work Order#											ints:	PH:		Relinquished by (signature)		STA DO		3	Wed/by: (signature)	duished by (affordure)) }	ived by: (signature)
			Address.	Phone:		Project	Project	Project	Con-Test Bid;	Invoice	Sampled By:]						Comments	Sample pH:		Reting	4	receive.	Reting!/	ال F	Page		of	<u>بَدِ</u> 15

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login S		eipt Checklist -				g Acceptan			
Client		ent will be brou	ght to the a Remo	1 1		- State True		Cles	
Receive		7.5	VX ME	Date		9/2018	Time	1850)
How were the		In Cooler	7	No Cooler		On Ice	+	No Ice	
receive				_140 000101_		- Ambient		Melted Ice	
		Direct from Samp	_				17)		
Were sampl	es within	1	By Gun #			Actual Tem	.کـ p -	. L	
Temperature	e? 2-6°C	7	By Blank #			Actual Tem	,		
Was (Custody Se	eal Intact?	<u>NA</u>	•		s Tampered		<u> </u>	4
Was (COC Relind	quished?		Does		ree With Sar	nples?		
Are ther	e broken/le	eaking/loose caps	on any sam		F	_		سب	
ls COC in ink	-		-		iples recei	ved within he			
Did COC in		Client	<i>I</i>	Analysis		-	er Name	<u> </u>	
pertinent Info		Project		ID's		Collection	Dates/Time	s	<u></u>
•		out and legible?		_					
Are there Lab			F	<u>.</u>		s notified?			_
Are there Rus			E	-		s notified?			
Are there Sho	rt Holds?		F		Who wa	s notified?			
s there enoug	gh Volume'	?		-					
s there Head	space whe	re applicable?	NA	-	MS/MSD?				
Proper Media	/Containers	s Used?	7	_		samples rec	uired?	F	
Were trip blar	nks receive	d?	<u></u>	*	On COC?				
Do all sample	s have the	proper pH?	DA TO	Acid _	<u> </u>	•	Base		
Vials	#	Containers:	#			#			#
Jnp-		1 Liter Amb.		1 Liter I				z Amb.	
HCL-		500 mL Amb.		500 mL	•	3		mb/Clear	
Meoh-		250 mL Amb.		250 mL		ユ		mb/Clear	
Bisulfate-		Flashpoint		Col./Ba				mb/Clear	
DI-		Other Glass		Other F				ncore	
Thiosulfate-		SOC Kit		Plastic			Frozen:		
Sulfuric-		Perchlorate		Ziple	OCK				
			0.000.500.6	Unused N	/ledia				
/ials	#	Containers:	#			#		-	#
Jnp-		1 Liter Amb.		1 Liter I				z Amb.	
HCL-		500 mL Amb.		500 mL				mb/Clear	
Meoh-		250 mL Amb.		250 mL				mb/Clear	
Bisulfate-		Col./Bacteria	_	Flash				mb/Clear	
DI-		Other Plastic		Other				ncore	1
Thiosulfate- Sulfuric-		SOC Kit		Plastic			Frozen:		
		Perchlorate		Ziplo	JCK				
Comments:									

sample received out of hold for hexa chrome analysis

November 16, 2018

Tammie Hagie Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA 01453

Project Location: 49-54 Revere Beach Boulevard, Revere, MA

Client Job Number: Project Number: [none]

Laboratory Work Order Number: 18K0682

Keny K. Mille

Enclosed are results of analyses for samples received by the laboratory on November 14, 2018. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kerry K. McGee Project Manager

Table of Contents

Sample Summary	3
Case Narrative	4
Sample Results	5
18K0682-01	5
Flag/Qualifier Summary	6
Certifications	7

Lockwood Remediation Technologies, LLC

89 Crawford Street

REPORT DATE: 11/16/2018

Leominster, MA 01453

ATTN: Tammie Hagie

PURCHASE ORDER NUMBER:

PROJECT NUMBER: [none]

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 18K0682

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: 49-54 Revere Beach Boulevard, Revere, MA

FIELD SAMPLE # LAB ID: MATRIX SAMPLE DESCRIPTION TEST SUB LAB

Sales Creek 18K0682-01 Surface Water SM2520B NY11393/MA-MAI138/M
A1110

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Project Manager

Project Location: 49-54 Revere Beach Boulevard, R Sample Description: Work Order: 18K0682

Date Received: 11/14/2018

Field Sample #: Sales Creek Sampled: 11/8/2018 16:45

Sample ID: 18K0682-01
Sample Matrix: Surface Water

SM 2520 (01)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Salinity		2.04	1.00	ppt (1000)	1		wc-Salinity-SM2520	11/15/18	11/15/18 11:54	ESA

FLAG/QUALIFIER SUMMARY

 OC result is outside of established limit 		blished limit
---	--	---------------

† Wide recovery limits established for difficult compound.

‡ Wide RPD limits established for difficult compound.

Data exceeded client recommended or regulatory level

ND Not Detected

RL Reporting Limit is at the level of quantitation (LOQ)

DL Detection Limit is the lower limit of detection determined by the MDL study

MCL Maximum Contaminant Level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the

calculation which have not been rounded.

No results have been blank subtracted unless specified in the case narrative section.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte Certifications

No certified Analyses included in this Report

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2005	100033	03/1/2020
MA	Massachusetts DEP	M-MA100	06/30/2019
CT	Connecticut Department of Publile Health	PH-0567	09/30/2019
NY	New York State Department of Health	10899 NELAP	04/1/2019
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2019
RI	Rhode Island Department of Health	LAO00112	12/30/2018
NC	North Carolina Div. of Water Quality	652	12/31/2018
NJ	New Jersey DEP	MA007 NELAP	06/30/2019
FL	Florida Department of Health	E871027 NELAP	06/30/2019
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2019
ME	State of Maine	2011028	06/9/2019
VA	Commonwealth of Virginia	460217	12/14/2018
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2019
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2019
NC-DW	North Carolina Department of Health	25703	07/31/2019

Appendix C

Water Treatment System

APPLICATIONS:

Construction

Wellpoint

Sock Dewatering

Remediation

Recharge

Multiple Fluid Transfer

Capabilities

8" Wellpoint Pump

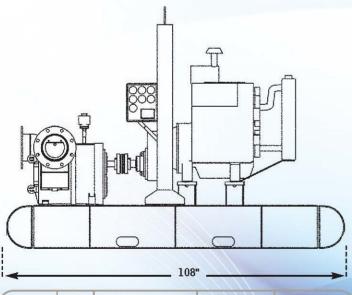
The Rotoflo[™] is the perfect pump for construction dewatering. Whether you are using a wellpoint or sock system, the air/water handling capabilities of the Rotoflo™ will work on your site trouble free - and with minimum use of fuel. The simple design eliminates the need for complicated vacuum priming, floats and air/water separation systems known for failures.

Downtime is reduced thanks to the Maintenance In Place design, which allows for on-site repairs with no special tools or requirements. The 100% bolt-together design adds flexibility to your operations. A few simple steps will convert your skid into a full DOT or off-road trailer. MWI offers a complete line of accessories for your wellpoint and construction dewatering needs. including swing-joints, header pipe, wellpoints and jetting equipment.

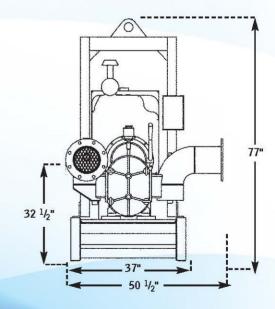
FEATURES

- · High performance (1650 GPM & 210 FT. TDH)
- · Dry running mechanical seals
- · Pumps slurries and brackish waters
- · Choice of diesel engines, electric, or hydraulically driven

- Integral 94 gallon fuel tank with gauge and lockable fuel cap
- · Fuel efficient
- · Pulsation free design
- · Skid or trailer available
- · Rotary lobes, wear plates and seals are easily replaceable on site
- Silent enclosures available (67dB @ 23 Feet) for residential areas


FLOW (USGPM)

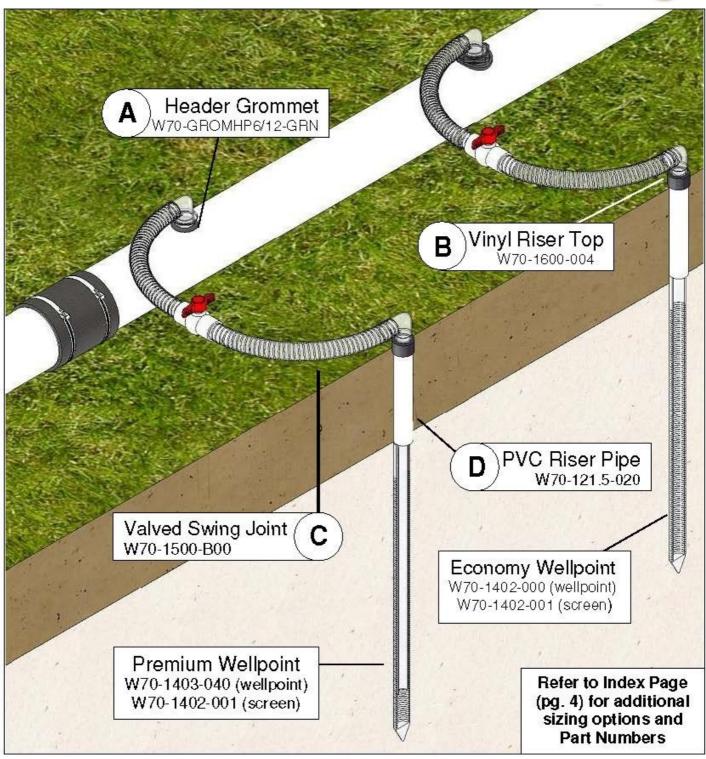
PERFORMANCE

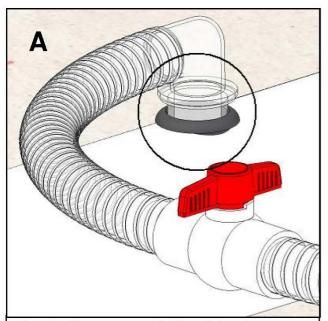

SPEED (RPM)
Test conducted on water.

