II. Suggested Format for the Remediation General Permit Notice of Change (NOC)

A. General site information

1. NPDES permit number assigned by EPA:				
2. Name of site:	Site address:			
	Street:			
	City:		State:	Zip:
3. Site owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:			
Owner is (check one): ☐ Federal ☐ State/Tribal ☐ Private ☐ Other, if so, describe:	City:		State:	Zip:
4. Site operator, if different than owner	Contact Person:			
	Telephone:	Email:		
	Mailing address:			
	Street:			
	City:		State:	Zip:
5. Discharge identification:	Discharge location:	Receiving wat	er(s):	

B. Type of change(s) requested

Requ	ested change (check all that apply):
	1. Request for reduction in monitoring requirements to no less than once per year, based on monitoring data attached in accordance with Appendix IV, Part 2 instructions. Written approval by EPA is required for this change to be effective.
	i. Influent monitoring requirement reduction based on monitoring data for six (6) consecutive months and ten (10) samples.
	ii. Effluent monitoring requirement reduction based on monitoring data for six (6) consecutive months and ten (10) samples that are in compliance with the RGP effluent limitations, and data and BMP requirements.
	2. Request for site-specific effluent flow limitation, which will not exceed 1.0 MGD or the design flow of the treatment system, or site-specific monitoring requirement that eliminates flow meter requirement based on written rationale attached in accordance with Appendix IV, Part 2 instructions. Written approval by EPA is required for this change to be effective.
	3. Request for a change in pH range approved by NHDES, based on supporting documentation attached in accordance with Appendix IV, Part 2 instructions. Written approval by EPA is required for this change to be effective.
×	4. Request for change in authorized pollutants or pollutant parameters, based on monitoring data attached in accordance with Appendix IV, Part 2 instructions. This type of change requires written approval by EPA. Additional effluent limitations and/or monitoring requirements may apply.
	5. Request to discharge chemical(s) and/or additive(s) that were not disclosed in the NOI submitted for the site, based on written rationale and/or monitoring data attached in accordance with Appendix IV, Part 2 instructions. Written approval by EPA is required for this change to be effective.
	6. Change to administrative information. Supporting documentation is attached in accordance with Appendix IV, Part 2 instructions.
	7. Notification of a change in discharge location. The receiving water information submitted with the NOI for the site remains unchanged. Supporting documentation is attached in accordance with Appendix IV, Part 2 instructions.
	8. Notification of a change in activity area. The receiving water information submitted with the NOI for the site and the operator named in the authorization to discharge remain unchanged. Any change in treatment or discharge location are also included in the NOC, or are unchanged. Supporting documentation is attached in accordance with Appendix IV, Part 2 instructions.
	9. Notification of a change to a treatment system or process that adds or removes any major component. Supporting rationale is attached in accordance with Appendix IV, Part 2 instructions.
	10. Notification of a temporary cessation of discharge greater than 90 days. Supporting rationale is attached in accordance with Appendix IV, Part 2 instructions.

Request to change effluent limitation values for discharge as well as WQBEL and TBEL calculated values.

Data obtained previously was incorrectly inputed to the MALimitBook Excel document. Hardness values analyzed by a laboratory testing agency and a hand-held water meter unit indicated a influent hardness value of 269 mg/l and a receiving water body hardness value of 96.5 mg/l.

C. Certification requirement

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in a assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the persystem, or those persons directly responsible for gathering the information, the information submitted is, to the best of my and complete. I have no personal knowledge that the information submitted is other than true, accurate, and complete. I appendities for submitting false information, including the possibility of fine and imprisonment for knowing violations.	rson or persons who manage the knowledge and belief, true, accurate,
Notification provided to the appropriate State, including a copy of this NOC.	Check one: Yes □ No □
Notification has been provided to the municipality in which the discharge is located, including a copy of this NOC, if requested.	Check one: Yes □ No □
Notification has been provided to the owner of a private or municipal storm sewer system, if such system is used for site discharges, including a copy of this NOC, if requested.	Check one: Yes □ No □ NA □
Signature: Da	te:
Print Name and Title:	

ANALYTICAL REPORT

Lab Number: L1815300

Client: McPhail Associates

2269 Massachusetts Avenue

Cambridge, MA 02140

ATTN: Ambrose Donovan
Phone: (617) 868-1420
Project Name: FOREST HILLS

Project Number: 6130

Report Date: 05/04/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300 **Report Date:** 05/04/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1815300-01	INF 4-30	GROUNDWATER	ROXBURY, MA	04/30/18 11:50	04/30/18
L1815300-02	EFF 4-30	GROUNDWATER	ROXBURY, MA	04/30/18 12:00	04/30/18

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact	t Client Services	at 800-624-9220	with any questions.

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

Case Narrative (continued)

Sample Receipt

L1815300-01 and -02: The collection time was obtained from the container label.

The analyses performed were specified by the client.

Total Metals

The WG1111870-3 MS recovery, performed on L1815300-01, is outside the acceptance criteria for mercury (68%). A post digestion spike was performed and was within acceptance criteria.

The WG1111870-5 MS recovery, performed on L1815300-02, is outside the acceptance criteria for mercury (38%). A post digestion spike was performed and was within acceptance criteria.

