

NOTICE OF INTENT FOR DISCHARGE PURSUANT TO MASSACHUSETTS REMEDIATION GENERAL PERMIT MAG9100000

3686, 3688 & 3690 WASHINGTON ST. FOREST HILLS

BOSTON, MASSACHUSETTS

DECEMBER 21, 2017

Prepared For:

U.S. Environmental Protection Agency
Office of Ecosystem Protection
5 Post Office Square – Suite 100
Mail Code OEP06-01
Boston, MA 02109-3912

On Behalf Of:

Residences at Forest Hills Station, LLP 1601 Trapelo Road, Suite 280 Waltham, MA 02451

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6130

December 21, 2017

U.S. Environmental Protection Agency Dewatering GP Processing Industrial Permit Unit (OEP 06-4) 5 Post Office Square – Suite 100 Mail Code OEP06-01 Boston, MA 02109-3912

Attention: To Whom It May Concern

Reference: 3686, 3688 & 3690 Washington Street – Forest Hills

Boston, Massachusetts

Notice of Intent for Construction Dewatering Discharge Under Massachusetts Remediation General Permit MAG910000

Ladies and Gentlemen:

On behalf of Residences at Forest Hills Station, LLP, McPhail Associates, LLC (McPhail) has prepared the attached Notice of Intent (NOI) for coverage under the Remediation General Permit (RGP) MAG910000 that has been prepared for the Commonwealth of Massachusetts for the discharge of construction dewatering effluent into the Charles River via the City of Boston storm drainage system. The temporary construction dewatering discharge will occur during construction of the proposed residential development to be located at 3686, 3688 and 3690 Washington Street in Boston, Massachusetts (subject site). Refer to **Figure 1** entitled: "Project Location Plan" for the general site locus.

These services were performed and this permit application was prepared in accordance with our proposal dated January 27, 2017, and the subsequent authorization of Residences at Forest Hills Station, LLP. These services are subject to the limitations contained in **Appendix A**.

The required Notice of Intent Form contained in the RGP permit and Boston Water & Sewer Commission (BWSC) Dewatering Discharge Permit Application are included in **Appendix B** and supporting information is included in **Appendix C**.

A Best Management Practice Plan (BMPP) is contained in **Appendix F**.

Applicant/Operator

The applicant for the Notice of Intent-Dewatering General Permit is:

Dimeo Construction Company 4 Hyde Park Jamaica Plain, MA 02130

Attention: Martin Abt Title: Superintendant

Phone: 617-502-3080 Email: MAbt@Dimeo.com

Site Location and Existing Conditions

The site of the proposed development is located on the east side of Washington Street opposite the Massachusetts Bay Transportation Authority (MBTA) Forest Hills Station and currently serves as a commuter parking lot. The subject site is bordered by Morton Street to the north, Orchardhill Road and residential properties to the east, and residential and commercial properties to the south. In addition, the southwest portion of the site abuts an existing shopping plaza. An existing drainage easement, approximately 40 feet in width, is located between the eastern portion of the proposed development site and the northwestern quadrant, and is controlled by the BWSC.

The irregularly-shaped site measures approximately 450 feet north to south and varies in width east to west from about 250 feet within the northern half of the site to 125 feet with the southern half of the site. The northwestern quadrant of the site slopes downward from north to south from approximately Elevation +42.5 to Elevation +38.5, over an approximate 150-foot distance. Similarly, the eastern portion of the site gently slopes downward north to south from approximately Elevation +42 to Elevation +40, over an approximate distance of 450 feet. The existing bituminous concrete parking surface which exists across the site terminates along the base of a partially wooded slope located along the eastern property limits. The slope ranges in height from approximately 15 to 40 feet, peaking at approximately Elevation +54 to +61, a portion of which extends beyond the eastern property line. The Orchardhill roadway, residential properties and a church are located at the top of the slope.

Elevations contained herein are referenced to the Boston City Base (BSB) Datum which is 5.65 feet below the National Geodetic Vertical Datum (NGVD) of 1929. The limits of the subject site are depicted on **Figure 2.**

Available BWSC drawings indicate that a large reinforced concrete storm water drainage conduit and smaller adjacent sewer conduit, collectively known as the Stony Brook Conduit, are located within the BWSC easement. The drawings indicate that the section of the Stony Brook Conduit which crosses the proposed site is approximately 27 feet wide and approximately 20 feet in height, encapsulating the larger 20-foot by 16-foot storm drain conduit and the smaller sewer drain which is approximately 2.8 feet by 4 feet. The invert of the large storm drain is at approximately Elevation +13.6 and the invert of the smaller sewer drain is at approximately Elevation +24.4 which correspond to depths of about 25.5 to 29.5 feet and about 14.5 to 18.5 feet, respectively, below the existing ground surface. It is understood that the Stony Brook Conduit was constructed in the 1910's.

Proposed Scope of Site Development

Plans for the proposed development of the site are understood to include construction of two 6-story buildings. It is understood that the eastern building (Building 2) will contain

approximately 41,000 square feet of below-grade garage space having its lowest level slab located at approximately Elevation +36. A small portion of the lowest level slab is proposed to be located about 2 feet deeper, at approximately Elevation +34. Above grade, Building 2 is split into a southern building, Building 2A, and a northern building, Building 2B, which are divided by a drive lane which allows access to the rear of the building. The building on the west side of the easement (Building 1) is planned to have a footprint of approximately 7,000 square feet and is planned to include ground floor retail. The lowest level slab of the Building 1 is planned to be located at Elevation +40. Based on the grading plan, it is understood that the northern third of Building 1 will have a lowest level slab located below grade, and the remainder of the Building 1 slab will be at grade level.

The structures will be separated by the existing drainage easement, which is planned to be used as a service road. Portions of both of the proposed structures are planned to immediately abut the limits of the easement. Building 1 is proposed to be located approximately 2 feet west of the approximate limits of the BWSC easement and Building 2 is proposed to be located generally at least approximately 2 feet east of the BWSC easement.

Additionally, the northeast portion of the proposed Building 2 is planned to be benched into the lower portion of the existing hillside along Orchardhill Road.

Site History

Sanborn Maps from 1898 through 2002 and Aerial Photographs from 1938 through 2012, included in **Appendix C**, indicate that the subject site has generally been used as a parking lot since at least the 1920s. In addition, the northwestern portion of the subject site was formerly occupied by a small structure in the 1890s and a filling station with four to six gasoline tanks from the 1920s through the 1970s. Two small structures were formerly located in the center of the subject site from 1950 through the 1960s.

Site Environmental Setting and Surrounding Historical Places

Based on an on-line edition of the Massachusetts Geographic Information System DEP Phase I Site Assessment Map viewed on July 24, 2017, the subject site is not located within the boundaries of a Sole Source Aquifer, Potentially Productive Aquifer or within a Zone II, Interim Wellhead Protection Area as defined by the Massachusetts Department of Environmental Protection. Further, there are no public drinking water supply wells, no Areas of Critical Environmental Concern, no fish habitats, no habitats of Species of Special Concern or Threatened or Endangered Species within specified distances of the subject site.

A review of information provided by the U.S. Fish and Wildlife Service in an Information for Planning and Conservation (IPaC) Trust Resource Report for the subject site did not identify the presence of endangered species at or in the vicinity of the discharge location and/or discharge outfall. Further, the Trust Resource Report did not identify the presence of a critical habitat in the vicinity of the discharge outfall and/or discharge location. Based upon

the above, the site is considered a criterion A pursuant to Appendix IV of the RGP. A copy of the IPaC Trust Resource Report and correspondence are included in **Appendix C**.

The GIS Map indicates that there are no water bodies or wetland areas on or within 1,000 feet of the subject site. The map indicates that the closest Protected Open Space to the subject site is located approximately 850 feet to the east-southeast. A copy of the Massachusetts GIS Priority Resources Map is included in **Appendix C**.

A review of the online Massachusetts Cultural Resource Information System (MACRIS) and the National Register of Historical Places for Suffolk County in Boston, Massachusetts did not identify records or addresses of historic places that exist in the immediate vicinity of the subject site and/or outfall location, with the exception of the Forest Hills Elevated Railway Station located on the opposite side of Washington Street, to the west of the subject site. Given that the station is located over 250 feet from the subject site and site development activities are not anticipated to disturb this nearby station, the nearby historical place is not considered a concern. Copies of the MACRIS Reports are included in **Appendix C**.

Massachusetts Contingency Plan (MCP) Regulatory Status

In preparation of the upcoming development of the subject site, McPhail conducted assessments of subsurface conditions in 2016 and 2017 primarily to precharacterize soil for off-site disposal. In general, the laboratory analysis of soil detected several petroleum constituents and anthropogenic contaminants in Historic Fill at concentrations above the applicable RCS-1 Reportable Concentrations. Fill material samples collected from borings completed in the vicinity of the former filling station and submitted for laboratory analysis had elevated levels of C11-C22 aromatics along with polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH) and volatile organic compound (VOC) naphthalene. Results of the laboratory analysis of fill samples collected from the remaining portion of the subject site also detected elevated levels of total lead, several semivolatile organic compounds (SVOCs), and TPH. Therefore, two (2) 120-day release conditions were reported to the DEP on December 18, 2017 in relation to the petroleum release and the presence of historic urban fill to which Release Tracking Numbers (RTNs) 3-34683 and 3-34682 were assigned, respectively.

Summary of Groundwater Analysis

In 2016, groundwater samples were collected from three monitoring wells installed by McPhail and identified as B-7 (OW), B-8 (OW) and B-9 (OW). The groundwater samples were collected by McPhail and submitted to the laboratory for analysis for the presence of total phosphorous, VOCs and extractable petroleum hydrocarbons (EPH) with target polycyclic aromatic hydrocarbons (PAHs). The groundwater results did not indicate PAHs or EPHs above laboratory detection limits. The VOC compound (tetrahydrofuran) detected is well below the applicable RCGW-2 MCP Reportable Concentration.

On July 3, 2017, a second round of groundwater sampling was conducted from monitoring wells B-8 (OW) and B-9 (OW) and the samples were analyzed for the following parameters: total residual chlorine, trivalent chromium, hexavalent chromium, total cyanide, ammonia, total suspended solids (TSS), total metals (antimony, arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, selenium, silver, and zinc), anions, TPH, and PAHs. A summary of the groundwater results is shown in the enclosed **Table 1**. Note that no compounds were detected in any of the groundwater samples at concentrations above the applicable RCGW-2 MCP Reportable Concentration.

In conjunction with the updated 2017 NPDES RGP, a sample of water from the Charles River was obtained and analyzed for recoverable metals, ammonia, pH, and hardness. The results of testing conducted on the water sample obtained from the Charles River are summarized in **Table 2**.

Laboratory reports are included in **Appendix D and E.**

Construction Dewatering

In general, groundwater was typically observed between 12.3 feet and 16.8 feet below ground surface. However, in the southeastern portion of the subject site, in the area of borings B-4 (OW) and B-101 (OW), where the surface of the glacial till deposit is shallower, groundwater appeared to be perched on the surface of the glacial till deposit and was observed at depths of 1.5 feet and 6.7 feet below ground surface.

Although general excavation activities may not extend below the surface of groundwater in some areas, it is anticipated that excavation activities may encounter perched groundwater. In addition, storm water run-off is anticipated to accumulate within localized trenches after periods of heavy precipitation requiring dewatering. Hence, groundwater dewatering may be necessary.

Given that the scope of redevelopment will affect the entire footprint of the subject site, temporary on-site collection and recharge of groundwater is not considered to be feasible. As a result, construction dewatering will require the discharge of collected groundwater and stormwater into the storm drain system under the requested Remediation General Permit.

It is anticipated that dewatering by means of strategically located sumps and trenches should suffice during construction operations. Intermittent groundwater discharge will likely be required during excavation with an average design flow rate of 20 gallons per minute (GPM) and a maximum design flow rate of 50 GPM.

A review of available subgrade sanitary and storm sewer system plans accessed from the BWSC indicates the presence of two dedicated stormwater drain systems: one located beneath Washington Street adjacent to the western boundary of the subject site and another one as part of the Stony Brook Conduit which crosses through the subject site. Records supplied by BWSC indicate the dedicated stormwater drain systems connect to the north of the subject site as one discharge flow path with one primary and one secondary

outfall location. The discharge flow path continues north away from the subject site within the Stony Brook Conduit, flows north-northeast along the MBTA line and under Park Street. The flow path then flows west under Forsyth Way towards the Back Bay Fens. The secondary discharge location is an emergency outfall at a gate house that, per BWSC, is only used in high discharge flow emergency events. The flow path follows along the Back Bay Fens under I-90, Commonwealth Avenue, and Storrow Drive out to the Charles River. The primary discharge location is an outfall pipe listed as CSO 023 according to the BWSC. The singular discharge flow path, the subject site and possible discharge locations and both outfall locations are shown on the enclosed **Figure 3** and **Figures 4A**, **4B**, and **4C**, respectively.

Due to the location of discharge into the Charles River, a Stream Stats Flow calculation was completed to determine a dilution factor for the surrounding area. The online program Stream Stats 4 was used to determine a 7Q10 value (the lowest 7-day average flow that occurs on average once every 10 years) of 11.5 cubic feet per second (ft³/s). This paired with the unit conversion and equation presented in Appendix V of the 2017 RGP indicated a dilution factor of 104.22 exists and is applied to water quality limitations. A copy of the dilution factor calculation is included in **Appendix C**.

Groundwater Treatment

Concentrations of several metals and non-halogenated SVOCs were detected during the sampling event and evaluated in accordance with Appendix V of the 2017 RGP, to determine if Water Quality-Based Effluent Limitations (WQBELs) for specific inorganics apply. WQBELs apply for lead, silver, zinc, copper, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene. The Appendix V calculations also indicate Technology-Based Effluent Limitations (TBELs) apply for all other inorganics and SVOCs. A copy of the TBEL and WQBEL calculations are included in **Appendix C.**

Based on the results of the above referenced groundwater analyses, it is our opinion that a 5,000-gallon capacity settling tank and bag filters in series will be required to settle and filter out suspended inorganic metals and suspended SVOCs in the discharge during construction dewatering to meet applicable effluent limits established by the US EPA prior to off-site discharge. An Ion Exchange Resin Filter will also be needed to treat levels of metals in the effluent in order to meet the WQBELs that are considered applicable. In the case that a sheen is observed during dewatering activities, granular activated carbon (GAC) filters in series may also be needed to further treat the levels of SVOCs. A schematic of the treatment system is shown on **Figure 5**.

Summary and Conclusions

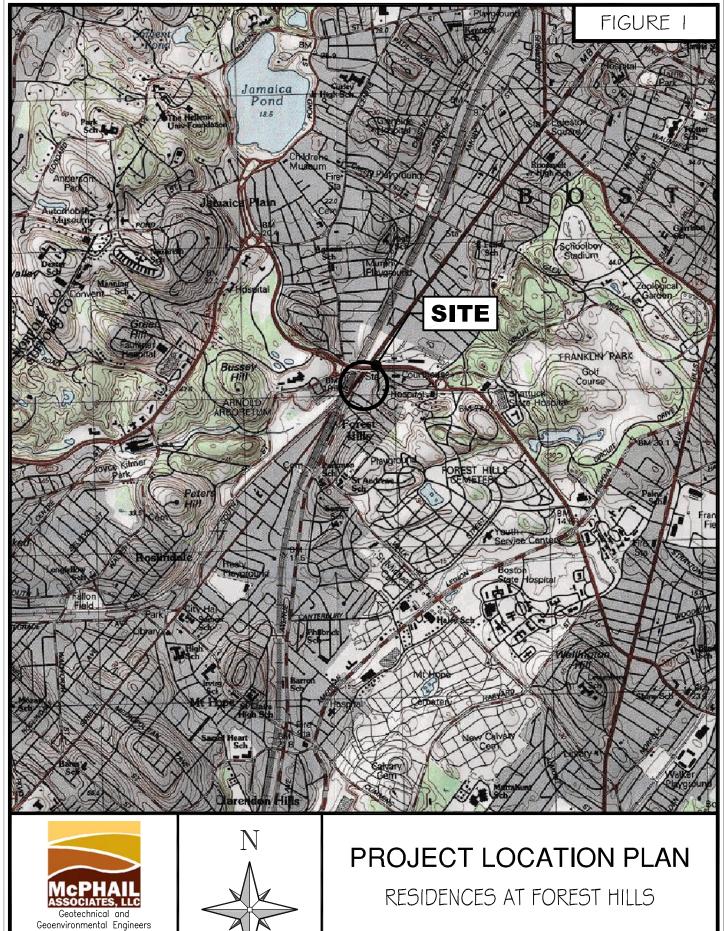
The purpose of this report is to assess site environmental conditions and groundwater data to support an application for a Massachusetts Remediation General Permit for off-site discharge of dewatered groundwater which will be encountered during the proposed

development located at 3686, 3688 and 3690 Washington Street located in Boston, Massachusetts.

Based on the results of the above referenced groundwater analyses, treatment of construction dewatering will be necessary to meet allowable WQBELs for lead, silver, zinc, copper, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenzo(a,h)anthracene and indeno(1,2,3-cd)pyrene, as well as allowable TBELs for other inorganics and SVOCs established by the US EPA prior to off-site discharge. The proposed construction dewatering effluent treatment system will consist of one settling tank 5,000-gallons in capacity and bag filter in series to filter out sediment containing elevated levels of metals and SVOCs. An Ion Exchange Resin Filter will also be needed to treat levels of metals in the effluent in order to meet the allowable discharge limits (WQBELs established in the Massachusetts RGP). In the case that a sheen is observed during dewatering activities, GAC filters in series may also be needed to further treat the levels of SVOCs.

We trust that the above satisfies your present requirements. Should you have any questions or comments concerning the above, please do not hesitate to contact us.

Sincerely,

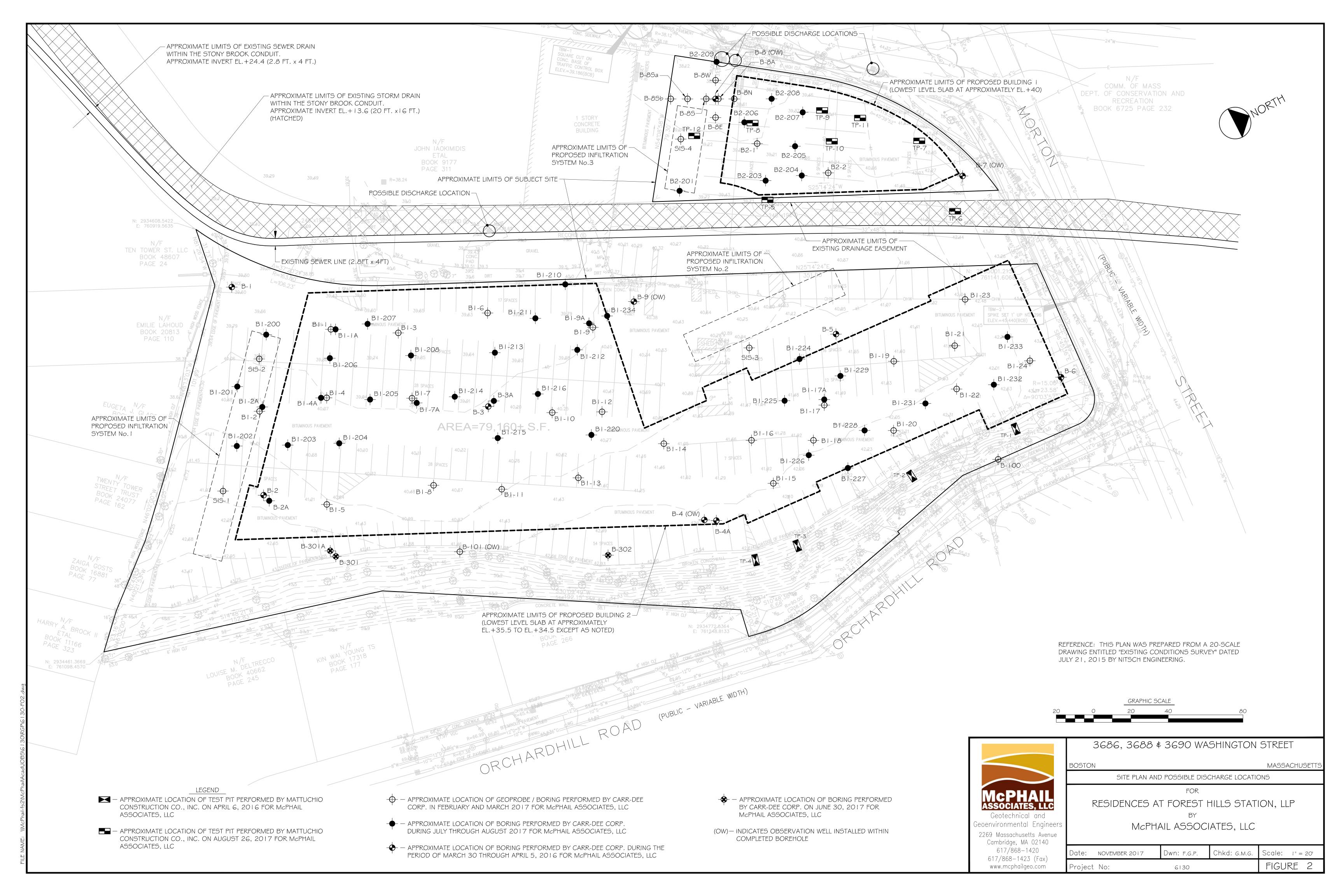

McPHAIL ASSOCIATES, LLC

Gina M. Garten

Peter J. DeChaves, L.S.P.