MATERIALS & SPECIFICATIONS

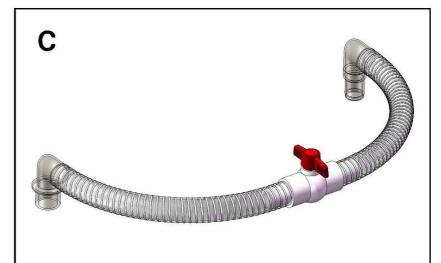
- Pump casing: Cast iron. Special hardened ductile cast iron and stainless steel are available.
- Rotary lobes: Standard bronze body with encapsulated tips with wear and age resistant Buna. Other coating materials available.
- · Wear liner: Stainless steel
- · Shaft: Stainless steel
- Discharge: 8" Flapper check valve
- Mechanical seal: Oil bath, dry running seal, with abrasion resistant silicon carbide faces.
- Diesel Engine Panel: Tach and hour meter, including shutdowns for: low oil pressure, high coolant temperature and overspeed
- Electric Panel: Full or reduced starter. Variable frequency drive (VFD) optional.
- · Weight: 3400 lbs

Model	Size	Max. Capacity (GPM)	Max CFM	Max Head (FT)
RWP008	8"/8"	1650	221	227

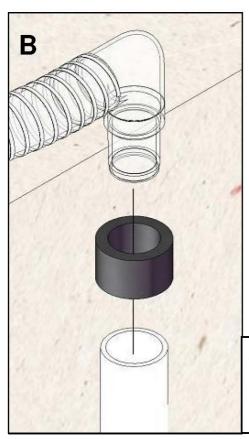



Ask us about the Silent Partner $^{\text{TM}}$ for your Roto Flo $^{\text{TM}}$ pump - a great addition for quiet pump operation.

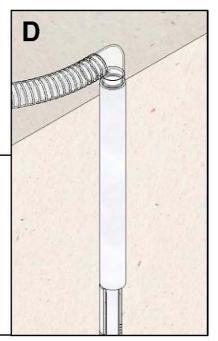
Wellpoint Systems and Accessories



Optional Wellpoint Components


<u>Header Grommet</u> – Rubber fitting for creating a seal between the header pipe and the swing. The lack of a valve is supplemented by integral valves in the swings.

P#: W70-GROMHP6/12-GRN (6-12")


<u>Valved Swing Joint</u> – Swing joint with an integral ball valve fitted in the center, which can supplement the header valves by controlling the flow of air and water to the header pipe from the wellpoints.

P#: W70-1500-B00

PVC Riser Pipe — Used to lengthen the wellpoint to achieve a desired depth. Riser pipes are available in PVC and galvanized steel - typically between 8' and 21' in length, depending on the application (shown smaller for illustrative purposes).

P#: W70-121.5-020 (1.5" x20")

<u>Vinyl Riser Top</u> – Rubber cap for the PVC riser pipe that helps create an air tight seal between the swing and the riser pipe.

P#: W70-1600-004

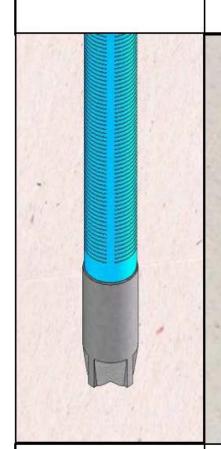
Wellpoints

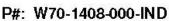
The screen within the wellpoint is the quintessential component of the wellpoint system. The steel, self-jetting wellpoint is the standard, but other options include both the premium and economy PVC models.

Self-Jetting Steel Wellpoint

The standard, self-jetting wellpoint uses a combination of both aluminum and PVC. It features a drop tube which is inserted inside the screen, enabling the wellpoint to draw water from the bottom end of the screen, achieving the maximum draw-down in any given situation. Also, the addition of galvanized "teeth" at the bottom makes the wellpoint "selfjetting", or capable of jetting its own installation point.

GAT Wellpoint


The GAT wellpoint is made entirely of PVC and features a a 1" drop tube which is inserted inside the screen, which enables the wellpoint to draw water from the bottom end of the screen. achieving the maximum draw-down in any given situation. Also, it has a unique "self-iettina" head which enables self-installation in certain soils.


Premium PVC Wellpoint

The Premium Wellpoint is the top of the line in PVC wellpoints. Like the self-jetting steel model, the premium PVC wellpoint features a 1" drop tube inserted within the screen. which enables the wellpoint to draw water from the bottom end of the screen, achieving the maximum drawdown in any given situation.

Economy PVC Wellpoint

The screen of the economy wellpoint maintains structural integrity while reducing dewatering costs and providing high labor productivity. Flexibility is the key to dewatering efficiency with the economy wellpoint from Thompson Pump.

P#: W70-1405-000

P#: W70-1403-040

P#: W

P#: W70-1402-000

Standard Optional

Optional Wellpoint Components Index

<u>Economy PVC Wellpoint</u> - The screen of the economy wellpoint maintains structural integrity while reducing dewatering costs and providing high labor productivity. Flexibility is the key to dewatering efficiency with the economy wellpoint from Thompson Pump.

- WELLPOINT, PVC 1.5" ECONOMY / CLASS160 WITHOUT DROPTUBE P#: W70-1402-000

GAT Wellpoint -

- WELLPOINT, PVC 1.5" GAT / SELF JETTING WITH DROPTUBE P#: W70-1405-000

<u>Header Grommet</u> - Rubber fitting for creating a seal between the header pipe and the swing. The lack of a valve is supplemented by integral valves in the swings.

- GROMMET, HEADER 6"-12" PIPE P#: W70-GROMHP6/12-GRN

<u>Premium PVC Wellpoint</u> - The Premium Wellpoint is the top of the line in PVC wellpoints. Like the self-jetting steel model, the premium PVC wellpoint features a 1" drop tube inserted within the screen, which enables the wellpoint to draw water from the bottom end of the screen, achieving the maximum draw-down in any given situation.

- WELLPOINT, PREMIUM PVC 1.5" / SCH40 WITH DROPTUBE P#: W70-1403-040

<u>PVC Riser Pipe</u> – Used to lengthen the wellpoint to achieve a desired depth. Riser pipes are available in PVC and galvanized steel - typically between 8' and 21' in length, depending on the application.

Item Number Description

- PIPE, RISER PVC 1.25" CLASS160 P#: W70-121.25-020
- PIPE, RISER PVC 1.5" X 20' P#: W70-121.5-020
- PIPE, RISER PVC 1.5" X 20' P#: W70-121.5-020A
- PIPE, RISER PVC 1.5" SCH40 **P#: W70-12.5-020**
- PIPE, RISER PVC 2"x 20' SCH 80 P#: W70-1303-020
- PIPE, RISER PVC 3' X 1.5" 160 **P#: W70-1320-003**
- PIPE, RISER PVC 6' X 1.5" 160 P#: W70-1320-006
- PIPE, RISER PVC 9'x1.5" 160 **P#**: **W70-1320-009**
- PIPE, RISER PVC 10'x1.5" 160 **P#**: **W70-1320-010**
- PIPE, RISER PVC 12'x1.5" 160 P#: W70-1320-012
- PIPE, RISER PVC 15'x1.5" 160 P#: W70-1320-015
- PIPE, RISER PVC 18'x1.5" 160 P#: W70-1320-018
- PIPE, RISER PVC 20'x1.5" 160 P#: W70-1320-020
- PIPE, RISER PVC 20' X 2" 160 P#: W70-1320-020-02

<u>Sock Tape</u> – Used to connect sections of sock together like a Header Coupling would for standard pipe.

<u>Vinyl Riser Top</u> – Rubber cap for the PVC riser pipe that helps create an air tight seal between the swing and the riser pipe.

- TOP, RISER VINYL 1.5" P#: W70-1600-004

<u>Valved Swing Joint</u> – Swing joint with an integral ball valve fitted in the center, which can supplement the header valves by controlling the flow of air and water to the header pipe from the wellpoints.

- SWING, 3' X 1.5" W/BALL VALVE / SWING END TO RISER P#: W70-1500-B00
- SWING, 7' X 1.5 W/BALL VALVE / W/BALL VALVE P#: W70-1501-B00

<u>Wellpoint Sand</u> – Once the hole is jetted for the wellpoint, the rest of the area around the hole is filled in with this fine sine, creating a better vacuum and acting as a screen to filter out unwanted silt and debris.

- SAND, WELLPOINT P#: W70-WELLPOINT-SAND

<u>Wellpoint Clay</u> – Used to patch and seal minor leaks or cracks in various parts of the wellpoint system, such as cracks in a header pipe, sealing the base of a swing to the valve, etc.

- CLAY, WELLPOINT 1LB WRAPPED P#: C89-WLCLA-01

Centrifugal - Single Phase

Motor Protection

All models provide built-in thermal overload protection that shuts down the pump when operating temperature becomes too high, and automatically restarts once the motor cools and a proper temperature is met.

YELLSUB 1 1/4" Discharge 33 GPM - 15' HEAD

The Yellow Submarine is MQ's most lightweight, compact submersible pump. A great choice for common household moving water applications. One piece polymer pump casing body resists corrosion and heat. Includes internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

ST2038P 2" Discharge 60 GPM - 38' HEAD

This lightweight, compact submersible pump is ideal for moving water in multiple confined and open area applications. The unique casing design permits it to draw water to a level of 1/16" without having to place the pump in any kind of sump. The ST2038P incorporates a rugged cast aluminum housing, internal thermal overload protection, and sealed dual shaft seals and bearings .

ST2047 2" Discharge 87 GPM - 47' HEAD

A compact, powerful pump that tackles tough dewatering jobs. Perfect for Contractors, Service Utilities, Municipalities, and Homeowners. The ST2047 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 50' Power Cable with strain relief.

Quality and Safety

ST Series Single Phase Pumps are in accordance with ISO9001 Quality Management System standard. Also, all Single Phase models carry the Underwriters Laboratories (UL) Listing for compliance with both U.S. or Canadian electrical safety codes.