The WG1111843-4 Laboratory Duplicate RPD for cadmium (52%), performed on L1815300-01, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

- Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Nails

ALPHA

Date: 05/04/18

ORGANICS

VOLATILES

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

SAMPLE RESULTS

Lab ID: L1815300-01 Date Collected: 04/30/18 11:50

Client ID: INF 4-30 Date Received: 04/30/18
Sample Location: ROXBURY, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 1,8260C
Analytical Date: 05/03/18 04:52

Analyst: PD

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/l	1.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	95	70-130	

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

SAMPLE RESULTS

Lab ID: L1815300-02 Date Collected: 04/30/18 12:00

Client ID: EFF 4-30 Date Received: 04/30/18
Sample Location: ROXBURY, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater
Analytical Method: 1,8260C
Analytical Date: 05/02/18 04:58

Analyst: NLK

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methyl tert butyl ether	ND		ug/l	1.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	106	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	104	70-130	

L1815300

Project Name: FOREST HILLS Lab Number:

Project Number: 6130 Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/01/18 21:23

Analyst: PD

Parameter	Result	Qualifier L	Jnits	RL	MDL	
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): 02	Batch:	WG1111883-5	
Methyl tert butyl ether	ND		ug/l	1.0		
Tert-Butyl Alcohol	ND		ug/l	10		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/I

		Į.	Acceptance
Surrogate	%Recovery	Qualifier	Criteria
1,2-Dichloroethane-d4	96		70-130
Toluene-d8	97		70-130
4-Bromofluorobenzene	97		70-130
Dibromofluoromethane	98		70-130

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/02/18 19:24

Analyst: MKS

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS - V	Vestborough Lab	o for samp	e(s): 01	Batch:	WG1112572-5	
Methyl tert butyl ether	ND		ug/l	1.0		
Tert-Butyl Alcohol	ND		ug/l	10		
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		

		Acceptance
Surrogate	%Recovery Quali	fier Criteria
1,2-Dichloroethane-d4	116	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	106	70-130
Dibromofluoromethane	97	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS Lab Number:

L1815300

Project Number: 6130

Report Date: 05/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recover	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough	h Lab Associated sa	mple(s): 02	2 Batch: V	WG1111883-3	WG1111883-4				
Methyl tert butyl ether	100		110		63-130	10		20	
Tert-Butyl Alcohol	108		134	Q	70-130	21	Q	20	
Tertiary-Amyl Methyl Ether	100		110		66-130	10		20	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	92	97	70-130
Toluene-d8	98	98	70-130
4-Bromofluorobenzene	96	95	70-130
Dibromofluoromethane	99	101	70-130

05/04/18

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

EST HILLS

Lab Number: L1815300

Project Number: 6130 Report Date:

Para	meter	LCS %Recovery	Qual		LCSD %Recove	ry Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volat	ile Organics by GC/MS - Westborough L	ab Associated	sample(s):	01	Batch: \	WG1112572-3	WG1112572-4				
M	ethyl tert butyl ether	83			88		63-130	6		20	
Т	ert-Butyl Alcohol	104			114		70-130	9		20	
Т	ertiary-Amyl Methyl Ether	80			85		66-130	6		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	118	115	70-130	
Toluene-d8	101	101	70-130	
4-Bromofluorobenzene	107	106	70-130	
Dibromofluoromethane	97	98	70-130	

SEMIVOLATILES

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

SAMPLE RESULTS

Lab ID: L1815300-01 Date Collected: 04/30/18 11:50

Client ID: INF 4-30 Date Received: 04/30/18
Sample Location: ROXBURY, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 3510C
Analytical Method: 1.8270D-SIM Extraction Date: 05/01/18 02:06

Analytical Method: 1,8270D-SIM Extraction Date: 05/01/18 02:06
Analytical Date: 05/02/18 11:38

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS-SIM - W	estborough La	ab				
A company to the comp	ND			0.40		4
Acenaphthene	ND		ug/l	0.10		1
Fluoranthene	ND		ug/l	0.10		1
Naphthalene	ND		ug/l	0.10		1
Benzo(a)anthracene	ND		ug/l	0.10		1
Benzo(a)pyrene	ND		ug/l	0.10		1
Benzo(b)fluoranthene	ND		ug/l	0.10		1
Benzo(k)fluoranthene	ND		ug/l	0.10		1
Chrysene	ND		ug/l	0.10		1
Acenaphthylene	ND		ug/l	0.10		1
Anthracene	ND		ug/l	0.10		1
Benzo(ghi)perylene	ND		ug/l	0.10		1
Fluorene	ND		ug/l	0.10		1
Phenanthrene	ND		ug/l	0.10		1
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1
Pyrene	ND		ug/l	0.10		1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	41	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	74	23-120
2-Fluorobiphenyl	72	15-120
2,4,6-Tribromophenol	95	10-120
4-Terphenyl-d14	91	41-149

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

SAMPLE RESULTS

Lab ID: L1815300-02 Date Collected: 04/30/18 12:00

Client ID: EFF 4-30 Date Received: 04/30/18
Sample Location: ROXBURY, MA Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater Extraction Method: EPA 3510C
Analytical Method: 1.8270D-SIM Extraction Date: 05/01/18 02:06

Analytical Method: 1,8270D-SIM Extraction Date: 05/01/18 02:06

Analytical Date: 05/02/18 12:05

Analyst: DV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SII	M - Westborough La	ab					
Acenaphthene	ND		ug/l	0.10		1	
Fluoranthene	ND		ug/l	0.10		1	
Naphthalene	ND		ug/l	0.10		1	
Benzo(a)anthracene	ND		ug/l	0.10		1	
Benzo(a)pyrene	ND		ug/l	0.10		1	
Benzo(b)fluoranthene	ND		ug/l	0.10		1	
Benzo(k)fluoranthene	ND		ug/l	0.10		1	
Chrysene	ND		ug/l	0.10		1	
Acenaphthylene	ND		ug/l	0.10		1	
Anthracene	ND		ug/l	0.10		1	
Benzo(ghi)perylene	ND		ug/l	0.10		1	
Fluorene	ND		ug/l	0.10		1	
Phenanthrene	ND		ug/l	0.10		1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10		1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		1	
Pyrene	ND		ug/l	0.10		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
2-Fluorophenol	39	21-120	
Phenol-d6	29	10-120	
Nitrobenzene-d5	71	23-120	
2-Fluorobiphenyl	67	15-120	
2,4,6-Tribromophenol	87	10-120	
4-Terphenyl-d14	83	41-149	