F:\WP5\REPORTS\6130 RGP 122117.docx

GMG/kws/pjd



2269 Massachusetts Avenue Cambridge, MA 02140 617/868-1420 617/868-1423 (Fax) www.mcphailgeo.com

BOSTON

MASSACHUSETTS

23F	23G	23H	231	2 FIGI	JRE 3
22F	22G	22H	221	2.	NORTH
	216	21H*	211	2	
D Cc.	20G	720H	201	20J	20
"	19G	194	191	191	19
18F	18G	184	181	181	18
17	17G	17H	171	473	
165	166	16H	161	16 J	16
P5F	156/	1 5H	151	15J	15
14F	TAC	14H	141	14.1	14
		2500		<u>C SCALE</u> 2500	5000

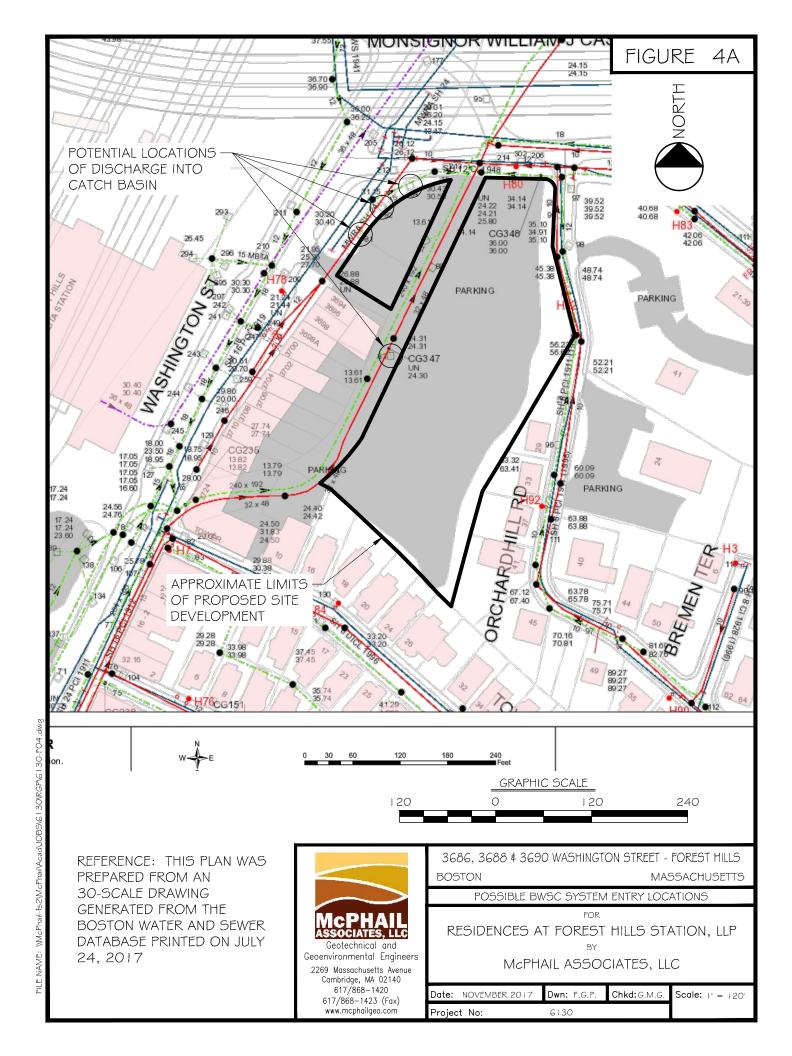
REFERENCE: THIS PLAN WAS PREPARED FROM AN 2,100-SCALE DRAWING GENERATED FROM THE BOSTON WATER AND SEWER DATABASE PRINTED ON JULY 26, 2017

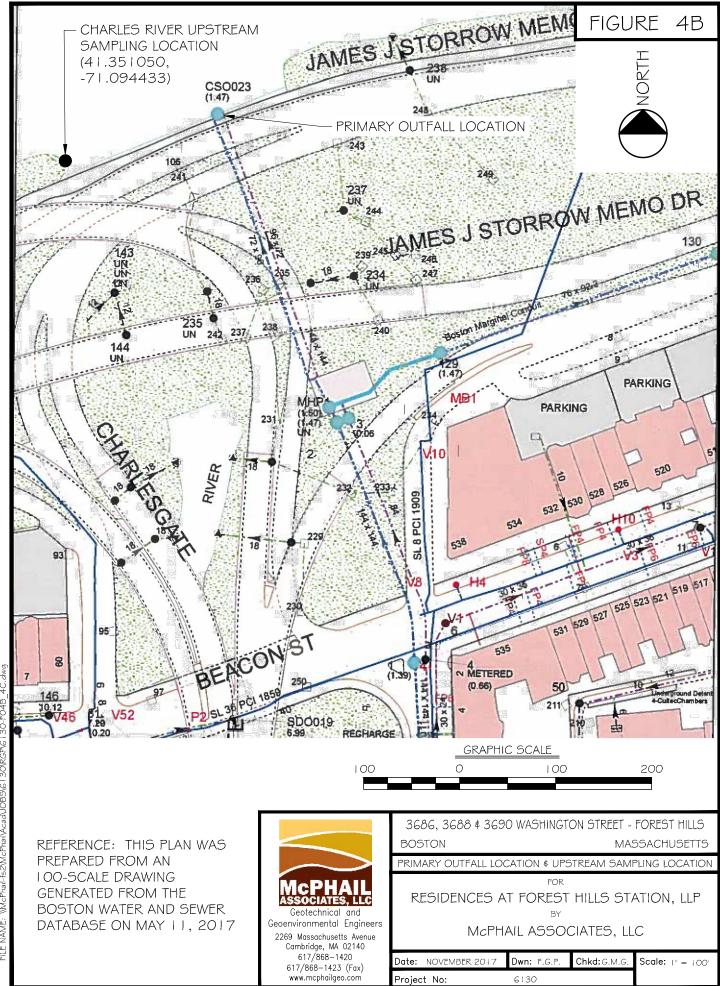
Geotechnical and Geoenvironmental Engineers 2269 Massachusetts Avenue Cambridge, MA 02140 617/868—1420 617/868—1423 (Fax) www.mcphailgeo.com 3686, 3688 \$ 3690 WASHINGTON STREET - FOREST HILLS BOSTON MASSACHUSETTS

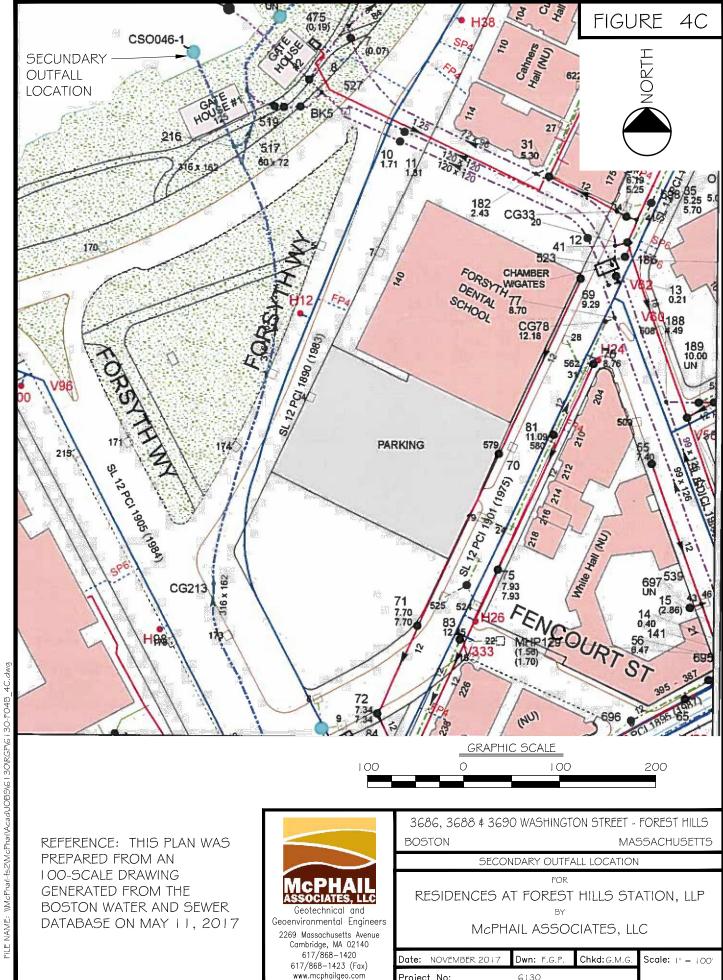
DISCHARGE FLOW PATH

FOR

RESIDENCES AT FOREST HILLS STATION, LLP


McPHAIL ASSOCIATES, LLC


Date:NOVEMBER 2017Dwn: F.G.P.Project No:6130


Chkd: G.M.G.

Scale: |" = 2500

FILE NAME: \McPhail-fs2\McPhail\Acad\UOB5\6130\RGP\6130-F03.dwg

Project No:

www.mcphailgeo.com

Project No:

6130

TABLE 1 Results of Groundwater Laboratory Analysis

3686, 3688 and 3690 Washington Street - Forest Hills Project No. 6130

LOCATION	B-7 (OW)	B-7 (OW)	B-8 (OW)	B-8 (OW)	B-9 (OW)	B-9 (OW)	B-8 (OW)	B-9 (OW)
SAMPLING DATE	4/21/2016	5/6/2016	4/21/2016	5/6/2016	4/21/2016	5/6/2016	7/3/2017	7/3/2017
LAB SAMPLE ID	L1611886-03	L1613810-01	L1611886-01	L1613810-02	L1611886-02	L1613810-03	L1722656-02	L1722656-01
General Chemistry (μg/l)								
Chromium, Trivalent	-	-	-	-	-	-	ND(10)	ND(10)
Chromium, Hexavalent	-	-	-	-	-	-	ND(10)	ND(10)
Cyanide, Total	-	-	-	-	-	-	ND(5)	9
Nitrogen, Ammonia	-	-	-	-	-	-	231	164
Chlorine, Total Residual	-	-	-	-	-	-	ND(20)	ND(20)
Solids, Total Suspended	-	-	-	-	-	-	7400	8300
Total Phosphorous	-	17	-	17	-	19	-	-
TPH, SGT-HEM	-	-	-	-	-	-	ND(4000)	ND(4000)
Total Metals (μg/l)	1	.		r		•		
Iron, Total	-	-	-	-	-	-	219	118
Lead, Total	-	-	-	-	-	-	ND(0.5)	1.04
Mercury, Total	-	-	-	-	-	-	ND(0.2)	ND(0.2)
Nickel, Total	-	-	-	-	-	-	ND(2)	ND(2)
Silver, Total	-	-	-	-	-	-	ND(0.4)	0.6
Antimony, Total	-	-	-	-	-	-	ND(4)	ND(4)
Arsenic, Total	-	-	-	-	-	-	ND(1)	ND(1)
Cadmium, Total	-	-	-	-	-	-	ND(0.2)	0.21 ND(1)
Chromium, Total Copper, Total	-	-	-	-	-	-	ND(1) 1.48	ND(1) 4.41
Copper, Total Zinc, Total	 	-	-	-	-	-	1.48 ND(10)	19.38
Selenium, Total	-	-	-	-	-	-	ND(5)	5.27
Anions by Ion Chromatography (μg/l)	-		_	_	-	-	ND(3)	5.21
Chloride	1	_	l <u>-</u>	_	Ι	<u> </u>	432000	1080000
Extractable Petroleum Hydrocarbons (ug/l)	-	-	-	-	-	-	432000	1000000
C9-C18 Aliphatics	ND(100)		ND(100)	Γ	ND(100)	<u> </u>	Г	
C19-C36 Aliphatics	ND(100)	-	ND(100)	-	ND(100)	-	-	-
C11-C22 Aromatics, Adjusted	ND(100)	-	ND(100)	-	ND(100)	-	-	
Naphthalene	ND(100)		ND(100)		ND(100)	-	_	
2-Methylnaphthalene	ND(10)	-	ND(10)		ND(10)	-	-	-
Acenaphthylene	ND(10)		ND(10)		ND(10)	-	_	-
Acenaphthene	ND(10)	_	ND(10)	_	ND(10)	-	_	-
Fluorene	ND(10)	_	ND(10)	_	ND(10)	_	_	_
Phenanthrene	ND(10)	_	ND(10)	_	ND(10)	-	_	-
Anthracene	ND(10)	_	ND(10)	_	ND(10)	-	_	-
Fluoranthene	ND(10)	_	ND(10)	_	ND(10)	-	_	-
Pyrene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Benzo(a)anthracene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Chrysene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Benzo(b)fluoranthene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Benzo(k)fluoranthene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Benzo(a)pyrene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Indeno(1,2,3-cd)Pyrene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Dibenzo(a,h)anthracene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
Benzo(ghi)perylene	ND(10)	-	ND(10)	-	ND(10)	-	-	-
MCP PAHs by SIM (μg/I)								
Anthracene	-	-	-	-	-	-	ND(0.1)	0.31
Pyrene	-	-	-	-	-	-	ND(0.1)	0.34
Benzo(ghi)perylene	-	-	-	-	-	-	ND(0.1)	1.6
Indeno(1,2,3-cd)pyrene	-	-	-	-	-	-	ND(0.1)	1.5
Benzo(b)fluoranthene	-	-	-	-	-	-	ND(0.1)	1.1
Fluoranthene	-	-	-	-	-	-	ND(0.1)	0.34
Benzo(k)fluoranthene	-	-	-	-	-	-	ND(0.1)	1.2
Acenaphthylene	-	-	-	-	-	-	ND(0.1)	0.32
Chrysene	-	-	-	-	-	-	ND(0.1)	0.61
Benzo(a)pyrene	-	-	-	-	-	-	ND(0.1)	1.1
Dibenzo(a,h)anthracene	-	-	-	-	-	-	ND(0.1)	1.7
Benzo(a)anthracene	-	-	-	-	-	-	ND(0.1)	0.5
Acenaphthene	-	-	-	-	-	-	ND(0.1)	0.35
Phenanthrene	-	-	-	-	-	-	ND(0.1)	0.32
Fluorene	-	-	-	-	-	-	ND(0.1)	0.39
Naphthalene	-	-	-	-	-	-	ND(0.1)	0.4
2-Methylnaphthalene SUM	-	-	-	<u>-</u> -	-	-	ND(0.1)	0.35 12.43
		_	<u> </u>	_	-	-	-	12.43
MCP Volatile Organics (ug/l)	1 4	Ι	NID(0)	Ι	ND/O)	<u> </u>	Т	
Tetrahydrofuran SUM	4	-	ND(2) ALL ND	-	ND(2) ALL ND	-	-	<u>-</u>
JOIVI	1 4			<u> </u>	ALL ND	_	-	-

TABLE 2 Results of Surfacewater Laboratory Analysis

3686, 3688 3690 Washington Street - Forest Hills Project No. 6130

LOCATION	CHARLES RIVER
SAMPLING DATE	5/12/2017
LAB SAMPLE ID	L1715658-01
General Chemistry (ug/l)	
Chromium, Trivalent	ND(10)
Nitrogen, Ammonia	304
Chromium, Hexavalent	3
Total Hardness by SM 2340B (ug/l)	
Hardness	96500
Total Metals (ug/l)	
Antimony, Total	2.02
Arsenic, Total	1.05
Cadmium, Total	ND(1)
Chromium, Total	1.24
Copper, Total	3.66
Iron, Total	1010
Lead, Total	4.13
Mercury, Total	ND(0.2)
Nickel, Total	3.2
Selenium, Total	ND(5)
Silver, Total	ND(1)
Zinc, Total	11.11

APPENDIX A:

LIMITATIONS

LIMITATIONS

The purpose of this report is to present a summary of environmental conditions, including the results of testing of groundwater samples obtained from groundwater monitoring wells on the property located at 3686, 3688 and 3690 Washington Street in Boston, Massachusetts in support of an application for approval of temporary construction dewatering discharge of groundwater into surface waters of the Commonwealth of Massachusetts under EPA's Massachusetts Remediation General Permit MAG910000.

The observations were made under the conditions stated in this report. The conclusions presented above were based on these observations. If variations in the nature and extent of subsurface conditions between the spaced subsurface explorations become evident in the future, it will be necessary to re-evaluate the conclusions presented herein after performing on-site observations and noting the characteristics of any variations.

The conclusions submitted in this report are based in part upon analytical data obtained from analysis of groundwater samples, and are contingent upon their validity. The data have been reviewed, and interpretations have been made in the text. It should also be noted that fluctuations in the types and levels of contaminants and variations in their flow paths may occur due to changes in seasonal water table, past practices used in disposal and other factors.

Laboratory analyses have been performed for specific constituents during the course of this assessment, as described in the text. However, it should be noted that additional constituents not searched for during the current study may be present in soil and/or groundwater at the site.

This report and application have been prepared on behalf of and for the exclusive use of Residences at Forest Hills Station, LLP. This report and the findings contained herein shall not, in whole or in part, be disseminated or conveyed to any other party, other than the submission to relevant governmental agencies, nor used in whole or in part by any other party without prior written consent of McPhail Associates, LLC.

APPENDIX B:

NOTICE OF INTENT - NPDES REMEDIATION GENERAL PERMIT BOSTON WATER & SEWER DEWATERING DISCHARGE PERMIT APPLICATION

II. Suggested Format for the Remediation General Permit Notice of Intent (NOI)

A. General site information:

1. Name of site:	Site address:						
	Street:						
	City:		State:	Zip:			
2. Site owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:	•					
	Street:						
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other; if so, specify:	City:		State:	Zip:			
3. Site operator, if different than owner	Contact Person:						
	Telephone:	Email:					
	Mailing address:						
	Street:						
	City:		State:	Zip:			
4. NPDES permit number assigned by EPA:	5. Other regulatory program(s) that apply to the site	(check all th	at apply):				
	☐ MA Chapter 21e; list RTN(s): 3-34682 & 3-34683						
NPDES permit is (check all that apply: □ RGP □ DGP □ CGP	□ NH Groundwater Management Permit or	□ UIC Pro	•				
☐ MSGP ☐ Individual NPDES permit ☐ Other; if so, specify:	Groundwater Release Detection Permit:	☐ POTW Pretreatment					
1 , , , , , , , , , , , ,		□ CWA S	section 404				

B. Receiving water information:	В.	Receiving	water	info	rmation
---------------------------------	----	-----------	-------	------	---------

1. Name of receiving water(s):	(s): Classific	cation of receiving water(s):							
Receiving water is (check any that apply): □ Outstanding Resource Water □ Ocean Sanctuary □ territorial sea □ Wild and Scenic River									
2. Has the operator attached a location map in accordance with the instructions in B, above? (check one): ☐ Yes ☐ No									
Are sensitive receptors present near the site? (check of If yes, specify:	one): □ Yes □ No								
3. Indicate if the receiving water(s) is listed in the Stapollutants indicated. Also, indicate if a final TMDL is 4.6 of the RGP.		nore information, contact the a							
4. Indicate the seven day-ten-year low flow (7Q10) of the receiving water determined in accordance with the instructions in Appendix V for sites located in Massachusetts and Appendix VI for sites located in New Hampshire.									
5. Indicate the requested dilution factor for the calcul accordance with the instructions in Appendix V for s									
6. Has the operator received confirmation from the ap If yes, indicate date confirmation received: 7. Has the operator attached a summary of receiving									
(check one): ☐ Yes ☐ No									
C. Source water information:									
1. Source water(s) is (check any that apply):									
☐ Contaminated groundwater	☐ Contaminated surface water	☐ The receiving water	☐ Potable water; if so, indicate municipality or origin:						
Has the operator attached a summary of influent	Has the operator attached a summary of influent	☐ A surface water other							
sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	sampling results as required in Part 4.2 of the RGP in accordance with the instruction in Appendix VIII? (check one):	than the receiving water; if so, indicate waterbody:	☐ Other; if so, specify:						
□ Yes □ No	□ Yes □ No								

2. Source water contaminants:							
a. For source waters that are contaminated groundwater or contaminated surface water, indicate are any contaminants present that are not included in	b. For a source water that is a surface water other than the receiving water, potable water or other, indicate any contaminants present at the maximum concentration in accordance						
the RGP? (check one): ☐ Yes ☐ No If yes, indicate the contaminant(s) and the maximum concentration present in accordance with the instructions in Appendix VIII.	with the instructions in Appendix VIII? (check one): ☐ Yes ☐ No						
3. Has the source water been previously chlorinated or otherwise contains resid	dual chlorine? (check one): □ Yes □ No						
D. Discharge information							
1. The discharge(s) is a(n) (check any that apply): \Box Existing discharge \Box New	v discharge □ New source						
Outfall(s):	Outfall location(s): (Latitude, Longitude)						
Discharges enter the receiving water(s) via (check any that apply): □ Direct di	scharge to the receiving water □ Indirect discharge, if so, specify:						
☐ A private storm sewer system ☐ A municipal storm sewer system If the discharge enters the receiving water via a private or municipal storm sewer system:							
Has notification been provided to the owner of this system? (check one): \Box Ye	es □ No						
Has the operator has received permission from the owner to use such system for obtaining permission: from BWSC in tandem with this NOI	or discharges? (check one): \square Yes \square No, if so, explain, with an estimated timeframe for						
Has the operator attached a summary of any additional requirements the owner	of this system has specified? (check one): \square Yes \square No						
Provide the expected start and end dates of discharge(s) (month/year):							
Indicate if the discharge is expected to occur over a duration of: \Box less than 1	2 months □ 12 months or more □ is an emergency discharge						
Has the operator attached a site plan in accordance with the instructions in D, a	above? (check one): □ Yes □ No						

2. Activity Category: (check all that apply)	3. Contamination Type Category: (check all that apply)				
	a. If Activity Category I or II: (check all that apply)				
	 □ A. Inorganics □ B. Non-Halogenated Volatile Organic □ C. Halogenated Volatile Organic Cor □ D. Non-Halogenated Semi-Volatile Organic □ E. Halogenated Semi-Volatile Organi □ F. Fuels Parameters 	c Compounds atile Organic Compounds			
 □ I – Petroleum-Related Site Remediation □ II – Non-Petroleum-Related Site Remediation 	b. If Activity Category III, IV, V, VI, VII or VIII: (check either G or H)				
 □ III – Non-Petroleum-Related Site Remediation □ III – Contaminated Site Dewatering □ IV – Dewatering of Pipelines and Tanks □ V – Aquifer Pump Testing □ VI – Well Development/Rehabilitation □ VII – Collection Structure Dewatering/Remediation □ VIII – Dredge-Related Dewatering 	□ G. Sites with Known Contamination c. If Category III-G, IV-G, V-G, VI-G, VII-G or VIII-G: (check all that apply) □ A. Inorganics □ B. Non-Halogenated Volatile Organic Compounds □ C. Halogenated Volatile Organic Compounds □ D. Non-Halogenated Semi-Volatile Organic Compounds □ E. Halogenated Semi-Volatile Organic Compounds □ F. Fuels Parameters	□ H. Sites with Unknown Contamination d. If Category III-H, IV-H, V-H, VI-H, VII-H or VIII-H Contamination Type Categories A through F apply			

4. Influent and Effluent Characteristics

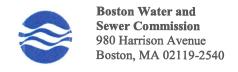
	Known	Known				Infl	uent	Effluent Lir	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	maximum average TBEL	TBEL	WQBEL
A. Inorganics									
Ammonia								Report mg/L	
Chloride								Report µg/l	
Total Residual Chlorine								0.2 mg/L	
Total Suspended Solids								30 mg/L	
Antimony								206 μg/L	
Arsenic								104 μg/L	
Cadmium								10.2 μg/L	
Chromium III								323 μg/L	
Chromium VI								323 µg/L	
Copper								242 μg/L	
Iron								5,000 μg/L	
Lead								160 μg/L	
Mercury								0.739 μg/L	
Nickel								1,450 μg/L	
Selenium								235.8 μg/L	
Silver								35.1 μg/L	
Zinc								420 μg/L	
Cyanide								178 mg/L	
B. Non-Halogenated VOCs	S								
Total BTEX								100 μg/L	
Benzene								5.0 μg/L	
1,4 Dioxane								200 μg/L	
Acetone								7.97 mg/L	
Phenol								1,080 µg/L	

	Known	Known		_		Inf	luent	Effluent Lin	nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
C. Halogenated VOCs									
Carbon Tetrachloride								4.4 μg/L	
1,2 Dichlorobenzene								600 μg/L	
1,3 Dichlorobenzene								320 μg/L	
1,4 Dichlorobenzene								5.0 μg/L	
Total dichlorobenzene								763 µg/L in NH	
1,1 Dichloroethane								70 μg/L	
1,2 Dichloroethane								5.0 μg/L	
1,1 Dichloroethylene								3.2 µg/L	
Ethylene Dibromide								0.05 μg/L	
Methylene Chloride								4.6 μg/L	
1,1,1 Trichloroethane								200 μg/L	
1,1,2 Trichloroethane								5.0 μg/L	
Trichloroethylene								5.0 μg/L	
Tetrachloroethylene								5.0 μg/L	
cis-1,2 Dichloroethylene								70 μg/L	
Vinyl Chloride								2.0 μg/L	
D. Non-Halogenated SVO	Cs								
Total Phthalates								190 μg/L	
Diethylhexyl phthalate								101 μg/L	
Total Group I PAHs								1.0 μg/L	
Benzo(a)anthracene								_	
Benzo(a)pyrene								_	
Benzo(b)fluoranthene								_	
Benzo(k)fluoranthene								As Total PAHs	
Chrysene								_	
Dibenzo(a,h)anthracene								_	
Indeno(1,2,3-cd)pyrene									

	Known	Known				Inf	nfluent Effluent Limitations		nitations
Parameter	or believed absent	or believed present	# of samples	Test method (#)	Detection limit (µg/l)	Daily maximum (µg/l)	Daily average (µg/l)	TBEL	WQBEL
Total Group II PAHs								100 μg/L	
Naphthalene								20 μg/L	
E. Halogenated SVOCs									
Total PCBs								0.000064 µg/L	
Pentachlorophenol								1.0 μg/L	
	1			•					
F. Fuels Parameters Total Petroleum	<u> </u>	1	1	1		1 1			
Hydrocarbons								5.0 mg/L	
Ethanol								Report mg/L	
Methyl-tert-Butyl Ether								70 μg/L	
tert-Butyl Alcohol								120 μg/L in MA 40 μg/L in NH	
tert-Amyl Methyl Ether								90 μg/L in MA 140 μg/L in NH	
Other (i.e., pH, temperatur	re, hardness,	salinity, LC	50, addition	al pollutar	ats present);	if so, specify:			

E. Treatment system information

1. Indicate the type(s) of treatment that will be applied to effluent prior to discharge: (check all that apply)	
☐ Adsorption/Absorption ☐ Advanced Oxidation Processes ☐ Air Stripping ☐ Granulated Activated Carbon ("GAC")/Liquid Phase Carbon Adsorption	
☐ Ion Exchange ☐ Precipitation/Coagulation/Flocculation ☐ Separation/Filtration ☐ Other; if so, specify:	
2. Provide a written description of all treatment system(s) or processes that will be applied to the effluent prior to discharge.	
Identify each major treatment component (check any that apply):	
☐ Fractionation tanks☐ Equalization tank ☐ Oil/water separator ☐ Mechanical filter ☐ Media filter	
☐ Chemical feed tank ☐ Air stripping unit ☐ Bag filter ☐ Other; if so, specify:	
Indicate if either of the following will occur (check any that apply):	
□ Chlorination □ De-chlorination	
3. Provide the design flow capacity in gallons per minute (gpm) of the most limiting component.	
Indicate the most limiting component:	
Is use of a flow meter feasible? (check one): \square Yes \square No, if so, provide justification:	
Provide the proposed maximum effluent flow in gpm.	
Provide the average effluent flow in gpm.	
If Activity Category IV applies, indicate the estimated total volume of water that will be discharged:	
4. Has the operator attached a schematic of flow in accordance with the instructions in E, above? (check one): □ Yes □ No	