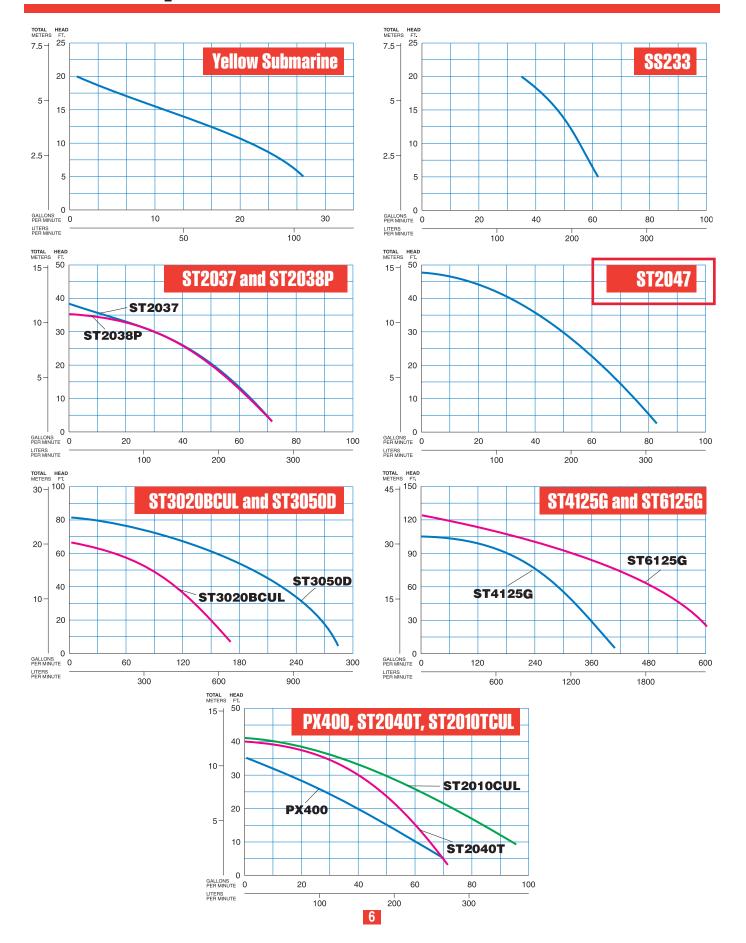
SS233 2" Discharge 60 GPM - 20' HEAD

This lightweight, compact submersible pump is the first choice for many applications: flooded rooms, flat roofs, fill tanks, basins, fountains and waterfalls. Hardy thermoplastic pump casing body resists corrosion and heat. Further, the SS233 incorporates internal thermal overload protection, dual shaft seals, and positive direct drive thermoplastic impeller secured with stainless steel fittings.

ST2037

2" Discharge 73 GPM - 37' HEAD

The ST2037 incorporates a rugged cast aluminum housing, internal thermal overload protection, dual shaft seals, sealed ball bearings impeller and molded 25' Power Cable with strain relief. This is a powerful, versatile, low maintenance pump that is perfect for a wide range of operations supporting Contractors Service Utilities, Municipalities, and Homeowners.


ST3020BCUL 3" Discharge 170 GPM - 72' HEAD

This is a rugged 2HP 230V pump with a heat conducting cast iron/steel motor casing. Pumps liquid up to 120° and de-waters surfaces up to 1/2. The ST3020BCUL incorporates reliable double mechanical oil-filled seals, internal thermal overload protection, sealed ball bearings, Ductile Iron impeller, carrying handle, and molded 50' Power Cable with strain relief. The 6.7" diameter design permits the pump to fit into tight spaces & conduits.

* All Multiquip single phase submersible pumps do not require a Control Box for safe, efficient operations. However, a Control Box may be desired if operations call for a manual ON/OFF Switch option.

Pump Performance Curves

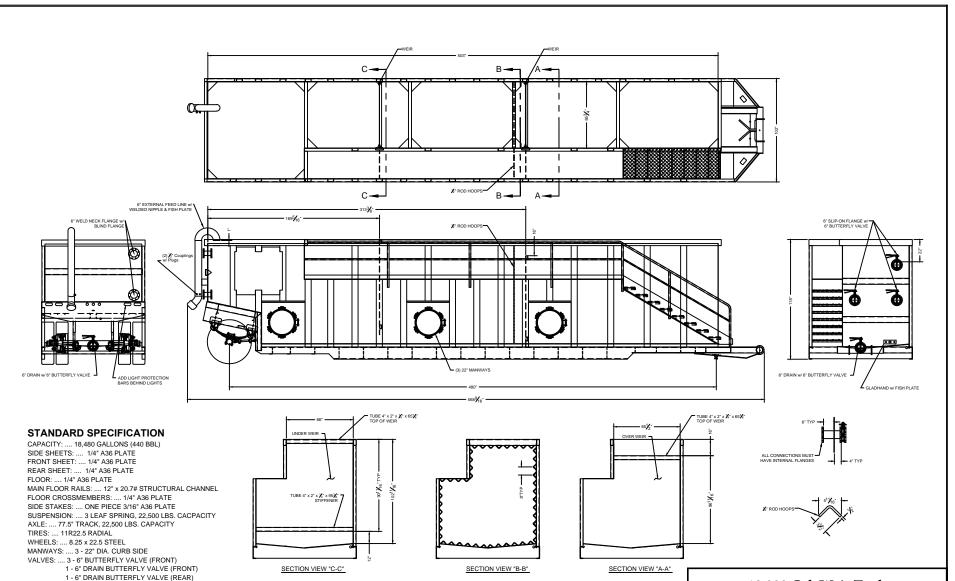
Multiquip Electric Submersible Pumps — Specifications

Model	Impeller	Disc. Size in.	Max. Solids in.	Total Head	Capacity GPM (Ipm)	HP (kw)‡	Voltage; Phase	Starting Amp.	Running Amp.	Cable Length	Diameter in. (mm)	Height in.	Weight Ib (kg)
		(mm)	(mm)	ft. (m)	GFW (ipili)	(KW)+	riiase	Allip.	Allip.	ft. (m)	111. (111111)	(mm)	ib (kg)
CENTRIFUGAL													
YELLSUB*	Heavy Polymer	1¼ (31.7)	-	15 (4.6)	33 (125)	0.25 (.185)	115V 1Ø	11.5	2.5	9 (2.7)	6.25 (159)	9.5 (24)	6 (2.72)
SS233*	Heavy Polymer	2 (50)	-	20 (6.1)	60 (227)	0.5 (0.37)	115V 1Ø	30	6	20 (6.1)	8.1 (206)	14.5 (36.8)	15.5 (7.0)
ST2038P*	Neoprene Rubber over Cast Iron	2 (50)	-	38 (11.5)	60 (227)	1 (0.75)	115V 1Ø	56	8	25 (7.8)	7.7 (196)	15.4 (391)	31 (14)
ST2037*	Neoprene Rubber over Cast Iron	2 (50)	-	37 (11.3)	73 (276)	1 (0.75)	115V 1Ø	34.5	6.9	25 (7.8)	7.4 (188)	15.4 (391)	31 (14)
ST2047*	Neoprene Rubber over Cast Iron	2 (50)	-	47 (14.3)	87 (329)	1 (0.75)	115V 1Ø	49	9.8	50 (15.2)	7.4 (188)	15.4 (391)	33 (15)
ST3020BCUL*	Cast Ductile Iron	3 (75)	-	72 (22)	170 (644)	2 (1.5)	230V 1Ø	52	10.5	50 (15.2)	6.7 (170)	28.5 (720)	67 (30)
ST3050D	Cast Ductile Iron	3 (75)	-	86 (26)	264 (999)	5 (3.75)	230/460V 3Ø	77 (230V) 39 (460V)	14.2 (230V) 7.1 (460V)	50 (15.2)	10.2 (259)	26.8 (680)	120 (54)
ST4125G	Cast Ductile Iron	4 (100)	-	111 (33.8)	360 (1362)	10 (7.5)	230/460V 3Ø	180 (230V) 90 (460V)	24 (230V) 12 (460V)	50 (15.2)	14 (35.6)	33.5 (851)	344 (156)
ST6125G	Cast Ductile Iron	6 (150)	-	112 (34)	706 (2684)	15 (11)	230/460V 3Ø	262 (230V) 131 (460V)	35 (230V) 18 (460V)	50 (15.2)	14.2 (361)	38.8 (986)	390 (177)
TRASH PUMPS													
PX400*	Urethene Resin	2 (50)	1 (25)	34 (10.3)	72 (273)	0.5 (0.37)	115V 1Ø	37	6.2	19 (5.6)	10 (254)	17 (430)	25 (11)
ST2040T*	Neoprene Rubber over Cast Iron	2 (50)	1 (25)	40 (12.2)	79 (299)	1 (0.75)	115V 1Ø	34	6.8	25 (7.8)	10.3 (267)	16.8 (427)	34 (15.4)
ST2010TCUL*	Cast Ductile Iron	2 (50)	1 (25)	45 (13.7)	95 (360)	1 (0.75)	115V 1Ø	53	9.4	50 (15.2)	10.3 (267)	24.5 (622)	77 (35)

Note: Models ST3050D, ST4125G, and ST6125G are 230V/460V pumps that come factory pre-set for 230V operations. If 460V orientation is required, the request must be made at the time of the order. * Complies with UL and Canadian Electrical Standards.

Note: All Multiquip 3-phase submersible pumps require a control box to provide it with all of the operation safety shut-downs and to use with float switches (if required). If these pumps are ordered to replace a unit in an existing application where a control box is already installed then the existing control box may be sufficient. If the pump is part of a new application where a control box is not already present then a control box needs to be ordered with the 3-phase submersible pump. A control box is needed specifically to provide the 3-phase submersible pump with the voltage overload and thermal overload shutdowns, as well as a connection point for the use of float switches.

‡ Engine power ratings are calculated by the individual engine manufacturer and the rating method may vary among engine manufacturers. Multiquip Inc. and its subsidiary companies makes no claim, representation or warranty as to the power rating of the engine on this equipment and disclaims any responsibility or liability of any kind whatsoever with respect to the accuracy of the engine power rating. Users are advised to consult the engine manufacturer's owners manual and its website for specific information regarding the engine power rating.



2 - 6" BLIND FLANGE CONNECTION (REAR)

(EXTERIOR) SSPC-SP-6 (COMMERCIAL BLAST)
PAINT: (INTERIOR) EPOXYPHENOLIC 100% SOLID 20.0 MILS D.F.T.
(EXTERIOR) FINISH COAT POLURETHANE 4.0 TO 5.0 D.F.T.