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300

Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Analytical Method: Analytical Date: 1,8270D-SIM 05/03/18 11:04

Analyst:

DV

Extraction Method: EPA 3510C Extraction Date: 04/30/18 15:49

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-	SIM - Westbo	orough Lab	for sample(s)	01-02	Batch:	WG1111119-1
Acenaphthene	ND		ug/l	0.10		
Fluoranthene	ND		ug/l	0.10		
Naphthalene	ND		ug/l	0.10		
Benzo(a)anthracene	ND		ug/l	0.10		
Benzo(a)pyrene	ND		ug/l	0.10		
Benzo(b)fluoranthene	ND		ug/l	0.10		
Benzo(k)fluoranthene	ND		ug/l	0.10		
Chrysene	ND		ug/l	0.10		
Acenaphthylene	ND		ug/l	0.10		
Anthracene	ND		ug/l	0.10		
Benzo(ghi)perylene	ND		ug/l	0.10		
Fluorene	ND		ug/l	0.10		
Phenanthrene	ND		ug/l	0.10		
Dibenzo(a,h)anthracene	ND		ug/l	0.10		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10		
Pyrene	ND		ug/l	0.10		

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	21-120
Phenol-d6	30	10-120
Nitrobenzene-d5	80	23-120
2-Fluorobiphenyl	92	15-120
2,4,6-Tribromophenol	88	10-120
4-Terphenyl-d14	92	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300

Report Date: 05/04/18

	LCS		CSD		%Recove			RPD	
arameter	%Recovery	Qual %R	ecovery	Qua	l Limits	RPD	Qual	Limits	
emivolatile Organics by GC/MS-SIM -	Westborough Lab A	Associated sample(s)	: 01-02	Batch:	WG1111119-2	WG1111119-3			
Acenaphthene	77		78		40-140	1		40	
Fluoranthene	86		86		40-140	0		40	
Naphthalene	75		78		40-140	4		40	
Benzo(a)anthracene	80		80		40-140	0		40	
Benzo(a)pyrene	87		88		40-140	1		40	
Benzo(b)fluoranthene	88		86		40-140	2		40	
Benzo(k)fluoranthene	86		84		40-140	2		40	
Chrysene	78		78		40-140	0		40	
Acenaphthylene	85		87		40-140	2		40	
Anthracene	80		80		40-140	0		40	
Benzo(ghi)perylene	70		71		40-140	1		40	
Fluorene	77		75		40-140	3		40	
Phenanthrene	77		78		40-140	1		40	
Dibenzo(a,h)anthracene	80		88		40-140	10		40	
Indeno(1,2,3-cd)pyrene	77		85		40-140	10		40	
Pyrene	86		87		40-140	1		40	

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Lab Number:

L1815300

Project Number: 6130

Report Date:

05/04/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-02 Batch: WG1111119-2 WG1111119-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	46	51	21-120
Phenol-d6	29	32	10-120
Nitrobenzene-d5	74	74	23-120
2-Fluorobiphenyl	95	106	15-120
2,4,6-Tribromophenol	86	87	10-120
4-Terphenyl-d14	98	100	41-149

METALS

L1815300

Project Name: Lab Number: FOREST HILLS

Project Number: Report Date: 6130 05/04/18

SAMPLE RESULTS

Lab ID: L1815300-01 Client ID: INF 4-30 Sample Location: ROXBURY, MA Date Collected: 04/30/18 11:50 Date Received: 04/30/18 Field Prep: Not Specified

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	field Lab										
Antimony, Total	ND		mg/l	0.00400		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Arsenic, Total	ND		mg/l	0.00100		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Cadmium, Total	0.00027		mg/l	0.00020		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Chromium, Total	ND		mg/l	0.00100		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Copper, Total	0.00466		mg/l	0.00100		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Iron, Total	1.18		mg/l	0.050		1	05/03/18 08:3	0 05/03/18 13:50	EPA 3005A	19,200.7	LC
Lead, Total	0.00406		mg/l	0.00100		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Mercury, Total	ND		mg/l	0.00020		1	05/02/18 14:1	5 05/02/18 21:30	EPA 245.1	3,245.1	EA
Nickel, Total	0.00203		mg/l	0.00200		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Selenium, Total	ND		mg/l	0.00500		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Silver, Total	ND		mg/l	0.00040		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Zinc, Total	0.01785		mg/l	0.01000		1	05/03/18 08:3	0 05/03/18 12:28	EPA 3005A	3,200.8	AM
Total Hardness by S	SM 2340B	- Mansfiel	d Lab								
Hardness	269		mg/l	0.660	NA	1	05/03/18 08:3	0 05/03/18 13:50	EPA 3005A	19,200.7	LC
			<u> </u>								
General Chemistry	- Mansfiel	d Lab									
Chromium, Trivalent	ND		mg/l	0.010		1		05/03/18 12:28	NA	107,-	

L1815300

Project Name: FOREST HILLS Lab Number:

Project Number: 6130 Report Date: 05/04/18

SAMPLE RESULTS

Lab ID:L1815300-02Date Collected:04/30/18 12:00Client ID:EFF 4-30Date Received:04/30/18Sample Location:ROXBURY, MAField Prep:Not Specified

Sample Depth:

Matrix: Groundwater

Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
sfield Lab										
ND		ma/l	0.00400		1	05/03/18 08:3	0 05/03/18 12:32	EPA 3005A	3,200.8	AM
0.00574			0.00100		1				3,200.8	AM
0.00122		Ū			1				3,200.8	AM
ND			0.00100		1				3,200.8	AM
ND			0.00100		1	05/03/18 08:3	0 05/03/18 12:32	EPA 3005A	3,200.8	AM
0.071		Ū			1				19,200.7	LC
ND			0.00100		1				3,200.8	AM
ND			0.00020		1				3,245.1	EA
ND			0.00200		1	05/03/18 08:3	0 05/03/18 12:32	EPA 3005A	3,200.8	AM
					1					AM
					1				-	AM
					1					AM
	R - Mansfield		0.0.000			00/00/10 00.0	0 00,00,10 12.02			
	Manones		0.660	NΙΔ	1	05/02/49 09:2	0.05/02/10.14.47	EDA 2005A	10 200 7	LC
ND		mg/i	0.000	INA	ı	05/03/18 08:3	0 05/03/16 14:47	EPA 3005A	19,200.7	LC
- Mansfiel	d Lab									
ND		mg/l	0.010		1		05/03/18 12:32	NA	107,-	
	sfield Lab ND 0.00574 0.00122 ND ND 0.071 ND ND ND ND ND ND ND ND ND N	sfield Lab ND 0.00574 0.00122 ND ND 0.071 ND ND ND ND ND ND ND ND ND N	Sfield Lab ND mg/l 0.00574 mg/l 0.00122 mg/l ND mg/l ND mg/l 0.071 mg/l ND mg/l SM 2340B - Mansfield Lab ND mg/l	Sfield Lab ND mg/l 0.00400 0.00574 mg/l 0.00100 0.00122 mg/l 0.00020 ND mg/l 0.00100 ND mg/l 0.00100 0.071 mg/l 0.050 ND mg/l 0.00100 ND mg/l 0.00020 ND mg/l 0.00020 ND mg/l 0.00020 ND mg/l 0.00200 ND mg/l 0.00500 ND mg/l 0.00500 ND mg/l 0.00500 ND mg/l 0.00500 ND mg/l 0.01000 SM 2340B - Mansfield Lab ND mg/l 0.660	Sfield Lab ND mg/l 0.00400 0.00574 mg/l 0.00100 0.00122 mg/l 0.00020 ND mg/l 0.00100 ND mg/l 0.00100 ND mg/l 0.0050 ND mg/l 0.00020 ND mg/l 0.00020 ND mg/l 0.00020 ND mg/l 0.00500 ND mg/l 0.0060 NA SM 2340B - Mansfield Lab ND mg/l 0.660 NA	Result Qualifier Units RL MDL Factor sfield Lab ND mg/l 0.00400 1 0.00574 mg/l 0.00100 1 0.00122 mg/l 0.00020 1 ND mg/l 0.00100 1 ND mg/l 0.00100 1 ND mg/l 0.00100 1 ND mg/l 0.00200 1 ND mg/l 0.00500 1 ND mg/l 0.00040 1 ND mg/l 0.00040 1 SM 2340B - Mansfield Lab ND mg/l 0.660 NA 1	Result Qualifier Units RL MDL Factor Prepared Sfield Lab ND mg/l 0.00400 1 05/03/18 08:3 0.00574 mg/l 0.00100 1 05/03/18 08:3 ND mg/l 0.00100 1 05/03/18 08:3 ND mg/l 0.00100 1 05/03/18 08:3 ND mg/l 0.050 1 05/03/18 08:3 ND mg/l 0.00100 1 05/03/18 08:3 ND mg/l 0.00100 1 05/03/18 08:3 ND mg/l 0.00200 1 05/03/18 08:3 ND mg/l 0.00500 1 05/03/18 08:3 ND mg/l 0.00040 1 05/03/18 08:3 ND mg/l 0.00040 1 05/03/18 08:3 SM 2340B - Mansfield Lab ND	Result Qualifier Units RL MDL Factor Prepared Analyzed Sfield Lab ND mg/l 0.00400 1 05/03/18 08:30 05/03/18 12:32 0.00574 mg/l 0.00100 1 05/03/18 08:30 05/03/18 12:32 0.00122 mg/l 0.00100 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00100 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00100 1 05/03/18 08:30 05/03/18 12:32 0.071 mg/l 0.0050 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00100 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00020 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00200 1 05/03/18 08:30 05/03/18 12:32 ND mg/l 0.00040 1 05/03/18 08:30 05/03/18 12:32 ND mg/l	Result Qualifier Units RL MDL Factor Prepared Analyzed Method Sfield Lab ND mg/l 0.00400 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A 0.00574 mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.050 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00100 1 0.5/03/18 08:30 05/03/18 12:32 EPA 3005A ND mg/l 0.00020 1 0.5/03/18 08:30 05/03/18 12:32 <td> ND</td>	ND

Project Name: FOREST HILLS

Project Number: 6130

Method Blank Analysis

Lab Number: L1815300

Report Date: 05/04/18

Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mans	field Lab for sample(s):	01-02 E	Batch: Wo	G11118	343-1				
Antimony, Total	ND	mg/l	0.00400		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Arsenic, Total	ND	mg/l	0.00100		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Cadmium, Total	ND	mg/l	0.00020		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Chromium, Total	ND	mg/l	0.00100		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Copper, Total	ND	mg/l	0.00100		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Lead, Total	ND	mg/l	0.00100		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Nickel, Total	ND	mg/l	0.00200		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Selenium, Total	ND	mg/l	0.00500		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Silver, Total	ND	mg/l	0.00040		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM
Zinc, Total	ND	mg/l	0.01000		1	05/03/18 08:30	05/03/18 12:12	3,200.8	AM

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfie	eld Lab for sample(s):	01-02 E	Batch: Wo	G11118	345-1				
Iron, Total	ND	mg/l	0.050		1	05/03/18 08:30	05/03/18 13:42	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM 2	340B - Mansfield Lab	for samp	le(s):	01-02 I	Batch: WG1	111845-1			
Hardness	ND	mg/l	0.660	NA	1	05/03/18 08:30	05/03/18 13:42	19,200.7	LC