F. Chemical and additive information

1. Indicate the type(s) of chemical or additive that will be applied to effluent prior to discharge or that may otherwise be present in the discharge(s): (check all that apply)
□ Algaecides/biocides □ Antifoams □ Coagulants □ Corrosion/scale inhibitors □ Disinfectants □ Flocculants □ Neutralizing agents □ Oxidants □ Oxygen □
scavengers □ pH conditioners □ Bioremedial agents, including microbes □ Chlorine or chemicals containing chlorine □ Other; if so, specify:
2. Provide the following information for each chemical/additive, using attachments, if necessary:
a. Product name, chemical formula, and manufacturer of the chemical/additive; b. Purpose or use of the chemical/additive or remedial agent; c. Material Safety Data Sheet (MSDS) and Chemical Abstracts Service (CAS) Registry number for each chemical/additive; d. The frequency (hourly, daily, etc.), duration (hours, days), quantity (maximum and average), and method of application for the chemical/additive; e. Any material compatibility risks for storage and/or use including the control measures used to minimize such risks; and f. If available, the vendor's reported aquatic toxicity (NOAEL and/or LC50 in percent for aquatic organism(s)).
3. Has the operator attached an explanation which demonstrates that the addition of such chemicals/additives may be authorized under this general permit in accordance
with the instructions in F, above? (check one): \square Yes \square No; if no, has the operator attached data that demonstrates each of the 126 priority pollutants in CWA Section 307(a) and 40 CFR Part 423.15(j)(1) are non-detect in discharges with the addition of the proposed chemical/additive?
(check one): ☐ Yes ☐ No
G. Endangered Species Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ FWS Criterion A : No endangered or threatened species or critical habitat are in proximity to the discharges or related activities or come in contact with the "action area".
□ FWS Criterion B : Formal or informal consultation with the FWS under section 7 of the ESA resulted in either a no jeopardy opinion (formal consultation) or a written concurrence by FWS on a finding that the discharges and related activities are "not likely to adversely affect" listed species or critical habitat
(informal consultation). Has the operator completed consultation with FWS? (check one): ☐ Yes ☐ No; if no, is consultation underway? (check one): ☐
Yes □ No
□ FWS Criterion C : Using the best scientific and commercial data available, the effect of the discharges and related activities on listed species and critical habitat have been evaluated. Based on those evaluations, a determination is made by EPA, or by the operator and affirmed by EPA, that the discharges and related activities will have "no effect" on any federally threatened or endangered listed species or designated critical habitat under the jurisdiction of the
FWS. This determination was made by: (check one) \square the operator \square EPA \square Other; if so, specify:

□ NMFS Criterion: A determination made by EPA is affirmed by the operator that the discharges and related activities will have "no effect" or are "not likely to adversely affect" any federally threatened or endangered listed species or critical habitat under the jurisdiction of NMFS and will not result in any take of
listed species. Has the operator previously completed consultation with NMFS? (check one): ☐ Yes ☐ No
2. Has the operator attached supporting documentation of ESA eligibility in accordance with the instructions in Appendix I, and G, above? (check one): \square Yes \square No
Does the supporting documentation include any written concurrence or finding provided by the Services? (check one): Yes No; if yes, attach.
H. National Historic Preservation Act eligibility determination
1. Indicate under which criterion the discharge(s) is eligible for coverage under this general permit:
□ Criterion A : No historic properties are present. The discharges and discharge-related activities (e.g., BMPs) do not have the potential to cause effects on historic properties.
□ Criterion B: Historic properties are present. Discharges and discharge related activities do not have the potential to cause effects on historic properties.
□ Criterion C : Historic properties are present. The discharges and discharge-related activities have the potential to have an effect or will have an adverse effect on historic properties.
2. Has the operator attached supporting documentation of NHPA eligibility in accordance with the instructions in H, above? (check one): ☐ Yes ☐ No
Does the supporting documentation include any written agreement with the State Historic Preservation Officer (SHPO), Tribal Historic Preservation Officer (TPHO), or
other tribal representative that outlines measures the operator will carry out to mitigate or prevent any adverse effects on historic properties? (check one): \square Yes \square No
I. Supplemental information
Describe any supplemental information being provided with the NOI. Include attachments if required or otherwise necessary.
Has the operator attached data, including any laboratory case narrative and chain of custody used to support the application? (check one): Yes No
Has the operator attached the certification requirement for the Best Management Practices Plan (BMPP)? (check one): ☐ Yes ☐ No

J. Certification requirement

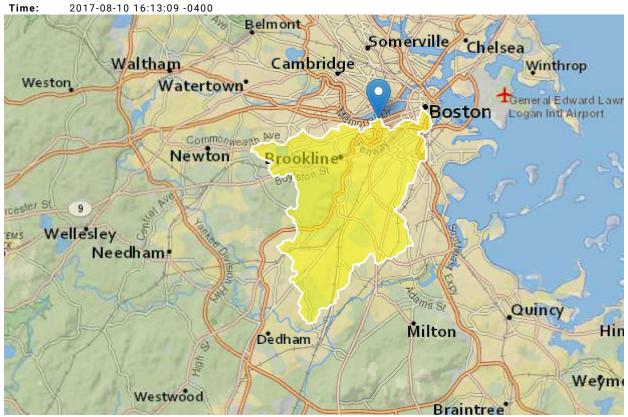
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision is that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and no personal knowledge that the information submitted is other than true, accurate, and complete. I am aware that there information, including the possibility of fine and imprisonment for knowing violations.	or persons who manage the system, or those d belief, true, accurate, and complete. I have
BMPP certification statement:	
Notification provided to the appropriate State, including a copy of this NOI, if required.	Check one: Yes □ No □
Notification provided to the municipality in which the discharge is located, including a copy of this NOI, if requested.	Check one: Yes □ No □
Notification provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOI, if requested. Permission obtained from the owner of a private or municipal storm sewer system, if such system is used for site discharges. If yes, attach additional conditions. If no, attach explanation and timeframe for obtaining permission.	Check one: Yes □ No □ NA □ Submission of documentation to and approval from BWSC in tandem with this NOI Check one: Yes □ No □ NA □
Notification provided to the owner/operator of the area associated with activities covered by an additional discharge	
$permit(s). \ Additional \ discharge \ permit \ is \ (check \ one): \ \Box \ RGP \ \Box \ DGP \ \Box \ CGP \ \Box \ MSGP \ \ \Box \ Individual \ NPDES \ permit \ Additional \ discharge \ permit $	t Check one: Yes □ No □ NA □
☐ Other; if so, specify:	
Signature:	Date: 12/28/17
Print Name and Title:	

DEWATERING DISCHARGE PERMIT APPLICATION

OWNER / AUTHORIZED APPLICANT PROVI Residences at Forest Hills S	tation LLP
Company Name:	Address: 1001 Trapelo Road, Suite 200, Waltham, MA 0245
Phone Number: (781) 890-5600	Fax number:
Contact person name: Andrew Kaye	Title: Executive Vice President
	Email address: akaye@criteriondp.com
Permit Request (check one): New Application	ion
Owner's Information (if different from above)):
Owner of property being dewatered:	
Owner's mailing address:	Phone number:
Location of Discharge & Proposed Treatmen	at System(s):
Street number and name: 3686, 3688 & 36	90 Washington St Neighborhood Jamaica Plain
Discharge is to a: ☐ Sanitary Sewer ☐ Com	bined Sewer ■ Storm Drain □ Other (specify):
Fi E	rac Tank, Bag Filters, ION Resin and GAC Filters (if necessary)
BWSC Outfall No. CSO 023 Re	eceiving Waters Charles River
Temporary Discharges (Provide Anticipated Dat	tes of Discharge): From 01/2018 To 01/2019
□ Groundwater Remediation	□ Tank Removal/Installation
☐ Utility/Manhole Pumping☐ Accumulated Surface Water	☐ Test Pipe Xi Trench Excavation ☐ Hydrogeologic Testing ☐ Other
Permanent Discharges	- Culti-
□ Foundation Drainage	□ Crawl Space/Footing Drain
□ Accumulated Surface Water □ Non-contact/Uncontaminated Process	□ Non-contact/Uncontaminated Cooling □ Other;
number, size, make and start reading. Note. All disch 2. If discharging to a sanitary or combined sewer, attach a 3. If discharging to a separate storm drain, attach a copy of as other relevant information. 4. Dewatering Drainage Permit will be denied or revoked Submit Completed Application to: Boston Water a Engineering Co 980 Harrison A	
	- 1/2/10
Signature of Authorized Representative for Property Ow	mer: Date:

APPENDIX C:

DEP PRIORITY RESOURCES MAP USGS STREAMFLOW STATISTICS REPORT DILUTION FACTOR AND WQBEL CALCULATIONS ADDITIONAL NOI SUPPORT INFORMATION


StreamStats 4.0 Page 2 of 3

StreamStats Report

Region ID:

MA20170810161215998000 Workspace ID:

Clicked Point (Latitude, Longitude): 42.35184, -71.09285

Parameter Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	23.9	square miles
BSLDEM250	Mean basin slope computed from 1:250K DEM	2.525	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	1.83	square mile per mile
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	0	dimensionlesstest

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit

StreamStats 4.0 Page 3 of 3

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	23.9	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	2.525	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	1.83	square mile per mile	0	1.29
MAREGION	Massachusetts Region	0	dimensionlesstest	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	14.1	ft^3/s
7 Day 10 Year Low Flow	11.5	ft^3/s

Low-Flow Statistics Citations

Ries, K®G®, III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U®S® Geological Survey Water Resources Investigations Report 00-4135, 81 p® (http://pubs@usgs®gov/wri/wri004135/)

From: Gina Garten

Sent: Tuesday, August 15, 2017 9:29 AM

To: Kirk W. Seaman

Subject: FW: NOI Dilution Factor

Attachments: 3686, 3688 and 3690 Washington Street, Boston.pdf

Gina M. Garten

McPHAIL ASSOCIATES, LLC

Tel: 617-868-1420 Ext. 331

From: Ruan, Xiaodan (DEP) [mailto:xiaodan.ruan@state.ma.us]

Sent: Thursday, August 10, 2017 4:23 PM

To: Gina Garten

Subject: RE: NOI Dilution Factor

Hi Gina,

Thank you for providing the information!

I run the Streamstats by clicking on the blue cell that is nearest to the discharge location (CSO023 outfall) based on the map you provided. The generated Streamstats report shows that the 7Q10 is 11.5 cfs (7.433 MGD) (see attached report).

With the design flow of 0.072 MGD (50 GPM), the dilution factor is:

Dilution Factor = (0.072+7.433) / 0.072 = 104.2

If you have any questions, please let me know. Otherwise you can attach this email to the NOI or write in today's date on the NOI where you have to check off that you have consulted with MassDEP. This will make it easier for Shauna Little when she is reviewing the NOI. Since the Charles River is not listed as an Outstanding Resource Water, you are all set from MassDEP.

Thank you, Xiaodan

From: Gina Garten [mailto:ggarten@mcphailgeo.com]

Sent: Wednesday, August 09, 2017 1:13 PM

To: Ruan, Xiaodan (DEP)

Subject: RE: NOI Dilution Factor

Xiaodan,

See the attached discharge flow path to the Charles River, which was provided by BWSC. I also attached close-up figures of the flow path. Based on the figures, the discharge flow path continues north away from the subject site on the Stony Brook Conduit. The primary discharge location is an outfall pipe listed

as CSO 023 (according to the BWSC). Attached is the close-up of the primary discharge location in the Charles River. Let me know if you have any other questions.

Gina M. Garten

McPHAIL ASSOCIATES, LLC

Tel: 617-868-1420 Ext. 331

From: Ruan, Xiaodan (DEP) [mailto:xiaodan.ruan@state.ma.us]

Sent: Tuesday, August 08, 2017 3:37 PM

To: Gina Garten

Subject: RE: NOI Dilution Factor

Could you describe in detail how the discharge gets to Charles River?

From: Gina Garten [mailto:ggarten@mcphailgeo.com]

Sent: Tuesday, August 08, 2017 2:08 PM

To: Ruan, Xiaodan (DEP)

Subject: RE: NOI Dilution Factor

The address is 3686, 3688 and 3690 Washington Street, Boston. And yes that is the design flow (not average). Let me know if you have other questions.

Gina M. Garten

McPHAIL ASSOCIATES, LLC

Tel: 617-868-1420 Ext. 331

From: Ruan, Xiaodan (DEP) [mailto:xiaodan.ruan@state.ma.us]

Sent: Tuesday, August 08, 2017 11:36 AM

To: Gina Garten

Subject: RE: NOI Dilution Factor

Hi Gina,

Could you send me the address of the site so that I can see where it is in relation to the discharge location on Charles River?

Could you confirm that 0.072 MGD (50 GPM) is the design flow of the treatment system not the average flow?

Thanks, Xiaodan

From: Gina Garten [mailto:ggarten@mcphailgeo.com]

Sent: Monday, August 07, 2017 5:04 PM

To: Little, Shauna

Cc: Ruan, Xiaodan (DEP)

Subject: RE: NOI Dilution Factor

Thanks.

Xiaodan, attached are the excel spreadsheet and StreamStats report. Let me if you have questions.

Gina M. Garten

McPHAIL ASSOCIATES, LLC

Tel: 617-868-1420 Ext. 331

From: Little, Shauna [mailto:Little.Shauna@epa.gov]

Sent: Monday, August 07, 2017 4:54 PM

To: Gina Garten

Cc: Ruan, Xiaodan (DEP)

Subject: RE: NOI Dilution Factor

Hi Gina,

The permit requires MassDEP to confirm 7Q10 and dilution factors. Cathy Vakalopoulos, the RGP contact, is out of the office at the moment, but I have copied Xiaodan, who can help.

Regards,

Shauna Little
Physical Scientist
USEPA New England
5 Post Office Square, Suite 100/OEP06-1
Boston, Massachusetts 02109-3912
Phone (617)918-1989

From: Gina Garten [mailto:ggarten@mcphailgeo.com]

Sent: Monday, August 07, 2017 4:36 PM **To:** Little, Shauna < <u>Little.Shauna@epa.gov</u>>

Subject: RE: NOI Dilution Factor

Hi Shauna – I wanted to see if you received my email below. I am looking to get confirmation on the calculated dilution factor. Let me know if you have any questions. Thanks.

Gina M. Garten

McPHAIL ASSOCIATES, LLC

Tel: 617-868-1420 Ext. 331

From: Gina Garten

Sent: Friday, July 28, 2017 8:45 AM

To: 'Little.Shauna@epa.gov'

Subject: NOI Dilution Factor [Filed 28 Jul 2017 08:45]

Good morning Shauna,

I am emailing you to get confirmation on a dilution factor for a discharge to the Charles River. The calculated dilution factor is 222.72. The design flow is 0.072 MGD (50 GPM). See attached the excel spreadsheet and the StreamStats report. Let me know if you have any questions or if you need anything else.

Thanks,

Gina M. Garten

McPHAIL ASSOCIATES, LLC

2269 Massachusetts Avenue Cambridge, MA 02140 Tel: 617-868-1420 Ext. 331 Direct: 617-349-7331 www.mcphailgeo.com IPaC U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Suffolk County, Massachusetts

for consultation

Local office

New England Ecological Services Field Office

(603) 223-2541

(603) 223-0104

70 Commercial Street, Suite 300 Concord, NH 03301-5094

http://www.fws.gov/newengland

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population, even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.

Listed species are managed by the Ecological Services Program of the U.S. Fish and Wildlife Service.

1. Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information.

THERE ARE NO ENDANGERED SPECIES EXPECTED TO OCCUR AT THIS LOCATION.

Migratory birds

Certain birds are protected under the Migratory Bird Treaty Act¹ and the Bald and Golden Eagle Protection Act².

Any activity that results in the take (to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct) of migratory birds or eagles is prohibited unless authorized by the U.S. Fish and Wildlife Service³. There are no provisions for allowing the take of migratory birds that are unintentionally killed or injured.

Any person or organization who plans or conducts activities that may result in the take of migratory birds is responsible for complying with the appropriate regulations and implementing appropriate conservation measures.

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.
- 3. 50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)

Additional information can be found using the following links:

- Birds of Conservation Concern http://www.fws.gov/birds/management/managed-species/birds-of-conservation-concern.php
- Conservation measures for birds http://www.fws.gov/birds/management/project-assessment-tools-and-guidance/conservation-measures.php
- Year-round bird occurrence data http://www.birdscanada.org/birdmon/default/datasummaries.isp

The migratory birds species listed below are species of particular conservation concern (e.g. <u>Birds of Conservation Concern</u>) that may be potentially affected by activities in this location. It is not a list of every bird species you may find in this location, nor a guarantee that all of the bird species on this list will be found on or near this location. Although it is important to try to avoid and minimize impacts to all birds, special attention should be made to avoid and minimize impacts to birds of priority concern. To view available data on other bird species that may occur in your project area, please visit the <u>AKN Histogram Tools</u> and <u>Other Bird Data Resources</u>. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

NAME	SEASON(S)
American Bittern Botaurus lentiginosus https://ecos.fws.gov/ecp/species/6582	On Land: Breeding
American Oystercatcher Haematopus palliatus https://ecos.fws.gov/ecp/species/8935	On Land: Breeding
Bald Eagle Haliaeetus leucocephalus https://ecos.fws.gov/ecp/species/1626	On Land: Year-round
Black-billed Cuckoo Coccyzus erythropthalmus https://ecos.fws.gov/ecp/species/9399	On Land: Breeding
Blue-winged Warbler Vermivora pinus	On Land: Breeding
Canada Warbler Wilsonia canadensis	On Land: Breeding
Hudsonian Godwit Limosa haemastica	At Sea: Migrating
Least Bittern Ixobrychus exilis https://ecos.fws.gov/ecp/species/6175	On Land: Breeding
Olive-sided Flycatcher Contopus cooperi https://ecos.fws.gov/ecp/species/3914	On Land: Breeding

Peregrine Falcon Falco peregrinus On Land: Wintering https://ecos.fws.gov/ecp/species/8831

Pied-billed Grebe Podilymbus podiceps On Land: Breeding

Prairie Warbler Dendroica discolor On Land: Breeding

Purple Sandpiper Calidris maritima On Land: Wintering

Saltmarsh Sparrow Ammodramus caudacutus On Land: Breeding

Seaside Sparrow Ammodramus maritimus On Land: Breeding

Short-eared Owl Asio flammeus On Land: Wintering https://ecos.fws.gov/ecp/species/9295

Snowy Egret Egretta thula On Land: Breeding

Upland Sandpiper Bartramia longicauda On Land: Breeding https://ecos.fws.gov/ecp/species/9294

Willow Flycatcher Empidonax traillii On Land: Breeding

https://ecos.fws.gov/ecp/species/3482

Wood Thrush Hylocichla mustelina On Land: Breeding

Worm Eating Warbler Helmitheros vermivorum On Land: Breeding

What does IPaC use to generate the list of migratory bird species potentially occurring in my specified location?

Landbirds:

Migratory birds that are displayed on the IPaC species list are based on ranges in the latest edition of the National Geographic Guide, Birds of North America (6th Edition, 2011 by Jon L. Dunn, and Jonathan Alderfer). Although these ranges are coarse in nature, a number of U.S. Fish and Wildlife Service migratory bird biologists agree that these maps are some of the best range maps to date. These ranges were clipped to a specific Bird Conservation Region (BCR) or USFWS Region/Regions, if it was indicated in the 2008 list of Birds of Conservation Concern (BCC) that a species was a BCC species only in a particular Region/Regions. Additional modifications have been made to some ranges based on more local or refined range information and/or information provided by U.S. Fish and Wildlife Service biologists with species expertise. All migratory birds that show in areas on land in IPaC are those that appear in the 2008 Birds of Conservation Concern report.

Atlantic Seabirds:

Ranges in IPaC for birds off the Atlantic coast are derived from species distribution models developed by the National Oceanic and Atmospheric Association (NOAA) National Centers for Coastal Ocean Science (NCCOS) using the best available seabird survey data for the offshore Atlantic Coastal region to date. NOAANCCOS assisted USFWS in developing seasonal species ranges from their models for specific use in IPaC. Some of these birds are not BCC species but were of interest for inclusion because they may occur in high abundance off the coast at different times throughout the year, which potentially makes them more susceptible to certain types of development and activities taking place in that area. For more refined details about the abundance and richness of bird species within your project area off the Atlantic Coast, see the Northeast Ocean Data Portal. The Portal also offers data and information about other types of taxa that may be helpful in your project review.

About the NOAANCCOS models: the models were developed as part of the NOAANCCOS project: Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf. The models resulting from this project are being used in a number of decision-support/mapping products in order to help guide decision-making on activities off the Atlantic Coast with the goal of reducing impacts to migratory birds. One such product is the Northeast Ocean Data Portal, which can be used to explore details about the relative occurrence and abundance of bird species in a particular area off the Atlantic Coast.

All migratory bird range maps within IPaC are continuously being updated as new and better information becomes available.

Can I get additional information about the levels of occurrence in my project area of specific birds or groups of birds listed in IPaC?

Landbirds:

The <u>Avian Knowledge Network (AKN)</u> provides a tool currently called the "Histogram Tool", which draws from the data within the AKN (latest, survey, point count, citizen science datasets) to create a view of relative abundance of species within a particular location over the course of the year. The results of the tool depict the frequency of detection of a species in survey events, averaged between multiple datasets within AKN in a particular week of the year. You may access the histogram tools through the <u>Migratory Bird Programs AKN Histogram Tools</u> webpage.

The tool is currently available for 4 regions (California, Northeast U.S., Southeast U.S. and Midwest), which encompasses the following 32 states: Alabama, Arkansas, California, Connecticut, Delaware, Florida, Georgia, Illinois, Indiana, Iowa, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North, Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia, and Wisconsin

In the near future, there are plans to expand this tool nationwide within the AKN, and allow the graphs produced to appear with the list of trust resources generated by IPaC, providing you with an additional level of detail about the level of occurrence of the species of particular concern potentially occurring in your project area throughout the course of the year.

Atlantic Seabirds:

For additional details about the relative occurrence and abundance of both individual bird species and groups of bird species within your project area off the Atlantic Coast, please visit the Northeast Ocean Data Portal. The Portal also offers data and information about other taxa besides birds that may be helpful to you in your project review. Alternately, you may download the bird model results files underlying the portal maps through the NOAANCCOS Integrative Statistical Modeling and Predictive Mapping of Marine Bird Distributions and Abundance on the Atlantic Outer Continental Shelf project webpage.

Facilities

Wildlife refuges

Any activity proposed on National Wildlife Refuge lands must undergo a 'Compatibility Determination' conducted by the Refuge. Please contact the individual Refuges to discuss any questions or concerns.

THERE ARE NO REFUGES AT THIS LOCATION.

Fish hatcheries

THERE ARE NO FISH HATCHERIES AT THIS LOCATION.

Wetlands in the National Wetlands Inventory

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

THERE ARE NO KNOWN WETLANDS AT THIS LOCATION.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery, thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

The accuracy of image interpretation depends on the quality of the imagery, the experience of the image analysts, the amount and quality of the collateral data and the amount of ground truth verification work conducted. Metadata should be consulted to determine the date of the source imagery used and any mapping problems.

Wetlands or other mapped features may have changed since the date of the imagery or field work. There may be occasional differences in polygon boundaries or classifications between the information depicted on the map and the actual conditions on site.

Data exclusions

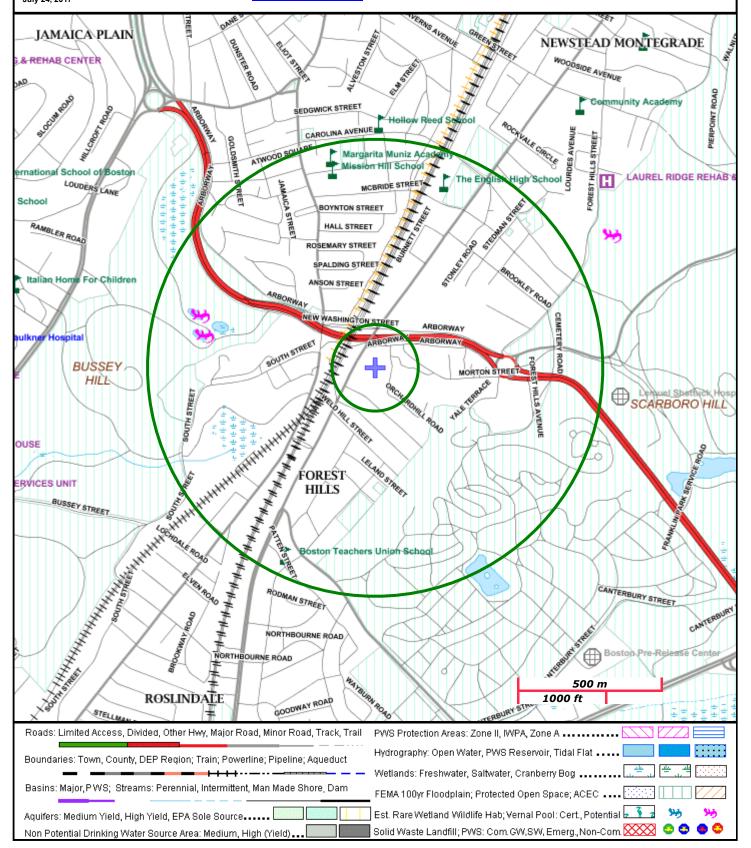
Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and nearshore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery.

Data precautions

Federal, state, and local regulatory agencies with jurisdiction over wetlands may define and describe wetlands in a different manner than that used in this inventory. There is no attempt, in either the design or products of this inventory, to define the limits of proprietary jurisdiction of any Federal, state, or local government or to establish the geographical scope of the regulatory programs of government agencies. Persons intending to engage in activities involving modifications within or adjacent to wetland areas should seek the advice of appropriate federal, state, or local agencies concerning specified agency regulatory programs and proprietary jurisdictions that may affect such activities.