INLET PIPING: 1 - 6" PIPE SYSTEM (REAR)
BLAST: (INTERIOR) SSPC-SP-10 (NEAR WHITE)

Lockwood Remediation Technologies, LLC

89 Crawford Street Leominster, Massachusetts 01453 O: 774-450-7177 F: 888-835-0617

PAGE 976 JANUARY 2016

Basic Pedestal

Standard Centrifugal Pump Model VGH5B31-B

Size 6" x 5"

PUMP SPECIFICATIONS

Size: 6" x 5" (152 mm x 127 mm) Raised Face Flanges.

Casing: Ductile Iron.

Maximum Operating Pressure 110 psi (662 kPa).*

Enclosed Type, Six Vane Impeller: Gray Iron 40.

Handles 7/8" (23 mm) Diameter Spherical Solids.

Impeller Shaft: Steel 1045.

Two Replaceable Wear Rings: Gray Iron 25.

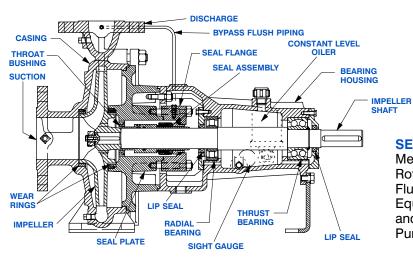
Seal Plate: Ductile Iron. Bypass Flush Piping.

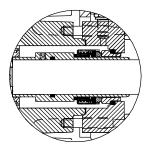
Bearing Housing: Gray Iron 25.

Radial Bearing: Open Cylindrical Roller.

Thrust Bearing: Open Double Row Ball.

Bearing Lubrication: SAE 30 Non-Detergent Oil.


Gaskets: Nitrile Rubber.


Hardware: Standard Plated Steel. **Bearing Housing Level Oiler.**

Optional Equipment: Strainer. NPT Suction and Discharge Flanges. Discharge Check Valve. Consult Factory for Optional Seals.

*Consult Factory for Applications Exceeding Maximum Pressure and/or Temperature Indicated.

SEAL DETAIL

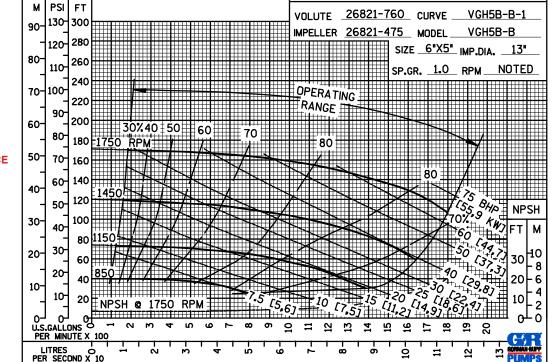
Mechanical, Self-Lubricated. Silicon Carbide Rotating and Stationary Faces. Fluorocarbon Elastomers (DuPont Viton® or Equivalent). Stainless Steel 316 Shaft Sleeve and Spring. Maximum Temperature of Liquid Pumped, 160°F (71°C).*

GORMAN-RUPP PUMPS

www.grpumps.com

Specifications Subject to Change Without Notice

Printed in U.S.A.


Specification Data

SECTION 70, PAGE 976

APPROXIMATE DIMENSIONS and WEIGHTS

NET WEIGHT: 366 LBS. (166 KG.) SHIPPING WEIGHT: 386 LBS. (175 KG.) EXPORT CRATE: 17 CU. FT. (0,5 CU. M.)

32 34

8 8 8 8 8 36

φ φ

4 6

胺

PERFORMANCE BASED ON WATER

CUBIC METRES O PER HOUR X 10 թ թ

GORMAN-RUPP PUMPS

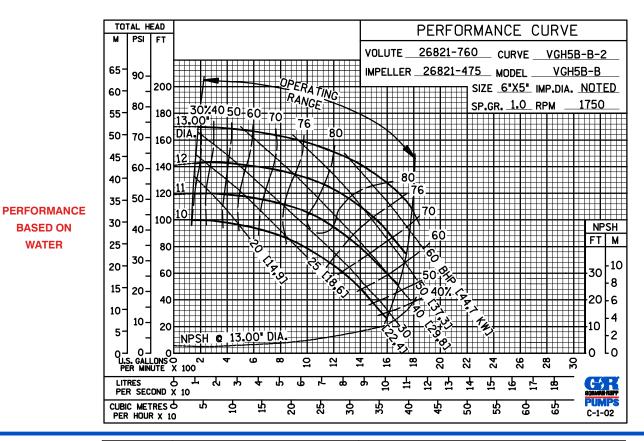
휴 후 성

www.grpumps.com

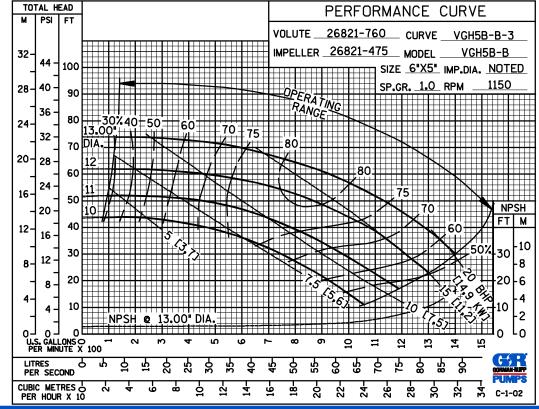
Specifications Subject to Change Without Notice

Printed in U.S.A.

C-8-00


Curve Data

BASED ON


WATER

Sec. 70

PAGE 976.1 JANUARY 2016

PERFORMANCE BASED ON WATER

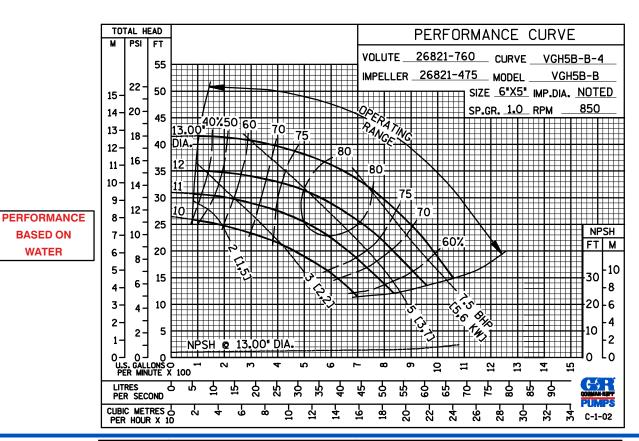
GORMAN-RUPP PUMPS

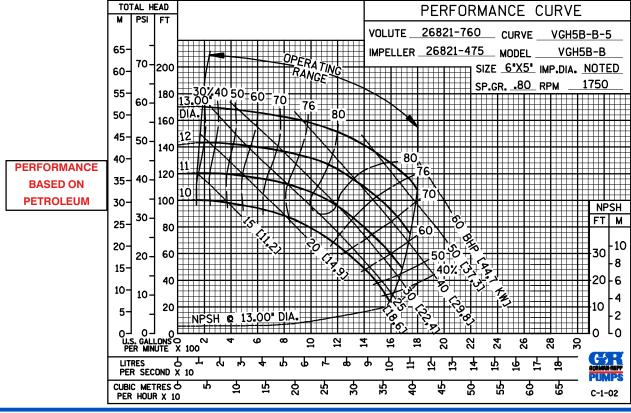
www.grpumps.com

Specifications Subject to Change Without Notice

Printed in U.S.A

Curve Data

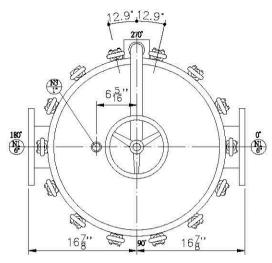

BASED ON


WATER

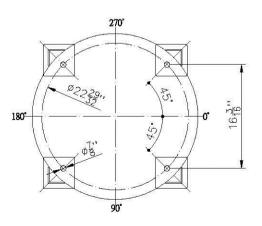
Sec. 70

PAGE 976.2

JANUARY 2016


GORMAN-RUPP PUMPS

www.grpumps.com


Specifications Subject to Change Without Notice

Printed in U.S.A

567 (1) 99112 13 (8) 0.D.ø26" 615° $36\frac{7}{32}$ " 2 INLET OUTLET \(\frac{\hat{N}^2}{6}\) NI (15) N4 18 DRAIN NPT. 67" SIDE VIEW

TOP VIEW

ANCHOR

BILL OF MATERIALS (QUANTITY PER UNIT)