Prep Information

Digestion Method: EPA 3005A

L1815300

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

Report Date: 05/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sample(s):	01-02 B	Batch: Wo	G11118	70-1				
Mercury, Total	ND	mg/l	0.00020		1	05/02/18 14:15	05/02/18 21:26	3,245.1	EA

Prep Information

Digestion Method: EPA 245.1

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300

Report Date: 05/04/18

Parameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG1111843-2				
Antimony, Total	92	-	85-115	-		
Arsenic, Total	105	-	85-115	-		
Cadmium, Total	110	-	85-115	-		
Chromium, Total	95	-	85-115	-		
Copper, Total	96	-	85-115	-		
Lead, Total	107	-	85-115	-		
Nickel, Total	100	-	85-115	-		
Selenium, Total	101	-	85-115	-		
Silver, Total	100	-	85-115	-		
Zinc, Total	103	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG1111845-2				
Iron, Total	105	-	85-115	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sampl	e(s): 01-02 Batch: WG11118	45-2			
Hardness	102	-	85-115	-		
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bate	ch: WG1111870-2				
Mercury, Total	104	-	85-115	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

L1815300

Report Date:

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield	Lab Associated san	nple(s): 01-02	QC Ba	tch ID: WG111	1843-3	QC San	nple: L1815300-01	Client ID: IN	F 4-30		
Antimony, Total	ND	0.5	0.5496	110		-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1291	108		-	-	70-130	-		20
Cadmium, Total	0.00027	0.051	0.05508	107		-	-	70-130	-		20
Chromium, Total	ND	0.2	0.1898	95		-	-	70-130	-		20
Copper, Total	0.00466	0.25	0.2436	96		-	-	70-130	-		20
Lead, Total	0.00406	0.51	0.5715	111		-	-	70-130	-		20
Nickel, Total	0.00203	0.5	0.4850	96		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1226	102		-	-	70-130	-		20
Silver, Total	ND	0.05	0.04855	97		-	-	70-130	-		20
Zinc, Total	0.01785	0.5	0.5174	100		-	-	70-130	-		20
otal Metals - Mansfield	Lab Associated san	nple(s): 01-02	QC Ba	tch ID: WG111	1843-5	QC San	nple: L1815482-01	Client ID: MS	S Sampl	e	
Antimony, Total	ND	0.5	0.4890	98		-	-	70-130	-		20
Arsenic, Total	ND	0.12	0.1312	109		-	-	70-130	-		20
Cadmium, Total	ND	0.051	0.05698	112		-	-	70-130	-		20
Chromium, Total	0.00119	0.2	0.1914	95		-	-	70-130	-		20
Copper, Total	0.0035	0.25	0.2449	96		-	-	70-130	-		20
Lead, Total	ND	0.51	0.5784	113		-	-	70-130	-		20
Nickel, Total	ND	0.5	0.4928	98		-	-	70-130	-		20
Selenium, Total	ND	0.12	0.1271	106		-	-	70-130	-		20
Silver, Total	ND	0.05	0.05080	102		-	-	70-130	-		20
Zinc, Total	0.0105	0.5	0.5364	105		-	-	70-130	-		20

Matrix Spike Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

L1815300

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab A	Associated samp	ole(s): 01-02	QC Bate	ch ID: WG111	1845-3	QC Sample	e: L1815300-01	Client ID: INF	4-30	
Iron, Total	1.18	1	2.16	98		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lab	Associated :	sample(s)	: 01-02 QC E	Batch ID	: WG111184	5-3 QC Sampl	e: L1815300-01	Client ID:	INF 4-30
Hardness	269	66.2	324	83		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated samp	ole(s): 01-02	QC Bate	ch ID: WG111	1845-7	QC Sample	e: L1815482-01	Client ID: MS	Sample	
Iron, Total	ND	1	1.03	103		-	-	75-125	-	20
Total Hardness by SM 2340B	- Mansfield Lab	Associated :	sample(s)	: 01-02 QC E	Batch ID	: WG111184	5-7 QC Sampl	e: L1815482-01	Client ID:	MS Sample
Hardness	116	66.2	176	91		-	-	75-125	-	20
Total Metals - Mansfield Lab A	Associated samp	ole(s): 01-02	QC Bate	ch ID: WG111	1870-3	QC Sample	e: L1815300-01	Client ID: INF	4-30	
Mercury, Total	ND	0.005	0.00338	68	Q	-	-	70-130	-	20
Total Metals - Mansfield Lab A	Associated samp	ole(s): 01-02	QC Bate	ch ID: WG111	1870-5	QC Sample	e: L1815300-02	Client ID: EFF	4-30	
Mercury, Total	ND	0.005	0.00188	38	Q	-	-	70-130	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

L1815300

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RP	D Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1111843-4 QC Sample:	L1815300-01	Client ID:	INF 4-30	
Antimony, Total	ND	ND	mg/l	NC		20
Arsenic, Total	ND	ND	mg/l	NC		20
Cadmium, Total	0.00027	0.00047	mg/l	52	Q	20
Chromium, Total	ND	ND	mg/l	NC		20
Copper, Total	0.00466	0.00483	mg/l	3		20
Lead, Total	0.00406	0.00408	mg/l	1		20
Nickel, Total	0.00203	0.00201	mg/l	1		20
Selenium, Total	ND	ND	mg/l	NC		20
Silver, Total	ND	ND	mg/l	NC		20
Zinc, Total	0.01785	0.01664	mg/l	7		20
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1111843-6 QC Sample:	L1815482-01	Client ID:	DUP Sample	
Chromium, Total	0.00119	0.00113	mg/l	5		20
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1111845-4 QC Sample:	L1815300-01	Client ID:	INF 4-30	
Iron, Total	1.18	1.15	mg/l	3		20
Total Hardness by SM 2340B - Mansfield Lab Associated	sample(s): 01-02	2 QC Batch ID: WG1111845	-4 QC Samp	le: L1815	300-01 Client IE): INF 4-30
Hardness	269	268	mg/l	0		20
Total Metals - Mansfield Lab Associated sample(s): 01-0	2 QC Batch ID:	WG1111845-8 QC Sample:	L1815482-01	Client ID:	DUP Sample	
Iron, Total	ND	ND	mg/l	NC		20