MassDEP - Bureau of Waste Site Cleanup

Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii


Site Information:

3694 WASHINGTON STREET BOSTON, MA

NAD83 UTM Meters: 4685303mN , 325891mE (Zone: 19) July 24, 2017 The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Metadata for data layers shown on this map can be found at:

http://www.mass.gov/mgis/.

MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 3694; Street Name: washington St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 3696; Street Name: washington St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 3698-3690; Street Name: washington St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Street No: 15; Street Name: Morton St; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No. Property Name Street Town Year

MACRIS Search Results

Search Criteria: Town(s): Boston; Place: Jamaica Plain; Street Name: Washington st; Resource Type(s): Area, Building, Burial Ground, Object, Structure;

Inv. No.	Property Name	Street	Town	Year
BOS.10189		Union Ave	Boston	1870
BOS.9340	Forest Hills Elevated Railway Station	Washington St	Boston	1909
BOS.9345	Green Street Rapid Transit Station	Washington St	Boston	1912
BOS.10182	Arborway Garage	Washington St	Boston	c 1925
BOS.10177	Littlefield, D. T. and W. S. Apartment Block	3115-3125 Washington St	Boston	1893
BOS.10172	Littlefield, D. F. and W. S. Apartment House	3116-3122 Washington St	Boston	r 1905
BOS.10173	Curless, Margaret Three-Family House	3142 Washington St	Boston	1897
BOS.10174	Kraft, T. J. Three-Family House	3144 Washington St	Boston	1897
BOS.10178	Preising, John P. Three Decker	3147-3149 Washington St	Boston	1894
BOS.10179	Franklin Brewery Company	3179 Washington St	Boston	1894
BOS.10175	Parlon, William Three Decker	3236 Washington St	Boston	1892
BOS.10180	Jackson, Samuel House	3313 Washington St	Boston	c 1858
BOS.10176	West Roxbury Primary School	3328 Washington St	Boston	r 1860
BOS.10181	Arborway Carmen's Lobby	3640 Washington St	Boston	1924
BOS.9344	Lotus Place Carbarn and Trolley Repair Facility	3740 Washington St	Boston	1925

APPENDIX D: LABORATORY ANALYTIC DATA - GROUNDWATER

ANALYTICAL REPORT

Lab Number: L1611886

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: FOREST HILLS

Project Number: 6130.9.00

Report Date: 04/30/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FOREST HILLS

Project Number: 6130.9.00

 Lab Number:
 L1611886

 Report Date:
 04/30/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1611886-01	B-8 (OW)	WATER	3694 WASHINGTON	04/21/16 11:15	04/21/16
L1611886-02	B-9 (OW)	WATER	3694 WASHINGTON	04/21/16 10:00	04/21/16
L1611886-03	B-7 (OW)	WATER	3694 WASHINGTON	04/21/16 08:30	04/21/16

Project Name: Lab Number: **FOREST HILLS** L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP **Analytical Methods.**

An af	firmative response to questions A through F is required for "Presumptive Certainty" status	
Α	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	YES
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A res	sponse to questions G, H and I is required for "Presumptive Certainty" status	
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	NO
н	Were all QC performance standards specified in the CAM protocol(s) achieved?	NO
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name:FOREST HILLSLab Number:L1611886Project Number:6130.9.00Report Date:04/30/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:FOREST HILLSLab Number:L1611886Project Number:6130.9.00Report Date:04/30/16

Case Narrative (continued)

MCP Related Narratives

Volatile Organics

In reference to question H:

The initial calibration, associated with L1611886-01 through -03, did not meet the method required minimum response factor on the lowest calibration standard for 2-butanone (0.07707) and 1,4-dioxane (0.00186), as well as the average response factor for 2-butanone and 1,4-dioxane.

The continuing calibration standard, associated with L1611886-01 through -03, is outside the acceptance criteria for several compounds; however, it is within overall method allowances. A copy of the continuing calibration standard is included as an addendum to this report.

EPH

In reference to question G:

One or more of the target analytes did not achieve the requested CAM reporting limits.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Custen Walker Cristin Walker

Authorized Signature:

Title: Technical Director/Representative

ANALYTICAL

Date: 04/30/16

ORGANICS

VOLATILES

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

SAMPLE RESULTS

Lab ID: L1611886-01

Client ID: B-8 (OW)

3694 WASHINGTON Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 04/26/16 13:35

Analyst: MM Date Collected: 04/21/16 11:15 Date Received: 04/21/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough	Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1611886

04/30/16

Project Name: FOREST HILLS

L1611886-01

B-8 (OW)

Project Number: 6130.9.00

Lab ID:

Client ID:

SAMPLE RESULTS

Date Collected:

Lab Number:

Report Date:

04/21/16 11:15 Date Received: 04/21/16

Client ID.	D-0 (OVV)				Date Re		04/21/16	
Sample Location:	3694 WASHINGTON				Field Pre	ep:	Not Specified	
Parameter		Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organ	ics - Westborough Lab							
1,3-Dichlorobenzene		ND		ug/l	1.0		1	
1,4-Dichlorobenzene		ND		ug/l	1.0		1	
Methyl tert butyl ether		ND		ug/l	2.0		1	
p/m-Xylene		ND		ug/l	2.0		1	
o-Xylene		ND		ug/l	1.0		1	
Xylene (Total)		ND		ug/l	1.0		1	
cis-1,2-Dichloroethene		ND		ug/l	1.0		1	
1,2-Dichloroethene (total)		ND		ug/l	1.0		1	
Dibromomethane		ND		ug/l	2.0		1	
1,2,3-Trichloropropane		ND		ug/l	2.0		1	
Styrene		ND		ug/l	1.0		1	
Dichlorodifluoromethane		ND		ug/l	2.0		1	
Acetone		ND		ug/l	5.0		1	
Carbon disulfide		ND		ug/l	2.0		1	
2-Butanone		ND		ug/l	5.0		1	
4-Methyl-2-pentanone		ND		ug/l	5.0		1	
2-Hexanone		ND		ug/l	5.0		1	
Bromochloromethane		ND		ug/l	2.0		1	
Tetrahydrofuran		ND		ug/l	2.0		1	
2,2-Dichloropropane		ND		ug/l	2.0		1	
1,2-Dibromoethane		ND		ug/l	2.0		1	
1,3-Dichloropropane		ND		ug/l	2.0		1	
1,1,1,2-Tetrachloroethane		ND		ug/l	1.0		1	
Bromobenzene		ND		ug/l	2.0		1	
n-Butylbenzene		ND		ug/l	2.0		1	
sec-Butylbenzene		ND		ug/l	2.0		1	
tert-Butylbenzene		ND		ug/l	2.0		1	
o-Chlorotoluene		ND		ug/l	2.0		1	
p-Chlorotoluene		ND		ug/l	2.0		1	
1,2-Dibromo-3-chloropropa	ne	ND		ug/l	2.0		1	
Hexachlorobutadiene		ND		ug/l	0.60		1	
Isopropylbenzene		ND		ug/l	2.0		1	
p-Isopropyltoluene		ND		ug/l	2.0		1	
Naphthalene		ND		ug/l	2.0		1	
n-Propylbenzene		ND		ug/l	2.0		1	
1,2,3-Trichlorobenzene		ND		ug/l	2.0		1	
1,2,4-Trichlorobenzene		ND		ug/l	2.0		1	
1,3,5-Trimethylbenzene		ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene		ND		ug/l	2.0		1	

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 11:15

Client ID: B-8 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westborough Lab)					
Ethyl ether	ND		ug/l	2.0		1
Isopropyl Ether	ND		ug/l	2.0		1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1
1,4-Dioxane	ND		ug/l	250		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	104		70-130	
Toluene-d8	98		70-130	
4-Bromofluorobenzene	111		70-130	
Dibromofluoromethane	99		70-130	

Project Name: FOREST HILLS

Project Number: 6130.9.00

SAMPLE RESULTS

Lab Number: L1611886

Report Date: 04/30/16

Lab ID: L1611886-02

Client ID: B-9 (OW)

3694 WASHINGTON Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 04/26/16 14:07

Analyst: MM Date Collected: 04/21/16 10:00

Date Received: 04/21/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP Volatile Organics - Westbord	ough Lab					
Methylene chloride	ND		ug/l	2.0		1
1,1-Dichloroethane	ND		ug/l	1.0		1
Chloroform	ND		ug/l	1.0		1
Carbon tetrachloride	ND		ug/l	1.0		1
1,2-Dichloropropane	ND		ug/l	1.0		1
Dibromochloromethane	ND		ug/l	1.0		1
1,1,2-Trichloroethane	ND		ug/l	1.0		1
Tetrachloroethene	ND		ug/l	1.0		1
Chlorobenzene	ND		ug/l	1.0		1
Trichlorofluoromethane	ND		ug/l	2.0		1
1,2-Dichloroethane	ND		ug/l	1.0		1
1,1,1-Trichloroethane	ND		ug/l	1.0		1
Bromodichloromethane	ND		ug/l	1.0		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.0		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	1.0		1
Ethylbenzene	ND		ug/l	1.0		1
Chloromethane	ND		ug/l	2.0		1
Bromomethane	ND		ug/l	2.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	2.0		1
1,1-Dichloroethene	ND		ug/l	1.0		1
trans-1,2-Dichloroethene	ND		ug/l	1.0		1
Trichloroethene	ND		ug/l	1.0		1
1,2-Dichlorobenzene	ND		ug/l	1.0		1

L1611886

Project Name: FOREST HILLS Lab Number:

Project Number: 6130.9.00 Report Date: 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 10:00

Client ID: B-9 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics - Westborough Lab ND 1.0 1,3-Dichlorobenzene 1 ug/l 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 1 p/m-Xylene ND 2.0 1 ug/l o-Xylene ND 1.0 1 ug/l Xylene (Total) ND 1.0 1 ug/l -cis-1,2-Dichloroethene ND 1.0 1 ug/l --1,2-Dichloroethene (total) ND 1.0 1 ug/l Dibromomethane ND 2.0 1 ug/l --1,2,3-Trichloropropane ND 2.0 1 ug/l Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND 2.0 1 ug/l --ND 5.0 1 Acetone ug/l Carbon disulfide ND ug/l 2.0 1 2-Butanone ND 5.0 1 ug/l --4-Methyl-2-pentanone ND 5.0 1 ug/l ND 2-Hexanone ug/l 5.0 1 Bromochloromethane ND 2.0 1 ug/l --Tetrahydrofuran ND 2.0 1 ug/l 2,2-Dichloropropane ND 2.0 1 ug/l --ND 2.0 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 --1 Bromobenzene ND 2.0 1 ug/l -n-Butylbenzene ND 2.0 1 ug/l sec-Butylbenzene ND 2.0 1 ug/l tert-Butylbenzene ND 2.0 1 ug/l o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND 2.0 1 ug/l --1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 ND 2.0 1 Isopropylbenzene ug/l p-Isopropyltoluene ND ug/l 2.0 1 ND Naphthalene ug/l 2.0 --1 n-Propylbenzene ND 2.0 1 ug/l --1,2,3-Trichlorobenzene ND 2.0 1 ug/l 1,2,4-Trichlorobenzene ND 1 ug/l 2.0 --ND 1,3,5-Trimethylbenzene 2.0 1 ug/l 1,2,4-Trimethylbenzene ND ug/l 2.0 1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 10:00

Client ID: B-9 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westboroug	jh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	101		70-130	
Toluene-d8	96		70-130	
4-Bromofluorobenzene	103		70-130	
Dibromofluoromethane	99		70-130	

Project Name: FOREST HILLS

Project Number: 6130.9.00

SAMPLE RESULTS

Lab Number: L1611886

Report Date: 04/30/16

Lab ID: L1611886-03

Client ID: B-7 (OW)

3694 WASHINGTON Sample Location:

Matrix: Water Analytical Method: 97,8260C Analytical Date: 04/26/16 14:40

Analyst: MM Date Collected: 04/21/16 08:30

Date Received: 04/21/16 Field Prep: Not Specified

MCP Volatile Organics - Westborough Lab Methylene chloride 1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane	ND ND ND ND	ug/l ug/l ug/l	2.0	 1
1,1-Dichloroethane Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND ND	ug/l	1.0	
Chloroform Carbon tetrachloride 1,2-Dichloropropane	ND ND	ug/l		 1
Carbon tetrachloride 1,2-Dichloropropane	ND	ug/l	4.0	
1,2-Dichloropropane			1.0	 1
	ND	ug/l	1.0	 1
Dibromochloromethane		ug/l	1.0	 1
	ND	ug/l	1.0	 1
1,1,2-Trichloroethane	ND	ug/l	1.0	 1
Tetrachloroethene	ND	ug/l	1.0	 1
Chlorobenzene	ND	ug/l	1.0	 1
Trichlorofluoromethane	ND	ug/l	2.0	 1
1,2-Dichloroethane	ND	ug/l	1.0	 1
1,1,1-Trichloroethane	ND	ug/l	1.0	 1
Bromodichloromethane	ND	ug/l	1.0	 1
trans-1,3-Dichloropropene	ND	ug/l	0.50	 1
cis-1,3-Dichloropropene	ND	ug/l	0.50	 1
1,3-Dichloropropene, Total	ND	ug/l	0.50	 1
1,1-Dichloropropene	ND	ug/l	2.0	 1
Bromoform	ND	ug/l	2.0	 1
1,1,2,2-Tetrachloroethane	ND	ug/l	1.0	 1
Benzene	ND	ug/l	0.50	 1
Toluene	ND	ug/l	1.0	 1
Ethylbenzene	ND	ug/l	1.0	 1
Chloromethane	ND	ug/l	2.0	 1
Bromomethane	ND	ug/l	2.0	 1
Vinyl chloride	ND	ug/l	1.0	 1
Chloroethane	ND	ug/l	2.0	 1
1,1-Dichloroethene	ND	ug/l	1.0	 1
trans-1,2-Dichloroethene	ND	ug/l	1.0	 1
Trichloroethene	ND	ug/l	1.0	 1
1,2-Dichlorobenzene	ND	ug/l	1.0	 1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 Report Date: 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 08:30

Client ID: B-7 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL **Dilution Factor** MCP Volatile Organics - Westborough Lab ND 1.0 1,3-Dichlorobenzene ug/l 1 1,4-Dichlorobenzene ND ug/l 1.0 Methyl tert butyl ether ND ug/l 2.0 1 p/m-Xylene ND 2.0 1 ug/l o-Xylene ND 1.0 1 ug/l Xylene (Total) ND 1.0 1 ug/l -cis-1,2-Dichloroethene ND 1.0 1 ug/l --1,2-Dichloroethene (total) ND 1.0 1 ug/l Dibromomethane ND 2.0 1 ug/l --1,2,3-Trichloropropane ND 2.0 1 ug/l Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND 2.0 1 ug/l --ND 5.0 1 Acetone ug/l Carbon disulfide ND ug/l 2.0 1 2-Butanone ND 5.0 1 ug/l --4-Methyl-2-pentanone ND 5.0 1 ug/l ND 2-Hexanone ug/l 5.0 1 Bromochloromethane ND 2.0 1 ug/l --Tetrahydrofuran 4.0 2.0 1 ug/l 2,2-Dichloropropane ND 2.0 1 ug/l --ND 2.0 1 1,2-Dibromoethane ug/l 1,3-Dichloropropane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 1.0 --1 Bromobenzene ND 2.0 1 ug/l -n-Butylbenzene ND 2.0 1 ug/l sec-Butylbenzene ND 2.0 1 ug/l tert-Butylbenzene ND 2.0 1 ug/l o-Chlorotoluene ND ug/l 2.0 1 p-Chlorotoluene ND 2.0 1 ug/l --1,2-Dibromo-3-chloropropane ND ug/l 2.0 1 Hexachlorobutadiene ND ug/l 0.60 1 ND 1 Isopropylbenzene ug/l 2.0 p-Isopropyltoluene ND ug/l 2.0 1 ND Naphthalene ug/l 2.0 --1 n-Propylbenzene ND 2.0 1 ug/l --1,2,3-Trichlorobenzene ND 2.0 1 ug/l 1,2,4-Trichlorobenzene ND 1 ug/l 2.0 --ND 1,3,5-Trimethylbenzene 2.0 1 ug/l 1,2,4-Trimethylbenzene ND ug/l 2.0 1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 08:30

Client ID: B-7 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
MCP Volatile Organics - Westborou	gh Lab						
Ethyl ether	ND		ug/l	2.0		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ua/l	250		1	

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
1,2-Dichloroethane-d4	102		70-130	
Toluene-d8	95		70-130	
4-Bromofluorobenzene	104		70-130	
Dibromofluoromethane	99		70-130	

L1611886

Project Name: FOREST HILLS Lab Number:

Project Number: 6130.9.00 **Report Date:** 04/30/16

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/26/16 05:25

Analyst: MM

arameter	Result	Qualifier	Units	RI	_ MDL
CP Volatile Organics - Westb	oorough Lab for	sample(s):	01-03	Batch:	WG887282-3
Methylene chloride	ND		ug/l	2.0)
1,1-Dichloroethane	ND		ug/l	1.0)
Chloroform	ND		ug/l	1.0)
Carbon tetrachloride	ND		ug/l	1.0)
1,2-Dichloropropane	ND		ug/l	1.0)
Dibromochloromethane	ND		ug/l	1.0)
1,1,2-Trichloroethane	ND		ug/l	1.0)
Tetrachloroethene	ND		ug/l	1.0)
Chlorobenzene	ND		ug/l	1.0)
Trichlorofluoromethane	ND		ug/l	2.0)
1,2-Dichloroethane	ND		ug/l	1.0)
1,1,1-Trichloroethane	ND		ug/l	1.0)
Bromodichloromethane	ND		ug/l	1.0)
trans-1,3-Dichloropropene	ND		ug/l	0.5	0
cis-1,3-Dichloropropene	ND		ug/l	0.5	0
1,3-Dichloropropene, Total	ND		ug/l	0.5	0
1,1-Dichloropropene	ND		ug/l	2.0)
Bromoform	ND		ug/l	2.0)
1,1,2,2-Tetrachloroethane	ND		ug/l	1.0)
Benzene	ND		ug/l	0.5	0
Toluene	ND		ug/l	1.0)
Ethylbenzene	ND		ug/l	1.0)
Chloromethane	ND		ug/l	2.0)
Bromomethane	ND		ug/l	2.0)
Vinyl chloride	ND		ug/l	1.0)
Chloroethane	ND		ug/l	2.0)
1,1-Dichloroethene	ND		ug/l	1.0)
trans-1,2-Dichloroethene	ND		ug/l	1.0)
Trichloroethene	ND		ug/l	1.0)

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/26/16 05:25

Analyst: MM

Parameter	Result	Qualifier	Units	RL	MDL
MCP Volatile Organics - Wes	stborough Lab for	sample(s):	01-03	Batch:	WG887282-3
1,2-Dichlorobenzene	ND		ug/l	1.0	
1,3-Dichlorobenzene	ND		ug/l	1.0	
1,4-Dichlorobenzene	ND		ug/l	1.0	
Methyl tert butyl ether	ND		ug/l	2.0	
p/m-Xylene	ND		ug/l	2.0	
o-Xylene	ND		ug/l	1.0	
Xylene (Total)	ND		ug/l	1.0	
cis-1,2-Dichloroethene	ND		ug/l	1.0	
1,2-Dichloroethene (total)	ND		ug/l	1.0	
Dibromomethane	ND		ug/l	2.0	
1,2,3-Trichloropropane	ND		ug/l	2.0	
Styrene	ND		ug/l	1.0	
Dichlorodifluoromethane	ND		ug/l	2.0	
Acetone	ND		ug/l	5.0	
Carbon disulfide	ND		ug/l	2.0	
2-Butanone	ND		ug/l	5.0	
4-Methyl-2-pentanone	ND		ug/l	5.0	
2-Hexanone	ND		ug/l	5.0	
Bromochloromethane	ND		ug/l	2.0	
Tetrahydrofuran	ND		ug/l	2.0	
2,2-Dichloropropane	ND		ug/l	2.0	
1,2-Dibromoethane	ND		ug/l	2.0	
1,3-Dichloropropane	ND		ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND		ug/l	1.0	
Bromobenzene	ND		ug/l	2.0	
n-Butylbenzene	ND		ug/l	2.0	
sec-Butylbenzene	ND		ug/l	2.0	
tert-Butylbenzene	ND		ug/l	2.0	
o-Chlorotoluene	ND		ug/l	2.0	

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

Method Blank Analysis Batch Quality Control

Analytical Method: 97,8260C Analytical Date: 04/26/16 05:25

Analyst: MM

Parameter	Result	Qualifier	Units	RL	. MDL	
MCP Volatile Organics - Westbor	ough Lab for	sample(s):	01-03	Batch:	WG887282-3	
p-Chlorotoluene	ND		ug/l	2.0		
1,2-Dibromo-3-chloropropane	ND		ug/l	2.0		
Hexachlorobutadiene	ND		ug/l	0.6	0	
Isopropylbenzene	ND		ug/l	2.0		
p-Isopropyltoluene	ND		ug/l	2.0		
Naphthalene	ND		ug/l	2.0		
n-Propylbenzene	ND		ug/l	2.0		
1,2,3-Trichlorobenzene	ND		ug/l	2.0		
1,2,4-Trichlorobenzene	ND		ug/l	2.0		
1,3,5-Trimethylbenzene	ND		ug/l	2.0		
1,2,4-Trimethylbenzene	ND		ug/l	2.0		
Ethyl ether	ND		ug/l	2.0		
Isopropyl Ether	ND		ug/l	2.0		
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0)	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0)	
1,4-Dioxane	ND		ug/l	250)	

		Acceptance						
Surrogate	%Recovery	Qualifier	Criteria					
1,2-Dichloroethane-d4	102		70-130					
Toluene-d8	102		70-130					
4-Bromofluorobenzene	103		70-130					
Dibromofluoromethane	96		70-130					

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recover Qual Limits	y RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG887	282-1 WG887282-2			
Methylene chloride	99		105	70-130	6	20	
1,1-Dichloroethane	109		116	70-130	6	20	
Chloroform	105		114	70-130	8	20	
Carbon tetrachloride	95		109	70-130	14	20	
1,2-Dichloropropane	108		115	70-130	6	20	
Dibromochloromethane	85		99	70-130	15	20	
1,1,2-Trichloroethane	111		123	70-130	10	20	
Tetrachloroethene	103		108	70-130	5	20	
Chlorobenzene	99		106	70-130	7	20	
Trichlorofluoromethane	101		107	70-130	6	20	
1,2-Dichloroethane	114		119	70-130	4	20	
1,1,1-Trichloroethane	106		113	70-130	6	20	
Bromodichloromethane	97		110	70-130	13	20	
trans-1,3-Dichloropropene	93		104	70-130	11	20	
cis-1,3-Dichloropropene	100		108	70-130	8	20	
1,1-Dichloropropene	110		112	70-130	2	20	
Bromoform	88		98	70-130	11	20	
1,1,2,2-Tetrachloroethane	109		119	70-130	9	20	
Benzene	107		112	70-130	5	20	
Toluene	104		109	70-130	5	20	
Ethylbenzene	100		105	70-130	5	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
MCP Volatile Organics - Westborough Lab A	ssociated samp	ole(s): 01-03	Batch: WG887	282-1 W	G887282-2			
Chloromethane	113		114		70-130	1	20	
Bromomethane	76		83		70-130	9	20	
Vinyl chloride	114		117		70-130	3	20	
Chloroethane	94		97		70-130	3	20	
1,1-Dichloroethene	102		109		70-130	7	20	
trans-1,2-Dichloroethene	102		106		70-130	4	20	
Trichloroethene	105		108		70-130	3	20	
1,2-Dichlorobenzene	97		104		70-130	7	20	
1,3-Dichlorobenzene	92		98		70-130	6	20	
1,4-Dichlorobenzene	96		101		70-130	5	20	
Methyl tert butyl ether	104		112		70-130	7	20	
p/m-Xylene	99		103		70-130	4	20	
o-Xylene	96		103		70-130	7	20	
cis-1,2-Dichloroethene	112		113		70-130	1	20	
Dibromomethane	112		114		70-130	2	20	
1,2,3-Trichloropropane	117		121		70-130	3	20	
Styrene	100		106		70-130	6	20	
Dichlorodifluoromethane	118		124		70-130	5	20	
Acetone	126		138	Q	70-130	9	20	
Carbon disulfide	90		103		70-130	13	20	
2-Butanone	130		139	Q	70-130	7	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
MCP Volatile Organics - Westborough Lab	Associated samp	ole(s): 01-03	Batch: WG887	282-1 WG887282-2		
4-Methyl-2-pentanone	104		115	70-130	10	20
2-Hexanone	109		117	70-130	7	20
Bromochloromethane	107		110	70-130	3	20
Tetrahydrofuran	120		128	70-130	6	20
2,2-Dichloropropane	114		123	70-130	8	20
1,2-Dibromoethane	114		117	70-130	3	20
1,3-Dichloropropane	112		124	70-130	10	20
1,1,1,2-Tetrachloroethane	96		106	70-130	10	20
Bromobenzene	100		106	70-130	6	20
n-Butylbenzene	92		88	70-130	4	20
sec-Butylbenzene	90		88	70-130	2	20
tert-Butylbenzene	90		90	70-130	0	20
o-Chlorotoluene	98		102	70-130	4	20
p-Chlorotoluene	99		102	70-130	3	20
1,2-Dibromo-3-chloropropane	108		119	70-130	10	20
Hexachlorobutadiene	106		102	70-130	4	20
Isopropylbenzene	97		99	70-130	2	20
p-Isopropyltoluene	89		87	70-130	2	20
Naphthalene	108		117	70-130	8	20
n-Propylbenzene	98		96	70-130	2	20
1,2,3-Trichlorobenzene	101		110	70-130	9	20