CUSTOMER DESIGN 150 PSIG 90 'C DESTINATION MAX. A.W.P. 150 PSIG 90 'C CUST. P.O. HYDROSTATIC TESTED 225 PSIG CODE CODE CODE CODE CODE CODE CODE N.B. N.B. <th>PROD</th> <th>ORDERS.O W</th> <th>IFG. SERI</th> <th>AL NO.</th> <th></th> <th></th>	PROD	ORDERS.O W	IFG. SERI	AL NO.					
DESTINATION MAX. A.W.P. 150 PSIG 90 ℃ CUST. P.O. HYDROSTATIC TESTED 225 PSIG CUST.EQUIP CODE CODE CODE STAMP N.B. NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1	CUSTO	OMERD	ESIGN	150	_ PSIG	90 .C			
CUST.EQUIP CODE N.B		DESTINATION MAX. A.W.P. 150 PSIG 90 °C							
CUST.EQUIP CODE N.B									
CODE STAMP									
NO OF UNITS SCH SHIP DATE WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 1 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1									
WEIGHT EMPTY KG. FULL KG NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 1 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 6 1 13 BASKET 304 6 1 14 BAG—LOCK DEVICE 304 6 15 <td< td=""><td>NO O</td><td></td><td></td><td></td><td></td><td>I.D</td></td<>	NO O					I.D			
NO. DESCRIPTION MATERIAL UNIT QUAN. PART NO. 1 FILTER COVER 304 1 1 2 FILTER SHELL 304 1 1 3 GASKET EPDM 1 1 4 LEG WELDMENT 304 4 4 5 DAVIT HANDWHEEL 304 1 1 6 DAVIT SCREW 304 1 1 7 DAVIT ARM 304 1 1 8 SEPARATE PLATE 304 1 1 9 EYENUT 304 14 1 10 WASHER 304 14 14 11 EYEBOLT 304 14 1 12 BOLT SUPPORT 304 14 1 13 BASKET 304 6 1 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1									
1 FILTER COVER 304 1 2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	WEIGH	T EMPTY KG.	FULL		_ KG				
2 FILTER SHELL 304 1 3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	NO.	DESCRIPTION	MATERIAL	UNIT	QUAN.	PART NO.			
3 GASKET EPDM 1 4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	1	FILTER COVER	304		1	A CONTRACTOR OF THE CONTRACTOR			
4 LEG WELDMENT 304 4 5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	2	FILTER SHELL	304		1				
5 DAVIT HANDWHEEL 304 1 6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	3	GASKET	EPDM		1				
6 DAVIT SCREW 304 1 7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	4	LEG WELDMENT	304		4				
7 DAVIT ARM 304 1 8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	5	DAVIT HANDWHEEL	304		1				
8 SEPARATE PLATE 304 1 9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	6	DAVIT SCREW	304		1				
9 EYENUT 304 14 10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	7	DAVIT ARM	304		1				
10 WASHER 304 14 11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	8	SEPARATE PLATE	304		1				
11 EYEBOLT 304 14 12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	9	EYENUT	304		14				
12 BOLT SUPPORT 304 14 13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	10	WASHER	304		14				
13 BASKET 304 6 14 BAG-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	11	EYEBOLT	304		14				
14 BAC-LOCK DEVICE 304 6 15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	12	BOLT SUPPORT	304		14				
15 INLET 6" ANSI 150B RF 304 1 16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	13	BASKET	304		6				
16 OUTLET 6" ANSI 150B RF 304 1 17 VENT NPT 1" 304 1	14	BAG-LOCK DEVICE	304		6				
17 VENT NPT 1" 304 1	15	INLET 6" ANSI 150B RF	304		1				
	16	OUTLET 6" ANSI 150B RF	304		1				
18 DRAIN NPT 1" 304 1	17	VENT NPT 1"	304		1				
	18	DRAIN NPT 1"	304		1				

Lockwood Remediation Technologies, LLC 89 Crawford Street Leominster, MA

NAME	REV: A	
Multi-Bag Filter Ve	ssel	SCALE: NONE
PROJECT NO.	ORDER NO.	ITEM NO.
DATE:	LINIT	

Polyester Liquid Filter Bag

Features

- * Polyester liquid bag filter are available with a carbon steel ring, stainless steel ring or plastic flanges.
- * Heavy-duty handle eases installation and removal
- * Metal ring sewn into bag top for increased durability and positive sealing
- * Wide array of media fibers to meet needed temperature and micron specifications

Applications

Polyester liquid filter bags can be used in the filtering of a wide array of industrial and commercial process fluids

Sizes

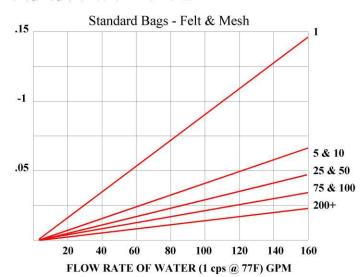
Our liquid filter bags are available for all common liquid bag housings. Dimensions range from 4.12" diameter X 8" length thru 9" diameter X 32" length.

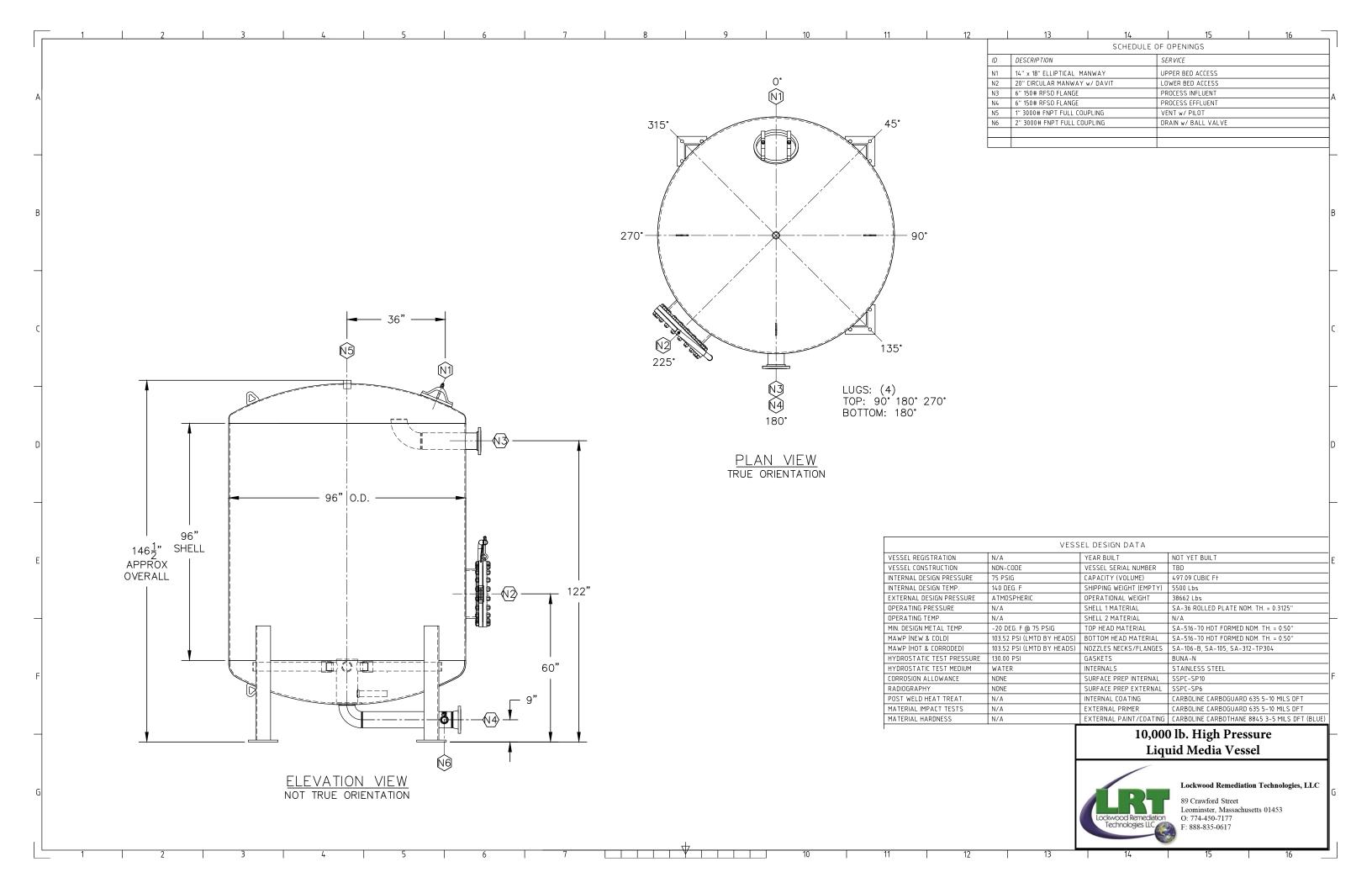
Micron Ratings

Available fibers range from 1 to 1500 microns

Options

- * Bag finish or covers for strict migration requirements.
- * Plastic top O.E.M. replacements
- * Multi-layered filtering capabilities for higher dirt holding capacities


Optional Filter Media


Felt: Nomex, Polyester, Polypropylene

Monofilament: Nylon, Polyester, Polypropylene

Multifilament: Nylon, Polyester

Polypropylene: Oil Removal

89 Crawford Street

Leominster, Massachusetts 01453

Tel: 774.450.7177 Fax: 888.835.0617 www.lrt-llc.net

FILTRATION MEDIA: 8x30 RE-ACTIVATED CARBON 4x10 RE-ACTIVATED CARBON

GENERAL DESCRIPTION

Select Re-Activated carbon from domestic sources is quality screened during our purchasing process for activity, density and fines. The use of re-activated carbon is recommended as a lower cost alternative for most sites where drinking water quality is not necessary. In many cases our re-activated carbon meets and exceeds imported virgin carbon. In addition all carbon either sold by itself or installed in our filtration units traced by lot number to the installation or sale.

8x30 (Liquid Phase) Standard Specifications:	Standard	Value
lodine Number	ASTM D-4607	800 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	8x30 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

4*10 (Vapor Phase) Standard Specifications:	Standard	Value
Carbon Tetrachloride Activity Level	ASTM D-3467	40 Minimum
Moisture Content	ASTM D-2867	5% Maximum (as packed)
Particle Size	ASTM D-2862	4x10 US Mesh
Ash		10% Maximum
Total Surface Area (N2BET)		1050 Minimum
Pore Volume (cc/g)		0.75

89 Crawford Street Leominster, MA 01453 Tel: 774.450.7177 Fax: 888.835.0617

www.lrt-llc.net

SAFETY DATA SHEET

Revision Date: 11/11

1.1 IDENTIFICATION OF PRODUCT.

Designation: - Activated carbon

1.2 COMPANY.

Lockwood Remediation Technologies, LLC Phone: 774-450-7177 89 Crawford Street Fax: 888-835-0617

Leominster, MA 01453

2 HAZARDOUS AND OTHER INGREDIENTS.

Exposure limits may vary. It is recommended that information about locally applicable exposure limits be obtained.

100 Bituminous Carbon 7440-44-0 2 mg/m3 15

mg/m3

T Dust T dust

3 PHYSICAL DATA.

State: Solid

Appearance: Black granule, extradite, or powder

pH: Not applicable
Boiling point or range: Sublimes
Melting point or range: 3550 C (6422 F)
Vapor pressure: 1 @3586 C (6487 F)

Vapor density: 0.4

Density relative to water: 1.5 - 1.8 Specific gravity Solubility in water: Insoluble in water

Partition coefficient:

(n-octanol/water):

Other data: odorless

4 FIRE AND EXPLOSION HAZARD DATA.

Fire, explosion and reactivity hazards: Flammable.

Flammability and flammability limits: Flammable.

Autoflammability: Not applicable.

Explosive properties: Non explosive.

Oxidizing properties: Non oxidizing.