Lab Duplicate Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

L1815300

Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits		
Total Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID:	WG1111870-4 QC Sample:	L1815300-01	Client ID:	INF 4-30		
Mercury, Total	ND	ND	mg/l	NC	20		
Total Metals - Mansfield Lab Associated sample(s): 01-	02 QC Batch ID:	WG1111870-6 QC Sample:	L1815300-02	Client ID:	EFF 4-30		
Mercury, Total	ND	ND	mg/l	NC	20		

INORGANICS & MISCELLANEOUS

Project Name: FOREST HILLS Lab Number:

L1815300 Project Number: Report Date: 05/04/18 6130

SAMPLE RESULTS

Lab ID: Date Collected: L1815300-01 04/30/18 11:50 04/30/18 Client ID: INF 4-30 Date Received:

Not Specified Sample Location: ROXBURY, MA Field Prep:

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lal)								
Solids, Total Suspended	32.		mg/l	5.0	NA	1	-	05/03/18 23:40	121,2540D	CW
Cyanide, Total	ND		mg/l	0.005		1	05/01/18 07:33	05/01/18 13:54	121,4500CN-CE	LH
pH (H)	7.5		SU	-	NA	1	-	04/30/18 23:06	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/01/18 16:30	05/01/18 23:08	121,4500NH3-BH	H AT
TPH, SGT-HEM	ND		mg/l	4.00		1	05/01/18 22:50	05/01/18 23:40	74,1664A	MM
Chromium, Hexavalent	ND		mg/l	0.010		1	05/01/18 00:20	05/01/18 00:45	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	1220		mg/l	25.0		50	-	05/01/18 01:32	44,300.0	JR

Project Name: FOREST HILLS Lab Number:

L1815300 Report Date: Project Number: 6130 05/04/18

SAMPLE RESULTS

Lab ID: Date Collected: L1815300-02 04/30/18 12:00 Client ID: EFF 4-30 Date Received: 04/30/18 Not Specified Sample Location: ROXBURY, MA Field Prep:

Sample Depth:

Matrix: Groundwater

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough La	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	05/03/18 23:40	121,2540D	CW
Cyanide, Total	ND		mg/l	0.005		1	05/01/18 07:33	05/01/18 13:55	121,4500CN-CE	LH
pH (H)	7.8		SU	-	NA	1	-	04/30/18 23:06	121,4500H+-B	AS
Nitrogen, Ammonia	ND		mg/l	0.075		1	05/01/18 16:30	05/01/18 23:09	121,4500NH3-BH	I AT
TPH, SGT-HEM	ND		mg/l	4.00		1	05/01/18 22:50	05/01/18 23:40	74,1664A	MM
Chromium, Hexavalent	ND		mg/l	0.010		1	05/01/18 00:20	05/01/18 00:46	1,7196A	MA
Anions by Ion Chromato	graphy - Wes	tborough	Lab							
Chloride	1190		mg/l	25.0		50	-	05/01/18 01:44	44,300.0	JR

L1815300

Lab Number:

Project Name: FOREST HILLS

Project Number: 6130 **Report Date:** 05/04/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qua	alifier Unit	s F	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab f	or sample(s)	: 01-02	Bato	ch: WG	1111225-1				
Chromium, Hexavalent	ND	m	g/I C	.010		1	05/01/18 00:20	05/01/18 00:43	1,7196A	MA
General Chemistry - V	Vestborough Lab f	or sample(s)	: 01-02	Bato	ch: WG	1111272-1				
Cyanide, Total	ND	m	g/I C	.005		1	05/01/18 07:33	05/01/18 13:10	121,4500CN-CE	E LH
General Chemistry - V	Vestborough Lab f	or sample(s)	: 01-02	Bato	ch: WG	1111459-1				
Nitrogen, Ammonia	ND	m	g/I C	.075		1	05/01/18 16:30	05/01/18 22:56	121,4500NH3-BI	H AT
General Chemistry - V	Vestborough Lab f	or sample(s)	: 01-02	Bato	ch: WG	1111524-1				
TPH, SGT-HEM	ND	m	g/I ·	4.00		1	05/01/18 22:50	05/01/18 23:40	74,1664A	MM
Anions by Ion Chroma	tography - Westbo	rough Lab f	or samp	le(s):	01-02	Batch: W	G1111596-1			
Chloride	ND	m	g/I C	.500		1	-	04/30/18 21:32	44,300.0	JR
General Chemistry - V	Vestborough Lab f	or sample(s)	: 01-02	Bato	ch: WG	1112458-1				
Solids, Total Suspended	ND	m	g/I	5.0	NA	1	-	05/03/18 23:40	121,2540D	CW

Lab Control Sample Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300

Report Date: 05/04/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG11111	199-1				
рН	100		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG11112	225-2				
Chromium, Hexavalent	98		-		85-115	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG11112	272-2				
Cyanide, Total	101		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG11114	459-2				
Nitrogen, Ammonia	100		-		80-120	-		20
General Chemistry - Westborough Lab	Associated sample(s):	01-02	Batch: WG11115	524-2				
ТРН	73		-		64-132	-		34
Anions by Ion Chromatography - Westbo	orough Lab Associated	d samp	le(s): 01-02 Bato	ch: WG111	1596-2			
Chloride	99		-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: FOREST HILLS