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
MCP Volatile Organics - Westborough Lab A	ssociated samp	le(s): 01-03	Batch: WG88	7282-1 W	G887282-2			
1,2,4-Trichlorobenzene	101		109		70-130	8		20
1,3,5-Trimethylbenzene	94		96		70-130	2		20
1,2,4-Trimethylbenzene	95		99		70-130	4		20
Ethyl ether	102		111		70-130	8		20
Isopropyl Ether	101		105		70-130	4		20
Ethyl-Tert-Butyl-Ether	111		114		70-130	3		20
Tertiary-Amyl Methyl Ether	109		113		70-130	4		20
1,4-Dioxane	112		123		70-130	9		20

	LCS		LCSD		Acceptance	
Surrogate	%Recovery	Qual	%Recovery	Qual	Criteria	
1,2-Dichloroethane-d4	102		104		70-130	
Toluene-d8	100		101		70-130	
4-Bromofluorobenzene	108		111		70-130	
Dibromofluoromethane	97		95		70-130	

PETROLEUM HYDROCARBONS

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 11:15

Client ID: B-8 (OW) Date Received: 04/21/16

Sample Location: 3694 WASHINGTON Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 04/28/16 21:10

Analytical Date: 04/29/16 13:17 Cleanup Method1: EPH-04-1
Analyst: SR Cleanup Date1: 04/29/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt:

Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbor	is - Westborough La	ab				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 11:15

Client ID: B-8 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	48		40-140			
o-Terphenyl	61		40-140			
2-Fluorobiphenyl	65		40-140			
2-Bromonaphthalene	69		40-140			

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 10:00

Client ID: B-9 (OW) Date Received: 04/21/16

Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 98,EPH-04-1.1 Extraction Date: 04/28/16 21:10

 Analytical Date:
 04/29/16 13:49
 Cleanup Method1:
 EPH-04-1

 Analyst:
 SR
 Cleanup Date1:
 04/29/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier (Jnits	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarbo	ons - Westborough La	ıb				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 10:00

Client ID: B-9 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

	Acceptance					
Surrogate	% Recovery	Qualifier	Criteria			
Chloro-Octadecane	47		40-140			
o-Terphenyl	69		40-140			
2-Fluorobiphenyl	66		40-140			
2-Bromonaphthalene	70		40-140			

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: L1611886-03 Date Collected: 04/21/16 08:30

Client ID: B-7 (OW) Date Received: 04/21/16

Sample Location: 3694 WASHINGTON Field Prep: Not Specified Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 98,EPH-04-1.1 Extraction Date: 04/28/16 21:10
Analytical Date: 04/29/16 14:21 Cleanup Method1: EPH-04-1

Analyst: SR Cleanup Date1: 04/29/16

Quality Control Information

Condition of sample received: Satisfactory

Aqueous Preservative: Laboratory Provided Preserved

Sample Temperature upon receipt: Container
Received on Ice

Sample Extraction method: Extracted Per the Method

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Extractable Petroleum Hydrocarb	ons - Westborough La	b				
C9-C18 Aliphatics	ND		ug/l	100		1
C19-C36 Aliphatics	ND		ug/l	100		1
C11-C22 Aromatics	ND		ug/l	100		1
C11-C22 Aromatics, Adjusted	ND		ug/l	100		1
Naphthalene	ND		ug/l	10.0		1
2-Methylnaphthalene	ND		ug/l	10.0		1
Acenaphthylene	ND		ug/l	10.0		1
Acenaphthene	ND		ug/l	10.0		1
Fluorene	ND		ug/l	10.0		1
Phenanthrene	ND		ug/l	10.0		1
Anthracene	ND		ug/l	10.0		1
Fluoranthene	ND		ug/l	10.0		1
Pyrene	ND		ug/l	10.0		1
Benzo(a)anthracene	ND		ug/l	10.0		1
Chrysene	ND		ug/l	10.0		1
Benzo(b)fluoranthene	ND		ug/l	10.0		1
Benzo(k)fluoranthene	ND		ug/l	10.0		1
Benzo(a)pyrene	ND		ug/l	10.0		1
Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		1
Dibenzo(a,h)anthracene	ND		ug/l	10.0		1
Benzo(ghi)perylene	ND		ug/l	10.0		1

Project Name: FOREST HILLS Lab Number: L1611886

Project Number: 6130.9.00 **Report Date:** 04/30/16

SAMPLE RESULTS

Lab ID: Date Collected: 04/21/16 08:30

Client ID: B-7 (OW) Date Received: 04/21/16
Sample Location: 3694 WASHINGTON Field Prep: Not Specified

Parameter Result Qualifier Units RL MDL Dilution Factor

Extractable Petroleum Hydrocarbons - Westborough Lab

		Acceptance					
Surrogate	% Recovery	Qualifier	Criteria				
Chloro-Octadecane	44		40-140				
o-Terphenyl	69		40-140				
2-Fluorobiphenyl	70		40-140				
2-Bromonaphthalene	75		40-140				

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Method Blank Analysis Batch Quality Control

Analytical Method: 98,EPH-04-1.1 Analytical Date: 04/29/16 11:41

Analyst: SR

Extraction Method: EPA 3510C
Extraction Date: 04/28/16 21:10
Cleanup Method: EPH-04-1
Cleanup Date: 04/29/16

Extractable Petroleum Hydrocarbons - Westborough Lab for sample(s): 01-03 Batch: WG888521-1 C9-C18 Aliphatics ND ug/l 100 C19-C36 Aliphatics ND ug/l 100 C11-C22 Aromatics ND ug/l 100 C11-C22 Aromatics, Adjusted ND ug/l 10.0 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 <th>Parameter</th> <th>Result</th> <th>Qualifier</th> <th>Units</th> <th>RL</th> <th>MDL</th> <th></th>	Parameter	Result	Qualifier	Units	RL	MDL	
C19-C36 Aliphatics ND ug/l 100 C11-C22 Aromatics ND ug/l 100 C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0	Extractable Petroleum Hydroca	rbons - Westbo	rough Lab	for sample(s):	01-03	Batch: WG888521	-1
C11-C22 Aromatics ND ug/l 100 C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0	C9-C18 Aliphatics	ND		ug/l	100		
C11-C22 Aromatics, Adjusted ND ug/l 100 Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 <t< td=""><td>C19-C36 Aliphatics</td><td>ND</td><td></td><td>ug/l</td><td>100</td><td></td><td></td></t<>	C19-C36 Aliphatics	ND		ug/l	100		
Naphthalene ND ug/l 10.0 2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Di	C11-C22 Aromatics	ND		ug/l	100		
2-Methylnaphthalene ND ug/l 10.0 Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	C11-C22 Aromatics, Adjusted	ND		ug/l	100		
Acenaphthylene ND ug/l 10.0 Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Naphthalene	ND		ug/l	10.0		
Acenaphthene ND ug/l 10.0 Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	2-Methylnaphthalene	ND		ug/l	10.0		
Fluorene ND ug/l 10.0 Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Acenaphthylene	ND		ug/l	10.0		
Phenanthrene ND ug/l 10.0 Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Acenaphthene	ND		ug/l	10.0		
Anthracene ND ug/l 10.0 Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Fluorene	ND		ug/l	10.0		
Fluoranthene ND ug/l 10.0 Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Phenanthrene	ND		ug/l	10.0		
Pyrene ND ug/l 10.0 Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Anthracene	ND		ug/l	10.0		
Benzo(a)anthracene ND ug/l 10.0 Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Fluoranthene	ND		ug/l	10.0		
Chrysene ND ug/l 10.0 Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Pyrene	ND		ug/l	10.0		
Benzo(b)fluoranthene ND ug/l 10.0 Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(a)anthracene	ND		ug/l	10.0		
Benzo(k)fluoranthene ND ug/l 10.0 Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Chrysene	ND		ug/l	10.0		
Benzo(a)pyrene ND ug/l 10.0 Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(b)fluoranthene	ND		ug/l	10.0		
Indeno(1,2,3-cd)Pyrene ND ug/l 10.0 Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(k)fluoranthene	ND		ug/l	10.0		
Dibenzo(a,h)anthracene ND ug/l 10.0	Benzo(a)pyrene	ND		ug/l	10.0		
	Indeno(1,2,3-cd)Pyrene	ND		ug/l	10.0		
Benzo(ghi)perylene ND ug/l 10.0	Dibenzo(a,h)anthracene	ND		ug/l	10.0		
	Benzo(ghi)perylene	ND		ug/l	10.0		

			Acceptance
Surrogate	%Recovery	Qualifier	Criteria
Chloro-Octadecane	55		40-140
o-Terphenyl	71		40-140
2-Fluorobiphenyl	67		40-140
2-Bromonaphthalene	71		40-140

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Extractable Petroleum Hydrocarbons - Westb	oorough Lab As	sociated sample	e(s): 01-03 B	atch: WG888521-2 WG888	3521-3	
C9-C18 Aliphatics	49		57	40-140	15	25
C19-C36 Aliphatics	61		71	40-140	15	25
C11-C22 Aromatics	65		60	40-140	8	25
Naphthalene	53		47	40-140	12	25
2-Methylnaphthalene	58		53	40-140	9	25
Acenaphthylene	58		54	40-140	7	25
Acenaphthene	59		55	40-140	7	25
Fluorene	62		58	40-140	7	25
Phenanthrene	64		61	40-140	5	25
Anthracene	64		61	40-140	5	25
Fluoranthene	67		64	40-140	5	25
Pyrene	67		65	40-140	3	25
Benzo(a)anthracene	67		64	40-140	5	25
Chrysene	62		59	40-140	5	25
Benzo(b)fluoranthene	72		68	40-140	6	25
Benzo(k)fluoranthene	73		69	40-140	6	25
Benzo(a)pyrene	63		60	40-140	5	25
Indeno(1,2,3-cd)Pyrene	68		65	40-140	5	25
Dibenzo(a,h)anthracene	50		47	40-140	6	25
Benzo(ghi)perylene	47		44	40-140	7	25
Nonane (C9)	28	Q	33	30-140	16	25
						_

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130.9.00

Lab Number: L1611886

Report Date: 04/30/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Extractable Petroleum Hydrocarbons - W	estborough Lab Asso	ociated sampl	e(s): 01-03	Batch: WG8	888521-2 WG888	521-3		
Decane (C10)	37	Q	44		40-140	17		25
Dodecane (C12)	49		56		40-140	13		25
Tetradecane (C14)	54		62		40-140	14		25
Hexadecane (C16)	56		65		40-140	15		25
Octadecane (C18)	61		71		40-140	15		25
Nonadecane (C19)	60		70		40-140	15		25
Eicosane (C20)	61		71		40-140	15		25
Docosane (C22)	61		71		40-140	15		25
Tetracosane (C24)	61		71		40-140	15		25
Hexacosane (C26)	60		70		40-140	15		25
Octacosane (C28)	60		69		40-140	14		25
Triacontane (C30)	59		68		40-140	14		25
Hexatriacontane (C36)	59		67		40-140	13		25

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria	
Chloro-Octadecane	53		59		40-140	
o-Terphenyl	78		71		40-140	
2-Fluorobiphenyl	63		59		40-140	
2-Bromonaphthalene	70		64		40-140	
% Naphthalene Breakthrough	0		0			
% 2-Methylnaphthalene Breakthrough	0		0			

Project Name:FOREST HILLSLab Number: L1611886Project Number:6130.9.00Report Date: 04/30/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Information							
Container ID	Container Type	Cooler	рН	Temp deg C	Pres	Seal	Analysis(*)
L1611886-01A	Vial HCl preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-01B	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-01C	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-01D	Amber 1000ml HCI preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)
L1611886-01E	Amber 1000ml HCI preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)
L1611886-02A	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-02B	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-02C	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-02D	Amber 1000ml HCI preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)
L1611886-02E	Amber 1000ml HCI preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)
L1611886-03A	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-03B	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-03C	Vial HCI preserved	Α	N/A	3.6	Υ	Absent	MCP-8260-10(14)
L1611886-03D	Amber 1000ml HCl preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)
L1611886-03E	Amber 1000ml HCI preserved	Α	<2	3.6	Υ	Absent	EPH-DELUX-10(14)

Project Name:FOREST HILLSLab Number:L1611886Project Number:6130.9.00Report Date:04/30/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

TIC

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name:FOREST HILLSLab Number:L1611886Project Number:6130.9.00Report Date:04/30/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- $\label{eq:MCPCAM} \textbf{M} \qquad \text{-Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.}$
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:FOREST HILLSLab Number:L1611886Project Number:6130.9.00Report Date:04/30/16

REFERENCES

97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.

98 Method for the Determination of Extractable Petroleum Hydrocarbons (EPH), MassDEP, May 2004, Revision 1.1 with QC Requirements & Performance Standards for the Analysis of EPH under the Massachusetts Contingency Plan, WSC-CAM-IVB, July 2010.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Published Date: 2/3/2016 10:23:10 AM

ID No.:17873

Revision 6

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	CHAIN	OF CUSTODY	PAGEOF	Date Rec'd in Lab:	ylzzlu	ALPHA Job#: LIBIL886
8 Walkup Drive	320 Forbes Blvd	Project Information		Report Informatio	n - Data Deliverables	Billing Information
Westboro, MA (Tel: 508-898-92	01581 Mansfield, MA 02048	Project Name: FYCEST		XADEx 🗆	EMAIL	☐ Same as Client info PO #:
Client Information	n	Project Location: 3694	WASHINGTON			nformation Requirements
Client: McPH.	AIL_	Project #: 6130 . 9		Yes No MA MCF		☐ Yes ☑ No CT RCP Analytical Methods (Required for MCP Inorganics)
Address:		Project Manager:	APFELBAUM	☐ Yes ☐ No GW1 Sta	andards (Info Required for M	
		ALPHA Quote #:		Other State /Fed P		Criteria
Phone:		Turn-Around Time			7 73 73	
Email:		X Standard □ RUSH (c		1 6////	C Pp. C Pp. S Onl	
		1 / ~	nly confirmed if pre-approved')	7.8%	Range Range Print	/ / / / / /
1	roject Information:	1 11 11	9 4PM	ANALYSIS 24 DS24.2 DPAH COMCP14	CRCRA8 199ets C Range 199ets C Range CFingerprint	SAMPLE INFO
& SCREEN	BEFORE RUNNIN	VOC HIGHT.	NATED	AA D 824 AA D 834	Targe L	/ / / Filtration
LEVELS .	DETECTED, RUN	VOC HIGH.		ABN CP C	es & es & FEST	/ / / / D Lab to do
				CABN CABN S. CMC	Reanges & Tal URanges & Tal CB U PEST DQuant Only	Preservation ☐ Lab to do
ALPHA Lab ID (Lab Use Only)	Sample II	D Collection Date Time	Sample Sampler Matrix Initials	VOC: X8260 D 824 D 524.2 NETALS: D MCP 13 D MCP 14	LRCP 15 VPH: CRanges & Targets C Ranges Only TPH: Clauant Only C Fingerprint	Preservation ☐ Lab to do Sample Comments
11886 -01	B-8 (OW)	4/2/16 115	MW The	X	A	5
-02	B-9(0W)	1000		1		
~2	B-7 (ow)	830		1		5
- 5	10 (1000)	4 0	1 1	X / /		
	-					
	_					
Container Type P= Plastic	Preservative		Container Type	V		
A= Amber glass V= Vial	A= None B= HCI C= HNO ₃	ti e e e e e e e e e e e e e e e e e e e	Preservative	B		
G= Glass B= Bacteria cup C= Cube	D= H₂SO₄ E= NaOH F= MeOH	Relinquished By:	Date/Time	Received		
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	in Ca	4/21/15/120	Chall flex	e pa yak	All samples submitted are subject to Alpha's Terms and Conditions.
Page 30 of 43	J = NH₄CI K= Zn Acetate O= Other	rules Aaya BIAC	4/2/12 18:20	nui a	4/21/16	See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)

VOLATILE ORGANICS METHOD BLANK SUMMARY

SAMPLE NO.

WG887282-3BLANK

Lab Name: Alpha Analytical Labs

SDG No.: L1611886

Lab File ID: 0423B07 Lab Sample ID: WG887282-3

Date Analyzed: 04/26/16 Time Analyzed: 05:25

Instrument ID: JACK.I

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

	CLIENT SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED
01 02 03 04 05	WG887282-1LCS WG887282-2LCSD B-8 (OW) B-9 (OW) B-7 (OW)	WG887282-1 WG887282-2 L1611886-01 L1611886-02 L1611886-03	0423B01 0423B03 0423B37 0423B39 0423B41	04/26/16 03:49 04/26/16 04:22 04/26/16 13:35 04/26/16 14:07 04/26/16 14:40

COMMENTS:	 	 	

page 1 of 1

FORM IV MCP-8260-10 LOW

7A Volatile Organics CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1611886

Instrument ID: Jack.i Calibration Date: 26-APR-2016 Time: 03:49

Sample No: CCAL 1 Init. Calib. Times : 20:44 00:00

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
dichlorodifluoromethane	.33636	.3975			20	
chloromethane		.41315			20	
vinyl chloride		.38837			20	1
bromomethane		76.190	.1		20	F
chloroethane	24687	.23242	.1		20	1
trichlorofluoromethane	57479	.58174	.1		20	1
ethyl ether	.1433		.05		20	
ethyl ether	.3405		.1	2	20	1
carbon disulfide		.7749	.1	-10	20	1
freon-113		.39373	.1	5	20	
iodomethane		.49772	.05		20	F
		.03861	.05	27	20	F
acrolein methylene chloride		.33948	.1	-1	20	1
acetone	100		.1	26	20	F
trans-1,2-dichloroethene	37139	.37736	.1		20	-
methyl acetate	12592	.14777	.1		20	
methyl tert butyl ether		.66519	.1		20	
tert butyl alcohol		.01541	.05	$\frac{1}{4}$	20	F
Diisopropyl Ether	1 1207	1.1360	.01	1	20	-
1,1-dichloroethane		.59933	.2	9	20	
acrylonitrile	1 100	120	.05	28	20	F
Halothane	.3139	.30515	.05	-3	20	
Ethyl-Tert-Butyl-Ether	.77367	.85806	.05	11	$\frac{1}{20}$	
vinyl acetate	.53932	.63783	.05	18	20	
cis-1,2-dichloroethene	.37155	.41764	.1	12	20	
2,2-dichloropropane	.42429	.48572	.05	14	20	
cvclohexane	.57737	.62026	.01	7	30	
bromochloromethane	.18624	.19904	.05	7	20	
chloroformcarbontetrachloride	.5891	.61985	.2	5	20	
carbontetrachloride	.51204	.48696	.1	-5	20	
tetrahydrofuran	100	120	.05	20	20	
ethyl acetate	.17004	.19946	.05	17	20	
1,1,1-trichloroethane	.56866		.1	6	20	
1,1-dichloropropene		.48158	.05	10	20	
2-butanone			.1	30	20	F
benzene		1.4812	.5	7	20	
Tertiary-Amyl Methyl Ether			.05		20	
1,2-dichloroethane	.34104	.38746	.1	14	20	

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1611886

Instrument ID: Jack.i Calibration Date: 26-APR-2016 Time: 03:49

Sample No: CCAL 1 Init. Calib. Times : 20:44 00:00

Compound	RRF	RRF	MIN RRF	%D	MAX %D	
methyl cyclohexane	===== .70431 .41579 .17028 .30361 .41813 .00242 .14943 .47546 1.0700 .57604 100 .20317 .26016 100 .38318 .2719 .11915 1.4114 2.2361 .45374 .99855 .97971 100 1.5423 3.9756 .99675 .70334 4.3924 .48226 4.2588 2.9432 .3576 3.3869 .12951 2.5547	===== .69324 .43577 .19019 .32834 .40544 .00272 .15057 .47779 1.1180 .59472 92.712 .2255 .85.034 .42805 .31083 .1303 1.3929 2.4246 .43497 .99228 .99439 87.643 1.5433 3.99358 .42899 .52778 4.1389 2.8784	===== .01 .2 .05 .1 .2 .05 .05 .2 .4 .1 .1 .01 .1 .05 .1 .05 .1 .05 .1 .3 .1 .3	====== -2 12 8 -3 12 1 0 4 3 5 -7 11 9 -15 12 14 9 -1 -4 -12 0 -3 0 10 -2 9 -3 -2 17 -6 10 -1	==== 30 20 20 20 20 20	F

FORM VII MCP-8260-10

7A CONTINUING CALIBRATION CHECK

Lab Name: Alpha Analytical Labs

SDG No.: L1611886

Instrument ID: Jack.i Calibration Date: 26-APR-2016 Time: 03:49

Sample No: CCAL 1 Init. Calib. Times : 20:44 00:00

			MIN		MAX
Compound	RRF	RRF	RRF	%D	%D │
=======================================	=====	=====	=====	=====	====
sec-butylbenzene	4.3955		.01	-10	20
p-isopropyltoluene		3.4716	.05	-11	20
1,3-dichlorobenzene	2.1421	1.9765	.6	-8	20
1,4-dichlorobenzene	2.0459		.5	-4	20
p-diethylbenzene	2.1386		.05	-5	20
n-butylbenzene	2.9069		.05	-8	20
1,2-dichlorobenzene	1.8345		. 4	-3	20
1,2,4,5-tetramethylbenzene	3.2801		.05	2	20
1,2-dibromo-3-chloropropane	.07322	.0791	.05	8	20
1,3,5-trichlorobenzene	1.0493		.05	-3	20
1,2,4-trichlorobenzene	1.1474		. 2	1	20
hexachlorobutadiene	.45607		.05	6	20
naphthalene	2.1179	2.2795	.05	8	20
1,2,3-trichlorobenzene	.96253	.96913	.05	1	20
=======================================	=====	=====	=====	====	====
dibromofluoromethane	.25324		.05	-3	20
1,2-dichloroethane-d4	.20728		.05	2	20
toluene-d8	1.0341		.01	0	20
4-bromofluorobenzene	.66686	.72071	.05	8	20
				ļ 	
		<u> </u>			
		<u> </u>			
l ————————————————————————————————————	l ———	l ———	l ———	l ———	I ——— I

FORM VII MCP-8260-10

ANALYTICAL REPORT

Lab Number: L1613810

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.9.00

Report Date: 05/09/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.9.00

Lab Number: L1613810 **Report Date:** 05/09/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1613810-01	B-7 (OW)-GW050616	WATER	BOSTON, MA	05/06/16 11:15	05/06/16
L1613810-02	B-8 (OW)-GW050616	WATER	BOSTON, MA	05/06/16 09:45	05/06/16
L1613810-03	B-9 (OW)-GW050616	WATER	BOSTON, MA	05/06/16 12:15	05/06/16

Project Name:3694 WASHINGTON ST.Lab Number:L1613810

Project Number: 6130.9.00 Report Date: 05/09/16

MADEP MCP Response Action Analytical Report Certification

This form provides certifications for all samples performed by MCP methods. Please refer to the Sample Results and Container Information sections of this report for specification of MCP methods used for each analysis. The following questions pertain only to MCP Analytical Methods.

A	Were all samples received in a condition consistent with those described on the Chain-of-Custody, properly preserved (including temperature) in the field or laboratory, and prepared/analyzed within method holding times?	YES
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?	YES
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?	YES
D	Does the laboratory report comply with all the reporting requirements specified in CAM VII A, "Quality Assurance and Quality Control Guidelines for the Acquisition and Reporting of Analytical Data?"	YES
E a.	VPH, EPH, and APH Methods only: Was each method conducted without significant modification(s)? (Refer to the individual method(s) for a list of significant modifications).	N/A
E b.	APH and TO-15 Methods only: Was the complete analyte list reported for each method?	N/A
F	Were all applicable CAM protocol QC and performance standard non-conformances identified and evaluated in a laboratory narrative (including all "No" responses to Questions A through E)?	YES

A re	A response to questions G, H and I is required for "Presumptive Certainty" status							
G	Were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s)?	YES						
Н	Were all QC performance standards specified in the CAM protocol(s) achieved?	YES						
I	Were results reported for the complete analyte list specified in the selected CAM protocol(s)?	YES						

For any questions answered "No", please refer to the case narrative section on the following page(s).

Please note that sample matrix information is located in the Sample Results section of this report.

Project Name: 3694 WASHINGTON ST. Lab Number: L1613810

Project Number: 6130.9.00 **Report Date:** 05/09/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:3694 WASHINGTON ST.Lab Number:L1613810Project Number:6130.9.00Report Date:05/09/16

Case Narrative (continued)

MCP Related Narratives

Report Submission

All MCP required questions were answered with affirmative responses; therefore, there are no relevant protocol-specific QC and/or performance standard non-conformances to report.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/09/16

600 Jewson Kelly Stenstrom

INORGANICS & MISCELLANEOUS

Project Name: 3694 WASHINGTON ST.