Fire fighting measures:

As with most organic solids, fire is possible at elevated temperatures or by contact with an ignition source.

Explosion:

Fine dust dispersed in air in sufficient concentrations, and in the presence of an ignition source is a potential dust explosion hazard. Minimum explosible concentration 0.140 g/l.

Fire Extinguishing Media:

Water or water spray.

Unusual Fire and Explosion Hazards:

Contact with strong oxidize such as ozone, liquid oxygen, chlorine, permanganate, etc., may result in fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

5 STABILITY AND REACTIVITY DATA.

The product is stable under normal handling and storage conditions.

Conditions to avoid: Incompatibilities.

Materials to avoid: Liquid air and oxidizing materials. Strong oxidizers such as

ozone, liquid oxygen, chlorine, permanganate, etc

Hazardous decomposition products: Involvement in a fire causes formation of carbon dioxide

and carbon monoxide.

Emergency Overview

Emergency Overview

WARNING! FLAMMABLE SOLID. ACTIVATED CARBON AFFECTS THE RESPIRATORY AND CARDIOVASCULAR SYSTEMS.

CAUTION!!! Wet activated carbon removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal regulations.

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 1 - Slight

Flammability Rating: 3 - Severe (Flammable)

Reactivity Rating: 1 - Slight Contact Rating: 1 - Slight

Lab Protective Equip: GOGGLES; LAB COAT; CLASS B EXTINGUISHER

Storage Color Code: Orange (General Storage)

Potential Health Effects

Inhalation:

May cause mild irritation to the respiratory tract. The acute inhalation LC50 (Rat) is >64.4 mg/l (nominal concentration) for activated carbon.

Ingestion:

No adverse effects expected. May cause mild irritation to the gastrointestinal tract. The acute oral LD50 (Rat) is >10g/kg.

Skin Contact:

Not expected to be a health hazard from skin exposure. May cause mild irritation and redness. The primary skin irritation index (Rabbit) is 0.

Eve Contact:

No adverse effects expected. May cause mild irritation, possible reddening.

Chronic Exposure:

Prolonged inhalation of excessive dust may produce pulmonary disorders. The effects of long-term, low-level exposures to this product have not been determined. Safe handling of this material on a long-term basis should emphasize the avoidance of all effects from repetitive acute exposures.

Aggravation of Pre-existing Conditions:

No information found.

6. First Aid Measures

Inhalation:

Remove to fresh air. Get medical attention for any breathing difficulty.

Ingestion:

Give several glasses of water to drink to dilute. If large amounts were swallowed, seek medical attention.

Skin Contact:

Not expected to require first aid measures. Wash exposed area with soap and water. Seek medical attention if irritation develops.

Eye Contact:

Wash thoroughly with running water for at least 15 minutes. Seek medical attention if irritation develops.

7. Accidental Release Measures

Remove all sources of ignition. Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Clean up spills in a manner that does not disperse dust into the air. Use non-sparking tools and equipment. Reduce airborne dust and prevent scattering by moistening with water. Pick up spill for recovery or disposal and place in a closed container. Warning! Spent product may have absorbed hazardous materials.

8. Handling and Storage

Protect against physical damage. Store in a cool, dry well-ventilated location, away from any area where the fire hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfers to avoid static sparks. Storage and use areas should be No Smoking areas. Use non-sparking type tools and equipment, including explosion proof ventilation. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

CAUTION!! Wet activated carbon removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal or national regulations.

9. Exposure Controls/Personal Protection

Exposure Guidelines:

OSHA PEL*:

5mg/M3 (Respirable)

ACGIH TLV*:

10 mg/M3 (Total)

*PELs and TLVs are 8-hour TWAs unless otherwise noted.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

For conditions of use where exposure to the dust or mist is apparent, a half-face dust/mist respirator may be worn. For emergencies or instances where the exposure levels are not known, use a full-face positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear protective gloves and clean body-covering clothing.

Eye Protection:

Use chemical safety goggles. Maintain eye wash fountain and quick-drench facilities in work area.

10. Toxicological Information

Investigated as a reproductive effector.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Activated Carbon (7440-44-0)	No	No	None

11. Ecological Information

Environmental Fate:

No information found.

Environmental Toxicity:

No information found.

12. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be managed in an appropriate and approved waste disposal facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

13. Transport Information

Proper Shipping Name:

NOT REGULATED

Hazard Class:

N/A

Identification Number:

N/A

Packing Group:

N/A

This product has been tested according to the United Nations *Transport of Dangerous Goods* test protocol for spontaneously combustible materials. It has been specifically determined that this product does not meet the definition of a self heating substance or any hazard class, and therefore is not a hazardous material and not regulated.

14. Regulatory Information

SARA TITLE III:

N/A

TSCA:

The ingredients of this product are on the TSCA Inventory List.

OSHA:

Nonhazardous according to definitions of health hazard and physical hazard provided in the Hazard Communication Standard (29 CFR 1910.1200)

CANADA

WHMIS CLASSIFICATION:

Not Classified

DSL#:

6798 **EEC**

Council Directives relating to the classification, packaging, and labeling of dangerous substances and preparations.

Risk (R) and Safety (S) phrases:

May be irritating to eyes (R36).

15. Other Information

NFPA Ratings: Health: 0 Flammability: 1 Reactivity: 0

Label Hazard Warning:

WARNING! FLAMMABLE SOLID. ACTIVATED CARBON AFFECTS THE RESPIRATORY AND CARDIOVASCULAR SYSTEMS.

Label Precautions:

Keep away from heat, sparks and flame. Avoid contact with eyes, skin and clothing. Avoid breathing dust. Keep container closed. Use with adequate ventilation. Wash thoroughly after handling.

Label First Aid:

If inhaled, remove to fresh air. Get medical attention for any breathing difficulty.

RESINTECH CGS is a sodium form standard crosslinked gel strong acid cation resin. *CGS* is optimized for residential applications that require good regeneration efficiency and high capacity. *RESINTECH CGS* is intended for use in all residential and commercial softening applications that do not have significant amounts of chlorine in the feedwater. *CGS* is supplied in the sodium form.

FEATURES & BENEFITS

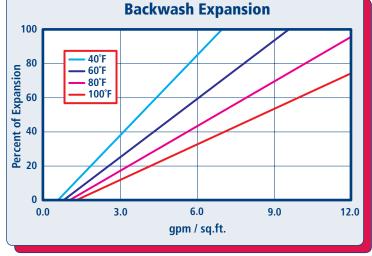
RESIDENTIAL SOFTENING APPLICATIONS

Resin parameters are optimized for residential softeners

LOW COLOR THROW

SUPERIOR PHYSICAL STABILITY

93% plus sphericity and high crush strengths together with carefully controlled particle distribution provides long life and low pressure drop


COMPLIES WITH US FDA REGULATIONS

Conforms to paragraph 21CFR173.25 of the Food Additives Regulations of the US FDA

Prior to first use for potable water, resin should be backwashed for a minimum of 20 minutes, followed by 10 bed volumes of downflow rinse.

HYDRAULIC PROPERTIES

PRESSURE LOSS

The graph above shows the expected pressure loss of *ResinTech CGS* per foot of bed depth as a function of flow rate at various temperatures.

BACKWASH

The graph above shows the expansion characteristics of *ResinTech CGS* as a function of flow rate at various temperatures.

RESINTECH® CGS

PHYSICAL PROPERTIES

Polymer Structure Styrene/DVB

Polymer Type Gel

Functional Group Sulfonic Acid Physical Form Spherical beads

Ionic Form as shipped Sodium

Total Capacity

Sodium form >1.8 meq/mL

Water Retention

Sodium form 40 to 52 percent

Approximate Shipping Weight

Sodium form 50 lbs./cu.ft.

Screen Size Distribution (U.S. mesh) 16 to 50

Maximum Fines Content (<50 mesh) 1 percent

Minimum Sphericity 90 percent

Uniformity Coefficient 1.6 approx.

Resin Color Amber

Note: Physical properties can be certified on a per lot basis, available upon request

SUGGESTED OPERATING CONDITIONS

Maximum continuous temperature

Sodium form 250°F

Minimum bed depth 24 inches

Backwash expansion 25 to 50 percent

Maximum pressure loss 25 psi
Operating pH range 0 to 14 SU

Regenerant Concentration

Salt cycle 10 to 15 percent NaCl Regenerant level 4 to 15 lbs./cu.ft. Regenerant flow rate. 0.5 to 1.5 gpm/cu.ft.

Regenerant contact time >20 minutes

Displacement flow rate

Displacement volume

10 to 15 gallons/cu.ft.

Rinse flow rate

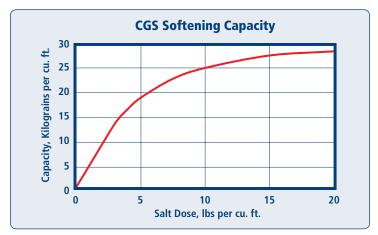
Same as service flow

Rinse volume

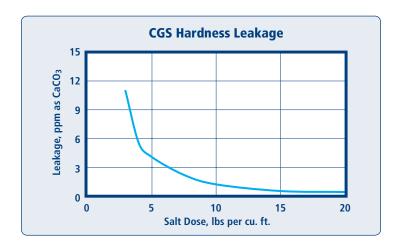
35 to 60 gallons/cu.ft.

Service flow rate

1 to 10 gpm/cu.ft.


Note: These guidelines describe average low risk operating conditions. They are not intended to be absolute minimums or maximums.

For operation outside these guidelines, contact ResinTech Technical Support


APPLICATIONS

SOFTENING

RESINTECH CGS is a standard crosslinked cation resin optimized for residential and commercial applications. This type of resin is easier to regenerate than the higher crosslinked resins. CGS has marginal resistance to chlorine and other oxidants and is not ideal for high temperature and other high stress applications.

Capacity and leakage data are based on the following: 2:1 Ca:Mg ratio, 500 ppm TDS as CaCO3, 0.2% hardness in the salt and 10% brine concentration applied co-currently through the resin over 30 minutes. No engineering downgrade has been applied.