Project Number: 6130

Lab Number:

L1815300

Report Date: 05/04/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Reco Qual Lim	•	RPD Qual Limits
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1111225-4	QC Sample:	L1815300-02	Client ID:	EFF 4-30
Chromium, Hexavalent	ND	0.1	0.098	98	-	-	85-1	15 -	20
General Chemistry - Westbor	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1111272-4	QC Sample:	L1815278-01	Client ID:	MS Sample
Cyanide, Total	0.010	0.2	0.190	90	-	-	90-1	10 -	30
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1111459-4	QC Sample:	L1815300-02	Client ID:	EFF 4-30
Nitrogen, Ammonia	ND	4	3.88	97	-	-	80-1	20 -	20
General Chemistry - Westbo	rough Lab Assoc	iated samp	ole(s): 01-02	QC Batch II	D: WG1111524-4	QC Sample:	L1815300-01	Client ID:	INF 4-30
ТРН	ND	20.8	14.6	70	-	-	64-1	32 -	34
Anions by Ion Chromatograp Sample	hy - Westboroug	h Lab Asso	ociated samp	ole(s): 01-02	QC Batch ID: WG	1111596-3	QC Sample: L	1815116-01	I Client ID: MS
Chloride	9.73	4	13.5	95	-	-	90-1	10 -	18

Lab Duplicate Analysis Batch Quality Control

Project Name: FOREST HILLS

L1815300 05/04/18

Lab Number:

Project Number: 6130 Report Date:

Parameter	Native Sam	ple D	uplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1111199-2	QC Sample:	L1815242-01	Client ID:	DUP Sample
рН	7.6		7.5	SU	1		5
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1111225-3	QC Sample:	L1815300-01	Client ID:	INF 4-30
Chromium, Hexavalent	ND		ND	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1111272-3	QC Sample:	L1815278-02	Client ID:	DUP Sample
Cyanide, Total	0.011		0.012	mg/l	10		30
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1111459-3	QC Sample:	L1815300-02	Client ID:	EFF 4-30
Nitrogen, Ammonia	ND		0.083	mg/l	NC		20
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1111524-3	QC Sample:	L1815198-01	Client ID:	DUP Sample
ТРН	4.59		5.50	mg/l	18		34
Anions by Ion Chromatography - Westborough Lab Asso	ociated sample	e(s): 01-02 C	QC Batch ID: WG	1111596-4	QC Sample: L	1815116-0	1 Client ID: DUP
Chloride	9.73		9.74	mg/l	0		18
General Chemistry - Westborough Lab Associated samp	ole(s): 01-02	QC Batch ID:	WG1112458-2	QC Sample:	L1815196-02	Client ID:	DUP Sample
Solids, Total Suspended	170		180	mg/l	6		29

Project Name: FOREST HILLS

Project Number: 6130

Lab Number: L1815300 **Report Date:** 05/04/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815300-01A	Vial HCl preserved	В	NA		3.6	Υ	Absent		8260(14)
L1815300-01B	Vial HCl preserved	В	NA		3.6	Υ	Absent		8260(14)
L1815300-01C	Vial HCl preserved	В	NA		3.6	Υ	Absent		8260(14)
L1815300-01D	Plastic 250ml NaOH preserved	В	>12	>12	3.6	Υ	Absent		TCN-4500(14)
L1815300-01E	Plastic 250ml HNO3 preserved	В	<2	<2	3.6	Υ	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1815300-01F	Plastic 500ml H2SO4 preserved	В	<2	<2	3.6	Υ	Absent		NH3-4500(28)
L1815300-01G	Plastic 500ml unpreserved	В	7	7	3.6	Υ	Absent		CL-300(28),HEXCR-7196(1),PH-4500(.01)
L1815300-01H	Plastic 950ml unpreserved	В	7	7	3.6	Υ	Absent		TSS-2540(7)
L1815300-01I	Amber 1000ml HCl preserved	В	NA		3.6	Υ	Absent		TPH-1664(28)
L1815300-01J	Amber 1000ml HCl preserved	В	NA		3.6	Υ	Absent		TPH-1664(28)
L1815300-01K	Amber 1000ml unpreserved	В	7	7	3.6	Υ	Absent		8270TCL-SIM(7)
L1815300-01L	Amber 1000ml unpreserved	В	7	7	3.6	Υ	Absent		8270TCL-SIM(7)
L1815300-02A	Vial HCl preserved	Α	NA		3.5	Υ	Absent		8260(14)
L1815300-02B	Vial HCl preserved	Α	NA		3.5	Υ	Absent		8260(14)
L1815300-02C	Vial HCl preserved	Α	NA		3.5	Υ	Absent		8260(14)
L1815300-02D	Plastic 250ml NaOH preserved	Α	>12	>12	3.5	Υ	Absent		TCN-4500(14)
L1815300-02E	Plastic 250ml HNO3 preserved	A	<2	<2	3.5	Y	Absent		CD-2008T(180),NI-2008T(180),ZN- 2008T(180),CU-2008T(180),FE- UI(180),HARDU(180),AG-2008T(180),AS- 2008T(180),HG-U(28),SE-2008T(180),CR- 2008T(180),PB-2008T(180),SB-2008T(180)
L1815300-02F	Plastic 500ml H2SO4 preserved	Α	<2	<2	3.5	Υ	Absent		NH3-4500(28)

Lab Number: L1815300

Report Date: 05/04/18

Project Number: 6130

FOREST HILLS

Project Name:

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1815300-02G	Plastic 500ml unpreserved	Α	7	7	3.5	Υ	Absent		CL-300(28),HEXCR-7196(1),PH-4500(.01)
L1815300-02H	Plastic 950ml unpreserved	Α	7	7	3.5	Υ	Absent		TSS-2540(7)
L1815300-02I	Amber 1000ml HCl preserved	Α	NA		3.5	Υ	Absent		TPH-1664(28)
L1815300-02J	Amber 1000ml HCl preserved	Α	NA		3.5	Υ	Absent		TPH-1664(28)
L1815300-02K	Amber 1000ml unpreserved	Α	7	7	3.5	Υ	Absent		8270TCL-SIM(7)
L1815300-02L	Amber 1000ml unpreserved	Α	7	7	3.5	Υ	Absent		8270TCL-SIM(7)

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:FOREST HILLSLab Number:L1815300Project Number:6130Report Date:05/04/18

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name: FOREST HILLS Lab Number: L1815300

Project Number: 6130 Report Date: 05/04/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

- Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.
- 107 Alpha Analytical In-house calculation method.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 11

Published Date: 1/8/2018 4:15:49 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide EPA 6860: SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-B, E, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, E, EPA 351.1, SM4500P-B, EPA 351.1, SM450P-B, EPA 351.1, SM4 SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Be, Cd, Cr, Cu, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Дірна	CHA	IN OF CU			PAGE_	1_0F_			ate R			4	-	118	7.					10b#: 8/S	300	0	
8 Walkup Drive	320 Forbes Blvd		Project Infor					100				on - D		eliver	ables		ib.	100		Inform	School (1)		
Westboro, MA 01 Tel: 508-998-92			Project Name:	Toxe	St Hil	1/5		D	ADEx		0	EMAJL						D∕Sa	me as	Client inf	D. P	O#:	
Client Information			Project Location	Bos	ton	-														ements			
Client: McPhail A	ssociates, LLC		Project #:	613	2			☐ Ye	s W N	o Matri	x Spik	Analytica e Requi	red on t	his SD(3? (Red	guired	for MC	P Inon	ganics)	nalytical M i)	ethods		
Address: 2269 Mass	achusetts Avenue		Project Manager	0	N Chiv	100		□ Ye	S D No	o GW	1 Stan	dards (I	nfo Rec	uired fo	r Metals	8 EP	H with	Targe	ts)	8			
Cambridg	ge, MA 02140	1	ALPHA Quote #	-	1 010			D OI	s 🗆 No	te/Fe	d Pro	gram _	AL	F		Cr	iteria _						
Phone: (617) 868-1	420		Turn-Aroun	d Time	74.5	= (4)	1911		Т	П	П	Т					Т					100	
Email:	@McPhailgeo.	com	729 7 00	chevodes.				٦.							D RCRA8	5					196		뤰
Additional Pro	oject Information;		Standard Date Due:	S/7/	(only confirmed i	f pre-approve	d!)	Package IV				ets	sta	CRAB		N.T.V.	200.01	soil					TOT
Sample "Sample ID" Nomenclature: B-100, S-1 ALPHA Lab ID Sample ID Sample Collection Sample						ment	/OC)	lids	SVOC: 🗆 PAH	EPH: ☐ Ranges & Targets ☐ Ranges Only	☐ Ranges Only VPH: ☐ Ranges & Targets ☐ Ranges Only	☐ Ranges Only TOTAL METALS: ☐ RCRA8	DISSOLVED METALS:	METALS: Total Sb.Be,Ni,TI,V,Zn	□ Pesticides	RGP Section A Inorganics	P REG.		Filtrati D Fie		AL W BOT		
			Samol	e .	Colleg	ction	Sampler	Soll Assess (less VOC)	6	Total Solids	ö	- Sang	# Gas	PH	SOL	TALS	O PCBs	Se	5		O La	b to do	Ť
(Lab Use Only)			Depth	Material	Date	Time	Initials	Soll (les	VOC	Tot	SV	80	50	50	Sig	ME	0	RGI	R		San	nple Comments	E S
15300-01		30		6W	4/34/18		BR												X				12
02	02 EFF 4-30	30		6W	4/3/14		BR												X		12		12
		2		+				+				-						-		\vdash	+		⊦
				-				+						-		-	Н	-	\vdash		+		⊦
			-	+			_	+-		-						_		-		-	+		H
		-	_	+-			_	+-			_		_	_			_	_	\vdash	_	+		L
				+				-			_								\square	\perp	\perp		L
				-				-												\perp	\perp		L
				-																			
		DOD C																					
Container Type A=Amber glass	Preservative A=None	Ammonia,	on A Inorganics : Chloride, TRC, TS		III, Total	Co	ontainer Type													- 1			
B=Bacteria cup	B#HCI	Cyanide, T	otal RGP Metals Relinquis	hed By		De	Preservative te/Time	\vdash				Pero	ved By:						Date		_		
D=BOO bottle E=Encore G=Glass O=Other	C=Cube	1	11/1/1/	12	-	4/39		McF	hail A	ssoci	ates s	ecure		storaç	ge for la	borat	ory	41	3U/	18	4 2 9 9 9	All samples	
P=Plastic V=Vial	H=Na ₂ S ₂ O ₃ I=Ascorbix Acid	McPhal	cPhall Associates secure sample storage for laboratory pick-up		10	411	RI	h	/	AK	X				4/20	lie	1640	100000000000000000000000000000000000000	subject to				
Sample Material F=Fill S*Sand O=Organics C=Clay	J=NH₄CI K≈Zn Acetate O∞Other		MILLEY NOV.		1810	V. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						8/817	pha's Terms Conditions reverse side	s.									
N=Natural T=T8I GM=Glaciomarine GW=Groundwater																		DO	C ID: 25188 Rev 0 (11/28/2017)				