Lab Number: Report Date:

L1613810

Project Number: 6130.9.00

05/09/16

SAMPLE RESULTS

Lab ID: L1613810-01

B-7 (OW)-GW050616 Client ID: Sample Location: BOSTON, MA

Matrix:

Water

Date Collected:

05/06/16 11:15

Date Received:

05/06/16

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Phosphorus, Total	0.017		mg/l	0.010		1	05/09/16 08:15	05/09/16 12:16	121,4500P-E	SD

Project Name: 3694 WASHINGTON ST.

Lab Number:

L1613810

Project Number: 6130.9.00

Report Date: 05/09/16

SAMPLE RESULTS

Lab ID: L1613810-02

Client ID: B-8 (OW)-GW050616

Sample Location: BOSTON, MA
Matrix: Water

Date Collected:

05/06/16 09:45

Date Received: 05/06/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Phosphorus, Total	0.017		mg/l	0.010		1	05/09/16 08:15	05/09/16 12:18	121,4500P-E	SD

Project Name: 3694 WASHINGTON ST.

Project Number:

Lab Number:

L1613810

6130.9.00

Report Date: 05/09/16

SAMPLE RESULTS

Lab ID: L1613810-03

B-9 (OW)-GW050616 Client ID: BOSTON, MA Sample Location:

Matrix: Water Date Collected:

05/06/16 12:15

Date Received: 05/06/16

Not Specified Field Prep:

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Phosphorus, Total 0.019 mg/l 0.010 1 05/09/16 08:15 05/09/16 12:18 121,4500P-E SD

Project Name: 3694 WASHINGTON ST.

Lab Number: L1613810

Project Number: 6130.9.00 Report Date: 05/09/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab for sam	ple(s): 01	-03 Bat	ch: W	G891870-1				
Phosphorus, Total	ND	mg/l	0.010		1	05/09/16 08:15	05/09/16 12:16	121,4500P-E	SD.

Lab Control Sample Analysis Batch Quality Control

3694 WASHINGTON ST.

Lab Number: L1613810

Project Number: 6130.9.00 **Report Date:** 05/09/16

Parameter	LCS %Recovery Qual	LCSD %Recovery Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG891870-2				
Phosphorus, Total	97	-	80-120	-		

Project Name:

Matrix Spike Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Lab Number:

L1613810

Project Number: 6130.9.00

Report Date:

05/09/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recovery Qual Limits	RPD C	RPD Qual Limits
General Chemistry - Westbord GW050616	ough Lab Asso	ciated samp	ole(s): 01-03	QC Batch II	D: WG891870-3	QC Sample: L16	13810-01 Clier	nt ID: B-7	' (OW)-
Phosphorus, Total	0.017	0.5	0.505	98	-	-	75-125	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** 3694 WASHINGTON ST. L1613810

05/09/16 Project Number: Report Date: 6130.9.00

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab Associated s GW050616	sample(s): 01-03 QC B	atch ID: WG891870-4 (QC Sample: L161	13810-01	Client ID: B-7 (OW)-	
Phosphorus, Total	0.017	0.020	mg/l	16	20	

Project Name: 3694 WASHINGTON ST.

Lab Number: L1613810

Project Number: 6130.9.00 Report Date: 05/09/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

A Absent

Container Info	Temp						
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1613810-01A	Amber 1000ml H2SO4 preserved	Α	<2	2.6	Υ	Absent	TPHOS-4500(28)
L1613810-02A	Amber 1000ml H2SO4 preserved	Α	<2	2.6	Υ	Absent	TPHOS-4500(28)
L1613810-03A	Amber 1000ml H2SO4 preserved	Α	<2	2.6	Υ	Absent	TPHOS-4500(28)

Project Name:3694 WASHINGTON ST.Lab Number:L1613810Project Number:6130.9.00Report Date:05/09/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes
or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

 Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

TIC

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: Data Usability Report

Project Name:3694 WASHINGTON ST.Lab Number:L1613810Project Number:6130.9.00Report Date:05/09/16

Data Qualifiers

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Serial_No:05091613:05

Project Name:3694 WASHINGTON ST.Lab Number:L1613810Project Number:6130.9.00Report Date:05/09/16

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05091613:05

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 6

Published Date: 2/3/2016 10:23:10 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ALPHA	CHA	AIN OF (CUSTO	DY	PAGE	OF	Date F	Rec'd in	Lab:	5/6	116		AL	PHA Job	#:[]6	13910	
add Jo	320 Forbes Blv		oject Informat	ion			Repo	rt Info	rmatio	n - Dat	a Deliv	erable	s B	illing Inform	ation		
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA		ject Name: 3(94 W	lashin	aton (t	□ AC	Ex		EMAIL			0 9	Same as Clier	t info PO	O #:	
Client Information	on	Pro	eject Location: 1	Bostn	n,m	A	Regu					-		mation Req		The second secon	
Client: McPh	ailAssoc.			0.9.			Yes	□ No I	MA MCF	Analyti	cal Meth	ods this S	OG? (Re	☐ Yes ☒ No equired for MC	CT RCP	Analytical Method	ds
Address: 2210	Mass Au	/ Pro	ject Manager:	tmu A	tofe!	haum	☐ Yes	No 9	GW1 St	andards				s & EPH with		50)	
Camp	ridge m	A AI	PHA Quote #:	tirig.	1 100	300111	00		NPDES /Fed P					Criteria			
Phone: (017-9	Mass Au ndge, M 368-1421	Т	urn-Around Tir	ne					/ /	27 2	/_/	$\sqrt{}$	///	////	///		
Email:				, 7	24 hr	0	1		DIMCP 14	JPP1	luo s		//_	/ / /			
					C4 hr confirmed if pre-ap	oproved!)	\$18	24	47	8	Range Range	/ /	orint	1 / /	///		T
Additional P	roject Informat	ion:	Date Due: 5/9	/Z016			ANALYSIS	V D PALL	MCP	RCR.		في /	Phosphornu		' / /	SAMPLE INFO	T
				-			₹/,	024 D	13/	arget	arget	10	Son	/ / /		Filtration ☐ Field	L #
								7/8/	MCP C	88	PEST	t Only	a) 1	/ / /		☐ Lab to do	В
							D 8260	D ABN		Rang	Rang	Quan	ੜ/ /		/ /	Preservation ☐ Lab to do	B O T T
ALPHA Lab ID	Sar	mple ID		ection	Sample	Sampler	/ ¿ö/	METALS.	METALS: DRCP 13	EPH: CRanges & Targets CPP73	C PCB C PEST	n: Douant Only DFin				Service and the service of the servi	LE
(Lab Use Only)			Date	Time	Matrix	Initials	/ 2 / 6	0 \ \	≥	<u> </u>	/ U / F		/ /		San	nple Comments	S
15610101	B-7(0W) B-8(0W	-awoon	5/6/201	11:15	GW	T45		-		-		X					1
.07	B-8 (OM)-GW0501	16 5/6/2016	9:45	6W	T45						X			1		1
.07	B-9(0W)-GW0501	165/6/2016	12:15	GW	TAJ						X					
	200																
					1			+					1		-		
	****									-			+				\vdash
										+ -		-					\vdash
Container Type	Proportorio	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A									4			1		
Container Type P= Plastic A= Amber glass	Preservative A= None B= HCI					ainer Type						A			-		\vdash
V= Vial G= Glass B= Bacteria cup	C= HNO ₃ D= H ₂ SO ₄ E= NaOH		olin aviah - J. D. c		Acres to	eservative						D	hata/Time				
C= Cube O= Other E= Encore	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	Thorware	elinquished By:		5/6/2	e/Time	Edm	CA	eceived	RA:	4418	del	ate/Time	All san		nitted are subject	t to
D= BOD Bottle	I= Ascorbic Âcid J = NH ₄ CI	Ans	2000	AAL	5/16/10	6 19:50	-Jan	The	M	Day)	1	5/	5/16.1	17 (s Terms an verse side	d Conditions.	
Page 19 of 20	K= Zn Acetate O= Other		ON.						, ,		\	,	l o v	FORM N	O: 01-01 (rev.	12-Mar-2012)	

ALPHA	CHA	IN OF CL	JSTODY	PAGE	OF	Date Re	c'd in Lab:	5/6/	16	ALPH	A Job #:	6/34/0
addi 12	220 Fashan Blue		t Information			Report	Informati	on - Data D	eliverables	Billing	Information	
8 Walkup Drive Westboro, MA Tel: 508-898-9	01581 Mansfield, MA (2048 Project	Name: 3694	Washin	raton 4	□ ADE:	x (⊐ EMAIL		□ Same	as Client info	PO #:
Client Information	on	Project	Location: Bo	ston n	14		tory Requ	irements	& Projec	Informati	on Requireme	ents
Client: McPh	wildssoc.	Project		9.00				P Analytical Spike Require			es 🗓 No CTRO ed for MCP Inorg	CP Analytical Methods
Address: 226	Mass Av	Project	Manager: Am	y Apfe	1 baum	☐ Yes ☑	No GW1 S	tandards (Inf			PH with Targets	
Camb	ndge m	ALPHA	A Quote #:	9 1		1	No NPDES				Criteria	
Phone: (017-9) Mass Av ndge, M 868-1420	Turn-	Around Time				/ /	22 / 25 /	3/3/	/ / /	////	
Email:			V DUG	24 hr 6H (eally confirmed if pr	•] _/	' / /	ORCE DPP		/5/	/ / / ,	/ /
		Star			e-approved!)	8	24,2	48 Rang	Range Deri		' / / /	Ţ
Additional F	Project Informat	ion:	Due: 5/9/20	16		ANALYSIS D 624	D PAH 3 DMCP 1	RCR IS	ts D	z. noisphoison y		SAMPLE INFO
						A 123	7 2 2	Targe		50/	/ / / .	/ Filtration □ Field #
						09	MCP MCP	RCR les &	PEST ONL	$\frac{1}{2}$	' / / /	□ Lab to do Preservation □
						D 8260	0 0 0	TRang		///		Preservation ☐ Lab to do ☐ T
ALPHA Lab ID (Lab Use Only)		nple ID		ime Matri		Voc. D8260 L	METALS: DMCP13	EPH: DRanges & Targets DRCRA8 DPP13	Total Date Only Dringeran.		///-	Sample Comments S
13410:01	B-7(0W)	-GW050616)-GW050616)-GW050616	5/6/201611:	15 Gh) T45							1
02	B-8(0W))-6W050616	5/6/2016 9:	45 Gh								1
12	B-9/0W)-12W050616	5/6/2016 12	:15 GU	1							1
.01	b Jeon) - C(VV - 300 K	0/9001012	115 000	120							1
			-									
Container Type P= Plastic	Preservative A= None			Cor	ntainer Type				À			
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Preservative				D			
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4		uished By:	D	ate/Time	A.L.	Received	d Ву:	//	te/Time	All samples er	ubmitted are subject to
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	Thowar /	relin	5/6/		Janes .	Talle	SO AA	15/6/19	16:14	Alpha's Terms	and Conditions.
Page 20 of 20	J = NH₄CI K= Zn Acetate O= Other	Jours Ch	JOD F	ALSIM	1017:55	YVIZ	i and) Vario	9/6	16/21	See reverse s	rev. 12-Mar-2012)

ANALYTICAL REPORT

Lab Number: L1722656

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Report Date: 07/13/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1722656-01	B-9 (OW)	WATER	JAMAICA PLAIN, BOSTON, MA	07/03/17 10:30	07/03/17
L1722656-02	B-8 (OW)	WATER	JAMAICA PLAIN, BOSTON, MA	07/03/17 13:00	07/03/17

Project Name: 3694 WASHINGTON ST. Lab Number: L1722656

Project Number: 6130.2.11 **Report Date:** 07/13/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris Authorized Signature:

Date: 07/13/17 Title: Technical Director/Representative

ORGANICS

SEMIVOLATILES

L1722656

07/13/17

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

SAMPLE RESULTS

Lab Number:

Report Date:

Date Collected: 07/03/17 10:30

Date Received: 07/03/17 Field Prep: Not Specified Extraction Method: EPA 3510C

Extraction Date: 07/04/17 08:19

Lab ID: L1722656-01 Client ID: B-9 (OW)

JAMAICA PLAIN, BOSTON, MA Sample Location:

Matrix: Water

Analytical Method: 97,8270D-SIM Analytical Date: 07/08/17 09:42

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs by SIM - Westborough Lab						
Acenaphthene	0.35		ug/l	0.10		1
Fluoranthene	0.34		ug/l	0.10		1
Naphthalene	0.40		ug/l	0.10		1
Benzo(a)anthracene	0.50		ug/l	0.10		1
Benzo(a)pyrene	1.1		ug/l	0.10		1
Benzo(b)fluoranthene	1.1		ug/l	0.10		1
Benzo(k)fluoranthene	1.2		ug/l	0.10		1
Chrysene	0.61		ug/l	0.10		1
Acenaphthylene	0.32		ug/l	0.10		1
Anthracene	0.31		ug/l	0.10		1
Benzo(ghi)perylene	1.6		ug/l	0.10		1
Fluorene	0.39		ug/l	0.10		1
Phenanthrene	0.32		ug/l	0.10		1
Dibenzo(a,h)anthracene	1.7		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	1.5		ug/l	0.10		1
Pyrene	0.34		ug/l	0.10		1
2-Methylnaphthalene	0.35		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	70	30-130	
2-Fluorobiphenyl	83	30-130	
4-Terphenyl-d14	73	30-130	

L1722656

07/13/17

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

SAMPLE RESULTS

Date Collected: 07/03/17 13:00

Lab Number:

Report Date:

Lab ID: L1722656-02 Client ID: B-8 (OW)

Sample Location: JAMAICA PLAIN, BOSTON, MA

Date Received: 07/03/17
Field Prep: Not Specified
Extraction Method: EPA 3510C

Matrix: Water Extraction Date: 07/04/17 08:19

Analytical Method: 97,8270D-SIM Analytical Date: 07/08/17 10:52

Analyst: KL

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
MCP PAHs by SIM - Westborough Lab						
				2.42		
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1
2-Methylnaphthalene	ND		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Nitrobenzene-d5	62	30-130	
2-Fluorobiphenyl	75	30-130	
4-Terphenyl-d14	78	30-130	

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 97,8270D-SIM 07/10/17 12:21

Analyst:

KL

Extraction Method: EPA 3510C Extraction Date: 07/04/17 08:19

arameter	Result	Qualifier	Units	RL	MDL
ICP Semivolatile Organics by S	IM - Westboro	ugh Lab for	sample(s):	01-02	Batch: WG1019587-1
Acenaphthene	ND		ug/l	0.10	
Fluoranthene	ND		ug/l	0.10	
Naphthalene	ND		ug/l	0.10	
Benzo(a)anthracene	ND		ug/l	0.10	
Benzo(a)pyrene	ND		ug/l	0.10	
Benzo(b)fluoranthene	ND		ug/l	0.10	
Benzo(k)fluoranthene	ND		ug/l	0.10	
Chrysene	ND		ug/l	0.10	
Acenaphthylene	ND		ug/l	0.10	
Anthracene	ND		ug/l	0.10	
Benzo(ghi)perylene	ND		ug/l	0.10	
Fluorene	ND		ug/l	0.10	
Phenanthrene	ND		ug/l	0.10	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	
Pyrene	ND		ug/l	0.10	
2-Methylnaphthalene	ND		ug/l	0.10	

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
Nitrobenzene-d5	63	30-130
2-Fluorobiphenyl	81	30-130
4-Terphenyl-d14	65	30-130

Lab Control Sample Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Lab Number: L1722656

Project Number: 6130.2.11

Report Date: 07/13/17

ırameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
CP Semivolatile Organics by SIM - Westb	orough Lab Associa	ated sample(s): 01-02 Batch	: WG1019587-2 WG1019	587-3	
Acenaphthene	84	84	40-140	0	20
Fluoranthene	71	71	40-140	0	20
Naphthalene	73	75	40-140	3	20
Benzo(a)anthracene	70	66	40-140	6	20
Benzo(a)pyrene	69	60	40-140	14	20
Benzo(b)fluoranthene	68	60	40-140	13	20
Benzo(k)fluoranthene	72	63	40-140	13	20
Chrysene	76	71	40-140	7	20
Acenaphthylene	79	79	40-140	0	20
Anthracene	77	76	40-140	1	20
Benzo(ghi)perylene	74	62	40-140	18	20
Fluorene	98	99	40-140	1	20
Phenanthrene	76	76	40-140	0	20
Dibenzo(a,h)anthracene	80	66	40-140	19	20
Indeno(1,2,3-cd)pyrene	70	58	40-140	19	20
Pyrene	72	70	40-140	3	20
2-Methylnaphthalene	73	76	40-140	4	20

Lab Control Sample Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

MCP Semivolatile Organics by SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1019587-2 WG1019587-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
Nitrobenzene-d5	75	77	30-130
2-Fluorobiphenyl	93	94	30-130
4-Terphenyl-d14	89	87	30-130

METALS

Project Name:3694 WASHINGTON ST.Lab Number:L1722656

Project Number: 6130.2.11 **Report Date:** 07/13/17

SAMPLE RESULTS

 Lab ID:
 L1722656-01
 Date Collected:
 07/03/17 10:30

 Client ID:
 B-9 (OW)
 Date Received:
 07/03/17

Sample Location: JAMAICA PLAIN, BOSTON, MA Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
	Result	Qualifier	Ullits	KL .	WIDL						Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/10/17 10:1:	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	07/10/17 10:1:	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00021		mg/l	0.00020		1	07/10/17 10:1	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	07/10/17 10:1	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Copper, Total	0.00441		mg/l	0.00100		1	07/10/17 10:1	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Iron, Total	0.118		mg/l	0.050		1	07/10/17 10:1	5 07/10/17 16:08	EPA 3005A	19,200.7	PS
Lead, Total	0.00104		mg/l	0.00050		1	07/10/17 10:1	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/07/17 16:1:	2 07/10/17 19:53	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	07/10/17 10:1:	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Selenium, Total	0.00527		mg/l	0.00500		1	07/10/17 10:1:	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Silver, Total	0.00060		mg/l	0.00040		1	07/10/17 10:1:	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
Zinc, Total	0.01938		mg/l	0.01000		1	07/10/17 10:1	5 07/11/17 15:19	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		07/11/17 15:19	NA	107,-	

Project Name: 3694 WASHINGTON ST.

6130.2.11

Lab Number: **Report Date:**

L1722656 07/13/17

SAMPLE RESULTS

Lab ID: L1722656-02

Client ID: B-8 (OW)

Sample Location: JAMAICA PLAIN, BOSTON, MA

Matrix: Water

Project Number:

Date Collected:

07/03/17 13:00 Date Received: 07/03/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	ND		mg/l	0.00400		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Cadmium, Total	ND		mg/l	0.00020		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Copper, Total	0.00148		mg/l	0.00100		1	07/10/17 10:1:	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Iron, Total	0.219		mg/l	0.050		1	07/10/17 10:1	5 07/10/17 16:12	EPA 3005A	19,200.7	PS
Lead, Total	ND		mg/l	0.00050		1	07/10/17 10:1:	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	07/11/17 12:1:	2 07/11/17 19:09	EPA 245.1	3,245.1	EA
Nickel, Total	ND		mg/l	0.00200		1	07/10/17 10:1:	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	07/10/17 10:1:	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
Zinc, Total	ND		mg/l	0.01000		1	07/10/17 10:1	5 07/11/17 15:23	EPA 3005A	3,200.8	AM
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		07/11/17 15:23	NA	107,-	

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date: 07/13/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Batc	h: WG10)20570-	1				
Mercury, Total	ND	mg/l	0.00020		1	07/07/17 16:12	07/10/17 19:45	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfi	ield Lab for sample(s)	: 01-02 E	Batch: Wo	G10209	51-1				
Antimony, Total	ND	mg/l	0.00400		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Arsenic, Total	ND	mg/l	0.00100		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Cadmium, Total	ND	mg/l	0.00020		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Chromium, Total	ND	mg/l	0.00100		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Copper, Total	ND	mg/l	0.00100		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Lead, Total	ND	mg/l	0.0010		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Nickel, Total	ND	mg/l	0.00200		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Selenium, Total	ND	mg/l	0.00500		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Silver, Total	ND	mg/l	0.00040		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV
Zinc, Total	ND	mg/l	0.01000		1	07/10/17 10:15	07/11/17 13:27	3,200.8	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	ield Lab for sample(s):	01-02 E	Batch: W	G10209	54-1				
Iron, Total	ND	mg/l	0.050		1	07/10/17 10:15	07/10/17 15:42	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

L1722656

Project Name: 3694 WASHINGTON ST. Lab Number:

Project Number: 6130.2.11 **Report Date:** 07/13/17

Method Blank Analysis Batch Quality Control

Dilution Date Date Analytical Method Analyst **Parameter Result Qualifier** Units RL**MDL Factor Prepared** Analyzed Total Metals - Mansfield Lab for sample(s): 02 Batch: WG1021385-1 Mercury, Total ND mg/l 0.00020 1 07/11/17 12:12 07/11/17 19:05 3,245.1 EΑ

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

Parameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01 Batch: \	WG1020570-2						
Mercury, Total	104		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG102095	1-2					
Antimony, Total	97		-		85-115	-		
Arsenic, Total	102		-		85-115	-		
Cadmium, Total	114		-		85-115	-		
Chromium, Total	103		-		85-115	-		
Copper, Total	107		-		85-115	-		
Lead, Total	103		-		85-115	-		
Nickel, Total	106		-		85-115	-		
Selenium, Total	102		-		85-115	-		
Silver, Total	103		-		85-115	-		
Zinc, Total	112		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG102095	4-2					
Iron, Total	106		-		85-115	-		
otal Metals - Mansfield Lab Associated sample	e(s): 02 Batch: '	WG1021385-2						
Mercury, Total	107		-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number: L1722656

Report Date: 07/13/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab	Associated sam	nple(s): 01	QC Batch II	D: WG102057	0-3 (QC Sample:	L1722656-01	Clien	t ID: B-9 (C	W)		
Mercury, Total	ND	0.005	0.00497	100		-	-		70-130	-		20
Total Metals - Mansfield Lab	Associated sam	nple(s): 01-02	2 QC Bato	th ID: WG1020	951-3	QC Samp	ole: L1722688-0	01 C	lient ID: MS	Samp	le	
Antimony, Total	ND	0.5	0.534	107		-	-		70-130	-		20
Arsenic, Total	ND	0.12	0.132	110		-	-		70-130	-		20
Cadmium, Total	0.0005	0.051	0.06061	118		-	-		70-130	-		20
Chromium, Total	ND	0.2	0.222	111		-	-		70-130	-		20
Copper, Total	0.106	0.25	0.368	105		-	-		70-130	-		20
Lead, Total	ND	0.51	0.566	111		-	-		70-130	-		20
Nickel, Total	ND	0.5	0.553	111		-	-		70-130	-		20
Selenium, Total	ND	0.12	0.127	106		-	-		70-130	-		20
Silver, Total	ND	0.05	0.0529	106		-	-		70-130	-		20
Zinc, Total	0.442	0.5	1.02	116		-	-		70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number: L1722656

Report Date: 07/13/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield La	ab Associated sam	ple(s): 01-02	QC Bato	ch ID: WG1020	0951-5	QC Sam	ple: L1722903-01	Client ID: MS	Sample	
Antimony, Total	0.03043	0.5	0.3029	54	Q	-	-	70-130	-	20
Arsenic, Total	0.1131	0.12	0.2412	107		-	-	70-130	-	20
Cadmium, Total	0.00656	0.051	0.06229	109		-	-	70-130	-	20
Chromium, Total	0.1014	0.2	0.3692	134	Q	-	-	70-130	-	20
Copper, Total	0.5527	0.25	0.9019	140	Q	-	-	70-130	-	20
Lead, Total	0.9419	0.51	1.611	131	Q	-	-	70-130	-	20
Nickel, Total	0.08601	0.5	0.6110	105		-	-	70-130	-	20
Selenium, Total	0.06692	0.12	0.2020	112		-	-	70-130	-	20
Silver, Total	0.00694	0.05	0.05199	90		-	-	70-130	-	20
Zinc, Total	1.387	0.5	2.003	123		-	-	70-130	-	20
otal Metals - Mansfield La	ab Associated sam	ple(s): 01-02	QC Bato	ch ID: WG1020	0954-3	QC Sam	ple: L1722903-01	Client ID: MS	Sample	
Iron, Total	78.3	1	76.8	0	Q	-	-	75-125	-	20
Γotal Metals - Mansfield La	ab Associated sam	ple(s): 02 (QC Batch II	D: WG102138	35-3 C	QC Sample:	L1722656-02 C	lient ID: B-8 (C	PW)	
Mercury, Total	ND	0.005	0.00609	122		-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number: L1722656 07/13/17