East Coast - West Berlin, NJ p:856.768.9600 • Midwest - Chicago, IL p:708.777.1167 • West Coast - Los Angeles, CA p:323.262.1600

Safety Data Sheet

Product Names: CGS, CGS-BL, CG8, CG8-BL, CG8-C, CG8-F, CG8-UPS, CG8-HP, CG8-NS, CG10, CG10-BL, CG10-UPS, CG10-HP, SACMP, SACMP-UPS

(Cation Exchange Resin in the Sodium Form)

Effective date 31 March 2015

Section 1:	Identification	
1a Product	Names	ResinTech CGS, CGS-BL, CG8, CG8-BL, CG8-C, CG8-F, CG8-UPS, CG8-HP, CG8-NS, CG10, CG10-BL, CG10-UPS, CG10-HP, SACMP, SACMP-UPS
1b Comr	non Name	Cation exchange resin in the sodium form.
1c Intend	ded use	All general purpose cation exchange for general use including water softening and demineralization.
1d Manu Addre	facturer	ResinTech, Inc. 160 Cooper Road, West Berlin, NJ 08091 USA
Phone Email		856-768-9600 ixresin@resintech.com

Section 2: Hazard Identification

OSHA Hazard classification Not hazardous or dangerous

Product Hazard Rating	Scale
Health = 0	0 = Negligible
Fire = 1	1 = Slight
Reactivity = 0	2 = Moderate
Special – N/A	3 = High
	4 = Extreme

2b	Product description	Amber, tan or black colored solid beads with little or no odor.
2c	Precautions for use	Safety glasses and gloves recommended. Slipping hazard if spilled.
2c	Potential health effects	Will cause eye irritation. Ingestion is not likely to pose a health risk.
2d	Environmental effects	Little or none.

Section 2A: Hazard classification UN OSHA globally harmonized system

Warning (contains ion exchange resin)

H320: Causes eye irritation (Category 2B)

Precautionary Statements

P264: Wash hands thoroughly after handling.

P280: Wear protective gloves/protective clothing/eye protection/face protection

P305+351+338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact

lenses if present and easy to do - continue rinsing.

P333+313: If skin irritation or a rash occurs: Get medical advice/attention.

P337+313: If eye irritation persists get medical advice/attention.

P403+233: Store in a well-ventilated place. Keep container tightly closed.

P411: Store at temperatures not exceeding 50 °C/ 122 °F.

Please refer to the safety data sheet for additional information regarding this product

ResinTech, Inc. 160 Cooper Road West Berlin, NJ 08091-9234 856 768-9600 Ixresin@resintech.com

Sec	Section 3: Composition/ Information on Ingredients						
3a	Chemical name	Polystyrene sulfonate in the sodium form					
3b	Ingredients Polystyrene sulfonate in the sodium form Water	CAS# 69011-22-9 (40 - 60%) CAS# 7732-18-5 (40 - 60%)					

Sec	ction 4: First Aid Measures	
4a	Inhalation	No adverse effects expected- normal use of product does not produce odors or vapors.
4b	Skin	Wash with soap and water- seek medical attention if a rash develops.
4c	Eye contact	Wash immediately with water-seek attention if discomfort continues.
4d	Ingestion	No adverse effects expected for small amounts, larger amounts can cause stomach irritation. Seek medical attention if discomfort occurs.
Sec	ction 5: Fire Fighting Measures	
5a	Flammability	NFPA Fire rating = 1
5b	Extinguishing media	Water, CO2, foam, dry powder
5c	Fire fighting Procedures	Follow general fire fighting procedures indicated in the work place.
5d	Protective Equipment	MSHA/NIOSH approved self-contained breathing gear, full protective clothing.
5e	Combustion Products	Carbon oxides and other toxic gasses and vapors.
5f	Unusual Hazards	Product is not combustible until moisture is removed. Resin begins to burn at approximately 230° C. Auto ignition can occur above 500° C.

Sec	ction 6: Accidental Release Measures	
6a	Personal Precautions	Keep people away, spilled resin can be a slipping hazard, wear gloves and safety glasses to minimize skin or eye contact.
6b	Incompatible Chemicals	Strong oxidants can create risk of combustion products similar to burning.
6c	Environmental Precautions	Keep out of public sewers and waterways.
6d	Containment Materials	Use plastic, paper, or metal containers.
6e	Methods of Clean-up	Sweep up material and transfer to containers.
Sec	tion 7: Handling and Storage	
7a	Handling	Avoid prolonged skin contact. Avoid contact with salts or with salty water to prevent premature exhaustion of the resin. Keep resin moist and avoid allowing resin to completely dry.
7 b	Storage	Store in a cool dry place (0° to 45° C) in the original shipping container. This product is thermally sensitive and will have reduced shelf life if subjected to extended periods of time at temperatures exceeding 50° C. Although freezing does not usually damage ion exchange resins, avoid repeated freeze thaw cycles.
7c	TSCA considerations	Ion exchange resins should be listed on the TSCA Inventory in compliance with State and Federal Regulations.
Sec	ction 8: Exposure Controls/Personal Pro	otection
8a	OSHA exposure limits	None noted.
8b	Engineering Controls	Provide adequate ventilation.
8c	Personal Protection Measures Eye Protection Respiratory Protection Protective Gloves	Safety glasses or goggles. Not required for normal use. Recommended for extended contact.

Section 9: Physical and Chemical Properties

Appearance Amber, tan, or black beads.

Flammability or explosive limits Flammable above 500° C

Odor None

Physical State Solid

Not available Vapor pressure Odor threshold Not available Vapor density Not available

Near neutral (6 to 8 typical) рH

Relative density Approx 800 grams/Liter

Melting point/freezing point Does not melt, freezes at approx. 0 C

Insoluble in water and most solvents Solubility

Boiling point Does not boil Flash point Approx 500° C

Evaporation rate Does not evaporate

Partition Coefficient (n-octonol/water) Not applicable Auto-ignition temperature Approx 500° C Above 230° C Decomposition temperature Viscosity Not applicable

Section 10: Stability and Reactivity

10a Stability Stable under normal conditions.

10b Conditions to Avoid Heat, exposure to strong oxidants.

Organic sulfonates, charred polystyrene, aromatic 10c Hazardous by-products

> acids and hydrocarbons, organic amines, nitrogen oxides, carbon oxides, chlorinated hydrocarbons.

10d Incompatible materials Strong oxidizing agents (such as HNO₃)

10e Hazardous Polymerization Does not occur **Section 11: Toxicological Information**

11a Likely Routes of Exposure Oral, skin or eye contact.

11b Effects of exposure

Delayed None known.
Immediate (acute) None known.
Chronic None known.

11c Toxicity Measures

Skin Adsorption Unlikely.

Ingestion Oral toxicity believed to be low but no LD50 has

been established.

Inhalation Unknown, vapors are very unlikely due to physical

properties (insoluble solid).

11d Toxicity Symptoms

Skin Adsorption Mild rash.

Ingestion Indigestion or general malaise.

Inhalation Unknown.

11e Carcinogenicity None known

Section 12: Ecological information

12a Eco toxicity Not harmful to plant or animal life.

12b Mobility Insoluble.

12c Biodegradability Not biodegradable.

12d Bioaccumulation Insignificant.

12e Other adverse effects Not Harmful to the environment.

Section 42: Diamond Compidentians	
Section 13: Disposal Considerations 13a General considerations	Material is non-hazardous.
13b Disposal Containers	Most plastic and paper containers are suitable.
13c Disposal methods	No specific method necessary
13d Sewage Disposal	Not recommended
13e Precautions for incineration	May release toxic vapors when burned
13f Precautions for landfills	Resins used to remove hazardous materials may then become hazardous mixtures.
Section 14: Transportation Information	
14a Transportation Class	Not classified as a dangerous good for transport by land, sea, or air.
14b TDG	Not regulated.
14c IATA	Not regulated.
14d DOT (49 CFR 172.101)	Not Regulated.
Section 15: Regulatory Information	
15a CERCLA	Not regulated
15b SARA Title III	Not regulated
15c Clean Air act	Not regulated
15d Clean Water Act	Not regulated
15e TSCA	Not regulated
15f Canadian Regulations WHMIS TDG	Not a controlled product Not regulated
15g Mexican Regulations	Not Dangerous

Section 16: Other Information

The information provided in this safety data sheet is presented in good faith and believed to be accurate as of the effective data shown above. However, no warranty or guarantee of accuracy, express or implied is given. Regulatory requirements are subject to change and may differ from one location to another. It is the buyer's responsibility to ensure that their activities comply with federal, state, and local laws.

16a Date of Revision 31 March 2015

GROOVED & SMOOTH-END FLOWMETER MODEL MG/MS100 SPECIFICATIONS

PERFORMANCE

ACCURACY/REPEATABILITY: ±2% of reading

guaranteed throughout full range. ±1% over reduced

range. Repeatability 0.25% or better. RANGE: (see dimensions chart below) HEAD LOSS: (see dimensions chart below)

MAXIMUM TEMPERATURE: (Standard Construction)

160°F constant

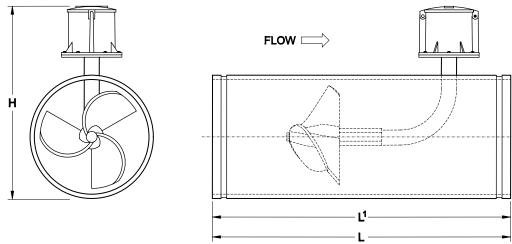
PRESSURE RATING: 150 psi

MATERIALS

TUBE: Epoxy-coated carbon steel.

BEARING ASSEMBLY: Impeller shaft is 316 stainless steel.

Ball bearings are 440C stainless steel.


MAGNETS: (Permanent type) Cast or sintered alnico BEARING HOUSING: Brass; Stainless Steel optional IMPELLER: Impellers are manufactured of high-impact plastic, retaining their shape and accuracy over the life of the meter. High temperature impeller is optional.