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual RF	D Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG102	20570-4 QC Sample: L	1722656-01 CI	ient ID: B-	-9 (OW)	
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID: WG	1020951-4 QC Sample:	L1722688-01	Client ID:	DUP Sample	
Copper, Total	0.106	0.108	mg/l	2		20
Lead, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID: WG	1020951-6 QC Sample:	L1722903-01	Client ID:	DUP Sample	
Antimony, Total	0.03043	0.03180	mg/l	4		20
Arsenic, Total	0.1131	0.1116	mg/l	1		20
Cadmium, Total	0.00656	0.00675	mg/l	3		20
Chromium, Total	0.1014	0.09839	mg/l	3		20
Copper, Total	0.5527	0.5413	mg/l	2		20
Lead, Total	0.9419	0.9216	mg/l	2		20
Nickel, Total	0.08601	0.08628	mg/l	0		20
Selenium, Total	0.06692	0.06789	mg/l	1		20
Silver, Total	0.00694	0.00660	mg/l	5		20
Zinc, Total	1.387	1.354	mg/l	2		20
otal Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID: WG	1020954-4 QC Sample:	L1722903-01	Client ID:	DUP Sample	
Iron, Total	78.3	76.9	mg/l	2		20

Lab Duplicate Analysis
Batch Quality Control

Lab Number: **Project Name:** 3694 WASHINGTON ST. L1722656

07/13/17 Project Number: 6130.2.11 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Total Metals - Mansfield Lab Associated sample(s): 02	QC Batch ID: WG102	1385-4 QC Sample: L1	1722656-02	Client ID: B-8 (OW)	
Mercury, Total	ND	ND	mg/l	NC	20

INORGANICS & MISCELLANEOUS

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

SAMPLE RESULTS

Lab ID: L1722656-01

Client ID: B-9 (OW)

Sample Location: JAMAICA PLAIN, BOSTON, MA

Matrix: Water

Date Collected: 07/03/17 10:30
Date Received: 07/03/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	- Westboroug	gh Lab								
Chromium, Hexavalent	ND		mg/l	0.010		1	07/04/17 00:07	07/04/17 00:57	97,7196A	KA
General Chemistry - Wes	stborough Lab)								
Solids, Total Suspended	8.3		mg/l	5.0	NA	1	-	07/04/17 03:00	121,2540D	VB
Cyanide, Total	0.009		mg/l	0.005		1	07/06/17 09:45	07/10/17 15:06	121,4500CN-CE	LK
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/04/17 01:59	121,4500CL-D	KA
Nitrogen, Ammonia	0.164		mg/l	0.075		1	07/05/17 14:20	07/05/17 17:02	121,4500NH3-BH	I JO
TPH, SGT-HEM	ND		mg/l	4.00		1	07/05/17 16:30	07/05/17 21:30	74,1664A	ML
Anions by Ion Chromato	graphy - West	borough	Lab							
Chloride	1080		mg/l	50.0		100	-	07/08/17 23:09	44,300.0	JC

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date: 07/13/17

SAMPLE RESULTS

Lab ID: L1722656-02

Client ID: B-8 (OW)

Sample Location: JAMAICA PLAIN, BOSTON, MA

Matrix: Water

Date Collected: 07/03/17 13:00 Date Received: 07/03/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemistry	· - Westborou	gh Lab								
Chromium, Hexavalent	ND		mg/l	0.010		1	07/04/17 00:07	07/04/17 00:57	97,7196A	KA
General Chemistry - We	stborough Lal	0								
Solids, Total Suspended	7.4		mg/l	5.0	NA	1	-	07/04/17 03:00	121,2540D	VB
Cyanide, Total	ND		mg/l	0.005		1	07/06/17 09:45	07/10/17 15:07	121,4500CN-CE	LK
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/04/17 01:59	121,4500CL-D	KA
Nitrogen, Ammonia	0.231		mg/l	0.075		1	07/05/17 14:20	07/05/17 17:03	121,4500NH3-BH	l JO
TPH, SGT-HEM	ND		mg/l	4.00		1	07/05/17 16:30	07/05/17 21:30	74,1664A	ML
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	432.		mg/l	5.00		10	-	07/08/17 18:03	44,300.0	JC

L1722656

Lab Number:

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11 Report Date: 07/13/17

Method	Blank	Anal	lysis
Batch	Quality	Conti	ol

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
MCP General Chemist	ry - Westboroug	h Lab fo	r sample(s)	: 01-02	2 Batch	: WG1019	9560-1			
Chromium, Hexavalent	ND		mg/l	0.010		1	07/04/17 00:07	07/04/17 00:54	97,7196A	KA
General Chemistry - W	estborough Lab	for sam	ple(s): 01-	02 Ba	tch: WG	1019566-1	1			
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	07/04/17 03:00	121,2540D	VB
General Chemistry - W	estborough Lab	for sam	ple(s): 01-	02 Ba	tch: WG	1019570-1	1			
Chlorine, Total Residual	ND		mg/l	0.02		1	-	07/04/17 01:59	121,4500CL-D	KA
General Chemistry - W	estborough Lab	for sam	ple(s): 01-	02 Ba	tch: WG	1019782-1	1			
Nitrogen, Ammonia	ND		mg/l	0.075		1	07/05/17 14:20	07/05/17 16:41	121,4500NH3-BI	н јо
General Chemistry - W	estborough Lab	for sam	ple(s): 01-	02 Ba	tch: WG	1019806-1	1			
TPH, SGT-HEM	ND		mg/l	4.00		1	07/05/17 16:30	07/05/17 21:30	74,1664A	ML
General Chemistry - W	estborough Lab	for sam	ple(s): 01-	02 Ba	tch: WG	1020008-1	1			
Cyanide, Total	ND		mg/l	0.005		1	07/06/17 09:45	07/10/17 15:01	121,4500CN-CE	E LK
Anions by Ion Chroma	tography - West	borough l	Lab for sar	mple(s)	: 01-02	Batch: W	/G1020880-1			
Chloride	ND		mg/l	0.500		1		07/08/17 17:27	44,300.0	JC

Lab Control Sample Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date:

07/13/17

Parameter	LCS %Recovery	Qual %	LCSD 6Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
MCP General Chemistry - Westborough Lab	Associated sam	ple(s): 01-02	Batch: W	G1019560-2	WG1019560-3				
Chromium, Hexavalent	100		101		49-151	1		20	
General Chemistry - Westborough Lab Ass	ociated sample(s)	: 01-02 Ba	tch: WG101	9570-2					
Chlorine, Total Residual	93		-		90-110	-			
General Chemistry - Westborough Lab Ass	ociated sample(s)	: 01-02 Ba	tch: WG101	9782-2					
Nitrogen, Ammonia	94		-		80-120	-		20	
General Chemistry - Westborough Lab Ass	ociated sample(s)	: 01-02 Ba	tch: WG101	9806-2					
TPH	86		-		64-132	-		34	
General Chemistry - Westborough Lab Ass	ociated sample(s)	: 01-02 Ba	tch: WG102	0008-2					
Cyanide, Total	104		-		90-110	-			
Anions by Ion Chromatography - Westborou	igh Lab Associate	ed sample(s)	: 01-02 Ba	tch: WG1020	880-2				
Chloride	95		-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Lab Number:

L1722656

Report Date: 07/13/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recove Qual Limit	•	RPD Qual Limits
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1019570-4	QC Sample:	L1722656-02	Client ID:	B-8 (OW)
Chlorine, Total Residual	ND	0.248	0.24	97	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1019782-4	QC Sample:	L1722269-02	Client ID:	MS Sample
Nitrogen, Ammonia	1.20	8	8.71	94	-	-	80-120	-	20
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1019806-4	QC Sample:	L1722656-02	Client ID:	B-8 (OW)
TPH	ND	20	16.9	84	-	-	64-132	-	34
General Chemistry - Westboro	ugh Lab Asso	ciated samp	ole(s): 01-02	QC Batch II	D: WG1020008-4	QC Sample:	L1722439-06	Client ID:	MS Sample
Cyanide, Total	ND	0.2	0.208	104	-	-	90-110	-	30
Anions by Ion Chromatography Sample	/ - Westborou	gh Lab Asso	ociated samp	ole(s): 01-02	QC Batch ID: WG	1020880-3	QC Sample: L1	722692-01	Client ID: MS
Chloride	10.6	4	14.0	87	Q -	-	90-110	-	18

Lab Duplicate Analysis Batch Quality Control

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

L1722656 07/13/17 Report Date:

Lab Number:

Parameter	Native Sample	e D	uplicate Sampl	le Units	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Assoc	ciated sample(s): 01-02 Q	C Batch ID:	WG1019566-2	QC Sample:	L1722604-01	Client ID:	DUP Sample	
Solids, Total Suspended	75		79	mg/l	5		29	
General Chemistry - Westborough Lab Assoc	ciated sample(s): 01-02 Q	C Batch ID:	WG1019570-3	QC Sample:	L1722656-02	Client ID:	B-8 (OW)	
Chlorine, Total Residual	ND		ND	mg/l	NC		20	
General Chemistry - Westborough Lab Assoc	ciated sample(s): 01-02 Q	C Batch ID:	WG1019782-3	QC Sample:	L1722269-02	Client ID:	DUP Sample	
Nitrogen, Ammonia	1.20		1.16	mg/l	3		20	
General Chemistry - Westborough Lab Assoc	ciated sample(s): 01-02 Q	C Batch ID:	WG1019806-3	QC Sample:	L1722656-01	Client ID:	B-9 (OW)	
TPH, SGT-HEM	ND		ND	mg/l	NC		34	
General Chemistry - Westborough Lab Assoc	ciated sample(s): 01-02 Q	C Batch ID:	WG1020008-3	QC Sample:	L1722439-05	Client ID:	DUP Sample	
Cyanide, Total	ND		ND	mg/l	NC		30	
Anions by Ion Chromatography - Westborougl Sample	h Lab Associated sample(s)): 01-02 Q	C Batch ID: WO	G1020880-4 (QC Sample: L	1722692-0	1 Client ID: DUP	
Chloride	10.6		10.6	mg/l	0		18	

Lab Number: L1722656

Report Date: 07/13/17

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1722656-01A	Plastic 250ml HNO3 preserved	A	<2	<2	2.7	Y	Absent		CD-2008T(180),MCP-CR-6010T-10(180),NI-2008T(180),MCP-7470T-10(28),MCP-AS-6010T-10(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),MCP-CD-6010T-10(180),AG-2008T(180),AS-2008T(180),HG-U(28),MCP-AG-6010T-10(180),SE-2008T(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),TRICR-CALC(1),CR-2008T(180),MCP-PB-6010T-10(180),PB-2008T(180),SB-2008T(180)
L1722656-01B	Plastic 250ml NaOH preserved	Α	>12	>12	2.7	Υ	Absent		TCN-4500(14)
L1722656-01C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.7	Υ	Absent		NH3-4500(28)
L1722656-01D	Plastic 950ml unpreserved	Α	7	7	2.7	Υ	Absent		CL-300(28),TRC-4500(1),MCP-HEXCR7196- 10(1)
L1722656-01E	Plastic 950ml unpreserved	Α	7	7	2.7	Υ	Absent		TSS-2540(7)
L1722656-01F	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)
L1722656-01G	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)
L1722656-01H	Amber 1000ml unpreserved	Α	7	7	2.7	Υ	Absent		MCP-PAHSIM-10(7)
L1722656-01I	Amber 1000ml unpreserved	Α	7	7	2.7	Υ	Absent		MCP-PAHSIM-10(7)
L1722656-02A	Plastic 250ml HNO3 preserved	A	<2	<2	2.7	Y	Absent		CD-2008T(180),MCP-CR-6010T-10(180),NI-2008T(180),MCP-7470T-10(28),MCP-AS-6010T-10(180),ZN-2008T(180),CU-2008T(180),FE-UI(180),MCP-CD-6010T-10(180),AG-2008T(180),AS-2008T(180),HG-U(28),MCP-AG-6010T-10(180),SE-2008T(180),MCP-SE-6010T-10(180),MCP-BA-6010T-10(180),TRICR-CALC(1),CR-2008T(180),MCP-PB-6010T-10(180),PB-2008T(180),SB-2008T(180)
L1722656-02B	Plastic 250ml NaOH preserved	Α	>12	>12	2.7	Υ	Absent		TCN-4500(14)
L1722656-02C	Plastic 500ml H2SO4 preserved	Α	<2	<2	2.7	Υ	Absent		NH3-4500(28)
L1722656-02D	Plastic 950ml unpreserved	Α	7	7	2.7	Υ	Absent		CL-300(28),TRC-4500(1),MCP-HEXCR7196- 10(1)

Lab Number: L1722656

Report Date: 07/13/17

Project Name: 3694 WASHINGTON ST.

Project Number: 6130.2.11

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1722656-02E	Plastic 950ml unpreserved	Α	7	7	2.7	Υ	Absent		TSS-2540(7)
L1722656-02F	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)
L1722656-02G	Amber 1000ml HCl preserved	Α	NA		2.7	Υ	Absent		TPH-1664(28)
L1722656-02H	Amber 1000ml unpreserved	Α	7	7	2.7	Υ	Absent		MCP-PAHSIM-10(7)
L1722656-02I	Amber 1000ml unpreserved	Α	7	7	2.7	Υ	Absent		MCP-PAHSIM-10(7)

Project Name:3694 WASHINGTON ST.Lab Number:L1722656Project Number:6130.2.11Report Date:07/13/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:3694 WASHINGTON ST.Lab Number:L1722656Project Number:6130.2.11Report Date:07/13/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:3694 WASHINGTON ST.Lab Number:L1722656Project Number:6130.2.11Report Date:07/13/17

REFERENCES

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664,Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 97 EPA Test Methods (SW-846) with QC Requirements & Performance Standards for the Analysis of EPA SW-846 Methods under the Massachusetts Contingency Plan, WSC-CAM-IIA, IIB, IIIA, IIIB, IIIC, IIID, VA, VB, VC, VIA, VIB, VIIIA and VIIIB, July 2010.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:07131710:52

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

ΔLPHA	CHAIN OF	CUSTODY	PAGEOF	Date Rec'o	d in Lab:	3/17	,		ALPH	IA Job	#: []	722656
8 Walkup Drive	320 Forbes Blvd	Project Information		Report Ir	formation	- Data Deli	verab	les	Billin	g Infor	mation	
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name: 3694 WA	shinuton St	Ø ADEx	ΠE	MAIL			Sam	e as Cli	ent info P	O #:
Client Informatio	n	Project Location. Jamica	lain Boston MA	,	ry Require			ect Inf	ormat	ion Re	quirement	s
Client: Maphail	Arroriater	Project Location: Jamica Project #: 6130	-2.1	Yes X N	o MA MCP A o Matrix Spik	nalytical Met	hods on this	SDG? (□ Y Requir	es 🗆 N	CP Inorgan	Analytical Methods
	assochusetts Avenue	Project Manager:		☐ Yes ☑ N	o GW1 Stand	dards (Info R	equire	d for Me	tals & E	EPH with	Targets)	63)
Canbridge.	MA	ALPHA Quote #:			● NPDES RO ate /Fed Proo			81		Criteria		
	68-1420	Turn-Around Time			/ / 4	?/2/2/	/_/	/=	1	1	1/2/	
Email: 09arte	n@ ncPhailgeo.com	☐Standard ☐ RUSH		1 ./	JACA	CPP S	s Only	1		18		
Additional Pr	roject Information:	Date Due:	(only confirmed if pre-approved')	ANALYSIS	DMCP 14	VPH: CRanges & Targets C Ranges Only C PCB C PET	Seguin Control of the	ingerprint.	7 /	7	4500	SAMPLE INFO
Metals list:Sb,As	,Cd,Cu,Fe,Pb,Hg,Ni,Se,Ag	, Zn- also needs Trichr	ome-Calc	A /20/	73 / 57 / 50 F	Targe _l	. /		79	75.4		Filtration L Field #
				260 D	MCP RCR	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Tropic Control	10	70	14/	3/2/	☐ Lab to do
				D8260	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Rang	Canal	IZ	13	3/5	7=/	Preservation Lab to do L E
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection Date Tim	Sample Sampler e Matrix Initials	31,00°.	METALS: DINCP 13 METALS: DRCRAS EPH: CID	IPH: C		7/1	0	100		L E
			-600						F		Sar	nple Comments S
2256,0]	B-9 (0W)	7/3/178:4	S GW PJH				X					2
φ)	B-9 (ow)	7/3/17 9:11	5 GW PTH				7.	X				2
10.	B-9 (OW)	7/3/17 9:3	7 7 1						X			
[0]	B-9 (010)	7/3/17 10:00			3					X		
(Q)	B-9 (OW)	7/3/17/01/								,	(1
(Q)	B-9 (OW)	7/3/17 10:1	S GW DJH)				-		1
(0)	B-9 (Ow)	7/3/17/0:3						1	(
(O g	B-8 (OW)	7/3/17 11:3						X				2
(C)	B-8 (ow)	7/3/17 12:0	00 GW PJ H				X					2
Container Type P= Plastic	Preservative A= None	1 -1 11	Container Type			F) A	1	D	PI		
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃		Preservative			1 6	A	R	A			
B= Bacteria cup C= Cube O= Other	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinquished By:	Date/Time	//	Received By:		- / 1	Date/Ti	ne	7113		
E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	g Hoar	5:56 7/3	7	AAL	7/3/	12	12/2/	TH	Alpha	's Terms an	nitted are subject to different diff
Page 34 of 37	J = NH₄CI K= Zn Acetate O= Other	AAL	11/1/ 165/	My	mee		7	15/19(8	01	-	everse side. NO: 01-01 (rev.	

V= Vial G= Glass B= Bacteria cup C= Cube O= Other E= Encore D= BOD Bottle

Page 35 of 37

E= NaOH F= MeOH G= NaHSO4 $H \approx Na_2S_2O_3$ I= Ascorbic Acid J = NH4CI K= Zn Acetate

Relinquished By:

Date/Time

Received By:

Date/Time

All samples submitted are subject to Alpha's Terms and Conditions. See reverse side. FORM NO: 01-01 (rev. 12-Mar-2012)

ALPHA	CHAIN OF	CU	STO	DY	PAGE	of 2	Date Re	ec'd in La	ab:	13/1	17			Al	LPH/	ol A	b #:	U	7226	K
8 Walkup Drive	320 Forbes Blvd	A STATE OF THE PARTY OF THE PAR	t Informat				Repor	t Inform	nation	- Data	Delive	erabl	les	В	illing	Info	orma	tion		
Westboro, MA 0 Tel: 508-898-92	11581 Mansfield, MA 02048	Project N	Name: 369	4 Wash	inuton	St	Ø ADE	Ξx	□ E	EMAIL				01	Same	as C	lient i	info F	PO #:	
Client Informatio	n	Project L	ocation:	mica Pla	in Rock	MΑ	Regul	atory R	equire	ments	&	Proj	ect l	nfor	matic	on R	equi	remen	ts	
Client: Mcphail	Arrorigher	Project #	-ocation: fa #: 61	30.	2.1)/11/3	Yes C	No Ma	MCP A	Analytica	al Meth	ods this	enca) (De	☐ Ye	s 🗀-i	No (CT RCP	Analytical Me	ethods
Address: 22 M	assochusetts Avenue	Project N	(000)	G-MC		-	☐ Yes ☑	No GW	/1 Stan	dards (I	nfo Re	quirec	d for N	Metal	s & EF	PH w	ith Ta	inorgar irgets)	iics)	
Cambridge	MA	ALPHA	Quote #:					No NP							C	Criteri	ia			
1	18-1420	Turn-A	Around Tir	ne				7 /	-		/_/	. 7	/:	7	7	7	/	1.1		34.54
Email: 0 garte	no not hailgeo.com	Stand						/ /	/RCB	/dac	soul s		1	7		15	/	13		
	roject Information:	Date I		TRUSH (only	r confirmed if pre-ag	pproved")	78260 C 624	METALS: DMCP.	METALS, DRCRAS DINCP 14 L	VPH: DRanges & Targets D Ranges	D PCB D PEST Ranges D Ranges Only	Quant Only	TH TC+ SEMBERMENT	H-1667.51H	10	25-2540 6010		H3 1500	SAMPLE II Filtration Field Lab to do Preservatio	С # 0 В 0 Т
ALPHA Lab ID (Lab Use Only)	Sample ID		Colle	ection Time	Sample Matrix	Sampler Initials	VOC:	IETAL	METAL PH.	Hal	PCE	0	X/F	10		6	/<			L E
			Buto	Time	6	inidais			1	1-1	7/2	TAC.	7					Sa	mple Comme	ents S
72556,01	B-9 (0W)		7/3/17	8:45	6-W	PJH			-		+	V	-6	-R				_		
0)	B-9 (0w)		7/3/17	9:15							+	٨	V							2
				1000	6W	PTIT					+	-	٨		V					2
•01	B-9 (0w)		7/3/17	1:30		PTIT					-	-			X	1				
101	B-9 (OW)		7/3/17	10:00	GW	PSH			-			-				X	_	A-31-1-1-1		
(Q)	B-9 (OW)		7/3/17	10:15	Gu	PJ 14					-						X		45 5-00-0	
(0)	B-4 (0W)		7/3/17	10:15	GW	DJH			_		X	_						_		
(0)	13-9 (Ow)		7/3/17	10:30	GW	PJ H								X						1
(O &	B-8 (OM)		7/3/17	11:30	GW	H CQ							X						*	2
(Or	B-8 (ow)	7.	7/3/17	12:00	6W	PJH						X								2
Container Type P= Plastic	Preservative A= None				Conta	iner Type					P	A	Δ	P	P	P	P			
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄				Pre	servative					E	À	B	C	A	A	D			
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	10	ished By:		10	/Time		Recei	ived By		, .	-	Date/	Time		/ All -				
E= Encore D= BOD Bottle Page 36 of 37	H = Na ₂ S ₂ O ₃ = Ascorbic Acid J = NH ₄ CI K= Zn Acetate O= Other		PAL	7/	5:56	1657	Cuch		ME	na	7/3/1	7	13/A	15	7	Alph See	na's T	erms ar rse side	nitted are sub d Conditions . 12-Mar-2012)	

ALPHA	CHAIN O	F CUSTODY	PAGE_2_ OF_2_	Date Rec'd in L	_ab: 7/3//	7	ALPHA Job #:	L1722658
8 Walkup Drive	320 Forbes Blvd	Project Information		Report Inform	mation - Data De	eliverables	Billing Informat	tion
Westboro, MA 0 Tel: 508-898-92	1581 Mansfield, MA 02048	Project Name: 3694 W	arhinuton St	€ ADEx	□ EMAIL	Ç	Same as Client in	nfo PO#:
Client Informatio	n	Project Location:	Plain Boston MA	Regulatory R			ormation Requir	rements
Client: McPha	il Associates	Project Location: Tamocia Project #: 6 130.2	11	Yes No M	A MCP Analytical N	Methods	☐ Yes ☑ No C Required for MCP	CT RCP Analytical Methods
Address: 2269 N	105 ochusett Alena	Project Manager: 6- M		Yes No GI	W1 Standards (Info	Required for Met	als & EPH with Tar	rgets)
Cambridge	MA	ALPHA Quote #:		☐ Yes ☐ No NF☐ Other State /F			Criteria	
Phone: 617-8	68-1420	Turn-Around Time				1.112	7 7 7 7	
Email: Ogarte	n@ mcPhailgo.com				DRCP 15 DPP13 Ges Only		1/2/	
	roject Information:	□ Standard □ RUSH Date Due:	(only confirmed if pre-approved!)	VOC: D8260 D624 D524.2 METALS: DMC	MCP 14 RCRA8 ts D Ran	TEMS COMMISSOR SOLS OF RANGES C	al metals 6000	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do Lab to do Lab to do
ALPHA Lab ID (Lab Use Only)	Sample ID	Collection	Sample Sampler e Matrix Initials	SVOC.	PH: C		2 3	E
22656,02	B-8	Date Tim		7 9 8	2 4 5 0	/F / / /		Sample Comments S
	0 0	7/3/17 12:19					X	
کوه	R-8	7/3/17 12:3					X	1
605	D-8	7/3/17 12:4	S GW PTH				X	
.03	B-8	7/3/17 12:44	5 GW PJH			χ		1
-02	B-8	7/3/17 1:00	GW PSH			X		
	3.							
Container Type	Preservative		Container Type			PP	DDD	
P= Plastic A= Amber glass V= Vial	A= None B= HCI C= HNO ₃		Preservative			EC		
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relinquished By:	Date/Time	Rocc	eived By:	Date/Tim		
O= Other E= Encore D= BOD Bottle Page 37 of 37	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid J = NH ₄ Cl K = Zn Acetate O= Other	HOUR 7,	1550 7/3/17		4 4	1	All sample Alpha's Te See rever	es submitted are subject to erms and Conditions. se side. 11-01 (rev. 12-Mar-2012)

APPENDIX E: LABORATORY ANALYTICAL DATA – SURFACE WATER

ANALYTICAL REPORT

Lab Number: L1715658

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan Phone: (617) 868-1420

Project Name: WIT

Project Number: U222.9.T4
Report Date: 05/18/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: WIT

Project Number: U222.9.T4

Lab Number:

L1715658

Report Date:

05/18/17

Alpha Sample ID Client ID Matrix Sample Location Date/Time Receive Date

L1715658-01 CHARLES RIVER WATER CHARLES RIVER 05/12/17 11:00 05/12/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact	t Client Services	at 800-624-9220	with any questions.