REGISTER: An instantaneous flowrate indicator and six-digit straight-reading totalizer are standard. The register is hermetically sealed within a die cast aluminum case. This protective housing includes a domed acrylic lens and hinged lens cover with locking hasn

COATING: Fusion-bonded epoxy

OPTIONS

- Forward/reverse flow measurement
- High temperature construction
- "Over Run" bearing assembly for higher-than-normal flowrates
- Electronic Propeller Meter available in all sizes of this model
- A complete line of flow recording/control instrumentation
- · Straightening vanes and register extensions available
- Certified calibration test results

McCrometer reserves the right to change design or specifications without notice.
--

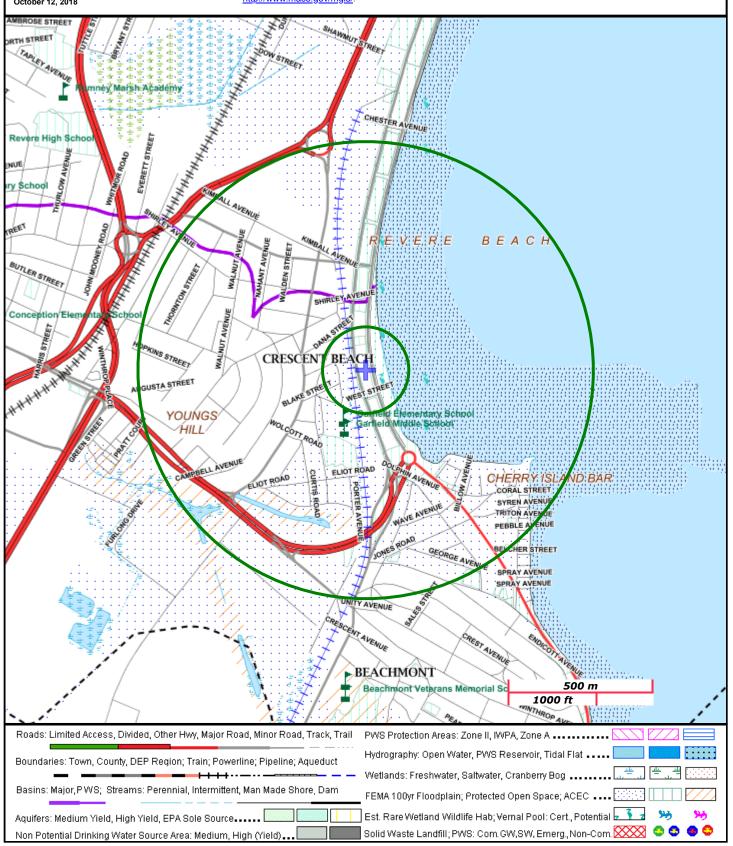
MG100 / MS100			DIMENSIONS										
Meter Size (inches)	2	2 1/2	3	4	6	8	10	12	14	16	18	20	24
Maximum Flow U.S. GPM	250	250	250	600	1200	1500	1800	2500	3000	4000	5000	6000	8500
Minimum Flow U.S. GPM	40	40	40	50	90	100	125	150	250	275	400	475	700
Head Loss in Inches at Max. Flow	29.50	29.50	29.50	23.00	17.00	6.75	3.75	2.75	2.00	1.75	1.50	1.25	1.00
Shipping Weight, lbs.			17	40	54	68	87	106	140	144	172	181	223
H (inches)	* 5	See	10.9	12.78	13.84	14.84	16.91	18.90	20.53	22.53	25.53	26.53	30.53
L (inches) MG100	Spe	ecial	13	20	20	20	20	20	20	22	22	22	22
L1 (inches) MS100	N	ote	13	20	22	22	22	22	22	24	24	24	24
O.D. of Meter Tube			3.50	4.500	6.625	8.625	10.750	12.750	14.00	16.00	18.00	20.00	24.00

*Special Note—Reducing fittings incorporating grooves are supplied to adapt the 3-inch model to smaller line sizes.

Larger flowmeters on special order.

Appendix D
Supplemental Information

MassDEP - Bureau of Waste Site Cleanup


Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: REVERE BEACH HOTEL 49-54 REVERE BEACH BOULEVARD REVERE, MA

NAD83 UTM Meters: 4696676mN , 336118mE (Zone: 19) October 12, 2018

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found. be found at: http://www.mass.gov/mgis/.

<u>Documentation of the Results of the ESA Eligibility Determination:</u>

Using information in Appendix IV of the NPDES RGP, the project located at 49-54 Revere Beach Boulevard, Revere, MA is eligible for coverage under this general permit under FWS Criterion C. This project is located in Suffolk County. No designated critical habitats were listed in the project area.

An Endangered Species Consultation was conducted on the U.S. Fish & Wildlife Service New England Field Office ECOS IPaC webpage for the Site:

• The Red Knot was listed as "Threatened" wherever it is found.

Temporary dewatering activities at the site are not expected to impact the Red Knot.

Red Knots are predominately migratory coastal seabirds. The red knot breeds in the tundra of the central Canadian Arctic. Red Knots are long ranging migratory birds reaching from the extreme south of Tierra del Fuego, Argentina to the far north of the central Canadian Arctic. Red Knots typically begin migrating in early fall. Threats to the red knot include sea level rise; coastal development; shoreline stabilization; dredging; reduced food availability at stopover areas; disturbance by vehicles, people, dogs, aircraft, and boats; and climate change. The proposed project activities will not involve any of these activities; therefore, temporary dewatering activities are "not likely to adversely effect" the Red Knot. There are no critical habitats within the project area for the Red Knot.

United States Department of the Interior

FISH AND WILDLIFE SERVICE

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 Phone: (603) 223-2541 Fax: (603) 223-0104

http://www.fws.gov/newengland

In Reply Refer To: October 12, 2018

Consultation Code: 05E1NE00-2019-SLI-0088

Event Code: 05E1NE00-2019-E-00199 Project Name: Revere Beach Hotel

Subject: List of threatened and endangered species that may occur in your proposed project

location, and/or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 et seq.), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2) (c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

Please be aware that bald and golden eagles are protected under the Bald and Golden Eagle Protection Act (16 U.S.C. 668 *et seq.*), and projects affecting these species may require development of an eagle conservation plan (http://www.fws.gov/windenergy/eagle_guidance.html). Additionally, wind energy projects should follow the wind energy guidelines (http://www.fws.gov/windenergy/) for minimizing impacts to migratory birds and bats.

Guidance for minimizing impacts to migratory birds for projects including communications towers (e.g., cellular, digital television, radio, and emergency broadcast) can be found at: http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/towers.htm; http://www.towerkill.com; and http://www.fws.gov/migratorybirds/CurrentBirdIssues/Hazards/towers/comtow.html.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. Please include the Consultation Tracking Number in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.

Attachment(s):

Official Species List

Official Species List

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New England Ecological Services Field Office 70 Commercial Street, Suite 300 Concord, NH 03301-5094 (603) 223-2541

Project Summary

Consultation Code: 05E1NE00-2019-SLI-0088

Event Code: 05E1NE00-2019-E-00199

Project Name: Revere Beach Hotel

Project Type: ** OTHER **

Project Description: Construction Dewatering

Project Location:

Approximate location of the project can be viewed in Google Maps: https://www.google.com/maps/place/42.40517692605128N70.99154456338863W

Counties: Suffolk, MA

Endangered Species Act Species

There is a total of 1 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries¹, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

Birds

NAME STATUS

Red Knot Calidris canutus rufa

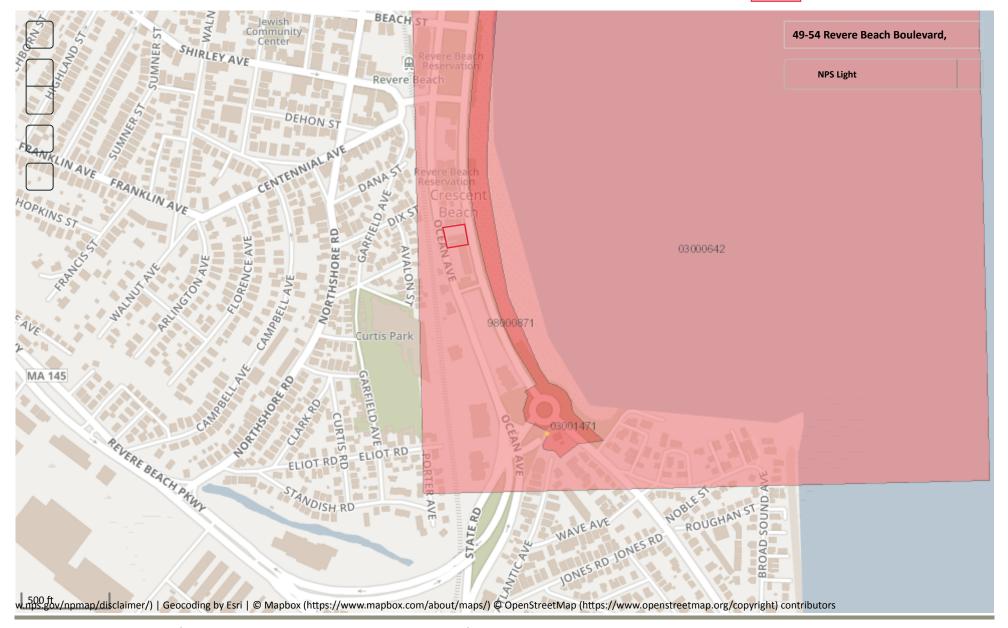
Threatened

No critical habitat has been designated for this species. Species profile: https://ecos.fws.gov/ecp/species/1864

Critical habitats

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

<u>Documentation of the National Historic Preservation Act Eligibility Determination:</u>


As part of this permit, a determination was made as to whether there were any historic properties or places listed on the national register in the path of the discharge or in the vicinity of the construction of treatment systems or BMPs related to the discharge. A search on the Massachusetts Cultural Resource Information System Database did not list any potential properties on or near the project site in the database. Therefore, the proposed discharge will not have the potential to cause effects on historical properties.

National Register of Historic Places

Public, non-restricted data depicting National Register spatial data processed by the Cultural Resources GIS facility. ...

National Park Service U.S. Department of the Interior

= Site Boundary

Home (https://www.nps.gov) | Frequently Asked Questions (https://www.nps.gov/faqs.htm) | Website Policies (https://www.nps.gov/aboutus/website-policies.htm)

Massachusetts Cultural Resource Information System MACRIS

MACRIS Search Results

Search Criteria: Town(s): Revere; Street No: 49-54; Street Name: Revere Beach Blvd; Resource Type(s): Area, Building, Burial Ground, Structure, Object;

Inv. No. Property Name Street Town Year

Friday, October 12, 2018 Page 1 of 1