Project Name:WITLab Number:L1715658Project Number:U222.9.T4Report Date:05/18/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Chromium, Hexavalent

L1715658-01 was analyzed with the method required holding time exceeded.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/18/17

Custen Walker Cristin Walker

METALS

Project Name: Lab Number: WIT L1715658

Project Number: U222.9.T4 **Report Date:** 05/18/17

SAMPLE RESULTS

Lab ID: Date Collected: L1715658-01 Client ID: **CHARLES RIVER** Date Received: Sample Location: **CHARLES RIVER**

Matrix: Water 05/12/17 11:00 05/12/17

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Antimony, Total	0.00202	J	mg/l	0.00400	0.00042	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Arsenic, Total	0.00105		mg/l	0.00100	0.00016	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Cadmium, Total	ND		mg/l	0.00100	0.00005	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Chromium, Total	0.00124		mg/l	0.00100	0.00017	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Copper, Total	0.00366		mg/l	0.00100	0.00038	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Iron, Total	1.01		mg/l	0.050	0.009	1	05/15/17 12:04	1 05/16/17 21:15	EPA 3005A	19,200.7	PS
Lead, Total	0.00413		mg/l	0.00100	0.00034	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Mercury, Total	ND		mg/l	0.00020	0.00006	1	05/17/17 11:50) 05/17/17 21:28	EPA 245.1	3,245.1	EA
Nickel, Total	0.00320		mg/l	0.00200	0.00055	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Silver, Total	ND		mg/l	0.00100	0.00026	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Zinc, Total	0.01111		mg/l	0.01000	0.00341	1	05/15/17 12:04	1 05/17/17 12:04	EPA 3005A	3,200.8	BV
Total Hardness by	SM 2340B	- Mansfiel	d Lab								
Hardness	96.5		mg/l	0.660	NA	1	05/15/17 12:04	1 05/16/17 21:15	EPA 3005A	19,200.7	PS
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010	0.010	1		05/17/17 12:04	NA	107,-	

Project Name: WIT

Project Number: U222.9.T4

Lab Number:

L1715658

Report Date:

05/18/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared		Analytical Method	
Total Metals - Mansfield	d Lab for san	nple(s):	01 Batch	: WG10	003491-	1				
Iron, Total	0.045	J	mg/l	0.050	0.009	1	05/15/17 12:04	05/16/17 17:21	19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	2340B - Mansfield La	b for sam	ple(s): 0	1 Bate	ch: WG100	3491-1			
Hardness	ND	mg/l	0.660	NA	1	05/15/17 12:04	05/16/17 17:2	1 19,200.7	PS

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Q	ualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansf	field Lab for sai	mple(s):	01 Batc	h: WG10	03796-	1				
Antimony, Total	ND		mg/l	0.00400	0.00042	. 1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Arsenic, Total	0.00041	J	mg/l	0.00100	0.00016	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Cadmium, Total	ND		mg/l	0.00100	0.00005	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Chromium, Total	ND		mg/l	0.00100	0.00017	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Copper, Total	ND		mg/l	0.00100	0.00038	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Lead, Total	ND		mg/l	0.00100	0.00034	. 1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Nickel, Total	ND		mg/l	0.00200	0.00055	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Selenium, Total	ND		mg/l	0.00500	0.00173	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Silver, Total	ND		mg/l	0.00100	0.00026	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV
Zinc, Total	ND		mg/l	0.01000	0.00341	1	05/15/17 12:04	05/17/17 11:02	3,200.8	BV

Prep Information

Digestion Method: EPA 3005A

Project Name: WIT Lab Number: L1715658

Project Number: U222.9.T4 Report Date: 05/18/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	
Total Metals - Mansfiel	d Lab for sample(s):	01 Bato	h: WG10	04335-	1				
Mercury, Total	ND	mg/l	0.00020	0.00006	5 1	05/17/17 11:50	05/17/17 21:25	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: WIT

Project Number: U222.9.T4

Lab Number: L1715658

Report Date: 05/18/17

Parameter	LCS %Recovery	LCSD Qual %Recover	У Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1003491-2					
Iron, Total	105	-		85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01 Batch: WG100	3491-2				
Hardness	106	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1003796-2					
Antimony, Total	92	-		85-115	-		
Arsenic, Total	96	-		85-115	-		
Cadmium, Total	102	-		85-115	-		
Chromium, Total	99	-		85-115	-		
Copper, Total	95	-		85-115	-		
Lead, Total	99	-		85-115	-		
Nickel, Total	97	-		85-115	-		
Selenium, Total	99	-		85-115	-		
Silver, Total	96	-		85-115	-		
Zinc, Total	96	-		85-115	-		
Total Metals - Mansfield Lab Associated sample	(s): 01 Batch: \	VG1004335-2					
Mercury, Total	111	-		85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: WIT

Project Number: U222.9.T4

Lab Number:

L1715658

Report Date: 05/18/17

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	D: WG100349	1-3	QC Sample:	L1715432-09	Client ID: MS S	ample	
Iron, Total	ND	1	1.04	104		-	-	75-125	-	20
Total Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bato	h ID: V	VG1003491-	3 QC Samp	ole: L1715432-09	Client ID:	MS Sample
Hardness	104.	66.2	164	91		-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	D: WG100349	1-7	QC Sample:	L1715699-01	Client ID: MS S	ample	
Iron, Total	0.146	1	1.13	98		-	-	75-125	-	20
Fotal Hardness by SM 23	340B - Mansfield La	b Associate	ed sample(s)	: 01 QC Bato	h ID: V	VG1003491-	7 QC Samp	le: L1715699-01	Client ID:	MS Sample
Hardness	1600	66.2	1610	15	Q	-	-	75-125	-	20
otal Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	D: WG100379	6-3	QC Sample:	L1700005-89	Client ID: MS S	ample	
Antimony, Total	ND	0.5	0.474	95		-	-	70-130	-	20
Arsenic, Total	ND	0.12	0.122	102		-	-	70-130	-	20
Cadmium, Total	ND	0.051	0.0492	96		-	-	70-130	-	20
Chromium, Total	0.0268	0.2	0.221	97		-	-	70-130	-	20
Copper, Total	0.00397J	0.25	0.240	96		-	-	70-130	-	20
Lead, Total	ND	0.51	0.500	98		-	-	70-130	-	20
Nickel, Total	0.00777J	0.5	0.492	98		-	-	70-130	-	20
Selenium, Total	ND	0.12	0.119	99		-	-	70-130	-	20
Silver, Total	ND	0.05	0.0471	94		-	-	70-130	-	20
Zinc, Total	ND	0.5	0.490	98		-	-	70-130	-	20
Total Metals - Mansfield	Lab Associated san	nple(s): 01	QC Batch	D: WG100433	5-3	QC Sample:	L1715658-01	Client ID: CHAI	RLES RIVE	:R
Mercury, Total	ND	0.005	0.00539	108		_	_	70-130		_ 20

Matrix Spike Analysis Batch Quality Control

Project Name: WIT

Project Number: U222.9.T4 Lab Number:

L1715658

Report Date:

Parameter Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01	QC Batch	ID: WG1004335-5	QC Sample	e: L1715733-01	Client ID: MS Sa	ample	
Mercury, Total	0.00008J	0.005	0.00532	106	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name:

WIT

Project Number: U222.9.T4

Lab Number:

L1715658

Report Date:

arameter	Native Sample	Duplicate Sample	Units	RPD	Qual R	PD Limits
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG100349	1-4 QC Sample: L	1715432-09	Client ID:	DUP Sample	
Iron, Total	ND	0.030J	mg/l	NC		20
otal Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 01 QC Batc	h ID: WG1003491-8	QC Sample	e: L171569	99-01 Client ID:	DUP Sample
Hardness	1600	1650	mg/l	3		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG100379	6-4 QC Sample: L	1700005-89	Client ID:	DUP Sample	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	ND	ND	mg/l	NC		20
Chromium, Total	0.0268	0.0282	mg/l	5		20
Copper, Total	0.00397J	0.00429J	mg/l	NC		20
Lead, Total	ND	ND	mg/l	NC		20
Nickel, Total	0.00777J	0.00790J	mg/l	NC		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG100433	5-4 QC Sample: L	1715658-01	Client ID:	CHARLES RIVE	R
Mercury, Total	ND	ND	mg/l	NC		20
otal Metals - Mansfield Lab Associated sample(s): 01	QC Batch ID: WG100433	5-6 QC Sample: L	1715733-01	Client ID:	DUP Sample	
Mercury, Total	0.00008J	0.00008J	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: WIT Lab Number: L1715658

Project Number: U222.9.T4 Report Date: 05/18/17

SAMPLE RESULTS

 Lab ID:
 L1715658-01
 Date Collected:
 05/12/17 11:00

 Client ID:
 CHARLES RIVER
 Date Received:
 05/12/17

Sample Location: CHARLES RIVER Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough La	b								
Nitrogen, Ammonia	0.304		mg/l	0.075	0.022	1	05/15/17 23:00	05/16/17 21:39	121,4500NH3-BH	H AT
Chromium, Hexavalent	0.003	J	mg/l	0.010	0.003	1	05/16/17 06:10	05/16/17 06:32	1,7196A	KA

Project Name: WIT Lab Number: L1715658

Project Number: U222.9.T4 Report Date: 05/18/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for s	sample(s): 01	Batch:	WG10	03684-1				
Nitrogen, Ammonia	ND	mg/l	0.075	0.022	1	05/15/17 23:00	05/16/17 21:28	121,4500NH3-B	H AT
General Chemistry - V	Vestborough Lab for s	sample(s): 01	Batch:	WG10	03753-1				
Chromium, Hexavalent	ND	mg/l	0.010	0.003	1	05/16/17 06:10	05/16/17 06:31	1,7196A	KA

Lab Control Sample Analysis Batch Quality Control

Project Name: WIT

Project Number:

U222.9.T4

Lab Number:

L1715658

Report Date:

Parameter	LCS %Recovery Qua	LCSD I %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits						
General Chemistry - Westborough Lab A	Associated sample(s): 01	Batch: WG1003684-2										
Nitrogen, Ammonia	98	-	80-120	-		20						
General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1003753-2												
Chromium, Hexavalent	92	-	85-115	-		20						

Matrix Spike Analysis Batch Quality Control

Project Name: WIT

Project Number: U222.9.T4

Lab Number:

L1715658

Report Date:

<u>Parameter</u>	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recovery Qual Limits	RPD Qu	RPD lal Limits
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1003684-4	QC Sample: L17	15808-02 Client	ID: MS Sa	mple
Nitrogen, Ammonia	1.20	4	4.95	94		-	80-120	-	20
General Chemistry - Westbo	orough Lab Assoc	ciated samp	ole(s): 01	QC Batch ID: \	WG1003753-4	QC Sample: L17	15658-01 Client	ID: CHAR	LES RIVER
Chromium, Hexavalent	0.003J	0.1	0.100	100	-	-	85-115	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: WIT Batch Quality Con
Project Number: U222.9.T4

Lab Number:

L1715658

Report Date:

Parameter	Native 9	Native Sample		ple Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1003684-3	QC Sample: L	.1715808-02	Client ID:	DUP Sample
Nitrogen, Ammonia	1.:	20	1.21	mg/l	1		20
General Chemistry - Westborough Lab	Associated sample(s): 01	QC Batch ID:	WG1003753-3	QC Sample: L	.1715658-01	Client ID:	CHARLES RIVER
Chromium, Hexavalent	0.0	03J	0.003J	mg/l	NC		20

Project Name: Lab Number: L1715658 WIT

Report Date: 05/18/17 Project Number: U222.9.T4

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information Custody Seal

Cooler

Α Absent

Container Info	ormation		Temp				
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1715658-01A	Plastic 250ml HNO3 preserved	A	<2	5.1	Y	Absent	CD-2008T(180),NI- 2008T(180),ZN-2008T(180),CU- 2008T(180),FE- UI(180),HARDU(180),AG- 2008T(180),AS-2008T(180),HG- U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB- 2008T(180)
L1715658-01B	Amber 500ml unpreserved	Α	7	5.1	Υ	Absent	HEXCR-7196(1),TRICR- CALC(1)
L1715658-01C	Plastic 250ml H2SO4 preserved	Α	<2	5.1	Υ	Absent	NH3-4500(28)

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

REFERENCES

- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IV, 2007.
- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHAIN C	F CUSTO	DY	PAGE_	_OF	Date Re	c'd in Lab:	4	Tiali	7 AL	PHA Job #:	1171565	3
8 Walkup Drive	320 Forbes Blvd	Project Informa	ation			Report	Informatio	n - Data D	eliverable	District of the last of	lling Informat	A STATE OF THE PARTY OF THE PAR	
Westboro, MA Tel: 508-898-9	01581 Mansfield, MA 02048	Project Name: N	IT			ADE	х 🗆	EMAIL		5 2/3	ame as Client in	nfo PO#:	
Client Information	on			ONAS	PIVER	Regula	tory Requir	ements	& Proje	ct Inforn	nation Requir	ements	
Client: MCP10	ul Associates	Project Location: Project #: U2	22.	WAR19.	T4	☐ Yes 🕽	ANO MA MCP	Analytical	Methods	DC2 (Boo	Yes Do C	T RCP Analytical Method	ls
Address: 22 0	9 Mars Ave	Project Manager:	KWS	244		☐ Yes >	ANo GW1 Sta	ndards (Inf	o Required	for Metals	& EPH with Tar	gets)	
camp	nage Ma 68 1420	ALPHA Quote #:			and the	Yes 🗆	No NPDES I State /Fed Pr	RGP ogram	Territoria		Criteria		
Phone: 41781	US 1420	Turn-Around T	ime				The same		1.7	7 7	7 7 7	/ / /	
Email:	9 K	Ştandard	7 5 1 1 5 1					VPH: CRanges & Targets C Ranges Onto	Julo "	/ / /	1/2/1	/ / /	
		7	⊒ RUSH (o	nly confirmed if pre-a	pproved!)	ANALYSIS	24/ 47	l8 Range	ange	rint	(t)		T
Additional P	Project Information:	Date Due:				MAL	2 224.2 2 PAH 2 MCP 14	RCR.	OS SO	Last /	To let	SAMPLE INFO	O T A
						D 624	D PAH T3 DING	arger D	198t	/a/t	1 1 1	Filtration	L
Metals: RG	P13: Sb,As,Cd,Cr,Cu,Fe,I	Pb,Hg,Ni,Se,Ag,Zi	n, CRIII,	CRVI		000	METALS: CIMCP 13 L	65 & 7	TPH: DQuant Only DFin.	America Reserves	Jan	│ □ Field □ Lab to do	#
						L 8260	JABN S: DMCF S: DRCR	Rang	Quan	Le l'est	3/ /	Preservation	B O T T
ALPHA Lab ID (Lab Use Only)	Sample ID		ection	Sample	Sampler	1,0°C;	ETAL.			4.9		│ □ Lab to do	TL
	· ·	Date	Time		Initials	2 / 0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5 0	/# / -		-///	Sample Comments	S
	Chanes River	5/12/17	1.12	CW	UDP					X			1
	Charles Kiver		1100	CM	UDP				X				1
61	chanes kiver	- 512 G	1100	SW	UPP					X			1

			,										
													_
			1										_
													_
													_
Container Type	Preservative									0 0			
P= Plastic A= Amber glass V= Vial	A= None B= HCI		-		iner Type				T.	PP			
G= Glass B= Bacteria cup C= Cube	C= HNO ₃ D= H ₂ SO ₄ E= NaOH	Relinquished By:			servative					00			
O= Other E= Encore	F= MeOH G= NaHSO ₄ H = Na ₂ S ₂ O ₃	Tromiquished by.		9 17 17	/Time + 1100	11011	Received B	y:	D W/.	ate/Time	All samples	s submitted are subject to	0
D= BOD Bottle	I= Ascorbic Acid J = NH ₄ CI K= Zn Acetate	SM		5/11/10	1721	HW	no	do	- 15	12/17/	Alpha's Ter See revers	ms and Conditions	
Page 24 of 25	O= Other											-01 (rev. 12-Mar-2012)	

ΔLPHA	CHAI	N OF C	USTO	DY	PAGE_	_ OF	Date R	ec'd in La	b:	571	211	7	ALPH	IA Job #:	17156	SF .
8 Walkup Drive			ct Informa				Repo	rt Inform	ation - Da	ata Deliv	erable		Name and Address of the Owner, where	g Informati	The second secon	
Westboro, MA Tel: 508-898-9	9220 Tel: 508-822-9300		t Name: N			3	ADI	Ex	□ ЕМА	IL			≸ am	e as Client in	fo PO #:	
Client Information		Projec	t Location:	ELPI CIV	naves	PIVE	Regul					ect Inf	ormat	ion Requir	ements	
Client: MOPNO	ul Associate	Projec	t#: 42	22.	1911/19	T4	☐ Yes	29No MA	MCP Analy	tical Meth	nods	DG2	□ Y	es Do C ed for MCP In	T RCP Analytical Meth	nods
Address: 72(p	9 MAR ALLE	. Projec	t Manager:	KWS			☐ Yes	\$PANo GW	1 Standard	ls (Info Re	quired	for Me	tals & E	EPH with Tar	gets)	
camp	nage Ma US 1420	ALPI	IA Quote #:		ersyan older stepen		Yes I	□ No NPI r State /Fe	DES RGP ed Progran	n				Criteria		
Phone: 41781	68 1420	Turr	-Around T	ime				///	15	m / 4 /	$\overline{\mathcal{I}}$	1	7 /	11	/ / /	
Email:	5 E - E		indard	D DUOU				/ / -	CRCP 15	ino si	only	/ /	/ /			
Additional	Project Information	,	Due:	⊔ KUSH∂	only confirmed if pre-a	approved!)	ANALYSIS	D 524.2 4H	EPH: DRanges & Tare	C PCB C PESS. C Ranges Only	T. DQuant Only DFine	Print		Metal		TO
Additional	roject imormation	1.					MAL	D PAH	O MC	ots D	Fig.	86		2	SAMPLE INF	OA
							10	METALS: DMCP 13	AS L	g / Far	10 3	10/	t s	/ / الإ	Filtration	#
							L 8260	D ABN	RCR Ges &	ges &	int On	America S	Richard F	7 / /	│ □ Lab to do	В
AL PUAL LA ID	1							1.8.	LS: L	J.Ran	Doug	الم الم	3		Preservation ☐ Lab to do	O T T
ALPHA Lab ID (Lab Use Only)	Sample	: ID	Col	lection Time	Sample Matrix	Sampler Initials	10°C.	META	EPH.	Har D	# \ 4	# K	32	/ / /		LE
1968-01	Chanes RIVE	n	5/12/17	1100	(W	UDP					+	X			Sample Comment	s s
01	CINCINAL KIN	1-e1c	5/12/17	100	SW	UDP				-	X	^				1
61	Charles Kir	140	Chali-	1100	SW	UPP					^					1
01	Unarte Pi	VI	AKIA	1100	000	Wr					-	\	(1
			-									_			27.2	
															8111 E)	
										14 15			4			
Container Type P= Plastic	Preservative A= None				Conta	iner Type					A	PF)			1
A= Amber glass V= Vial G= Glass	B= HCI C= HNO ₃ D= H ₂ SO ₄			1,75	Pre	eservative					-	DC	_			+
B= Bacteria cup C= Cube O= Other	E= NaOH F= MeOH G= NaHSO4	Relinc	uished By:		Date	e/Time		Receiv	ed By:		D	ate/Tir	ne	All		
E= Encore D= BOD Bottle	H = Na ₂ S ₂ O ₃ l= Ascorbic Acid J = NH ₄ Cl	MOM			5/12/1	+ 1200	LIGU	<u>L</u>	Atc	1	SA	11	7/60	Alpha's Ter	s submitted are subject submitted are subject submitted are subject to submitted are subject to subject submitted are subject subject submitted are submitted are subject submitted are subject submitted are subject submitted are subject submitted are submitted ar	ct to
Page 25 of 25	K= Zn Acetate O= Other	3121			3//4/7			Ture	J- ()	40	2(12119	71725		e side. 01 (rev. 12-Mar-2012)	

APPENDIX F:

BEST MANAGEMENT PRACTICE PLAN

A Notice of Intent for a Remediation General Permit (RGP) under the National Pollutant Discharge Elimination System (NPDES) has been submitted to the US Environmental Protection Agency (EPA) in anticipation of temporary construction dewatering that will occur during redevelopment of the property located at 3686, 3688 and 3690 in Boston, Massachusetts. This Best Management Practices Plan (BMPP) has been prepared as an Appendix to the RGP and will be posted at the site during the time period that temporary construction dewatering is occurring at the site.

Water Treatment and Management

During construction of the proposed building foundation, dewatering effluent is anticipated to be pumped from localized sumps and trenches within the excavation directly into a settling tank. The effluent will then flow through the necessary treatment systems and discharge through hoses or piping connected into the storm water drains and enter the outfall following one of two pathways. Records supplied by BWSC indicate that the dedicated stormwater drain systems connect to the north of the subject site as one discharge flow path with one primary and one secondary outfall locations. The discharge flow path continues north away from the subject site on the Stony Brook Conduit then flows north-northeast along the MBTA line and under Park Street. The flow path then flows west under Forsyth Way towards the Back Bay Fens. The secondary discharge location is an emergency outfall at a gate house that, per BWSC, is only used in high discharge flow emergency events. The flow path follows along the Back Bay Fens under I-90, Commonwealth Avenue, and Storrow Drive out to the Charles River. The primary discharge location is an outfall pipe listed as CSO 023.

Dewatering effluent treatment will consist of a settling tank, bag filters to remove suspended soil particulates and an ion resin media vessel to lower concentrations of metals to meet the applicable WQBELs. In the case that a sheen is observed, effluent discharge may need to be passed through GAC filtration systems prior to off-site discharge to lower concentrations of petroleum hydrocarbons below applicable WQBELs and/or TBELs.

Discharge Monitoring and Compliance

Sampling and testing will be conducted at the influent to the system and the treated effluent as required by the RGP. During the first week of discharge, the operator will sample the untreated influent and treated effluent two times: one (1) sample of untreated influent and one (1) sample of the treated effluent will be collected on the first day of discharge, and one (1) sample of untreated influent and one (1) sample of treated effluent must be collected on one additional non-consecutive day within the first week of discharge. Samples will be analyzed in accordance with 40 CFR §136 unless otherwise specified by the RGP, with a maximum 5-day turnaround time and results will be reviewed no more than 48

hours from receipt of the results of each sampling event. After the first week, samples will be analyzed with up to a ten (10)-day turnaround time and results must be reviewed no more than 72 hours from receipt of the results. If the treatment system is operating as designed and achieving the effluent limitations outlined in the RGP, on-going sampling shall be conducted weekly for three (3) additional weeks beginning no earlier than 24 hours following initial sampling, and monthly as described below. Any adjustments/reductions in monitoring frequency must be approved by EPA in writing.

In accordance with Part 4.1 of the RGP, the operator will perform routine monthly monitoring for both influent and effluent beginning no more than 30 days following the completion of the sampling requirements for new discharges or discharges that have been interrupted. The routine monthly monitoring is to be conducted through the end of the scheduled discharge. The routine monthly monitoring must continue for five (5) consecutive months prior to submission of any request for modification of monitoring frequency.

Dewatering activity for the Site is classified as Category III-G: Sites with Known Contamination. Monitoring shall include analysis of influent and effluent for contaminates specified by the EPA.

Monitoring will include checking the condition of the treatment system, assessing the need for treatment system adjustments based on monitoring data, observing, and recording daily flow rates and discharge quantities, and verifying the flow path of the discharged effluent.

The total monthly flow will be monitored by checking and documenting the flow through the flow meter to be installed on the system. Flow will be maintained below the "system design flow" by regularly monitoring flow and adjusting the amount of construction dewatering as needed. Monthly monitoring reports will be compiled and maintained at the site.

System Maintenance

Regular maintenance and periodic cleaning of the treatment system will be conducted to verify proper operation and shall be conducted in accordance with Section 1.14 of the project earthwork specifications. Regular maintenance will include checking the condition of the treatment system equipment such as the settling tanks, bag filters, hoses, pumps, and flow meters. Equipment will be monitored daily for potential issues and unscheduled maintenance requirements.

Employees who have direct or indirect responsibility for ensuring compliance with the RGP will be trained by the Contractor.

Miscellaneous Items

It is anticipated that the erosion control measures and the nature of the site will minimize potential runoff to or from the site. The project specifications also include requirements for

erosion control. Site security for the treatment system will be addressed within the overall site security plan.

No adverse effects on designated uses of surrounding surface water bodies is anticipated. There are no water bodies within 1,000 feet of the subject site. Dewatering effluent will be pumped into a settling tank. Water within the settling tank will pumped through bag filters and, if necessary, ion exchange chambers and/or GAC filters prior to discharge into the storm drains.

Management of Treatment System Materials

Dewatering effluent will be pumped directly into the treatment system from the excavation with use of hoses and localized sumps to minimize handling. The Contractor will establish staging areas for equipment or materials storage that may be possible sources of pollution away from any dewatering activities, to the extent practicable.

Sediment from the tank used in the treatment system will be characterized and removed from the site to an appropriate receiving facility, in accordance with applicable laws and regulations. Bags and media will be replaced/disposed of as necessary.